Xue-She Wang
init
0d95f10
raw
history blame
14.2 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
from collections import OrderedDict
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
import torch
import torch.nn as nn
####################
# Basic blocks
####################
def act(act_type: str, inplace=True, neg_slope=0.2, n_prelu=1):
# helper selecting activation
# neg_slope: for leakyrelu and init of prelu
# n_prelu: for p_relu num_parameters
act_type = act_type.lower()
if act_type == "relu":
layer = nn.ReLU(inplace)
elif act_type == "leakyrelu":
layer = nn.LeakyReLU(neg_slope, inplace)
elif act_type == "prelu":
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
else:
raise NotImplementedError(
"activation layer [{:s}] is not found".format(act_type)
)
return layer
def norm(norm_type: str, nc: int):
# helper selecting normalization layer
norm_type = norm_type.lower()
if norm_type == "batch":
layer = nn.BatchNorm2d(nc, affine=True)
elif norm_type == "instance":
layer = nn.InstanceNorm2d(nc, affine=False)
else:
raise NotImplementedError(
"normalization layer [{:s}] is not found".format(norm_type)
)
return layer
def pad(pad_type: str, padding):
# helper selecting padding layer
# if padding is 'zero', do by conv layers
pad_type = pad_type.lower()
if padding == 0:
return None
if pad_type == "reflect":
layer = nn.ReflectionPad2d(padding)
elif pad_type == "replicate":
layer = nn.ReplicationPad2d(padding)
else:
raise NotImplementedError(
"padding layer [{:s}] is not implemented".format(pad_type)
)
return layer
def get_valid_padding(kernel_size, dilation):
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
padding = (kernel_size - 1) // 2
return padding
class ConcatBlock(nn.Module):
# Concat the output of a submodule to its input
def __init__(self, submodule):
super(ConcatBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = torch.cat((x, self.sub(x)), dim=1)
return output
def __repr__(self):
tmpstr = "Identity .. \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
class ShortcutBlock(nn.Module):
# Elementwise sum the output of a submodule to its input
def __init__(self, submodule):
super(ShortcutBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = x + self.sub(x)
return output
def __repr__(self):
tmpstr = "Identity + \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
class ShortcutBlockSPSR(nn.Module):
# Elementwise sum the output of a submodule to its input
def __init__(self, submodule):
super(ShortcutBlockSPSR, self).__init__()
self.sub = submodule
def forward(self, x):
return x, self.sub
def __repr__(self):
tmpstr = "Identity + \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
def sequential(*args):
# Flatten Sequential. It unwraps nn.Sequential.
if len(args) == 1:
if isinstance(args[0], OrderedDict):
raise NotImplementedError("sequential does not support OrderedDict input.")
return args[0] # No sequential is needed.
modules = []
for module in args:
if isinstance(module, nn.Sequential):
for submodule in module.children():
modules.append(submodule)
elif isinstance(module, nn.Module):
modules.append(module)
return nn.Sequential(*modules)
ConvMode = Literal["CNA", "NAC", "CNAC"]
# 2x2x2 Conv Block
def conv_block_2c2(
in_nc,
out_nc,
act_type="relu",
):
return sequential(
nn.Conv2d(in_nc, out_nc, kernel_size=2, padding=1),
nn.Conv2d(out_nc, out_nc, kernel_size=2, padding=0),
act(act_type) if act_type else None,
)
def conv_block(
in_nc: int,
out_nc: int,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type: str | None = "relu",
mode: ConvMode = "CNA",
c2x2=False,
):
"""
Conv layer with padding, normalization, activation
mode: CNA --> Conv -> Norm -> Act
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
"""
if c2x2:
return conv_block_2c2(in_nc, out_nc, act_type=act_type)
assert mode in ("CNA", "NAC", "CNAC"), "Wrong conv mode [{:s}]".format(mode)
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
padding = padding if pad_type == "zero" else 0
c = nn.Conv2d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
a = act(act_type) if act_type else None
if mode in ("CNA", "CNAC"):
n = norm(norm_type, out_nc) if norm_type else None
return sequential(p, c, n, a)
elif mode == "NAC":
if norm_type is None and act_type is not None:
a = act(act_type, inplace=False)
# Important!
# input----ReLU(inplace)----Conv--+----output
# |________________________|
# inplace ReLU will modify the input, therefore wrong output
n = norm(norm_type, in_nc) if norm_type else None
return sequential(n, a, p, c)
else:
assert False, f"Invalid conv mode {mode}"
####################
# Useful blocks
####################
class ResNetBlock(nn.Module):
"""
ResNet Block, 3-3 style
with extra residual scaling used in EDSR
(Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
"""
def __init__(
self,
in_nc,
mid_nc,
out_nc,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_type="zero",
norm_type=None,
act_type="relu",
mode: ConvMode = "CNA",
res_scale=1,
):
super(ResNetBlock, self).__init__()
conv0 = conv_block(
in_nc,
mid_nc,
kernel_size,
stride,
dilation,
groups,
bias,
pad_type,
norm_type,
act_type,
mode,
)
if mode == "CNA":
act_type = None
if mode == "CNAC": # Residual path: |-CNAC-|
act_type = None
norm_type = None
conv1 = conv_block(
mid_nc,
out_nc,
kernel_size,
stride,
dilation,
groups,
bias,
pad_type,
norm_type,
act_type,
mode,
)
# if in_nc != out_nc:
# self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
# None, None)
# print('Need a projecter in ResNetBlock.')
# else:
# self.project = lambda x:x
self.res = sequential(conv0, conv1)
self.res_scale = res_scale
def forward(self, x):
res = self.res(x).mul(self.res_scale)
return x + res
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(
self,
nf,
kernel_size=3,
gc=32,
stride=1,
bias: bool = True,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode: ConvMode = "CNA",
_convtype="Conv2D",
_spectral_norm=False,
plus=False,
c2x2=False,
):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
self.RDB2 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
self.RDB3 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
def forward(self, x):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
style: 5 convs
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
Args:
nf (int): Channel number of intermediate features (num_feat).
gc (int): Channels for each growth (num_grow_ch: growth channel,
i.e. intermediate channels).
convtype (str): the type of convolution to use. Default: 'Conv2D'
gaussian_noise (bool): enable the ESRGAN+ gaussian noise (no new
trainable parameters)
plus (bool): enable the additional residual paths from ESRGAN+
(adds trainable parameters)
"""
def __init__(
self,
nf=64,
kernel_size=3,
gc=32,
stride=1,
bias: bool = True,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode: ConvMode = "CNA",
plus=False,
c2x2=False,
):
super(ResidualDenseBlock_5C, self).__init__()
## +
self.conv1x1 = conv1x1(nf, gc) if plus else None
## +
self.conv1 = conv_block(
nf,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv2 = conv_block(
nf + gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv3 = conv_block(
nf + 2 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv4 = conv_block(
nf + 3 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
if mode == "CNA":
last_act = None
else:
last_act = act_type
self.conv5 = conv_block(
nf + 4 * gc,
nf,
3,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=last_act,
mode=mode,
c2x2=c2x2,
)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
if self.conv1x1:
# pylint: disable=not-callable
x2 = x2 + self.conv1x1(x) # +
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
if self.conv1x1:
x4 = x4 + x2 # +
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
####################
# Upsampler
####################
def pixelshuffle_block(
in_nc: int,
out_nc: int,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type="relu",
):
"""
Pixel shuffle layer
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
Neural Network, CVPR17)
"""
conv = conv_block(
in_nc,
out_nc * (upscale_factor**2),
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=None,
act_type=None,
)
pixel_shuffle = nn.PixelShuffle(upscale_factor)
n = norm(norm_type, out_nc) if norm_type else None
a = act(act_type) if act_type else None
return sequential(conv, pixel_shuffle, n, a)
def upconv_block(
in_nc: int,
out_nc: int,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type="relu",
mode="nearest",
c2x2=False,
):
# Up conv
# described in https://distill.pub/2016/deconv-checkerboard/
upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
conv = conv_block(
in_nc,
out_nc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
c2x2=c2x2,
)
return sequential(upsample, conv)