Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from . import block as B | |
class Get_gradient_nopadding(nn.Module): | |
def __init__(self): | |
super(Get_gradient_nopadding, self).__init__() | |
kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]] | |
kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]] | |
kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0) | |
kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0) | |
self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False) # type: ignore | |
self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False) # type: ignore | |
def forward(self, x): | |
x_list = [] | |
for i in range(x.shape[1]): | |
x_i = x[:, i] | |
x_i_v = F.conv2d(x_i.unsqueeze(1), self.weight_v, padding=1) | |
x_i_h = F.conv2d(x_i.unsqueeze(1), self.weight_h, padding=1) | |
x_i = torch.sqrt(torch.pow(x_i_v, 2) + torch.pow(x_i_h, 2) + 1e-6) | |
x_list.append(x_i) | |
x = torch.cat(x_list, dim=1) | |
return x | |
class SPSRNet(nn.Module): | |
def __init__( | |
self, | |
state_dict, | |
norm=None, | |
act: str = "leakyrelu", | |
upsampler: str = "upconv", | |
mode: B.ConvMode = "CNA", | |
): | |
super(SPSRNet, self).__init__() | |
self.model_arch = "SPSR" | |
self.sub_type = "SR" | |
self.state = state_dict | |
self.norm = norm | |
self.act = act | |
self.upsampler = upsampler | |
self.mode = mode | |
self.num_blocks = self.get_num_blocks() | |
self.in_nc: int = self.state["model.0.weight"].shape[1] | |
self.out_nc: int = self.state["f_HR_conv1.0.bias"].shape[0] | |
self.scale = self.get_scale(4) | |
self.num_filters: int = self.state["model.0.weight"].shape[0] | |
self.supports_fp16 = True | |
self.supports_bfp16 = True | |
self.min_size_restriction = None | |
n_upscale = int(math.log(self.scale, 2)) | |
if self.scale == 3: | |
n_upscale = 1 | |
fea_conv = B.conv_block( | |
self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None | |
) | |
rb_blocks = [ | |
B.RRDB( | |
self.num_filters, | |
kernel_size=3, | |
gc=32, | |
stride=1, | |
bias=True, | |
pad_type="zero", | |
norm_type=norm, | |
act_type=act, | |
mode="CNA", | |
) | |
for _ in range(self.num_blocks) | |
] | |
LR_conv = B.conv_block( | |
self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=norm, | |
act_type=None, | |
mode=mode, | |
) | |
if upsampler == "upconv": | |
upsample_block = B.upconv_block | |
elif upsampler == "pixelshuffle": | |
upsample_block = B.pixelshuffle_block | |
else: | |
raise NotImplementedError(f"upsample mode [{upsampler}] is not found") | |
if self.scale == 3: | |
a_upsampler = upsample_block( | |
self.num_filters, self.num_filters, 3, act_type=act | |
) | |
else: | |
a_upsampler = [ | |
upsample_block(self.num_filters, self.num_filters, act_type=act) | |
for _ in range(n_upscale) | |
] | |
self.HR_conv0_new = B.conv_block( | |
self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=None, | |
act_type=act, | |
) | |
self.HR_conv1_new = B.conv_block( | |
self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=None, | |
act_type=None, | |
) | |
self.model = B.sequential( | |
fea_conv, | |
B.ShortcutBlockSPSR(B.sequential(*rb_blocks, LR_conv)), | |
*a_upsampler, | |
self.HR_conv0_new, | |
) | |
self.get_g_nopadding = Get_gradient_nopadding() | |
self.b_fea_conv = B.conv_block( | |
self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None | |
) | |
self.b_concat_1 = B.conv_block( | |
2 * self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=None, | |
act_type=None, | |
) | |
self.b_block_1 = B.RRDB( | |
self.num_filters * 2, | |
kernel_size=3, | |
gc=32, | |
stride=1, | |
bias=True, | |
pad_type="zero", | |
norm_type=norm, | |
act_type=act, | |
mode="CNA", | |
) | |
self.b_concat_2 = B.conv_block( | |
2 * self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=None, | |
act_type=None, | |
) | |
self.b_block_2 = B.RRDB( | |
self.num_filters * 2, | |
kernel_size=3, | |
gc=32, | |
stride=1, | |
bias=True, | |
pad_type="zero", | |
norm_type=norm, | |
act_type=act, | |
mode="CNA", | |
) | |
self.b_concat_3 = B.conv_block( | |
2 * self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=None, | |
act_type=None, | |
) | |
self.b_block_3 = B.RRDB( | |
self.num_filters * 2, | |
kernel_size=3, | |
gc=32, | |
stride=1, | |
bias=True, | |
pad_type="zero", | |
norm_type=norm, | |
act_type=act, | |
mode="CNA", | |
) | |
self.b_concat_4 = B.conv_block( | |
2 * self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=None, | |
act_type=None, | |
) | |
self.b_block_4 = B.RRDB( | |
self.num_filters * 2, | |
kernel_size=3, | |
gc=32, | |
stride=1, | |
bias=True, | |
pad_type="zero", | |
norm_type=norm, | |
act_type=act, | |
mode="CNA", | |
) | |
self.b_LR_conv = B.conv_block( | |
self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=norm, | |
act_type=None, | |
mode=mode, | |
) | |
if upsampler == "upconv": | |
upsample_block = B.upconv_block | |
elif upsampler == "pixelshuffle": | |
upsample_block = B.pixelshuffle_block | |
else: | |
raise NotImplementedError(f"upsample mode [{upsampler}] is not found") | |
if self.scale == 3: | |
b_upsampler = upsample_block( | |
self.num_filters, self.num_filters, 3, act_type=act | |
) | |
else: | |
b_upsampler = [ | |
upsample_block(self.num_filters, self.num_filters, act_type=act) | |
for _ in range(n_upscale) | |
] | |
b_HR_conv0 = B.conv_block( | |
self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=None, | |
act_type=act, | |
) | |
b_HR_conv1 = B.conv_block( | |
self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=None, | |
act_type=None, | |
) | |
self.b_module = B.sequential(*b_upsampler, b_HR_conv0, b_HR_conv1) | |
self.conv_w = B.conv_block( | |
self.num_filters, self.out_nc, kernel_size=1, norm_type=None, act_type=None | |
) | |
self.f_concat = B.conv_block( | |
self.num_filters * 2, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=None, | |
act_type=None, | |
) | |
self.f_block = B.RRDB( | |
self.num_filters * 2, | |
kernel_size=3, | |
gc=32, | |
stride=1, | |
bias=True, | |
pad_type="zero", | |
norm_type=norm, | |
act_type=act, | |
mode="CNA", | |
) | |
self.f_HR_conv0 = B.conv_block( | |
self.num_filters, | |
self.num_filters, | |
kernel_size=3, | |
norm_type=None, | |
act_type=act, | |
) | |
self.f_HR_conv1 = B.conv_block( | |
self.num_filters, self.out_nc, kernel_size=3, norm_type=None, act_type=None | |
) | |
self.load_state_dict(self.state, strict=False) | |
def get_scale(self, min_part: int = 4) -> int: | |
n = 0 | |
for part in list(self.state): | |
parts = part.split(".") | |
if len(parts) == 3: | |
part_num = int(parts[1]) | |
if part_num > min_part and parts[0] == "model" and parts[2] == "weight": | |
n += 1 | |
return 2**n | |
def get_num_blocks(self) -> int: | |
nb = 0 | |
for part in list(self.state): | |
parts = part.split(".") | |
n_parts = len(parts) | |
if n_parts == 5 and parts[2] == "sub": | |
nb = int(parts[3]) | |
return nb | |
def forward(self, x): | |
x_grad = self.get_g_nopadding(x) | |
x = self.model[0](x) | |
x, block_list = self.model[1](x) | |
x_ori = x | |
for i in range(5): | |
x = block_list[i](x) | |
x_fea1 = x | |
for i in range(5): | |
x = block_list[i + 5](x) | |
x_fea2 = x | |
for i in range(5): | |
x = block_list[i + 10](x) | |
x_fea3 = x | |
for i in range(5): | |
x = block_list[i + 15](x) | |
x_fea4 = x | |
x = block_list[20:](x) | |
# short cut | |
x = x_ori + x | |
x = self.model[2:](x) | |
x = self.HR_conv1_new(x) | |
x_b_fea = self.b_fea_conv(x_grad) | |
x_cat_1 = torch.cat([x_b_fea, x_fea1], dim=1) | |
x_cat_1 = self.b_block_1(x_cat_1) | |
x_cat_1 = self.b_concat_1(x_cat_1) | |
x_cat_2 = torch.cat([x_cat_1, x_fea2], dim=1) | |
x_cat_2 = self.b_block_2(x_cat_2) | |
x_cat_2 = self.b_concat_2(x_cat_2) | |
x_cat_3 = torch.cat([x_cat_2, x_fea3], dim=1) | |
x_cat_3 = self.b_block_3(x_cat_3) | |
x_cat_3 = self.b_concat_3(x_cat_3) | |
x_cat_4 = torch.cat([x_cat_3, x_fea4], dim=1) | |
x_cat_4 = self.b_block_4(x_cat_4) | |
x_cat_4 = self.b_concat_4(x_cat_4) | |
x_cat_4 = self.b_LR_conv(x_cat_4) | |
# short cut | |
x_cat_4 = x_cat_4 + x_b_fea | |
x_branch = self.b_module(x_cat_4) | |
# x_out_branch = self.conv_w(x_branch) | |
######## | |
x_branch_d = x_branch | |
x_f_cat = torch.cat([x_branch_d, x], dim=1) | |
x_f_cat = self.f_block(x_f_cat) | |
x_out = self.f_concat(x_f_cat) | |
x_out = self.f_HR_conv0(x_out) | |
x_out = self.f_HR_conv1(x_out) | |
######### | |
# return x_out_branch, x_out, x_grad | |
return x_out | |