daquanzhou
merge github repos and lfs track ckpt/path/safetensors/pt
613c9ab
import hashlib
from pathlib import Path
from typing import Callable, Union
from collections.abc import Iterable
from time import time
import copy
import torch
import numpy as np
import folder_paths
from comfy.model_base import SD21UNCLIP, SDXL, BaseModel, SDXLRefiner, SVD_img2vid, model_sampling, ModelType
from comfy.model_management import xformers_enabled
from comfy.model_patcher import ModelPatcher
import comfy.model_sampling
import comfy_extras.nodes_model_advanced
BIGMIN = -(2**53-1)
BIGMAX = (2**53-1)
class ModelSamplingConfig:
def __init__(self, beta_schedule: str, linear_start: float=None, linear_end: float=None):
self.sampling_settings = {"beta_schedule": beta_schedule}
if linear_start is not None:
self.sampling_settings["linear_start"] = linear_start
if linear_end is not None:
self.sampling_settings["linear_end"] = linear_end
self.beta_schedule = beta_schedule # keeping this for backwards compatibility
class ModelSamplingType:
EPS = "eps"
V_PREDICTION = "v_prediction"
LCM = "lcm"
_NON_LCM_LIST = [EPS, V_PREDICTION]
_FULL_LIST = [EPS, V_PREDICTION, LCM]
MAP = {
EPS: ModelType.EPS,
V_PREDICTION: ModelType.V_PREDICTION,
LCM: comfy_extras.nodes_model_advanced.LCM,
}
@classmethod
def from_alias(cls, alias: str):
return cls.MAP[alias]
def factory_model_sampling_discrete_distilled(original_timesteps=50):
class ModelSamplingDiscreteDistilledEvolved(comfy_extras.nodes_model_advanced.ModelSamplingDiscreteDistilled):
def __init__(self, *args, **kwargs):
self.original_timesteps = original_timesteps # normal LCM has 50
super().__init__(*args, **kwargs)
return ModelSamplingDiscreteDistilledEvolved
# based on code in comfy_extras/nodes_model_advanced.py
def evolved_model_sampling(model_config: ModelSamplingConfig, model_type: ModelType, alias: str, original_timesteps: int=None):
# if LCM, need to handle manually
if BetaSchedules.is_lcm(alias) or original_timesteps is not None:
sampling_type = comfy_extras.nodes_model_advanced.LCM
if original_timesteps is not None:
sampling_base = factory_model_sampling_discrete_distilled(original_timesteps=original_timesteps)
elif alias == BetaSchedules.LCM_100:
sampling_base = factory_model_sampling_discrete_distilled(original_timesteps=100)
elif alias == BetaSchedules.LCM_25:
sampling_base = factory_model_sampling_discrete_distilled(original_timesteps=25)
else:
sampling_base = comfy_extras.nodes_model_advanced.ModelSamplingDiscreteDistilled
class ModelSamplingAdvancedEvolved(sampling_base, sampling_type):
pass
# NOTE: if I want to support zsnr, this is where I would add that code
return ModelSamplingAdvancedEvolved(model_config)
# otherwise, use vanilla model_sampling function
return model_sampling(model_config, model_type)
class BetaSchedules:
AUTOSELECT = "autoselect"
SQRT_LINEAR = "sqrt_linear (AnimateDiff)"
LINEAR_ADXL = "linear (AnimateDiff-SDXL)"
LINEAR = "linear (HotshotXL/default)"
AVG_LINEAR_SQRT_LINEAR = "avg(sqrt_linear,linear)"
LCM_AVG_LINEAR_SQRT_LINEAR = "lcm avg(sqrt_linear,linear)"
LCM = "lcm"
LCM_100 = "lcm[100_ots]"
LCM_25 = "lcm[25_ots]"
LCM_SQRT_LINEAR = "lcm >> sqrt_linear"
USE_EXISTING = "use existing"
SQRT = "sqrt"
COSINE = "cosine"
SQUAREDCOS_CAP_V2 = "squaredcos_cap_v2"
RAW_LINEAR = "linear"
RAW_SQRT_LINEAR = "sqrt_linear"
RAW_BETA_SCHEDULE_LIST = [RAW_LINEAR, RAW_SQRT_LINEAR, SQRT, COSINE, SQUAREDCOS_CAP_V2]
ALIAS_LCM_LIST = [LCM, LCM_100, LCM_25, LCM_SQRT_LINEAR]
ALIAS_ACTIVE_LIST = [SQRT_LINEAR, LINEAR_ADXL, LINEAR, AVG_LINEAR_SQRT_LINEAR, LCM_AVG_LINEAR_SQRT_LINEAR, LCM, LCM_100, LCM_SQRT_LINEAR, # LCM_25 is purposely omitted
SQRT, COSINE, SQUAREDCOS_CAP_V2]
ALIAS_LIST = [AUTOSELECT, USE_EXISTING] + ALIAS_ACTIVE_LIST
ALIAS_MAP = {
SQRT_LINEAR: "sqrt_linear",
LINEAR_ADXL: "linear", # also linear, but has different linear_end (0.020)
LINEAR: "linear",
LCM_100: "linear", # distilled, 100 original timesteps
LCM_25: "linear", # distilled, 25 original timesteps
LCM: "linear", # distilled
LCM_SQRT_LINEAR: "sqrt_linear", # distilled, sqrt_linear
SQRT: "sqrt",
COSINE: "cosine",
SQUAREDCOS_CAP_V2: "squaredcos_cap_v2",
RAW_LINEAR: "linear",
RAW_SQRT_LINEAR: "sqrt_linear"
}
@classmethod
def is_lcm(cls, alias: str):
return alias in cls.ALIAS_LCM_LIST
@classmethod
def to_name(cls, alias: str):
return cls.ALIAS_MAP[alias]
@classmethod
def to_config(cls, alias: str) -> ModelSamplingConfig:
linear_start = None
linear_end = None
if alias == cls.LINEAR_ADXL:
# uses linear_end=0.020
linear_end = 0.020
return ModelSamplingConfig(cls.to_name(alias), linear_start=linear_start, linear_end=linear_end)
@classmethod
def _to_model_sampling(cls, alias: str, model_type: ModelType, config_override: ModelSamplingConfig=None, original_timesteps: int=None):
if alias == cls.USE_EXISTING:
return None
elif config_override != None:
return evolved_model_sampling(config_override, model_type=model_type, alias=alias, original_timesteps=original_timesteps)
elif alias == cls.AVG_LINEAR_SQRT_LINEAR:
ms_linear = evolved_model_sampling(cls.to_config(cls.LINEAR), model_type=model_type, alias=cls.LINEAR)
ms_sqrt_linear = evolved_model_sampling(cls.to_config(cls.SQRT_LINEAR), model_type=model_type, alias=cls.SQRT_LINEAR)
avg_sigmas = (ms_linear.sigmas + ms_sqrt_linear.sigmas) / 2
ms_linear.set_sigmas(avg_sigmas)
return ms_linear
elif alias == cls.LCM_AVG_LINEAR_SQRT_LINEAR:
ms_linear = evolved_model_sampling(cls.to_config(cls.LCM), model_type=model_type, alias=cls.LCM)
ms_sqrt_linear = evolved_model_sampling(cls.to_config(cls.LCM_SQRT_LINEAR), model_type=model_type, alias=cls.LCM_SQRT_LINEAR)
avg_sigmas = (ms_linear.sigmas + ms_sqrt_linear.sigmas) / 2
ms_linear.set_sigmas(avg_sigmas)
return ms_linear
# average out the sigmas
ms_obj = evolved_model_sampling(cls.to_config(alias), model_type=model_type, alias=alias, original_timesteps=original_timesteps)
return ms_obj
@classmethod
def to_model_sampling(cls, alias: str, model: ModelPatcher):
return cls._to_model_sampling(alias=alias, model_type=model.model.model_type)
@staticmethod
def get_alias_list_with_first_element(first_element: str):
new_list = BetaSchedules.ALIAS_LIST.copy()
element_index = new_list.index(first_element)
new_list[0], new_list[element_index] = new_list[element_index], new_list[0]
return new_list
class SigmaSchedule:
def __init__(self, model_sampling: comfy.model_sampling.ModelSamplingDiscrete, model_type: ModelType):
self.model_sampling = model_sampling
#self.config = config
self.model_type = model_type
self.original_timesteps = getattr(self.model_sampling, "original_timesteps", None)
def is_lcm(self):
return self.original_timesteps is not None
def total_sigmas(self):
return len(self.model_sampling.sigmas)
def clone(self) -> 'SigmaSchedule':
new_model_sampling = copy.deepcopy(self.model_sampling)
#new_config = copy.deepcopy(self.config)
return SigmaSchedule(model_sampling=new_model_sampling, model_type=self.model_type)
# def clone(self):
# pass
@staticmethod
def apply_zsnr(new_model_sampling: comfy.model_sampling.ModelSamplingDiscrete):
new_model_sampling.set_sigmas(comfy_extras.nodes_model_advanced.rescale_zero_terminal_snr_sigmas(new_model_sampling.sigmas))
# def get_lcmified(self, original_timesteps=50, zsnr=False) -> 'SigmaSchedule':
# new_model_sampling = evolved_model_sampling(model_config=self.config, model_type=self.model_type, alias=None, original_timesteps=original_timesteps)
# if zsnr:
# new_model_sampling.set_sigmas(comfy_extras.nodes_model_advanced.rescale_zero_terminal_snr_sigmas(new_model_sampling.sigmas))
# return SigmaSchedule(model_sampling=new_model_sampling, config=self.config, model_type=self.model_type, is_lcm=True)
class InterpolationMethod:
LINEAR = "linear"
EASE_IN = "ease_in"
EASE_OUT = "ease_out"
EASE_IN_OUT = "ease_in_out"
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
@classmethod
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
diff = num_to - num_from
if method == cls.LINEAR:
weights = torch.linspace(num_from, num_to, length)
elif method == cls.EASE_IN:
index = torch.linspace(0, 1, length)
weights = diff * np.power(index, 2) + num_from
elif method == cls.EASE_OUT:
index = torch.linspace(0, 1, length)
weights = diff * (1 - np.power(1 - index, 2)) + num_from
elif method == cls.EASE_IN_OUT:
index = torch.linspace(0, 1, length)
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
else:
raise ValueError(f"Unrecognized interpolation method '{method}'.")
if reverse:
weights = weights.flip(dims=(0,))
return weights
class Folders:
ANIMATEDIFF_MODELS = "animatediff_models"
MOTION_LORA = "animatediff_motion_lora"
VIDEO_FORMATS = "animatediff_video_formats"
def add_extension_to_folder_path(folder_name: str, extensions: Union[str, list[str]]):
if folder_name in folder_paths.folder_names_and_paths:
if isinstance(extensions, str):
folder_paths.folder_names_and_paths[folder_name][1].add(extensions)
elif isinstance(extensions, Iterable):
for ext in extensions:
folder_paths.folder_names_and_paths[folder_name][1].add(ext)
def try_mkdir(full_path: str):
try:
Path(full_path).mkdir()
except Exception:
pass
# register motion models folder(s)
folder_paths.add_model_folder_path(Folders.ANIMATEDIFF_MODELS, str(Path(__file__).parent.parent / "models"))
folder_paths.add_model_folder_path(Folders.ANIMATEDIFF_MODELS, str(Path(folder_paths.models_dir) / Folders.ANIMATEDIFF_MODELS))
add_extension_to_folder_path(Folders.ANIMATEDIFF_MODELS, folder_paths.supported_pt_extensions)
try_mkdir(str(Path(folder_paths.models_dir) / Folders.ANIMATEDIFF_MODELS))
# register motion LoRA folder(s)
folder_paths.add_model_folder_path(Folders.MOTION_LORA, str(Path(__file__).parent.parent / "motion_lora"))
folder_paths.add_model_folder_path(Folders.MOTION_LORA, str(Path(folder_paths.models_dir) / Folders.MOTION_LORA))
add_extension_to_folder_path(Folders.MOTION_LORA, folder_paths.supported_pt_extensions)
try_mkdir(str(Path(folder_paths.models_dir) / Folders.MOTION_LORA))
# register video_formats folder
folder_paths.add_model_folder_path(Folders.VIDEO_FORMATS, str(Path(__file__).parent.parent / "video_formats"))
add_extension_to_folder_path(Folders.VIDEO_FORMATS, ".json")
def get_available_motion_models():
return folder_paths.get_filename_list(Folders.ANIMATEDIFF_MODELS)
def get_motion_model_path(model_name: str):
return folder_paths.get_full_path(Folders.ANIMATEDIFF_MODELS, model_name)
def get_available_motion_loras():
return folder_paths.get_filename_list(Folders.MOTION_LORA)
def get_motion_lora_path(lora_name: str):
return folder_paths.get_full_path(Folders.MOTION_LORA, lora_name)
# modified from https://stackoverflow.com/questions/22058048/hashing-a-file-in-python
def calculate_file_hash(filename: str, hash_every_n: int = 50):
h = hashlib.sha256()
b = bytearray(1024*1024)
mv = memoryview(b)
with open(filename, 'rb', buffering=0) as f:
i = 0
# don't hash entire file, only portions of it
while n := f.readinto(mv):
if i%hash_every_n == 0:
h.update(mv[:n])
i += 1
return h.hexdigest()
def calculate_model_hash(model: ModelPatcher):
unet = model.model.diff
t = unet.input_blocks[1]
m = hashlib.sha256()
for buf in t.buffers():
m.update(buf.cpu().numpy().view(np.uint8))
return m.hexdigest()
class ModelTypeSD:
SD1_5 = "SD1.5"
SD2_1 = "SD2.1"
SDXL = "SDXL"
SDXL_REFINER = "SDXL_Refiner"
SVD = "SVD"
def get_sd_model_type(model: ModelPatcher) -> str:
if model is None:
return None
elif type(model.model) == BaseModel:
return ModelTypeSD.SD1_5
elif type(model.model) == SDXL:
return ModelTypeSD.SDXL
elif type(model.model) == SD21UNCLIP:
return ModelTypeSD.SD2_1
elif type(model.model) == SDXLRefiner:
return ModelTypeSD.SDXL_REFINER
elif type(model.model) == SVD_img2vid:
return ModelTypeSD.SVD
else:
return str(type(model.model).__name__)
def is_checkpoint_sd1_5(model: ModelPatcher):
return False if model is None else type(model.model) == BaseModel
def is_checkpoint_sdxl(model: ModelPatcher):
return False if model is None else type(model.model) == SDXL
def raise_if_not_checkpoint_sd1_5(model: ModelPatcher):
if not is_checkpoint_sd1_5(model):
raise ValueError(f"For AnimateDiff, SD Checkpoint (model) is expected to be SD1.5-based (BaseModel), but was: {type(model.model).__name__}")
# TODO: remove this filth when xformers bug gets fixed in future xformers version
def wrap_function_to_inject_xformers_bug_info(function_to_wrap: Callable) -> Callable:
if not xformers_enabled:
return function_to_wrap
else:
def wrapped_function(*args, **kwargs):
try:
return function_to_wrap(*args, **kwargs)
except RuntimeError as e:
if str(e).startswith("CUDA error: invalid configuration argument"):
raise RuntimeError(f"An xformers bug was encountered in AnimateDiff - this is unexpected, \
report this to Kosinkadink/ComfyUI-AnimateDiff-Evolved repo as an issue, \
and a workaround for now is to run ComfyUI with the --disable-xformers argument.")
raise
return wrapped_function
class Timer(object):
__slots__ = ("start_time", "end_time")
def __init__(self) -> None:
self.start_time = 0.0
self.end_time = 0.0
def start(self) -> None:
self.start_time = time()
def update(self) -> None:
self.start()
def stop(self) -> float:
self.end_time = time()
return self.get_time_diff()
def get_time_diff(self) -> float:
return self.end_time - self.start_time
def get_time_current(self) -> float:
return time() - self.start_time
# TODO: possibly add configuration file in future when needed?
# # Load config settings
# ADE_DIR = Path(__file__).parent.parent
# ADE_CONFIG_FILE = ADE_DIR / "ade_config.json"
# class ADE_Settings:
# USE_XFORMERS_IN_VERSATILE_ATTENTION = "use_xformers_in_VersatileAttention"
# # Create ADE config if not present
# ABS_CONFIG = {
# ADE_Settings.USE_XFORMERS_IN_VERSATILE_ATTENTION: True
# }
# if not ADE_CONFIG_FILE.exists():
# with ADE_CONFIG_FILE.open("w") as f:
# json.dumps(ABS_CONFIG, indent=4)
# # otherwise, load it and use values
# else:
# loaded_values: dict = None
# with ADE_CONFIG_FILE.open("r") as f:
# loaded_values = json.load(f)
# if loaded_values is not None:
# for key, value in loaded_values.items():
# if key in ABS_CONFIG:
# ABS_CONFIG[key] = value