daquanzhou
merge github repos and lfs track ckpt/path/safetensors/pt
613c9ab
raw
history blame
21.3 kB
#These nodes were made using code from the Deforum extension for A1111 webui
#You can find the project here: https://github.com/deforum-art/sd-webui-deforum
import numexpr
import torch
import numpy as np
import pandas as pd
import re
import json
#functions used by PromptSchedule nodes
#Addweighted function from Comfyui
def addWeighted(conditioning_to, conditioning_from, conditioning_to_strength):
out = []
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
max_size = max(t1.shape[1], cond_from.shape[1])
t0 = pad_with_zeros(cond_from, max_size)
t1 = pad_with_zeros(t1, max_size)
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
t_to = conditioning_to[i][1].copy()
if pooled_output_from is not None and pooled_output_to is not None:
# Pad pooled outputs if available
pooled_output_to = pad_with_zeros(pooled_output_to, max_size)
pooled_output_from = pad_with_zeros(pooled_output_from, max_size)
t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
elif pooled_output_from is not None:
t_to["pooled_output"] = pooled_output_from
n = [tw, t_to]
out.append(n)
return out
def pad_with_zeros(tensor, target_length):
current_length = tensor.shape[1]
if current_length < target_length:
padding = torch.zeros(tensor.shape[0], target_length - current_length, tensor.shape[2]).to(tensor.device)
tensor = torch.cat([tensor, padding], dim=1)
return tensor
def reverseConcatenation(final_conditioning, final_pooled_output, max_frames):
# Split the final_conditioning and final_pooled_output tensors into their original components
cond_out = torch.split(final_conditioning, max_frames)
pooled_out = torch.split(final_pooled_output, max_frames)
return cond_out, pooled_out
def check_is_number(value):
float_pattern = r'^(?=.)([+-]?([0-9]*)(\.([0-9]+))?)$'
return re.match(float_pattern, value)
def split_weighted_subprompts(text, frame=0, pre_text='', app_text=''):
pre_text = str(pre_text)
app_text = str(app_text)
if "--neg" in pre_text:
pre_pos, pre_neg = pre_text.split("--neg")
else:
pre_pos, pre_neg = pre_text, ""
if "--neg" in app_text:
app_pos, app_neg = app_text.split("--neg")
else:
app_pos, app_neg = app_text, ""
# Check if the text is a string; if not, convert it to a string
if not isinstance(text, str):
text = str(text)
math_parser = re.compile("(?P<weight>(`[\S\s]*?`))", re.VERBOSE)
parsed_prompt = re.sub(math_parser, lambda m: str(parse_weight(m, frame)), text)
negative_prompts = ""
positive_prompts = ""
# Check if the last character is '0' and remove it
prompt_split = parsed_prompt.split("--neg")
if len(prompt_split) > 1:
positive_prompts, negative_prompts = prompt_split[0], prompt_split[1]
else:
positive_prompts = prompt_split[0]
pos = {}
neg = {}
pos[frame] = (str(pre_pos) + " " + str(positive_prompts) + " " + str(app_pos))
neg[frame] = (str(pre_neg) + " " + str(negative_prompts) + " " + str(app_neg))
if pos[frame].endswith('0'):
pos[frame] = pos[frame][:-1]
if neg[frame].endswith('0'):
neg[frame] = neg[frame][:-1]
return pos, neg
def parse_weight(match, frame=0, max_frames=0) -> float: #calculate weight steps for in-betweens
w_raw = match.group("weight")
max_f = max_frames # this line has to be left intact as it's in use by numexpr even though it looks like it doesn't
if w_raw is None:
return 1
if check_is_number(w_raw):
return float(w_raw)
else:
t = frame
if len(w_raw) < 3:
print('the value inside `-characters cannot represent a math function')
return 1
return float(numexpr.evaluate(w_raw[1:-1]))
def prepare_prompt(prompt_series, max_frames, frame_idx, prompt_weight_1 = 0, prompt_weight_2 = 0, prompt_weight_3 = 0, prompt_weight_4 = 0): #calculate expressions from the text input and return a string
max_f = max_frames - 1
pattern = r'`.*?`' #set so the expression will be read between two backticks (``)
regex = re.compile(pattern)
prompt_parsed = str(prompt_series)
for match in regex.finditer(prompt_parsed):
matched_string = match.group(0)
parsed_string = matched_string.replace('t', f'{frame_idx}').replace("pw_a", f"prompt_weight_1").replace("pw_b", f"prompt_weight_2").replace("pw_c", f"prompt_weight_3").replace("pw_d", f"prompt_weight_4").replace("max_f", f"{max_f}").replace('`', '') #replace t, max_f and `` respectively
parsed_value = numexpr.evaluate(parsed_string)
prompt_parsed = prompt_parsed.replace(matched_string, str(parsed_value))
return prompt_parsed.strip()
def interpolate_string(animation_prompts, max_frames, current_frame, pre_text, app_text, prompt_weight_1,
prompt_weight_2, prompt_weight_3,
prompt_weight_4): # parse the conditioning strength and determine in-betweens.
# Get prompts sorted by keyframe
max_f = max_frames # needed for numexpr even though it doesn't look like it's in use.
parsed_animation_prompts = {}
for key, value in animation_prompts.items():
if check_is_number(key): # default case 0:(1 + t %5), 30:(5-t%2)
parsed_animation_prompts[key] = value
else: # math on the left hand side case 0:(1 + t %5), maxKeyframes/2:(5-t%2)
parsed_animation_prompts[int(numexpr.evaluate(key))] = value
sorted_prompts = sorted(parsed_animation_prompts.items(), key=lambda item: int(item[0]))
# Setup containers for interpolated prompts
cur_prompt_series = pd.Series([np.nan for a in range(max_frames)])
# simple array for strength values
weight_series = [np.nan] * max_frames
# in case there is only one keyed promt, set all prompts to that prompt
if len(sorted_prompts) - 1 == 0:
for i in range(0, len(cur_prompt_series) - 1):
current_prompt = sorted_prompts[0][1]
cur_prompt_series[i] = str(pre_text) + " " + str(current_prompt) + " " + str(app_text)
# Initialized outside of loop for nan check
current_key = 0
next_key = 0
# For every keyframe prompt except the last
for i in range(0, len(sorted_prompts) - 1):
# Get current and next keyframe
current_key = int(sorted_prompts[i][0])
next_key = int(sorted_prompts[i + 1][0])
# Ensure there's no weird ordering issues or duplication in the animation prompts
# (unlikely because we sort above, and the json parser will strip dupes)
if current_key >= next_key:
print(
f"WARNING: Sequential prompt keyframes {i}:{current_key} and {i + 1}:{next_key} are not monotonously increasing; skipping interpolation.")
continue
# Get current and next keyframes' positive and negative prompts (if any)
current_prompt = sorted_prompts[i][1]
for f in range(current_key, next_key):
# add the appropriate prompts and weights to their respective containers.
cur_prompt_series[f] = ''
weight_series[f] = 0.0
cur_prompt_series[f] += (str(pre_text) + " " + str(current_prompt) + " " + str(app_text))
current_key = next_key
next_key = max_frames
# second loop to catch any nan runoff
for f in range(current_key, next_key):
# add the appropriate prompts and weights to their respective containers.
cur_prompt_series[f] = ''
cur_prompt_series[f] += (str(pre_text) + " " + str(current_prompt) + " " + str(app_text))
# Evaluate the current and next prompt's expressions
cur_prompt_series[current_frame] = prepare_prompt(cur_prompt_series[current_frame], max_frames, current_frame,
prompt_weight_1, prompt_weight_2, prompt_weight_3,
prompt_weight_4)
# Show the to/from prompts with evaluated expressions for transparency.
print("\n", "Max Frames: ", max_frames, "\n", "Current Prompt: ", cur_prompt_series[current_frame], "\n")
# Output methods depending if the prompts are the same or if the current frame is a keyframe.
# if it is an in-between frame and the prompts differ, composable diffusion will be performed.
return (cur_prompt_series[current_frame])
def PoolAnimConditioning(cur_prompt, nxt_prompt, weight, clip):
if str(cur_prompt) == str(nxt_prompt):
tokens = clip.tokenize(str(cur_prompt))
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled}]]
if weight == 1:
tokens = clip.tokenize(str(cur_prompt))
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled}]]
if weight == 0:
tokens = clip.tokenize(str(nxt_prompt))
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled}]]
else:
tokens = clip.tokenize(str(nxt_prompt))
cond_from, pooled_from = clip.encode_from_tokens(tokens, return_pooled=True)
tokens = clip.tokenize(str(cur_prompt))
cond_to, pooled_to = clip.encode_from_tokens(tokens, return_pooled=True)
return addWeighted([[cond_to, {"pooled_output": pooled_to}]], [[cond_from, {"pooled_output": pooled_from}]], weight)
def SDXLencode(clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l):
tokens = clip.tokenize(text_g)
tokens["l"] = clip.tokenize(text_l)["l"]
if len(tokens["l"]) != len(tokens["g"]):
empty = clip.tokenize("")
while len(tokens["l"]) < len(tokens["g"]):
tokens["l"] += empty["l"]
while len(tokens["l"]) > len(tokens["g"]):
tokens["g"] += empty["g"]
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]]
def interpolate_prompts_SDXL(animation_promptsG, animation_promptsL, max_frames, current_frame, clip, app_text_G, app_text_L, pre_text_G, pre_text_L, pw_a, pw_b, pw_c, pw_d, width, height, crop_w, crop_h, target_width, target_height, print_output): #parse the conditioning strength and determine in-betweens.
#Get prompts sorted by keyframe
max_f = max_frames #needed for numexpr even though it doesn't look like it's in use.
parsed_animation_promptsG = {}
parsed_animation_promptsL = {}
for key, value in animation_promptsG.items():
if check_is_number(key): #default case 0:(1 + t %5), 30:(5-t%2)
parsed_animation_promptsG[key] = value
else: #math on the left hand side case 0:(1 + t %5), maxKeyframes/2:(5-t%2)
parsed_animation_promptsG[int(numexpr.evaluate(key))] = value
sorted_prompts_G = sorted(parsed_animation_promptsG.items(), key=lambda item: int(item[0]))
for key, value in animation_promptsL.items():
if check_is_number(key): #default case 0:(1 + t %5), 30:(5-t%2)
parsed_animation_promptsL[key] = value
else: #math on the left hand side case 0:(1 + t %5), maxKeyframes/2:(5-t%2)
parsed_animation_promptsL[int(numexpr.evaluate(key))] = value
sorted_prompts_L = sorted(parsed_animation_promptsL.items(), key=lambda item: int(item[0]))
#Setup containers for interpolated prompts
cur_prompt_series_G = pd.Series([np.nan for a in range(max_frames)])
nxt_prompt_series_G = pd.Series([np.nan for a in range(max_frames)])
cur_prompt_series_L = pd.Series([np.nan for a in range(max_frames)])
nxt_prompt_series_L = pd.Series([np.nan for a in range(max_frames)])
#simple array for strength values
weight_series = [np.nan] * max_frames
#in case there is only one keyed promt, set all prompts to that prompt
if len(sorted_prompts_G) - 1 == 0:
for i in range(0, len(cur_prompt_series_G)-1):
current_prompt_G = sorted_prompts_G[0][1]
cur_prompt_series_G[i] = str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G)
nxt_prompt_series_G[i] = str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G)
if len(sorted_prompts_L) - 1 == 0:
for i in range(0, len(cur_prompt_series_L)-1):
current_prompt_L = sorted_prompts_L[0][1]
cur_prompt_series_L[i] = str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L)
nxt_prompt_series_L[i] = str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L)
#Initialized outside of loop for nan check
current_key = 0
next_key = 0
# For every keyframe prompt except the last
for i in range(0, len(sorted_prompts_G) - 1):
# Get current and next keyframe
current_key = int(sorted_prompts_G[i][0])
next_key = int(sorted_prompts_G[i + 1][0])
# Ensure there's no weird ordering issues or duplication in the animation prompts
# (unlikely because we sort above, and the json parser will strip dupes)
if current_key >= next_key:
print(f"WARNING: Sequential prompt keyframes {i}:{current_key} and {i + 1}:{next_key} are not monotonously increasing; skipping interpolation.")
continue
# Get current and next keyframes' positive and negative prompts (if any)
current_prompt_G = sorted_prompts_G[i][1]
next_prompt_G = sorted_prompts_G[i + 1][1]
# Calculate how much to shift the weight from current to next prompt at each frame.
weight_step = 1 / (next_key - current_key)
for f in range(current_key, next_key):
next_weight = weight_step * (f - current_key)
current_weight = 1 - next_weight
#add the appropriate prompts and weights to their respective containers.
cur_prompt_series_G[f] = ''
nxt_prompt_series_G[f] = ''
weight_series[f] = 0.0
cur_prompt_series_G[f] += (str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G))
nxt_prompt_series_G[f] += (str(pre_text_G) + " " + str(next_prompt_G) + " " + str(app_text_G))
weight_series[f] += current_weight
current_key = next_key
next_key = max_frames
current_weight = 0.0
#second loop to catch any nan runoff
for f in range(current_key, next_key):
next_weight = weight_step * (f - current_key)
#add the appropriate prompts and weights to their respective containers.
cur_prompt_series_G[f] = ''
nxt_prompt_series_G[f] = ''
weight_series[f] = current_weight
cur_prompt_series_G[f] += (str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G))
nxt_prompt_series_G[f] += (str(pre_text_G) + " " + str(next_prompt_G) + " " + str(app_text_G))
#Reset outside of loop for nan check
current_key = 0
next_key = 0
# For every keyframe prompt except the last
for i in range(0, len(sorted_prompts_L) - 1):
# Get current and next keyframe
current_key = int(sorted_prompts_L[i][0])
next_key = int(sorted_prompts_L[i + 1][0])
# Ensure there's no weird ordering issues or duplication in the animation prompts
# (unlikely because we sort above, and the json parser will strip dupes)
if current_key >= next_key:
print(f"WARNING: Sequential prompt keyframes {i}:{current_key} and {i + 1}:{next_key} are not monotonously increasing; skipping interpolation.")
continue
# Get current and next keyframes' positive and negative prompts (if any)
current_prompt_L = sorted_prompts_L[i][1]
next_prompt_L = sorted_prompts_L[i + 1][1]
# Calculate how much to shift the weight from current to next prompt at each frame.
weight_step = 1 / (next_key - current_key)
for f in range(current_key, next_key):
next_weight = weight_step * (f - current_key)
current_weight = 1 - next_weight
#add the appropriate prompts and weights to their respective containers.
cur_prompt_series_L[f] = ''
nxt_prompt_series_L[f] = ''
weight_series[f] = 0.0
cur_prompt_series_L[f] += (str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L))
nxt_prompt_series_L[f] += (str(pre_text_L) + " " + str(next_prompt_L) + " " + str(app_text_L))
weight_series[f] += current_weight
current_key = next_key
next_key = max_frames
current_weight = 0.0
#second loop to catch any nan runoff
for f in range(current_key, next_key):
next_weight = weight_step * (f - current_key)
#add the appropriate prompts and weights to their respective containers.
cur_prompt_series_L[f] = ''
nxt_prompt_series_L[f] = ''
weight_series[f] = current_weight
cur_prompt_series_L[f] += (str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L))
nxt_prompt_series_L[f] += (str(pre_text_L) + " " + str(next_prompt_L) + " " + str(app_text_L))
#Evaluate the current and next prompt's expressions
cur_prompt_series_G[current_frame] = prepare_prompt(cur_prompt_series_G[current_frame], max_frames, current_frame, pw_a, pw_b, pw_c, pw_d)
nxt_prompt_series_G[current_frame] = prepare_prompt(nxt_prompt_series_G[current_frame], max_frames, current_frame, pw_a, pw_b, pw_c, pw_d)
cur_prompt_series_L[current_frame] = prepare_prompt(cur_prompt_series_L[current_frame], max_frames, current_frame, pw_a, pw_b, pw_c, pw_d)
nxt_prompt_series_L[current_frame] = prepare_prompt(nxt_prompt_series_L[current_frame], max_frames, current_frame, pw_a, pw_b, pw_c, pw_d)
if print_output == True:
#Show the to/from prompts with evaluated expressions for transparency.
print("\n", "G_Clip:", "\n", "Max Frames: ", max_frames, "\n", "Current Prompt: ", cur_prompt_series_G[current_frame], "\n", "Next Prompt: ", nxt_prompt_series_G[current_frame], "\n", "Strength : ", weight_series[current_frame], "\n")
print("\n", "L_Clip:", "\n", "Max Frames: ", max_frames, "\n", "Current Prompt: ", cur_prompt_series_L[current_frame], "\n", "Next Prompt: ", nxt_prompt_series_L[current_frame], "\n", "Strength : ", weight_series[current_frame], "\n")
#Output methods depending if the prompts are the same or if the current frame is a keyframe.
#if it is an in-between frame and the prompts differ, composable diffusion will be performed.
current_cond = SDXLencode(clip, width, height, crop_w, crop_h, target_width, target_height, cur_prompt_series_G[current_frame], cur_prompt_series_L[current_frame])
if str(cur_prompt_series_G[current_frame]) == str(nxt_prompt_series_G[current_frame]) and str(cur_prompt_series_L[current_frame]) == str(nxt_prompt_series_L[current_frame]):
return current_cond
if weight_series[current_frame] == 1:
return current_cond
if weight_series[current_frame] == 0:
next_cond = SDXLencode(clip, width, height, crop_w, crop_h, target_width, target_height, cur_prompt_series_G[current_frame], cur_prompt_series_L[current_frame])
return next_cond
else:
next_cond = SDXLencode(clip, width, height, crop_w, crop_h, target_width, target_height, cur_prompt_series_G[current_frame], cur_prompt_series_L[current_frame])
return addWeighted(current_cond, next_cond, weight_series[current_frame])