Spaces:
Running
Running
import math | |
from typing import Iterable, Tuple, Union | |
import re | |
import torch | |
from einops import rearrange, repeat | |
from torch import Tensor, nn | |
from comfy.ldm.modules.attention import FeedForward, SpatialTransformer | |
from comfy.model_patcher import ModelPatcher | |
from comfy.ldm.modules.diffusionmodules import openaimodel | |
from comfy.ldm.modules.diffusionmodules.openaimodel import SpatialTransformer | |
from comfy.controlnet import broadcast_image_to | |
from comfy.utils import repeat_to_batch_size | |
import comfy.ops | |
import comfy.model_management | |
from .context import ContextFuseMethod, ContextOptions, get_context_weights, get_context_windows | |
from .utils_motion import CrossAttentionMM, MotionCompatibilityError, extend_to_batch_size, prepare_mask_batch | |
from .utils_model import BetaSchedules, ModelTypeSD | |
from .logger import logger | |
def zero_module(module): | |
# Zero out the parameters of a module and return it. | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class AnimateDiffFormat: | |
ANIMATEDIFF = "AnimateDiff" | |
HOTSHOTXL = "HotshotXL" | |
ANIMATELCM = "AnimateLCM" | |
class AnimateDiffVersion: | |
V1 = "v1" | |
V2 = "v2" | |
V3 = "v3" | |
class AnimateDiffInfo: | |
def __init__(self, sd_type: str, mm_format: str, mm_version: str, mm_name: str): | |
self.sd_type = sd_type | |
self.mm_format = mm_format | |
self.mm_version = mm_version | |
self.mm_name = mm_name | |
def get_string(self): | |
return f"{self.mm_name}:{self.mm_version}:{self.mm_format}:{self.sd_type}" | |
def is_hotshotxl(mm_state_dict: dict[str, Tensor]) -> bool: | |
# use pos_encoder naming to determine if hotshotxl model | |
for key in mm_state_dict.keys(): | |
if key.endswith("pos_encoder.positional_encoding"): | |
return True | |
return False | |
def is_animatelcm(mm_state_dict: dict[str, Tensor]) -> bool: | |
# use lack of ANY pos_encoder keys to determine if animatelcm model | |
for key in mm_state_dict.keys(): | |
if "pos_encoder" in key: | |
return False | |
return True | |
def get_down_block_max(mm_state_dict: dict[str, Tensor]) -> int: | |
# keep track of biggest down_block count in module | |
biggest_block = 0 | |
for key in mm_state_dict.keys(): | |
if "down_blocks" in key: | |
try: | |
block_int = key.split(".")[1] | |
block_num = int(block_int) | |
if block_num > biggest_block: | |
biggest_block = block_num | |
except ValueError: | |
pass | |
return biggest_block | |
def has_mid_block(mm_state_dict: dict[str, Tensor]): | |
# check if keys contain mid_block | |
for key in mm_state_dict.keys(): | |
if key.startswith("mid_block."): | |
return True | |
return False | |
def get_position_encoding_max_len(mm_state_dict: dict[str, Tensor], mm_name: str, mm_format: str) -> Union[int, None]: | |
# use pos_encoder.pe entries to determine max length - [1, {max_length}, {320|640|1280}] | |
for key in mm_state_dict.keys(): | |
if key.endswith("pos_encoder.pe"): | |
return mm_state_dict[key].size(1) # get middle dim | |
# AnimateLCM models should have no pos_encoder entries, and assumed to be 64 | |
if mm_format == AnimateDiffFormat.ANIMATELCM: | |
return 64 | |
raise MotionCompatibilityError(f"No pos_encoder.pe found in mm_state_dict - {mm_name} is not a valid AnimateDiff motion module!") | |
_regex_hotshotxl_module_num = re.compile(r'temporal_attentions\.(\d+)\.') | |
def find_hotshot_module_num(key: str) -> Union[int, None]: | |
found = _regex_hotshotxl_module_num.search(key) | |
if found: | |
return int(found.group(1)) | |
return None | |
def normalize_ad_state_dict(mm_state_dict: dict[str, Tensor], mm_name: str) -> Tuple[dict[str, Tensor], AnimateDiffInfo]: | |
# from pathlib import Path | |
# with open(Path(__file__).parent.parent.parent / f"keys_{mm_name}.txt", "w") as afile: | |
# for key, value in mm_state_dict.items(): | |
# afile.write(f"{key}:\t{value.shape}\n") | |
# remove all non-temporal keys (in case model has extra stuff in it) | |
for key in list(mm_state_dict.keys()): | |
if "temporal" not in key: | |
del mm_state_dict[key] | |
# determine what SD model the motion module is intended for | |
sd_type: str = None | |
down_block_max = get_down_block_max(mm_state_dict) | |
if down_block_max == 3: | |
sd_type = ModelTypeSD.SD1_5 | |
elif down_block_max == 2: | |
sd_type = ModelTypeSD.SDXL | |
else: | |
raise ValueError(f"'{mm_name}' is not a valid SD1.5 nor SDXL motion module - contained {down_block_max} downblocks.") | |
# determine the model's format | |
mm_format = AnimateDiffFormat.ANIMATEDIFF | |
if is_hotshotxl(mm_state_dict): | |
mm_format = AnimateDiffFormat.HOTSHOTXL | |
if is_animatelcm(mm_state_dict): | |
mm_format = AnimateDiffFormat.ANIMATELCM | |
# determine the model's version | |
mm_version = AnimateDiffVersion.V1 | |
if has_mid_block(mm_state_dict): | |
mm_version = AnimateDiffVersion.V2 | |
elif sd_type==ModelTypeSD.SD1_5 and get_position_encoding_max_len(mm_state_dict, mm_name, mm_format)==32: | |
mm_version = AnimateDiffVersion.V3 | |
info = AnimateDiffInfo(sd_type=sd_type, mm_format=mm_format, mm_version=mm_version, mm_name=mm_name) | |
# convert to AnimateDiff format, if needed | |
if mm_format == AnimateDiffFormat.HOTSHOTXL: | |
# HotshotXL is AD-based architecture applied to SDXL instead of SD1.5 | |
# By renaming the keys, no code needs to be adapted at all | |
# | |
# reformat temporal_attentions: | |
# HSXL: temporal_attentions.#. | |
# AD: motion_modules.#.temporal_transformer. | |
# HSXL: pos_encoder.positional_encoding | |
# AD: pos_encoder.pe | |
for key in list(mm_state_dict.keys()): | |
module_num = find_hotshot_module_num(key) | |
if module_num is not None: | |
new_key = key.replace(f"temporal_attentions.{module_num}", | |
f"motion_modules.{module_num}.temporal_transformer", 1) | |
new_key = new_key.replace("pos_encoder.positional_encoding", "pos_encoder.pe") | |
mm_state_dict[new_key] = mm_state_dict[key] | |
del mm_state_dict[key] | |
# return adjusted mm_state_dict and info | |
return mm_state_dict, info | |
class BlockType: | |
UP = "up" | |
DOWN = "down" | |
MID = "mid" | |
class AnimateDiffModel(nn.Module): | |
def __init__(self, mm_state_dict: dict[str, Tensor], mm_info: AnimateDiffInfo): | |
super().__init__() | |
self.mm_info = mm_info | |
self.down_blocks: Iterable[MotionModule] = nn.ModuleList([]) | |
self.up_blocks: Iterable[MotionModule] = nn.ModuleList([]) | |
self.mid_block: Union[MotionModule, None] = None | |
self.encoding_max_len = get_position_encoding_max_len(mm_state_dict, mm_info.mm_name, mm_info.mm_format) | |
self.has_position_encoding = self.encoding_max_len is not None | |
# determine ops to use (to support fp8 properly) | |
if comfy.model_management.unet_manual_cast(comfy.model_management.unet_dtype(), comfy.model_management.get_torch_device()) is None: | |
ops = comfy.ops.disable_weight_init | |
else: | |
ops = comfy.ops.manual_cast | |
# SDXL has 3 up/down blocks, SD1.5 has 4 up/down blocks | |
if mm_info.sd_type == ModelTypeSD.SDXL: | |
layer_channels = (320, 640, 1280) | |
else: | |
layer_channels = (320, 640, 1280, 1280) | |
# fill out down/up blocks and middle block, if present | |
for c in layer_channels: | |
self.down_blocks.append(MotionModule(c, temporal_position_encoding=self.has_position_encoding, | |
temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.DOWN, ops=ops)) | |
for c in reversed(layer_channels): | |
self.up_blocks.append(MotionModule(c, temporal_position_encoding=self.has_position_encoding, | |
temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.UP, ops=ops)) | |
if has_mid_block(mm_state_dict): | |
self.mid_block = MotionModule(1280, temporal_position_encoding=self.has_position_encoding, | |
temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.MID, ops=ops) | |
self.AD_video_length: int = 24 | |
def get_device_debug(self): | |
return self.down_blocks[0].motion_modules[0].temporal_transformer.proj_in.weight.device | |
def is_length_valid_for_encoding_max_len(self, length: int): | |
if self.encoding_max_len is None: | |
return True | |
return length <= self.encoding_max_len | |
def get_best_beta_schedule(self, log=False) -> str: | |
to_return = None | |
if self.mm_info.sd_type == ModelTypeSD.SD1_5: | |
if self.mm_info.mm_format == AnimateDiffFormat.ANIMATELCM: | |
to_return = BetaSchedules.LCM # while LCM_100 is the intended schedule, I find LCM to have much less flicker | |
else: | |
to_return = BetaSchedules.SQRT_LINEAR | |
elif self.mm_info.sd_type == ModelTypeSD.SDXL: | |
if self.mm_info.mm_format == AnimateDiffFormat.HOTSHOTXL: | |
to_return = BetaSchedules.LINEAR | |
else: | |
to_return = BetaSchedules.LINEAR_ADXL | |
if to_return is not None: | |
if log: logger.info(f"[Autoselect]: '{to_return}' beta_schedule for {self.mm_info.get_string()}") | |
else: | |
to_return = BetaSchedules.USE_EXISTING | |
if log: logger.info(f"[Autoselect]: could not find beta_schedule for {self.mm_info.get_string()}, defaulting to '{to_return}'") | |
return to_return | |
def cleanup(self): | |
pass | |
def inject(self, model: ModelPatcher): | |
unet: openaimodel.UNetModel = model.model.diffusion_model | |
# inject input (down) blocks | |
# SD15 mm contains 4 downblocks, each with 2 TemporalTransformers - 8 in total | |
# SDXL mm contains 3 downblocks, each with 2 TemporalTransformers - 6 in total | |
self._inject(unet.input_blocks, self.down_blocks) | |
# inject output (up) blocks | |
# SD15 mm contains 4 upblocks, each with 3 TemporalTransformers - 12 in total | |
# SDXL mm contains 3 upblocks, each with 3 TemporalTransformers - 9 in total | |
self._inject(unet.output_blocks, self.up_blocks) | |
# inject mid block, if needed (encapsulate in list to make structure compatible) | |
if self.mid_block is not None: | |
self._inject([unet.middle_block], [self.mid_block]) | |
del unet | |
def _inject(self, unet_blocks: nn.ModuleList, mm_blocks: nn.ModuleList): | |
# Rules for injection: | |
# For each component list in a unet block: | |
# if SpatialTransformer exists in list, place next block after last occurrence | |
# elif ResBlock exists in list, place next block after first occurrence | |
# else don't place block | |
injection_count = 0 | |
unet_idx = 0 | |
# details about blocks passed in | |
per_block = len(mm_blocks[0].motion_modules) | |
injection_goal = len(mm_blocks) * per_block | |
# only stop injecting when modules exhausted | |
while injection_count < injection_goal: | |
# figure out which VanillaTemporalModule from mm to inject | |
mm_blk_idx, mm_vtm_idx = injection_count // per_block, injection_count % per_block | |
# figure out layout of unet block components | |
st_idx = -1 # SpatialTransformer index | |
res_idx = -1 # first ResBlock index | |
# first, figure out indeces of relevant blocks | |
for idx, component in enumerate(unet_blocks[unet_idx]): | |
if type(component) == SpatialTransformer: | |
st_idx = idx | |
elif type(component).__name__ == "ResBlock" and res_idx < 0: | |
res_idx = idx | |
# if SpatialTransformer exists, inject right after | |
if st_idx >= 0: | |
#logger.info(f"AD: injecting after ST({st_idx})") | |
unet_blocks[unet_idx].insert(st_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx]) | |
injection_count += 1 | |
# otherwise, if only ResBlock exists, inject right after | |
elif res_idx >= 0: | |
#logger.info(f"AD: injecting after Res({res_idx})") | |
unet_blocks[unet_idx].insert(res_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx]) | |
injection_count += 1 | |
# increment unet_idx | |
unet_idx += 1 | |
def eject(self, model: ModelPatcher): | |
unet: openaimodel.UNetModel = model.model.diffusion_model | |
# remove from input blocks (downblocks) | |
self._eject(unet.input_blocks) | |
# remove from output blocks (upblocks) | |
self._eject(unet.output_blocks) | |
# remove from middle block (encapsulate in list to make compatible) | |
self._eject([unet.middle_block]) | |
del unet | |
def _eject(self, unet_blocks: nn.ModuleList): | |
# eject all VanillaTemporalModule objects from all blocks | |
for block in unet_blocks: | |
idx_to_pop = [] | |
for idx, component in enumerate(block): | |
if type(component) == VanillaTemporalModule: | |
idx_to_pop.append(idx) | |
# pop in backwards order, as to not disturb what the indeces refer to | |
for idx in sorted(idx_to_pop, reverse=True): | |
block.pop(idx) | |
def set_video_length(self, video_length: int, full_length: int): | |
self.AD_video_length = video_length | |
for block in self.down_blocks: | |
block.set_video_length(video_length, full_length) | |
for block in self.up_blocks: | |
block.set_video_length(video_length, full_length) | |
if self.mid_block is not None: | |
self.mid_block.set_video_length(video_length, full_length) | |
def set_scale(self, multival: Union[float, Tensor]): | |
if multival is None: | |
multival = 1.0 | |
if type(multival) == Tensor: | |
self._set_scale_multiplier(1.0) | |
self._set_scale_mask(multival) | |
else: | |
self._set_scale_multiplier(multival) | |
self._set_scale_mask(None) | |
def set_effect(self, multival: Union[float, Tensor]): | |
for block in self.down_blocks: | |
block.set_effect(multival) | |
for block in self.up_blocks: | |
block.set_effect(multival) | |
if self.mid_block is not None: | |
self.mid_block.set_effect(multival) | |
def set_sub_idxs(self, sub_idxs: list[int]): | |
for block in self.down_blocks: | |
block.set_sub_idxs(sub_idxs) | |
for block in self.up_blocks: | |
block.set_sub_idxs(sub_idxs) | |
if self.mid_block is not None: | |
self.mid_block.set_sub_idxs(sub_idxs) | |
def set_view_options(self, view_options: ContextOptions): | |
for block in self.down_blocks: | |
block.set_view_options(view_options) | |
for block in self.up_blocks: | |
block.set_view_options(view_options) | |
if self.mid_block is not None: | |
self.mid_block.set_view_options(view_options) | |
def reset(self): | |
self._reset_sub_idxs() | |
self._reset_scale_multiplier() | |
self._reset_temp_vars() | |
def _set_scale_multiplier(self, multiplier: Union[float, None]): | |
for block in self.down_blocks: | |
block.set_scale_multiplier(multiplier) | |
for block in self.up_blocks: | |
block.set_scale_multiplier(multiplier) | |
if self.mid_block is not None: | |
self.mid_block.set_scale_multiplier(multiplier) | |
def _set_scale_mask(self, mask: Tensor): | |
for block in self.down_blocks: | |
block.set_scale_mask(mask) | |
for block in self.up_blocks: | |
block.set_scale_mask(mask) | |
if self.mid_block is not None: | |
self.mid_block.set_scale_mask(mask) | |
def _reset_temp_vars(self): | |
for block in self.down_blocks: | |
block.reset_temp_vars() | |
for block in self.up_blocks: | |
block.reset_temp_vars() | |
if self.mid_block is not None: | |
self.mid_block.reset_temp_vars() | |
def _reset_scale_multiplier(self): | |
self._set_scale_multiplier(None) | |
def _reset_sub_idxs(self): | |
self.set_sub_idxs(None) | |
class MotionModule(nn.Module): | |
def __init__(self, | |
in_channels, | |
temporal_position_encoding=True, | |
temporal_position_encoding_max_len=24, | |
block_type: str=BlockType.DOWN, | |
ops=comfy.ops.disable_weight_init | |
): | |
super().__init__() | |
if block_type == BlockType.MID: | |
# mid blocks contain only a single VanillaTemporalModule | |
self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList([get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops)]) | |
else: | |
# down blocks contain two VanillaTemporalModules | |
self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList( | |
[ | |
get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops), | |
get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops) | |
] | |
) | |
# up blocks contain one additional VanillaTemporalModule | |
if block_type == BlockType.UP: | |
self.motion_modules.append(get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops)) | |
def set_video_length(self, video_length: int, full_length: int): | |
for motion_module in self.motion_modules: | |
motion_module.set_video_length(video_length, full_length) | |
def set_scale_multiplier(self, multiplier: Union[float, None]): | |
for motion_module in self.motion_modules: | |
motion_module.set_scale_multiplier(multiplier) | |
def set_scale_mask(self, mask: Tensor): | |
for motion_module in self.motion_modules: | |
motion_module.set_scale_mask(mask) | |
def set_effect(self, multival: Union[float, Tensor]): | |
for motion_module in self.motion_modules: | |
motion_module.set_effect(multival) | |
def set_sub_idxs(self, sub_idxs: list[int]): | |
for motion_module in self.motion_modules: | |
motion_module.set_sub_idxs(sub_idxs) | |
def set_view_options(self, view_options: ContextOptions): | |
for motion_module in self.motion_modules: | |
motion_module.set_view_options(view_options=view_options) | |
def reset_temp_vars(self): | |
for motion_module in self.motion_modules: | |
motion_module.reset_temp_vars() | |
def get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=comfy.ops.disable_weight_init): | |
return VanillaTemporalModule(in_channels=in_channels, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, ops=ops) | |
class VanillaTemporalModule(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads=8, | |
num_transformer_block=1, | |
attention_block_types=("Temporal_Self", "Temporal_Self"), | |
cross_frame_attention_mode=None, | |
temporal_position_encoding=True, | |
temporal_position_encoding_max_len=24, | |
temporal_attention_dim_div=1, | |
zero_initialize=True, | |
ops=comfy.ops.disable_weight_init, | |
): | |
super().__init__() | |
self.video_length = 16 | |
self.full_length = 16 | |
self.sub_idxs = None | |
self.view_options = None | |
self.effect = None | |
self.temp_effect_mask: Tensor = None | |
self.prev_input_tensor_batch = 0 | |
self.temporal_transformer = TemporalTransformer3DModel( | |
in_channels=in_channels, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=in_channels | |
// num_attention_heads | |
// temporal_attention_dim_div, | |
num_layers=num_transformer_block, | |
attention_block_types=attention_block_types, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
ops=ops | |
) | |
if zero_initialize: | |
self.temporal_transformer.proj_out = zero_module( | |
self.temporal_transformer.proj_out | |
) | |
def set_video_length(self, video_length: int, full_length: int): | |
self.video_length = video_length | |
self.full_length = full_length | |
self.temporal_transformer.set_video_length(video_length, full_length) | |
def set_scale_multiplier(self, multiplier: Union[float, None]): | |
self.temporal_transformer.set_scale_multiplier(multiplier) | |
def set_scale_mask(self, mask: Tensor): | |
self.temporal_transformer.set_scale_mask(mask) | |
def set_effect(self, multival: Union[float, Tensor]): | |
if type(multival) == Tensor: | |
self.effect = multival | |
elif multival is not None and math.isclose(multival, 1.0): | |
self.effect = None | |
else: | |
self.effect = multival | |
self.temp_effect_mask = None | |
def set_sub_idxs(self, sub_idxs: list[int]): | |
self.sub_idxs = sub_idxs | |
self.temporal_transformer.set_sub_idxs(sub_idxs) | |
def set_view_options(self, view_options: ContextOptions): | |
self.view_options = view_options | |
def reset_temp_vars(self): | |
self.set_effect(None) | |
self.set_view_options(None) | |
self.temporal_transformer.reset_temp_vars() | |
def get_effect_mask(self, input_tensor: Tensor): | |
batch, channel, height, width = input_tensor.shape | |
batched_number = batch // self.video_length | |
full_batched_idxs = list(range(self.video_length))*batched_number | |
# if there is a cached temp_effect_mask and it is valid for current input, return it | |
if batch == self.prev_input_tensor_batch and self.temp_effect_mask is not None: | |
if self.sub_idxs is not None: | |
return self.temp_effect_mask[self.sub_idxs*batched_number] | |
return self.temp_effect_mask[full_batched_idxs] | |
# clear any existing mask | |
del self.temp_effect_mask | |
self.temp_effect_mask = None | |
# recalculate temp mask | |
self.prev_input_tensor_batch = batch | |
# make sure mask matches expected dimensions | |
mask = prepare_mask_batch(self.effect, shape=(self.full_length, 1, height, width)) | |
# make sure mask is as long as full_length - clone last element of list if too short | |
self.temp_effect_mask = extend_to_batch_size(mask, self.full_length).to( | |
dtype=input_tensor.dtype, device=input_tensor.device) | |
# return finalized mask | |
if self.sub_idxs is not None: | |
return self.temp_effect_mask[self.sub_idxs*batched_number] | |
return self.temp_effect_mask[full_batched_idxs] | |
def forward(self, input_tensor: Tensor, encoder_hidden_states=None, attention_mask=None): | |
if self.effect is None: | |
return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options) | |
# return weighted average of input_tensor and AD output | |
if type(self.effect) != Tensor: | |
effect = self.effect | |
# do nothing if effect is 0 | |
if math.isclose(effect, 0.0): | |
return input_tensor | |
else: | |
effect = self.get_effect_mask(input_tensor) | |
return input_tensor*(1.0-effect) + self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options)*effect | |
class TemporalTransformer3DModel(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads, | |
attention_head_dim, | |
num_layers, | |
attention_block_types=( | |
"Temporal_Self", | |
"Temporal_Self", | |
), | |
dropout=0.0, | |
norm_num_groups=32, | |
cross_attention_dim=768, | |
activation_fn="geglu", | |
attention_bias=False, | |
upcast_attention=False, | |
cross_frame_attention_mode=None, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=24, | |
ops=comfy.ops.disable_weight_init, | |
): | |
super().__init__() | |
self.video_length = 16 | |
self.full_length = 16 | |
self.raw_scale_mask: Union[Tensor, None] = None | |
self.temp_scale_mask: Union[Tensor, None] = None | |
self.sub_idxs: Union[list[int], None] = None | |
self.prev_hidden_states_batch = 0 | |
inner_dim = num_attention_heads * attention_head_dim | |
self.norm = ops.GroupNorm( | |
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
self.proj_in = ops.Linear(in_channels, inner_dim) | |
self.transformer_blocks: Iterable[TemporalTransformerBlock] = nn.ModuleList( | |
[ | |
TemporalTransformerBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
attention_block_types=attention_block_types, | |
dropout=dropout, | |
norm_num_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
upcast_attention=upcast_attention, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
ops=ops, | |
) | |
for d in range(num_layers) | |
] | |
) | |
self.proj_out = ops.Linear(inner_dim, in_channels) | |
def set_video_length(self, video_length: int, full_length: int): | |
self.video_length = video_length | |
self.full_length = full_length | |
def set_scale_multiplier(self, multiplier: Union[float, None]): | |
for block in self.transformer_blocks: | |
block.set_scale_multiplier(multiplier) | |
def set_scale_mask(self, mask: Tensor): | |
self.raw_scale_mask = mask | |
self.temp_scale_mask = None | |
def set_sub_idxs(self, sub_idxs: list[int]): | |
self.sub_idxs = sub_idxs | |
for block in self.transformer_blocks: | |
block.set_sub_idxs(sub_idxs) | |
def reset_temp_vars(self): | |
del self.temp_scale_mask | |
self.temp_scale_mask = None | |
self.prev_hidden_states_batch = 0 | |
def get_scale_mask(self, hidden_states: Tensor) -> Union[Tensor, None]: | |
# if no raw mask, return None | |
if self.raw_scale_mask is None: | |
return None | |
shape = hidden_states.shape | |
batch, channel, height, width = shape | |
# if temp mask already calculated, return it | |
if self.temp_scale_mask != None: | |
# check if hidden_states batch matches | |
if batch == self.prev_hidden_states_batch: | |
if self.sub_idxs is not None: | |
return self.temp_scale_mask[:, self.sub_idxs, :] | |
return self.temp_scale_mask | |
# if does not match, reset cached temp_scale_mask and recalculate it | |
del self.temp_scale_mask | |
self.temp_scale_mask = None | |
# otherwise, calculate temp mask | |
self.prev_hidden_states_batch = batch | |
mask = prepare_mask_batch(self.raw_scale_mask, shape=(self.full_length, 1, height, width)) | |
mask = repeat_to_batch_size(mask, self.full_length) | |
# if mask not the same amount length as full length, make it match | |
if self.full_length != mask.shape[0]: | |
mask = broadcast_image_to(mask, self.full_length, 1) | |
# reshape mask to attention K shape (h*w, latent_count, 1) | |
batch, channel, height, width = mask.shape | |
# first, perform same operations as on hidden_states, | |
# turning (b, c, h, w) -> (b, h*w, c) | |
mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel) | |
# then, make it the same shape as attention's k, (h*w, b, c) | |
mask = mask.permute(1, 0, 2) | |
# make masks match the expected length of h*w | |
batched_number = shape[0] // self.video_length | |
if batched_number > 1: | |
mask = torch.cat([mask] * batched_number, dim=0) | |
# cache mask and set to proper device | |
self.temp_scale_mask = mask | |
# move temp_scale_mask to proper dtype + device | |
self.temp_scale_mask = self.temp_scale_mask.to(dtype=hidden_states.dtype, device=hidden_states.device) | |
# return subset of masks, if needed | |
if self.sub_idxs is not None: | |
return self.temp_scale_mask[:, self.sub_idxs, :] | |
return self.temp_scale_mask | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, view_options: ContextOptions=None): | |
batch, channel, height, width = hidden_states.shape | |
residual = hidden_states | |
scale_mask = self.get_scale_mask(hidden_states) | |
# add some casts for fp8 purposes - does not affect speed otherwise | |
hidden_states = self.norm(hidden_states).to(hidden_states.dtype) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( | |
batch, height * width, inner_dim | |
) | |
hidden_states = self.proj_in(hidden_states).to(hidden_states.dtype) | |
# Transformer Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
video_length=self.video_length, | |
scale_mask=scale_mask, | |
view_options=view_options | |
) | |
# output | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = ( | |
hidden_states.reshape(batch, height, width, inner_dim) | |
.permute(0, 3, 1, 2) | |
.contiguous() | |
) | |
output = hidden_states + residual | |
return output | |
class TemporalTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_attention_heads, | |
attention_head_dim, | |
attention_block_types=( | |
"Temporal_Self", | |
"Temporal_Self", | |
), | |
dropout=0.0, | |
norm_num_groups=32, | |
cross_attention_dim=768, | |
activation_fn="geglu", | |
attention_bias=False, | |
upcast_attention=False, | |
cross_frame_attention_mode=None, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=24, | |
ops=comfy.ops.disable_weight_init, | |
): | |
super().__init__() | |
attention_blocks = [] | |
norms = [] | |
for block_name in attention_block_types: | |
attention_blocks.append( | |
VersatileAttention( | |
attention_mode=block_name.split("_")[0], | |
context_dim=cross_attention_dim # called context_dim for ComfyUI impl | |
if block_name.endswith("_Cross") | |
else None, | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
#bias=attention_bias, # remove for Comfy CrossAttention | |
#upcast_attention=upcast_attention, # remove for Comfy CrossAttention | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
ops=ops, | |
) | |
) | |
norms.append(ops.LayerNorm(dim)) | |
self.attention_blocks: Iterable[VersatileAttention] = nn.ModuleList(attention_blocks) | |
self.norms = nn.ModuleList(norms) | |
self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn == "geglu"), operations=ops) | |
self.ff_norm = ops.LayerNorm(dim) | |
def set_scale_multiplier(self, multiplier: Union[float, None]): | |
for block in self.attention_blocks: | |
block.set_scale_multiplier(multiplier) | |
def set_sub_idxs(self, sub_idxs: list[int]): | |
for block in self.attention_blocks: | |
block.set_sub_idxs(sub_idxs) | |
def forward( | |
self, | |
hidden_states: Tensor, | |
encoder_hidden_states: Tensor=None, | |
attention_mask: Tensor=None, | |
video_length: int=None, | |
scale_mask: Tensor=None, | |
view_options: ContextOptions=None, | |
): | |
# make view_options None if context_length > video_length, or if equal and equal not allowed | |
if view_options: | |
if view_options.context_length > video_length: | |
view_options = None | |
elif view_options.context_length == video_length and not view_options.use_on_equal_length: | |
view_options = None | |
if not view_options: | |
for attention_block, norm in zip(self.attention_blocks, self.norms): | |
norm_hidden_states = norm(hidden_states).to(hidden_states.dtype) | |
hidden_states = ( | |
attention_block( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states | |
if attention_block.is_cross_attention | |
else None, | |
attention_mask=attention_mask, | |
video_length=video_length, | |
scale_mask=scale_mask | |
) + hidden_states | |
) | |
else: | |
# views idea gotten from diffusers AnimateDiff FreeNoise implementation: | |
# https://github.com/arthur-qiu/FreeNoise-AnimateDiff/blob/main/animatediff/models/motion_module.py | |
# apply sliding context windows (views) | |
views = get_context_windows(num_frames=video_length, opts=view_options) | |
hidden_states = rearrange(hidden_states, "(b f) d c -> b f d c", f=video_length) | |
value_final = torch.zeros_like(hidden_states) | |
count_final = torch.zeros_like(hidden_states) | |
# bias_final = [0.0] * video_length | |
batched_conds = hidden_states.size(1) // video_length | |
for sub_idxs in views: | |
sub_hidden_states = rearrange(hidden_states[:, sub_idxs], "b f d c -> (b f) d c") | |
for attention_block, norm in zip(self.attention_blocks, self.norms): | |
norm_hidden_states = norm(sub_hidden_states).to(sub_hidden_states.dtype) | |
sub_hidden_states = ( | |
attention_block( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states # do these need to be changed for sub_idxs too? | |
if attention_block.is_cross_attention | |
else None, | |
attention_mask=attention_mask, | |
video_length=len(sub_idxs), | |
scale_mask=scale_mask[:, sub_idxs, :] if scale_mask is not None else scale_mask | |
) + sub_hidden_states | |
) | |
sub_hidden_states = rearrange(sub_hidden_states, "(b f) d c -> b f d c", f=len(sub_idxs)) | |
# if view_options.fuse_method == ContextFuseMethod.RELATIVE: | |
# for pos, idx in enumerate(sub_idxs): | |
# # bias is the influence of a specific index in relation to the whole context window | |
# bias = 1 - abs(idx - (sub_idxs[0] + sub_idxs[-1]) / 2) / ((sub_idxs[-1] - sub_idxs[0] + 1e-2) / 2) | |
# bias = max(1e-2, bias) | |
# # take weighted averate relative to total bias of current idx | |
# bias_total = bias_final[idx] | |
# prev_weight = torch.tensor([bias_total / (bias_total + bias)], | |
# dtype=value_final.dtype, device=value_final.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
# #prev_weight = torch.cat([prev_weight]*value_final.shape[1], dim=1) | |
# new_weight = torch.tensor([bias / (bias_total + bias)], | |
# dtype=value_final.dtype, device=value_final.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
# #new_weight = torch.cat([new_weight]*value_final.shape[1], dim=1) | |
# test = value_final[:, idx:idx+1, :, :] | |
# value_final[:, idx:idx+1, :, :] = value_final[:, idx:idx+1, :, :] * prev_weight + sub_hidden_states[:, pos:pos+1, : ,:] * new_weight | |
# bias_final[idx] = bias_total + bias | |
# else: | |
weights = get_context_weights(len(sub_idxs), view_options.fuse_method) * batched_conds | |
weights_tensor = torch.Tensor(weights).to(device=hidden_states.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
value_final[:, sub_idxs] += sub_hidden_states * weights_tensor | |
count_final[:, sub_idxs] += weights_tensor | |
# get weighted average of sub_hidden_states, if fuse method requires it | |
# if view_options.fuse_method != ContextFuseMethod.RELATIVE: | |
hidden_states = value_final / count_final | |
hidden_states = rearrange(hidden_states, "b f d c -> (b f) d c") | |
del value_final | |
del count_final | |
# del bias_final | |
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states | |
output = hidden_states | |
return output | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model, dropout=0.0, max_len=24): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) | |
) | |
pe = torch.zeros(1, max_len, d_model) | |
pe[0, :, 0::2] = torch.sin(position * div_term) | |
pe[0, :, 1::2] = torch.cos(position * div_term) | |
self.register_buffer("pe", pe) | |
self.sub_idxs = None | |
def set_sub_idxs(self, sub_idxs: list[int]): | |
self.sub_idxs = sub_idxs | |
def forward(self, x): | |
#if self.sub_idxs is not None: | |
# x = x + self.pe[:, self.sub_idxs] | |
#else: | |
x = x + self.pe[:, : x.size(1)] | |
return self.dropout(x) | |
class VersatileAttention(CrossAttentionMM): | |
def __init__( | |
self, | |
attention_mode=None, | |
cross_frame_attention_mode=None, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=24, | |
ops=comfy.ops.disable_weight_init, | |
*args, | |
**kwargs, | |
): | |
super().__init__(operations=ops, *args, **kwargs) | |
assert attention_mode == "Temporal" | |
self.attention_mode = attention_mode | |
self.is_cross_attention = kwargs["context_dim"] is not None | |
self.pos_encoder = ( | |
PositionalEncoding( | |
kwargs["query_dim"], | |
dropout=0.0, | |
max_len=temporal_position_encoding_max_len, | |
) | |
if (temporal_position_encoding and attention_mode == "Temporal") | |
else None | |
) | |
def extra_repr(self): | |
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" | |
def set_scale_multiplier(self, multiplier: Union[float, None]): | |
if multiplier is None or math.isclose(multiplier, 1.0): | |
self.scale = 1.0 | |
else: | |
self.scale = multiplier | |
def set_sub_idxs(self, sub_idxs: list[int]): | |
if self.pos_encoder != None: | |
self.pos_encoder.set_sub_idxs(sub_idxs) | |
def forward( | |
self, | |
hidden_states: Tensor, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
video_length=None, | |
scale_mask=None, | |
): | |
if self.attention_mode != "Temporal": | |
raise NotImplementedError | |
d = hidden_states.shape[1] | |
hidden_states = rearrange( | |
hidden_states, "(b f) d c -> (b d) f c", f=video_length | |
) | |
if self.pos_encoder is not None: | |
hidden_states = self.pos_encoder(hidden_states).to(hidden_states.dtype) | |
encoder_hidden_states = ( | |
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) | |
if encoder_hidden_states is not None | |
else encoder_hidden_states | |
) | |
hidden_states = super().forward( | |
hidden_states, | |
encoder_hidden_states, | |
value=None, | |
mask=attention_mask, | |
scale_mask=scale_mask, | |
) | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
return hidden_states | |