Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image | |
import math | |
import comfy.utils | |
class Blend: | |
def __init__(self): | |
pass | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image1": ("IMAGE",), | |
"image2": ("IMAGE",), | |
"blend_factor": ("FLOAT", { | |
"default": 0.5, | |
"min": 0.0, | |
"max": 1.0, | |
"step": 0.01 | |
}), | |
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "blend_images" | |
CATEGORY = "image/postprocessing" | |
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str): | |
image2 = image2.to(image1.device) | |
if image1.shape != image2.shape: | |
image2 = image2.permute(0, 3, 1, 2) | |
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center') | |
image2 = image2.permute(0, 2, 3, 1) | |
blended_image = self.blend_mode(image1, image2, blend_mode) | |
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor | |
blended_image = torch.clamp(blended_image, 0, 1) | |
return (blended_image,) | |
def blend_mode(self, img1, img2, mode): | |
if mode == "normal": | |
return img2 | |
elif mode == "multiply": | |
return img1 * img2 | |
elif mode == "screen": | |
return 1 - (1 - img1) * (1 - img2) | |
elif mode == "overlay": | |
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2)) | |
elif mode == "soft_light": | |
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1)) | |
elif mode == "difference": | |
return img1 - img2 | |
else: | |
raise ValueError(f"Unsupported blend mode: {mode}") | |
def g(self, x): | |
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x)) | |
def gaussian_kernel(kernel_size: int, sigma: float, device=None): | |
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij") | |
d = torch.sqrt(x * x + y * y) | |
g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) | |
return g / g.sum() | |
class Blur: | |
def __init__(self): | |
pass | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"blur_radius": ("INT", { | |
"default": 1, | |
"min": 1, | |
"max": 31, | |
"step": 1 | |
}), | |
"sigma": ("FLOAT", { | |
"default": 1.0, | |
"min": 0.1, | |
"max": 10.0, | |
"step": 0.1 | |
}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "blur" | |
CATEGORY = "image/postprocessing" | |
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float): | |
if blur_radius == 0: | |
return (image,) | |
batch_size, height, width, channels = image.shape | |
kernel_size = blur_radius * 2 + 1 | |
kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1) | |
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) | |
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect') | |
blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius] | |
blurred = blurred.permute(0, 2, 3, 1) | |
return (blurred,) | |
class Quantize: | |
def __init__(self): | |
pass | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"colors": ("INT", { | |
"default": 256, | |
"min": 1, | |
"max": 256, | |
"step": 1 | |
}), | |
"dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "quantize" | |
CATEGORY = "image/postprocessing" | |
def bayer(im, pal_im, order): | |
def normalized_bayer_matrix(n): | |
if n == 0: | |
return np.zeros((1,1), "float32") | |
else: | |
q = 4 ** n | |
m = q * normalized_bayer_matrix(n - 1) | |
return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q | |
num_colors = len(pal_im.getpalette()) // 3 | |
spread = 2 * 256 / num_colors | |
bayer_n = int(math.log2(order)) | |
bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5) | |
result = torch.from_numpy(np.array(im).astype(np.float32)) | |
tw = math.ceil(result.shape[0] / bayer_matrix.shape[0]) | |
th = math.ceil(result.shape[1] / bayer_matrix.shape[1]) | |
tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1) | |
result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255) | |
result = result.to(dtype=torch.uint8) | |
im = Image.fromarray(result.cpu().numpy()) | |
im = im.quantize(palette=pal_im, dither=Image.Dither.NONE) | |
return im | |
def quantize(self, image: torch.Tensor, colors: int, dither: str): | |
batch_size, height, width, _ = image.shape | |
result = torch.zeros_like(image) | |
for b in range(batch_size): | |
im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB') | |
pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836 | |
if dither == "none": | |
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE) | |
elif dither == "floyd-steinberg": | |
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG) | |
elif dither.startswith("bayer"): | |
order = int(dither.split('-')[-1]) | |
quantized_image = Quantize.bayer(im, pal_im, order) | |
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255 | |
result[b] = quantized_array | |
return (result,) | |
class Sharpen: | |
def __init__(self): | |
pass | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"sharpen_radius": ("INT", { | |
"default": 1, | |
"min": 1, | |
"max": 31, | |
"step": 1 | |
}), | |
"sigma": ("FLOAT", { | |
"default": 1.0, | |
"min": 0.1, | |
"max": 10.0, | |
"step": 0.1 | |
}), | |
"alpha": ("FLOAT", { | |
"default": 1.0, | |
"min": 0.0, | |
"max": 5.0, | |
"step": 0.1 | |
}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "sharpen" | |
CATEGORY = "image/postprocessing" | |
def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float): | |
if sharpen_radius == 0: | |
return (image,) | |
batch_size, height, width, channels = image.shape | |
kernel_size = sharpen_radius * 2 + 1 | |
kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10) | |
center = kernel_size // 2 | |
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0 | |
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1) | |
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) | |
tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect') | |
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius] | |
sharpened = sharpened.permute(0, 2, 3, 1) | |
result = torch.clamp(sharpened, 0, 1) | |
return (result,) | |
class ImageScaleToTotalPixels: | |
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] | |
crop_methods = ["disabled", "center"] | |
def INPUT_TYPES(s): | |
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,), | |
"megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "upscale" | |
CATEGORY = "image/upscaling" | |
def upscale(self, image, upscale_method, megapixels): | |
samples = image.movedim(-1,1) | |
total = int(megapixels * 1024 * 1024) | |
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) | |
width = round(samples.shape[3] * scale_by) | |
height = round(samples.shape[2] * scale_by) | |
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") | |
s = s.movedim(1,-1) | |
return (s,) | |
NODE_CLASS_MAPPINGS = { | |
"ImageBlend": Blend, | |
"ImageBlur": Blur, | |
"ImageQuantize": Quantize, | |
"ImageSharpen": Sharpen, | |
"ImageScaleToTotalPixels": ImageScaleToTotalPixels, | |
} | |