Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
############################################################# | |
# File: OmniSR.py | |
# Created Date: Tuesday April 28th 2022 | |
# Author: Chen Xuanhong | |
# Email: [email protected] | |
# Last Modified: Sunday, 23rd April 2023 3:06:36 pm | |
# Modified By: Chen Xuanhong | |
# Copyright (c) 2020 Shanghai Jiao Tong University | |
############################################################# | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .OSAG import OSAG | |
from .pixelshuffle import pixelshuffle_block | |
class OmniSR(nn.Module): | |
def __init__( | |
self, | |
state_dict, | |
**kwargs, | |
): | |
super(OmniSR, self).__init__() | |
self.state = state_dict | |
bias = True # Fine to assume this for now | |
block_num = 1 # Fine to assume this for now | |
ffn_bias = True | |
pe = True | |
num_feat = state_dict["input.weight"].shape[0] or 64 | |
num_in_ch = state_dict["input.weight"].shape[1] or 3 | |
num_out_ch = num_in_ch # we can just assume this for now. pixelshuffle smh | |
pixelshuffle_shape = state_dict["up.0.weight"].shape[0] | |
up_scale = math.sqrt(pixelshuffle_shape / num_out_ch) | |
if up_scale - int(up_scale) > 0: | |
print( | |
"out_nc is probably different than in_nc, scale calculation might be wrong" | |
) | |
up_scale = int(up_scale) | |
res_num = 0 | |
for key in state_dict.keys(): | |
if "residual_layer" in key: | |
temp_res_num = int(key.split(".")[1]) | |
if temp_res_num > res_num: | |
res_num = temp_res_num | |
res_num = res_num + 1 # zero-indexed | |
residual_layer = [] | |
self.res_num = res_num | |
if ( | |
"residual_layer.0.residual_layer.0.layer.2.fn.rel_pos_bias.weight" | |
in state_dict.keys() | |
): | |
rel_pos_bias_weight = state_dict[ | |
"residual_layer.0.residual_layer.0.layer.2.fn.rel_pos_bias.weight" | |
].shape[0] | |
self.window_size = int((math.sqrt(rel_pos_bias_weight) + 1) / 2) | |
else: | |
self.window_size = 8 | |
self.up_scale = up_scale | |
for _ in range(res_num): | |
temp_res = OSAG( | |
channel_num=num_feat, | |
bias=bias, | |
block_num=block_num, | |
ffn_bias=ffn_bias, | |
window_size=self.window_size, | |
pe=pe, | |
) | |
residual_layer.append(temp_res) | |
self.residual_layer = nn.Sequential(*residual_layer) | |
self.input = nn.Conv2d( | |
in_channels=num_in_ch, | |
out_channels=num_feat, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=bias, | |
) | |
self.output = nn.Conv2d( | |
in_channels=num_feat, | |
out_channels=num_feat, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=bias, | |
) | |
self.up = pixelshuffle_block(num_feat, num_out_ch, up_scale, bias=bias) | |
# self.tail = pixelshuffle_block(num_feat,num_out_ch,up_scale,bias=bias) | |
# for m in self.modules(): | |
# if isinstance(m, nn.Conv2d): | |
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
# m.weight.data.normal_(0, sqrt(2. / n)) | |
# chaiNNer specific stuff | |
self.model_arch = "OmniSR" | |
self.sub_type = "SR" | |
self.in_nc = num_in_ch | |
self.out_nc = num_out_ch | |
self.num_feat = num_feat | |
self.scale = up_scale | |
self.supports_fp16 = True # TODO: Test this | |
self.supports_bfp16 = True | |
self.min_size_restriction = 16 | |
self.load_state_dict(state_dict, strict=False) | |
def check_image_size(self, x): | |
_, _, h, w = x.size() | |
# import pdb; pdb.set_trace() | |
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size | |
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size | |
# x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') | |
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "constant", 0) | |
return x | |
def forward(self, x): | |
H, W = x.shape[2:] | |
x = self.check_image_size(x) | |
residual = self.input(x) | |
out = self.residual_layer(residual) | |
# origin | |
out = torch.add(self.output(out), residual) | |
out = self.up(out) | |
out = out[:, :, : H * self.up_scale, : W * self.up_scale] | |
return out | |