Spaces:
Running
Running
import numexpr | |
import torch | |
import numpy as np | |
import pandas as pd | |
import re | |
import json | |
from .ScheduleFuncs import check_is_number | |
def sanitize_value(value): | |
# Remove single quotes, double quotes, and parentheses | |
value = value.replace("'", "").replace('"', "").replace('(', "").replace(')', "") | |
return value | |
def get_inbetweens(key_frames, max_frames, integer=False, interp_method='Linear', is_single_string=False): | |
key_frame_series = pd.Series([np.nan for a in range(max_frames)]) | |
max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use. | |
value_is_number = False | |
for i in range(0, max_frames): | |
if i in key_frames: | |
value = key_frames[i] | |
value_is_number = check_is_number(sanitize_value(value)) | |
if value_is_number: # if it's only a number, leave the rest for the default interpolation | |
key_frame_series[i] = sanitize_value(value) | |
if not value_is_number: | |
t = i | |
# workaround for values formatted like 0:("I am test") //used for sampler schedules | |
key_frame_series[i] = numexpr.evaluate(value) if not is_single_string else sanitize_value(value) | |
elif is_single_string: # take previous string value and replicate it | |
key_frame_series[i] = key_frame_series[i - 1] | |
key_frame_series = key_frame_series.astype(float) if not is_single_string else key_frame_series # as string | |
if interp_method == 'Cubic' and len(key_frames.items()) <= 3: | |
interp_method = 'Quadratic' | |
if interp_method == 'Quadratic' and len(key_frames.items()) <= 2: | |
interp_method = 'Linear' | |
key_frame_series[0] = key_frame_series[key_frame_series.first_valid_index()] | |
key_frame_series[max_frames - 1] = key_frame_series[key_frame_series.last_valid_index()] | |
key_frame_series = key_frame_series.interpolate(method=interp_method.lower(), limit_direction='both') | |
if integer: | |
return key_frame_series.astype(int) | |
return key_frame_series | |
def parse_key_frames(string, max_frames): | |
# because math functions (i.e. sin(t)) can utilize brackets | |
# it extracts the value in form of some stuff | |
# which has previously been enclosed with brackets and | |
# with a comma or end of line existing after the closing one | |
frames = dict() | |
for match_object in string.split(","): | |
frameParam = match_object.split(":") | |
max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use. | |
frame = int(sanitize_value(frameParam[0])) if check_is_number( | |
sanitize_value(frameParam[0].strip())) else int(numexpr.evaluate( | |
frameParam[0].strip().replace("'", "", 1).replace('"', "", 1)[::-1].replace("'", "", 1).replace('"', "", 1)[::-1])) | |
frames[frame] = frameParam[1].strip() | |
if frames == {} and len(string) != 0: | |
raise RuntimeError('Key Frame string not correctly formatted') | |
return frames | |
def batch_get_inbetweens(key_frames, max_frames, integer=False, interp_method='Linear', is_single_string=False): | |
key_frame_series = pd.Series([np.nan for a in range(max_frames)]) | |
max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use. | |
value_is_number = False | |
for i in range(0, max_frames): | |
if i in key_frames: | |
value = str(key_frames[i]) # Convert to string to ensure it's treated as an expression | |
value_is_number = check_is_number(sanitize_value(value)) | |
if value_is_number: | |
key_frame_series[i] = sanitize_value(value) | |
if not value_is_number: | |
t = i | |
# workaround for values formatted like 0:("I am test") //used for sampler schedules | |
key_frame_series[i] = numexpr.evaluate(value) if not is_single_string else sanitize_value(value) | |
elif is_single_string: # take previous string value and replicate it | |
key_frame_series[i] = key_frame_series[i - 1] | |
key_frame_series = key_frame_series.astype(float) if not is_single_string else key_frame_series # as string | |
if interp_method == 'Cubic' and len(key_frames.items()) <= 3: | |
interp_method = 'Quadratic' | |
if interp_method == 'Quadratic' and len(key_frames.items()) <= 2: | |
interp_method = 'Linear' | |
key_frame_series[0] = key_frame_series[key_frame_series.first_valid_index()] | |
key_frame_series[max_frames - 1] = key_frame_series[key_frame_series.last_valid_index()] | |
key_frame_series = key_frame_series.interpolate(method=interp_method.lower(), limit_direction='both') | |
if integer: | |
return key_frame_series.astype(int) | |
return key_frame_series | |
def batch_parse_key_frames(string, max_frames): | |
# because math functions (i.e. sin(t)) can utilize brackets | |
# it extracts the value in form of some stuff | |
# which has previously been enclosed with brackets and | |
# with a comma or end of line existing after the closing one | |
string = re.sub(r',\s*$', '', string) | |
frames = dict() | |
for match_object in string.split(","): | |
frameParam = match_object.split(":") | |
max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use. | |
frame = int(sanitize_value(frameParam[0])) if check_is_number( | |
sanitize_value(frameParam[0].strip())) else int(numexpr.evaluate( | |
frameParam[0].strip().replace("'", "", 1).replace('"', "", 1)[::-1].replace("'", "", 1).replace('"', "",1)[::-1])) | |
frames[frame] = frameParam[1].strip() | |
if frames == {} and len(string) != 0: | |
raise RuntimeError('Key Frame string not correctly formatted') | |
return frames |