Spaces:
Running
Running
# From https://github.com/Koushik0901/Swift-SRGAN/blob/master/swift-srgan/models.py | |
import torch | |
from torch import nn | |
class SeperableConv2d(nn.Module): | |
def __init__( | |
self, in_channels, out_channels, kernel_size, stride=1, padding=1, bias=True | |
): | |
super(SeperableConv2d, self).__init__() | |
self.depthwise = nn.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
groups=in_channels, | |
bias=bias, | |
padding=padding, | |
) | |
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias) | |
def forward(self, x): | |
return self.pointwise(self.depthwise(x)) | |
class ConvBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
use_act=True, | |
use_bn=True, | |
discriminator=False, | |
**kwargs, | |
): | |
super(ConvBlock, self).__init__() | |
self.use_act = use_act | |
self.cnn = SeperableConv2d(in_channels, out_channels, **kwargs, bias=not use_bn) | |
self.bn = nn.BatchNorm2d(out_channels) if use_bn else nn.Identity() | |
self.act = ( | |
nn.LeakyReLU(0.2, inplace=True) | |
if discriminator | |
else nn.PReLU(num_parameters=out_channels) | |
) | |
def forward(self, x): | |
return self.act(self.bn(self.cnn(x))) if self.use_act else self.bn(self.cnn(x)) | |
class UpsampleBlock(nn.Module): | |
def __init__(self, in_channels, scale_factor): | |
super(UpsampleBlock, self).__init__() | |
self.conv = SeperableConv2d( | |
in_channels, | |
in_channels * scale_factor**2, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.ps = nn.PixelShuffle( | |
scale_factor | |
) # (in_channels * 4, H, W) -> (in_channels, H*2, W*2) | |
self.act = nn.PReLU(num_parameters=in_channels) | |
def forward(self, x): | |
return self.act(self.ps(self.conv(x))) | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_channels): | |
super(ResidualBlock, self).__init__() | |
self.block1 = ConvBlock( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
) | |
self.block2 = ConvBlock( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1, use_act=False | |
) | |
def forward(self, x): | |
out = self.block1(x) | |
out = self.block2(out) | |
return out + x | |
class Generator(nn.Module): | |
"""Swift-SRGAN Generator | |
Args: | |
in_channels (int): number of input image channels. | |
num_channels (int): number of hidden channels. | |
num_blocks (int): number of residual blocks. | |
upscale_factor (int): factor to upscale the image [2x, 4x, 8x]. | |
Returns: | |
torch.Tensor: super resolution image | |
""" | |
def __init__( | |
self, | |
state_dict, | |
): | |
super(Generator, self).__init__() | |
self.model_arch = "Swift-SRGAN" | |
self.sub_type = "SR" | |
self.state = state_dict | |
if "model" in self.state: | |
self.state = self.state["model"] | |
self.in_nc: int = self.state["initial.cnn.depthwise.weight"].shape[0] | |
self.out_nc: int = self.state["final_conv.pointwise.weight"].shape[0] | |
self.num_filters: int = self.state["initial.cnn.pointwise.weight"].shape[0] | |
self.num_blocks = len( | |
set([x.split(".")[1] for x in self.state.keys() if "residual" in x]) | |
) | |
self.scale: int = 2 ** len( | |
set([x.split(".")[1] for x in self.state.keys() if "upsampler" in x]) | |
) | |
in_channels = self.in_nc | |
num_channels = self.num_filters | |
num_blocks = self.num_blocks | |
upscale_factor = self.scale | |
self.supports_fp16 = True | |
self.supports_bfp16 = True | |
self.min_size_restriction = None | |
self.initial = ConvBlock( | |
in_channels, num_channels, kernel_size=9, stride=1, padding=4, use_bn=False | |
) | |
self.residual = nn.Sequential( | |
*[ResidualBlock(num_channels) for _ in range(num_blocks)] | |
) | |
self.convblock = ConvBlock( | |
num_channels, | |
num_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
use_act=False, | |
) | |
self.upsampler = nn.Sequential( | |
*[ | |
UpsampleBlock(num_channels, scale_factor=2) | |
for _ in range(upscale_factor // 2) | |
] | |
) | |
self.final_conv = SeperableConv2d( | |
num_channels, in_channels, kernel_size=9, stride=1, padding=4 | |
) | |
self.load_state_dict(self.state, strict=False) | |
def forward(self, x): | |
initial = self.initial(x) | |
x = self.residual(initial) | |
x = self.convblock(x) + initial | |
x = self.upsampler(x) | |
return (torch.tanh(self.final_conv(x)) + 1) / 2 | |