daquanzhou
merge github repos and lfs track ckpt/path/safetensors/pt
613c9ab
raw
history blame
5.68 kB
import numexpr
import torch
import numpy as np
import pandas as pd
import re
import json
from .ScheduleFuncs import check_is_number
def sanitize_value(value):
# Remove single quotes, double quotes, and parentheses
value = value.replace("'", "").replace('"', "").replace('(', "").replace(')', "")
return value
def get_inbetweens(key_frames, max_frames, integer=False, interp_method='Linear', is_single_string=False):
key_frame_series = pd.Series([np.nan for a in range(max_frames)])
max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use.
value_is_number = False
for i in range(0, max_frames):
if i in key_frames:
value = key_frames[i]
value_is_number = check_is_number(sanitize_value(value))
if value_is_number: # if it's only a number, leave the rest for the default interpolation
key_frame_series[i] = sanitize_value(value)
if not value_is_number:
t = i
# workaround for values formatted like 0:("I am test") //used for sampler schedules
key_frame_series[i] = numexpr.evaluate(value) if not is_single_string else sanitize_value(value)
elif is_single_string: # take previous string value and replicate it
key_frame_series[i] = key_frame_series[i - 1]
key_frame_series = key_frame_series.astype(float) if not is_single_string else key_frame_series # as string
if interp_method == 'Cubic' and len(key_frames.items()) <= 3:
interp_method = 'Quadratic'
if interp_method == 'Quadratic' and len(key_frames.items()) <= 2:
interp_method = 'Linear'
key_frame_series[0] = key_frame_series[key_frame_series.first_valid_index()]
key_frame_series[max_frames - 1] = key_frame_series[key_frame_series.last_valid_index()]
key_frame_series = key_frame_series.interpolate(method=interp_method.lower(), limit_direction='both')
if integer:
return key_frame_series.astype(int)
return key_frame_series
def parse_key_frames(string, max_frames):
# because math functions (i.e. sin(t)) can utilize brackets
# it extracts the value in form of some stuff
# which has previously been enclosed with brackets and
# with a comma or end of line existing after the closing one
frames = dict()
for match_object in string.split(","):
frameParam = match_object.split(":")
max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use.
frame = int(sanitize_value(frameParam[0])) if check_is_number(
sanitize_value(frameParam[0].strip())) else int(numexpr.evaluate(
frameParam[0].strip().replace("'", "", 1).replace('"', "", 1)[::-1].replace("'", "", 1).replace('"', "", 1)[::-1]))
frames[frame] = frameParam[1].strip()
if frames == {} and len(string) != 0:
raise RuntimeError('Key Frame string not correctly formatted')
return frames
def batch_get_inbetweens(key_frames, max_frames, integer=False, interp_method='Linear', is_single_string=False):
key_frame_series = pd.Series([np.nan for a in range(max_frames)])
max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use.
value_is_number = False
for i in range(0, max_frames):
if i in key_frames:
value = str(key_frames[i]) # Convert to string to ensure it's treated as an expression
value_is_number = check_is_number(sanitize_value(value))
if value_is_number:
key_frame_series[i] = sanitize_value(value)
if not value_is_number:
t = i
# workaround for values formatted like 0:("I am test") //used for sampler schedules
key_frame_series[i] = numexpr.evaluate(value) if not is_single_string else sanitize_value(value)
elif is_single_string: # take previous string value and replicate it
key_frame_series[i] = key_frame_series[i - 1]
key_frame_series = key_frame_series.astype(float) if not is_single_string else key_frame_series # as string
if interp_method == 'Cubic' and len(key_frames.items()) <= 3:
interp_method = 'Quadratic'
if interp_method == 'Quadratic' and len(key_frames.items()) <= 2:
interp_method = 'Linear'
key_frame_series[0] = key_frame_series[key_frame_series.first_valid_index()]
key_frame_series[max_frames - 1] = key_frame_series[key_frame_series.last_valid_index()]
key_frame_series = key_frame_series.interpolate(method=interp_method.lower(), limit_direction='both')
if integer:
return key_frame_series.astype(int)
return key_frame_series
def batch_parse_key_frames(string, max_frames):
# because math functions (i.e. sin(t)) can utilize brackets
# it extracts the value in form of some stuff
# which has previously been enclosed with brackets and
# with a comma or end of line existing after the closing one
string = re.sub(r',\s*$', '', string)
frames = dict()
for match_object in string.split(","):
frameParam = match_object.split(":")
max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use.
frame = int(sanitize_value(frameParam[0])) if check_is_number(
sanitize_value(frameParam[0].strip())) else int(numexpr.evaluate(
frameParam[0].strip().replace("'", "", 1).replace('"', "", 1)[::-1].replace("'", "", 1).replace('"', "",1)[::-1]))
frames[frame] = frameParam[1].strip()
if frames == {} and len(string) != 0:
raise RuntimeError('Key Frame string not correctly formatted')
return frames