Spaces:
Running
Running
import os | |
import hashlib | |
import numpy as np | |
import torch | |
from PIL import Image, ImageOps | |
import folder_paths | |
from comfy.k_diffusion.utils import FolderOfImages | |
from .logger import logger | |
from .utils import BIGMAX, calculate_file_hash, get_sorted_dir_files_from_directory, validate_path | |
def is_changed_load_images(directory: str, image_load_cap: int = 0, skip_first_images: int = 0, select_every_nth: int = 1): | |
if not os.path.isdir(directory): | |
return False | |
dir_files = get_sorted_dir_files_from_directory(directory, skip_first_images, select_every_nth, FolderOfImages.IMG_EXTENSIONS) | |
if image_load_cap != 0: | |
dir_files = dir_files[:image_load_cap] | |
m = hashlib.sha256() | |
for filepath in dir_files: | |
m.update(calculate_file_hash(filepath).encode()) # strings must be encoded before hashing | |
return m.digest().hex() | |
def validate_load_images(directory: str): | |
if not os.path.isdir(directory): | |
return f"Directory '{directory}' cannot be found." | |
dir_files = os.listdir(directory) | |
if len(dir_files) == 0: | |
return f"No files in directory '{directory}'." | |
return True | |
def load_images(directory: str, image_load_cap: int = 0, skip_first_images: int = 0, select_every_nth: int = 1): | |
if not os.path.isdir(directory): | |
raise FileNotFoundError(f"Directory '{directory} cannot be found.") | |
dir_files = get_sorted_dir_files_from_directory(directory, skip_first_images, select_every_nth, FolderOfImages.IMG_EXTENSIONS) | |
if len(dir_files) == 0: | |
raise FileNotFoundError(f"No files in directory '{directory}'.") | |
images = [] | |
masks = [] | |
limit_images = False | |
if image_load_cap > 0: | |
limit_images = True | |
image_count = 0 | |
loaded_alpha = False | |
zero_mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") | |
for image_path in dir_files: | |
if limit_images and image_count >= image_load_cap: | |
break | |
i = Image.open(image_path) | |
i = ImageOps.exif_transpose(i) | |
image = i.convert("RGB") | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image)[None,] | |
if 'A' in i.getbands(): | |
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 | |
mask = 1. - torch.from_numpy(mask) | |
if not loaded_alpha: | |
loaded_alpha = True | |
zero_mask = torch.zeros((len(image[0]),len(image[0][0])), dtype=torch.float32, device="cpu") | |
masks = [zero_mask] * image_count | |
else: | |
mask = zero_mask | |
images.append(image) | |
masks.append(mask) | |
image_count += 1 | |
if len(images) == 0: | |
raise FileNotFoundError(f"No images could be loaded from directory '{directory}'.") | |
return (torch.cat(images, dim=0), torch.stack(masks, dim=0), image_count) | |
class LoadImagesFromDirectoryUpload: | |
def INPUT_TYPES(s): | |
input_dir = folder_paths.get_input_directory() | |
directories = [] | |
for item in os.listdir(input_dir): | |
if not os.path.isfile(os.path.join(input_dir, item)) and item != "clipspace": | |
directories.append(item) | |
return { | |
"required": { | |
"directory": (directories,), | |
}, | |
"optional": { | |
"image_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), | |
"skip_first_images": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), | |
"select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "MASK", "INT") | |
FUNCTION = "load_images" | |
CATEGORY = "Video Helper Suite π₯π ₯π π ’" | |
def load_images(self, directory: str, **kwargs): | |
directory = folder_paths.get_annotated_filepath(directory.strip()) | |
return load_images(directory, **kwargs) | |
def IS_CHANGED(s, directory: str, **kwargs): | |
directory = folder_paths.get_annotated_filepath(directory.strip()) | |
return is_changed_load_images(directory, **kwargs) | |
def VALIDATE_INPUTS(s, directory: str, **kwargs): | |
directory = folder_paths.get_annotated_filepath(directory.strip()) | |
return validate_load_images(directory) | |
class LoadImagesFromDirectoryPath: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"directory": ("STRING", {"default": "X://path/to/images", "vhs_path_extensions": []}), | |
}, | |
"optional": { | |
"image_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), | |
"skip_first_images": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), | |
"select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "MASK", "INT") | |
FUNCTION = "load_images" | |
CATEGORY = "Video Helper Suite π₯π ₯π π ’" | |
def load_images(self, directory: str, **kwargs): | |
if directory is None or validate_load_images(directory) != True: | |
raise Exception("directory is not valid: " + directory) | |
return load_images(directory, **kwargs) | |
def IS_CHANGED(s, directory: str, **kwargs): | |
if directory is None: | |
return "input" | |
return is_changed_load_images(directory, **kwargs) | |
def VALIDATE_INPUTS(s, directory: str, **kwargs): | |
if directory is None: | |
return True | |
return validate_load_images(directory) | |