diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..1311be316035fcd70850ce50b47b99ed2d138e3b Binary files /dev/null and b/.DS_Store differ diff --git a/CODEOWNERS b/CODEOWNERS new file mode 100644 index 0000000000000000000000000000000000000000..7c7c3e19eaaff42625016ced81fbc3fb74586761 --- /dev/null +++ b/CODEOWNERS @@ -0,0 +1 @@ +* @comfyanonymous diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..f288702d2fa16d3cdf0035b15a9fcbc552cd88e7 --- /dev/null +++ b/LICENSE @@ -0,0 +1,674 @@ + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/app/app_settings.py b/app/app_settings.py new file mode 100644 index 0000000000000000000000000000000000000000..8c6edc56c1d68cca481e7c78487454e278f6b326 --- /dev/null +++ b/app/app_settings.py @@ -0,0 +1,54 @@ +import os +import json +from aiohttp import web + + +class AppSettings(): + def __init__(self, user_manager): + self.user_manager = user_manager + + def get_settings(self, request): + file = self.user_manager.get_request_user_filepath( + request, "comfy.settings.json") + if os.path.isfile(file): + with open(file) as f: + return json.load(f) + else: + return {} + + def save_settings(self, request, settings): + file = self.user_manager.get_request_user_filepath( + request, "comfy.settings.json") + with open(file, "w") as f: + f.write(json.dumps(settings, indent=4)) + + def add_routes(self, routes): + @routes.get("/settings") + async def get_settings(request): + return web.json_response(self.get_settings(request)) + + @routes.get("/settings/{id}") + async def get_setting(request): + value = None + settings = self.get_settings(request) + setting_id = request.match_info.get("id", None) + if setting_id and setting_id in settings: + value = settings[setting_id] + return web.json_response(value) + + @routes.post("/settings") + async def post_settings(request): + settings = self.get_settings(request) + new_settings = await request.json() + self.save_settings(request, {**settings, **new_settings}) + return web.Response(status=200) + + @routes.post("/settings/{id}") + async def post_setting(request): + setting_id = request.match_info.get("id", None) + if not setting_id: + return web.Response(status=400) + settings = self.get_settings(request) + settings[setting_id] = await request.json() + self.save_settings(request, settings) + return web.Response(status=200) \ No newline at end of file diff --git a/app/user_manager.py b/app/user_manager.py new file mode 100644 index 0000000000000000000000000000000000000000..209094af15a9dd8b61d293bf2afc0205bf6a431d --- /dev/null +++ b/app/user_manager.py @@ -0,0 +1,140 @@ +import json +import os +import re +import uuid +from aiohttp import web +from comfy.cli_args import args +from folder_paths import user_directory +from .app_settings import AppSettings + +default_user = "default" +users_file = os.path.join(user_directory, "users.json") + + +class UserManager(): + def __init__(self): + global user_directory + + self.settings = AppSettings(self) + if not os.path.exists(user_directory): + os.mkdir(user_directory) + if not args.multi_user: + print("****** User settings have been changed to be stored on the server instead of browser storage. ******") + print("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******") + + if args.multi_user: + if os.path.isfile(users_file): + with open(users_file) as f: + self.users = json.load(f) + else: + self.users = {} + else: + self.users = {"default": "default"} + + def get_request_user_id(self, request): + user = "default" + if args.multi_user and "comfy-user" in request.headers: + user = request.headers["comfy-user"] + + if user not in self.users: + raise KeyError("Unknown user: " + user) + + return user + + def get_request_user_filepath(self, request, file, type="userdata", create_dir=True): + global user_directory + + if type == "userdata": + root_dir = user_directory + else: + raise KeyError("Unknown filepath type:" + type) + + user = self.get_request_user_id(request) + path = user_root = os.path.abspath(os.path.join(root_dir, user)) + + # prevent leaving /{type} + if os.path.commonpath((root_dir, user_root)) != root_dir: + return None + + parent = user_root + + if file is not None: + # prevent leaving /{type}/{user} + path = os.path.abspath(os.path.join(user_root, file)) + if os.path.commonpath((user_root, path)) != user_root: + return None + + if create_dir and not os.path.exists(parent): + os.mkdir(parent) + + return path + + def add_user(self, name): + name = name.strip() + if not name: + raise ValueError("username not provided") + user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name) + user_id = user_id + "_" + str(uuid.uuid4()) + + self.users[user_id] = name + + global users_file + with open(users_file, "w") as f: + json.dump(self.users, f) + + return user_id + + def add_routes(self, routes): + self.settings.add_routes(routes) + + @routes.get("/users") + async def get_users(request): + if args.multi_user: + return web.json_response({"storage": "server", "users": self.users}) + else: + user_dir = self.get_request_user_filepath(request, None, create_dir=False) + return web.json_response({ + "storage": "server", + "migrated": os.path.exists(user_dir) + }) + + @routes.post("/users") + async def post_users(request): + body = await request.json() + username = body["username"] + if username in self.users.values(): + return web.json_response({"error": "Duplicate username."}, status=400) + + user_id = self.add_user(username) + return web.json_response(user_id) + + @routes.get("/userdata/{file}") + async def getuserdata(request): + file = request.match_info.get("file", None) + if not file: + return web.Response(status=400) + + path = self.get_request_user_filepath(request, file) + if not path: + return web.Response(status=403) + + if not os.path.exists(path): + return web.Response(status=404) + + return web.FileResponse(path) + + @routes.post("/userdata/{file}") + async def post_userdata(request): + file = request.match_info.get("file", None) + if not file: + return web.Response(status=400) + + path = self.get_request_user_filepath(request, file) + if not path: + return web.Response(status=403) + + body = await request.read() + with open(path, "wb") as f: + f.write(body) + + return web.Response(status=200) diff --git a/comfy/.DS_Store b/comfy/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..682756978e73088248aad73755de3dc7537c0c7c Binary files /dev/null and b/comfy/.DS_Store differ diff --git a/comfy/checkpoint_pickle.py b/comfy/checkpoint_pickle.py new file mode 100644 index 0000000000000000000000000000000000000000..206551d3c1cf0d654c907534629a800196ba138b --- /dev/null +++ b/comfy/checkpoint_pickle.py @@ -0,0 +1,13 @@ +import pickle + +load = pickle.load + +class Empty: + pass + +class Unpickler(pickle.Unpickler): + def find_class(self, module, name): + #TODO: safe unpickle + if module.startswith("pytorch_lightning"): + return Empty + return super().find_class(module, name) diff --git a/comfy/cldm/cldm.py b/comfy/cldm/cldm.py new file mode 100644 index 0000000000000000000000000000000000000000..5eee5a51c956a396827599b19c4917244821143f --- /dev/null +++ b/comfy/cldm/cldm.py @@ -0,0 +1,312 @@ +#taken from: https://github.com/lllyasviel/ControlNet +#and modified + +import torch +import torch as th +import torch.nn as nn + +from ..ldm.modules.diffusionmodules.util import ( + zero_module, + timestep_embedding, +) + +from ..ldm.modules.attention import SpatialTransformer +from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample +from ..ldm.util import exists +import comfy.ops + +class ControlledUnetModel(UNetModel): + #implemented in the ldm unet + pass + +class ControlNet(nn.Module): + def __init__( + self, + image_size, + in_channels, + model_channels, + hint_channels, + num_res_blocks, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + num_classes=None, + use_checkpoint=False, + dtype=torch.float32, + num_heads=-1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + use_spatial_transformer=False, # custom transformer support + transformer_depth=1, # custom transformer support + context_dim=None, # custom transformer support + n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model + legacy=True, + disable_self_attentions=None, + num_attention_blocks=None, + disable_middle_self_attn=False, + use_linear_in_transformer=False, + adm_in_channels=None, + transformer_depth_middle=None, + transformer_depth_output=None, + device=None, + operations=comfy.ops.disable_weight_init, + **kwargs, + ): + super().__init__() + assert use_spatial_transformer == True, "use_spatial_transformer has to be true" + if use_spatial_transformer: + assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' + + if context_dim is not None: + assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' + # from omegaconf.listconfig import ListConfig + # if type(context_dim) == ListConfig: + # context_dim = list(context_dim) + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.dims = dims + self.image_size = image_size + self.in_channels = in_channels + self.model_channels = model_channels + + if isinstance(num_res_blocks, int): + self.num_res_blocks = len(channel_mult) * [num_res_blocks] + else: + if len(num_res_blocks) != len(channel_mult): + raise ValueError("provide num_res_blocks either as an int (globally constant) or " + "as a list/tuple (per-level) with the same length as channel_mult") + self.num_res_blocks = num_res_blocks + + if disable_self_attentions is not None: + # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not + assert len(disable_self_attentions) == len(channel_mult) + if num_attention_blocks is not None: + assert len(num_attention_blocks) == len(self.num_res_blocks) + assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) + + transformer_depth = transformer_depth[:] + + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_classes = num_classes + self.use_checkpoint = use_checkpoint + self.dtype = dtype + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.predict_codebook_ids = n_embed is not None + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), + ) + + if self.num_classes is not None: + if isinstance(self.num_classes, int): + self.label_emb = nn.Embedding(num_classes, time_embed_dim) + elif self.num_classes == "continuous": + print("setting up linear c_adm embedding layer") + self.label_emb = nn.Linear(1, time_embed_dim) + elif self.num_classes == "sequential": + assert adm_in_channels is not None + self.label_emb = nn.Sequential( + nn.Sequential( + operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), + ) + ) + else: + raise ValueError() + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) + ) + ] + ) + self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)]) + + self.input_hint_block = TimestepEmbedSequential( + operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device) + ) + + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for nr in range(self.num_res_blocks[level]): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations, + ) + ] + ch = mult * model_channels + num_transformers = transformer_depth.pop(0) + if num_transformers > 0: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: + layers.append( + SpatialTransformer( + ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, + disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + dtype=self.dtype, + device=device, + operations=operations + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) + ds *= 2 + self._feature_size += ch + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + mid_block = [ + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations + )] + if transformer_depth_middle >= 0: + mid_block += [SpatialTransformer( # always uses a self-attn + ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, + disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations + )] + self.middle_block = TimestepEmbedSequential(*mid_block) + self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device) + self._feature_size += ch + + def make_zero_conv(self, channels, operations=None, dtype=None, device=None): + return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device)) + + def forward(self, x, hint, timesteps, context, y=None, **kwargs): + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) + emb = self.time_embed(t_emb) + + guided_hint = self.input_hint_block(hint, emb, context) + + outs = [] + + hs = [] + if self.num_classes is not None: + assert y.shape[0] == x.shape[0] + emb = emb + self.label_emb(y) + + h = x + for module, zero_conv in zip(self.input_blocks, self.zero_convs): + if guided_hint is not None: + h = module(h, emb, context) + h += guided_hint + guided_hint = None + else: + h = module(h, emb, context) + outs.append(zero_conv(h, emb, context)) + + h = self.middle_block(h, emb, context) + outs.append(self.middle_block_out(h, emb, context)) + + return outs + diff --git a/comfy/cli_args.py b/comfy/cli_args.py new file mode 100644 index 0000000000000000000000000000000000000000..b4bbfbfab53c7ec5977e1a573c4a7fc7492c1360 --- /dev/null +++ b/comfy/cli_args.py @@ -0,0 +1,126 @@ +import argparse +import enum +import comfy.options + +class EnumAction(argparse.Action): + """ + Argparse action for handling Enums + """ + def __init__(self, **kwargs): + # Pop off the type value + enum_type = kwargs.pop("type", None) + + # Ensure an Enum subclass is provided + if enum_type is None: + raise ValueError("type must be assigned an Enum when using EnumAction") + if not issubclass(enum_type, enum.Enum): + raise TypeError("type must be an Enum when using EnumAction") + + # Generate choices from the Enum + choices = tuple(e.value for e in enum_type) + kwargs.setdefault("choices", choices) + kwargs.setdefault("metavar", f"[{','.join(list(choices))}]") + + super(EnumAction, self).__init__(**kwargs) + + self._enum = enum_type + + def __call__(self, parser, namespace, values, option_string=None): + # Convert value back into an Enum + value = self._enum(values) + setattr(namespace, self.dest, value) + + +parser = argparse.ArgumentParser() + +parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)") +parser.add_argument("--port", type=int, default=8188, help="Set the listen port.") +parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.") +parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.") + +parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.") +parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.") +parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).") +parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.") +parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.") +parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.") +parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.") +cm_group = parser.add_mutually_exclusive_group() +cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).") +cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.") + +parser.add_argument("--dont-upcast-attention", action="store_true", help="Disable upcasting of attention. Can boost speed but increase the chances of black images.") + +fp_group = parser.add_mutually_exclusive_group() +fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).") +fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.") + +fpunet_group = parser.add_mutually_exclusive_group() +fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.") +fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.") +fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.") +fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.") + +fpvae_group = parser.add_mutually_exclusive_group() +fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.") +fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.") +fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.") + +parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.") + +fpte_group = parser.add_mutually_exclusive_group() +fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).") +fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).") +fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.") +fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.") + + +parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.") + +parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.") + +class LatentPreviewMethod(enum.Enum): + NoPreviews = "none" + Auto = "auto" + Latent2RGB = "latent2rgb" + TAESD = "taesd" + +parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction) + +attn_group = parser.add_mutually_exclusive_group() +attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.") +attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.") +attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.") + +parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.") + +vram_group = parser.add_mutually_exclusive_group() +vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).") +vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.") +vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.") +vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.") +vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.") +vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).") + + +parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.") +parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.") + +parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.") +parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.") +parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).") + +parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.") + +parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.") + +if comfy.options.args_parsing: + args = parser.parse_args() +else: + args = parser.parse_args([]) + +if args.windows_standalone_build: + args.auto_launch = True + +if args.disable_auto_launch: + args.auto_launch = False diff --git a/comfy/clip_config_bigg.json b/comfy/clip_config_bigg.json new file mode 100644 index 0000000000000000000000000000000000000000..32d82ff39ba66ba0be15ec101993e1c46cc3f7ab --- /dev/null +++ b/comfy/clip_config_bigg.json @@ -0,0 +1,23 @@ +{ + "architectures": [ + "CLIPTextModel" + ], + "attention_dropout": 0.0, + "bos_token_id": 0, + "dropout": 0.0, + "eos_token_id": 2, + "hidden_act": "gelu", + "hidden_size": 1280, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 5120, + "layer_norm_eps": 1e-05, + "max_position_embeddings": 77, + "model_type": "clip_text_model", + "num_attention_heads": 20, + "num_hidden_layers": 32, + "pad_token_id": 1, + "projection_dim": 1280, + "torch_dtype": "float32", + "vocab_size": 49408 +} diff --git a/comfy/clip_model.py b/comfy/clip_model.py new file mode 100644 index 0000000000000000000000000000000000000000..09e7bbca15276d94efb04ebeac594fde8725e6d2 --- /dev/null +++ b/comfy/clip_model.py @@ -0,0 +1,188 @@ +import torch +from comfy.ldm.modules.attention import optimized_attention_for_device + +class CLIPAttention(torch.nn.Module): + def __init__(self, embed_dim, heads, dtype, device, operations): + super().__init__() + + self.heads = heads + self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) + self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) + self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) + + self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) + + def forward(self, x, mask=None, optimized_attention=None): + q = self.q_proj(x) + k = self.k_proj(x) + v = self.v_proj(x) + + out = optimized_attention(q, k, v, self.heads, mask) + return self.out_proj(out) + +ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a), + "gelu": torch.nn.functional.gelu, +} + +class CLIPMLP(torch.nn.Module): + def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations): + super().__init__() + self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device) + self.activation = ACTIVATIONS[activation] + self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device) + + def forward(self, x): + x = self.fc1(x) + x = self.activation(x) + x = self.fc2(x) + return x + +class CLIPLayer(torch.nn.Module): + def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations): + super().__init__() + self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device) + self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations) + self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device) + self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations) + + def forward(self, x, mask=None, optimized_attention=None): + x += self.self_attn(self.layer_norm1(x), mask, optimized_attention) + x += self.mlp(self.layer_norm2(x)) + return x + + +class CLIPEncoder(torch.nn.Module): + def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations): + super().__init__() + self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)]) + + def forward(self, x, mask=None, intermediate_output=None): + optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True) + + if intermediate_output is not None: + if intermediate_output < 0: + intermediate_output = len(self.layers) + intermediate_output + + intermediate = None + for i, l in enumerate(self.layers): + x = l(x, mask, optimized_attention) + if i == intermediate_output: + intermediate = x.clone() + return x, intermediate + +class CLIPEmbeddings(torch.nn.Module): + def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None): + super().__init__() + self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device) + self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) + + def forward(self, input_tokens): + return self.token_embedding(input_tokens) + self.position_embedding.weight + + +class CLIPTextModel_(torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + num_layers = config_dict["num_hidden_layers"] + embed_dim = config_dict["hidden_size"] + heads = config_dict["num_attention_heads"] + intermediate_size = config_dict["intermediate_size"] + intermediate_activation = config_dict["hidden_act"] + + super().__init__() + self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device) + self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) + self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device) + + def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): + x = self.embeddings(input_tokens) + mask = None + if attention_mask is not None: + mask = 1.0 - attention_mask.to(x.dtype).unsqueeze(1).unsqueeze(1).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) + mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) + + causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1) + if mask is not None: + mask += causal_mask + else: + mask = causal_mask + + x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output) + x = self.final_layer_norm(x) + if i is not None and final_layer_norm_intermediate: + i = self.final_layer_norm(i) + + pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),] + return x, i, pooled_output + +class CLIPTextModel(torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + self.num_layers = config_dict["num_hidden_layers"] + self.text_model = CLIPTextModel_(config_dict, dtype, device, operations) + self.dtype = dtype + + def get_input_embeddings(self): + return self.text_model.embeddings.token_embedding + + def set_input_embeddings(self, embeddings): + self.text_model.embeddings.token_embedding = embeddings + + def forward(self, *args, **kwargs): + return self.text_model(*args, **kwargs) + +class CLIPVisionEmbeddings(torch.nn.Module): + def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None): + super().__init__() + self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device)) + + self.patch_embedding = operations.Conv2d( + in_channels=num_channels, + out_channels=embed_dim, + kernel_size=patch_size, + stride=patch_size, + bias=False, + dtype=dtype, + device=device + ) + + num_patches = (image_size // patch_size) ** 2 + num_positions = num_patches + 1 + self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) + + def forward(self, pixel_values): + embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2) + return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device) + + +class CLIPVision(torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + num_layers = config_dict["num_hidden_layers"] + embed_dim = config_dict["hidden_size"] + heads = config_dict["num_attention_heads"] + intermediate_size = config_dict["intermediate_size"] + intermediate_activation = config_dict["hidden_act"] + + self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations) + self.pre_layrnorm = operations.LayerNorm(embed_dim) + self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) + self.post_layernorm = operations.LayerNorm(embed_dim) + + def forward(self, pixel_values, attention_mask=None, intermediate_output=None): + x = self.embeddings(pixel_values) + x = self.pre_layrnorm(x) + #TODO: attention_mask? + x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output) + pooled_output = self.post_layernorm(x[:, 0, :]) + return x, i, pooled_output + +class CLIPVisionModelProjection(torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + self.vision_model = CLIPVision(config_dict, dtype, device, operations) + self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False) + + def forward(self, *args, **kwargs): + x = self.vision_model(*args, **kwargs) + out = self.visual_projection(x[2]) + return (x[0], x[1], out) diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py new file mode 100644 index 0000000000000000000000000000000000000000..8c77ee7a922573ca3ec85694dbd1b9f323730fbe --- /dev/null +++ b/comfy/clip_vision.py @@ -0,0 +1,116 @@ +from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace +import os +import torch +import json + +import comfy.ops +import comfy.model_patcher +import comfy.model_management +import comfy.utils +import comfy.clip_model + +class Output: + def __getitem__(self, key): + return getattr(self, key) + def __setitem__(self, key, item): + setattr(self, key, item) + +def clip_preprocess(image, size=224): + mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype) + std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype) + image = image.movedim(-1, 1) + if not (image.shape[2] == size and image.shape[3] == size): + scale = (size / min(image.shape[2], image.shape[3])) + image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True) + h = (image.shape[2] - size)//2 + w = (image.shape[3] - size)//2 + image = image[:,:,h:h+size,w:w+size] + image = torch.clip((255. * image), 0, 255).round() / 255.0 + return (image - mean.view([3,1,1])) / std.view([3,1,1]) + +class ClipVisionModel(): + def __init__(self, json_config): + with open(json_config) as f: + config = json.load(f) + + self.load_device = comfy.model_management.text_encoder_device() + offload_device = comfy.model_management.text_encoder_offload_device() + self.dtype = comfy.model_management.text_encoder_dtype(self.load_device) + self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast) + self.model.eval() + + self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) + + def load_sd(self, sd): + return self.model.load_state_dict(sd, strict=False) + + def get_sd(self): + return self.model.state_dict() + + def encode_image(self, image): + comfy.model_management.load_model_gpu(self.patcher) + pixel_values = clip_preprocess(image.to(self.load_device)).float() + out = self.model(pixel_values=pixel_values, intermediate_output=-2) + + outputs = Output() + outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device()) + outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device()) + outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device()) + return outputs + +def convert_to_transformers(sd, prefix): + sd_k = sd.keys() + if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k: + keys_to_replace = { + "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding", + "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight", + "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight", + "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias", + "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight", + "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias", + "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight", + } + + for x in keys_to_replace: + if x in sd_k: + sd[keys_to_replace[x]] = sd.pop(x) + + if "{}proj".format(prefix) in sd_k: + sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1) + + sd = transformers_convert(sd, prefix, "vision_model.", 48) + else: + replace_prefix = {prefix: ""} + sd = state_dict_prefix_replace(sd, replace_prefix) + return sd + +def load_clipvision_from_sd(sd, prefix="", convert_keys=False): + if convert_keys: + sd = convert_to_transformers(sd, prefix) + if "vision_model.encoder.layers.47.layer_norm1.weight" in sd: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json") + elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") + elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") + else: + return None + + clip = ClipVisionModel(json_config) + m, u = clip.load_sd(sd) + if len(m) > 0: + print("missing clip vision:", m) + u = set(u) + keys = list(sd.keys()) + for k in keys: + if k not in u: + t = sd.pop(k) + del t + return clip + +def load(ckpt_path): + sd = load_torch_file(ckpt_path) + if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd: + return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True) + else: + return load_clipvision_from_sd(sd) diff --git a/comfy/clip_vision_config_g.json b/comfy/clip_vision_config_g.json new file mode 100644 index 0000000000000000000000000000000000000000..708e7e21ac3513a719d6a49e88e756f5ef7e2c8d --- /dev/null +++ b/comfy/clip_vision_config_g.json @@ -0,0 +1,18 @@ +{ + "attention_dropout": 0.0, + "dropout": 0.0, + "hidden_act": "gelu", + "hidden_size": 1664, + "image_size": 224, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 8192, + "layer_norm_eps": 1e-05, + "model_type": "clip_vision_model", + "num_attention_heads": 16, + "num_channels": 3, + "num_hidden_layers": 48, + "patch_size": 14, + "projection_dim": 1280, + "torch_dtype": "float32" +} diff --git a/comfy/clip_vision_config_h.json b/comfy/clip_vision_config_h.json new file mode 100644 index 0000000000000000000000000000000000000000..bb71be419a4be0ad5c8c157850de032a65593cb9 --- /dev/null +++ b/comfy/clip_vision_config_h.json @@ -0,0 +1,18 @@ +{ + "attention_dropout": 0.0, + "dropout": 0.0, + "hidden_act": "gelu", + "hidden_size": 1280, + "image_size": 224, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 5120, + "layer_norm_eps": 1e-05, + "model_type": "clip_vision_model", + "num_attention_heads": 16, + "num_channels": 3, + "num_hidden_layers": 32, + "patch_size": 14, + "projection_dim": 1024, + "torch_dtype": "float32" +} diff --git a/comfy/clip_vision_config_vitl.json b/comfy/clip_vision_config_vitl.json new file mode 100644 index 0000000000000000000000000000000000000000..c59b8ed5a4c1f41fbcc9e6811d2c7dfe44273de7 --- /dev/null +++ b/comfy/clip_vision_config_vitl.json @@ -0,0 +1,18 @@ +{ + "attention_dropout": 0.0, + "dropout": 0.0, + "hidden_act": "quick_gelu", + "hidden_size": 1024, + "image_size": 224, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 4096, + "layer_norm_eps": 1e-05, + "model_type": "clip_vision_model", + "num_attention_heads": 16, + "num_channels": 3, + "num_hidden_layers": 24, + "patch_size": 14, + "projection_dim": 768, + "torch_dtype": "float32" +} diff --git a/comfy/conds.py b/comfy/conds.py new file mode 100644 index 0000000000000000000000000000000000000000..23fa48872d664c4342c48fb942a4e6db1c5c01f9 --- /dev/null +++ b/comfy/conds.py @@ -0,0 +1,78 @@ +import torch +import math +import comfy.utils + + +def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9) + return abs(a*b) // math.gcd(a, b) + +class CONDRegular: + def __init__(self, cond): + self.cond = cond + + def _copy_with(self, cond): + return self.__class__(cond) + + def process_cond(self, batch_size, device, **kwargs): + return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device)) + + def can_concat(self, other): + if self.cond.shape != other.cond.shape: + return False + return True + + def concat(self, others): + conds = [self.cond] + for x in others: + conds.append(x.cond) + return torch.cat(conds) + +class CONDNoiseShape(CONDRegular): + def process_cond(self, batch_size, device, area, **kwargs): + data = self.cond[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] + return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device)) + + +class CONDCrossAttn(CONDRegular): + def can_concat(self, other): + s1 = self.cond.shape + s2 = other.cond.shape + if s1 != s2: + if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen + return False + + mult_min = lcm(s1[1], s2[1]) + diff = mult_min // min(s1[1], s2[1]) + if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much + return False + return True + + def concat(self, others): + conds = [self.cond] + crossattn_max_len = self.cond.shape[1] + for x in others: + c = x.cond + crossattn_max_len = lcm(crossattn_max_len, c.shape[1]) + conds.append(c) + + out = [] + for c in conds: + if c.shape[1] < crossattn_max_len: + c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result + out.append(c) + return torch.cat(out) + +class CONDConstant(CONDRegular): + def __init__(self, cond): + self.cond = cond + + def process_cond(self, batch_size, device, **kwargs): + return self._copy_with(self.cond) + + def can_concat(self, other): + if self.cond != other.cond: + return False + return True + + def concat(self, others): + return self.cond diff --git a/comfy/controlnet.py b/comfy/controlnet.py new file mode 100644 index 0000000000000000000000000000000000000000..82170431ef2bffe7b5740c197f5ae924929ffd9e --- /dev/null +++ b/comfy/controlnet.py @@ -0,0 +1,516 @@ +import torch +import math +import os +import comfy.utils +import comfy.model_management +import comfy.model_detection +import comfy.model_patcher +import comfy.ops + +import comfy.cldm.cldm +import comfy.t2i_adapter.adapter + + +def broadcast_image_to(tensor, target_batch_size, batched_number): + current_batch_size = tensor.shape[0] + #print(current_batch_size, target_batch_size) + if current_batch_size == 1: + return tensor + + per_batch = target_batch_size // batched_number + tensor = tensor[:per_batch] + + if per_batch > tensor.shape[0]: + tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0) + + current_batch_size = tensor.shape[0] + if current_batch_size == target_batch_size: + return tensor + else: + return torch.cat([tensor] * batched_number, dim=0) + +class ControlBase: + def __init__(self, device=None): + self.cond_hint_original = None + self.cond_hint = None + self.strength = 1.0 + self.timestep_percent_range = (0.0, 1.0) + self.global_average_pooling = False + self.timestep_range = None + + if device is None: + device = comfy.model_management.get_torch_device() + self.device = device + self.previous_controlnet = None + + def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)): + self.cond_hint_original = cond_hint + self.strength = strength + self.timestep_percent_range = timestep_percent_range + return self + + def pre_run(self, model, percent_to_timestep_function): + self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1])) + if self.previous_controlnet is not None: + self.previous_controlnet.pre_run(model, percent_to_timestep_function) + + def set_previous_controlnet(self, controlnet): + self.previous_controlnet = controlnet + return self + + def cleanup(self): + if self.previous_controlnet is not None: + self.previous_controlnet.cleanup() + if self.cond_hint is not None: + del self.cond_hint + self.cond_hint = None + self.timestep_range = None + + def get_models(self): + out = [] + if self.previous_controlnet is not None: + out += self.previous_controlnet.get_models() + return out + + def copy_to(self, c): + c.cond_hint_original = self.cond_hint_original + c.strength = self.strength + c.timestep_percent_range = self.timestep_percent_range + c.global_average_pooling = self.global_average_pooling + + def inference_memory_requirements(self, dtype): + if self.previous_controlnet is not None: + return self.previous_controlnet.inference_memory_requirements(dtype) + return 0 + + def control_merge(self, control_input, control_output, control_prev, output_dtype): + out = {'input':[], 'middle':[], 'output': []} + + if control_input is not None: + for i in range(len(control_input)): + key = 'input' + x = control_input[i] + if x is not None: + x *= self.strength + if x.dtype != output_dtype: + x = x.to(output_dtype) + out[key].insert(0, x) + + if control_output is not None: + for i in range(len(control_output)): + if i == (len(control_output) - 1): + key = 'middle' + index = 0 + else: + key = 'output' + index = i + x = control_output[i] + if x is not None: + if self.global_average_pooling: + x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3]) + + x *= self.strength + if x.dtype != output_dtype: + x = x.to(output_dtype) + + out[key].append(x) + if control_prev is not None: + for x in ['input', 'middle', 'output']: + o = out[x] + for i in range(len(control_prev[x])): + prev_val = control_prev[x][i] + if i >= len(o): + o.append(prev_val) + elif prev_val is not None: + if o[i] is None: + o[i] = prev_val + else: + if o[i].shape[0] < prev_val.shape[0]: + o[i] = prev_val + o[i] + else: + o[i] += prev_val + return out + +class ControlNet(ControlBase): + def __init__(self, control_model, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None): + super().__init__(device) + self.control_model = control_model + self.load_device = load_device + self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device()) + self.global_average_pooling = global_average_pooling + self.model_sampling_current = None + self.manual_cast_dtype = manual_cast_dtype + + def get_control(self, x_noisy, t, cond, batched_number): + control_prev = None + if self.previous_controlnet is not None: + control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) + + if self.timestep_range is not None: + if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: + if control_prev is not None: + return control_prev + else: + return None + + dtype = self.control_model.dtype + if self.manual_cast_dtype is not None: + dtype = self.manual_cast_dtype + + output_dtype = x_noisy.dtype + if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: + if self.cond_hint is not None: + del self.cond_hint + self.cond_hint = None + self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(self.device) + if x_noisy.shape[0] != self.cond_hint.shape[0]: + self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) + + context = cond['c_crossattn'] + y = cond.get('y', None) + if y is not None: + y = y.to(dtype) + timestep = self.model_sampling_current.timestep(t) + x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) + + control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y) + return self.control_merge(None, control, control_prev, output_dtype) + + def copy(self): + c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype) + self.copy_to(c) + return c + + def get_models(self): + out = super().get_models() + out.append(self.control_model_wrapped) + return out + + def pre_run(self, model, percent_to_timestep_function): + super().pre_run(model, percent_to_timestep_function) + self.model_sampling_current = model.model_sampling + + def cleanup(self): + self.model_sampling_current = None + super().cleanup() + +class ControlLoraOps: + class Linear(torch.nn.Module): + def __init__(self, in_features: int, out_features: int, bias: bool = True, + device=None, dtype=None) -> None: + factory_kwargs = {'device': device, 'dtype': dtype} + super().__init__() + self.in_features = in_features + self.out_features = out_features + self.weight = None + self.up = None + self.down = None + self.bias = None + + def forward(self, input): + weight, bias = comfy.ops.cast_bias_weight(self, input) + if self.up is not None: + return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias) + else: + return torch.nn.functional.linear(input, weight, bias) + + class Conv2d(torch.nn.Module): + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + padding=0, + dilation=1, + groups=1, + bias=True, + padding_mode='zeros', + device=None, + dtype=None + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.stride = stride + self.padding = padding + self.dilation = dilation + self.transposed = False + self.output_padding = 0 + self.groups = groups + self.padding_mode = padding_mode + + self.weight = None + self.bias = None + self.up = None + self.down = None + + + def forward(self, input): + weight, bias = comfy.ops.cast_bias_weight(self, input) + if self.up is not None: + return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups) + else: + return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups) + + +class ControlLora(ControlNet): + def __init__(self, control_weights, global_average_pooling=False, device=None): + ControlBase.__init__(self, device) + self.control_weights = control_weights + self.global_average_pooling = global_average_pooling + + def pre_run(self, model, percent_to_timestep_function): + super().pre_run(model, percent_to_timestep_function) + controlnet_config = model.model_config.unet_config.copy() + controlnet_config.pop("out_channels") + controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1] + self.manual_cast_dtype = model.manual_cast_dtype + dtype = model.get_dtype() + if self.manual_cast_dtype is None: + class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init): + pass + else: + class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast): + pass + dtype = self.manual_cast_dtype + + controlnet_config["operations"] = control_lora_ops + controlnet_config["dtype"] = dtype + self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config) + self.control_model.to(comfy.model_management.get_torch_device()) + diffusion_model = model.diffusion_model + sd = diffusion_model.state_dict() + cm = self.control_model.state_dict() + + for k in sd: + weight = sd[k] + try: + comfy.utils.set_attr(self.control_model, k, weight) + except: + pass + + for k in self.control_weights: + if k not in {"lora_controlnet"}: + comfy.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device())) + + def copy(self): + c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling) + self.copy_to(c) + return c + + def cleanup(self): + del self.control_model + self.control_model = None + super().cleanup() + + def get_models(self): + out = ControlBase.get_models(self) + return out + + def inference_memory_requirements(self, dtype): + return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype) + +def load_controlnet(ckpt_path, model=None): + controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) + if "lora_controlnet" in controlnet_data: + return ControlLora(controlnet_data) + + controlnet_config = None + if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format + unet_dtype = comfy.model_management.unet_dtype() + controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype) + diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config) + diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" + diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" + + count = 0 + loop = True + while loop: + suffix = [".weight", ".bias"] + for s in suffix: + k_in = "controlnet_down_blocks.{}{}".format(count, s) + k_out = "zero_convs.{}.0{}".format(count, s) + if k_in not in controlnet_data: + loop = False + break + diffusers_keys[k_in] = k_out + count += 1 + + count = 0 + loop = True + while loop: + suffix = [".weight", ".bias"] + for s in suffix: + if count == 0: + k_in = "controlnet_cond_embedding.conv_in{}".format(s) + else: + k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) + k_out = "input_hint_block.{}{}".format(count * 2, s) + if k_in not in controlnet_data: + k_in = "controlnet_cond_embedding.conv_out{}".format(s) + loop = False + diffusers_keys[k_in] = k_out + count += 1 + + new_sd = {} + for k in diffusers_keys: + if k in controlnet_data: + new_sd[diffusers_keys[k]] = controlnet_data.pop(k) + + leftover_keys = controlnet_data.keys() + if len(leftover_keys) > 0: + print("leftover keys:", leftover_keys) + controlnet_data = new_sd + + pth_key = 'control_model.zero_convs.0.0.weight' + pth = False + key = 'zero_convs.0.0.weight' + if pth_key in controlnet_data: + pth = True + key = pth_key + prefix = "control_model." + elif key in controlnet_data: + prefix = "" + else: + net = load_t2i_adapter(controlnet_data) + if net is None: + print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path) + return net + + if controlnet_config is None: + unet_dtype = comfy.model_management.unet_dtype() + controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config + load_device = comfy.model_management.get_torch_device() + manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device) + if manual_cast_dtype is not None: + controlnet_config["operations"] = comfy.ops.manual_cast + controlnet_config.pop("out_channels") + controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] + control_model = comfy.cldm.cldm.ControlNet(**controlnet_config) + + if pth: + if 'difference' in controlnet_data: + if model is not None: + comfy.model_management.load_models_gpu([model]) + model_sd = model.model_state_dict() + for x in controlnet_data: + c_m = "control_model." + if x.startswith(c_m): + sd_key = "diffusion_model.{}".format(x[len(c_m):]) + if sd_key in model_sd: + cd = controlnet_data[x] + cd += model_sd[sd_key].type(cd.dtype).to(cd.device) + else: + print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") + + class WeightsLoader(torch.nn.Module): + pass + w = WeightsLoader() + w.control_model = control_model + missing, unexpected = w.load_state_dict(controlnet_data, strict=False) + else: + missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) + print(missing, unexpected) + + global_average_pooling = False + filename = os.path.splitext(ckpt_path)[0] + if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling + global_average_pooling = True + + control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) + return control + +class T2IAdapter(ControlBase): + def __init__(self, t2i_model, channels_in, device=None): + super().__init__(device) + self.t2i_model = t2i_model + self.channels_in = channels_in + self.control_input = None + + def scale_image_to(self, width, height): + unshuffle_amount = self.t2i_model.unshuffle_amount + width = math.ceil(width / unshuffle_amount) * unshuffle_amount + height = math.ceil(height / unshuffle_amount) * unshuffle_amount + return width, height + + def get_control(self, x_noisy, t, cond, batched_number): + control_prev = None + if self.previous_controlnet is not None: + control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) + + if self.timestep_range is not None: + if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: + if control_prev is not None: + return control_prev + else: + return None + + if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: + if self.cond_hint is not None: + del self.cond_hint + self.control_input = None + self.cond_hint = None + width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8) + self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device) + if self.channels_in == 1 and self.cond_hint.shape[1] > 1: + self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True) + if x_noisy.shape[0] != self.cond_hint.shape[0]: + self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) + if self.control_input is None: + self.t2i_model.to(x_noisy.dtype) + self.t2i_model.to(self.device) + self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype)) + self.t2i_model.cpu() + + control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input)) + mid = None + if self.t2i_model.xl == True: + mid = control_input[-1:] + control_input = control_input[:-1] + return self.control_merge(control_input, mid, control_prev, x_noisy.dtype) + + def copy(self): + c = T2IAdapter(self.t2i_model, self.channels_in) + self.copy_to(c) + return c + +def load_t2i_adapter(t2i_data): + if 'adapter' in t2i_data: + t2i_data = t2i_data['adapter'] + if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format + prefix_replace = {} + for i in range(4): + for j in range(2): + prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j) + prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2) + prefix_replace["adapter."] = "" + t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace) + keys = t2i_data.keys() + + if "body.0.in_conv.weight" in keys: + cin = t2i_data['body.0.in_conv.weight'].shape[1] + model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4) + elif 'conv_in.weight' in keys: + cin = t2i_data['conv_in.weight'].shape[1] + channel = t2i_data['conv_in.weight'].shape[0] + ksize = t2i_data['body.0.block2.weight'].shape[2] + use_conv = False + down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys)) + if len(down_opts) > 0: + use_conv = True + xl = False + if cin == 256 or cin == 768: + xl = True + model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl) + else: + return None + missing, unexpected = model_ad.load_state_dict(t2i_data) + if len(missing) > 0: + print("t2i missing", missing) + + if len(unexpected) > 0: + print("t2i unexpected", unexpected) + + return T2IAdapter(model_ad, model_ad.input_channels) diff --git a/comfy/diffusers_convert.py b/comfy/diffusers_convert.py new file mode 100644 index 0000000000000000000000000000000000000000..a9eb9302f14f4fa2710c9652e0b58c6453c0cf7b --- /dev/null +++ b/comfy/diffusers_convert.py @@ -0,0 +1,261 @@ +import re +import torch + +# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py + +# =================# +# UNet Conversion # +# =================# + +unet_conversion_map = [ + # (stable-diffusion, HF Diffusers) + ("time_embed.0.weight", "time_embedding.linear_1.weight"), + ("time_embed.0.bias", "time_embedding.linear_1.bias"), + ("time_embed.2.weight", "time_embedding.linear_2.weight"), + ("time_embed.2.bias", "time_embedding.linear_2.bias"), + ("input_blocks.0.0.weight", "conv_in.weight"), + ("input_blocks.0.0.bias", "conv_in.bias"), + ("out.0.weight", "conv_norm_out.weight"), + ("out.0.bias", "conv_norm_out.bias"), + ("out.2.weight", "conv_out.weight"), + ("out.2.bias", "conv_out.bias"), +] + +unet_conversion_map_resnet = [ + # (stable-diffusion, HF Diffusers) + ("in_layers.0", "norm1"), + ("in_layers.2", "conv1"), + ("out_layers.0", "norm2"), + ("out_layers.3", "conv2"), + ("emb_layers.1", "time_emb_proj"), + ("skip_connection", "conv_shortcut"), +] + +unet_conversion_map_layer = [] +# hardcoded number of downblocks and resnets/attentions... +# would need smarter logic for other networks. +for i in range(4): + # loop over downblocks/upblocks + + for j in range(2): + # loop over resnets/attentions for downblocks + hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." + sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0." + unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) + + if i < 3: + # no attention layers in down_blocks.3 + hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." + sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1." + unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) + + for j in range(3): + # loop over resnets/attentions for upblocks + hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." + sd_up_res_prefix = f"output_blocks.{3 * i + j}.0." + unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) + + if i > 0: + # no attention layers in up_blocks.0 + hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." + sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1." + unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) + + if i < 3: + # no downsample in down_blocks.3 + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." + sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op." + unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) + + # no upsample in up_blocks.3 + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." + sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}." + unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) + +hf_mid_atn_prefix = "mid_block.attentions.0." +sd_mid_atn_prefix = "middle_block.1." +unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) + +for j in range(2): + hf_mid_res_prefix = f"mid_block.resnets.{j}." + sd_mid_res_prefix = f"middle_block.{2 * j}." + unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) + + +def convert_unet_state_dict(unet_state_dict): + # buyer beware: this is a *brittle* function, + # and correct output requires that all of these pieces interact in + # the exact order in which I have arranged them. + mapping = {k: k for k in unet_state_dict.keys()} + for sd_name, hf_name in unet_conversion_map: + mapping[hf_name] = sd_name + for k, v in mapping.items(): + if "resnets" in k: + for sd_part, hf_part in unet_conversion_map_resnet: + v = v.replace(hf_part, sd_part) + mapping[k] = v + for k, v in mapping.items(): + for sd_part, hf_part in unet_conversion_map_layer: + v = v.replace(hf_part, sd_part) + mapping[k] = v + new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} + return new_state_dict + + +# ================# +# VAE Conversion # +# ================# + +vae_conversion_map = [ + # (stable-diffusion, HF Diffusers) + ("nin_shortcut", "conv_shortcut"), + ("norm_out", "conv_norm_out"), + ("mid.attn_1.", "mid_block.attentions.0."), +] + +for i in range(4): + # down_blocks have two resnets + for j in range(2): + hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." + sd_down_prefix = f"encoder.down.{i}.block.{j}." + vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) + + if i < 3: + hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." + sd_downsample_prefix = f"down.{i}.downsample." + vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) + + hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." + sd_upsample_prefix = f"up.{3 - i}.upsample." + vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) + + # up_blocks have three resnets + # also, up blocks in hf are numbered in reverse from sd + for j in range(3): + hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." + sd_up_prefix = f"decoder.up.{3 - i}.block.{j}." + vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) + +# this part accounts for mid blocks in both the encoder and the decoder +for i in range(2): + hf_mid_res_prefix = f"mid_block.resnets.{i}." + sd_mid_res_prefix = f"mid.block_{i + 1}." + vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) + +vae_conversion_map_attn = [ + # (stable-diffusion, HF Diffusers) + ("norm.", "group_norm."), + ("q.", "query."), + ("k.", "key."), + ("v.", "value."), + ("q.", "to_q."), + ("k.", "to_k."), + ("v.", "to_v."), + ("proj_out.", "to_out.0."), + ("proj_out.", "proj_attn."), +] + + +def reshape_weight_for_sd(w): + # convert HF linear weights to SD conv2d weights + return w.reshape(*w.shape, 1, 1) + + +def convert_vae_state_dict(vae_state_dict): + mapping = {k: k for k in vae_state_dict.keys()} + for k, v in mapping.items(): + for sd_part, hf_part in vae_conversion_map: + v = v.replace(hf_part, sd_part) + mapping[k] = v + for k, v in mapping.items(): + if "attentions" in k: + for sd_part, hf_part in vae_conversion_map_attn: + v = v.replace(hf_part, sd_part) + mapping[k] = v + new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} + weights_to_convert = ["q", "k", "v", "proj_out"] + for k, v in new_state_dict.items(): + for weight_name in weights_to_convert: + if f"mid.attn_1.{weight_name}.weight" in k: + print(f"Reshaping {k} for SD format") + new_state_dict[k] = reshape_weight_for_sd(v) + return new_state_dict + + +# =========================# +# Text Encoder Conversion # +# =========================# + + +textenc_conversion_lst = [ + # (stable-diffusion, HF Diffusers) + ("resblocks.", "text_model.encoder.layers."), + ("ln_1", "layer_norm1"), + ("ln_2", "layer_norm2"), + (".c_fc.", ".fc1."), + (".c_proj.", ".fc2."), + (".attn", ".self_attn"), + ("ln_final.", "transformer.text_model.final_layer_norm."), + ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), + ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), +] +protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} +textenc_pattern = re.compile("|".join(protected.keys())) + +# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp +code2idx = {"q": 0, "k": 1, "v": 2} + + +def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""): + new_state_dict = {} + capture_qkv_weight = {} + capture_qkv_bias = {} + for k, v in text_enc_dict.items(): + if not k.startswith(prefix): + continue + if ( + k.endswith(".self_attn.q_proj.weight") + or k.endswith(".self_attn.k_proj.weight") + or k.endswith(".self_attn.v_proj.weight") + ): + k_pre = k[: -len(".q_proj.weight")] + k_code = k[-len("q_proj.weight")] + if k_pre not in capture_qkv_weight: + capture_qkv_weight[k_pre] = [None, None, None] + capture_qkv_weight[k_pre][code2idx[k_code]] = v + continue + + if ( + k.endswith(".self_attn.q_proj.bias") + or k.endswith(".self_attn.k_proj.bias") + or k.endswith(".self_attn.v_proj.bias") + ): + k_pre = k[: -len(".q_proj.bias")] + k_code = k[-len("q_proj.bias")] + if k_pre not in capture_qkv_bias: + capture_qkv_bias[k_pre] = [None, None, None] + capture_qkv_bias[k_pre][code2idx[k_code]] = v + continue + + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k) + new_state_dict[relabelled_key] = v + + for k_pre, tensors in capture_qkv_weight.items(): + if None in tensors: + raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) + new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors) + + for k_pre, tensors in capture_qkv_bias.items(): + if None in tensors: + raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") + relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) + new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors) + + return new_state_dict + + +def convert_text_enc_state_dict(text_enc_dict): + return text_enc_dict + + diff --git a/comfy/diffusers_load.py b/comfy/diffusers_load.py new file mode 100644 index 0000000000000000000000000000000000000000..98b888a19399d5ea847d90e443737c89c9787cce --- /dev/null +++ b/comfy/diffusers_load.py @@ -0,0 +1,36 @@ +import os + +import comfy.sd + +def first_file(path, filenames): + for f in filenames: + p = os.path.join(path, f) + if os.path.exists(p): + return p + return None + +def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None): + diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"] + unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names) + vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names) + + text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"] + text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names) + text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names) + + text_encoder_paths = [text_encoder1_path] + if text_encoder2_path is not None: + text_encoder_paths.append(text_encoder2_path) + + unet = comfy.sd.load_unet(unet_path) + + clip = None + if output_clip: + clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory) + + vae = None + if output_vae: + sd = comfy.utils.load_torch_file(vae_path) + vae = comfy.sd.VAE(sd=sd) + + return (unet, clip, vae) diff --git a/comfy/extra_samplers/uni_pc.py b/comfy/extra_samplers/uni_pc.py new file mode 100644 index 0000000000000000000000000000000000000000..08bf0fc9e6787aec84500b4e3d24a4c8d253b433 --- /dev/null +++ b/comfy/extra_samplers/uni_pc.py @@ -0,0 +1,894 @@ +#code taken from: https://github.com/wl-zhao/UniPC and modified + +import torch +import torch.nn.functional as F +import math + +from tqdm.auto import trange, tqdm + + +class NoiseScheduleVP: + def __init__( + self, + schedule='discrete', + betas=None, + alphas_cumprod=None, + continuous_beta_0=0.1, + continuous_beta_1=20., + ): + """Create a wrapper class for the forward SDE (VP type). + + *** + Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. + We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. + *** + + The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). + We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). + Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: + + log_alpha_t = self.marginal_log_mean_coeff(t) + sigma_t = self.marginal_std(t) + lambda_t = self.marginal_lambda(t) + + Moreover, as lambda(t) is an invertible function, we also support its inverse function: + + t = self.inverse_lambda(lambda_t) + + =============================================================== + + We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). + + 1. For discrete-time DPMs: + + For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: + t_i = (i + 1) / N + e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. + We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. + + Args: + betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) + alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) + + Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. + + **Important**: Please pay special attention for the args for `alphas_cumprod`: + The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that + q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). + Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have + alpha_{t_n} = \sqrt{\hat{alpha_n}}, + and + log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). + + + 2. For continuous-time DPMs: + + We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise + schedule are the default settings in DDPM and improved-DDPM: + + Args: + beta_min: A `float` number. The smallest beta for the linear schedule. + beta_max: A `float` number. The largest beta for the linear schedule. + cosine_s: A `float` number. The hyperparameter in the cosine schedule. + cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. + T: A `float` number. The ending time of the forward process. + + =============================================================== + + Args: + schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, + 'linear' or 'cosine' for continuous-time DPMs. + Returns: + A wrapper object of the forward SDE (VP type). + + =============================================================== + + Example: + + # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): + >>> ns = NoiseScheduleVP('discrete', betas=betas) + + # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): + >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) + + # For continuous-time DPMs (VPSDE), linear schedule: + >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) + + """ + + if schedule not in ['discrete', 'linear', 'cosine']: + raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule)) + + self.schedule = schedule + if schedule == 'discrete': + if betas is not None: + log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) + else: + assert alphas_cumprod is not None + log_alphas = 0.5 * torch.log(alphas_cumprod) + self.total_N = len(log_alphas) + self.T = 1. + self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)) + self.log_alpha_array = log_alphas.reshape((1, -1,)) + else: + self.total_N = 1000 + self.beta_0 = continuous_beta_0 + self.beta_1 = continuous_beta_1 + self.cosine_s = 0.008 + self.cosine_beta_max = 999. + self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s + self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) + self.schedule = schedule + if schedule == 'cosine': + # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. + # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. + self.T = 0.9946 + else: + self.T = 1. + + def marginal_log_mean_coeff(self, t): + """ + Compute log(alpha_t) of a given continuous-time label t in [0, T]. + """ + if self.schedule == 'discrete': + return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1)) + elif self.schedule == 'linear': + return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 + elif self.schedule == 'cosine': + log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) + log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 + return log_alpha_t + + def marginal_alpha(self, t): + """ + Compute alpha_t of a given continuous-time label t in [0, T]. + """ + return torch.exp(self.marginal_log_mean_coeff(t)) + + def marginal_std(self, t): + """ + Compute sigma_t of a given continuous-time label t in [0, T]. + """ + return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) + + def marginal_lambda(self, t): + """ + Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. + """ + log_mean_coeff = self.marginal_log_mean_coeff(t) + log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) + return log_mean_coeff - log_std + + def inverse_lambda(self, lamb): + """ + Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. + """ + if self.schedule == 'linear': + tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) + Delta = self.beta_0**2 + tmp + return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) + elif self.schedule == 'discrete': + log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) + t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1])) + return t.reshape((-1,)) + else: + log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) + t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s + t = t_fn(log_alpha) + return t + + +def model_wrapper( + model, + noise_schedule, + model_type="noise", + model_kwargs={}, + guidance_type="uncond", + condition=None, + unconditional_condition=None, + guidance_scale=1., + classifier_fn=None, + classifier_kwargs={}, +): + """Create a wrapper function for the noise prediction model. + + DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to + firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. + + We support four types of the diffusion model by setting `model_type`: + + 1. "noise": noise prediction model. (Trained by predicting noise). + + 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). + + 3. "v": velocity prediction model. (Trained by predicting the velocity). + The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. + + [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." + arXiv preprint arXiv:2202.00512 (2022). + [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." + arXiv preprint arXiv:2210.02303 (2022). + + 4. "score": marginal score function. (Trained by denoising score matching). + Note that the score function and the noise prediction model follows a simple relationship: + ``` + noise(x_t, t) = -sigma_t * score(x_t, t) + ``` + + We support three types of guided sampling by DPMs by setting `guidance_type`: + 1. "uncond": unconditional sampling by DPMs. + The input `model` has the following format: + `` + model(x, t_input, **model_kwargs) -> noise | x_start | v | score + `` + + 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. + The input `model` has the following format: + `` + model(x, t_input, **model_kwargs) -> noise | x_start | v | score + `` + + The input `classifier_fn` has the following format: + `` + classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) + `` + + [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," + in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. + + 3. "classifier-free": classifier-free guidance sampling by conditional DPMs. + The input `model` has the following format: + `` + model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score + `` + And if cond == `unconditional_condition`, the model output is the unconditional DPM output. + + [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." + arXiv preprint arXiv:2207.12598 (2022). + + + The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) + or continuous-time labels (i.e. epsilon to T). + + We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: + `` + def model_fn(x, t_continuous) -> noise: + t_input = get_model_input_time(t_continuous) + return noise_pred(model, x, t_input, **model_kwargs) + `` + where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. + + =============================================================== + + Args: + model: A diffusion model with the corresponding format described above. + noise_schedule: A noise schedule object, such as NoiseScheduleVP. + model_type: A `str`. The parameterization type of the diffusion model. + "noise" or "x_start" or "v" or "score". + model_kwargs: A `dict`. A dict for the other inputs of the model function. + guidance_type: A `str`. The type of the guidance for sampling. + "uncond" or "classifier" or "classifier-free". + condition: A pytorch tensor. The condition for the guided sampling. + Only used for "classifier" or "classifier-free" guidance type. + unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. + Only used for "classifier-free" guidance type. + guidance_scale: A `float`. The scale for the guided sampling. + classifier_fn: A classifier function. Only used for the classifier guidance. + classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. + Returns: + A noise prediction model that accepts the noised data and the continuous time as the inputs. + """ + + def get_model_input_time(t_continuous): + """ + Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. + For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. + For continuous-time DPMs, we just use `t_continuous`. + """ + if noise_schedule.schedule == 'discrete': + return (t_continuous - 1. / noise_schedule.total_N) * 1000. + else: + return t_continuous + + def noise_pred_fn(x, t_continuous, cond=None): + if t_continuous.reshape((-1,)).shape[0] == 1: + t_continuous = t_continuous.expand((x.shape[0])) + t_input = get_model_input_time(t_continuous) + output = model(x, t_input, **model_kwargs) + if model_type == "noise": + return output + elif model_type == "x_start": + alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) + dims = x.dim() + return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) + elif model_type == "v": + alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) + dims = x.dim() + return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x + elif model_type == "score": + sigma_t = noise_schedule.marginal_std(t_continuous) + dims = x.dim() + return -expand_dims(sigma_t, dims) * output + + def cond_grad_fn(x, t_input): + """ + Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). + """ + with torch.enable_grad(): + x_in = x.detach().requires_grad_(True) + log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) + return torch.autograd.grad(log_prob.sum(), x_in)[0] + + def model_fn(x, t_continuous): + """ + The noise predicition model function that is used for DPM-Solver. + """ + if t_continuous.reshape((-1,)).shape[0] == 1: + t_continuous = t_continuous.expand((x.shape[0])) + if guidance_type == "uncond": + return noise_pred_fn(x, t_continuous) + elif guidance_type == "classifier": + assert classifier_fn is not None + t_input = get_model_input_time(t_continuous) + cond_grad = cond_grad_fn(x, t_input) + sigma_t = noise_schedule.marginal_std(t_continuous) + noise = noise_pred_fn(x, t_continuous) + return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad + elif guidance_type == "classifier-free": + if guidance_scale == 1. or unconditional_condition is None: + return noise_pred_fn(x, t_continuous, cond=condition) + else: + x_in = torch.cat([x] * 2) + t_in = torch.cat([t_continuous] * 2) + c_in = torch.cat([unconditional_condition, condition]) + noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) + return noise_uncond + guidance_scale * (noise - noise_uncond) + + assert model_type in ["noise", "x_start", "v"] + assert guidance_type in ["uncond", "classifier", "classifier-free"] + return model_fn + + +class UniPC: + def __init__( + self, + model_fn, + noise_schedule, + predict_x0=True, + thresholding=False, + max_val=1., + variant='bh1', + noise_mask=None, + masked_image=None, + noise=None, + ): + """Construct a UniPC. + + We support both data_prediction and noise_prediction. + """ + self.model = model_fn + self.noise_schedule = noise_schedule + self.variant = variant + self.predict_x0 = predict_x0 + self.thresholding = thresholding + self.max_val = max_val + self.noise_mask = noise_mask + self.masked_image = masked_image + self.noise = noise + + def dynamic_thresholding_fn(self, x0, t=None): + """ + The dynamic thresholding method. + """ + dims = x0.dim() + p = self.dynamic_thresholding_ratio + s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) + s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) + x0 = torch.clamp(x0, -s, s) / s + return x0 + + def noise_prediction_fn(self, x, t): + """ + Return the noise prediction model. + """ + if self.noise_mask is not None: + return self.model(x, t) * self.noise_mask + else: + return self.model(x, t) + + def data_prediction_fn(self, x, t): + """ + Return the data prediction model (with thresholding). + """ + noise = self.noise_prediction_fn(x, t) + dims = x.dim() + alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) + x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) + if self.thresholding: + p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. + s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) + s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) + x0 = torch.clamp(x0, -s, s) / s + if self.noise_mask is not None: + x0 = x0 * self.noise_mask + (1. - self.noise_mask) * self.masked_image + return x0 + + def model_fn(self, x, t): + """ + Convert the model to the noise prediction model or the data prediction model. + """ + if self.predict_x0: + return self.data_prediction_fn(x, t) + else: + return self.noise_prediction_fn(x, t) + + def get_time_steps(self, skip_type, t_T, t_0, N, device): + """Compute the intermediate time steps for sampling. + """ + if skip_type == 'logSNR': + lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) + lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) + logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) + return self.noise_schedule.inverse_lambda(logSNR_steps) + elif skip_type == 'time_uniform': + return torch.linspace(t_T, t_0, N + 1).to(device) + elif skip_type == 'time_quadratic': + t_order = 2 + t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device) + return t + else: + raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) + + def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): + """ + Get the order of each step for sampling by the singlestep DPM-Solver. + """ + if order == 3: + K = steps // 3 + 1 + if steps % 3 == 0: + orders = [3,] * (K - 2) + [2, 1] + elif steps % 3 == 1: + orders = [3,] * (K - 1) + [1] + else: + orders = [3,] * (K - 1) + [2] + elif order == 2: + if steps % 2 == 0: + K = steps // 2 + orders = [2,] * K + else: + K = steps // 2 + 1 + orders = [2,] * (K - 1) + [1] + elif order == 1: + K = steps + orders = [1,] * steps + else: + raise ValueError("'order' must be '1' or '2' or '3'.") + if skip_type == 'logSNR': + # To reproduce the results in DPM-Solver paper + timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) + else: + timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)] + return timesteps_outer, orders + + def denoise_to_zero_fn(self, x, s): + """ + Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. + """ + return self.data_prediction_fn(x, s) + + def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs): + if len(t.shape) == 0: + t = t.view(-1) + if 'bh' in self.variant: + return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs) + else: + assert self.variant == 'vary_coeff' + return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs) + + def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True): + print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)') + ns = self.noise_schedule + assert order <= len(model_prev_list) + + # first compute rks + t_prev_0 = t_prev_list[-1] + lambda_prev_0 = ns.marginal_lambda(t_prev_0) + lambda_t = ns.marginal_lambda(t) + model_prev_0 = model_prev_list[-1] + sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) + log_alpha_t = ns.marginal_log_mean_coeff(t) + alpha_t = torch.exp(log_alpha_t) + + h = lambda_t - lambda_prev_0 + + rks = [] + D1s = [] + for i in range(1, order): + t_prev_i = t_prev_list[-(i + 1)] + model_prev_i = model_prev_list[-(i + 1)] + lambda_prev_i = ns.marginal_lambda(t_prev_i) + rk = (lambda_prev_i - lambda_prev_0) / h + rks.append(rk) + D1s.append((model_prev_i - model_prev_0) / rk) + + rks.append(1.) + rks = torch.tensor(rks, device=x.device) + + K = len(rks) + # build C matrix + C = [] + + col = torch.ones_like(rks) + for k in range(1, K + 1): + C.append(col) + col = col * rks / (k + 1) + C = torch.stack(C, dim=1) + + if len(D1s) > 0: + D1s = torch.stack(D1s, dim=1) # (B, K) + C_inv_p = torch.linalg.inv(C[:-1, :-1]) + A_p = C_inv_p + + if use_corrector: + print('using corrector') + C_inv = torch.linalg.inv(C) + A_c = C_inv + + hh = -h if self.predict_x0 else h + h_phi_1 = torch.expm1(hh) + h_phi_ks = [] + factorial_k = 1 + h_phi_k = h_phi_1 + for k in range(1, K + 2): + h_phi_ks.append(h_phi_k) + h_phi_k = h_phi_k / hh - 1 / factorial_k + factorial_k *= (k + 1) + + model_t = None + if self.predict_x0: + x_t_ = ( + sigma_t / sigma_prev_0 * x + - alpha_t * h_phi_1 * model_prev_0 + ) + # now predictor + x_t = x_t_ + if len(D1s) > 0: + # compute the residuals for predictor + for k in range(K - 1): + x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k]) + # now corrector + if use_corrector: + model_t = self.model_fn(x_t, t) + D1_t = (model_t - model_prev_0) + x_t = x_t_ + k = 0 + for k in range(K - 1): + x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1]) + x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1]) + else: + log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) + x_t_ = ( + (torch.exp(log_alpha_t - log_alpha_prev_0)) * x + - (sigma_t * h_phi_1) * model_prev_0 + ) + # now predictor + x_t = x_t_ + if len(D1s) > 0: + # compute the residuals for predictor + for k in range(K - 1): + x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k]) + # now corrector + if use_corrector: + model_t = self.model_fn(x_t, t) + D1_t = (model_t - model_prev_0) + x_t = x_t_ + k = 0 + for k in range(K - 1): + x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1]) + x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1]) + return x_t, model_t + + def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True): + # print(f'using unified predictor-corrector with order {order} (solver type: B(h))') + ns = self.noise_schedule + assert order <= len(model_prev_list) + dims = x.dim() + + # first compute rks + t_prev_0 = t_prev_list[-1] + lambda_prev_0 = ns.marginal_lambda(t_prev_0) + lambda_t = ns.marginal_lambda(t) + model_prev_0 = model_prev_list[-1] + sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) + log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) + alpha_t = torch.exp(log_alpha_t) + + h = lambda_t - lambda_prev_0 + + rks = [] + D1s = [] + for i in range(1, order): + t_prev_i = t_prev_list[-(i + 1)] + model_prev_i = model_prev_list[-(i + 1)] + lambda_prev_i = ns.marginal_lambda(t_prev_i) + rk = ((lambda_prev_i - lambda_prev_0) / h)[0] + rks.append(rk) + D1s.append((model_prev_i - model_prev_0) / rk) + + rks.append(1.) + rks = torch.tensor(rks, device=x.device) + + R = [] + b = [] + + hh = -h[0] if self.predict_x0 else h[0] + h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 + h_phi_k = h_phi_1 / hh - 1 + + factorial_i = 1 + + if self.variant == 'bh1': + B_h = hh + elif self.variant == 'bh2': + B_h = torch.expm1(hh) + else: + raise NotImplementedError() + + for i in range(1, order + 1): + R.append(torch.pow(rks, i - 1)) + b.append(h_phi_k * factorial_i / B_h) + factorial_i *= (i + 1) + h_phi_k = h_phi_k / hh - 1 / factorial_i + + R = torch.stack(R) + b = torch.tensor(b, device=x.device) + + # now predictor + use_predictor = len(D1s) > 0 and x_t is None + if len(D1s) > 0: + D1s = torch.stack(D1s, dim=1) # (B, K) + if x_t is None: + # for order 2, we use a simplified version + if order == 2: + rhos_p = torch.tensor([0.5], device=b.device) + else: + rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) + else: + D1s = None + + if use_corrector: + # print('using corrector') + # for order 1, we use a simplified version + if order == 1: + rhos_c = torch.tensor([0.5], device=b.device) + else: + rhos_c = torch.linalg.solve(R, b) + + model_t = None + if self.predict_x0: + x_t_ = ( + expand_dims(sigma_t / sigma_prev_0, dims) * x + - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0 + ) + + if x_t is None: + if use_predictor: + pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) + else: + pred_res = 0 + x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res + + if use_corrector: + model_t = self.model_fn(x_t, t) + if D1s is not None: + corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) + else: + corr_res = 0 + D1_t = (model_t - model_prev_0) + x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) + else: + x_t_ = ( + expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x + - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0 + ) + if x_t is None: + if use_predictor: + pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) + else: + pred_res = 0 + x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res + + if use_corrector: + model_t = self.model_fn(x_t, t) + if D1s is not None: + corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) + else: + corr_res = 0 + D1_t = (model_t - model_prev_0) + x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) + return x_t, model_t + + + def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform', + method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver', + atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False + ): + # t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end + # t_T = self.noise_schedule.T if t_start is None else t_start + device = x.device + steps = len(timesteps) - 1 + if method == 'multistep': + assert steps >= order + # timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) + assert timesteps.shape[0] - 1 == steps + # with torch.no_grad(): + for step_index in trange(steps, disable=disable_pbar): + if self.noise_mask is not None: + x = x * self.noise_mask + (1. - self.noise_mask) * (self.masked_image * self.noise_schedule.marginal_alpha(timesteps[step_index]) + self.noise * self.noise_schedule.marginal_std(timesteps[step_index])) + if step_index == 0: + vec_t = timesteps[0].expand((x.shape[0])) + model_prev_list = [self.model_fn(x, vec_t)] + t_prev_list = [vec_t] + elif step_index < order: + init_order = step_index + # Init the first `order` values by lower order multistep DPM-Solver. + # for init_order in range(1, order): + vec_t = timesteps[init_order].expand(x.shape[0]) + x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True) + if model_x is None: + model_x = self.model_fn(x, vec_t) + model_prev_list.append(model_x) + t_prev_list.append(vec_t) + else: + extra_final_step = 0 + if step_index == (steps - 1): + extra_final_step = 1 + for step in range(step_index, step_index + 1 + extra_final_step): + vec_t = timesteps[step].expand(x.shape[0]) + if lower_order_final: + step_order = min(order, steps + 1 - step) + else: + step_order = order + # print('this step order:', step_order) + if step == steps: + # print('do not run corrector at the last step') + use_corrector = False + else: + use_corrector = True + x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector) + for i in range(order - 1): + t_prev_list[i] = t_prev_list[i + 1] + model_prev_list[i] = model_prev_list[i + 1] + t_prev_list[-1] = vec_t + # We do not need to evaluate the final model value. + if step < steps: + if model_x is None: + model_x = self.model_fn(x, vec_t) + model_prev_list[-1] = model_x + if callback is not None: + callback(step_index, model_prev_list[-1], x, steps) + else: + raise NotImplementedError() + # if denoise_to_zero: + # x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) + return x + + +############################################################# +# other utility functions +############################################################# + +def interpolate_fn(x, xp, yp): + """ + A piecewise linear function y = f(x), using xp and yp as keypoints. + We implement f(x) in a differentiable way (i.e. applicable for autograd). + The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) + + Args: + x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). + xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. + yp: PyTorch tensor with shape [C, K]. + Returns: + The function values f(x), with shape [N, C]. + """ + N, K = x.shape[0], xp.shape[1] + all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) + sorted_all_x, x_indices = torch.sort(all_x, dim=2) + x_idx = torch.argmin(x_indices, dim=2) + cand_start_idx = x_idx - 1 + start_idx = torch.where( + torch.eq(x_idx, 0), + torch.tensor(1, device=x.device), + torch.where( + torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, + ), + ) + end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) + start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) + end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) + start_idx2 = torch.where( + torch.eq(x_idx, 0), + torch.tensor(0, device=x.device), + torch.where( + torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, + ), + ) + y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) + start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) + end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) + cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) + return cand + + +def expand_dims(v, dims): + """ + Expand the tensor `v` to the dim `dims`. + + Args: + `v`: a PyTorch tensor with shape [N]. + `dim`: a `int`. + Returns: + a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. + """ + return v[(...,) + (None,)*(dims - 1)] + + +class SigmaConvert: + schedule = "" + def marginal_log_mean_coeff(self, sigma): + return 0.5 * torch.log(1 / ((sigma * sigma) + 1)) + + def marginal_alpha(self, t): + return torch.exp(self.marginal_log_mean_coeff(t)) + + def marginal_std(self, t): + return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) + + def marginal_lambda(self, t): + """ + Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. + """ + log_mean_coeff = self.marginal_log_mean_coeff(t) + log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) + return log_mean_coeff - log_std + +def predict_eps_sigma(model, input, sigma_in, **kwargs): + sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1)) + input = input * ((sigma ** 2 + 1.0) ** 0.5) + return (input - model(input, sigma_in, **kwargs)) / sigma + + +def sample_unipc(model, noise, image, sigmas, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'): + timesteps = sigmas.clone() + if sigmas[-1] == 0: + timesteps = sigmas[:] + timesteps[-1] = 0.001 + else: + timesteps = sigmas.clone() + ns = SigmaConvert() + + if image is not None: + img = image * ns.marginal_alpha(timesteps[0]) + if max_denoise: + noise_mult = 1.0 + else: + noise_mult = ns.marginal_std(timesteps[0]) + img += noise * noise_mult + else: + img = noise + + model_type = "noise" + + model_fn = model_wrapper( + lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs), + ns, + model_type=model_type, + guidance_type="uncond", + model_kwargs=extra_args, + ) + + order = min(3, len(timesteps) - 2) + uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant) + x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable) + x /= ns.marginal_alpha(timesteps[-1]) + return x diff --git a/comfy/gligen.py b/comfy/gligen.py new file mode 100644 index 0000000000000000000000000000000000000000..71892dfb1d4d165d3c80dc6c59ad57b4b2dbecdc --- /dev/null +++ b/comfy/gligen.py @@ -0,0 +1,341 @@ +import torch +from torch import nn +from .ldm.modules.attention import CrossAttention +from inspect import isfunction + + +def exists(val): + return val is not None + + +def uniq(arr): + return{el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * torch.nn.functional.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = nn.Sequential( + nn.Linear(dim, inner_dim), + nn.GELU() + ) if not glu else GEGLU(dim, inner_dim) + + self.net = nn.Sequential( + project_in, + nn.Dropout(dropout), + nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +class GatedCrossAttentionDense(nn.Module): + def __init__(self, query_dim, context_dim, n_heads, d_head): + super().__init__() + + self.attn = CrossAttention( + query_dim=query_dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head) + self.ff = FeedForward(query_dim, glu=True) + + self.norm1 = nn.LayerNorm(query_dim) + self.norm2 = nn.LayerNorm(query_dim) + + self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) + self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) + + # this can be useful: we can externally change magnitude of tanh(alpha) + # for example, when it is set to 0, then the entire model is same as + # original one + self.scale = 1 + + def forward(self, x, objs): + + x = x + self.scale * \ + torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs) + x = x + self.scale * \ + torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) + + return x + + +class GatedSelfAttentionDense(nn.Module): + def __init__(self, query_dim, context_dim, n_heads, d_head): + super().__init__() + + # we need a linear projection since we need cat visual feature and obj + # feature + self.linear = nn.Linear(context_dim, query_dim) + + self.attn = CrossAttention( + query_dim=query_dim, + context_dim=query_dim, + heads=n_heads, + dim_head=d_head) + self.ff = FeedForward(query_dim, glu=True) + + self.norm1 = nn.LayerNorm(query_dim) + self.norm2 = nn.LayerNorm(query_dim) + + self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) + self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) + + # this can be useful: we can externally change magnitude of tanh(alpha) + # for example, when it is set to 0, then the entire model is same as + # original one + self.scale = 1 + + def forward(self, x, objs): + + N_visual = x.shape[1] + objs = self.linear(objs) + + x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn( + self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :] + x = x + self.scale * \ + torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) + + return x + + +class GatedSelfAttentionDense2(nn.Module): + def __init__(self, query_dim, context_dim, n_heads, d_head): + super().__init__() + + # we need a linear projection since we need cat visual feature and obj + # feature + self.linear = nn.Linear(context_dim, query_dim) + + self.attn = CrossAttention( + query_dim=query_dim, context_dim=query_dim, dim_head=d_head) + self.ff = FeedForward(query_dim, glu=True) + + self.norm1 = nn.LayerNorm(query_dim) + self.norm2 = nn.LayerNorm(query_dim) + + self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) + self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) + + # this can be useful: we can externally change magnitude of tanh(alpha) + # for example, when it is set to 0, then the entire model is same as + # original one + self.scale = 1 + + def forward(self, x, objs): + + B, N_visual, _ = x.shape + B, N_ground, _ = objs.shape + + objs = self.linear(objs) + + # sanity check + size_v = math.sqrt(N_visual) + size_g = math.sqrt(N_ground) + assert int(size_v) == size_v, "Visual tokens must be square rootable" + assert int(size_g) == size_g, "Grounding tokens must be square rootable" + size_v = int(size_v) + size_g = int(size_g) + + # select grounding token and resize it to visual token size as residual + out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[ + :, N_visual:, :] + out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g) + out = torch.nn.functional.interpolate( + out, (size_v, size_v), mode='bicubic') + residual = out.reshape(B, -1, N_visual).permute(0, 2, 1) + + # add residual to visual feature + x = x + self.scale * torch.tanh(self.alpha_attn) * residual + x = x + self.scale * \ + torch.tanh(self.alpha_dense) * self.ff(self.norm2(x)) + + return x + + +class FourierEmbedder(): + def __init__(self, num_freqs=64, temperature=100): + + self.num_freqs = num_freqs + self.temperature = temperature + self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs) + + @torch.no_grad() + def __call__(self, x, cat_dim=-1): + "x: arbitrary shape of tensor. dim: cat dim" + out = [] + for freq in self.freq_bands: + out.append(torch.sin(freq * x)) + out.append(torch.cos(freq * x)) + return torch.cat(out, cat_dim) + + +class PositionNet(nn.Module): + def __init__(self, in_dim, out_dim, fourier_freqs=8): + super().__init__() + self.in_dim = in_dim + self.out_dim = out_dim + + self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) + self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy + + self.linears = nn.Sequential( + nn.Linear(self.in_dim + self.position_dim, 512), + nn.SiLU(), + nn.Linear(512, 512), + nn.SiLU(), + nn.Linear(512, out_dim), + ) + + self.null_positive_feature = torch.nn.Parameter( + torch.zeros([self.in_dim])) + self.null_position_feature = torch.nn.Parameter( + torch.zeros([self.position_dim])) + + def forward(self, boxes, masks, positive_embeddings): + B, N, _ = boxes.shape + dtype = self.linears[0].weight.dtype + masks = masks.unsqueeze(-1).to(dtype) + positive_embeddings = positive_embeddings.to(dtype) + + # embedding position (it may includes padding as placeholder) + xyxy_embedding = self.fourier_embedder(boxes.to(dtype)) # B*N*4 --> B*N*C + + # learnable null embedding + positive_null = self.null_positive_feature.view(1, 1, -1) + xyxy_null = self.null_position_feature.view(1, 1, -1) + + # replace padding with learnable null embedding + positive_embeddings = positive_embeddings * \ + masks + (1 - masks) * positive_null + xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null + + objs = self.linears( + torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) + assert objs.shape == torch.Size([B, N, self.out_dim]) + return objs + + +class Gligen(nn.Module): + def __init__(self, modules, position_net, key_dim): + super().__init__() + self.module_list = nn.ModuleList(modules) + self.position_net = position_net + self.key_dim = key_dim + self.max_objs = 30 + self.current_device = torch.device("cpu") + + def _set_position(self, boxes, masks, positive_embeddings): + objs = self.position_net(boxes, masks, positive_embeddings) + def func(x, extra_options): + key = extra_options["transformer_index"] + module = self.module_list[key] + return module(x, objs) + return func + + def set_position(self, latent_image_shape, position_params, device): + batch, c, h, w = latent_image_shape + masks = torch.zeros([self.max_objs], device="cpu") + boxes = [] + positive_embeddings = [] + for p in position_params: + x1 = (p[4]) / w + y1 = (p[3]) / h + x2 = (p[4] + p[2]) / w + y2 = (p[3] + p[1]) / h + masks[len(boxes)] = 1.0 + boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)] + positive_embeddings += [p[0]] + append_boxes = [] + append_conds = [] + if len(boxes) < self.max_objs: + append_boxes = [torch.zeros( + [self.max_objs - len(boxes), 4], device="cpu")] + append_conds = [torch.zeros( + [self.max_objs - len(boxes), self.key_dim], device="cpu")] + + box_out = torch.cat( + boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1) + masks = masks.unsqueeze(0).repeat(batch, 1) + conds = torch.cat(positive_embeddings + + append_conds).unsqueeze(0).repeat(batch, 1, 1) + return self._set_position( + box_out.to(device), + masks.to(device), + conds.to(device)) + + def set_empty(self, latent_image_shape, device): + batch, c, h, w = latent_image_shape + masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1) + box_out = torch.zeros([self.max_objs, 4], + device="cpu").repeat(batch, 1, 1) + conds = torch.zeros([self.max_objs, self.key_dim], + device="cpu").repeat(batch, 1, 1) + return self._set_position( + box_out.to(device), + masks.to(device), + conds.to(device)) + + +def load_gligen(sd): + sd_k = sd.keys() + output_list = [] + key_dim = 768 + for a in ["input_blocks", "middle_block", "output_blocks"]: + for b in range(20): + k_temp = filter(lambda k: "{}.{}.".format(a, b) + in k and ".fuser." in k, sd_k) + k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp) + + n_sd = {} + for k in k_temp: + n_sd[k[1]] = sd[k[0]] + if len(n_sd) > 0: + query_dim = n_sd["linear.weight"].shape[0] + key_dim = n_sd["linear.weight"].shape[1] + + if key_dim == 768: # SD1.x + n_heads = 8 + d_head = query_dim // n_heads + else: + d_head = 64 + n_heads = query_dim // d_head + + gated = GatedSelfAttentionDense( + query_dim, key_dim, n_heads, d_head) + gated.load_state_dict(n_sd, strict=False) + output_list.append(gated) + + if "position_net.null_positive_feature" in sd_k: + in_dim = sd["position_net.null_positive_feature"].shape[0] + out_dim = sd["position_net.linears.4.weight"].shape[0] + + class WeightsLoader(torch.nn.Module): + pass + w = WeightsLoader() + w.position_net = PositionNet(in_dim, out_dim) + w.load_state_dict(sd, strict=False) + + gligen = Gligen(output_list, w.position_net, key_dim) + return gligen diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py new file mode 100644 index 0000000000000000000000000000000000000000..761c2e0ef7cb66e2b2f918f7477bd5ca1801ea88 --- /dev/null +++ b/comfy/k_diffusion/sampling.py @@ -0,0 +1,810 @@ +import math + +from scipy import integrate +import torch +from torch import nn +import torchsde +from tqdm.auto import trange, tqdm + +from . import utils + + +def append_zero(x): + return torch.cat([x, x.new_zeros([1])]) + + +def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'): + """Constructs the noise schedule of Karras et al. (2022).""" + ramp = torch.linspace(0, 1, n, device=device) + min_inv_rho = sigma_min ** (1 / rho) + max_inv_rho = sigma_max ** (1 / rho) + sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho + return append_zero(sigmas).to(device) + + +def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'): + """Constructs an exponential noise schedule.""" + sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp() + return append_zero(sigmas) + + +def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'): + """Constructs an polynomial in log sigma noise schedule.""" + ramp = torch.linspace(1, 0, n, device=device) ** rho + sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min)) + return append_zero(sigmas) + + +def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'): + """Constructs a continuous VP noise schedule.""" + t = torch.linspace(1, eps_s, n, device=device) + sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1) + return append_zero(sigmas) + + +def to_d(x, sigma, denoised): + """Converts a denoiser output to a Karras ODE derivative.""" + return (x - denoised) / utils.append_dims(sigma, x.ndim) + + +def get_ancestral_step(sigma_from, sigma_to, eta=1.): + """Calculates the noise level (sigma_down) to step down to and the amount + of noise to add (sigma_up) when doing an ancestral sampling step.""" + if not eta: + return sigma_to, 0. + sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5) + sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 + return sigma_down, sigma_up + + +def default_noise_sampler(x): + return lambda sigma, sigma_next: torch.randn_like(x) + + +class BatchedBrownianTree: + """A wrapper around torchsde.BrownianTree that enables batches of entropy.""" + + def __init__(self, x, t0, t1, seed=None, **kwargs): + self.cpu_tree = True + if "cpu" in kwargs: + self.cpu_tree = kwargs.pop("cpu") + t0, t1, self.sign = self.sort(t0, t1) + w0 = kwargs.get('w0', torch.zeros_like(x)) + if seed is None: + seed = torch.randint(0, 2 ** 63 - 1, []).item() + self.batched = True + try: + assert len(seed) == x.shape[0] + w0 = w0[0] + except TypeError: + seed = [seed] + self.batched = False + if self.cpu_tree: + self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed] + else: + self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed] + + @staticmethod + def sort(a, b): + return (a, b, 1) if a < b else (b, a, -1) + + def __call__(self, t0, t1): + t0, t1, sign = self.sort(t0, t1) + if self.cpu_tree: + w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign) + else: + w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign) + + return w if self.batched else w[0] + + +class BrownianTreeNoiseSampler: + """A noise sampler backed by a torchsde.BrownianTree. + + Args: + x (Tensor): The tensor whose shape, device and dtype to use to generate + random samples. + sigma_min (float): The low end of the valid interval. + sigma_max (float): The high end of the valid interval. + seed (int or List[int]): The random seed. If a list of seeds is + supplied instead of a single integer, then the noise sampler will + use one BrownianTree per batch item, each with its own seed. + transform (callable): A function that maps sigma to the sampler's + internal timestep. + """ + + def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False): + self.transform = transform + t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max)) + self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu) + + def __call__(self, sigma, sigma_next): + t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next)) + return self.tree(t0, t1) / (t1 - t0).abs().sqrt() + + +@torch.no_grad() +def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): + """Implements Algorithm 2 (Euler steps) from Karras et al. (2022).""" + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. + sigma_hat = sigmas[i] * (gamma + 1) + if gamma > 0: + eps = torch.randn_like(x) * s_noise + x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 + denoised = model(x, sigma_hat * s_in, **extra_args) + d = to_d(x, sigma_hat, denoised) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) + dt = sigmas[i + 1] - sigma_hat + # Euler method + x = x + d * dt + return x + + +@torch.no_grad() +def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + """Ancestral sampling with Euler method steps.""" + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + d = to_d(x, sigmas[i], denoised) + # Euler method + dt = sigma_down - sigmas[i] + x = x + d * dt + if sigmas[i + 1] > 0: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up + return x + + +@torch.no_grad() +def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): + """Implements Algorithm 2 (Heun steps) from Karras et al. (2022).""" + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. + sigma_hat = sigmas[i] * (gamma + 1) + if gamma > 0: + eps = torch.randn_like(x) * s_noise + x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 + denoised = model(x, sigma_hat * s_in, **extra_args) + d = to_d(x, sigma_hat, denoised) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) + dt = sigmas[i + 1] - sigma_hat + if sigmas[i + 1] == 0: + # Euler method + x = x + d * dt + else: + # Heun's method + x_2 = x + d * dt + denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) + d_2 = to_d(x_2, sigmas[i + 1], denoised_2) + d_prime = (d + d_2) / 2 + x = x + d_prime * dt + return x + + +@torch.no_grad() +def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): + """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022).""" + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. + sigma_hat = sigmas[i] * (gamma + 1) + if gamma > 0: + eps = torch.randn_like(x) * s_noise + x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 + denoised = model(x, sigma_hat * s_in, **extra_args) + d = to_d(x, sigma_hat, denoised) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) + if sigmas[i + 1] == 0: + # Euler method + dt = sigmas[i + 1] - sigma_hat + x = x + d * dt + else: + # DPM-Solver-2 + sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() + dt_1 = sigma_mid - sigma_hat + dt_2 = sigmas[i + 1] - sigma_hat + x_2 = x + d * dt_1 + denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) + d_2 = to_d(x_2, sigma_mid, denoised_2) + x = x + d_2 * dt_2 + return x + + +@torch.no_grad() +def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + """Ancestral sampling with DPM-Solver second-order steps.""" + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + d = to_d(x, sigmas[i], denoised) + if sigma_down == 0: + # Euler method + dt = sigma_down - sigmas[i] + x = x + d * dt + else: + # DPM-Solver-2 + sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp() + dt_1 = sigma_mid - sigmas[i] + dt_2 = sigma_down - sigmas[i] + x_2 = x + d * dt_1 + denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) + d_2 = to_d(x_2, sigma_mid, denoised_2) + x = x + d_2 * dt_2 + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up + return x + + +def linear_multistep_coeff(order, t, i, j): + if order - 1 > i: + raise ValueError(f'Order {order} too high for step {i}') + def fn(tau): + prod = 1. + for k in range(order): + if j == k: + continue + prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) + return prod + return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0] + + +@torch.no_grad() +def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4): + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + sigmas_cpu = sigmas.detach().cpu().numpy() + ds = [] + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + d = to_d(x, sigmas[i], denoised) + ds.append(d) + if len(ds) > order: + ds.pop(0) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + cur_order = min(i + 1, order) + coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)] + x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds))) + return x + + +class PIDStepSizeController: + """A PID controller for ODE adaptive step size control.""" + def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8): + self.h = h + self.b1 = (pcoeff + icoeff + dcoeff) / order + self.b2 = -(pcoeff + 2 * dcoeff) / order + self.b3 = dcoeff / order + self.accept_safety = accept_safety + self.eps = eps + self.errs = [] + + def limiter(self, x): + return 1 + math.atan(x - 1) + + def propose_step(self, error): + inv_error = 1 / (float(error) + self.eps) + if not self.errs: + self.errs = [inv_error, inv_error, inv_error] + self.errs[0] = inv_error + factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3 + factor = self.limiter(factor) + accept = factor >= self.accept_safety + if accept: + self.errs[2] = self.errs[1] + self.errs[1] = self.errs[0] + self.h *= factor + return accept + + +class DPMSolver(nn.Module): + """DPM-Solver. See https://arxiv.org/abs/2206.00927.""" + + def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None): + super().__init__() + self.model = model + self.extra_args = {} if extra_args is None else extra_args + self.eps_callback = eps_callback + self.info_callback = info_callback + + def t(self, sigma): + return -sigma.log() + + def sigma(self, t): + return t.neg().exp() + + def eps(self, eps_cache, key, x, t, *args, **kwargs): + if key in eps_cache: + return eps_cache[key], eps_cache + sigma = self.sigma(t) * x.new_ones([x.shape[0]]) + eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t) + if self.eps_callback is not None: + self.eps_callback() + return eps, {key: eps, **eps_cache} + + def dpm_solver_1_step(self, x, t, t_next, eps_cache=None): + eps_cache = {} if eps_cache is None else eps_cache + h = t_next - t + eps, eps_cache = self.eps(eps_cache, 'eps', x, t) + x_1 = x - self.sigma(t_next) * h.expm1() * eps + return x_1, eps_cache + + def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None): + eps_cache = {} if eps_cache is None else eps_cache + h = t_next - t + eps, eps_cache = self.eps(eps_cache, 'eps', x, t) + s1 = t + r1 * h + u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps + eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1) + x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps) + return x_2, eps_cache + + def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None): + eps_cache = {} if eps_cache is None else eps_cache + h = t_next - t + eps, eps_cache = self.eps(eps_cache, 'eps', x, t) + s1 = t + r1 * h + s2 = t + r2 * h + u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps + eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1) + u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps) + eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2) + x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps) + return x_3, eps_cache + + def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None): + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + if not t_end > t_start and eta: + raise ValueError('eta must be 0 for reverse sampling') + + m = math.floor(nfe / 3) + 1 + ts = torch.linspace(t_start, t_end, m + 1, device=x.device) + + if nfe % 3 == 0: + orders = [3] * (m - 2) + [2, 1] + else: + orders = [3] * (m - 1) + [nfe % 3] + + for i in range(len(orders)): + eps_cache = {} + t, t_next = ts[i], ts[i + 1] + if eta: + sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta) + t_next_ = torch.minimum(t_end, self.t(sd)) + su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5 + else: + t_next_, su = t_next, 0. + + eps, eps_cache = self.eps(eps_cache, 'eps', x, t) + denoised = x - self.sigma(t) * eps + if self.info_callback is not None: + self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised}) + + if orders[i] == 1: + x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache) + elif orders[i] == 2: + x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache) + else: + x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache) + + x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next)) + + return x + + def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None): + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + if order not in {2, 3}: + raise ValueError('order should be 2 or 3') + forward = t_end > t_start + if not forward and eta: + raise ValueError('eta must be 0 for reverse sampling') + h_init = abs(h_init) * (1 if forward else -1) + atol = torch.tensor(atol) + rtol = torch.tensor(rtol) + s = t_start + x_prev = x + accept = True + pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety) + info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0} + + while s < t_end - 1e-5 if forward else s > t_end + 1e-5: + eps_cache = {} + t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h) + if eta: + sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta) + t_ = torch.minimum(t_end, self.t(sd)) + su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5 + else: + t_, su = t, 0. + + eps, eps_cache = self.eps(eps_cache, 'eps', x, s) + denoised = x - self.sigma(s) * eps + + if order == 2: + x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache) + x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache) + else: + x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache) + x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache) + delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs())) + error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5 + accept = pid.propose_step(error) + if accept: + x_prev = x_low + x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t)) + s = t + info['n_accept'] += 1 + else: + info['n_reject'] += 1 + info['nfe'] += order + info['steps'] += 1 + + if self.info_callback is not None: + self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info}) + + return x, info + + +@torch.no_grad() +def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None): + """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927.""" + if sigma_min <= 0 or sigma_max <= 0: + raise ValueError('sigma_min and sigma_max must not be 0') + with tqdm(total=n, disable=disable) as pbar: + dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update) + if callback is not None: + dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info}) + return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler) + + +@torch.no_grad() +def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False): + """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927.""" + if sigma_min <= 0 or sigma_max <= 0: + raise ValueError('sigma_min and sigma_max must not be 0') + with tqdm(disable=disable) as pbar: + dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update) + if callback is not None: + dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info}) + x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler) + if return_info: + return x, info + return x + + +@torch.no_grad() +def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + """Ancestral sampling with DPM-Solver++(2S) second-order steps.""" + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + sigma_fn = lambda t: t.neg().exp() + t_fn = lambda sigma: sigma.log().neg() + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + if sigma_down == 0: + # Euler method + d = to_d(x, sigmas[i], denoised) + dt = sigma_down - sigmas[i] + x = x + d * dt + else: + # DPM-Solver++(2S) + t, t_next = t_fn(sigmas[i]), t_fn(sigma_down) + r = 1 / 2 + h = t_next - t + s = t + r * h + x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised + denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) + x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2 + # Noise addition + if sigmas[i + 1] > 0: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up + return x + + +@torch.no_grad() +def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): + """DPM-Solver++ (stochastic).""" + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + seed = extra_args.get("seed", None) + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + sigma_fn = lambda t: t.neg().exp() + t_fn = lambda sigma: sigma.log().neg() + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + if sigmas[i + 1] == 0: + # Euler method + d = to_d(x, sigmas[i], denoised) + dt = sigmas[i + 1] - sigmas[i] + x = x + d * dt + else: + # DPM-Solver++ + t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) + h = t_next - t + s = t + h * r + fac = 1 / (2 * r) + + # Step 1 + sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta) + s_ = t_fn(sd) + x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised + x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su + denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) + + # Step 2 + sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta) + t_next_ = t_fn(sd) + denoised_d = (1 - fac) * denoised + fac * denoised_2 + x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d + x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su + return x + + +@torch.no_grad() +def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None): + """DPM-Solver++(2M).""" + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + sigma_fn = lambda t: t.neg().exp() + t_fn = lambda sigma: sigma.log().neg() + old_denoised = None + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) + h = t_next - t + if old_denoised is None or sigmas[i + 1] == 0: + x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised + else: + h_last = t - t_fn(sigmas[i - 1]) + r = h_last / h + denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised + x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d + old_denoised = denoised + return x + +@torch.no_grad() +def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): + """DPM-Solver++(2M) SDE.""" + + if solver_type not in {'heun', 'midpoint'}: + raise ValueError('solver_type must be \'heun\' or \'midpoint\'') + + seed = extra_args.get("seed", None) + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + + old_denoised = None + h_last = None + h = None + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + if sigmas[i + 1] == 0: + # Denoising step + x = denoised + else: + # DPM-Solver++(2M) SDE + t, s = -sigmas[i].log(), -sigmas[i + 1].log() + h = s - t + eta_h = eta * h + + x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised + + if old_denoised is not None: + r = h_last / h + if solver_type == 'heun': + x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised) + elif solver_type == 'midpoint': + x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised) + + if eta: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise + + old_denoised = denoised + h_last = h + return x + +@torch.no_grad() +def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + """DPM-Solver++(3M) SDE.""" + + seed = extra_args.get("seed", None) + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + + denoised_1, denoised_2 = None, None + h, h_1, h_2 = None, None, None + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + if sigmas[i + 1] == 0: + # Denoising step + x = denoised + else: + t, s = -sigmas[i].log(), -sigmas[i + 1].log() + h = s - t + h_eta = h * (eta + 1) + + x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised + + if h_2 is not None: + r0 = h_1 / h + r1 = h_2 / h + d1_0 = (denoised - denoised_1) / r0 + d1_1 = (denoised_1 - denoised_2) / r1 + d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1) + d2 = (d1_0 - d1_1) / (r0 + r1) + phi_2 = h_eta.neg().expm1() / h_eta + 1 + phi_3 = phi_2 / h_eta - 0.5 + x = x + phi_2 * d1 - phi_3 * d2 + elif h_1 is not None: + r = h_1 / h + d = (denoised - denoised_1) / r + phi_2 = h_eta.neg().expm1() / h_eta + 1 + x = x + phi_2 * d + + if eta: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise + + denoised_1, denoised_2 = denoised, denoised_1 + h_1, h_2 = h, h_1 + return x + +@torch.no_grad() +def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler + return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler) + +@torch.no_grad() +def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler + return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type) + +@torch.no_grad() +def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler + return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r) + + +def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler): + alpha_cumprod = 1 / ((sigma * sigma) + 1) + alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1) + alpha = (alpha_cumprod / alpha_cumprod_prev) + + mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt()) + if sigma_prev > 0: + mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev) + return mu + +def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None): + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler) + if sigmas[i + 1] != 0: + x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0) + return x + + +@torch.no_grad() +def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): + return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step) + +@torch.no_grad() +def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): + extra_args = {} if extra_args is None else extra_args + noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler + s_in = x.new_ones([x.shape[0]]) + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + + x = denoised + if sigmas[i + 1] > 0: + x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1]) + return x + + + +@torch.no_grad() +def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): + # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/ + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + s_end = sigmas[-1] + for i in trange(len(sigmas) - 1, disable=disable): + gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. + eps = torch.randn_like(x) * s_noise + sigma_hat = sigmas[i] * (gamma + 1) + if gamma > 0: + x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 + denoised = model(x, sigma_hat * s_in, **extra_args) + d = to_d(x, sigma_hat, denoised) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) + dt = sigmas[i + 1] - sigma_hat + if sigmas[i + 1] == s_end: + # Euler method + x = x + d * dt + elif sigmas[i + 2] == s_end: + + # Heun's method + x_2 = x + d * dt + denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) + d_2 = to_d(x_2, sigmas[i + 1], denoised_2) + + w = 2 * sigmas[0] + w2 = sigmas[i+1]/w + w1 = 1 - w2 + + d_prime = d * w1 + d_2 * w2 + + + x = x + d_prime * dt + + else: + # Heun++ + x_2 = x + d * dt + denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) + d_2 = to_d(x_2, sigmas[i + 1], denoised_2) + dt_2 = sigmas[i + 2] - sigmas[i + 1] + + x_3 = x_2 + d_2 * dt_2 + denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args) + d_3 = to_d(x_3, sigmas[i + 2], denoised_3) + + w = 3 * sigmas[0] + w2 = sigmas[i + 1] / w + w3 = sigmas[i + 2] / w + w1 = 1 - w2 - w3 + + d_prime = w1 * d + w2 * d_2 + w3 * d_3 + x = x + d_prime * dt + return x diff --git a/comfy/k_diffusion/utils.py b/comfy/k_diffusion/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..a644df2f3cf82b32ac6e9bf2cb7bfc70c95e05f9 --- /dev/null +++ b/comfy/k_diffusion/utils.py @@ -0,0 +1,313 @@ +from contextlib import contextmanager +import hashlib +import math +from pathlib import Path +import shutil +import urllib +import warnings + +from PIL import Image +import torch +from torch import nn, optim +from torch.utils import data + + +def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'): + """Apply passed in transforms for HuggingFace Datasets.""" + images = [transform(image.convert(mode)) for image in examples[image_key]] + return {image_key: images} + + +def append_dims(x, target_dims): + """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" + dims_to_append = target_dims - x.ndim + if dims_to_append < 0: + raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') + expanded = x[(...,) + (None,) * dims_to_append] + # MPS will get inf values if it tries to index into the new axes, but detaching fixes this. + # https://github.com/pytorch/pytorch/issues/84364 + return expanded.detach().clone() if expanded.device.type == 'mps' else expanded + + +def n_params(module): + """Returns the number of trainable parameters in a module.""" + return sum(p.numel() for p in module.parameters()) + + +def download_file(path, url, digest=None): + """Downloads a file if it does not exist, optionally checking its SHA-256 hash.""" + path = Path(path) + path.parent.mkdir(parents=True, exist_ok=True) + if not path.exists(): + with urllib.request.urlopen(url) as response, open(path, 'wb') as f: + shutil.copyfileobj(response, f) + if digest is not None: + file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest() + if digest != file_digest: + raise OSError(f'hash of {path} (url: {url}) failed to validate') + return path + + +@contextmanager +def train_mode(model, mode=True): + """A context manager that places a model into training mode and restores + the previous mode on exit.""" + modes = [module.training for module in model.modules()] + try: + yield model.train(mode) + finally: + for i, module in enumerate(model.modules()): + module.training = modes[i] + + +def eval_mode(model): + """A context manager that places a model into evaluation mode and restores + the previous mode on exit.""" + return train_mode(model, False) + + +@torch.no_grad() +def ema_update(model, averaged_model, decay): + """Incorporates updated model parameters into an exponential moving averaged + version of a model. It should be called after each optimizer step.""" + model_params = dict(model.named_parameters()) + averaged_params = dict(averaged_model.named_parameters()) + assert model_params.keys() == averaged_params.keys() + + for name, param in model_params.items(): + averaged_params[name].mul_(decay).add_(param, alpha=1 - decay) + + model_buffers = dict(model.named_buffers()) + averaged_buffers = dict(averaged_model.named_buffers()) + assert model_buffers.keys() == averaged_buffers.keys() + + for name, buf in model_buffers.items(): + averaged_buffers[name].copy_(buf) + + +class EMAWarmup: + """Implements an EMA warmup using an inverse decay schedule. + If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are + good values for models you plan to train for a million or more steps (reaches decay + factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models + you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at + 215.4k steps). + Args: + inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1. + power (float): Exponential factor of EMA warmup. Default: 1. + min_value (float): The minimum EMA decay rate. Default: 0. + max_value (float): The maximum EMA decay rate. Default: 1. + start_at (int): The epoch to start averaging at. Default: 0. + last_epoch (int): The index of last epoch. Default: 0. + """ + + def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0, + last_epoch=0): + self.inv_gamma = inv_gamma + self.power = power + self.min_value = min_value + self.max_value = max_value + self.start_at = start_at + self.last_epoch = last_epoch + + def state_dict(self): + """Returns the state of the class as a :class:`dict`.""" + return dict(self.__dict__.items()) + + def load_state_dict(self, state_dict): + """Loads the class's state. + Args: + state_dict (dict): scaler state. Should be an object returned + from a call to :meth:`state_dict`. + """ + self.__dict__.update(state_dict) + + def get_value(self): + """Gets the current EMA decay rate.""" + epoch = max(0, self.last_epoch - self.start_at) + value = 1 - (1 + epoch / self.inv_gamma) ** -self.power + return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value)) + + def step(self): + """Updates the step count.""" + self.last_epoch += 1 + + +class InverseLR(optim.lr_scheduler._LRScheduler): + """Implements an inverse decay learning rate schedule with an optional exponential + warmup. When last_epoch=-1, sets initial lr as lr. + inv_gamma is the number of steps/epochs required for the learning rate to decay to + (1 / 2)**power of its original value. + Args: + optimizer (Optimizer): Wrapped optimizer. + inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1. + power (float): Exponential factor of learning rate decay. Default: 1. + warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable) + Default: 0. + min_lr (float): The minimum learning rate. Default: 0. + last_epoch (int): The index of last epoch. Default: -1. + verbose (bool): If ``True``, prints a message to stdout for + each update. Default: ``False``. + """ + + def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0., + last_epoch=-1, verbose=False): + self.inv_gamma = inv_gamma + self.power = power + if not 0. <= warmup < 1: + raise ValueError('Invalid value for warmup') + self.warmup = warmup + self.min_lr = min_lr + super().__init__(optimizer, last_epoch, verbose) + + def get_lr(self): + if not self._get_lr_called_within_step: + warnings.warn("To get the last learning rate computed by the scheduler, " + "please use `get_last_lr()`.") + + return self._get_closed_form_lr() + + def _get_closed_form_lr(self): + warmup = 1 - self.warmup ** (self.last_epoch + 1) + lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power + return [warmup * max(self.min_lr, base_lr * lr_mult) + for base_lr in self.base_lrs] + + +class ExponentialLR(optim.lr_scheduler._LRScheduler): + """Implements an exponential learning rate schedule with an optional exponential + warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate + continuously by decay (default 0.5) every num_steps steps. + Args: + optimizer (Optimizer): Wrapped optimizer. + num_steps (float): The number of steps to decay the learning rate by decay in. + decay (float): The factor by which to decay the learning rate every num_steps + steps. Default: 0.5. + warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable) + Default: 0. + min_lr (float): The minimum learning rate. Default: 0. + last_epoch (int): The index of last epoch. Default: -1. + verbose (bool): If ``True``, prints a message to stdout for + each update. Default: ``False``. + """ + + def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0., + last_epoch=-1, verbose=False): + self.num_steps = num_steps + self.decay = decay + if not 0. <= warmup < 1: + raise ValueError('Invalid value for warmup') + self.warmup = warmup + self.min_lr = min_lr + super().__init__(optimizer, last_epoch, verbose) + + def get_lr(self): + if not self._get_lr_called_within_step: + warnings.warn("To get the last learning rate computed by the scheduler, " + "please use `get_last_lr()`.") + + return self._get_closed_form_lr() + + def _get_closed_form_lr(self): + warmup = 1 - self.warmup ** (self.last_epoch + 1) + lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch + return [warmup * max(self.min_lr, base_lr * lr_mult) + for base_lr in self.base_lrs] + + +def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32): + """Draws samples from an lognormal distribution.""" + return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp() + + +def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32): + """Draws samples from an optionally truncated log-logistic distribution.""" + min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64) + max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64) + min_cdf = min_value.log().sub(loc).div(scale).sigmoid() + max_cdf = max_value.log().sub(loc).div(scale).sigmoid() + u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf + return u.logit().mul(scale).add(loc).exp().to(dtype) + + +def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32): + """Draws samples from an log-uniform distribution.""" + min_value = math.log(min_value) + max_value = math.log(max_value) + return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp() + + +def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32): + """Draws samples from a truncated v-diffusion training timestep distribution.""" + min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi + max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi + u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf + return torch.tan(u * math.pi / 2) * sigma_data + + +def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32): + """Draws samples from a split lognormal distribution.""" + n = torch.randn(shape, device=device, dtype=dtype).abs() + u = torch.rand(shape, device=device, dtype=dtype) + n_left = n * -scale_1 + loc + n_right = n * scale_2 + loc + ratio = scale_1 / (scale_1 + scale_2) + return torch.where(u < ratio, n_left, n_right).exp() + + +class FolderOfImages(data.Dataset): + """Recursively finds all images in a directory. It does not support + classes/targets.""" + + IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'} + + def __init__(self, root, transform=None): + super().__init__() + self.root = Path(root) + self.transform = nn.Identity() if transform is None else transform + self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS) + + def __repr__(self): + return f'FolderOfImages(root="{self.root}", len: {len(self)})' + + def __len__(self): + return len(self.paths) + + def __getitem__(self, key): + path = self.paths[key] + with open(path, 'rb') as f: + image = Image.open(f).convert('RGB') + image = self.transform(image) + return image, + + +class CSVLogger: + def __init__(self, filename, columns): + self.filename = Path(filename) + self.columns = columns + if self.filename.exists(): + self.file = open(self.filename, 'a') + else: + self.file = open(self.filename, 'w') + self.write(*self.columns) + + def write(self, *args): + print(*args, sep=',', file=self.file, flush=True) + + +@contextmanager +def tf32_mode(cudnn=None, matmul=None): + """A context manager that sets whether TF32 is allowed on cuDNN or matmul.""" + cudnn_old = torch.backends.cudnn.allow_tf32 + matmul_old = torch.backends.cuda.matmul.allow_tf32 + try: + if cudnn is not None: + torch.backends.cudnn.allow_tf32 = cudnn + if matmul is not None: + torch.backends.cuda.matmul.allow_tf32 = matmul + yield + finally: + if cudnn is not None: + torch.backends.cudnn.allow_tf32 = cudnn_old + if matmul is not None: + torch.backends.cuda.matmul.allow_tf32 = matmul_old diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py new file mode 100644 index 0000000000000000000000000000000000000000..2252a075ed530fce5b6b6f81dfa7eede4b5395af --- /dev/null +++ b/comfy/latent_formats.py @@ -0,0 +1,39 @@ + +class LatentFormat: + scale_factor = 1.0 + latent_rgb_factors = None + taesd_decoder_name = None + + def process_in(self, latent): + return latent * self.scale_factor + + def process_out(self, latent): + return latent / self.scale_factor + +class SD15(LatentFormat): + def __init__(self, scale_factor=0.18215): + self.scale_factor = scale_factor + self.latent_rgb_factors = [ + # R G B + [ 0.3512, 0.2297, 0.3227], + [ 0.3250, 0.4974, 0.2350], + [-0.2829, 0.1762, 0.2721], + [-0.2120, -0.2616, -0.7177] + ] + self.taesd_decoder_name = "taesd_decoder" + +class SDXL(LatentFormat): + def __init__(self): + self.scale_factor = 0.13025 + self.latent_rgb_factors = [ + # R G B + [ 0.3920, 0.4054, 0.4549], + [-0.2634, -0.0196, 0.0653], + [ 0.0568, 0.1687, -0.0755], + [-0.3112, -0.2359, -0.2076] + ] + self.taesd_decoder_name = "taesdxl_decoder" + +class SD_X4(LatentFormat): + def __init__(self): + self.scale_factor = 0.08333 diff --git a/comfy/ldm/.DS_Store b/comfy/ldm/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..16242cc0ecc2ca74464bf53e5cc0bd3684cc3243 Binary files /dev/null and b/comfy/ldm/.DS_Store differ diff --git a/comfy/ldm/models/autoencoder.py b/comfy/ldm/models/autoencoder.py new file mode 100644 index 0000000000000000000000000000000000000000..b91ec3249fb5083df66ff4f2f3720bcc975cde9a --- /dev/null +++ b/comfy/ldm/models/autoencoder.py @@ -0,0 +1,228 @@ +import torch +# import pytorch_lightning as pl +import torch.nn.functional as F +from contextlib import contextmanager +from typing import Any, Dict, List, Optional, Tuple, Union + +from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution + +from comfy.ldm.util import instantiate_from_config +from comfy.ldm.modules.ema import LitEma +import comfy.ops + +class DiagonalGaussianRegularizer(torch.nn.Module): + def __init__(self, sample: bool = True): + super().__init__() + self.sample = sample + + def get_trainable_parameters(self) -> Any: + yield from () + + def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: + log = dict() + posterior = DiagonalGaussianDistribution(z) + if self.sample: + z = posterior.sample() + else: + z = posterior.mode() + kl_loss = posterior.kl() + kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] + log["kl_loss"] = kl_loss + return z, log + + +class AbstractAutoencoder(torch.nn.Module): + """ + This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators, + unCLIP models, etc. Hence, it is fairly general, and specific features + (e.g. discriminator training, encoding, decoding) must be implemented in subclasses. + """ + + def __init__( + self, + ema_decay: Union[None, float] = None, + monitor: Union[None, str] = None, + input_key: str = "jpg", + **kwargs, + ): + super().__init__() + + self.input_key = input_key + self.use_ema = ema_decay is not None + if monitor is not None: + self.monitor = monitor + + if self.use_ema: + self.model_ema = LitEma(self, decay=ema_decay) + logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + def get_input(self, batch) -> Any: + raise NotImplementedError() + + def on_train_batch_end(self, *args, **kwargs): + # for EMA computation + if self.use_ema: + self.model_ema(self) + + @contextmanager + def ema_scope(self, context=None): + if self.use_ema: + self.model_ema.store(self.parameters()) + self.model_ema.copy_to(self) + if context is not None: + logpy.info(f"{context}: Switched to EMA weights") + try: + yield None + finally: + if self.use_ema: + self.model_ema.restore(self.parameters()) + if context is not None: + logpy.info(f"{context}: Restored training weights") + + def encode(self, *args, **kwargs) -> torch.Tensor: + raise NotImplementedError("encode()-method of abstract base class called") + + def decode(self, *args, **kwargs) -> torch.Tensor: + raise NotImplementedError("decode()-method of abstract base class called") + + def instantiate_optimizer_from_config(self, params, lr, cfg): + logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config") + return get_obj_from_str(cfg["target"])( + params, lr=lr, **cfg.get("params", dict()) + ) + + def configure_optimizers(self) -> Any: + raise NotImplementedError() + + +class AutoencodingEngine(AbstractAutoencoder): + """ + Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL + (we also restore them explicitly as special cases for legacy reasons). + Regularizations such as KL or VQ are moved to the regularizer class. + """ + + def __init__( + self, + *args, + encoder_config: Dict, + decoder_config: Dict, + regularizer_config: Dict, + **kwargs, + ): + super().__init__(*args, **kwargs) + + self.encoder: torch.nn.Module = instantiate_from_config(encoder_config) + self.decoder: torch.nn.Module = instantiate_from_config(decoder_config) + self.regularization: AbstractRegularizer = instantiate_from_config( + regularizer_config + ) + + def get_last_layer(self): + return self.decoder.get_last_layer() + + def encode( + self, + x: torch.Tensor, + return_reg_log: bool = False, + unregularized: bool = False, + ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: + z = self.encoder(x) + if unregularized: + return z, dict() + z, reg_log = self.regularization(z) + if return_reg_log: + return z, reg_log + return z + + def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor: + x = self.decoder(z, **kwargs) + return x + + def forward( + self, x: torch.Tensor, **additional_decode_kwargs + ) -> Tuple[torch.Tensor, torch.Tensor, dict]: + z, reg_log = self.encode(x, return_reg_log=True) + dec = self.decode(z, **additional_decode_kwargs) + return z, dec, reg_log + + +class AutoencodingEngineLegacy(AutoencodingEngine): + def __init__(self, embed_dim: int, **kwargs): + self.max_batch_size = kwargs.pop("max_batch_size", None) + ddconfig = kwargs.pop("ddconfig") + super().__init__( + encoder_config={ + "target": "comfy.ldm.modules.diffusionmodules.model.Encoder", + "params": ddconfig, + }, + decoder_config={ + "target": "comfy.ldm.modules.diffusionmodules.model.Decoder", + "params": ddconfig, + }, + **kwargs, + ) + self.quant_conv = comfy.ops.disable_weight_init.Conv2d( + (1 + ddconfig["double_z"]) * ddconfig["z_channels"], + (1 + ddconfig["double_z"]) * embed_dim, + 1, + ) + self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1) + self.embed_dim = embed_dim + + def get_autoencoder_params(self) -> list: + params = super().get_autoencoder_params() + return params + + def encode( + self, x: torch.Tensor, return_reg_log: bool = False + ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: + if self.max_batch_size is None: + z = self.encoder(x) + z = self.quant_conv(z) + else: + N = x.shape[0] + bs = self.max_batch_size + n_batches = int(math.ceil(N / bs)) + z = list() + for i_batch in range(n_batches): + z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs]) + z_batch = self.quant_conv(z_batch) + z.append(z_batch) + z = torch.cat(z, 0) + + z, reg_log = self.regularization(z) + if return_reg_log: + return z, reg_log + return z + + def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: + if self.max_batch_size is None: + dec = self.post_quant_conv(z) + dec = self.decoder(dec, **decoder_kwargs) + else: + N = z.shape[0] + bs = self.max_batch_size + n_batches = int(math.ceil(N / bs)) + dec = list() + for i_batch in range(n_batches): + dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs]) + dec_batch = self.decoder(dec_batch, **decoder_kwargs) + dec.append(dec_batch) + dec = torch.cat(dec, 0) + + return dec + + +class AutoencoderKL(AutoencodingEngineLegacy): + def __init__(self, **kwargs): + if "lossconfig" in kwargs: + kwargs["loss_config"] = kwargs.pop("lossconfig") + super().__init__( + regularizer_config={ + "target": ( + "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer" + ) + }, + **kwargs, + ) diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py new file mode 100644 index 0000000000000000000000000000000000000000..9c9cb761dd77723b427aac937486cd1196be0bdf --- /dev/null +++ b/comfy/ldm/modules/attention.py @@ -0,0 +1,781 @@ +import math +import torch +import torch.nn.functional as F +from torch import nn, einsum +from einops import rearrange, repeat +from typing import Optional, Any + +from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding +from .sub_quadratic_attention import efficient_dot_product_attention + +from comfy import model_management + +if model_management.xformers_enabled(): + import xformers + import xformers.ops + +from comfy.cli_args import args +import comfy.ops +ops = comfy.ops.disable_weight_init + +# CrossAttn precision handling +if args.dont_upcast_attention: + print("disabling upcasting of attention") + _ATTN_PRECISION = "fp16" +else: + _ATTN_PRECISION = "fp32" + + +def exists(val): + return val is not None + + +def uniq(arr): + return{el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d + + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops): + super().__init__() + self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = nn.Sequential( + operations.Linear(dim, inner_dim, dtype=dtype, device=device), + nn.GELU() + ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations) + + self.net = nn.Sequential( + project_in, + nn.Dropout(dropout), + operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) + ) + + def forward(self, x): + return self.net(x) + +def Normalize(in_channels, dtype=None, device=None): + return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) + +def attention_basic(q, k, v, heads, mask=None): + b, _, dim_head = q.shape + dim_head //= heads + scale = dim_head ** -0.5 + + h = heads + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, -1, heads, dim_head) + .permute(0, 2, 1, 3) + .reshape(b * heads, -1, dim_head) + .contiguous(), + (q, k, v), + ) + + # force cast to fp32 to avoid overflowing + if _ATTN_PRECISION =="fp32": + sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale + else: + sim = einsum('b i d, b j d -> b i j', q, k) * scale + + del q, k + + if exists(mask): + if mask.dtype == torch.bool: + mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + else: + sim += mask + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + + out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v) + out = ( + out.unsqueeze(0) + .reshape(b, heads, -1, dim_head) + .permute(0, 2, 1, 3) + .reshape(b, -1, heads * dim_head) + ) + return out + + +def attention_sub_quad(query, key, value, heads, mask=None): + b, _, dim_head = query.shape + dim_head //= heads + + scale = dim_head ** -0.5 + query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) + value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) + + key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1) + + dtype = query.dtype + upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32 + if upcast_attention: + bytes_per_token = torch.finfo(torch.float32).bits//8 + else: + bytes_per_token = torch.finfo(query.dtype).bits//8 + batch_x_heads, q_tokens, _ = query.shape + _, _, k_tokens = key.shape + qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens + + mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True) + + kv_chunk_size_min = None + kv_chunk_size = None + query_chunk_size = None + + for x in [4096, 2048, 1024, 512, 256]: + count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0) + if count >= k_tokens: + kv_chunk_size = k_tokens + query_chunk_size = x + break + + if query_chunk_size is None: + query_chunk_size = 512 + + hidden_states = efficient_dot_product_attention( + query, + key, + value, + query_chunk_size=query_chunk_size, + kv_chunk_size=kv_chunk_size, + kv_chunk_size_min=kv_chunk_size_min, + use_checkpoint=False, + upcast_attention=upcast_attention, + mask=mask, + ) + + hidden_states = hidden_states.to(dtype) + + hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2) + return hidden_states + +def attention_split(q, k, v, heads, mask=None): + b, _, dim_head = q.shape + dim_head //= heads + scale = dim_head ** -0.5 + + h = heads + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, -1, heads, dim_head) + .permute(0, 2, 1, 3) + .reshape(b * heads, -1, dim_head) + .contiguous(), + (q, k, v), + ) + + r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) + + mem_free_total = model_management.get_free_memory(q.device) + + if _ATTN_PRECISION =="fp32": + element_size = 4 + else: + element_size = q.element_size() + + gb = 1024 ** 3 + tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size + modifier = 3 + mem_required = tensor_size * modifier + steps = 1 + + + if mem_required > mem_free_total: + steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) + # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " + # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") + + if steps > 64: + max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 + raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' + f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free') + + # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size) + first_op_done = False + cleared_cache = False + while True: + try: + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] + for i in range(0, q.shape[1], slice_size): + end = i + slice_size + if _ATTN_PRECISION =="fp32": + with torch.autocast(enabled=False, device_type = 'cuda'): + s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale + else: + s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale + + if mask is not None: + if len(mask.shape) == 2: + s1 += mask[i:end] + else: + s1 += mask[:, i:end] + + s2 = s1.softmax(dim=-1).to(v.dtype) + del s1 + first_op_done = True + + r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) + del s2 + break + except model_management.OOM_EXCEPTION as e: + if first_op_done == False: + model_management.soft_empty_cache(True) + if cleared_cache == False: + cleared_cache = True + print("out of memory error, emptying cache and trying again") + continue + steps *= 2 + if steps > 64: + raise e + print("out of memory error, increasing steps and trying again", steps) + else: + raise e + + del q, k, v + + r1 = ( + r1.unsqueeze(0) + .reshape(b, heads, -1, dim_head) + .permute(0, 2, 1, 3) + .reshape(b, -1, heads * dim_head) + ) + return r1 + +BROKEN_XFORMERS = False +try: + x_vers = xformers.__version__ + #I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error) + BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23") +except: + pass + +def attention_xformers(q, k, v, heads, mask=None): + b, _, dim_head = q.shape + dim_head //= heads + if BROKEN_XFORMERS: + if b * heads > 65535: + return attention_pytorch(q, k, v, heads, mask) + + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, -1, heads, dim_head) + .permute(0, 2, 1, 3) + .reshape(b * heads, -1, dim_head) + .contiguous(), + (q, k, v), + ) + + if mask is not None: + pad = 8 - q.shape[1] % 8 + mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device) + mask_out[:, :, :mask.shape[-1]] = mask + mask = mask_out[:, :, :mask.shape[-1]] + + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask) + + out = ( + out.unsqueeze(0) + .reshape(b, heads, -1, dim_head) + .permute(0, 2, 1, 3) + .reshape(b, -1, heads * dim_head) + ) + return out + +def attention_pytorch(q, k, v, heads, mask=None): + b, _, dim_head = q.shape + dim_head //= heads + q, k, v = map( + lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), + (q, k, v), + ) + + out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) + out = ( + out.transpose(1, 2).reshape(b, -1, heads * dim_head) + ) + return out + + +optimized_attention = attention_basic + +if model_management.xformers_enabled(): + print("Using xformers cross attention") + optimized_attention = attention_xformers +elif model_management.pytorch_attention_enabled(): + print("Using pytorch cross attention") + optimized_attention = attention_pytorch +else: + if args.use_split_cross_attention: + print("Using split optimization for cross attention") + optimized_attention = attention_split + else: + print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention") + optimized_attention = attention_sub_quad + +optimized_attention_masked = optimized_attention + +def optimized_attention_for_device(device, mask=False, small_input=False): + if small_input: + if model_management.pytorch_attention_enabled(): + return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases + else: + return attention_basic + + if device == torch.device("cpu"): + return attention_sub_quad + + if mask: + return optimized_attention_masked + + return optimized_attention + + +class CrossAttention(nn.Module): + def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=ops): + super().__init__() + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + + self.heads = heads + self.dim_head = dim_head + + self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) + self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) + self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) + + self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) + + def forward(self, x, context=None, value=None, mask=None): + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + if value is not None: + v = self.to_v(value) + del value + else: + v = self.to_v(context) + + if mask is None: + out = optimized_attention(q, k, v, self.heads) + else: + out = optimized_attention_masked(q, k, v, self.heads, mask) + return self.to_out(out) + + +class BasicTransformerBlock(nn.Module): + def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None, + disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=ops): + super().__init__() + + self.ff_in = ff_in or inner_dim is not None + if inner_dim is None: + inner_dim = dim + + self.is_res = inner_dim == dim + + if self.ff_in: + self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device) + self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) + + self.disable_self_attn = disable_self_attn + self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout, + context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn + self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) + + if disable_temporal_crossattention: + if switch_temporal_ca_to_sa: + raise ValueError + else: + self.attn2 = None + else: + context_dim_attn2 = None + if not switch_temporal_ca_to_sa: + context_dim_attn2 = context_dim + + self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2, + heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none + self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) + + self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) + self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) + self.checkpoint = checkpoint + self.n_heads = n_heads + self.d_head = d_head + self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa + + def forward(self, x, context=None, transformer_options={}): + return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint) + + def _forward(self, x, context=None, transformer_options={}): + extra_options = {} + block = transformer_options.get("block", None) + block_index = transformer_options.get("block_index", 0) + transformer_patches = {} + transformer_patches_replace = {} + + for k in transformer_options: + if k == "patches": + transformer_patches = transformer_options[k] + elif k == "patches_replace": + transformer_patches_replace = transformer_options[k] + else: + extra_options[k] = transformer_options[k] + + extra_options["n_heads"] = self.n_heads + extra_options["dim_head"] = self.d_head + + if self.ff_in: + x_skip = x + x = self.ff_in(self.norm_in(x)) + if self.is_res: + x += x_skip + + n = self.norm1(x) + if self.disable_self_attn: + context_attn1 = context + else: + context_attn1 = None + value_attn1 = None + + if "attn1_patch" in transformer_patches: + patch = transformer_patches["attn1_patch"] + if context_attn1 is None: + context_attn1 = n + value_attn1 = context_attn1 + for p in patch: + n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) + + if block is not None: + transformer_block = (block[0], block[1], block_index) + else: + transformer_block = None + attn1_replace_patch = transformer_patches_replace.get("attn1", {}) + block_attn1 = transformer_block + if block_attn1 not in attn1_replace_patch: + block_attn1 = block + + if block_attn1 in attn1_replace_patch: + if context_attn1 is None: + context_attn1 = n + value_attn1 = n + n = self.attn1.to_q(n) + context_attn1 = self.attn1.to_k(context_attn1) + value_attn1 = self.attn1.to_v(value_attn1) + n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options) + n = self.attn1.to_out(n) + else: + n = self.attn1(n, context=context_attn1, value=value_attn1) + + if "attn1_output_patch" in transformer_patches: + patch = transformer_patches["attn1_output_patch"] + for p in patch: + n = p(n, extra_options) + + x += n + if "middle_patch" in transformer_patches: + patch = transformer_patches["middle_patch"] + for p in patch: + x = p(x, extra_options) + + if self.attn2 is not None: + n = self.norm2(x) + if self.switch_temporal_ca_to_sa: + context_attn2 = n + else: + context_attn2 = context + value_attn2 = None + if "attn2_patch" in transformer_patches: + patch = transformer_patches["attn2_patch"] + value_attn2 = context_attn2 + for p in patch: + n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) + + attn2_replace_patch = transformer_patches_replace.get("attn2", {}) + block_attn2 = transformer_block + if block_attn2 not in attn2_replace_patch: + block_attn2 = block + + if block_attn2 in attn2_replace_patch: + if value_attn2 is None: + value_attn2 = context_attn2 + n = self.attn2.to_q(n) + context_attn2 = self.attn2.to_k(context_attn2) + value_attn2 = self.attn2.to_v(value_attn2) + n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) + n = self.attn2.to_out(n) + else: + n = self.attn2(n, context=context_attn2, value=value_attn2) + + if "attn2_output_patch" in transformer_patches: + patch = transformer_patches["attn2_output_patch"] + for p in patch: + n = p(n, extra_options) + + x += n + if self.is_res: + x_skip = x + x = self.ff(self.norm3(x)) + if self.is_res: + x += x_skip + + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + NEW: use_linear for more efficiency instead of the 1x1 convs + """ + def __init__(self, in_channels, n_heads, d_head, + depth=1, dropout=0., context_dim=None, + disable_self_attn=False, use_linear=False, + use_checkpoint=True, dtype=None, device=None, operations=ops): + super().__init__() + if exists(context_dim) and not isinstance(context_dim, list): + context_dim = [context_dim] * depth + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) + if not use_linear: + self.proj_in = operations.Conv2d(in_channels, + inner_dim, + kernel_size=1, + stride=1, + padding=0, dtype=dtype, device=device) + else: + self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) + + self.transformer_blocks = nn.ModuleList( + [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], + disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations) + for d in range(depth)] + ) + if not use_linear: + self.proj_out = operations.Conv2d(inner_dim,in_channels, + kernel_size=1, + stride=1, + padding=0, dtype=dtype, device=device) + else: + self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) + self.use_linear = use_linear + + def forward(self, x, context=None, transformer_options={}): + # note: if no context is given, cross-attention defaults to self-attention + if not isinstance(context, list): + context = [context] * len(self.transformer_blocks) + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + if not self.use_linear: + x = self.proj_in(x) + x = rearrange(x, 'b c h w -> b (h w) c').contiguous() + if self.use_linear: + x = self.proj_in(x) + for i, block in enumerate(self.transformer_blocks): + transformer_options["block_index"] = i + x = block(x, context=context[i], transformer_options=transformer_options) + if self.use_linear: + x = self.proj_out(x) + x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() + if not self.use_linear: + x = self.proj_out(x) + return x + x_in + + +class SpatialVideoTransformer(SpatialTransformer): + def __init__( + self, + in_channels, + n_heads, + d_head, + depth=1, + dropout=0.0, + use_linear=False, + context_dim=None, + use_spatial_context=False, + timesteps=None, + merge_strategy: str = "fixed", + merge_factor: float = 0.5, + time_context_dim=None, + ff_in=False, + checkpoint=False, + time_depth=1, + disable_self_attn=False, + disable_temporal_crossattention=False, + max_time_embed_period: int = 10000, + dtype=None, device=None, operations=ops + ): + super().__init__( + in_channels, + n_heads, + d_head, + depth=depth, + dropout=dropout, + use_checkpoint=checkpoint, + context_dim=context_dim, + use_linear=use_linear, + disable_self_attn=disable_self_attn, + dtype=dtype, device=device, operations=operations + ) + self.time_depth = time_depth + self.depth = depth + self.max_time_embed_period = max_time_embed_period + + time_mix_d_head = d_head + n_time_mix_heads = n_heads + + time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads) + + inner_dim = n_heads * d_head + if use_spatial_context: + time_context_dim = context_dim + + self.time_stack = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, + n_time_mix_heads, + time_mix_d_head, + dropout=dropout, + context_dim=time_context_dim, + # timesteps=timesteps, + checkpoint=checkpoint, + ff_in=ff_in, + inner_dim=time_mix_inner_dim, + disable_self_attn=disable_self_attn, + disable_temporal_crossattention=disable_temporal_crossattention, + dtype=dtype, device=device, operations=operations + ) + for _ in range(self.depth) + ] + ) + + assert len(self.time_stack) == len(self.transformer_blocks) + + self.use_spatial_context = use_spatial_context + self.in_channels = in_channels + + time_embed_dim = self.in_channels * 4 + self.time_pos_embed = nn.Sequential( + operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device), + ) + + self.time_mixer = AlphaBlender( + alpha=merge_factor, merge_strategy=merge_strategy + ) + + def forward( + self, + x: torch.Tensor, + context: Optional[torch.Tensor] = None, + time_context: Optional[torch.Tensor] = None, + timesteps: Optional[int] = None, + image_only_indicator: Optional[torch.Tensor] = None, + transformer_options={} + ) -> torch.Tensor: + _, _, h, w = x.shape + x_in = x + spatial_context = None + if exists(context): + spatial_context = context + + if self.use_spatial_context: + assert ( + context.ndim == 3 + ), f"n dims of spatial context should be 3 but are {context.ndim}" + + if time_context is None: + time_context = context + time_context_first_timestep = time_context[::timesteps] + time_context = repeat( + time_context_first_timestep, "b ... -> (b n) ...", n=h * w + ) + elif time_context is not None and not self.use_spatial_context: + time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w) + if time_context.ndim == 2: + time_context = rearrange(time_context, "b c -> b 1 c") + + x = self.norm(x) + if not self.use_linear: + x = self.proj_in(x) + x = rearrange(x, "b c h w -> b (h w) c") + if self.use_linear: + x = self.proj_in(x) + + num_frames = torch.arange(timesteps, device=x.device) + num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) + num_frames = rearrange(num_frames, "b t -> (b t)") + t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype) + emb = self.time_pos_embed(t_emb) + emb = emb[:, None, :] + + for it_, (block, mix_block) in enumerate( + zip(self.transformer_blocks, self.time_stack) + ): + transformer_options["block_index"] = it_ + x = block( + x, + context=spatial_context, + transformer_options=transformer_options, + ) + + x_mix = x + x_mix = x_mix + emb + + B, S, C = x_mix.shape + x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps) + x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options + x_mix = rearrange( + x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps + ) + + x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator) + + if self.use_linear: + x = self.proj_out(x) + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + if not self.use_linear: + x = self.proj_out(x) + out = x + x_in + return out + + diff --git a/comfy/ldm/modules/diffusionmodules/__init__.py b/comfy/ldm/modules/diffusionmodules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py new file mode 100644 index 0000000000000000000000000000000000000000..cc81c1f231cb9e5783837b5122a7774d43a0ce17 --- /dev/null +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -0,0 +1,650 @@ +# pytorch_diffusion + derived encoder decoder +import math +import torch +import torch.nn as nn +import numpy as np +from einops import rearrange +from typing import Optional, Any + +from comfy import model_management +import comfy.ops +ops = comfy.ops.disable_weight_init + +if model_management.xformers_enabled_vae(): + import xformers + import xformers.ops + +def get_timestep_embedding(timesteps, embedding_dim): + """ + This matches the implementation in Denoising Diffusion Probabilistic Models: + From Fairseq. + Build sinusoidal embeddings. + This matches the implementation in tensor2tensor, but differs slightly + from the description in Section 3.5 of "Attention Is All You Need". + """ + assert len(timesteps.shape) == 1 + + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) + emb = emb.to(device=timesteps.device) + emb = timesteps.float()[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0,1,0,0)) + return emb + + +def nonlinearity(x): + # swish + return x*torch.sigmoid(x) + + +def Normalize(in_channels, num_groups=32): + return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) + + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + self.conv = ops.Conv2d(in_channels, + in_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + try: + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + except: #operation not implemented for bf16 + b, c, h, w = x.shape + out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device) + split = 8 + l = out.shape[1] // split + for i in range(0, out.shape[1], l): + out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype) + del x + x = out + + if self.with_conv: + x = self.conv(x) + return x + + +class Downsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + # no asymmetric padding in torch conv, must do it ourselves + self.conv = ops.Conv2d(in_channels, + in_channels, + kernel_size=3, + stride=2, + padding=0) + + def forward(self, x): + if self.with_conv: + pad = (0,1,0,1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + return x + + +class ResnetBlock(nn.Module): + def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, + dropout, temb_channels=512): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.swish = torch.nn.SiLU(inplace=True) + self.norm1 = Normalize(in_channels) + self.conv1 = ops.Conv2d(in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + if temb_channels > 0: + self.temb_proj = ops.Linear(temb_channels, + out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout, inplace=True) + self.conv2 = ops.Conv2d(out_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = ops.Conv2d(in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + else: + self.nin_shortcut = ops.Conv2d(in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = self.swish(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(self.swish(temb))[:,:,None,None] + + h = self.norm2(h) + h = self.swish(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x+h + +def slice_attention(q, k, v): + r1 = torch.zeros_like(k, device=q.device) + scale = (int(q.shape[-1])**(-0.5)) + + mem_free_total = model_management.get_free_memory(q.device) + + gb = 1024 ** 3 + tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() + modifier = 3 if q.element_size() == 2 else 2.5 + mem_required = tensor_size * modifier + steps = 1 + + if mem_required > mem_free_total: + steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) + + while True: + try: + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] + for i in range(0, q.shape[1], slice_size): + end = i + slice_size + s1 = torch.bmm(q[:, i:end], k) * scale + + s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1) + del s1 + + r1[:, :, i:end] = torch.bmm(v, s2) + del s2 + break + except model_management.OOM_EXCEPTION as e: + model_management.soft_empty_cache(True) + steps *= 2 + if steps > 128: + raise e + print("out of memory error, increasing steps and trying again", steps) + + return r1 + +def normal_attention(q, k, v): + # compute attention + b,c,h,w = q.shape + + q = q.reshape(b,c,h*w) + q = q.permute(0,2,1) # b,hw,c + k = k.reshape(b,c,h*w) # b,c,hw + v = v.reshape(b,c,h*w) + + r1 = slice_attention(q, k, v) + h_ = r1.reshape(b,c,h,w) + del r1 + return h_ + +def xformers_attention(q, k, v): + # compute attention + B, C, H, W = q.shape + q, k, v = map( + lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(), + (q, k, v), + ) + + try: + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) + out = out.transpose(1, 2).reshape(B, C, H, W) + except NotImplementedError as e: + out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) + return out + +def pytorch_attention(q, k, v): + # compute attention + B, C, H, W = q.shape + q, k, v = map( + lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), + (q, k, v), + ) + + try: + out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) + out = out.transpose(2, 3).reshape(B, C, H, W) + except model_management.OOM_EXCEPTION as e: + print("scaled_dot_product_attention OOMed: switched to slice attention") + out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) + return out + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = ops.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.k = ops.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.v = ops.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.proj_out = ops.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + + if model_management.xformers_enabled_vae(): + print("Using xformers attention in VAE") + self.optimized_attention = xformers_attention + elif model_management.pytorch_attention_enabled(): + print("Using pytorch attention in VAE") + self.optimized_attention = pytorch_attention + else: + print("Using split attention in VAE") + self.optimized_attention = normal_attention + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + h_ = self.optimized_attention(q, k, v) + + h_ = self.proj_out(h_) + + return x+h_ + + +def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): + return AttnBlock(in_channels) + + +class Model(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = self.ch*4 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + self.use_timestep = use_timestep + if self.use_timestep: + # timestep embedding + self.temb = nn.Module() + self.temb.dense = nn.ModuleList([ + ops.Linear(self.ch, + self.temb_ch), + ops.Linear(self.temb_ch, + self.temb_ch), + ]) + + # downsampling + self.conv_in = ops.Conv2d(in_channels, + self.ch, + kernel_size=3, + stride=1, + padding=1) + + curr_res = resolution + in_ch_mult = (1,)+tuple(ch_mult) + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch*in_ch_mult[i_level] + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions-1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch*ch_mult[i_level] + skip_in = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks+1): + if i_block == self.num_res_blocks: + skip_in = ch*in_ch_mult[i_level] + block.append(ResnetBlock(in_channels=block_in+skip_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = ops.Conv2d(block_in, + out_ch, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x, t=None, context=None): + #assert x.shape[2] == x.shape[3] == self.resolution + if context is not None: + # assume aligned context, cat along channel axis + x = torch.cat((x, context), dim=1) + if self.use_timestep: + # timestep embedding + assert t is not None + temb = get_timestep_embedding(t, self.ch) + temb = self.temb.dense[0](temb) + temb = nonlinearity(temb) + temb = self.temb.dense[1](temb) + else: + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions-1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h = self.up[i_level].block[i_block]( + torch.cat([h, hs.pop()], dim=1), temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + def get_last_layer(self): + return self.conv_out.weight + + +class Encoder(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", + **ignore_kwargs): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + # downsampling + self.conv_in = ops.Conv2d(in_channels, + self.ch, + kernel_size=3, + stride=1, + padding=1) + + curr_res = resolution + in_ch_mult = (1,)+tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch*in_ch_mult[i_level] + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions-1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # end + self.norm_out = Normalize(block_in) + self.conv_out = ops.Conv2d(block_in, + 2*z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + # timestep embedding + temb = None + # downsampling + h = self.conv_in(x) + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](h, temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + if i_level != self.num_resolutions-1: + h = self.down[i_level].downsample(h) + + # middle + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class Decoder(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, + conv_out_op=ops.Conv2d, + resnet_op=ResnetBlock, + attn_op=AttnBlock, + **ignorekwargs): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + + # compute in_ch_mult, block_in and curr_res at lowest res + in_ch_mult = (1,)+tuple(ch_mult) + block_in = ch*ch_mult[self.num_resolutions-1] + curr_res = resolution // 2**(self.num_resolutions-1) + self.z_shape = (1,z_channels,curr_res,curr_res) + print("Working with z of shape {} = {} dimensions.".format( + self.z_shape, np.prod(self.z_shape))) + + # z to block_in + self.conv_in = ops.Conv2d(z_channels, + block_in, + kernel_size=3, + stride=1, + padding=1) + + # middle + self.mid = nn.Module() + self.mid.block_1 = resnet_op(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = attn_op(block_in) + self.mid.block_2 = resnet_op(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks+1): + block.append(resnet_op(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(attn_op(block_in)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = conv_out_op(block_in, + out_ch, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, z, **kwargs): + #assert z.shape[1:] == self.z_shape[1:] + self.last_z_shape = z.shape + + # timestep embedding + temb = None + + # z to block_in + h = self.conv_in(z) + + # middle + h = self.mid.block_1(h, temb, **kwargs) + h = self.mid.attn_1(h, **kwargs) + h = self.mid.block_2(h, temb, **kwargs) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h = self.up[i_level].block[i_block](h, temb, **kwargs) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h, **kwargs) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h, **kwargs) + if self.tanh_out: + h = torch.tanh(h) + return h diff --git a/comfy/ldm/modules/diffusionmodules/openaimodel.py b/comfy/ldm/modules/diffusionmodules/openaimodel.py new file mode 100644 index 0000000000000000000000000000000000000000..998afd977ca7c221640ee622950bf563e11e66de --- /dev/null +++ b/comfy/ldm/modules/diffusionmodules/openaimodel.py @@ -0,0 +1,886 @@ +from abc import abstractmethod + +import torch as th +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange + +from .util import ( + checkpoint, + avg_pool_nd, + zero_module, + timestep_embedding, + AlphaBlender, +) +from ..attention import SpatialTransformer, SpatialVideoTransformer, default +from comfy.ldm.util import exists +import comfy.ops +ops = comfy.ops.disable_weight_init + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + +#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index" +def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None): + for layer in ts: + if isinstance(layer, VideoResBlock): + x = layer(x, emb, num_video_frames, image_only_indicator) + elif isinstance(layer, TimestepBlock): + x = layer(x, emb) + elif isinstance(layer, SpatialVideoTransformer): + x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options) + if "transformer_index" in transformer_options: + transformer_options["transformer_index"] += 1 + elif isinstance(layer, SpatialTransformer): + x = layer(x, context, transformer_options) + if "transformer_index" in transformer_options: + transformer_options["transformer_index"] += 1 + elif isinstance(layer, Upsample): + x = layer(x, output_shape=output_shape) + else: + x = layer(x) + return x + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, *args, **kwargs): + return forward_timestep_embed(self, *args, **kwargs) + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + if use_conv: + self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device) + + def forward(self, x, output_shape=None): + assert x.shape[1] == self.channels + if self.dims == 3: + shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2] + if output_shape is not None: + shape[1] = output_shape[3] + shape[2] = output_shape[4] + else: + shape = [x.shape[2] * 2, x.shape[3] * 2] + if output_shape is not None: + shape[0] = output_shape[2] + shape[1] = output_shape[3] + + x = F.interpolate(x, size=shape, mode="nearest") + if self.use_conv: + x = self.conv(x) + return x + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = operations.conv_nd( + dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param use_checkpoint: if True, use gradient checkpointing on this module. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + dims=2, + use_checkpoint=False, + up=False, + down=False, + kernel_size=3, + exchange_temb_dims=False, + skip_t_emb=False, + dtype=None, + device=None, + operations=ops + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + self.exchange_temb_dims = exchange_temb_dims + + if isinstance(kernel_size, list): + padding = [k // 2 for k in kernel_size] + else: + padding = kernel_size // 2 + + self.in_layers = nn.Sequential( + operations.GroupNorm(32, channels, dtype=dtype, device=device), + nn.SiLU(), + operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device) + self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device) + elif down: + self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device) + self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.skip_t_emb = skip_t_emb + if self.skip_t_emb: + self.emb_layers = None + self.exchange_temb_dims = False + else: + self.emb_layers = nn.Sequential( + nn.SiLU(), + operations.Linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device + ), + ) + self.out_layers = nn.Sequential( + operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device), + nn.SiLU(), + nn.Dropout(p=dropout), + operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device) + , + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = operations.conv_nd( + dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device + ) + else: + self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device) + + def forward(self, x, emb): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + return checkpoint( + self._forward, (x, emb), self.parameters(), self.use_checkpoint + ) + + + def _forward(self, x, emb): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + + emb_out = None + if not self.skip_t_emb: + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + h = out_norm(h) + if emb_out is not None: + scale, shift = th.chunk(emb_out, 2, dim=1) + h *= (1 + scale) + h += shift + h = out_rest(h) + else: + if emb_out is not None: + if self.exchange_temb_dims: + emb_out = rearrange(emb_out, "b t c ... -> b c t ...") + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class VideoResBlock(ResBlock): + def __init__( + self, + channels: int, + emb_channels: int, + dropout: float, + video_kernel_size=3, + merge_strategy: str = "fixed", + merge_factor: float = 0.5, + out_channels=None, + use_conv: bool = False, + use_scale_shift_norm: bool = False, + dims: int = 2, + use_checkpoint: bool = False, + up: bool = False, + down: bool = False, + dtype=None, + device=None, + operations=ops + ): + super().__init__( + channels, + emb_channels, + dropout, + out_channels=out_channels, + use_conv=use_conv, + use_scale_shift_norm=use_scale_shift_norm, + dims=dims, + use_checkpoint=use_checkpoint, + up=up, + down=down, + dtype=dtype, + device=device, + operations=operations + ) + + self.time_stack = ResBlock( + default(out_channels, channels), + emb_channels, + dropout=dropout, + dims=3, + out_channels=default(out_channels, channels), + use_scale_shift_norm=False, + use_conv=False, + up=False, + down=False, + kernel_size=video_kernel_size, + use_checkpoint=use_checkpoint, + exchange_temb_dims=True, + dtype=dtype, + device=device, + operations=operations + ) + self.time_mixer = AlphaBlender( + alpha=merge_factor, + merge_strategy=merge_strategy, + rearrange_pattern="b t -> b 1 t 1 1", + ) + + def forward( + self, + x: th.Tensor, + emb: th.Tensor, + num_video_frames: int, + image_only_indicator = None, + ) -> th.Tensor: + x = super().forward(x, emb) + + x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) + x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) + + x = self.time_stack( + x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames) + ) + x = self.time_mixer( + x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator + ) + x = rearrange(x, "b c t h w -> (b t) c h w") + return x + + +class Timestep(nn.Module): + def __init__(self, dim): + super().__init__() + self.dim = dim + + def forward(self, t): + return timestep_embedding(t, self.dim) + +def apply_control(h, control, name): + if control is not None and name in control and len(control[name]) > 0: + ctrl = control[name].pop() + if ctrl is not None: + try: + h += ctrl + except: + print("warning control could not be applied", h.shape, ctrl.shape) + return h + +class UNetModel(nn.Module): + """ + The full UNet model with attention and timestep embedding. + :param in_channels: channels in the input Tensor. + :param model_channels: base channel count for the model. + :param out_channels: channels in the output Tensor. + :param num_res_blocks: number of residual blocks per downsample. + :param dropout: the dropout probability. + :param channel_mult: channel multiplier for each level of the UNet. + :param conv_resample: if True, use learned convolutions for upsampling and + downsampling. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param num_classes: if specified (as an int), then this model will be + class-conditional with `num_classes` classes. + :param use_checkpoint: use gradient checkpointing to reduce memory usage. + :param num_heads: the number of attention heads in each attention layer. + :param num_heads_channels: if specified, ignore num_heads and instead use + a fixed channel width per attention head. + :param num_heads_upsample: works with num_heads to set a different number + of heads for upsampling. Deprecated. + :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. + :param resblock_updown: use residual blocks for up/downsampling. + :param use_new_attention_order: use a different attention pattern for potentially + increased efficiency. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + num_classes=None, + use_checkpoint=False, + dtype=th.float32, + num_heads=-1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + use_spatial_transformer=False, # custom transformer support + transformer_depth=1, # custom transformer support + context_dim=None, # custom transformer support + n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model + legacy=True, + disable_self_attentions=None, + num_attention_blocks=None, + disable_middle_self_attn=False, + use_linear_in_transformer=False, + adm_in_channels=None, + transformer_depth_middle=None, + transformer_depth_output=None, + use_temporal_resblock=False, + use_temporal_attention=False, + time_context_dim=None, + extra_ff_mix_layer=False, + use_spatial_context=False, + merge_strategy=None, + merge_factor=0.0, + video_kernel_size=None, + disable_temporal_crossattention=False, + max_ddpm_temb_period=10000, + device=None, + operations=ops, + ): + super().__init__() + + if context_dim is not None: + assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' + # from omegaconf.listconfig import ListConfig + # if type(context_dim) == ListConfig: + # context_dim = list(context_dim) + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + + if isinstance(num_res_blocks, int): + self.num_res_blocks = len(channel_mult) * [num_res_blocks] + else: + if len(num_res_blocks) != len(channel_mult): + raise ValueError("provide num_res_blocks either as an int (globally constant) or " + "as a list/tuple (per-level) with the same length as channel_mult") + self.num_res_blocks = num_res_blocks + + if disable_self_attentions is not None: + # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not + assert len(disable_self_attentions) == len(channel_mult) + if num_attention_blocks is not None: + assert len(num_attention_blocks) == len(self.num_res_blocks) + + transformer_depth = transformer_depth[:] + transformer_depth_output = transformer_depth_output[:] + + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_classes = num_classes + self.use_checkpoint = use_checkpoint + self.dtype = dtype + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.use_temporal_resblocks = use_temporal_resblock + self.predict_codebook_ids = n_embed is not None + + self.default_num_video_frames = None + self.default_image_only_indicator = None + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), + ) + + if self.num_classes is not None: + if isinstance(self.num_classes, int): + self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device) + elif self.num_classes == "continuous": + print("setting up linear c_adm embedding layer") + self.label_emb = nn.Linear(1, time_embed_dim) + elif self.num_classes == "sequential": + assert adm_in_channels is not None + self.label_emb = nn.Sequential( + nn.Sequential( + operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), + nn.SiLU(), + operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), + ) + ) + else: + raise ValueError() + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + + def get_attention_layer( + ch, + num_heads, + dim_head, + depth=1, + context_dim=None, + use_checkpoint=False, + disable_self_attn=False, + ): + if use_temporal_attention: + return SpatialVideoTransformer( + ch, + num_heads, + dim_head, + depth=depth, + context_dim=context_dim, + time_context_dim=time_context_dim, + dropout=dropout, + ff_in=extra_ff_mix_layer, + use_spatial_context=use_spatial_context, + merge_strategy=merge_strategy, + merge_factor=merge_factor, + checkpoint=use_checkpoint, + use_linear=use_linear_in_transformer, + disable_self_attn=disable_self_attn, + disable_temporal_crossattention=disable_temporal_crossattention, + max_time_embed_period=max_ddpm_temb_period, + dtype=self.dtype, device=device, operations=operations + ) + else: + return SpatialTransformer( + ch, num_heads, dim_head, depth=depth, context_dim=context_dim, + disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer, + use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations + ) + + def get_resblock( + merge_factor, + merge_strategy, + video_kernel_size, + ch, + time_embed_dim, + dropout, + out_channels, + dims, + use_checkpoint, + use_scale_shift_norm, + down=False, + up=False, + dtype=None, + device=None, + operations=ops + ): + if self.use_temporal_resblocks: + return VideoResBlock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + channels=ch, + emb_channels=time_embed_dim, + dropout=dropout, + out_channels=out_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=down, + up=up, + dtype=dtype, + device=device, + operations=operations + ) + else: + return ResBlock( + channels=ch, + emb_channels=time_embed_dim, + dropout=dropout, + out_channels=out_channels, + use_checkpoint=use_checkpoint, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + down=down, + up=up, + dtype=dtype, + device=device, + operations=operations + ) + + for level, mult in enumerate(channel_mult): + for nr in range(self.num_res_blocks[level]): + layers = [ + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations, + ) + ] + ch = mult * model_channels + num_transformers = transformer_depth.pop(0) + if num_transformers > 0: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: + layers.append(get_attention_layer( + ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, + disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + dtype=self.dtype, + device=device, + operations=operations + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + mid_block = [ + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=None, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations + )] + if transformer_depth_middle >= 0: + mid_block += [get_attention_layer( # always uses a self-attn + ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, + disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint + ), + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=None, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations + )] + self.middle_block = TimestepEmbedSequential(*mid_block) + self._feature_size += ch + + self.output_blocks = nn.ModuleList([]) + for level, mult in list(enumerate(channel_mult))[::-1]: + for i in range(self.num_res_blocks[level] + 1): + ich = input_block_chans.pop() + layers = [ + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch + ich, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=model_channels * mult, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + dtype=self.dtype, + device=device, + operations=operations + ) + ] + ch = model_channels * mult + num_transformers = transformer_depth_output.pop() + if num_transformers > 0: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if not exists(num_attention_blocks) or i < num_attention_blocks[level]: + layers.append( + get_attention_layer( + ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, + disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint + ) + ) + if level and i == self.num_res_blocks[level]: + out_ch = ch + layers.append( + get_resblock( + merge_factor=merge_factor, + merge_strategy=merge_strategy, + video_kernel_size=video_kernel_size, + ch=ch, + time_embed_dim=time_embed_dim, + dropout=dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + up=True, + dtype=self.dtype, + device=device, + operations=operations + ) + if resblock_updown + else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + + self.out = nn.Sequential( + operations.GroupNorm(32, ch, dtype=self.dtype, device=device), + nn.SiLU(), + zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)), + ) + if self.predict_codebook_ids: + self.id_predictor = nn.Sequential( + operations.GroupNorm(32, ch, dtype=self.dtype, device=device), + operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device), + #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits + ) + + def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param context: conditioning plugged in via crossattn + :param y: an [N] Tensor of labels, if class-conditional. + :return: an [N x C x ...] Tensor of outputs. + """ + transformer_options["original_shape"] = list(x.shape) + transformer_options["transformer_index"] = 0 + transformer_patches = transformer_options.get("patches", {}) + + num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames) + image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator) + time_context = kwargs.get("time_context", None) + + assert (y is not None) == ( + self.num_classes is not None + ), "must specify y if and only if the model is class-conditional" + hs = [] + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) + emb = self.time_embed(t_emb) + + if self.num_classes is not None: + assert y.shape[0] == x.shape[0] + emb = emb + self.label_emb(y) + + h = x + for id, module in enumerate(self.input_blocks): + transformer_options["block"] = ("input", id) + h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) + h = apply_control(h, control, 'input') + if "input_block_patch" in transformer_patches: + patch = transformer_patches["input_block_patch"] + for p in patch: + h = p(h, transformer_options) + + hs.append(h) + if "input_block_patch_after_skip" in transformer_patches: + patch = transformer_patches["input_block_patch_after_skip"] + for p in patch: + h = p(h, transformer_options) + + transformer_options["block"] = ("middle", 0) + h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) + h = apply_control(h, control, 'middle') + + + for id, module in enumerate(self.output_blocks): + transformer_options["block"] = ("output", id) + hsp = hs.pop() + hsp = apply_control(hsp, control, 'output') + + if "output_block_patch" in transformer_patches: + patch = transformer_patches["output_block_patch"] + for p in patch: + h, hsp = p(h, hsp, transformer_options) + + h = th.cat([h, hsp], dim=1) + del hsp + if len(hs) > 0: + output_shape = hs[-1].shape + else: + output_shape = None + h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) + h = h.type(x.dtype) + if self.predict_codebook_ids: + return self.id_predictor(h) + else: + return self.out(h) diff --git a/comfy/ldm/modules/diffusionmodules/upscaling.py b/comfy/ldm/modules/diffusionmodules/upscaling.py new file mode 100644 index 0000000000000000000000000000000000000000..f5ac7c2f9138d6d34cda735d2201225d46831154 --- /dev/null +++ b/comfy/ldm/modules/diffusionmodules/upscaling.py @@ -0,0 +1,85 @@ +import torch +import torch.nn as nn +import numpy as np +from functools import partial + +from .util import extract_into_tensor, make_beta_schedule +from comfy.ldm.util import default + + +class AbstractLowScaleModel(nn.Module): + # for concatenating a downsampled image to the latent representation + def __init__(self, noise_schedule_config=None): + super(AbstractLowScaleModel, self).__init__() + if noise_schedule_config is not None: + self.register_schedule(**noise_schedule_config) + + def register_schedule(self, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, + cosine_s=cosine_s) + alphas = 1. - betas + alphas_cumprod = np.cumprod(alphas, axis=0) + alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) + + timesteps, = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' + + to_torch = partial(torch.tensor, dtype=torch.float32) + + self.register_buffer('betas', to_torch(betas)) + self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) + self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) + self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) + self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) + self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) + self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) + + def q_sample(self, x_start, t, noise=None, seed=None): + if noise is None: + if seed is None: + noise = torch.randn_like(x_start) + else: + noise = torch.randn(x_start.size(), dtype=x_start.dtype, layout=x_start.layout, generator=torch.manual_seed(seed)).to(x_start.device) + return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise) + + def forward(self, x): + return x, None + + def decode(self, x): + return x + + +class SimpleImageConcat(AbstractLowScaleModel): + # no noise level conditioning + def __init__(self): + super(SimpleImageConcat, self).__init__(noise_schedule_config=None) + self.max_noise_level = 0 + + def forward(self, x): + # fix to constant noise level + return x, torch.zeros(x.shape[0], device=x.device).long() + + +class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel): + def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False): + super().__init__(noise_schedule_config=noise_schedule_config) + self.max_noise_level = max_noise_level + + def forward(self, x, noise_level=None, seed=None): + if noise_level is None: + noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() + else: + assert isinstance(noise_level, torch.Tensor) + z = self.q_sample(x, noise_level, seed=seed) + return z, noise_level + + + diff --git a/comfy/ldm/modules/diffusionmodules/util.py b/comfy/ldm/modules/diffusionmodules/util.py new file mode 100644 index 0000000000000000000000000000000000000000..5a6aa7d77d1b500fc6c40d75d2848cdcaf160677 --- /dev/null +++ b/comfy/ldm/modules/diffusionmodules/util.py @@ -0,0 +1,304 @@ +# adopted from +# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py +# and +# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +# and +# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py +# +# thanks! + + +import os +import math +import torch +import torch.nn as nn +import numpy as np +from einops import repeat, rearrange + +from comfy.ldm.util import instantiate_from_config + +class AlphaBlender(nn.Module): + strategies = ["learned", "fixed", "learned_with_images"] + + def __init__( + self, + alpha: float, + merge_strategy: str = "learned_with_images", + rearrange_pattern: str = "b t -> (b t) 1 1", + ): + super().__init__() + self.merge_strategy = merge_strategy + self.rearrange_pattern = rearrange_pattern + + assert ( + merge_strategy in self.strategies + ), f"merge_strategy needs to be in {self.strategies}" + + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif ( + self.merge_strategy == "learned" + or self.merge_strategy == "learned_with_images" + ): + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor: + # skip_time_mix = rearrange(repeat(skip_time_mix, 'b -> (b t) () () ()', t=t), '(b t) 1 ... -> b 1 t ...', t=t) + if self.merge_strategy == "fixed": + # make shape compatible + # alpha = repeat(self.mix_factor, '1 -> b () t () ()', t=t, b=bs) + alpha = self.mix_factor.to(image_only_indicator.device) + elif self.merge_strategy == "learned": + alpha = torch.sigmoid(self.mix_factor.to(image_only_indicator.device)) + # make shape compatible + # alpha = repeat(alpha, '1 -> s () ()', s = t * bs) + elif self.merge_strategy == "learned_with_images": + assert image_only_indicator is not None, "need image_only_indicator ..." + alpha = torch.where( + image_only_indicator.bool(), + torch.ones(1, 1, device=image_only_indicator.device), + rearrange(torch.sigmoid(self.mix_factor.to(image_only_indicator.device)), "... -> ... 1"), + ) + alpha = rearrange(alpha, self.rearrange_pattern) + # make shape compatible + # alpha = repeat(alpha, '1 -> s () ()', s = t * bs) + else: + raise NotImplementedError() + return alpha + + def forward( + self, + x_spatial, + x_temporal, + image_only_indicator=None, + ) -> torch.Tensor: + alpha = self.get_alpha(image_only_indicator) + x = ( + alpha.to(x_spatial.dtype) * x_spatial + + (1.0 - alpha).to(x_spatial.dtype) * x_temporal + ) + return x + + +def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if schedule == "linear": + betas = ( + torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 + ) + + elif schedule == "cosine": + timesteps = ( + torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s + ) + alphas = timesteps / (1 + cosine_s) * np.pi / 2 + alphas = torch.cos(alphas).pow(2) + alphas = alphas / alphas[0] + betas = 1 - alphas[1:] / alphas[:-1] + betas = torch.clamp(betas, min=0, max=0.999) + + elif schedule == "squaredcos_cap_v2": # used for karlo prior + # return early + return betas_for_alpha_bar( + n_timestep, + lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, + ) + + elif schedule == "sqrt_linear": + betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) + elif schedule == "sqrt": + betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 + else: + raise ValueError(f"schedule '{schedule}' unknown.") + return betas + + +def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): + if ddim_discr_method == 'uniform': + c = num_ddpm_timesteps // num_ddim_timesteps + ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) + elif ddim_discr_method == 'quad': + ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) + else: + raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') + + # assert ddim_timesteps.shape[0] == num_ddim_timesteps + # add one to get the final alpha values right (the ones from first scale to data during sampling) + steps_out = ddim_timesteps + 1 + if verbose: + print(f'Selected timesteps for ddim sampler: {steps_out}') + return steps_out + + +def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): + # select alphas for computing the variance schedule + alphas = alphacums[ddim_timesteps] + alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) + + # according the the formula provided in https://arxiv.org/abs/2010.02502 + sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) + if verbose: + print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') + print(f'For the chosen value of eta, which is {eta}, ' + f'this results in the following sigma_t schedule for ddim sampler {sigmas}') + return sigmas, alphas, alphas_prev + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return np.array(betas) + + +def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t) + return out.reshape(b, *((1,) * (len(x_shape) - 1))) + + +def checkpoint(func, inputs, params, flag): + """ + Evaluate a function without caching intermediate activations, allowing for + reduced memory at the expense of extra compute in the backward pass. + :param func: the function to evaluate. + :param inputs: the argument sequence to pass to `func`. + :param params: a sequence of parameters `func` depends on but does not + explicitly take as arguments. + :param flag: if False, disable gradient checkpointing. + """ + if flag: + args = tuple(inputs) + tuple(params) + return CheckpointFunction.apply(func, len(inputs), *args) + else: + return func(*inputs) + + +class CheckpointFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, run_function, length, *args): + ctx.run_function = run_function + ctx.input_tensors = list(args[:length]) + ctx.input_params = list(args[length:]) + ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(), + "dtype": torch.get_autocast_gpu_dtype(), + "cache_enabled": torch.is_autocast_cache_enabled()} + with torch.no_grad(): + output_tensors = ctx.run_function(*ctx.input_tensors) + return output_tensors + + @staticmethod + def backward(ctx, *output_grads): + ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] + with torch.enable_grad(), \ + torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): + # Fixes a bug where the first op in run_function modifies the + # Tensor storage in place, which is not allowed for detach()'d + # Tensors. + shallow_copies = [x.view_as(x) for x in ctx.input_tensors] + output_tensors = ctx.run_function(*shallow_copies) + input_grads = torch.autograd.grad( + output_tensors, + ctx.input_tensors + ctx.input_params, + output_grads, + allow_unused=True, + ) + del ctx.input_tensors + del ctx.input_params + del output_tensors + return (None, None) + input_grads + + +def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): + """ + Create sinusoidal timestep embeddings. + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + if not repeat_only: + half = dim // 2 + freqs = torch.exp( + -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half + ) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + else: + embedding = repeat(timesteps, 'b -> b d', d=dim) + return embedding + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def scale_module(module, scale): + """ + Scale the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().mul_(scale) + return module + + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +class HybridConditioner(nn.Module): + + def __init__(self, c_concat_config, c_crossattn_config): + super().__init__() + self.concat_conditioner = instantiate_from_config(c_concat_config) + self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) + + def forward(self, c_concat, c_crossattn): + c_concat = self.concat_conditioner(c_concat) + c_crossattn = self.crossattn_conditioner(c_crossattn) + return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} + + +def noise_like(shape, device, repeat=False): + repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) + noise = lambda: torch.randn(shape, device=device) + return repeat_noise() if repeat else noise() diff --git a/comfy/ldm/modules/distributions/__init__.py b/comfy/ldm/modules/distributions/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/comfy/ldm/modules/distributions/distributions.py b/comfy/ldm/modules/distributions/distributions.py new file mode 100644 index 0000000000000000000000000000000000000000..f2b8ef901130efc171aa69742ca0244d94d3f2e9 --- /dev/null +++ b/comfy/ldm/modules/distributions/distributions.py @@ -0,0 +1,92 @@ +import torch +import numpy as np + + +class AbstractDistribution: + def sample(self): + raise NotImplementedError() + + def mode(self): + raise NotImplementedError() + + +class DiracDistribution(AbstractDistribution): + def __init__(self, value): + self.value = value + + def sample(self): + return self.value + + def mode(self): + return self.value + + +class DiagonalGaussianDistribution(object): + def __init__(self, parameters, deterministic=False): + self.parameters = parameters + self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) + self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = torch.exp(0.5 * self.logvar) + self.var = torch.exp(self.logvar) + if self.deterministic: + self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) + + def sample(self): + x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) + return x + + def kl(self, other=None): + if self.deterministic: + return torch.Tensor([0.]) + else: + if other is None: + return 0.5 * torch.sum(torch.pow(self.mean, 2) + + self.var - 1.0 - self.logvar, + dim=[1, 2, 3]) + else: + return 0.5 * torch.sum( + torch.pow(self.mean - other.mean, 2) / other.var + + self.var / other.var - 1.0 - self.logvar + other.logvar, + dim=[1, 2, 3]) + + def nll(self, sample, dims=[1,2,3]): + if self.deterministic: + return torch.Tensor([0.]) + logtwopi = np.log(2.0 * np.pi) + return 0.5 * torch.sum( + logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, + dim=dims) + + def mode(self): + return self.mean + + +def normal_kl(mean1, logvar1, mean2, logvar2): + """ + source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 + Compute the KL divergence between two gaussians. + Shapes are automatically broadcasted, so batches can be compared to + scalars, among other use cases. + """ + tensor = None + for obj in (mean1, logvar1, mean2, logvar2): + if isinstance(obj, torch.Tensor): + tensor = obj + break + assert tensor is not None, "at least one argument must be a Tensor" + + # Force variances to be Tensors. Broadcasting helps convert scalars to + # Tensors, but it does not work for torch.exp(). + logvar1, logvar2 = [ + x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) + for x in (logvar1, logvar2) + ] + + return 0.5 * ( + -1.0 + + logvar2 + - logvar1 + + torch.exp(logvar1 - logvar2) + + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) + ) diff --git a/comfy/ldm/modules/ema.py b/comfy/ldm/modules/ema.py new file mode 100644 index 0000000000000000000000000000000000000000..bded25019b9bcbcd0260f0b8185f8c7859ca58c4 --- /dev/null +++ b/comfy/ldm/modules/ema.py @@ -0,0 +1,80 @@ +import torch +from torch import nn + + +class LitEma(nn.Module): + def __init__(self, model, decay=0.9999, use_num_upates=True): + super().__init__() + if decay < 0.0 or decay > 1.0: + raise ValueError('Decay must be between 0 and 1') + + self.m_name2s_name = {} + self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) + self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates + else torch.tensor(-1, dtype=torch.int)) + + for name, p in model.named_parameters(): + if p.requires_grad: + # remove as '.'-character is not allowed in buffers + s_name = name.replace('.', '') + self.m_name2s_name.update({name: s_name}) + self.register_buffer(s_name, p.clone().detach().data) + + self.collected_params = [] + + def reset_num_updates(self): + del self.num_updates + self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int)) + + def forward(self, model): + decay = self.decay + + if self.num_updates >= 0: + self.num_updates += 1 + decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates)) + + one_minus_decay = 1.0 - decay + + with torch.no_grad(): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + + for key in m_param: + if m_param[key].requires_grad: + sname = self.m_name2s_name[key] + shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) + shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) + else: + assert not key in self.m_name2s_name + + def copy_to(self, model): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + for key in m_param: + if m_param[key].requires_grad: + m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) + else: + assert not key in self.m_name2s_name + + def store(self, parameters): + """ + Save the current parameters for restoring later. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + temporarily stored. + """ + self.collected_params = [param.clone() for param in parameters] + + def restore(self, parameters): + """ + Restore the parameters stored with the `store` method. + Useful to validate the model with EMA parameters without affecting the + original optimization process. Store the parameters before the + `copy_to` method. After validation (or model saving), use this to + restore the former parameters. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + updated with the stored parameters. + """ + for c_param, param in zip(self.collected_params, parameters): + param.data.copy_(c_param.data) diff --git a/comfy/ldm/modules/encoders/__init__.py b/comfy/ldm/modules/encoders/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/comfy/ldm/modules/encoders/noise_aug_modules.py b/comfy/ldm/modules/encoders/noise_aug_modules.py new file mode 100644 index 0000000000000000000000000000000000000000..a5d8660301636fde75808cba50afa539cf1162e0 --- /dev/null +++ b/comfy/ldm/modules/encoders/noise_aug_modules.py @@ -0,0 +1,35 @@ +from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation +from ..diffusionmodules.openaimodel import Timestep +import torch + +class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation): + def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs): + super().__init__(*args, **kwargs) + if clip_stats_path is None: + clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim) + else: + clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu") + self.register_buffer("data_mean", clip_mean[None, :], persistent=False) + self.register_buffer("data_std", clip_std[None, :], persistent=False) + self.time_embed = Timestep(timestep_dim) + + def scale(self, x): + # re-normalize to centered mean and unit variance + x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device) + return x + + def unscale(self, x): + # back to original data stats + x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device) + return x + + def forward(self, x, noise_level=None, seed=None): + if noise_level is None: + noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() + else: + assert isinstance(noise_level, torch.Tensor) + x = self.scale(x) + z = self.q_sample(x, noise_level, seed=seed) + z = self.unscale(z) + noise_level = self.time_embed(noise_level) + return z, noise_level diff --git a/comfy/ldm/modules/sub_quadratic_attention.py b/comfy/ldm/modules/sub_quadratic_attention.py new file mode 100644 index 0000000000000000000000000000000000000000..cb0896b0df543c35a1cbba859ee0462a4ee1f72b --- /dev/null +++ b/comfy/ldm/modules/sub_quadratic_attention.py @@ -0,0 +1,273 @@ +# original source: +# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py +# license: +# MIT +# credit: +# Amin Rezaei (original author) +# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks) +# implementation of: +# Self-attention Does Not Need O(n2) Memory": +# https://arxiv.org/abs/2112.05682v2 + +from functools import partial +import torch +from torch import Tensor +from torch.utils.checkpoint import checkpoint +import math + +try: + from typing import Optional, NamedTuple, List, Protocol +except ImportError: + from typing import Optional, NamedTuple, List + from typing_extensions import Protocol + +from torch import Tensor +from typing import List + +from comfy import model_management + +def dynamic_slice( + x: Tensor, + starts: List[int], + sizes: List[int], +) -> Tensor: + slicing = [slice(start, start + size) for start, size in zip(starts, sizes)] + return x[slicing] + +class AttnChunk(NamedTuple): + exp_values: Tensor + exp_weights_sum: Tensor + max_score: Tensor + +class SummarizeChunk(Protocol): + @staticmethod + def __call__( + query: Tensor, + key_t: Tensor, + value: Tensor, + ) -> AttnChunk: ... + +class ComputeQueryChunkAttn(Protocol): + @staticmethod + def __call__( + query: Tensor, + key_t: Tensor, + value: Tensor, + ) -> Tensor: ... + +def _summarize_chunk( + query: Tensor, + key_t: Tensor, + value: Tensor, + scale: float, + upcast_attention: bool, + mask, +) -> AttnChunk: + if upcast_attention: + with torch.autocast(enabled=False, device_type = 'cuda'): + query = query.float() + key_t = key_t.float() + attn_weights = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key_t, + alpha=scale, + beta=0, + ) + else: + attn_weights = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key_t, + alpha=scale, + beta=0, + ) + max_score, _ = torch.max(attn_weights, -1, keepdim=True) + max_score = max_score.detach() + attn_weights -= max_score + if mask is not None: + attn_weights += mask + torch.exp(attn_weights, out=attn_weights) + exp_weights = attn_weights.to(value.dtype) + exp_values = torch.bmm(exp_weights, value) + max_score = max_score.squeeze(-1) + return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) + +def _query_chunk_attention( + query: Tensor, + key_t: Tensor, + value: Tensor, + summarize_chunk: SummarizeChunk, + kv_chunk_size: int, + mask, +) -> Tensor: + batch_x_heads, k_channels_per_head, k_tokens = key_t.shape + _, _, v_channels_per_head = value.shape + + def chunk_scanner(chunk_idx: int, mask) -> AttnChunk: + key_chunk = dynamic_slice( + key_t, + (0, 0, chunk_idx), + (batch_x_heads, k_channels_per_head, kv_chunk_size) + ) + value_chunk = dynamic_slice( + value, + (0, chunk_idx, 0), + (batch_x_heads, kv_chunk_size, v_channels_per_head) + ) + if mask is not None: + mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size] + + return summarize_chunk(query, key_chunk, value_chunk, mask=mask) + + chunks: List[AttnChunk] = [ + chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size) + ] + acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks))) + chunk_values, chunk_weights, chunk_max = acc_chunk + + global_max, _ = torch.max(chunk_max, 0, keepdim=True) + max_diffs = torch.exp(chunk_max - global_max) + chunk_values *= torch.unsqueeze(max_diffs, -1) + chunk_weights *= max_diffs + + all_values = chunk_values.sum(dim=0) + all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0) + return all_values / all_weights + +# TODO: refactor CrossAttention#get_attention_scores to share code with this +def _get_attention_scores_no_kv_chunking( + query: Tensor, + key_t: Tensor, + value: Tensor, + scale: float, + upcast_attention: bool, + mask, +) -> Tensor: + if upcast_attention: + with torch.autocast(enabled=False, device_type = 'cuda'): + query = query.float() + key_t = key_t.float() + attn_scores = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key_t, + alpha=scale, + beta=0, + ) + else: + attn_scores = torch.baddbmm( + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + query, + key_t, + alpha=scale, + beta=0, + ) + + if mask is not None: + attn_scores += mask + try: + attn_probs = attn_scores.softmax(dim=-1) + del attn_scores + except model_management.OOM_EXCEPTION: + print("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead") + attn_scores -= attn_scores.max(dim=-1, keepdim=True).values + torch.exp(attn_scores, out=attn_scores) + summed = torch.sum(attn_scores, dim=-1, keepdim=True) + attn_scores /= summed + attn_probs = attn_scores + + hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value) + return hidden_states_slice + +class ScannedChunk(NamedTuple): + chunk_idx: int + attn_chunk: AttnChunk + +def efficient_dot_product_attention( + query: Tensor, + key_t: Tensor, + value: Tensor, + query_chunk_size=1024, + kv_chunk_size: Optional[int] = None, + kv_chunk_size_min: Optional[int] = None, + use_checkpoint=True, + upcast_attention=False, + mask = None, +): + """Computes efficient dot-product attention given query, transposed key, and value. + This is efficient version of attention presented in + https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements. + Args: + query: queries for calculating attention with shape of + `[batch * num_heads, tokens, channels_per_head]`. + key_t: keys for calculating attention with shape of + `[batch * num_heads, channels_per_head, tokens]`. + value: values to be used in attention with shape of + `[batch * num_heads, tokens, channels_per_head]`. + query_chunk_size: int: query chunks size + kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens) + kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done). + use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference) + Returns: + Output of shape `[batch * num_heads, query_tokens, channels_per_head]`. + """ + batch_x_heads, q_tokens, q_channels_per_head = query.shape + _, _, k_tokens = key_t.shape + scale = q_channels_per_head ** -0.5 + + kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens) + if kv_chunk_size_min is not None: + kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min) + + if mask is not None and len(mask.shape) == 2: + mask = mask.unsqueeze(0) + + def get_query_chunk(chunk_idx: int) -> Tensor: + return dynamic_slice( + query, + (0, chunk_idx, 0), + (batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head) + ) + + def get_mask_chunk(chunk_idx: int) -> Tensor: + if mask is None: + return None + chunk = min(query_chunk_size, q_tokens) + return mask[:,chunk_idx:chunk_idx + chunk] + + summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention) + summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk + compute_query_chunk_attn: ComputeQueryChunkAttn = partial( + _get_attention_scores_no_kv_chunking, + scale=scale, + upcast_attention=upcast_attention + ) if k_tokens <= kv_chunk_size else ( + # fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw) + partial( + _query_chunk_attention, + kv_chunk_size=kv_chunk_size, + summarize_chunk=summarize_chunk, + ) + ) + + if q_tokens <= query_chunk_size: + # fast-path for when there's just 1 query chunk + return compute_query_chunk_attn( + query=query, + key_t=key_t, + value=value, + mask=mask, + ) + + # TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance, + # and pass slices to be mutated, instead of torch.cat()ing the returned slices + res = torch.cat([ + compute_query_chunk_attn( + query=get_query_chunk(i * query_chunk_size), + key_t=key_t, + value=value, + mask=get_mask_chunk(i * query_chunk_size) + ) for i in range(math.ceil(q_tokens / query_chunk_size)) + ], dim=1) + return res diff --git a/comfy/ldm/modules/temporal_ae.py b/comfy/ldm/modules/temporal_ae.py new file mode 100644 index 0000000000000000000000000000000000000000..2992aeafc35ae8ca9e4ecac236810fa5a1fb84ad --- /dev/null +++ b/comfy/ldm/modules/temporal_ae.py @@ -0,0 +1,245 @@ +import functools +from typing import Callable, Iterable, Union + +import torch +from einops import rearrange, repeat + +import comfy.ops +ops = comfy.ops.disable_weight_init + +from .diffusionmodules.model import ( + AttnBlock, + Decoder, + ResnetBlock, +) +from .diffusionmodules.openaimodel import ResBlock, timestep_embedding +from .attention import BasicTransformerBlock + +def partialclass(cls, *args, **kwargs): + class NewCls(cls): + __init__ = functools.partialmethod(cls.__init__, *args, **kwargs) + + return NewCls + + +class VideoResBlock(ResnetBlock): + def __init__( + self, + out_channels, + *args, + dropout=0.0, + video_kernel_size=3, + alpha=0.0, + merge_strategy="learned", + **kwargs, + ): + super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs) + if video_kernel_size is None: + video_kernel_size = [3, 1, 1] + self.time_stack = ResBlock( + channels=out_channels, + emb_channels=0, + dropout=dropout, + dims=3, + use_scale_shift_norm=False, + use_conv=False, + up=False, + down=False, + kernel_size=video_kernel_size, + use_checkpoint=False, + skip_t_emb=True, + ) + + self.merge_strategy = merge_strategy + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif self.merge_strategy == "learned": + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def get_alpha(self, bs): + if self.merge_strategy == "fixed": + return self.mix_factor + elif self.merge_strategy == "learned": + return torch.sigmoid(self.mix_factor) + else: + raise NotImplementedError() + + def forward(self, x, temb, skip_video=False, timesteps=None): + b, c, h, w = x.shape + if timesteps is None: + timesteps = b + + x = super().forward(x, temb) + + if not skip_video: + x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + + x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + + x = self.time_stack(x, temb) + + alpha = self.get_alpha(bs=b // timesteps).to(x.device) + x = alpha * x + (1.0 - alpha) * x_mix + + x = rearrange(x, "b c t h w -> (b t) c h w") + return x + + +class AE3DConv(ops.Conv2d): + def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs): + super().__init__(in_channels, out_channels, *args, **kwargs) + if isinstance(video_kernel_size, Iterable): + padding = [int(k // 2) for k in video_kernel_size] + else: + padding = int(video_kernel_size // 2) + + self.time_mix_conv = ops.Conv3d( + in_channels=out_channels, + out_channels=out_channels, + kernel_size=video_kernel_size, + padding=padding, + ) + + def forward(self, input, timesteps=None, skip_video=False): + if timesteps is None: + timesteps = input.shape[0] + x = super().forward(input) + if skip_video: + return x + x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) + x = self.time_mix_conv(x) + return rearrange(x, "b c t h w -> (b t) c h w") + + +class AttnVideoBlock(AttnBlock): + def __init__( + self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned" + ): + super().__init__(in_channels) + # no context, single headed, as in base class + self.time_mix_block = BasicTransformerBlock( + dim=in_channels, + n_heads=1, + d_head=in_channels, + checkpoint=False, + ff_in=True, + ) + + time_embed_dim = self.in_channels * 4 + self.video_time_embed = torch.nn.Sequential( + ops.Linear(self.in_channels, time_embed_dim), + torch.nn.SiLU(), + ops.Linear(time_embed_dim, self.in_channels), + ) + + self.merge_strategy = merge_strategy + if self.merge_strategy == "fixed": + self.register_buffer("mix_factor", torch.Tensor([alpha])) + elif self.merge_strategy == "learned": + self.register_parameter( + "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) + ) + else: + raise ValueError(f"unknown merge strategy {self.merge_strategy}") + + def forward(self, x, timesteps=None, skip_time_block=False): + if skip_time_block: + return super().forward(x) + + if timesteps is None: + timesteps = x.shape[0] + + x_in = x + x = self.attention(x) + h, w = x.shape[2:] + x = rearrange(x, "b c h w -> b (h w) c") + + x_mix = x + num_frames = torch.arange(timesteps, device=x.device) + num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) + num_frames = rearrange(num_frames, "b t -> (b t)") + t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False) + emb = self.video_time_embed(t_emb) # b, n_channels + emb = emb[:, None, :] + x_mix = x_mix + emb + + alpha = self.get_alpha().to(x.device) + x_mix = self.time_mix_block(x_mix, timesteps=timesteps) + x = alpha * x + (1.0 - alpha) * x_mix # alpha merge + + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + x = self.proj_out(x) + + return x_in + x + + def get_alpha( + self, + ): + if self.merge_strategy == "fixed": + return self.mix_factor + elif self.merge_strategy == "learned": + return torch.sigmoid(self.mix_factor) + else: + raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}") + + + +def make_time_attn( + in_channels, + attn_type="vanilla", + attn_kwargs=None, + alpha: float = 0, + merge_strategy: str = "learned", +): + return partialclass( + AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy + ) + + +class Conv2DWrapper(torch.nn.Conv2d): + def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor: + return super().forward(input) + + +class VideoDecoder(Decoder): + available_time_modes = ["all", "conv-only", "attn-only"] + + def __init__( + self, + *args, + video_kernel_size: Union[int, list] = 3, + alpha: float = 0.0, + merge_strategy: str = "learned", + time_mode: str = "conv-only", + **kwargs, + ): + self.video_kernel_size = video_kernel_size + self.alpha = alpha + self.merge_strategy = merge_strategy + self.time_mode = time_mode + assert ( + self.time_mode in self.available_time_modes + ), f"time_mode parameter has to be in {self.available_time_modes}" + + if self.time_mode != "attn-only": + kwargs["conv_out_op"] = partialclass(AE3DConv, video_kernel_size=self.video_kernel_size) + if self.time_mode not in ["conv-only", "only-last-conv"]: + kwargs["attn_op"] = partialclass(make_time_attn, alpha=self.alpha, merge_strategy=self.merge_strategy) + if self.time_mode not in ["attn-only", "only-last-conv"]: + kwargs["resnet_op"] = partialclass(VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy) + + super().__init__(*args, **kwargs) + + def get_last_layer(self, skip_time_mix=False, **kwargs): + if self.time_mode == "attn-only": + raise NotImplementedError("TODO") + else: + return ( + self.conv_out.time_mix_conv.weight + if not skip_time_mix + else self.conv_out.weight + ) diff --git a/comfy/ldm/util.py b/comfy/ldm/util.py new file mode 100644 index 0000000000000000000000000000000000000000..8c09ca1c72f7ceb3f9d7f9546aae5561baf62b13 --- /dev/null +++ b/comfy/ldm/util.py @@ -0,0 +1,197 @@ +import importlib + +import torch +from torch import optim +import numpy as np + +from inspect import isfunction +from PIL import Image, ImageDraw, ImageFont + + +def log_txt_as_img(wh, xc, size=10): + # wh a tuple of (width, height) + # xc a list of captions to plot + b = len(xc) + txts = list() + for bi in range(b): + txt = Image.new("RGB", wh, color="white") + draw = ImageDraw.Draw(txt) + font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) + nc = int(40 * (wh[0] / 256)) + lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) + + try: + draw.text((0, 0), lines, fill="black", font=font) + except UnicodeEncodeError: + print("Cant encode string for logging. Skipping.") + + txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 + txts.append(txt) + txts = np.stack(txts) + txts = torch.tensor(txts) + return txts + + +def ismap(x): + if not isinstance(x, torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] > 3) + + +def isimage(x): + if not isinstance(x,torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) + + +def exists(x): + return x is not None + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def mean_flat(tensor): + """ + https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def count_params(model, verbose=False): + total_params = sum(p.numel() for p in model.parameters()) + if verbose: + print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") + return total_params + + +def instantiate_from_config(config): + if not "target" in config: + if config == '__is_first_stage__': + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +class AdamWwithEMAandWings(optim.Optimizer): + # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298 + def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using + weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code + ema_power=1., param_names=()): + """AdamW that saves EMA versions of the parameters.""" + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + if not 0.0 <= weight_decay: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + if not 0.0 <= ema_decay <= 1.0: + raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) + defaults = dict(lr=lr, betas=betas, eps=eps, + weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay, + ema_power=ema_power, param_names=param_names) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('amsgrad', False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + Args: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avgs = [] + exp_avg_sqs = [] + ema_params_with_grad = [] + state_sums = [] + max_exp_avg_sqs = [] + state_steps = [] + amsgrad = group['amsgrad'] + beta1, beta2 = group['betas'] + ema_decay = group['ema_decay'] + ema_power = group['ema_power'] + + for p in group['params']: + if p.grad is None: + continue + params_with_grad.append(p) + if p.grad.is_sparse: + raise RuntimeError('AdamW does not support sparse gradients') + grads.append(p.grad) + + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) + # Exponential moving average of squared gradient values + state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) + if amsgrad: + # Maintains max of all exp. moving avg. of sq. grad. values + state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) + # Exponential moving average of parameter values + state['param_exp_avg'] = p.detach().float().clone() + + exp_avgs.append(state['exp_avg']) + exp_avg_sqs.append(state['exp_avg_sq']) + ema_params_with_grad.append(state['param_exp_avg']) + + if amsgrad: + max_exp_avg_sqs.append(state['max_exp_avg_sq']) + + # update the steps for each param group update + state['step'] += 1 + # record the step after step update + state_steps.append(state['step']) + + optim._functional.adamw(params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + max_exp_avg_sqs, + state_steps, + amsgrad=amsgrad, + beta1=beta1, + beta2=beta2, + lr=group['lr'], + weight_decay=group['weight_decay'], + eps=group['eps'], + maximize=False) + + cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power) + for param, ema_param in zip(params_with_grad, ema_params_with_grad): + ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) + + return loss \ No newline at end of file diff --git a/comfy/lora.py b/comfy/lora.py new file mode 100644 index 0000000000000000000000000000000000000000..5e4009b47f92b23841f3e2993bea0d591ed634a3 --- /dev/null +++ b/comfy/lora.py @@ -0,0 +1,224 @@ +import comfy.utils + +LORA_CLIP_MAP = { + "mlp.fc1": "mlp_fc1", + "mlp.fc2": "mlp_fc2", + "self_attn.k_proj": "self_attn_k_proj", + "self_attn.q_proj": "self_attn_q_proj", + "self_attn.v_proj": "self_attn_v_proj", + "self_attn.out_proj": "self_attn_out_proj", +} + + +def load_lora(lora, to_load): + patch_dict = {} + loaded_keys = set() + for x in to_load: + alpha_name = "{}.alpha".format(x) + alpha = None + if alpha_name in lora.keys(): + alpha = lora[alpha_name].item() + loaded_keys.add(alpha_name) + + regular_lora = "{}.lora_up.weight".format(x) + diffusers_lora = "{}_lora.up.weight".format(x) + transformers_lora = "{}.lora_linear_layer.up.weight".format(x) + A_name = None + + if regular_lora in lora.keys(): + A_name = regular_lora + B_name = "{}.lora_down.weight".format(x) + mid_name = "{}.lora_mid.weight".format(x) + elif diffusers_lora in lora.keys(): + A_name = diffusers_lora + B_name = "{}_lora.down.weight".format(x) + mid_name = None + elif transformers_lora in lora.keys(): + A_name = transformers_lora + B_name ="{}.lora_linear_layer.down.weight".format(x) + mid_name = None + + if A_name is not None: + mid = None + if mid_name is not None and mid_name in lora.keys(): + mid = lora[mid_name] + loaded_keys.add(mid_name) + patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid)) + loaded_keys.add(A_name) + loaded_keys.add(B_name) + + + ######## loha + hada_w1_a_name = "{}.hada_w1_a".format(x) + hada_w1_b_name = "{}.hada_w1_b".format(x) + hada_w2_a_name = "{}.hada_w2_a".format(x) + hada_w2_b_name = "{}.hada_w2_b".format(x) + hada_t1_name = "{}.hada_t1".format(x) + hada_t2_name = "{}.hada_t2".format(x) + if hada_w1_a_name in lora.keys(): + hada_t1 = None + hada_t2 = None + if hada_t1_name in lora.keys(): + hada_t1 = lora[hada_t1_name] + hada_t2 = lora[hada_t2_name] + loaded_keys.add(hada_t1_name) + loaded_keys.add(hada_t2_name) + + patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)) + loaded_keys.add(hada_w1_a_name) + loaded_keys.add(hada_w1_b_name) + loaded_keys.add(hada_w2_a_name) + loaded_keys.add(hada_w2_b_name) + + + ######## lokr + lokr_w1_name = "{}.lokr_w1".format(x) + lokr_w2_name = "{}.lokr_w2".format(x) + lokr_w1_a_name = "{}.lokr_w1_a".format(x) + lokr_w1_b_name = "{}.lokr_w1_b".format(x) + lokr_t2_name = "{}.lokr_t2".format(x) + lokr_w2_a_name = "{}.lokr_w2_a".format(x) + lokr_w2_b_name = "{}.lokr_w2_b".format(x) + + lokr_w1 = None + if lokr_w1_name in lora.keys(): + lokr_w1 = lora[lokr_w1_name] + loaded_keys.add(lokr_w1_name) + + lokr_w2 = None + if lokr_w2_name in lora.keys(): + lokr_w2 = lora[lokr_w2_name] + loaded_keys.add(lokr_w2_name) + + lokr_w1_a = None + if lokr_w1_a_name in lora.keys(): + lokr_w1_a = lora[lokr_w1_a_name] + loaded_keys.add(lokr_w1_a_name) + + lokr_w1_b = None + if lokr_w1_b_name in lora.keys(): + lokr_w1_b = lora[lokr_w1_b_name] + loaded_keys.add(lokr_w1_b_name) + + lokr_w2_a = None + if lokr_w2_a_name in lora.keys(): + lokr_w2_a = lora[lokr_w2_a_name] + loaded_keys.add(lokr_w2_a_name) + + lokr_w2_b = None + if lokr_w2_b_name in lora.keys(): + lokr_w2_b = lora[lokr_w2_b_name] + loaded_keys.add(lokr_w2_b_name) + + lokr_t2 = None + if lokr_t2_name in lora.keys(): + lokr_t2 = lora[lokr_t2_name] + loaded_keys.add(lokr_t2_name) + + if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None): + patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)) + + #glora + a1_name = "{}.a1.weight".format(x) + a2_name = "{}.a2.weight".format(x) + b1_name = "{}.b1.weight".format(x) + b2_name = "{}.b2.weight".format(x) + if a1_name in lora: + patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha)) + loaded_keys.add(a1_name) + loaded_keys.add(a2_name) + loaded_keys.add(b1_name) + loaded_keys.add(b2_name) + + w_norm_name = "{}.w_norm".format(x) + b_norm_name = "{}.b_norm".format(x) + w_norm = lora.get(w_norm_name, None) + b_norm = lora.get(b_norm_name, None) + + if w_norm is not None: + loaded_keys.add(w_norm_name) + patch_dict[to_load[x]] = ("diff", (w_norm,)) + if b_norm is not None: + loaded_keys.add(b_norm_name) + patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,)) + + diff_name = "{}.diff".format(x) + diff_weight = lora.get(diff_name, None) + if diff_weight is not None: + patch_dict[to_load[x]] = ("diff", (diff_weight,)) + loaded_keys.add(diff_name) + + diff_bias_name = "{}.diff_b".format(x) + diff_bias = lora.get(diff_bias_name, None) + if diff_bias is not None: + patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,)) + loaded_keys.add(diff_bias_name) + + for x in lora.keys(): + if x not in loaded_keys: + print("lora key not loaded", x) + return patch_dict + +def model_lora_keys_clip(model, key_map={}): + sdk = model.state_dict().keys() + + text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" + clip_l_present = False + for b in range(32): #TODO: clean up + for c in LORA_CLIP_MAP: + k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) + if k in sdk: + lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) + key_map[lora_key] = k + lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) + key_map[lora_key] = k + lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora + key_map[lora_key] = k + + k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) + if k in sdk: + lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) + key_map[lora_key] = k + lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base + key_map[lora_key] = k + clip_l_present = True + lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora + key_map[lora_key] = k + + k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) + if k in sdk: + if clip_l_present: + lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base + key_map[lora_key] = k + lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora + key_map[lora_key] = k + else: + lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner + key_map[lora_key] = k + lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora + key_map[lora_key] = k + + return key_map + +def model_lora_keys_unet(model, key_map={}): + sdk = model.state_dict().keys() + + for k in sdk: + if k.startswith("diffusion_model.") and k.endswith(".weight"): + key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") + key_map["lora_unet_{}".format(key_lora)] = k + + diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config) + for k in diffusers_keys: + if k.endswith(".weight"): + unet_key = "diffusion_model.{}".format(diffusers_keys[k]) + key_lora = k[:-len(".weight")].replace(".", "_") + key_map["lora_unet_{}".format(key_lora)] = unet_key + + diffusers_lora_prefix = ["", "unet."] + for p in diffusers_lora_prefix: + diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_")) + if diffusers_lora_key.endswith(".to_out.0"): + diffusers_lora_key = diffusers_lora_key[:-2] + key_map[diffusers_lora_key] = unet_key + return key_map diff --git a/comfy/model_base.py b/comfy/model_base.py new file mode 100644 index 0000000000000000000000000000000000000000..8a843a98c39bf71a92c6ae747810a79a49831605 --- /dev/null +++ b/comfy/model_base.py @@ -0,0 +1,425 @@ +import torch +from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep +from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation +from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation +import comfy.model_management +import comfy.conds +import comfy.ops +from enum import Enum +from . import utils + +class ModelType(Enum): + EPS = 1 + V_PREDICTION = 2 + V_PREDICTION_EDM = 3 + + +from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM + + +def model_sampling(model_config, model_type): + s = ModelSamplingDiscrete + + if model_type == ModelType.EPS: + c = EPS + elif model_type == ModelType.V_PREDICTION: + c = V_PREDICTION + elif model_type == ModelType.V_PREDICTION_EDM: + c = V_PREDICTION + s = ModelSamplingContinuousEDM + + class ModelSampling(s, c): + pass + + return ModelSampling(model_config) + + +class BaseModel(torch.nn.Module): + def __init__(self, model_config, model_type=ModelType.EPS, device=None): + super().__init__() + + unet_config = model_config.unet_config + self.latent_format = model_config.latent_format + self.model_config = model_config + self.manual_cast_dtype = model_config.manual_cast_dtype + + if not unet_config.get("disable_unet_model_creation", False): + if self.manual_cast_dtype is not None: + operations = comfy.ops.manual_cast + else: + operations = comfy.ops.disable_weight_init + self.diffusion_model = UNetModel(**unet_config, device=device, operations=operations) + self.model_type = model_type + self.model_sampling = model_sampling(model_config, model_type) + + self.adm_channels = unet_config.get("adm_in_channels", None) + if self.adm_channels is None: + self.adm_channels = 0 + self.inpaint_model = False + print("model_type", model_type.name) + print("adm", self.adm_channels) + + def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): + sigma = t + xc = self.model_sampling.calculate_input(sigma, x) + if c_concat is not None: + xc = torch.cat([xc] + [c_concat], dim=1) + + context = c_crossattn + dtype = self.get_dtype() + + if self.manual_cast_dtype is not None: + dtype = self.manual_cast_dtype + + xc = xc.to(dtype) + t = self.model_sampling.timestep(t).float() + context = context.to(dtype) + extra_conds = {} + for o in kwargs: + extra = kwargs[o] + if hasattr(extra, "dtype"): + if extra.dtype != torch.int and extra.dtype != torch.long: + extra = extra.to(dtype) + extra_conds[o] = extra + + model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() + return self.model_sampling.calculate_denoised(sigma, model_output, x) + + def get_dtype(self): + return self.diffusion_model.dtype + + def is_adm(self): + return self.adm_channels > 0 + + def encode_adm(self, **kwargs): + return None + + def extra_conds(self, **kwargs): + out = {} + if self.inpaint_model: + concat_keys = ("mask", "masked_image") + cond_concat = [] + denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) + concat_latent_image = kwargs.get("concat_latent_image", None) + if concat_latent_image is None: + concat_latent_image = kwargs.get("latent_image", None) + else: + concat_latent_image = self.process_latent_in(concat_latent_image) + + noise = kwargs.get("noise", None) + device = kwargs["device"] + + if concat_latent_image.shape[1:] != noise.shape[1:]: + concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") + + concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0]) + + if len(denoise_mask.shape) == len(noise.shape): + denoise_mask = denoise_mask[:,:1] + + denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1])) + if denoise_mask.shape[-2:] != noise.shape[-2:]: + denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center") + denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0]) + + def blank_inpaint_image_like(latent_image): + blank_image = torch.ones_like(latent_image) + # these are the values for "zero" in pixel space translated to latent space + blank_image[:,0] *= 0.8223 + blank_image[:,1] *= -0.6876 + blank_image[:,2] *= 0.6364 + blank_image[:,3] *= 0.1380 + return blank_image + + for ck in concat_keys: + if denoise_mask is not None: + if ck == "mask": + cond_concat.append(denoise_mask.to(device)) + elif ck == "masked_image": + cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space + else: + if ck == "mask": + cond_concat.append(torch.ones_like(noise)[:,:1]) + elif ck == "masked_image": + cond_concat.append(blank_inpaint_image_like(noise)) + data = torch.cat(cond_concat, dim=1) + out['c_concat'] = comfy.conds.CONDNoiseShape(data) + + adm = self.encode_adm(**kwargs) + if adm is not None: + out['y'] = comfy.conds.CONDRegular(adm) + + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) + + return out + + def load_model_weights(self, sd, unet_prefix=""): + to_load = {} + keys = list(sd.keys()) + for k in keys: + if k.startswith(unet_prefix): + to_load[k[len(unet_prefix):]] = sd.pop(k) + + to_load = self.model_config.process_unet_state_dict(to_load) + m, u = self.diffusion_model.load_state_dict(to_load, strict=False) + if len(m) > 0: + print("unet missing:", m) + + if len(u) > 0: + print("unet unexpected:", u) + del to_load + return self + + def process_latent_in(self, latent): + return self.latent_format.process_in(latent) + + def process_latent_out(self, latent): + return self.latent_format.process_out(latent) + + def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): + extra_sds = [] + if clip_state_dict is not None: + extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict)) + if vae_state_dict is not None: + extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict)) + if clip_vision_state_dict is not None: + extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict)) + + unet_state_dict = self.diffusion_model.state_dict() + unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) + + if self.get_dtype() == torch.float16: + extra_sds = map(lambda sd: utils.convert_sd_to(sd, torch.float16), extra_sds) + + if self.model_type == ModelType.V_PREDICTION: + unet_state_dict["v_pred"] = torch.tensor([]) + + for sd in extra_sds: + unet_state_dict.update(sd) + + return unet_state_dict + + def set_inpaint(self): + self.inpaint_model = True + + def memory_required(self, input_shape): + if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention(): + dtype = self.get_dtype() + if self.manual_cast_dtype is not None: + dtype = self.manual_cast_dtype + #TODO: this needs to be tweaked + area = input_shape[0] * input_shape[2] * input_shape[3] + return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024) + else: + #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory. + area = input_shape[0] * input_shape[2] * input_shape[3] + return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024) + + +def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None): + adm_inputs = [] + weights = [] + noise_aug = [] + for unclip_cond in unclip_conditioning: + for adm_cond in unclip_cond["clip_vision_output"].image_embeds: + weight = unclip_cond["strength"] + noise_augment = unclip_cond["noise_augmentation"] + noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) + c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed) + adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight + weights.append(weight) + noise_aug.append(noise_augment) + adm_inputs.append(adm_out) + + if len(noise_aug) > 1: + adm_out = torch.stack(adm_inputs).sum(0) + noise_augment = noise_augment_merge + noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) + c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device)) + adm_out = torch.cat((c_adm, noise_level_emb), 1) + + return adm_out + +class SD21UNCLIP(BaseModel): + def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None): + super().__init__(model_config, model_type, device=device) + self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config) + + def encode_adm(self, **kwargs): + unclip_conditioning = kwargs.get("unclip_conditioning", None) + device = kwargs["device"] + if unclip_conditioning is None: + return torch.zeros((1, self.adm_channels)) + else: + return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10) + +def sdxl_pooled(args, noise_augmentor): + if "unclip_conditioning" in args: + return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280] + else: + return args["pooled_output"] + +class SDXLRefiner(BaseModel): + def __init__(self, model_config, model_type=ModelType.EPS, device=None): + super().__init__(model_config, model_type, device=device) + self.embedder = Timestep(256) + self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) + + def encode_adm(self, **kwargs): + clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) + width = kwargs.get("width", 768) + height = kwargs.get("height", 768) + crop_w = kwargs.get("crop_w", 0) + crop_h = kwargs.get("crop_h", 0) + + if kwargs.get("prompt_type", "") == "negative": + aesthetic_score = kwargs.get("aesthetic_score", 2.5) + else: + aesthetic_score = kwargs.get("aesthetic_score", 6) + + out = [] + out.append(self.embedder(torch.Tensor([height]))) + out.append(self.embedder(torch.Tensor([width]))) + out.append(self.embedder(torch.Tensor([crop_h]))) + out.append(self.embedder(torch.Tensor([crop_w]))) + out.append(self.embedder(torch.Tensor([aesthetic_score]))) + flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) + return torch.cat((clip_pooled.to(flat.device), flat), dim=1) + +class SDXL(BaseModel): + def __init__(self, model_config, model_type=ModelType.EPS, device=None): + super().__init__(model_config, model_type, device=device) + self.embedder = Timestep(256) + self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) + + def encode_adm(self, **kwargs): + clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) + width = kwargs.get("width", 768) + height = kwargs.get("height", 768) + crop_w = kwargs.get("crop_w", 0) + crop_h = kwargs.get("crop_h", 0) + target_width = kwargs.get("target_width", width) + target_height = kwargs.get("target_height", height) + + out = [] + out.append(self.embedder(torch.Tensor([height]))) + out.append(self.embedder(torch.Tensor([width]))) + out.append(self.embedder(torch.Tensor([crop_h]))) + out.append(self.embedder(torch.Tensor([crop_w]))) + out.append(self.embedder(torch.Tensor([target_height]))) + out.append(self.embedder(torch.Tensor([target_width]))) + flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) + return torch.cat((clip_pooled.to(flat.device), flat), dim=1) + +class SVD_img2vid(BaseModel): + def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): + super().__init__(model_config, model_type, device=device) + self.embedder = Timestep(256) + + def encode_adm(self, **kwargs): + fps_id = kwargs.get("fps", 6) - 1 + motion_bucket_id = kwargs.get("motion_bucket_id", 127) + augmentation = kwargs.get("augmentation_level", 0) + + out = [] + out.append(self.embedder(torch.Tensor([fps_id]))) + out.append(self.embedder(torch.Tensor([motion_bucket_id]))) + out.append(self.embedder(torch.Tensor([augmentation]))) + + flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0) + return flat + + def extra_conds(self, **kwargs): + out = {} + adm = self.encode_adm(**kwargs) + if adm is not None: + out['y'] = comfy.conds.CONDRegular(adm) + + latent_image = kwargs.get("concat_latent_image", None) + noise = kwargs.get("noise", None) + device = kwargs["device"] + + if latent_image is None: + latent_image = torch.zeros_like(noise) + + if latent_image.shape[1:] != noise.shape[1:]: + latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") + + latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0]) + + out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) + + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) + + if "time_conditioning" in kwargs: + out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"]) + + out['image_only_indicator'] = comfy.conds.CONDConstant(torch.zeros((1,), device=device)) + out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0]) + return out + +class Stable_Zero123(BaseModel): + def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None): + super().__init__(model_config, model_type, device=device) + self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device) + self.cc_projection.weight.copy_(cc_projection_weight) + self.cc_projection.bias.copy_(cc_projection_bias) + + def extra_conds(self, **kwargs): + out = {} + + latent_image = kwargs.get("concat_latent_image", None) + noise = kwargs.get("noise", None) + + if latent_image is None: + latent_image = torch.zeros_like(noise) + + if latent_image.shape[1:] != noise.shape[1:]: + latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") + + latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0]) + + out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) + + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + if cross_attn.shape[-1] != 768: + cross_attn = self.cc_projection(cross_attn) + out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) + return out + +class SD_X4Upscaler(BaseModel): + def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None): + super().__init__(model_config, model_type, device=device) + self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350) + + def extra_conds(self, **kwargs): + out = {} + + image = kwargs.get("concat_image", None) + noise = kwargs.get("noise", None) + noise_augment = kwargs.get("noise_augmentation", 0.0) + device = kwargs["device"] + seed = kwargs["seed"] - 10 + + noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment) + + if image is None: + image = torch.zeros_like(noise)[:,:3] + + if image.shape[1:] != noise.shape[1:]: + image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + + noise_level = torch.tensor([noise_level], device=device) + if noise_augment > 0: + image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed) + + image = utils.resize_to_batch_size(image, noise.shape[0]) + + out['c_concat'] = comfy.conds.CONDNoiseShape(image) + out['y'] = comfy.conds.CONDRegular(noise_level) + return out diff --git a/comfy/model_detection.py b/comfy/model_detection.py new file mode 100644 index 0000000000000000000000000000000000000000..ea824c44ca1991971fc7ee5ea517d551db7a2d4d --- /dev/null +++ b/comfy/model_detection.py @@ -0,0 +1,320 @@ +import comfy.supported_models +import comfy.supported_models_base + +def count_blocks(state_dict_keys, prefix_string): + count = 0 + while True: + c = False + for k in state_dict_keys: + if k.startswith(prefix_string.format(count)): + c = True + break + if c == False: + break + count += 1 + return count + +def calculate_transformer_depth(prefix, state_dict_keys, state_dict): + context_dim = None + use_linear_in_transformer = False + + transformer_prefix = prefix + "1.transformer_blocks." + transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) + if len(transformer_keys) > 0: + last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') + context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] + use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 + time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict + return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack + return None + +def detect_unet_config(state_dict, key_prefix, dtype): + state_dict_keys = list(state_dict.keys()) + + unet_config = { + "use_checkpoint": False, + "image_size": 32, + "use_spatial_transformer": True, + "legacy": False + } + + y_input = '{}label_emb.0.0.weight'.format(key_prefix) + if y_input in state_dict_keys: + unet_config["num_classes"] = "sequential" + unet_config["adm_in_channels"] = state_dict[y_input].shape[1] + else: + unet_config["adm_in_channels"] = None + + unet_config["dtype"] = dtype + model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0] + in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1] + + out_key = '{}out.2.weight'.format(key_prefix) + if out_key in state_dict: + out_channels = state_dict[out_key].shape[0] + else: + out_channels = 4 + + num_res_blocks = [] + channel_mult = [] + attention_resolutions = [] + transformer_depth = [] + transformer_depth_output = [] + context_dim = None + use_linear_in_transformer = False + + video_model = False + + current_res = 1 + count = 0 + + last_res_blocks = 0 + last_channel_mult = 0 + + input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.') + for count in range(input_block_count): + prefix = '{}input_blocks.{}.'.format(key_prefix, count) + prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1) + + block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys))) + if len(block_keys) == 0: + break + + block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys))) + + if "{}0.op.weight".format(prefix) in block_keys: #new layer + num_res_blocks.append(last_res_blocks) + channel_mult.append(last_channel_mult) + + current_res *= 2 + last_res_blocks = 0 + last_channel_mult = 0 + out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) + if out is not None: + transformer_depth_output.append(out[0]) + else: + transformer_depth_output.append(0) + else: + res_block_prefix = "{}0.in_layers.0.weight".format(prefix) + if res_block_prefix in block_keys: + last_res_blocks += 1 + last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels + + out = calculate_transformer_depth(prefix, state_dict_keys, state_dict) + if out is not None: + transformer_depth.append(out[0]) + if context_dim is None: + context_dim = out[1] + use_linear_in_transformer = out[2] + video_model = out[3] + else: + transformer_depth.append(0) + + res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output) + if res_block_prefix in block_keys_output: + out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) + if out is not None: + transformer_depth_output.append(out[0]) + else: + transformer_depth_output.append(0) + + + num_res_blocks.append(last_res_blocks) + channel_mult.append(last_channel_mult) + if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys: + transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') + else: + transformer_depth_middle = -1 + + unet_config["in_channels"] = in_channels + unet_config["out_channels"] = out_channels + unet_config["model_channels"] = model_channels + unet_config["num_res_blocks"] = num_res_blocks + unet_config["transformer_depth"] = transformer_depth + unet_config["transformer_depth_output"] = transformer_depth_output + unet_config["channel_mult"] = channel_mult + unet_config["transformer_depth_middle"] = transformer_depth_middle + unet_config['use_linear_in_transformer'] = use_linear_in_transformer + unet_config["context_dim"] = context_dim + + if video_model: + unet_config["extra_ff_mix_layer"] = True + unet_config["use_spatial_context"] = True + unet_config["merge_strategy"] = "learned_with_images" + unet_config["merge_factor"] = 0.0 + unet_config["video_kernel_size"] = [3, 1, 1] + unet_config["use_temporal_resblock"] = True + unet_config["use_temporal_attention"] = True + else: + unet_config["use_temporal_resblock"] = False + unet_config["use_temporal_attention"] = False + + return unet_config + +def model_config_from_unet_config(unet_config): + for model_config in comfy.supported_models.models: + if model_config.matches(unet_config): + return model_config(unet_config) + + print("no match", unet_config) + return None + +def model_config_from_unet(state_dict, unet_key_prefix, dtype, use_base_if_no_match=False): + unet_config = detect_unet_config(state_dict, unet_key_prefix, dtype) + model_config = model_config_from_unet_config(unet_config) + if model_config is None and use_base_if_no_match: + return comfy.supported_models_base.BASE(unet_config) + else: + return model_config + +def convert_config(unet_config): + new_config = unet_config.copy() + num_res_blocks = new_config.get("num_res_blocks", None) + channel_mult = new_config.get("channel_mult", None) + + if isinstance(num_res_blocks, int): + num_res_blocks = len(channel_mult) * [num_res_blocks] + + if "attention_resolutions" in new_config: + attention_resolutions = new_config.pop("attention_resolutions") + transformer_depth = new_config.get("transformer_depth", None) + transformer_depth_middle = new_config.get("transformer_depth_middle", None) + + if isinstance(transformer_depth, int): + transformer_depth = len(channel_mult) * [transformer_depth] + if transformer_depth_middle is None: + transformer_depth_middle = transformer_depth[-1] + t_in = [] + t_out = [] + s = 1 + for i in range(len(num_res_blocks)): + res = num_res_blocks[i] + d = 0 + if s in attention_resolutions: + d = transformer_depth[i] + + t_in += [d] * res + t_out += [d] * (res + 1) + s *= 2 + transformer_depth = t_in + transformer_depth_output = t_out + new_config["transformer_depth"] = t_in + new_config["transformer_depth_output"] = t_out + new_config["transformer_depth_middle"] = transformer_depth_middle + + new_config["num_res_blocks"] = num_res_blocks + return new_config + + +def unet_config_from_diffusers_unet(state_dict, dtype): + match = {} + transformer_depth = [] + + attn_res = 1 + down_blocks = count_blocks(state_dict, "down_blocks.{}") + for i in range(down_blocks): + attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}') + for ab in range(attn_blocks): + transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}') + transformer_depth.append(transformer_count) + if transformer_count > 0: + match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1] + + attn_res *= 2 + if attn_blocks == 0: + transformer_depth.append(0) + transformer_depth.append(0) + + match["transformer_depth"] = transformer_depth + + match["model_channels"] = state_dict["conv_in.weight"].shape[0] + match["in_channels"] = state_dict["conv_in.weight"].shape[1] + match["adm_in_channels"] = None + if "class_embedding.linear_1.weight" in state_dict: + match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1] + elif "add_embedding.linear_1.weight" in state_dict: + match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1] + + SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, + 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384, + 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4, + 'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], + 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, + 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, + 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, + 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, + 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], + 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, + 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1, + 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0, + 'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, + 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4], + 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, + 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2], + 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, + 'use_temporal_attention': False, 'use_temporal_resblock': False} + + supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega] + + for unet_config in supported_models: + matches = True + for k in match: + if match[k] != unet_config[k]: + matches = False + break + if matches: + return convert_config(unet_config) + return None + +def model_config_from_diffusers_unet(state_dict, dtype): + unet_config = unet_config_from_diffusers_unet(state_dict, dtype) + if unet_config is not None: + return model_config_from_unet_config(unet_config) + return None diff --git a/comfy/model_management.py b/comfy/model_management.py new file mode 100644 index 0000000000000000000000000000000000000000..a8dc91b9ecf9c0310b72796744397e49ed573efc --- /dev/null +++ b/comfy/model_management.py @@ -0,0 +1,805 @@ +import psutil +from enum import Enum +from comfy.cli_args import args +import comfy.utils +import torch +import sys + +class VRAMState(Enum): + DISABLED = 0 #No vram present: no need to move models to vram + NO_VRAM = 1 #Very low vram: enable all the options to save vram + LOW_VRAM = 2 + NORMAL_VRAM = 3 + HIGH_VRAM = 4 + SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. + +class CPUState(Enum): + GPU = 0 + CPU = 1 + MPS = 2 + +# Determine VRAM State +vram_state = VRAMState.NORMAL_VRAM +set_vram_to = VRAMState.NORMAL_VRAM +cpu_state = CPUState.GPU + +total_vram = 0 + +lowvram_available = True +xpu_available = False + +if args.deterministic: + print("Using deterministic algorithms for pytorch") + torch.use_deterministic_algorithms(True, warn_only=True) + +directml_enabled = False +if args.directml is not None: + import torch_directml + directml_enabled = True + device_index = args.directml + if device_index < 0: + directml_device = torch_directml.device() + else: + directml_device = torch_directml.device(device_index) + print("Using directml with device:", torch_directml.device_name(device_index)) + # torch_directml.disable_tiled_resources(True) + lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default. + +try: + import intel_extension_for_pytorch as ipex + if torch.xpu.is_available(): + xpu_available = True +except: + pass + +try: + if torch.backends.mps.is_available(): + cpu_state = CPUState.MPS + import torch.mps +except: + pass + +if args.cpu: + cpu_state = CPUState.CPU + +def is_intel_xpu(): + global cpu_state + global xpu_available + if cpu_state == CPUState.GPU: + if xpu_available: + return True + return False + +def get_torch_device(): + global directml_enabled + global cpu_state + if directml_enabled: + global directml_device + return directml_device + if cpu_state == CPUState.MPS: + return torch.device("mps") + if cpu_state == CPUState.CPU: + return torch.device("cpu") + else: + if is_intel_xpu(): + return torch.device("xpu") + else: + return torch.device(torch.cuda.current_device()) + +def get_total_memory(dev=None, torch_total_too=False): + global directml_enabled + if dev is None: + dev = get_torch_device() + + if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): + mem_total = psutil.virtual_memory().total + mem_total_torch = mem_total + else: + if directml_enabled: + mem_total = 1024 * 1024 * 1024 #TODO + mem_total_torch = mem_total + elif is_intel_xpu(): + stats = torch.xpu.memory_stats(dev) + mem_reserved = stats['reserved_bytes.all.current'] + mem_total = torch.xpu.get_device_properties(dev).total_memory + mem_total_torch = mem_reserved + else: + stats = torch.cuda.memory_stats(dev) + mem_reserved = stats['reserved_bytes.all.current'] + _, mem_total_cuda = torch.cuda.mem_get_info(dev) + mem_total_torch = mem_reserved + mem_total = mem_total_cuda + + if torch_total_too: + return (mem_total, mem_total_torch) + else: + return mem_total + +total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) +total_ram = psutil.virtual_memory().total / (1024 * 1024) +print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) +if not args.normalvram and not args.cpu: + if lowvram_available and total_vram <= 4096: + print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram") + set_vram_to = VRAMState.LOW_VRAM + +try: + OOM_EXCEPTION = torch.cuda.OutOfMemoryError +except: + OOM_EXCEPTION = Exception + +XFORMERS_VERSION = "" +XFORMERS_ENABLED_VAE = True +if args.disable_xformers: + XFORMERS_IS_AVAILABLE = False +else: + try: + import xformers + import xformers.ops + XFORMERS_IS_AVAILABLE = True + try: + XFORMERS_IS_AVAILABLE = xformers._has_cpp_library + except: + pass + try: + XFORMERS_VERSION = xformers.version.__version__ + print("xformers version:", XFORMERS_VERSION) + if XFORMERS_VERSION.startswith("0.0.18"): + print() + print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") + print("Please downgrade or upgrade xformers to a different version.") + print() + XFORMERS_ENABLED_VAE = False + except: + pass + except: + XFORMERS_IS_AVAILABLE = False + +def is_nvidia(): + global cpu_state + if cpu_state == CPUState.GPU: + if torch.version.cuda: + return True + return False + +ENABLE_PYTORCH_ATTENTION = False +if args.use_pytorch_cross_attention: + ENABLE_PYTORCH_ATTENTION = True + XFORMERS_IS_AVAILABLE = False + +VAE_DTYPE = torch.float32 + +try: + if is_nvidia(): + torch_version = torch.version.__version__ + if int(torch_version[0]) >= 2: + if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: + ENABLE_PYTORCH_ATTENTION = True + if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8: + VAE_DTYPE = torch.bfloat16 + if is_intel_xpu(): + if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: + ENABLE_PYTORCH_ATTENTION = True +except: + pass + +if is_intel_xpu(): + VAE_DTYPE = torch.bfloat16 + +if args.cpu_vae: + VAE_DTYPE = torch.float32 + +if args.fp16_vae: + VAE_DTYPE = torch.float16 +elif args.bf16_vae: + VAE_DTYPE = torch.bfloat16 +elif args.fp32_vae: + VAE_DTYPE = torch.float32 + + +if ENABLE_PYTORCH_ATTENTION: + torch.backends.cuda.enable_math_sdp(True) + torch.backends.cuda.enable_flash_sdp(True) + torch.backends.cuda.enable_mem_efficient_sdp(True) + +if args.lowvram: + set_vram_to = VRAMState.LOW_VRAM + lowvram_available = True +elif args.novram: + set_vram_to = VRAMState.NO_VRAM +elif args.highvram or args.gpu_only: + vram_state = VRAMState.HIGH_VRAM + +FORCE_FP32 = False +FORCE_FP16 = False +if args.force_fp32: + print("Forcing FP32, if this improves things please report it.") + FORCE_FP32 = True + +if args.force_fp16: + print("Forcing FP16.") + FORCE_FP16 = True + +if lowvram_available: + if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): + vram_state = set_vram_to + + +if cpu_state != CPUState.GPU: + vram_state = VRAMState.DISABLED + +if cpu_state == CPUState.MPS: + vram_state = VRAMState.SHARED + +print(f"Set vram state to: {vram_state.name}") + +DISABLE_SMART_MEMORY = args.disable_smart_memory + +if DISABLE_SMART_MEMORY: + print("Disabling smart memory management") + +def get_torch_device_name(device): + if hasattr(device, 'type'): + if device.type == "cuda": + try: + allocator_backend = torch.cuda.get_allocator_backend() + except: + allocator_backend = "" + return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) + else: + return "{}".format(device.type) + elif is_intel_xpu(): + return "{} {}".format(device, torch.xpu.get_device_name(device)) + else: + return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) + +try: + print("Device:", get_torch_device_name(get_torch_device())) +except: + print("Could not pick default device.") + +print("VAE dtype:", VAE_DTYPE) + +current_loaded_models = [] + +def module_size(module): + module_mem = 0 + sd = module.state_dict() + for k in sd: + t = sd[k] + module_mem += t.nelement() * t.element_size() + return module_mem + +class LoadedModel: + def __init__(self, model): + self.model = model + self.model_accelerated = False + self.device = model.load_device + + def model_memory(self): + return self.model.model_size() + + def model_memory_required(self, device): + if device == self.model.current_device: + return 0 + else: + return self.model_memory() + + def model_load(self, lowvram_model_memory=0): + patch_model_to = None + if lowvram_model_memory == 0: + patch_model_to = self.device + + self.model.model_patches_to(self.device) + self.model.model_patches_to(self.model.model_dtype()) + + try: + self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU + except Exception as e: + self.model.unpatch_model(self.model.offload_device) + self.model_unload() + raise e + + if lowvram_model_memory > 0: + print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024)) + mem_counter = 0 + for m in self.real_model.modules(): + if hasattr(m, "comfy_cast_weights"): + m.prev_comfy_cast_weights = m.comfy_cast_weights + m.comfy_cast_weights = True + module_mem = module_size(m) + if mem_counter + module_mem < lowvram_model_memory: + m.to(self.device) + mem_counter += module_mem + elif hasattr(m, "weight"): #only modules with comfy_cast_weights can be set to lowvram mode + m.to(self.device) + mem_counter += module_size(m) + print("lowvram: loaded module regularly", m) + + self.model_accelerated = True + + if is_intel_xpu() and not args.disable_ipex_optimize: + self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True) + + return self.real_model + + def model_unload(self): + if self.model_accelerated: + for m in self.real_model.modules(): + if hasattr(m, "prev_comfy_cast_weights"): + m.comfy_cast_weights = m.prev_comfy_cast_weights + del m.prev_comfy_cast_weights + + self.model_accelerated = False + + self.model.unpatch_model(self.model.offload_device) + self.model.model_patches_to(self.model.offload_device) + + def __eq__(self, other): + return self.model is other.model + +def minimum_inference_memory(): + return (1024 * 1024 * 1024) + +def unload_model_clones(model): + to_unload = [] + for i in range(len(current_loaded_models)): + if model.is_clone(current_loaded_models[i].model): + to_unload = [i] + to_unload + + for i in to_unload: + print("unload clone", i) + current_loaded_models.pop(i).model_unload() + +def free_memory(memory_required, device, keep_loaded=[]): + unloaded_model = False + for i in range(len(current_loaded_models) -1, -1, -1): + if not DISABLE_SMART_MEMORY: + if get_free_memory(device) > memory_required: + break + shift_model = current_loaded_models[i] + if shift_model.device == device: + if shift_model not in keep_loaded: + m = current_loaded_models.pop(i) + m.model_unload() + del m + unloaded_model = True + + if unloaded_model: + soft_empty_cache() + else: + if vram_state != VRAMState.HIGH_VRAM: + mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) + if mem_free_torch > mem_free_total * 0.25: + soft_empty_cache() + +def load_models_gpu(models, memory_required=0): + global vram_state + + inference_memory = minimum_inference_memory() + extra_mem = max(inference_memory, memory_required) + + models_to_load = [] + models_already_loaded = [] + for x in models: + loaded_model = LoadedModel(x) + + if loaded_model in current_loaded_models: + index = current_loaded_models.index(loaded_model) + current_loaded_models.insert(0, current_loaded_models.pop(index)) + models_already_loaded.append(loaded_model) + else: + if hasattr(x, "model"): + print(f"Requested to load {x.model.__class__.__name__}") + models_to_load.append(loaded_model) + + if len(models_to_load) == 0: + devs = set(map(lambda a: a.device, models_already_loaded)) + for d in devs: + if d != torch.device("cpu"): + free_memory(extra_mem, d, models_already_loaded) + return + + print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}") + + total_memory_required = {} + for loaded_model in models_to_load: + unload_model_clones(loaded_model.model) + total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) + + for device in total_memory_required: + if device != torch.device("cpu"): + free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded) + + for loaded_model in models_to_load: + model = loaded_model.model + torch_dev = model.load_device + if is_device_cpu(torch_dev): + vram_set_state = VRAMState.DISABLED + else: + vram_set_state = vram_state + lowvram_model_memory = 0 + if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): + model_size = loaded_model.model_memory_required(torch_dev) + current_free_mem = get_free_memory(torch_dev) + lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 )) + if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary + vram_set_state = VRAMState.LOW_VRAM + else: + lowvram_model_memory = 0 + + if vram_set_state == VRAMState.NO_VRAM: + lowvram_model_memory = 64 * 1024 * 1024 + + cur_loaded_model = loaded_model.model_load(lowvram_model_memory) + current_loaded_models.insert(0, loaded_model) + return + + +def load_model_gpu(model): + return load_models_gpu([model]) + +def cleanup_models(): + to_delete = [] + for i in range(len(current_loaded_models)): + if sys.getrefcount(current_loaded_models[i].model) <= 2: + to_delete = [i] + to_delete + + for i in to_delete: + x = current_loaded_models.pop(i) + x.model_unload() + del x + +def dtype_size(dtype): + dtype_size = 4 + if dtype == torch.float16 or dtype == torch.bfloat16: + dtype_size = 2 + elif dtype == torch.float32: + dtype_size = 4 + else: + try: + dtype_size = dtype.itemsize + except: #Old pytorch doesn't have .itemsize + pass + return dtype_size + +def unet_offload_device(): + if vram_state == VRAMState.HIGH_VRAM: + return get_torch_device() + else: + return torch.device("cpu") + +def unet_inital_load_device(parameters, dtype): + torch_dev = get_torch_device() + if vram_state == VRAMState.HIGH_VRAM: + return torch_dev + + cpu_dev = torch.device("cpu") + if DISABLE_SMART_MEMORY: + return cpu_dev + + model_size = dtype_size(dtype) * parameters + + mem_dev = get_free_memory(torch_dev) + mem_cpu = get_free_memory(cpu_dev) + if mem_dev > mem_cpu and model_size < mem_dev: + return torch_dev + else: + return cpu_dev + +def unet_dtype(device=None, model_params=0): + if args.bf16_unet: + return torch.bfloat16 + if args.fp16_unet: + return torch.float16 + if args.fp8_e4m3fn_unet: + return torch.float8_e4m3fn + if args.fp8_e5m2_unet: + return torch.float8_e5m2 + if should_use_fp16(device=device, model_params=model_params, manual_cast=True): + return torch.float16 + return torch.float32 + +# None means no manual cast +def unet_manual_cast(weight_dtype, inference_device): + if weight_dtype == torch.float32: + return None + + fp16_supported = comfy.model_management.should_use_fp16(inference_device, prioritize_performance=False) + if fp16_supported and weight_dtype == torch.float16: + return None + + if fp16_supported: + return torch.float16 + else: + return torch.float32 + +def text_encoder_offload_device(): + if args.gpu_only: + return get_torch_device() + else: + return torch.device("cpu") + +def text_encoder_device(): + if args.gpu_only: + return get_torch_device() + elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: + if is_intel_xpu(): + return torch.device("cpu") + if should_use_fp16(prioritize_performance=False): + return get_torch_device() + else: + return torch.device("cpu") + else: + return torch.device("cpu") + +def text_encoder_dtype(device=None): + if args.fp8_e4m3fn_text_enc: + return torch.float8_e4m3fn + elif args.fp8_e5m2_text_enc: + return torch.float8_e5m2 + elif args.fp16_text_enc: + return torch.float16 + elif args.fp32_text_enc: + return torch.float32 + + if is_device_cpu(device): + return torch.float16 + + return torch.float16 + + +def intermediate_device(): + if args.gpu_only: + return get_torch_device() + else: + return torch.device("cpu") + +def vae_device(): + if args.cpu_vae: + return torch.device("cpu") + return get_torch_device() + +def vae_offload_device(): + if args.gpu_only: + return get_torch_device() + else: + return torch.device("cpu") + +def vae_dtype(): + global VAE_DTYPE + return VAE_DTYPE + +def get_autocast_device(dev): + if hasattr(dev, 'type'): + return dev.type + return "cuda" + +def supports_dtype(device, dtype): #TODO + if dtype == torch.float32: + return True + if is_device_cpu(device): + return False + if dtype == torch.float16: + return True + if dtype == torch.bfloat16: + return True + return False + +def device_supports_non_blocking(device): + if is_device_mps(device): + return False #pytorch bug? mps doesn't support non blocking + return True + +def cast_to_device(tensor, device, dtype, copy=False): + device_supports_cast = False + if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: + device_supports_cast = True + elif tensor.dtype == torch.bfloat16: + if hasattr(device, 'type') and device.type.startswith("cuda"): + device_supports_cast = True + elif is_intel_xpu(): + device_supports_cast = True + + non_blocking = device_supports_non_blocking(device) + + if device_supports_cast: + if copy: + if tensor.device == device: + return tensor.to(dtype, copy=copy, non_blocking=non_blocking) + return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) + else: + return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) + else: + return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking) + +def xformers_enabled(): + global directml_enabled + global cpu_state + if cpu_state != CPUState.GPU: + return False + if is_intel_xpu(): + return False + if directml_enabled: + return False + return XFORMERS_IS_AVAILABLE + + +def xformers_enabled_vae(): + enabled = xformers_enabled() + if not enabled: + return False + + return XFORMERS_ENABLED_VAE + +def pytorch_attention_enabled(): + global ENABLE_PYTORCH_ATTENTION + return ENABLE_PYTORCH_ATTENTION + +def pytorch_attention_flash_attention(): + global ENABLE_PYTORCH_ATTENTION + if ENABLE_PYTORCH_ATTENTION: + #TODO: more reliable way of checking for flash attention? + if is_nvidia(): #pytorch flash attention only works on Nvidia + return True + return False + +def get_free_memory(dev=None, torch_free_too=False): + global directml_enabled + if dev is None: + dev = get_torch_device() + + if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): + mem_free_total = psutil.virtual_memory().available + mem_free_torch = mem_free_total + else: + if directml_enabled: + mem_free_total = 1024 * 1024 * 1024 #TODO + mem_free_torch = mem_free_total + elif is_intel_xpu(): + stats = torch.xpu.memory_stats(dev) + mem_active = stats['active_bytes.all.current'] + mem_allocated = stats['allocated_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_torch = mem_reserved - mem_active + mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated + else: + stats = torch.cuda.memory_stats(dev) + mem_active = stats['active_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_cuda, _ = torch.cuda.mem_get_info(dev) + mem_free_torch = mem_reserved - mem_active + mem_free_total = mem_free_cuda + mem_free_torch + + if torch_free_too: + return (mem_free_total, mem_free_torch) + else: + return mem_free_total + +def cpu_mode(): + global cpu_state + return cpu_state == CPUState.CPU + +def mps_mode(): + global cpu_state + return cpu_state == CPUState.MPS + +def is_device_cpu(device): + if hasattr(device, 'type'): + if (device.type == 'cpu'): + return True + return False + +def is_device_mps(device): + if hasattr(device, 'type'): + if (device.type == 'mps'): + return True + return False + +def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): + global directml_enabled + + if device is not None: + if is_device_cpu(device): + return False + + if FORCE_FP16: + return True + + if device is not None: #TODO + if is_device_mps(device): + return False + + if FORCE_FP32: + return False + + if directml_enabled: + return False + + if cpu_mode() or mps_mode(): + return False #TODO ? + + if is_intel_xpu(): + return True + + if torch.version.hip: + return True + + props = torch.cuda.get_device_properties("cuda") + if props.major >= 8: + return True + + if props.major < 6: + return False + + fp16_works = False + #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled + #when the model doesn't actually fit on the card + #TODO: actually test if GP106 and others have the same type of behavior + nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"] + for x in nvidia_10_series: + if x in props.name.lower(): + fp16_works = True + + if fp16_works or manual_cast: + free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) + if (not prioritize_performance) or model_params * 4 > free_model_memory: + return True + + if props.major < 7: + return False + + #FP16 is just broken on these cards + nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] + for x in nvidia_16_series: + if x in props.name: + return False + + return True + +def soft_empty_cache(force=False): + global cpu_state + if cpu_state == CPUState.MPS: + torch.mps.empty_cache() + elif is_intel_xpu(): + torch.xpu.empty_cache() + elif torch.cuda.is_available(): + if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda + torch.cuda.empty_cache() + torch.cuda.ipc_collect() + +def unload_all_models(): + free_memory(1e30, get_torch_device()) + + +def resolve_lowvram_weight(weight, model, key): #TODO: remove + return weight + +#TODO: might be cleaner to put this somewhere else +import threading + +class InterruptProcessingException(Exception): + pass + +interrupt_processing_mutex = threading.RLock() + +interrupt_processing = False +def interrupt_current_processing(value=True): + global interrupt_processing + global interrupt_processing_mutex + with interrupt_processing_mutex: + interrupt_processing = value + +def processing_interrupted(): + global interrupt_processing + global interrupt_processing_mutex + with interrupt_processing_mutex: + return interrupt_processing + +def throw_exception_if_processing_interrupted(): + global interrupt_processing + global interrupt_processing_mutex + with interrupt_processing_mutex: + if interrupt_processing: + interrupt_processing = False + raise InterruptProcessingException() diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py new file mode 100644 index 0000000000000000000000000000000000000000..a88b737cca3931c9e47e245730110413175c735f --- /dev/null +++ b/comfy/model_patcher.py @@ -0,0 +1,357 @@ +import torch +import copy +import inspect + +import comfy.utils +import comfy.model_management + +class ModelPatcher: + def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False): + self.size = size + self.model = model + self.patches = {} + self.backup = {} + self.object_patches = {} + self.object_patches_backup = {} + self.model_options = {"transformer_options":{}} + self.model_size() + self.load_device = load_device + self.offload_device = offload_device + if current_device is None: + self.current_device = self.offload_device + else: + self.current_device = current_device + + self.weight_inplace_update = weight_inplace_update + + def model_size(self): + if self.size > 0: + return self.size + model_sd = self.model.state_dict() + self.size = comfy.model_management.module_size(self.model) + self.model_keys = set(model_sd.keys()) + return self.size + + def clone(self): + n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update) + n.patches = {} + for k in self.patches: + n.patches[k] = self.patches[k][:] + + n.object_patches = self.object_patches.copy() + n.model_options = copy.deepcopy(self.model_options) + n.model_keys = self.model_keys + return n + + def is_clone(self, other): + if hasattr(other, 'model') and self.model is other.model: + return True + return False + + def memory_required(self, input_shape): + return self.model.memory_required(input_shape=input_shape) + + def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False): + if len(inspect.signature(sampler_cfg_function).parameters) == 3: + self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way + else: + self.model_options["sampler_cfg_function"] = sampler_cfg_function + if disable_cfg1_optimization: + self.model_options["disable_cfg1_optimization"] = True + + def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False): + self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function] + if disable_cfg1_optimization: + self.model_options["disable_cfg1_optimization"] = True + + def set_model_unet_function_wrapper(self, unet_wrapper_function): + self.model_options["model_function_wrapper"] = unet_wrapper_function + + def set_model_patch(self, patch, name): + to = self.model_options["transformer_options"] + if "patches" not in to: + to["patches"] = {} + to["patches"][name] = to["patches"].get(name, []) + [patch] + + def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None): + to = self.model_options["transformer_options"] + if "patches_replace" not in to: + to["patches_replace"] = {} + if name not in to["patches_replace"]: + to["patches_replace"][name] = {} + if transformer_index is not None: + block = (block_name, number, transformer_index) + else: + block = (block_name, number) + to["patches_replace"][name][block] = patch + + def set_model_attn1_patch(self, patch): + self.set_model_patch(patch, "attn1_patch") + + def set_model_attn2_patch(self, patch): + self.set_model_patch(patch, "attn2_patch") + + def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None): + self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index) + + def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None): + self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index) + + def set_model_attn1_output_patch(self, patch): + self.set_model_patch(patch, "attn1_output_patch") + + def set_model_attn2_output_patch(self, patch): + self.set_model_patch(patch, "attn2_output_patch") + + def set_model_input_block_patch(self, patch): + self.set_model_patch(patch, "input_block_patch") + + def set_model_input_block_patch_after_skip(self, patch): + self.set_model_patch(patch, "input_block_patch_after_skip") + + def set_model_output_block_patch(self, patch): + self.set_model_patch(patch, "output_block_patch") + + def add_object_patch(self, name, obj): + self.object_patches[name] = obj + + def model_patches_to(self, device): + to = self.model_options["transformer_options"] + if "patches" in to: + patches = to["patches"] + for name in patches: + patch_list = patches[name] + for i in range(len(patch_list)): + if hasattr(patch_list[i], "to"): + patch_list[i] = patch_list[i].to(device) + if "patches_replace" in to: + patches = to["patches_replace"] + for name in patches: + patch_list = patches[name] + for k in patch_list: + if hasattr(patch_list[k], "to"): + patch_list[k] = patch_list[k].to(device) + if "model_function_wrapper" in self.model_options: + wrap_func = self.model_options["model_function_wrapper"] + if hasattr(wrap_func, "to"): + self.model_options["model_function_wrapper"] = wrap_func.to(device) + + def model_dtype(self): + if hasattr(self.model, "get_dtype"): + return self.model.get_dtype() + + def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): + p = set() + for k in patches: + if k in self.model_keys: + p.add(k) + current_patches = self.patches.get(k, []) + current_patches.append((strength_patch, patches[k], strength_model)) + self.patches[k] = current_patches + + return list(p) + + def get_key_patches(self, filter_prefix=None): + comfy.model_management.unload_model_clones(self) + model_sd = self.model_state_dict() + p = {} + for k in model_sd: + if filter_prefix is not None: + if not k.startswith(filter_prefix): + continue + if k in self.patches: + p[k] = [model_sd[k]] + self.patches[k] + else: + p[k] = (model_sd[k],) + return p + + def model_state_dict(self, filter_prefix=None): + sd = self.model.state_dict() + keys = list(sd.keys()) + if filter_prefix is not None: + for k in keys: + if not k.startswith(filter_prefix): + sd.pop(k) + return sd + + def patch_model(self, device_to=None, patch_weights=True): + for k in self.object_patches: + old = getattr(self.model, k) + if k not in self.object_patches_backup: + self.object_patches_backup[k] = old + setattr(self.model, k, self.object_patches[k]) + + if patch_weights: + model_sd = self.model_state_dict() + for key in self.patches: + if key not in model_sd: + print("could not patch. key doesn't exist in model:", key) + continue + + weight = model_sd[key] + + inplace_update = self.weight_inplace_update + + if key not in self.backup: + self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update) + + if device_to is not None: + temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) + else: + temp_weight = weight.to(torch.float32, copy=True) + out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype) + if inplace_update: + comfy.utils.copy_to_param(self.model, key, out_weight) + else: + comfy.utils.set_attr(self.model, key, out_weight) + del temp_weight + + if device_to is not None: + self.model.to(device_to) + self.current_device = device_to + + return self.model + + def calculate_weight(self, patches, weight, key): + for p in patches: + alpha = p[0] + v = p[1] + strength_model = p[2] + + if strength_model != 1.0: + weight *= strength_model + + if isinstance(v, list): + v = (self.calculate_weight(v[1:], v[0].clone(), key), ) + + if len(v) == 1: + patch_type = "diff" + elif len(v) == 2: + patch_type = v[0] + v = v[1] + + if patch_type == "diff": + w1 = v[0] + if alpha != 0.0: + if w1.shape != weight.shape: + print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) + else: + weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype) + elif patch_type == "lora": #lora/locon + mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32) + mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32) + if v[2] is not None: + alpha *= v[2] / mat2.shape[0] + if v[3] is not None: + #locon mid weights, hopefully the math is fine because I didn't properly test it + mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32) + final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] + mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) + try: + weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype) + except Exception as e: + print("ERROR", key, e) + elif patch_type == "lokr": + w1 = v[0] + w2 = v[1] + w1_a = v[3] + w1_b = v[4] + w2_a = v[5] + w2_b = v[6] + t2 = v[7] + dim = None + + if w1 is None: + dim = w1_b.shape[0] + w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32), + comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32)) + else: + w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32) + + if w2 is None: + dim = w2_b.shape[0] + if t2 is None: + w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32)) + else: + w2 = torch.einsum('i j k l, j r, i p -> p r k l', + comfy.model_management.cast_to_device(t2, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32)) + else: + w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32) + + if len(w2.shape) == 4: + w1 = w1.unsqueeze(2).unsqueeze(2) + if v[2] is not None and dim is not None: + alpha *= v[2] / dim + + try: + weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype) + except Exception as e: + print("ERROR", key, e) + elif patch_type == "loha": + w1a = v[0] + w1b = v[1] + if v[2] is not None: + alpha *= v[2] / w1b.shape[0] + w2a = v[3] + w2b = v[4] + if v[5] is not None: #cp decomposition + t1 = v[5] + t2 = v[6] + m1 = torch.einsum('i j k l, j r, i p -> p r k l', + comfy.model_management.cast_to_device(t1, weight.device, torch.float32), + comfy.model_management.cast_to_device(w1b, weight.device, torch.float32), + comfy.model_management.cast_to_device(w1a, weight.device, torch.float32)) + + m2 = torch.einsum('i j k l, j r, i p -> p r k l', + comfy.model_management.cast_to_device(t2, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2b, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2a, weight.device, torch.float32)) + else: + m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32), + comfy.model_management.cast_to_device(w1b, weight.device, torch.float32)) + m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32), + comfy.model_management.cast_to_device(w2b, weight.device, torch.float32)) + + try: + weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype) + except Exception as e: + print("ERROR", key, e) + elif patch_type == "glora": + if v[4] is not None: + alpha *= v[4] / v[0].shape[0] + + a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32) + a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32) + b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32) + b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32) + + weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype) + else: + print("patch type not recognized", patch_type, key) + + return weight + + def unpatch_model(self, device_to=None): + keys = list(self.backup.keys()) + + if self.weight_inplace_update: + for k in keys: + comfy.utils.copy_to_param(self.model, k, self.backup[k]) + else: + for k in keys: + comfy.utils.set_attr(self.model, k, self.backup[k]) + + self.backup = {} + + if device_to is not None: + self.model.to(device_to) + self.current_device = device_to + + keys = list(self.object_patches_backup.keys()) + for k in keys: + setattr(self.model, k, self.object_patches_backup[k]) + + self.object_patches_backup = {} diff --git a/comfy/model_sampling.py b/comfy/model_sampling.py new file mode 100644 index 0000000000000000000000000000000000000000..d5870027b9bc4ad951e4404d3c5a2948c4856ba0 --- /dev/null +++ b/comfy/model_sampling.py @@ -0,0 +1,134 @@ +import torch +from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule +import math + +class EPS: + def calculate_input(self, sigma, noise): + sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) + return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 + + def calculate_denoised(self, sigma, model_output, model_input): + sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + return model_input - model_output * sigma + + +class V_PREDICTION(EPS): + def calculate_denoised(self, sigma, model_output, model_input): + sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 + + +class ModelSamplingDiscrete(torch.nn.Module): + def __init__(self, model_config=None): + super().__init__() + + if model_config is not None: + sampling_settings = model_config.sampling_settings + else: + sampling_settings = {} + + beta_schedule = sampling_settings.get("beta_schedule", "linear") + linear_start = sampling_settings.get("linear_start", 0.00085) + linear_end = sampling_settings.get("linear_end", 0.012) + + self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3) + self.sigma_data = 1.0 + + def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if given_betas is not None: + betas = given_betas + else: + betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) + alphas = 1. - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + + timesteps, = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + + # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32)) + # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32)) + # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32)) + + sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 + self.set_sigmas(sigmas) + + def set_sigmas(self, sigmas): + self.register_buffer('sigmas', sigmas.float()) + self.register_buffer('log_sigmas', sigmas.log().float()) + + @property + def sigma_min(self): + return self.sigmas[0] + + @property + def sigma_max(self): + return self.sigmas[-1] + + def timestep(self, sigma): + log_sigma = sigma.log() + dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] + return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) + + def sigma(self, timestep): + t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1)) + low_idx = t.floor().long() + high_idx = t.ceil().long() + w = t.frac() + log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] + return log_sigma.exp().to(timestep.device) + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 999999999.9 + if percent >= 1.0: + return 0.0 + percent = 1.0 - percent + return self.sigma(torch.tensor(percent * 999.0)).item() + + +class ModelSamplingContinuousEDM(torch.nn.Module): + def __init__(self, model_config=None): + super().__init__() + self.sigma_data = 1.0 + + if model_config is not None: + sampling_settings = model_config.sampling_settings + else: + sampling_settings = {} + + sigma_min = sampling_settings.get("sigma_min", 0.002) + sigma_max = sampling_settings.get("sigma_max", 120.0) + self.set_sigma_range(sigma_min, sigma_max) + + def set_sigma_range(self, sigma_min, sigma_max): + sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp() + + self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers + self.register_buffer('log_sigmas', sigmas.log()) + + @property + def sigma_min(self): + return self.sigmas[0] + + @property + def sigma_max(self): + return self.sigmas[-1] + + def timestep(self, sigma): + return 0.25 * sigma.log() + + def sigma(self, timestep): + return (timestep / 0.25).exp() + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 999999999.9 + if percent >= 1.0: + return 0.0 + percent = 1.0 - percent + + log_sigma_min = math.log(self.sigma_min) + return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min) diff --git a/comfy/ops.py b/comfy/ops.py new file mode 100644 index 0000000000000000000000000000000000000000..f674b47f76293645ea2979add0afe22acd5245c8 --- /dev/null +++ b/comfy/ops.py @@ -0,0 +1,114 @@ +import torch +import comfy.model_management + +def cast_bias_weight(s, input): + bias = None + non_blocking = comfy.model_management.device_supports_non_blocking(input.device) + if s.bias is not None: + bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) + weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) + return weight, bias + + +class disable_weight_init: + class Linear(torch.nn.Linear): + comfy_cast_weights = False + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + weight, bias = cast_bias_weight(self, input) + return torch.nn.functional.linear(input, weight, bias) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + class Conv2d(torch.nn.Conv2d): + comfy_cast_weights = False + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + weight, bias = cast_bias_weight(self, input) + return self._conv_forward(input, weight, bias) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + class Conv3d(torch.nn.Conv3d): + comfy_cast_weights = False + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + weight, bias = cast_bias_weight(self, input) + return self._conv_forward(input, weight, bias) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + class GroupNorm(torch.nn.GroupNorm): + comfy_cast_weights = False + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + weight, bias = cast_bias_weight(self, input) + return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + + class LayerNorm(torch.nn.LayerNorm): + comfy_cast_weights = False + def reset_parameters(self): + return None + + def forward_comfy_cast_weights(self, input): + weight, bias = cast_bias_weight(self, input) + return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) + + def forward(self, *args, **kwargs): + if self.comfy_cast_weights: + return self.forward_comfy_cast_weights(*args, **kwargs) + else: + return super().forward(*args, **kwargs) + + @classmethod + def conv_nd(s, dims, *args, **kwargs): + if dims == 2: + return s.Conv2d(*args, **kwargs) + elif dims == 3: + return s.Conv3d(*args, **kwargs) + else: + raise ValueError(f"unsupported dimensions: {dims}") + + +class manual_cast(disable_weight_init): + class Linear(disable_weight_init.Linear): + comfy_cast_weights = True + + class Conv2d(disable_weight_init.Conv2d): + comfy_cast_weights = True + + class Conv3d(disable_weight_init.Conv3d): + comfy_cast_weights = True + + class GroupNorm(disable_weight_init.GroupNorm): + comfy_cast_weights = True + + class LayerNorm(disable_weight_init.LayerNorm): + comfy_cast_weights = True diff --git a/comfy/options.py b/comfy/options.py new file mode 100644 index 0000000000000000000000000000000000000000..f7f8af41ebd8b9669ef0ef21827ea6195bcb4752 --- /dev/null +++ b/comfy/options.py @@ -0,0 +1,6 @@ + +args_parsing = False + +def enable_args_parsing(enable=True): + global args_parsing + args_parsing = enable diff --git a/comfy/sample.py b/comfy/sample.py new file mode 100644 index 0000000000000000000000000000000000000000..5c8a7d13039325acc52e5d09487f5817f88adb63 --- /dev/null +++ b/comfy/sample.py @@ -0,0 +1,118 @@ +import torch +import comfy.model_management +import comfy.samplers +import comfy.conds +import comfy.utils +import math +import numpy as np + +def prepare_noise(latent_image, seed, noise_inds=None): + """ + creates random noise given a latent image and a seed. + optional arg skip can be used to skip and discard x number of noise generations for a given seed + """ + generator = torch.manual_seed(seed) + if noise_inds is None: + return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") + + unique_inds, inverse = np.unique(noise_inds, return_inverse=True) + noises = [] + for i in range(unique_inds[-1]+1): + noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") + if i in unique_inds: + noises.append(noise) + noises = [noises[i] for i in inverse] + noises = torch.cat(noises, axis=0) + return noises + +def prepare_mask(noise_mask, shape, device): + """ensures noise mask is of proper dimensions""" + noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") + noise_mask = torch.cat([noise_mask] * shape[1], dim=1) + noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0]) + noise_mask = noise_mask.to(device) + return noise_mask + +def get_models_from_cond(cond, model_type): + models = [] + for c in cond: + if model_type in c: + models += [c[model_type]] + return models + +def convert_cond(cond): + out = [] + for c in cond: + temp = c[1].copy() + model_conds = temp.get("model_conds", {}) + if c[0] is not None: + model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove + temp["cross_attn"] = c[0] + temp["model_conds"] = model_conds + out.append(temp) + return out + +def get_additional_models(positive, negative, dtype): + """loads additional models in positive and negative conditioning""" + control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")) + + inference_memory = 0 + control_models = [] + for m in control_nets: + control_models += m.get_models() + inference_memory += m.inference_memory_requirements(dtype) + + gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen") + gligen = [x[1] for x in gligen] + models = control_models + gligen + return models, inference_memory + +def cleanup_additional_models(models): + """cleanup additional models that were loaded""" + for m in models: + if hasattr(m, 'cleanup'): + m.cleanup() + +def prepare_sampling(model, noise_shape, positive, negative, noise_mask): + device = model.load_device + positive = convert_cond(positive) + negative = convert_cond(negative) + + if noise_mask is not None: + noise_mask = prepare_mask(noise_mask, noise_shape, device) + + real_model = None + models, inference_memory = get_additional_models(positive, negative, model.model_dtype()) + comfy.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory) + real_model = model.model + + return real_model, positive, negative, noise_mask, models + + +def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): + real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask) + + noise = noise.to(model.load_device) + latent_image = latent_image.to(model.load_device) + + sampler = comfy.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) + + samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed) + samples = samples.to(comfy.model_management.intermediate_device()) + + cleanup_additional_models(models) + cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control"))) + return samples + +def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None): + real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask) + noise = noise.to(model.load_device) + latent_image = latent_image.to(model.load_device) + sigmas = sigmas.to(model.load_device) + + samples = comfy.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) + samples = samples.to(comfy.model_management.intermediate_device()) + cleanup_additional_models(models) + cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control"))) + return samples + diff --git a/comfy/samplers.py b/comfy/samplers.py new file mode 100644 index 0000000000000000000000000000000000000000..f4c3e268f73a316eca254ca872faaf79cd0fd058 --- /dev/null +++ b/comfy/samplers.py @@ -0,0 +1,712 @@ +from .k_diffusion import sampling as k_diffusion_sampling +from .extra_samplers import uni_pc +import torch +import collections +from comfy import model_management +import math + +def get_area_and_mult(conds, x_in, timestep_in): + area = (x_in.shape[2], x_in.shape[3], 0, 0) + strength = 1.0 + + if 'timestep_start' in conds: + timestep_start = conds['timestep_start'] + if timestep_in[0] > timestep_start: + return None + if 'timestep_end' in conds: + timestep_end = conds['timestep_end'] + if timestep_in[0] < timestep_end: + return None + if 'area' in conds: + area = conds['area'] + if 'strength' in conds: + strength = conds['strength'] + + input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] + if 'mask' in conds: + # Scale the mask to the size of the input + # The mask should have been resized as we began the sampling process + mask_strength = 1.0 + if "mask_strength" in conds: + mask_strength = conds["mask_strength"] + mask = conds['mask'] + assert(mask.shape[1] == x_in.shape[2]) + assert(mask.shape[2] == x_in.shape[3]) + mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength + mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) + else: + mask = torch.ones_like(input_x) + mult = mask * strength + + if 'mask' not in conds: + rr = 8 + if area[2] != 0: + for t in range(rr): + mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1)) + if (area[0] + area[2]) < x_in.shape[2]: + for t in range(rr): + mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1)) + if area[3] != 0: + for t in range(rr): + mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1)) + if (area[1] + area[3]) < x_in.shape[3]: + for t in range(rr): + mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1)) + + conditioning = {} + model_conds = conds["model_conds"] + for c in model_conds: + conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area) + + control = conds.get('control', None) + + patches = None + if 'gligen' in conds: + gligen = conds['gligen'] + patches = {} + gligen_type = gligen[0] + gligen_model = gligen[1] + if gligen_type == "position": + gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device) + else: + gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device) + + patches['middle_patch'] = [gligen_patch] + + cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches']) + return cond_obj(input_x, mult, conditioning, area, control, patches) + +def cond_equal_size(c1, c2): + if c1 is c2: + return True + if c1.keys() != c2.keys(): + return False + for k in c1: + if not c1[k].can_concat(c2[k]): + return False + return True + +def can_concat_cond(c1, c2): + if c1.input_x.shape != c2.input_x.shape: + return False + + def objects_concatable(obj1, obj2): + if (obj1 is None) != (obj2 is None): + return False + if obj1 is not None: + if obj1 is not obj2: + return False + return True + + if not objects_concatable(c1.control, c2.control): + return False + + if not objects_concatable(c1.patches, c2.patches): + return False + + return cond_equal_size(c1.conditioning, c2.conditioning) + +def cond_cat(c_list): + c_crossattn = [] + c_concat = [] + c_adm = [] + crossattn_max_len = 0 + + temp = {} + for x in c_list: + for k in x: + cur = temp.get(k, []) + cur.append(x[k]) + temp[k] = cur + + out = {} + for k in temp: + conds = temp[k] + out[k] = conds[0].concat(conds[1:]) + + return out + +def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): + out_cond = torch.zeros_like(x_in) + out_count = torch.ones_like(x_in) * 1e-37 + + out_uncond = torch.zeros_like(x_in) + out_uncond_count = torch.ones_like(x_in) * 1e-37 + + COND = 0 + UNCOND = 1 + + to_run = [] + for x in cond: + p = get_area_and_mult(x, x_in, timestep) + if p is None: + continue + + to_run += [(p, COND)] + if uncond is not None: + for x in uncond: + p = get_area_and_mult(x, x_in, timestep) + if p is None: + continue + + to_run += [(p, UNCOND)] + + while len(to_run) > 0: + first = to_run[0] + first_shape = first[0][0].shape + to_batch_temp = [] + for x in range(len(to_run)): + if can_concat_cond(to_run[x][0], first[0]): + to_batch_temp += [x] + + to_batch_temp.reverse() + to_batch = to_batch_temp[:1] + + free_memory = model_management.get_free_memory(x_in.device) + for i in range(1, len(to_batch_temp) + 1): + batch_amount = to_batch_temp[:len(to_batch_temp)//i] + input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] + if model.memory_required(input_shape) < free_memory: + to_batch = batch_amount + break + + input_x = [] + mult = [] + c = [] + cond_or_uncond = [] + area = [] + control = None + patches = None + for x in to_batch: + o = to_run.pop(x) + p = o[0] + input_x.append(p.input_x) + mult.append(p.mult) + c.append(p.conditioning) + area.append(p.area) + cond_or_uncond.append(o[1]) + control = p.control + patches = p.patches + + batch_chunks = len(cond_or_uncond) + input_x = torch.cat(input_x) + c = cond_cat(c) + timestep_ = torch.cat([timestep] * batch_chunks) + + if control is not None: + c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond)) + + transformer_options = {} + if 'transformer_options' in model_options: + transformer_options = model_options['transformer_options'].copy() + + if patches is not None: + if "patches" in transformer_options: + cur_patches = transformer_options["patches"].copy() + for p in patches: + if p in cur_patches: + cur_patches[p] = cur_patches[p] + patches[p] + else: + cur_patches[p] = patches[p] + else: + transformer_options["patches"] = patches + + transformer_options["cond_or_uncond"] = cond_or_uncond[:] + transformer_options["sigmas"] = timestep + + c['transformer_options'] = transformer_options + + if 'model_function_wrapper' in model_options: + output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) + else: + output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks) + del input_x + + for o in range(batch_chunks): + if cond_or_uncond[o] == COND: + out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] + out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] + else: + out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] + out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o] + del mult + + out_cond /= out_count + del out_count + out_uncond /= out_uncond_count + del out_uncond_count + return out_cond, out_uncond + +#The main sampling function shared by all the samplers +#Returns denoised +def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None): + if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: + uncond_ = None + else: + uncond_ = uncond + + cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options) + if "sampler_cfg_function" in model_options: + args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep, + "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options} + cfg_result = x - model_options["sampler_cfg_function"](args) + else: + cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale + + for fn in model_options.get("sampler_post_cfg_function", []): + args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred, + "sigma": timestep, "model_options": model_options, "input": x} + cfg_result = fn(args) + + return cfg_result + +class CFGNoisePredictor(torch.nn.Module): + def __init__(self, model): + super().__init__() + self.inner_model = model + def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None): + out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed) + return out + def forward(self, *args, **kwargs): + return self.apply_model(*args, **kwargs) + +class KSamplerX0Inpaint(torch.nn.Module): + def __init__(self, model): + super().__init__() + self.inner_model = model + def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None): + if denoise_mask is not None: + latent_mask = 1. - denoise_mask + x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask + out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed) + if denoise_mask is not None: + out = out * denoise_mask + self.latent_image * latent_mask + return out + +def simple_scheduler(model, steps): + s = model.model_sampling + sigs = [] + ss = len(s.sigmas) / steps + for x in range(steps): + sigs += [float(s.sigmas[-(1 + int(x * ss))])] + sigs += [0.0] + return torch.FloatTensor(sigs) + +def ddim_scheduler(model, steps): + s = model.model_sampling + sigs = [] + ss = len(s.sigmas) // steps + x = 1 + while x < len(s.sigmas): + sigs += [float(s.sigmas[x])] + x += ss + sigs = sigs[::-1] + sigs += [0.0] + return torch.FloatTensor(sigs) + +def normal_scheduler(model, steps, sgm=False, floor=False): + s = model.model_sampling + start = s.timestep(s.sigma_max) + end = s.timestep(s.sigma_min) + + if sgm: + timesteps = torch.linspace(start, end, steps + 1)[:-1] + else: + timesteps = torch.linspace(start, end, steps) + + sigs = [] + for x in range(len(timesteps)): + ts = timesteps[x] + sigs.append(s.sigma(ts)) + sigs += [0.0] + return torch.FloatTensor(sigs) + +def get_mask_aabb(masks): + if masks.numel() == 0: + return torch.zeros((0, 4), device=masks.device, dtype=torch.int) + + b = masks.shape[0] + + bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int) + is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool) + for i in range(b): + mask = masks[i] + if mask.numel() == 0: + continue + if torch.max(mask != 0) == False: + is_empty[i] = True + continue + y, x = torch.where(mask) + bounding_boxes[i, 0] = torch.min(x) + bounding_boxes[i, 1] = torch.min(y) + bounding_boxes[i, 2] = torch.max(x) + bounding_boxes[i, 3] = torch.max(y) + + return bounding_boxes, is_empty + +def resolve_areas_and_cond_masks(conditions, h, w, device): + # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes. + # While we're doing this, we can also resolve the mask device and scaling for performance reasons + for i in range(len(conditions)): + c = conditions[i] + if 'area' in c: + area = c['area'] + if area[0] == "percentage": + modified = c.copy() + area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w)) + modified['area'] = area + c = modified + conditions[i] = c + + if 'mask' in c: + mask = c['mask'] + mask = mask.to(device=device) + modified = c.copy() + if len(mask.shape) == 2: + mask = mask.unsqueeze(0) + if mask.shape[1] != h or mask.shape[2] != w: + mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1) + + if modified.get("set_area_to_bounds", False): + bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0) + boxes, is_empty = get_mask_aabb(bounds) + if is_empty[0]: + # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway) + modified['area'] = (8, 8, 0, 0) + else: + box = boxes[0] + H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0]) + H = max(8, H) + W = max(8, W) + area = (int(H), int(W), int(Y), int(X)) + modified['area'] = area + + modified['mask'] = mask + conditions[i] = modified + +def create_cond_with_same_area_if_none(conds, c): + if 'area' not in c: + return + + c_area = c['area'] + smallest = None + for x in conds: + if 'area' in x: + a = x['area'] + if c_area[2] >= a[2] and c_area[3] >= a[3]: + if a[0] + a[2] >= c_area[0] + c_area[2]: + if a[1] + a[3] >= c_area[1] + c_area[3]: + if smallest is None: + smallest = x + elif 'area' not in smallest: + smallest = x + else: + if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]: + smallest = x + else: + if smallest is None: + smallest = x + if smallest is None: + return + if 'area' in smallest: + if smallest['area'] == c_area: + return + + out = c.copy() + out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied? + conds += [out] + +def calculate_start_end_timesteps(model, conds): + s = model.model_sampling + for t in range(len(conds)): + x = conds[t] + + timestep_start = None + timestep_end = None + if 'start_percent' in x: + timestep_start = s.percent_to_sigma(x['start_percent']) + if 'end_percent' in x: + timestep_end = s.percent_to_sigma(x['end_percent']) + + if (timestep_start is not None) or (timestep_end is not None): + n = x.copy() + if (timestep_start is not None): + n['timestep_start'] = timestep_start + if (timestep_end is not None): + n['timestep_end'] = timestep_end + conds[t] = n + +def pre_run_control(model, conds): + s = model.model_sampling + for t in range(len(conds)): + x = conds[t] + + timestep_start = None + timestep_end = None + percent_to_timestep_function = lambda a: s.percent_to_sigma(a) + if 'control' in x: + x['control'].pre_run(model, percent_to_timestep_function) + +def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): + cond_cnets = [] + cond_other = [] + uncond_cnets = [] + uncond_other = [] + for t in range(len(conds)): + x = conds[t] + if 'area' not in x: + if name in x and x[name] is not None: + cond_cnets.append(x[name]) + else: + cond_other.append((x, t)) + for t in range(len(uncond)): + x = uncond[t] + if 'area' not in x: + if name in x and x[name] is not None: + uncond_cnets.append(x[name]) + else: + uncond_other.append((x, t)) + + if len(uncond_cnets) > 0: + return + + for x in range(len(cond_cnets)): + temp = uncond_other[x % len(uncond_other)] + o = temp[0] + if name in o and o[name] is not None: + n = o.copy() + n[name] = uncond_fill_func(cond_cnets, x) + uncond += [n] + else: + n = o.copy() + n[name] = uncond_fill_func(cond_cnets, x) + uncond[temp[1]] = n + +def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs): + for t in range(len(conds)): + x = conds[t] + params = x.copy() + params["device"] = device + params["noise"] = noise + params["width"] = params.get("width", noise.shape[3] * 8) + params["height"] = params.get("height", noise.shape[2] * 8) + params["prompt_type"] = params.get("prompt_type", prompt_type) + for k in kwargs: + if k not in params: + params[k] = kwargs[k] + + out = model_function(**params) + x = x.copy() + model_conds = x['model_conds'].copy() + for k in out: + model_conds[k] = out[k] + x['model_conds'] = model_conds + conds[t] = x + return conds + +class Sampler: + def sample(self): + pass + + def max_denoise(self, model_wrap, sigmas): + max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max) + sigma = float(sigmas[0]) + return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma + +class UNIPC(Sampler): + def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): + return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar) + +class UNIPCBH2(Sampler): + def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): + return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar) + +KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", + "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", + "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"] + +class KSAMPLER(Sampler): + def __init__(self, sampler_function, extra_options={}, inpaint_options={}): + self.sampler_function = sampler_function + self.extra_options = extra_options + self.inpaint_options = inpaint_options + + def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): + extra_args["denoise_mask"] = denoise_mask + model_k = KSamplerX0Inpaint(model_wrap) + model_k.latent_image = latent_image + if self.inpaint_options.get("random", False): #TODO: Should this be the default? + generator = torch.manual_seed(extra_args.get("seed", 41) + 1) + model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device) + else: + model_k.noise = noise + + if self.max_denoise(model_wrap, sigmas): + noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0) + else: + noise = noise * sigmas[0] + + k_callback = None + total_steps = len(sigmas) - 1 + if callback is not None: + k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) + + if latent_image is not None: + noise += latent_image + + samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options) + return samples + + +def ksampler(sampler_name, extra_options={}, inpaint_options={}): + if sampler_name == "dpm_fast": + def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable): + sigma_min = sigmas[-1] + if sigma_min == 0: + sigma_min = sigmas[-2] + total_steps = len(sigmas) - 1 + return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable) + sampler_function = dpm_fast_function + elif sampler_name == "dpm_adaptive": + def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable): + sigma_min = sigmas[-1] + if sigma_min == 0: + sigma_min = sigmas[-2] + return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable) + sampler_function = dpm_adaptive_function + else: + sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name)) + + return KSAMPLER(sampler_function, extra_options, inpaint_options) + +def wrap_model(model): + model_denoise = CFGNoisePredictor(model) + return model_denoise + +def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): + positive = positive[:] + negative = negative[:] + + resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device) + resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device) + + model_wrap = wrap_model(model) + + calculate_start_end_timesteps(model, negative) + calculate_start_end_timesteps(model, positive) + + if latent_image is not None: + latent_image = model.process_latent_in(latent_image) + + if hasattr(model, 'extra_conds'): + positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed) + negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed) + + #make sure each cond area has an opposite one with the same area + for c in positive: + create_cond_with_same_area_if_none(negative, c) + for c in negative: + create_cond_with_same_area_if_none(positive, c) + + pre_run_control(model, negative + positive) + + apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x]) + apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) + + extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed} + + samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar) + return model.process_latent_out(samples.to(torch.float32)) + +SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"] +SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"] + +def calculate_sigmas_scheduler(model, scheduler_name, steps): + if scheduler_name == "karras": + sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max)) + elif scheduler_name == "exponential": + sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max)) + elif scheduler_name == "normal": + sigmas = normal_scheduler(model, steps) + elif scheduler_name == "simple": + sigmas = simple_scheduler(model, steps) + elif scheduler_name == "ddim_uniform": + sigmas = ddim_scheduler(model, steps) + elif scheduler_name == "sgm_uniform": + sigmas = normal_scheduler(model, steps, sgm=True) + else: + print("error invalid scheduler", scheduler_name) + return sigmas + +def sampler_object(name): + if name == "uni_pc": + sampler = UNIPC() + elif name == "uni_pc_bh2": + sampler = UNIPCBH2() + elif name == "ddim": + sampler = ksampler("euler", inpaint_options={"random": True}) + else: + sampler = ksampler(name) + return sampler + +class KSampler: + SCHEDULERS = SCHEDULER_NAMES + SAMPLERS = SAMPLER_NAMES + + def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): + self.model = model + self.device = device + if scheduler not in self.SCHEDULERS: + scheduler = self.SCHEDULERS[0] + if sampler not in self.SAMPLERS: + sampler = self.SAMPLERS[0] + self.scheduler = scheduler + self.sampler = sampler + self.set_steps(steps, denoise) + self.denoise = denoise + self.model_options = model_options + + def calculate_sigmas(self, steps): + sigmas = None + + discard_penultimate_sigma = False + if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']: + steps += 1 + discard_penultimate_sigma = True + + sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps) + + if discard_penultimate_sigma: + sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) + return sigmas + + def set_steps(self, steps, denoise=None): + self.steps = steps + if denoise is None or denoise > 0.9999: + self.sigmas = self.calculate_sigmas(steps).to(self.device) + else: + new_steps = int(steps/denoise) + sigmas = self.calculate_sigmas(new_steps).to(self.device) + self.sigmas = sigmas[-(steps + 1):] + + def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): + if sigmas is None: + sigmas = self.sigmas + + if last_step is not None and last_step < (len(sigmas) - 1): + sigmas = sigmas[:last_step + 1] + if force_full_denoise: + sigmas[-1] = 0 + + if start_step is not None: + if start_step < (len(sigmas) - 1): + sigmas = sigmas[start_step:] + else: + if latent_image is not None: + return latent_image + else: + return torch.zeros_like(noise) + + sampler = sampler_object(self.sampler) + + return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) diff --git a/comfy/sd.py b/comfy/sd.py new file mode 100644 index 0000000000000000000000000000000000000000..c15d73fed5e0b777c7a011932bb7dc1b5d5aa2e1 --- /dev/null +++ b/comfy/sd.py @@ -0,0 +1,544 @@ +import torch + +from comfy import model_management +from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine +import yaml + +import comfy.utils + +from . import clip_vision +from . import gligen +from . import diffusers_convert +from . import model_base +from . import model_detection + +from . import sd1_clip +from . import sd2_clip +from . import sdxl_clip + +import comfy.model_patcher +import comfy.lora +import comfy.t2i_adapter.adapter +import comfy.supported_models_base +import comfy.taesd.taesd + +def load_model_weights(model, sd): + m, u = model.load_state_dict(sd, strict=False) + m = set(m) + unexpected_keys = set(u) + + k = list(sd.keys()) + for x in k: + if x not in unexpected_keys: + w = sd.pop(x) + del w + if len(m) > 0: + print("missing", m) + return model + +def load_clip_weights(model, sd): + k = list(sd.keys()) + for x in k: + if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): + y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") + sd[y] = sd.pop(x) + + if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd: + ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] + if ids.dtype == torch.float32: + sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() + + sd = comfy.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24) + return load_model_weights(model, sd) + + +def load_lora_for_models(model, clip, lora, strength_model, strength_clip): + key_map = {} + if model is not None: + key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) + if clip is not None: + key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) + + loaded = comfy.lora.load_lora(lora, key_map) + if model is not None: + new_modelpatcher = model.clone() + k = new_modelpatcher.add_patches(loaded, strength_model) + else: + k = () + new_modelpatcher = None + + if clip is not None: + new_clip = clip.clone() + k1 = new_clip.add_patches(loaded, strength_clip) + else: + k1 = () + new_clip = None + k = set(k) + k1 = set(k1) + for x in loaded: + if (x not in k) and (x not in k1): + print("NOT LOADED", x) + + return (new_modelpatcher, new_clip) + + +class CLIP: + def __init__(self, target=None, embedding_directory=None, no_init=False): + if no_init: + return + params = target.params.copy() + clip = target.clip + tokenizer = target.tokenizer + + load_device = model_management.text_encoder_device() + offload_device = model_management.text_encoder_offload_device() + params['device'] = offload_device + params['dtype'] = model_management.text_encoder_dtype(load_device) + + self.cond_stage_model = clip(**(params)) + + self.tokenizer = tokenizer(embedding_directory=embedding_directory) + self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device) + self.layer_idx = None + + def clone(self): + n = CLIP(no_init=True) + n.patcher = self.patcher.clone() + n.cond_stage_model = self.cond_stage_model + n.tokenizer = self.tokenizer + n.layer_idx = self.layer_idx + return n + + def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): + return self.patcher.add_patches(patches, strength_patch, strength_model) + + def clip_layer(self, layer_idx): + self.layer_idx = layer_idx + + def tokenize(self, text, return_word_ids=False): + return self.tokenizer.tokenize_with_weights(text, return_word_ids) + + def encode_from_tokens(self, tokens, return_pooled=False): + if self.layer_idx is not None: + self.cond_stage_model.clip_layer(self.layer_idx) + else: + self.cond_stage_model.reset_clip_layer() + + self.load_model() + cond, pooled = self.cond_stage_model.encode_token_weights(tokens) + if return_pooled: + return cond, pooled + return cond + + def encode(self, text): + tokens = self.tokenize(text) + return self.encode_from_tokens(tokens) + + def load_sd(self, sd): + return self.cond_stage_model.load_sd(sd) + + def get_sd(self): + return self.cond_stage_model.state_dict() + + def load_model(self): + model_management.load_model_gpu(self.patcher) + return self.patcher + + def get_key_patches(self): + return self.patcher.get_key_patches() + +class VAE: + def __init__(self, sd=None, device=None, config=None, dtype=None): + if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format + sd = diffusers_convert.convert_vae_state_dict(sd) + + self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower) + self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) + self.downscale_ratio = 8 + self.latent_channels = 4 + + if config is None: + if "decoder.mid.block_1.mix_factor" in sd: + encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} + decoder_config = encoder_config.copy() + decoder_config["video_kernel_size"] = [3, 1, 1] + decoder_config["alpha"] = 0.0 + self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"}, + encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config}, + decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config}) + elif "taesd_decoder.1.weight" in sd: + self.first_stage_model = comfy.taesd.taesd.TAESD() + else: + #default SD1.x/SD2.x VAE parameters + ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} + + if 'encoder.down.2.downsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE + ddconfig['ch_mult'] = [1, 2, 4] + self.downscale_ratio = 4 + + self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4) + else: + self.first_stage_model = AutoencoderKL(**(config['params'])) + self.first_stage_model = self.first_stage_model.eval() + + m, u = self.first_stage_model.load_state_dict(sd, strict=False) + if len(m) > 0: + print("Missing VAE keys", m) + + if len(u) > 0: + print("Leftover VAE keys", u) + + if device is None: + device = model_management.vae_device() + self.device = device + offload_device = model_management.vae_offload_device() + if dtype is None: + dtype = model_management.vae_dtype() + self.vae_dtype = dtype + self.first_stage_model.to(self.vae_dtype) + self.output_device = model_management.intermediate_device() + + self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device) + + def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): + steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap) + steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap) + steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap) + pbar = comfy.utils.ProgressBar(steps) + + decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float() + output = torch.clamp(( + (comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) + + comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) + + comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar)) + / 3.0) / 2.0, min=0.0, max=1.0) + return output + + def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): + steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap) + steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap) + steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap) + pbar = comfy.utils.ProgressBar(steps) + + encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float() + samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) + samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) + samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) + samples /= 3.0 + return samples + + def decode(self, samples_in): + try: + memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) + model_management.load_models_gpu([self.patcher], memory_required=memory_used) + free_memory = model_management.get_free_memory(self.device) + batch_number = int(free_memory / memory_used) + batch_number = max(1, batch_number) + + pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * self.downscale_ratio), round(samples_in.shape[3] * self.downscale_ratio)), device=self.output_device) + for x in range(0, samples_in.shape[0], batch_number): + samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device) + pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0) + except model_management.OOM_EXCEPTION as e: + print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") + pixel_samples = self.decode_tiled_(samples_in) + + pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1) + return pixel_samples + + def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): + model_management.load_model_gpu(self.patcher) + output = self.decode_tiled_(samples, tile_x, tile_y, overlap) + return output.movedim(1,-1) + + def encode(self, pixel_samples): + pixel_samples = pixel_samples.movedim(-1,1) + try: + memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) + model_management.load_models_gpu([self.patcher], memory_required=memory_used) + free_memory = model_management.get_free_memory(self.device) + batch_number = int(free_memory / memory_used) + batch_number = max(1, batch_number) + samples = torch.empty((pixel_samples.shape[0], self.latent_channels, round(pixel_samples.shape[2] // self.downscale_ratio), round(pixel_samples.shape[3] // self.downscale_ratio)), device=self.output_device) + for x in range(0, pixel_samples.shape[0], batch_number): + pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device) + samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float() + + except model_management.OOM_EXCEPTION as e: + print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.") + samples = self.encode_tiled_(pixel_samples) + + return samples + + def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): + model_management.load_model_gpu(self.patcher) + pixel_samples = pixel_samples.movedim(-1,1) + samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap) + return samples + + def get_sd(self): + return self.first_stage_model.state_dict() + +class StyleModel: + def __init__(self, model, device="cpu"): + self.model = model + + def get_cond(self, input): + return self.model(input.last_hidden_state) + + +def load_style_model(ckpt_path): + model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) + keys = model_data.keys() + if "style_embedding" in keys: + model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8) + else: + raise Exception("invalid style model {}".format(ckpt_path)) + model.load_state_dict(model_data) + return StyleModel(model) + + +def load_clip(ckpt_paths, embedding_directory=None): + clip_data = [] + for p in ckpt_paths: + clip_data.append(comfy.utils.load_torch_file(p, safe_load=True)) + + class EmptyClass: + pass + + for i in range(len(clip_data)): + if "transformer.resblocks.0.ln_1.weight" in clip_data[i]: + clip_data[i] = comfy.utils.transformers_convert(clip_data[i], "", "text_model.", 32) + + clip_target = EmptyClass() + clip_target.params = {} + if len(clip_data) == 1: + if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]: + clip_target.clip = sdxl_clip.SDXLRefinerClipModel + clip_target.tokenizer = sdxl_clip.SDXLTokenizer + elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]: + clip_target.clip = sd2_clip.SD2ClipModel + clip_target.tokenizer = sd2_clip.SD2Tokenizer + else: + clip_target.clip = sd1_clip.SD1ClipModel + clip_target.tokenizer = sd1_clip.SD1Tokenizer + else: + clip_target.clip = sdxl_clip.SDXLClipModel + clip_target.tokenizer = sdxl_clip.SDXLTokenizer + + clip = CLIP(clip_target, embedding_directory=embedding_directory) + for c in clip_data: + m, u = clip.load_sd(c) + if len(m) > 0: + print("clip missing:", m) + + if len(u) > 0: + print("clip unexpected:", u) + return clip + +def load_gligen(ckpt_path): + data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) + model = gligen.load_gligen(data) + if model_management.should_use_fp16(): + model = model.half() + return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device()) + +def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None): + #TODO: this function is a mess and should be removed eventually + if config is None: + with open(config_path, 'r') as stream: + config = yaml.safe_load(stream) + model_config_params = config['model']['params'] + clip_config = model_config_params['cond_stage_config'] + scale_factor = model_config_params['scale_factor'] + vae_config = model_config_params['first_stage_config'] + + fp16 = False + if "unet_config" in model_config_params: + if "params" in model_config_params["unet_config"]: + unet_config = model_config_params["unet_config"]["params"] + if "use_fp16" in unet_config: + fp16 = unet_config.pop("use_fp16") + if fp16: + unet_config["dtype"] = torch.float16 + + noise_aug_config = None + if "noise_aug_config" in model_config_params: + noise_aug_config = model_config_params["noise_aug_config"] + + model_type = model_base.ModelType.EPS + + if "parameterization" in model_config_params: + if model_config_params["parameterization"] == "v": + model_type = model_base.ModelType.V_PREDICTION + + clip = None + vae = None + + class WeightsLoader(torch.nn.Module): + pass + + if state_dict is None: + state_dict = comfy.utils.load_torch_file(ckpt_path) + + class EmptyClass: + pass + + model_config = comfy.supported_models_base.BASE({}) + + from . import latent_formats + model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor) + model_config.unet_config = model_detection.convert_config(unet_config) + + if config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"): + model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type) + else: + model = model_base.BaseModel(model_config, model_type=model_type) + + if config['model']["target"].endswith("LatentInpaintDiffusion"): + model.set_inpaint() + + if fp16: + model = model.half() + + offload_device = model_management.unet_offload_device() + model = model.to(offload_device) + model.load_model_weights(state_dict, "model.diffusion_model.") + + if output_vae: + vae_sd = comfy.utils.state_dict_prefix_replace(state_dict, {"first_stage_model.": ""}, filter_keys=True) + vae = VAE(sd=vae_sd, config=vae_config) + + if output_clip: + w = WeightsLoader() + clip_target = EmptyClass() + clip_target.params = clip_config.get("params", {}) + if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"): + clip_target.clip = sd2_clip.SD2ClipModel + clip_target.tokenizer = sd2_clip.SD2Tokenizer + clip = CLIP(clip_target, embedding_directory=embedding_directory) + w.cond_stage_model = clip.cond_stage_model.clip_h + elif clip_config["target"].endswith("FrozenCLIPEmbedder"): + clip_target.clip = sd1_clip.SD1ClipModel + clip_target.tokenizer = sd1_clip.SD1Tokenizer + clip = CLIP(clip_target, embedding_directory=embedding_directory) + w.cond_stage_model = clip.cond_stage_model.clip_l + load_clip_weights(w, state_dict) + + return (comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae) + +def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True): + sd = comfy.utils.load_torch_file(ckpt_path) + sd_keys = sd.keys() + clip = None + clipvision = None + vae = None + model = None + model_patcher = None + clip_target = None + + parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.") + unet_dtype = model_management.unet_dtype(model_params=parameters) + load_device = model_management.get_torch_device() + manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device) + + class WeightsLoader(torch.nn.Module): + pass + + model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype) + model_config.set_manual_cast(manual_cast_dtype) + + if model_config is None: + raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) + + if model_config.clip_vision_prefix is not None: + if output_clipvision: + clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True) + + if output_model: + inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype) + offload_device = model_management.unet_offload_device() + model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device) + model.load_model_weights(sd, "model.diffusion_model.") + + if output_vae: + vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True) + vae_sd = model_config.process_vae_state_dict(vae_sd) + vae = VAE(sd=vae_sd) + + if output_clip: + w = WeightsLoader() + clip_target = model_config.clip_target() + if clip_target is not None: + clip = CLIP(clip_target, embedding_directory=embedding_directory) + w.cond_stage_model = clip.cond_stage_model + sd = model_config.process_clip_state_dict(sd) + load_model_weights(w, sd) + + left_over = sd.keys() + if len(left_over) > 0: + print("left over keys:", left_over) + + if output_model: + model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device) + if inital_load_device != torch.device("cpu"): + print("loaded straight to GPU") + model_management.load_model_gpu(model_patcher) + + return (model_patcher, clip, vae, clipvision) + + +def load_unet_state_dict(sd): #load unet in diffusers format + parameters = comfy.utils.calculate_parameters(sd) + unet_dtype = model_management.unet_dtype(model_params=parameters) + load_device = model_management.get_torch_device() + manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device) + + if "input_blocks.0.0.weight" in sd: #ldm + model_config = model_detection.model_config_from_unet(sd, "", unet_dtype) + if model_config is None: + return None + new_sd = sd + + else: #diffusers + model_config = model_detection.model_config_from_diffusers_unet(sd, unet_dtype) + if model_config is None: + return None + + diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config) + + new_sd = {} + for k in diffusers_keys: + if k in sd: + new_sd[diffusers_keys[k]] = sd.pop(k) + else: + print(diffusers_keys[k], k) + offload_device = model_management.unet_offload_device() + model_config.set_manual_cast(manual_cast_dtype) + model = model_config.get_model(new_sd, "") + model = model.to(offload_device) + model.load_model_weights(new_sd, "") + left_over = sd.keys() + if len(left_over) > 0: + print("left over keys in unet:", left_over) + return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device) + +def load_unet(unet_path): + sd = comfy.utils.load_torch_file(unet_path) + model = load_unet_state_dict(sd) + if model is None: + print("ERROR UNSUPPORTED UNET", unet_path) + raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path)) + return model + +def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None): + clip_sd = None + load_models = [model] + if clip is not None: + load_models.append(clip.load_model()) + clip_sd = clip.get_sd() + + model_management.load_models_gpu(load_models) + clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None + sd = model.model.state_dict_for_saving(clip_sd, vae.get_sd(), clip_vision_sd) + comfy.utils.save_torch_file(sd, output_path, metadata=metadata) diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py new file mode 100644 index 0000000000000000000000000000000000000000..65ea909febc16f00c74cc7fb97b20604f1759194 --- /dev/null +++ b/comfy/sd1_clip.py @@ -0,0 +1,518 @@ +import os + +from transformers import CLIPTokenizer +import comfy.ops +import torch +import traceback +import zipfile +from . import model_management +import comfy.clip_model +import json + +def gen_empty_tokens(special_tokens, length): + start_token = special_tokens.get("start", None) + end_token = special_tokens.get("end", None) + pad_token = special_tokens.get("pad") + output = [] + if start_token is not None: + output.append(start_token) + if end_token is not None: + output.append(end_token) + output += [pad_token] * (length - len(output)) + return output + +class ClipTokenWeightEncoder: + def encode_token_weights(self, token_weight_pairs): + to_encode = list() + max_token_len = 0 + has_weights = False + for x in token_weight_pairs: + tokens = list(map(lambda a: a[0], x)) + max_token_len = max(len(tokens), max_token_len) + has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x)) + to_encode.append(tokens) + + sections = len(to_encode) + if has_weights or sections == 0: + to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len)) + + out, pooled = self.encode(to_encode) + if pooled is not None: + first_pooled = pooled[0:1].to(model_management.intermediate_device()) + else: + first_pooled = pooled + + output = [] + for k in range(0, sections): + z = out[k:k+1] + if has_weights: + z_empty = out[-1] + for i in range(len(z)): + for j in range(len(z[i])): + weight = token_weight_pairs[k][j][1] + if weight != 1.0: + z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j] + output.append(z) + + if (len(output) == 0): + return out[-1:].to(model_management.intermediate_device()), first_pooled + return torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled + +class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): + """Uses the CLIP transformer encoder for text (from huggingface)""" + LAYERS = [ + "last", + "pooled", + "hidden" + ] + def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77, + freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel, + special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True): # clip-vit-base-patch32 + super().__init__() + assert layer in self.LAYERS + + if textmodel_json_config is None: + textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") + + with open(textmodel_json_config) as f: + config = json.load(f) + + self.transformer = model_class(config, dtype, device, comfy.ops.manual_cast) + self.num_layers = self.transformer.num_layers + + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + self.layer_idx = None + self.special_tokens = special_tokens + self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1])) + self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055)) + self.enable_attention_masks = False + + self.layer_norm_hidden_state = layer_norm_hidden_state + if layer == "hidden": + assert layer_idx is not None + assert abs(layer_idx) < self.num_layers + self.clip_layer(layer_idx) + self.layer_default = (self.layer, self.layer_idx) + + def freeze(self): + self.transformer = self.transformer.eval() + #self.train = disabled_train + for param in self.parameters(): + param.requires_grad = False + + def clip_layer(self, layer_idx): + if abs(layer_idx) > self.num_layers: + self.layer = "last" + else: + self.layer = "hidden" + self.layer_idx = layer_idx + + def reset_clip_layer(self): + self.layer = self.layer_default[0] + self.layer_idx = self.layer_default[1] + + def set_up_textual_embeddings(self, tokens, current_embeds): + out_tokens = [] + next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1 + embedding_weights = [] + + for x in tokens: + tokens_temp = [] + for y in x: + if isinstance(y, int): + if y == token_dict_size: #EOS token + y = -1 + tokens_temp += [y] + else: + if y.shape[0] == current_embeds.weight.shape[1]: + embedding_weights += [y] + tokens_temp += [next_new_token] + next_new_token += 1 + else: + print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1]) + while len(tokens_temp) < len(x): + tokens_temp += [self.special_tokens["pad"]] + out_tokens += [tokens_temp] + + n = token_dict_size + if len(embedding_weights) > 0: + new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype) + new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1] + for x in embedding_weights: + new_embedding.weight[n] = x + n += 1 + new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding + self.transformer.set_input_embeddings(new_embedding) + + processed_tokens = [] + for x in out_tokens: + processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one + + return processed_tokens + + def forward(self, tokens): + backup_embeds = self.transformer.get_input_embeddings() + device = backup_embeds.weight.device + tokens = self.set_up_textual_embeddings(tokens, backup_embeds) + tokens = torch.LongTensor(tokens).to(device) + + attention_mask = None + if self.enable_attention_masks: + attention_mask = torch.zeros_like(tokens) + max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1 + for x in range(attention_mask.shape[0]): + for y in range(attention_mask.shape[1]): + attention_mask[x, y] = 1 + if tokens[x, y] == max_token: + break + + outputs = self.transformer(tokens, attention_mask, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state) + self.transformer.set_input_embeddings(backup_embeds) + + if self.layer == "last": + z = outputs[0] + else: + z = outputs[1] + + if outputs[2] is not None: + pooled_output = outputs[2].float() + else: + pooled_output = None + + if self.text_projection is not None and pooled_output is not None: + pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float() + return z.float(), pooled_output + + def encode(self, tokens): + return self(tokens) + + def load_sd(self, sd): + if "text_projection" in sd: + self.text_projection[:] = sd.pop("text_projection") + if "text_projection.weight" in sd: + self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1) + return self.transformer.load_state_dict(sd, strict=False) + +def parse_parentheses(string): + result = [] + current_item = "" + nesting_level = 0 + for char in string: + if char == "(": + if nesting_level == 0: + if current_item: + result.append(current_item) + current_item = "(" + else: + current_item = "(" + else: + current_item += char + nesting_level += 1 + elif char == ")": + nesting_level -= 1 + if nesting_level == 0: + result.append(current_item + ")") + current_item = "" + else: + current_item += char + else: + current_item += char + if current_item: + result.append(current_item) + return result + +def token_weights(string, current_weight): + a = parse_parentheses(string) + out = [] + for x in a: + weight = current_weight + if len(x) >= 2 and x[-1] == ')' and x[0] == '(': + x = x[1:-1] + xx = x.rfind(":") + weight *= 1.1 + if xx > 0: + try: + weight = float(x[xx+1:]) + x = x[:xx] + except: + pass + out += token_weights(x, weight) + else: + out += [(x, current_weight)] + return out + +def escape_important(text): + text = text.replace("\\)", "\0\1") + text = text.replace("\\(", "\0\2") + return text + +def unescape_important(text): + text = text.replace("\0\1", ")") + text = text.replace("\0\2", "(") + return text + +def safe_load_embed_zip(embed_path): + with zipfile.ZipFile(embed_path) as myzip: + names = list(filter(lambda a: "data/" in a, myzip.namelist())) + names.reverse() + for n in names: + with myzip.open(n) as myfile: + data = myfile.read() + number = len(data) // 4 + length_embed = 1024 #sd2.x + if number < 768: + continue + if number % 768 == 0: + length_embed = 768 #sd1.x + num_embeds = number // length_embed + embed = torch.frombuffer(data, dtype=torch.float) + out = embed.reshape((num_embeds, length_embed)).clone() + del embed + return out + +def expand_directory_list(directories): + dirs = set() + for x in directories: + dirs.add(x) + for root, subdir, file in os.walk(x, followlinks=True): + dirs.add(root) + return list(dirs) + +def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None): + if isinstance(embedding_directory, str): + embedding_directory = [embedding_directory] + + embedding_directory = expand_directory_list(embedding_directory) + + valid_file = None + for embed_dir in embedding_directory: + embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name)) + embed_dir = os.path.abspath(embed_dir) + try: + if os.path.commonpath((embed_dir, embed_path)) != embed_dir: + continue + except: + continue + if not os.path.isfile(embed_path): + extensions = ['.safetensors', '.pt', '.bin'] + for x in extensions: + t = embed_path + x + if os.path.isfile(t): + valid_file = t + break + else: + valid_file = embed_path + if valid_file is not None: + break + + if valid_file is None: + return None + + embed_path = valid_file + + embed_out = None + + try: + if embed_path.lower().endswith(".safetensors"): + import safetensors.torch + embed = safetensors.torch.load_file(embed_path, device="cpu") + else: + if 'weights_only' in torch.load.__code__.co_varnames: + try: + embed = torch.load(embed_path, weights_only=True, map_location="cpu") + except: + embed_out = safe_load_embed_zip(embed_path) + else: + embed = torch.load(embed_path, map_location="cpu") + except Exception as e: + print(traceback.format_exc()) + print() + print("error loading embedding, skipping loading:", embedding_name) + return None + + if embed_out is None: + if 'string_to_param' in embed: + values = embed['string_to_param'].values() + embed_out = next(iter(values)) + elif isinstance(embed, list): + out_list = [] + for x in range(len(embed)): + for k in embed[x]: + t = embed[x][k] + if t.shape[-1] != embedding_size: + continue + out_list.append(t.reshape(-1, t.shape[-1])) + embed_out = torch.cat(out_list, dim=0) + elif embed_key is not None and embed_key in embed: + embed_out = embed[embed_key] + else: + values = embed.values() + embed_out = next(iter(values)) + return embed_out + +class SDTokenizer: + def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True): + if tokenizer_path is None: + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") + self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path) + self.max_length = max_length + + empty = self.tokenizer('')["input_ids"] + if has_start_token: + self.tokens_start = 1 + self.start_token = empty[0] + self.end_token = empty[1] + else: + self.tokens_start = 0 + self.start_token = None + self.end_token = empty[0] + self.pad_with_end = pad_with_end + self.pad_to_max_length = pad_to_max_length + + vocab = self.tokenizer.get_vocab() + self.inv_vocab = {v: k for k, v in vocab.items()} + self.embedding_directory = embedding_directory + self.max_word_length = 8 + self.embedding_identifier = "embedding:" + self.embedding_size = embedding_size + self.embedding_key = embedding_key + + def _try_get_embedding(self, embedding_name:str): + ''' + Takes a potential embedding name and tries to retrieve it. + Returns a Tuple consisting of the embedding and any leftover string, embedding can be None. + ''' + embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key) + if embed is None: + stripped = embedding_name.strip(',') + if len(stripped) < len(embedding_name): + embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key) + return (embed, embedding_name[len(stripped):]) + return (embed, "") + + + def tokenize_with_weights(self, text:str, return_word_ids=False): + ''' + Takes a prompt and converts it to a list of (token, weight, word id) elements. + Tokens can both be integer tokens and pre computed CLIP tensors. + Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens. + Returned list has the dimensions NxM where M is the input size of CLIP + ''' + if self.pad_with_end: + pad_token = self.end_token + else: + pad_token = 0 + + text = escape_important(text) + parsed_weights = token_weights(text, 1.0) + + #tokenize words + tokens = [] + for weighted_segment, weight in parsed_weights: + to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ') + to_tokenize = [x for x in to_tokenize if x != ""] + for word in to_tokenize: + #if we find an embedding, deal with the embedding + if word.startswith(self.embedding_identifier) and self.embedding_directory is not None: + embedding_name = word[len(self.embedding_identifier):].strip('\n') + embed, leftover = self._try_get_embedding(embedding_name) + if embed is None: + print(f"warning, embedding:{embedding_name} does not exist, ignoring") + else: + if len(embed.shape) == 1: + tokens.append([(embed, weight)]) + else: + tokens.append([(embed[x], weight) for x in range(embed.shape[0])]) + #if we accidentally have leftover text, continue parsing using leftover, else move on to next word + if leftover != "": + word = leftover + else: + continue + #parse word + tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]]) + + #reshape token array to CLIP input size + batched_tokens = [] + batch = [] + if self.start_token is not None: + batch.append((self.start_token, 1.0, 0)) + batched_tokens.append(batch) + for i, t_group in enumerate(tokens): + #determine if we're going to try and keep the tokens in a single batch + is_large = len(t_group) >= self.max_word_length + + while len(t_group) > 0: + if len(t_group) + len(batch) > self.max_length - 1: + remaining_length = self.max_length - len(batch) - 1 + #break word in two and add end token + if is_large: + batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]]) + batch.append((self.end_token, 1.0, 0)) + t_group = t_group[remaining_length:] + #add end token and pad + else: + batch.append((self.end_token, 1.0, 0)) + if self.pad_to_max_length: + batch.extend([(pad_token, 1.0, 0)] * (remaining_length)) + #start new batch + batch = [] + if self.start_token is not None: + batch.append((self.start_token, 1.0, 0)) + batched_tokens.append(batch) + else: + batch.extend([(t,w,i+1) for t,w in t_group]) + t_group = [] + + #fill last batch + batch.append((self.end_token, 1.0, 0)) + if self.pad_to_max_length: + batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch))) + + if not return_word_ids: + batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens] + + return batched_tokens + + + def untokenize(self, token_weight_pair): + return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair)) + + +class SD1Tokenizer: + def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer): + self.clip_name = clip_name + self.clip = "clip_{}".format(self.clip_name) + setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory)) + + def tokenize_with_weights(self, text:str, return_word_ids=False): + out = {} + out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids) + return out + + def untokenize(self, token_weight_pair): + return getattr(self, self.clip).untokenize(token_weight_pair) + + +class SD1ClipModel(torch.nn.Module): + def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs): + super().__init__() + self.clip_name = clip_name + self.clip = "clip_{}".format(self.clip_name) + setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs)) + + def clip_layer(self, layer_idx): + getattr(self, self.clip).clip_layer(layer_idx) + + def reset_clip_layer(self): + getattr(self, self.clip).reset_clip_layer() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs = token_weight_pairs[self.clip_name] + out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs) + return out, pooled + + def load_sd(self, sd): + return getattr(self, self.clip).load_sd(sd) diff --git a/comfy/sd1_clip_config.json b/comfy/sd1_clip_config.json new file mode 100644 index 0000000000000000000000000000000000000000..0158a1fd52727adf22359238285afafb150f66f2 --- /dev/null +++ b/comfy/sd1_clip_config.json @@ -0,0 +1,25 @@ +{ + "_name_or_path": "openai/clip-vit-large-patch14", + "architectures": [ + "CLIPTextModel" + ], + "attention_dropout": 0.0, + "bos_token_id": 0, + "dropout": 0.0, + "eos_token_id": 2, + "hidden_act": "quick_gelu", + "hidden_size": 768, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 3072, + "layer_norm_eps": 1e-05, + "max_position_embeddings": 77, + "model_type": "clip_text_model", + "num_attention_heads": 12, + "num_hidden_layers": 12, + "pad_token_id": 1, + "projection_dim": 768, + "torch_dtype": "float32", + "transformers_version": "4.24.0", + "vocab_size": 49408 +} diff --git a/comfy/sd1_tokenizer/merges.txt b/comfy/sd1_tokenizer/merges.txt new file mode 100644 index 0000000000000000000000000000000000000000..76e821f1b6f0a9709293c3b6b51ed90980b3166b --- /dev/null +++ b/comfy/sd1_tokenizer/merges.txt @@ -0,0 +1,48895 @@ +#version: 0.2 +i n +t h +a n +r e +a r +e r +th e +in g +o u +o n +s t +o r +e n +o n +a l +a t +e r +i t +i n +t o +r o +i s +l e +i c +a t +an d +e d +o f +c h +o r +e s +i l +e l +s t +a c +o m +a m +l o +a n +a y +s h +r i +l i +t i +f or +n e +ð Ł +r a +h a +d e +o l +v e +s i +u r +a l +s e +' s +u n +d i +b e +l a +w h +o o +d ay +e n +m a +n o +l e +t o +ou r +i r +g h +w it +i t +y o +a s +s p +th is +t s +at i +yo u +wit h +a d +i s +a b +l y +w e +th e +t e +a s +a g +v i +p p +s u +h o +m y +. . +b u +c om +s e +er s +m e +m e +al l +c on +m o +k e +g e +ou t +en t +c o +f e +v er +a r +f ro +a u +p o +c e +gh t +ar e +s s +fro m +c h +t r +ou n +on e +b y +d o +t h +w or +er e +k e +p ro +f or +d s +b o +t a +w e +g o +h e +t er +in g +d e +b e +ati on +m or +a y +e x +il l +p e +k s +s c +l u +f u +q u +v er +ðŁ ĺ +j u +m u +at e +an d +v e +k ing +m ar +o p +h i +.. . +p re +a d +r u +th at +j o +o f +c e +ne w +a m +a p +g re +s s +d u +no w +y e +t ing +y our +it y +n i +c i +p ar +g u +f i +a f +p er +t er +u p +s o +g i +on s +g r +g e +b r +p l +' t +m i +in e +we e +b i +u s +sh o +ha ve +to day +a v +m an +en t +ac k +ur e +ou r +â Ģ +c u +l d +lo o +i m +ic e +s om +f in +re d +re n +oo d +w as +ti on +p i +i r +th er +t y +p h +ar d +e c +! ! +m on +mor e +w ill +t ra +c an +c ol +p u +t e +w n +m b +s o +it i +ju st +n ing +h ere +t u +p a +p r +bu t +wh at +al ly +f ir +m in +c a +an t +s a +t ed +e v +m ent +f a +ge t +am e +ab out +g ra +no t +ha pp +ay s +m an +h is +ti me +li ke +g h +ha s +th an +lo ve +ar t +st e +d ing +h e +c re +w s +w at +d er +it e +s er +ac e +ag e +en d +st r +a w +st or +r e +c ar +el l +al l +p s +f ri +p ho +p or +d o +a k +w i +f re +wh o +sh i +b oo +s on +el l +wh en +il l +ho w +gre at +w in +e l +b l +s si +al i +som e +ðŁ Ĵ +t on +d er +le s +p la +ï ¸ +e d +s ch +h u +on g +d on +k i +s h +an n +c or +. . +oun d +a z +in e +ar y +fu l +st u +ou ld +st i +g o +se e +ab le +ar s +l l +m is +b er +c k +w a +en ts +n o +si g +f e +fir st +e t +sp e +ac k +i f +ou s +' m +st er +a pp +an g +an ce +an s +g ood +b re +e ver +the y +t ic +com e +of f +b ack +as e +ing s +ol d +i ght +f o +h er +happ y +p ic +it s +v ing +u s +m at +h om +d y +e m +s k +y ing +the ir +le d +r y +u l +h ar +c k +t on +on al +h el +r ic +b ir +vi e +w ay +t ri +d a +p le +b ro +st o +oo l +ni ght +tr u +b a +re ad +re s +ye ar +f r +t or +al s +c oun +c la +t ure +v el +at ed +le c +en d +th ing +v o +ic i +be st +c an +wor k +la st +af ter +en ce +p ri +p e +e s +i l +âĢ ¦ +d re +y s +o ver +i es +ðŁ ij +com m +t w +in k +s un +c l +li fe +t t +a ch +l and +s y +t re +t al +p ol +s m +du c +s al +f t +' re +ch e +w ar +t ur +ati ons +ac h +m s +il e +p m +ou gh +at e +st ar +wee k +! !! +c lu +th ere +n er +t om +s el +ï¸ ı +wor ld +v es +c am +go t +in ter +of f +u m +ton ight +o ther +h ou +loo k +j e +i d +si on +be au +at t +el i +or t +re c +f f +st er +su pp +g en +be en +il y +te am +m m +i c +pe op +it t +at s +on ly +mb er +en g +b ri +m p +k now +b ur +b ar +in s +lo w +sh e +ro w +â Ŀ +t ro +peop le +vi a +lo w +ag a +be t +x t +f ac +ch ar +e ar +w al +s en +f am +b le +n ati +is h +n or +g ame +li ve +s co +le y +d on +ic k +b all +ver y +the se +p an +i a +at ing +c r +a re +g ir +ma ke +st re +sho w +. " +f l +u p +d r +than ks +il li +w om +st s +i g +s ur +ever y +c ur +vie w +le t +in to +mo st +n a +in di +g ar +ha d +s ou +v ed +an t +iti on +ma de +f ol +un i +it ed +ðŁ ı +ic al +th r +read y +ch ec +d ra +k es +boo k +e p +si c +mor ning +ne ws +c au +c t +w ell +an c +pho to +th an +or s +bir th +g g +ou t +ne xt +som e +en ing +stor y +ch ri +do wn +hom e +f fe +fre e +d a +b or +f il +ci al +than k +si de +le ar +qu e +l ine +t en +at es +ye ars +m y +pho to +beau ti +ri ght +n u +for m +shi p +b an +th er +d ays +g am +as on +g y +ðŁ İ +birth day +se t +ic k +e t +st ill +com ing +ta ke +ðŁ ĩ +b b +s ol +s on +d en +e p +mu sic +the m +de n +wh y +f oo +c ra +am az +w n +h ol +t ting +w r +u e +ma g +c ro +l an +c lo +b ra +a k +s ing +c al +re ad +' ve +jo h +b ab +d ri +b lo +bi g +er ic +in t +t or +tr y +l a +le g +hou se +m ic +v al +beauti ful +l itt +chec k +ne w +ver s +s w +ar i +pla y +h er +âĢ ĵ +w in +m a +con gr +sch ool +f un +. @ +he al +ic h +d el +wh ere +l on +ke t +tw o +mu ch +wat ch +v en +d ed +a st +k ed +b as +go ing +m p +e ver +w ays +ro o +de sig +l y +s ed +to p +l in +ch an +to o +it ing +d ent +gh ts +t y +sp o +ne ed +b lu +in st +be ing +âĿ ¤ +w el +l s +hi m +m ay +st ing +n a +el y +litt le +g a +n at +tom or +m c +h on +w ant +a ir +pi c +am eric +p er +le ss +wee k +ve l +a h +c ap +ch am +g er +ti m +tomor row +ne ss +st ate +h al +ser v +z e +o s +p at +v is +ex c +s in +f f +c ity +c en +an y +b el +su mm +t in +w ould +loo king +k o +ce le +fam ily +m er +po w +hel p +bu s +c o +c le +sel f +en s +ic s +th o +an i +ch o +le ad +b s +t wee +th ink +for e +ch il +vi de +di d +al e +ch i +v il +en ds +w ing +p as +' ll +v ol +s a +g s +man y +j ec +be fore +gra ph +n y +ur ing +w il +d d +bu il +f av +st ed +tr an +l ing +ou d +d ge +fi el +nati onal +st a +c er +w ere +in a +se ason +c ou +n ed +amaz ing +ti ons +cele br +n s +a th +he ad +s day +d ar +lo c +v in +an other +g oo +s at +n y +jo in +pre s +s es +s ing +an a +in ing +.. .. +c our +ï¸ ı +ac t +cau se +li ght +am s +t a +b al +f c +hi gh +off ici +t t +chri st +d ic +d ay +ra l +h or +: ) +vi si +n am +o b +ma s +gh t +re ally +t un +fin d +thr ough +por t +u t +ti ve +st y +n e +or e +ðŁĺ Ĥ +supp ort +ne ver +ev en +ðŁ Ķ +h a +y a +l d +u k +r an +j am +wi th +me di +d es +ne y +ch ing +al e +h y +k in +! ! +d y +pl ace +al so +b le +wh ich +bl ack +b li +s ay +par k +pl ay +ir e +vide o +week end +a il +ke y +p t +w ard +fri day +d in +ine ss +g ro +b en +al ways +t ball +ag o +m il +c y +pro duc +di sc +un der +ple ase +sp or +fu ll +e y +ðŁ Ļ +is e +iti es +c at +k no +u se +fo re +k er +ar t +hi gh +op en +s an +e f +our s +sh ed +st ri +d ro +aga in +i m +ðŁ ĵ +en jo +fu n +ge tting +p en +g er +c li +an y +ever y +e u +wom en +â ľ +e st +c ould +r y +" @ +th ou +sh a +comm un +b er +d ents +di s +wh ile +aw ay +di o +h am +g la +d ate +k a +mis s +un ch +w on +in f +roo m +g a +re al +ex per +di rec +sh ould +sp r +g ol +l ong +bet ter +or i +e y +i ence +il s +z z +h an +f ound +v s +â Ļ +po st +ti c +par t +m en +ren ce +ce ss +v ic +s il +sho p +ðŁĺ Ĥ +f ood +v al +sti c +y ou +s ays +e lec +st ar +o c +l and +i d +c tion +fiel d +s of +st art +wat er +fri ends +on es +ðŁ Į +f la +f ar +wh ite +par ty +in st +gr ou +t v +every one +m ent +j a +ch a +pr in +an ts +d uring +l at +l ar +we st +th en +k a +y oun +in sp +in te +we en +visi t +aga inst +re le +he ad +c es +to wn +loo ks +th re +re gi +ren t +pro jec +gir l +se ar +w o +m om +c ar +h un +pu bli +d i +p le +c all +c ri +u m +for d +per fe +fri end +h ard +ssi on +te st +pla ying +ar ound +be cause +ke ts +me et +sat ur +ar ti +wor k +j un +v en +r un +me mber +por t +su per +t wit +s am +el s +t ly +ad v +ati ve +at h +s ure +av ail +la r +s qu +ar ds +ev ent +m en +l l +o ver +lo gy +it al +tim es +m al +b ack +c oo +ma king +st ru +â ģ +it u +sh ar +g an +c as +s n +summ er +pic ture +f an +h in +christ mas +c y +pr oud +cham pi +desig n +pp ing +ho pe +c a +avail able +ma y +we d +photo graph +spe cial +sal e +sto p +er y +a we +al ity +hi story +am a +pre si +b ru +wor king +d one +d r +k en +fe at +w ood +ate st +sun day +mo vi +vel y +s le +f ace +sp ec +stu dents +b y +ha m +sp on +bus iness +d at +i e +i p +so ci +g lo +h and +re cor +r s +me e +ke ep +p ur +heal th +sh e +com ple +go d +da vi +col lec +li st +r a +clu b +t ers +in clu +th ings +pl an +â ĺ +joh n +sh ing +at ul +so on +blu e +g or +satur day +w on +congr atul +se e +âĿ¤ ï¸ı +tho se +ðŁĺ į +fin al +d ou +it h +o wn +ro ad +t our +a st +indi a +ti l +n d +f er +fav or +su l +lear n +fir e +ju st +grou p +a h +r ac +bo dy +u r +c are +à ¸ +p lo +o h +po s +gi ve +te ch +su b +c ent +er ing +y m +il ity +f ic +lon don +v ir +gu ys +b a +ðŁ ¤ +bab y +sc re +ðŁĺ į +tru mp +un der +chan ge +i an +col le +ss es +l er +ss ed +n ice +ann oun +pow er +s ar +a king +min i +s li +s wee +k ar +fu l +c ru +ac tion +a ther +) . +st and +de vel +a a +g an +le ft +lo l +re l +tran s +m ents +in t +e f +man ag +di g +gen er +do wn +p au +ti v +k u +th ur +k en +st on +f ans +tal k +twee t +t oo +sty le +pro te +se con +fr on +awe some +g l +p al +ne t +s or +la u +g on +sin ce +t ty +ser ies +me mor +b eli +fil m +di d +di es +o t +congratul ations +p ra +e ve +w oo +offici al +su c +in cre +b on +par t +pp ed +cla ss +si ve +bo y +cu l +perfe ct +t ou +d am +wel come +foo tball +h i +p ap +wa it +ad a +congr ats +youn g +exc ited +re ce +j an +v a +re d +st ra +medi a +' d +do es +le t +mu l +ill s +gre en +m el +to ge +fu ture +ye ster +vers ity +for m +ta in +i de +ch es +ki ds +qu i +ha ha +de ta +bi g +favor ite +gir ls +con tin +do m +sear ch +u al +a ir +d ers +mon th +c er +yester day +commun ity +ad e +do g +vil le +ic es +d eli +sy ste +ru n +is m +he art +c up +en ti +fe w +presi dent +e ds +un til +fe sti +o k +f lo +sa id +ol e +me d +tra vel + £ +ph one +toge ther +fa st +lo t +gam es +sh ir +bet ween +y es +th ers +do ing +m ac +at or +b and +fol low +projec t +devel op +di ffe +con fe +spe ci +ca st +y s +bo ard +r d +i al +sh oo +r am +ha ving +sh are +fol low +on e +n ame +m r +pu t +disc u +or y +c ame +ou s +s ite +twit ter +t b +t it +fin ally +z ed +su per +com pan +us ing +all s +li st +r is +sho t +g al +t ar +de l +joh n +âĢ Ķ +some thing +ra m +inte re +wh e +b it +ðŁ į +stre et +oun d +a i +tic kets +movi e +re al +k y +ta king +o pp +c c +l am +m oun +in ve +bl ack +us ed +on line +y or +loc al +gu e +c ks +o w +ge st +bo ys +illi on +con t +re ci +in ed +eu ro +no w +se en +p h +te ach +de f +sou th +su ch +aw ard +mu st +is su +ca re +fe el +p lu +l atest +spor ts +we b +te x +e ment +s k +fi c +w an +te ch +o t +bo x +n er +fre e +t al +a sh +c ase +ho t +won der +mee ting +er a +ch all +ðŁ IJ +jo b +il i +c ool +j our +th s +m o +f el +di e +mic ha +e le +te am +serv ice +st and +ma kes +p ing +ear ly +com es +e k +ho li +v ers +ag ue +s au +thre e +mon day +fa shi +some one +th ro +se a +b ad +supp or +tur n +ur y +m ing +photograph y +n ic +mar k +pre tty +ss ing +wat ching +me mb +ar ri +coun ty +be ach +fr an +cen ter +pol ice +b at +publi c +t an +pre ss +s af +s y +ge ts +ro y +n ers +y our +bu y +st ers +sho w +as ed +chil dre +af ric +in es +sp ace +sc ri +h all +pa in +ar ing +hom e +m ur +heal th +ch ed +s and +rece i +gu y +e a +americ an +re si +childre n +- - +i ri +ing ton +coun try +ro ss +le n +ann a +boo ks +b c +e ce +d om +lo vely +k h +pe t +g y +g ri +st age +off ice +ro ck +m on +b ay +t able +su n +m ed +th in +l or +f low +( @ +uni versity +stor e +fron t +goo d +z a +vo te +nor th +he y +an im +or der +mi d +with out +a de +re member +mar ket +? ? +mu s +tra ining +e duc +bu t +co ver +st an +sc en +b la +bre ak +l ou +s ame +g old +a in +o s +bo th +l it +ver n +a i +al bu +p a +enjo y +be g +ell ing +thur sday +inf o +s an +americ a +ha ir +te l +mar ch +con cer +colle ge +confe rence +ap p +h our +ch ang +â ļ +s our +ol s +we ather +w ar +p hi +festi val +secon d +cu te +pr ac +en er +str y +le a +pol it +s av +se n +o w +m i +ne ar +ou ght +z e +co ffe +w illi +d an +se y +davi d +e se +f an +de ci +the at +no v +ati on +tr ac +sc i +re view +c el +e m +u n +ju ly +or ig +ti on +d ru +form er +st ay +af ter +in v +too k +dat a +b al +tu es +d an +ev ening +ðŁĺĤ ðŁĺĤ +d ol +u res +pro vi +t s +e st +sig n +j ac +u k +s ong +ye t +bo w +in du +j ap +h oo +po int +any one +z y +i st +h ur +it al +buil ding +wom an +ch ur +j er +per for +co ach +le ague +ce ss +ne t +i mag +nati on +br it +qu e +aw ards +ag es +wor ks +c ed +man ce +l ate +ig n +mon ey +tru e +i i +t ell +pl ac +p ac +as y +wor ld +be hin +im port +read ing +gra m +gi ving +me t +h it +for ward +st om +pres ent +jun e +so cial +no on +mar t +hal f +s we +go vern +k er +deta ils +li sh +_ _ +ac y +si a +ber t +f all +! !!! +) , +th i +d iti +sp ort +k ing +f it +st af +c at +mu se +cen tr +y er +con tro +b loo +wal k +ac tu +did n +li m +lear ning +re search +wed ne +au th +h ours +k y +f ar +h en +.. .. +it ch +ri l +str ong +sk y +que sti +jam es +r on +d g +f ur +c in +do es +app ro +mar ke +tu res +ful ly +ch at +behin d +te m +fin i +mis sion +b att +fe el +he av +every thing +b ar +w ish +pre mi +i ma +exper ience +e ach +re port +swee t +tic s +spr ing +re spon +syste m +vic tor +l in +sa w +al ready +gh ter +f le +ã ĥ +br ing +albu m +- - +ell s +st an +to m +inter national +w ent +an ni +mat ch +pp er +st one +sm all +ra in +fashi on +are a +v an +ag ram +k o +thou ght +wor th +v an +m er +coffe e +it es +g n +arti st +c on +ar ch +c ir +se cre +gr ound +is o +h and +co m +bri dge +h s +x i +l ink +pu l +sp l +r ace +f li +ri ver +g as +di sco +d al +play er +f it +photo s +it y +o k +j or +tr a +ap ril +ad s +a di +sol u +beau ty +do or +me ss +up date +ali a +sch o +en ed +mom ent +sco t +sc ience +i or +ti es +ac ross +ous ly +sh es +does n +p age +wat er +m illion +cla ssi +l ic +ca st +form ation +micha el +ell o +s mo +in ts +vi sion +op ening +ld n +au str +tues day +win ner +po ssi +r ound +shir t +di t +b o +u es +il led +al ong +tri p +star ting +im pro +k an +per son +no t +re co +ne eds +c le +li e +re st +r ing +win ter +si mp +mo m +be er +fac e +tor s +us a +collec tion +ge or +se ssion +tr ying +la s +la ke +j en +orig in +stu dent +se cur +v in +pic s +ex pe +com p +gon na +e qu +b ad +le y +a u +memb ers +bre ak +w all +gi c +din ner +bu l +insp ir +r i +min d +ic a +win ning +tal king +t ren +s is +t en +wonder ful +s now +he ar +th om +no thing +gu i +st in +blo g +fe st +b un +le e +war ds +ch ance +dre ss +re n +pau l +p es +tech no +ru ssi +c ard +e ast +mar i +w ine +t i +la w +str ic +k i +ap e +au gu +pro fe +as h +cour se +ma il +ren tly +d un +m un +lo ve +is land +dri ve +s l +end ed +ma in +lo st +nat ure +âĿ¤ ï¸ı +ch ic +re por +p in +pr o +st ation +ce p +ta kes +compan y +go es +on d +ma ch +ra dio +d ad +ro ck +j a +p ay +champi on +e e +in de +tt a +ati c +t ab +beli eve +ener gy +z i +t at +wor d +on ce +re sul +y l +and re +an o +inst agram +clo se +t am +cu stom +w a +con om +sho ws +li fe +k in +ro b +t age +n ation +al most +list en +sa ve +re li +ac e +mar y +tre e +for get +j ack +wa iting +direc tor +h ill +bor n +te mp +f l +st e +on a +sing le +wedne sday +un ited +in o +@ _ +ne l +celebr ate +en ding +de al +j i +can ada +hu ge +tr ack +âĢ ¢ +f y +fan ta +an g +yor k +rele ase +p un +ep iso +wor ds +t our +p ack +i gh +classi c +perfor mance +ke t +after noon +recor d +win s +pro ble +âĿ ¤ +f our +b ed +ban k +d ance +s la +cal led +mi ght +a p +pa st +ðŁ ļ +diffe rent +it e +gi ft +ssi ve +chur ch +c us +pro gram +ho tel +ic e +ma d +secur ity +en ge +d c +en ough +st a +e ty +de ad +g un +he ar +m ir +hu man +gre ss +oun ds +pi ece +bre aking +gar den +fi ght +vie ws +f ish +star ted +run ning +gre en +ser i +s m +as k +d or +de ath +e conom +er i +ir d +s er +l unch +âģ ¦ +bo x +nat u +ba se +b an +f al +glo bal +wil d +wo w +out side +mo ve +le ad +an al +muse um +on g +ha w +pow er +than k +b ac +char ac +cam pa +dig ital +r o +op er +de v +w ol +p ati +f a +m ale +pap er +ill ing +c s +â ĥ +educ ation +ta ken +e ffe +m ou +s ad +" . +bas ed +staf f +inclu ding +li ving +a c +ch ina +mo b +stor m +lu ck +ph il +o o +y n +tra vel +k el +ti al +pr ice +boo k +import ant +bi o +p ool +ny c +f ab +lo ad +? ! +chall enge +cr y +ser ve +we ar +bu s +ta in +nu mber +ro r +k at +i z +th ough +ho sp +m m +fa ir +ut es +ho t +po p +fi ed +cam p +develop ment +li br +c ali +em s +âģ¦ @ +b ol +is ed +stand ing +mo del +it a +g le +bro wn +ima ge +ve red +for ce +o il +par tic +sh u +da ily +la w +se c +cla ss +cam p +holi day +cl in +k ers +pres ent +gam e +incre di +er ship +inter view +b ill +du e +and y +ab o +in nov +ke y +ac ade +p il +mo der +st ars +br and +f er +wee ks +con si +pr e +sa fe +wr it +di um +la unch +marke ting +ann ual +as si +cour t +la dy +c ted +and a +in side +chil d +opp or +sm ith +centr e +gu e +âģ © +f ren +st y +for t +ent ly +is n +ke ep +to ber +on y +bo y +al d +col la +de mo +le vel +com pet +ad o +b our +fanta stic +m ate +s u +sou th +oppor tun +vers ary +lat er +bu d +face book +la un +ster n +p it +! " +ma j +gr am +tb t +fi re +happ y +a ks +wh ole +actu ally +ill er +ell a +lo ts +al ex +an ge +lan ds +ðŁĺ Ń +en ter +r ou +episo de +p ed +in ten +sh ire +wh o +pl an +h o +ca ke +we st +mag az +fre sh +c c +n ar +ch ris +wr iting +w er +n om +l o +mi dd +dre am +o l +ti onal +de b +> > +be come +s i +gr and +all ing +hi stor +ri de +i red +saf e +que en +ci l +in tro +vi l +d ani +.. . +ar tic +st at +sh ort +or ing +sel fi +mis si +do c +b it +g all +b om +i re +se lec +d ition +ðŁĶ ¥ +fri end +be at +gh ting +ðŁĺ Ĭ +pe ace +ex hi +ant a +ab ility +il lu +j on +qu ality +tri bu +m es +play ers +fa ir +cu t +c ab +suc cess +b i +su s +pro mo +sch e +an ge +ic o +comm it +cat ch +ill a +kin d +feel ing +qu o +s ay +anni versary +spo t +mo ther +an e +p end +your self +op s +app le +min utes +p o +gr and +ri es +ha ha +care er +ed ition +de c +ric k +am i +concer t +iti ve +ge ous +d ly +t te +adv ent +i g +li ghts +ak er +sk y +âĥ £ +r ay +fini shed +w ay +s d +ac coun +ðŁĴ ķ +ck y +ch el +lit er +pain ting +lo s +st un +techno logy +n as +ma r +b il +afric a +ki e +ey es +gol f +plu s +ni a +it ec +serv ices +wed ding +kno wn +te le +.. ... +star ts +pa ren +w ants +ati onal +mon ths +win do +fav our +er t +magaz ine +ex clu +re ve +b c +origin al +e ss +n al +an ti +st ro +t ice +stu dy +à ¤ +v ac +nation al +fi ve +ra in +ve ment +u te +ver se +em er +ar my +possi ble +gue ss +val ley +ther n +cro w +m r +col or +on to +pic k +cle ar +dar k +t ac +wan ted +it ting +can cer +govern ment +di e +ri se +z ing +col d +f oun +stu dio +str ation +bro ther +a head +sh el +mic ro +ic ally +d au +sig ned +vi ol +a x +as se +i o +w re +spl ay +ch ick +augu st +pl at +ti ps +sp i +hu man +e asy +lo gi +mi ke +gro w +ag re +w w +sh ad +mo tiv +wi de +tur ns +om g +v ar +de fin +su g +j im +ðŁĶ ¥ +t d +campa ign +nam ed +re tweet +co p +t v +le av +k is +dou ble +s mar +issu e +vil la +in formation +li es +sto ck +n t +di stric +sh or +mi x +er o +se p +me x +see ing +li ve +re min +co de +g ur +s c +wil d +l un +h ood +spo t +fa ther +fore ver +up d +tra f +f ly +ne ed +gra du +tra in +ma ke +s ab +be y +si ze +lead er +tal ks +e u +lo g +fo x +gor geous +le ss +le ts +sur pri +my self +no te +li ves +f ru +lo ved +se ver +de m +j i +so c +h old +do gs +n i +â ŀ +lea ve +air port +ben ef +ex pl +shi ps +comple te +ach i +gre at +vin tage +j ack +ro c +woo d +pri v +off er +ey e +ver sion +te a +co ach +off ic +w ell +g en +s at +h h +you th +o x +? " +m t +mi x +g g +d le +natu ral +buil d +break fast +thin king +theat re +mo on +ber g +go als +geor ge +en e +exc ell +il ing +tun e +y ed +g ate +m it +net work +jo e +h ello +f b +tu be +we aring +ath le +stru c +har d +gla ss +g ers +thro w +g es +b t +indu stry +manag ement +ali st +go al +stre am +y el +a vi +ici ous +o thers +s ki +chri sti +bir d +e sc +m in +tr o +l t +j an +im p +ri ghts +sh a +or gan +cent ral +ar a +ro ll +favour ite +che ster +el se +p ay +car s +m ine +ste p +prac tice +maj or +h ang +ðŁĺ ĺ +n on +v ari +eng ine +vol un +di a +i led +arch itec +p ink +d s +th y +wa sh +web site +ba g +contro l +el li +f ra +an sw +d ence +y u +r on +ol a +g in +dr in +li c +cou ple +sp ar +g on +cre ate +c t +celebr ating +de ep +e at +te e +vo ice +dro p +vis it +at ors +sta dium +f t +w is +ro l +gra de +fam il +po ints +re pre +w as +traf fic +jap an +or g +hon or +tex as +man u +âĻ ¥ +safe ty +re r +b ag +em plo +rele ased +re gu +ak a +n av +ro le +sen ior +spec t +cro ss +lin es +be st +p ack +s in +ti e +mis sing +sun set +li ber +is ing +j ay +sk i +champion ship +ac tiv +la dies +play ed +y y +pu bl +al o +pri de +s r +pa ki +lu x +sur vi +ck ed +e ts +cho col +austr alia +par is +mi les +h at +ment al +al a +me an +mob ile +en a +in si +f ound +chi ef +t ag +incredi ble +re turn +à © +goo gle +fren ch +cre w +hal lo +ali an +j az +ch er +sil ver +nor th +eng lish +base ball +c af +lim ited +follow ing +app reci +ear th +k ir +ve mber +w ed +p tion +g ed +oc tober +fl ori +c r +en cy +ga ve +lor d +stu ff +ber ry +po st +sm ile +bro ad +st ate +gg er +me ans +ic y +gu n +y o +ma ster +bur g +han ds +ni e +/ / +uni on +brit ish +big gest +distric t +am ing +h il +o ce +per son +pas s +en vir +scho ols +arri ved +anc es +insp ired +ex pla +be n +libr ary +bo tt +am p +ste ph +cont act +b ang +m s +cali for +t old +batt le +b b +chic ago +âľ ¨ +str ate +sh i +de ce +- ) +ad d +la b +j ones +leg end +cast le +ing er +st ance +be l +ur a +re fu +lead ers +po t +se x +h ic +artic le +ki d +fr ance +x x +ex e +gui de +volun te +pr int +al i +ce o +twee ts +w x +scen e +vol u +ant i +h an +as soci +shar ing +ro se +mini ster +sh er +in ste +cle an +demo cr +po ster +sk in +p sy +pro per +cra zy +i am +o re +in i +any thing +po d +mo ving +cl ick +ex plo +com b +cra ft +f i +bloo d +is ra +publ ic +d ent +ol ym +eng land +a si +ch er +fac t +envir on +har ry +g one +me dic +enjo ying +just ice +j r +indi an +wi fe +s ound +t es +dra wing +p al +ide a +cr it +ju li +il er +war m +cl ar +thou ghts +def en +coun cil +intro duc +di ed +jan u +an i +s end +li er +m l +intere sting +tra de +win d +b ay +s ac +anc y +sour ce +b es +org ani +ar ly +lar ge +ff ici +ta g +u t +de sp +o es +tit le +sy m +pic tures +op en +wom en +sho wing +ri a +le ast +lead ership +cur rent +elec tr +val ent +list ening +c key +gener al +de ser +du ce +; ) +c ent +ðŁĺį ðŁĺį +sco tt +po or +selfi e +ev ents +i on +wr ong +de v +h ill +sep te +cul ture +l ine +sor ry +s ent +si ster +ce pt +k ri +no vember +ar i +announ ce +z ation +br an +g ent +d u +l en +per s +f m +mart in +o p +e mb +om e +midd le +suc cess +pe ter +janu ary +f lu +rac ing +d av +bi ke +ðŁı » +pe t +shoo t +profe ssi +feat uring +septe mber +now playing +sta ur +z a +on ic +qu ick +bas ke +spe aking +mil it +z er +chick en +b ell +s ad +co ast +lo ving +y ers +d j +pan el +ver age +s wit +ic ks +b ou +califor nia +s am +paren ts +er o +k illed +ph ys +jo bs +mi gr +an th +e mo +hallo ween +and er +c m +compet ition +e ag +s ket +sp ir +may be +exclu sive +app e +jour ney +scre en +for d +i o +h ate +u g +sou l +her o +soci ety +sy n +gu it +n h +d j +as es +im pre +ti me +sal es +d d +f ts +summ it +stun ning +om s +tur ned +cle an +sof t +be at +re staur +de red +en ces +ma gic +di o +sh ine +gu est +health y +exhi b +stor ies +po pu +n is +el a +bel ow +fun ny +resul ts +s ne +cur rently +ar d +down load +f light +m al +f ine +p ad +ch u +ent ed +h at +ðŁij ı +ste ve +j o +mar k +r at +b all +p c +p on +b by +o li +ar ts +as ure +bow l +att ack +mi c +de ar +ran ge +en ter +chocol ate +br illi +ac cess +, " +? ?? +ch ap +con st +t n +mat ter +blu e +gall ery +em p +work shop +lead ing +y ours +baske tball +w anna +th u +_ _ +mar ri +sle ep +bi a +ch e +ma d +imp act +o wn +si r +chan nel +euro pe +e sp +k itch +hosp ital +w ra +roy al +f s +ne u +qu ar +ne y +ac ks +ch ase +pp y +st al +at ely +ti m +dece mber +r are +per form +cre am +we ight +ch oo +ni ght +ha ven +fr anc +kh an +buil t +hel ping +tru st +ty pe +gol den +ta x +s now +s wi +di sa +questi ons +ve y +li ght +c n +cl oud +thom as +ag ed +sh ou +te ams +gr an +re ason +a a +you tube +v p +pi zz +manag er +bur y +cre dit +tre at +ma x +i k +ma in +g ing +de ad +pro bab +ye ah +ã Ĥ +br and +so li +pl ant +ta yl +gir l +ðŁĺ Ń +nam ent +au to +mess age +ko re +n ur +ter r +ag u +ma p +sen ting +lo ves +gi ves +g ab +z en +ro bert +con fir +w ars +o m +sta in +cam era +and er +won der +a b +ca p +s old +su it +wal king +contin ue +effe c +dau ghter +d anc +cha in +mul ti +ki d +y an +champi on +v o +ta ins +ho st +min i +mis sed +re sc +ly n +fin ish +del icious +s as +tayl or +i b +pro mis +produc ts +moun tain +flori da +regi ster +tre at +rec ent +fe male +boo th +mat t +ve hic +s op +mo tor +suppor ting +phi c +ex tre +dr ink +lan e +th ird +p s +con stru +ce re +far m +ðŁİ ī +tu red +ðŁij ī +c ats +a j +gi e +shoo ting +as ked +paki stan +am e +m b +g il +leg al +squ are +in vol +dra w +oo oo +!! !! +opportun ity +p y +e i +b ts +teach er +charac ter +john son +br on +ly wood +ch ine +c ing +c ine +d ge +gam ing +russi a +ci a +quo te +ric h +go v +flow ers +sp iri +st in +grow th +ðŁı ¼ +comm er +j uni +mu m +r an +s na +a ren +c b +ac tor +col or +si t +pa ir +ch i +bo w +acade my +hel d +r ang +me tal +y l +ac tive +probab ly +t ch +need ed +spe e +cho ice +ital y +ry an +ðŁĩ º +flow er +v it +m n +found ation +b ak +si ons +ne igh +f loo +he ard +re mo +fre sh +ing ing +re f +to wn +cl ou +je sus +spiri t +cou ldn +z es +ðŁĴ Ļ +willi ams +pro ce +moder n +pro cess +sho es +cre ated +tri c +issu es +ann e +att en +de but +h r +n it +sti g +a po +e ps +z u +ã Ģ +si x +car ds +lan gu +fam ous +tour nament +se l +e bay +y n +st on +k ick +announ ced +k am +vo c +brilli ant +hou se +che ese +war ri +mus ic +ho ckey +ðŁĺĤ ðŁĺĤ +sk ills +au tom +smar t +med ical +mon y +e x +gu ar +gi ve +pers onal +ven tion +al li +pre ss +flo or +m c +victor y +hi m +simp le +th or +ðŁĩº ðŁĩ +ta il +lu cky +ale x +qu ite +bo t +ssi ons +chall eng +c ann +amaz on +h ell +b ought +) : +ed y +secre t +produc tion +inde pend +de fe +ad ded +p r +p ag +be d +gre atest +with in +j ay +ðŁ ¥ +ire land +re ly +s d +te xt +dri ving +pro gram +spe ed +col um +str on +à © +fore st +â ĸ +mach ine +co in +sc ar +oun t +bi e +¡ ï¸ı +por tra +comm on +wre st +recei ved +kno w +inve st +pl ans +ac cor +ad op +ter y +re ali +p p +k al +art work +me an +go d +inste ad +an ci +motiv ation +as ing +inspir ation +up coming +polit ical +euro pe +m ers +heav y +ðŁij į +fe bru +scot land +ou gh +b t +bo ss +sche du +spe ak +n ick +u red +in o +e k +ri sk +tor y +pres ents +b on +ru g +st ates +exhib ition +il o +m ill +br ought +: -) +tou ri +com e +offici ally +champi ons +do ors +re p +po se +ex tra +k ings +soc cer +squ ad +app lic +at a +some times +t ari +excell ent +ðŁĺ ĺ +stra ight +car ol +ri p +âĢ į +gra phic +m ol +elec tion +febru ary +as ons +l i +di r +m t +n ick +u su +m rs +com ics +inst itu +cor por +v i +ðŁĻ ı +tu ral +di se +ac ci +we are +am ong +sho pping +t ill +wh at +cha ir +sp an +chine se +innov ation +jo y +k it +cent ury +ob ama +ph ili +f c +re ach +c iti +ul ous +n on +d ang +happ ening +bur n +p el +or ange +d v +k ick +cla im +ing ham +ph y +no v +pod cast +wh i +ni ghts +ear lier +be ar +la h +exc iting +or a +gi ven +s lo +memor ies +contin ues +produc t +gh o +c d +kno ws +ðŁİ ī +publi shed +discu ss +y ard +i phone +tri es +w all +fe b +are n +tru th +win ners +tu re +diti onal +milit ary +proble m +m and +do g +lo ss +c ric +can adi +ve ter +villa ge +" , +y r +un g +don ald +ag ing +bir ds +sci enti +le s +th is +regi on +tic al +itt en +il a +ðŁĺ İ +d ad +di am +abo ve +st ren +li t +p ir +la b +fo cus +bus y +d ur +app ly +s ma +auth or +ac i +exe cu +dom in +re la +jack son +at o +wash ington +ðŁĻ Į +k ill +popu lar +ce ment +ro ad +e ating +loc ation +v ent +ar re +n an +cu sto +advent ure +or din +spor t +ul t +lo ck +questi on +dri ver +land sc +on i +k ins +p d +jor dan +te red +k k +a f +chil d +s p +just in +en i +s elling +z o +wh it +bo ston +partic ip +sig ning +happ ened +he at +m am +dre ams +lo ws +gra ph +the day +head ing +br o +ble ssed +vi c +ve gas +h d +in ning +ro man +and ro +den ti +u se +c it +pro gress +writ er +bo b +ff s +gro wing +b ly +aw are +ex am +sp ent +be t +sc ore +bey ond +do cu +ad el +s f +cou ra +colla bor +in c +priv ate +bo at +* * +z one +p ha +b ill +to tal +plan ning +to wards +plac es +pre view +cre ative +dam n +ide as +se ems +po ten +say ing +di splay +s w +a qu +lou is +by e +li l +e mail +we stern +ger many +ell er +re s +f ant +ment ary +de als +ric hard +jer sey +stren g +ra d +pizz a +mon d +w are +l ac +g i +ar chi +c d +yel low +rec ently +re ach +à ¹ +kitch en +desig ned +tr y +g al +restaur ant +at ure +w w +j as +l ma +ðŁij Į +pa in +av o +min ute +sch ol +ther ap +tic ket +d ry +jap an +diti ons +ter ri +sel ves +happ en +t up +ma g +cop y +sh er +free dom +f ile +speci ally +tor onto +lo ad +g ary +re y +answ er +lo y +cau ght +pri ze +u ne +fic ation +ni ger +sy d +tou ch +feat ure +jaz z +recor ds +him self +di sh +ro ber +spot ted +ma ster +wa ve +fin als +bu ll +for um +al d +re comm +ch a +a e +d oo +inst ru +tru ly +l g +in k +bro thers +de st +j im +m it +clo sed +is on +tri ed +s anta +af fe +w an +hor se +g row +camp us +rel ation +nati ve +jour n +go v +o ct +k it +b ound +part ner +re ma +crow d +! ) +c alls +ra il +qu ali +solu tion +con test +con vers +sn ap +b ase +in iti +ta x +y e +ent repre +it or +constru ction +foo d +present ed +n ings +cli mate +k m +mo del +b j +blo ck +present ation +dre am +fi x +c alling +bus ine +con gress +under stand +we b +val ue +ï¸ı âĥ£ +mex ico +it ely +ki m +char ity +ref lec +bl an +fl ying +anal y +famil ies +b and +reci pe +celebr ation +ac cep +ar y +to t +g b +intere sted +cap tain +âĻ ¥ +ti p +ab sol +bra z +inve stig +o logy +de c +tru ck +ver ing +c lear +don t +go tta +ad vis +beg ins +ma ss +de scri +blo ck +k im +davi d +son gs +memor ial +feat ures +su stain +' . +gra b +jo se +v a +con serv +se ts +man chester +fi ghting +de gre +ag a +in d +sle ep +pos ition +ha ir +sig ns +pol icy +it o +al ert +st am +sp end +w y +absol ut +d m +anim al +my ster +success ful +proble ms +ro bo +k ay +gar den +p d +may or +d ale +t ol +off ers +vis iting +friend ly +tre es +offic er +accoun t +ke vin +ðŁij į +gi ant +contin u +con su +tr act +n fl +ðŁĺ Ĭ +h q +b ility +a ar +dis ney +te en +on ed +wh ite +tra iler +de dic +al one +absolut ely +dig ital +willi am +in ation +s wa +e e +enti re +ger man +ro ll +h its +co st +st ay +th a +ali ve +accor ding +co t +liter ally +her it +re ti +haha ha +exper i +li kes +g t +ste el +__ __ +ch air +christi an +to wer +diffe rence +m d +tre ss +mi d +prin ce +afric an +fe der +foo t +car ri +ser ved +r ice +sh all +feat ured +ck er +rec ru +po e +sen se +ni fic +com edy +cont ent +f at +po sted +con tribu +tim ate +li ver +mb le +inter net +ag e +europe an +cl ing +gla d +ff ic +sc o +ak es +el le +ter min +ton y +p ale +col our +seri ous +pat ri +movi es +b m +professi onal +ad o +al u +br inging +f alls +isra el +ter m +langu age +bro ok +man n +commun ic +can not +ac ti +p he +y an +entrepre ne +tur key +log ical +lon g +ar m +ur s +work ers +ing ly +gg s +ri c +tu al +recei ve +op ens +ge ar +soci al +fe et +c king +ad ver +fin an +fe els +sp la +h r +ea ster +bra in +ã ģ +fi g +le dge +ne arly +prote ct +ma ssive +e th +aw a +ðŁĺ ģ +y rs +aware ness +defin itely +k n +imag ine +k u +syste ms +ðŁij ı +f as +li k +provi de +am o +disco ver +inf lu +ma ker +g az +fit ness +stre et +er s +te d +w c +ys is +pos itive +hel ped +que st +andre w +bra d +b in +hang ing +l ing +bri ght +se ction +ma ss +ðŁĻ Į +follow ers +ho sting +tem por +fla g +a ve +let ter +k ur +re qui +of ten +cry p +su ff +âļ ½ +russi an +treat ment +al le +ha y +l an +keep ing +hol y +power ful +pre dic +fun d +e specially +windo w +je wel +il y +ðŁĴ ľ +gener ation +app a +seri ously +o d +ðŁĺĤðŁĺĤ ðŁĺĤ +cer ti +iri sh +ðŁij Į +mi ami +be th +v ity +se cu +che f +cri me +graph y +ma x +arti sts +re volu +gu ard +spee ch +u c +upd ates +fac es +st ant +chang ed +repor ts +low er +pe ar +n c +k il +loo ked +spe aker +s f +re spect +ok ay +oce an +s itting +architec ture +tra il +se at +i ra +le g +japan ese +d am +u lar +sw im +polit ics +finan cial +ol d +mou th +at temp +de stin +fi shing +atten tion +me m +chang es +deci ded +reli gi +g in +c av +z z +ad am +ma c +wr ite +beg in +sc ul +al ter +is s +ath on +imag es +m oo +jo ined +ðŁĺ ī +âŀ ¡ï¸ı +pas sed +mu sli +h ir +lar gest +cam er +com ic +gh ted +rug by +bur gh +gg ing +te sting +pre par +lau gh +al ed +impro ve +beli ev +adv ice +sha res +he art +tur ning +s b +t el +caf e +n es +dani el +pat ter +t z +se tt +par k +c and +st ick +happ ens +bri an +ne west +e pic +ad or +ki es +war ning +anim als +custo m +ar c +di an +gol d +cor e +t f +c ity +pan ts +re ality +con fi +in ju +fo x +gu il +k new +âĺ º +cor rec +itu de +d den +. # +re duc +pas s +f on +y a +ow ner +re turns +n c +e ast +ap ol +in sur +th o +si m +juni or +be e +ang el +att le +elec tric +hor ror +cra sh +e ye +pat h +sou thern +emplo ye +ge o +t an +ha z +r ally +ðŁı » +proper ty +was n +enjo yed +gre y +g as +bre w +nor thern +hol ding +g p +ta ke +ch art +ly n +dr ama +z o +pa id +throw back +cu p +discu ssion +down town +w ill +le w +b is +t ary +bre ad +up on +r ate +teach ers +it ation +anc ed +cy cle +choo se +d c +ir an +co w +da ve +ra ise +prin cess +fa ith +- > +indu stri +sp ain +guit ar +fac ts +m n +sp en +cour te +go tt +projec ts +au di +o sc +pe ter +s and +intere st +happ iness +ven ue +sol di +surpri se +poten tial +per io +custom er +i i +g ni +manu fac +e co +bro ken +sing er +vel s +wal es +hu s +in j +f our +tal ent +d ying +mat the +fil m +jo ining +s ell +j ar +lma o +sur ger +bb c +sour ces +au stin +ni k +char les +f am +prin ci +ange l +cas h +lo t +o red +pla ys +pl ate +don e +memor y +br ings +n ba +solu tions +teach ing +gr ace +cir cu +hel ps +foun der +mar y +expl ore +de cor +par ts +ch o +inte gr +ha u +is es +pu tting +in er +r it +v y +mic hel +blu es +every day +for ms +bi o +ye ar +p in +t ter +spr ing +) ) +po t +al ing +perform ing +sh an +plan et +mus ical +head s +it alian +stru gg +âĢį âĻ +w ings +pu mp +h h +tr ou +a id +pri me +ear th +pa int +mon t +am y +bb c +fab ulous +fru it +andro id +bour ne +cere mony +enti al +? ? +deb ate +on ing +dra ft +sol ar +t x +j am +cor n +!! !!! +bro o +mil k +po sed +o hi +mo vement +b ren +part ner +p g +et te +ar ies +sh out +n g +leav ing +t ells +sen s +ta ste +kel ly +wor l +gy m +ric h +e gy +pi d +ma s +â Ĥ +courte sy +fran k +incre ase +wr itten +pp ers +re l +ha i +s as +s ound +tt i +w ich +ri ver +.. ." +a g +fel low +ro me +sm all +gen cy +ic an +lux ury +pro of +me t +wild life +mom ents +ra ther +cor ner +com pe +canadi an +lik ely +therap y +li am +econom ic +indi e +rou te +fi ght +ho pe +se tting +ant ly +cro ss +fant asy +de e +sket ch +comp li +ym i +ru les +engine ering +fig ure +ro w +. , +f w +syd ney +w ou +t ation +dre w +us es +the re +sp read +struc ture +pat rick +appa rently +ro s +h ills +w we +ann y +com mission +di v +f ying +con sul +anal ysis +ex i +ten nis +vehic le +ðŁĺŃ ðŁĺŃ +as s +high ly +op ened +b ann +ðŁĴ Ļ +mp h +wi shing +v or +fi f +give away +r r +ra y +je ss +g at +ic ymi +x it +high est +yor k +pi e +invol ved +high er +ri e +mal ay +int elli +desp ite +che e +sar ah +be an +reco gni +ar sen +tal ented +pas sion +ic h +ab c +lead s +dise ase +v is +se c +pre senting +m illi +hol e +sho ts +de part +surger y +gov t +b in +du al +e vi +lon ger +ev ol +scre en +portra it +et c +lo se +ch at +p en +p i +om a +s ick +er c +compan ies +en try +plan e +gr y +ven e +liver pool +premi ere +sha red +a red +fil ms +ir a +holi days +cric ket +ici an +v ing +. ) +ul timate +di vision +con duc +se pt +for ces +mon t +s mart +disa pp +sun shine +in d +b less +ma de +col ors +fran k +ir on +bott le +s go +m ood +j ason +er ic +bir th +te en +respon se +tar get +state ment +fe ar +th el +al um +ar ab +bl in +direc tion +ste ps +er ial +wor ked +at l +ðŁĴ ķ +fel t +pol i +scen es +hom es +b ell +e at +ate ful +t in +l ace +fol ks +p se +an n +wis dom +fa v +but ter +s r +are as +sm oo +bi z +dg es +app o +mo re +the m +effe ct +windo ws +sun ny +cap ital +tot ally +c ities +gr ant +mb ers +s low +au tu +il ities +w ro +ri sing +st ics +viol ence +i gh +qu ot +h it +t c +herit age +bu ff +ne s +z ar +den tial +ex ac +ed ge +de ep +aren a +be came +benef its +mar ks +mb er +a z +am es +pre ci +dra gon +re g +d ings +do s +ðŁĴ ª +n el +s ity +me al +di st +leg end +pur chase +pic al +st ick +f at +du ba +profe ss +car to +pro f +coun tries +respon si +se qu +fa b +tribu te +hon ored +prac tic +pur ple +an ton +pa red +t ough +summ er +environ ment +s ons +ðŁĻ ı +m ps +gi es +her oes +t elling +hen ry +f en +know ledge +Ģ ï¸ı +f r +ne g +u re +ac king +hear ts +s oo +hol lywood +ju mp +sau ce +schedu le +tur n +yo ga +cre ating +c ket +cre ek +â Ń +custom ers +ma dri +gu l +asse mb +moun t +c ell +to p +st al +dav is +t wi +sig n +premi er +iti ons +he aring +un k +pati ents +app ear +heav en +al ty +doc tor +a e +plat form +je ff +ðŁĵ · +regi onal +bi d +box ing +ex ten +or ity +a w +w ise +il le +sever al +bi e +s itu +sy ria +âľ ħ +remin der +enter tain +li on +part ners +in n +ph ar +f au +pl s +expe cted +sug ar +deci sion +s b +ch ron +associ ation +leav es +vis ited +sh ap +ðŁĴ ĸ +fur ther +h ann +w i +run s +l er +fun ding +fil led +.. .... +tin y +han g +or g +co ol +se min +ðŁı Ĩ +spon s +nav y +sa int +dru g +d al +r oun +co vered +tra ditional +invest ment +de te +al ism +f low +n is +sun rise +fe at +f ted +we ird +je re +ve gan +medic ine +an o +ac cu +deli very +temp le +chang ing +wil son +phili pp +re fe +n d +is er +g ay +r and +ati ves +t ely +p and +intelli g +g are +am bas +de mon +commit tee +strate gy +refu ge +bud get +prote c +pi er +ex press +nom in +econom y +al low +ic on +gal ax +o h +indi vi +dem and +vir gin +lu ke +ali sts +man i +s mi +ju dge +ent y +mic hi +resul t +am ed +spe aks +' , +hou ston +sh in +b ing +fl y +ch em +au to +v as +ge t +ar m +thank s +d in +gan g +x x +si on +loc ated +p l +jo sh +in fo +jo ins +adver ti +ot d +el d +si e +re asons +v ent +ðŁĩºðŁĩ ¸ +â ł +convers ation +stu di +ðŁĶ¥ ðŁĶ¥ +go s +s ounds +un it +mu sc +ge l +ack ed +pac i +co s +de re +u u +a o +la m +inspir ing +ar ms +tw are +mat ters +ad dic +du de +ex t +cri sis +b ath +me et +sing h +expe ct +del hi +resc ue +wor st +au g +shi pping +ser ving +st o +dar k +ac es +histor ic +landsc ape +desig ner +b illion +gr ateful +wa ke +e ve +m iller +hou sing +dy nam +is co +be ha +sh op +pr ou +e as +a sia +e ding +k on +depart ment +aw ar +mar ine +in ci +photograph er +ta pe +lo go +r ings +d it +-- -- +vin yl +w c +vo ting +se ven +ambas sad +dal las +t u +com ment +k ra +b les +w ag +u d +au dio +stri ke +offici al +o ts +me tho +to ols +ra di +al an +hun t +wat ched +a ke +fa ke +drin king +mer ry +m l +b day +ri o +ni ke +c ant +re pe +co stu +mur der +ak ers +ch ers +ou ts +beg inning +so s +ad es +n in +not es +wro te +sol o +c i +li ghting +ur ban +bre xit +att end +shir ts +pla yo +ac tress +pl ic +stand ard +quot es +par ade +anci ent + © +tur ing +re e +pri mary +fla sh +citi z +mat es +ste in +z i +clin ton +sk in +gen e +hu m +g ar +t le +y i +fo cu +de an +pl ants +cy ber +b u +om e +ho p +ad dress +ti x +gi fts +relation ship +sub scri +fe ed +exac tly +haw ks +ex o +stre ss +s n +arre sted +an e +sof tware +z ero +the me +mu mb +im migr +mi a +make up +ple asure +uni vers +har b +eng ine +ap er +r in +br a +institu te +le ather +al th +sing ing +co s +gh ty +me as +st ic +si de +insur ance +co t +pit ch +moun tains +cri min +su pre +valent ine +at er +wou ldn +sc ale +rel ated +re gar +star tup +pack ed +mi ke +week ly +p ts +coun t +ha r +gott en +min d +ber lin +con ditions +swit ch +cor n +sa ve +g li +emer gency +tun ed +sto ck +discu ssing +every body +s day +whe ther +wrest ling +ec es +gen der +ch en +ðŁij Ģ +madri d +mar athon +e gg +i er +th x +as king +kore a +wol f +ay a +g m +g au +at ory +v r +gra ss +k illing +b ble +ur o +un i +e th +sh ore +th en +re ale +bot tom +ex erc +k ar +or ies +ad ri +san ds +se x +. ' +volunte ers +per form +par liam +inclu de +deli ghted +execu tive +fu el +kis s +ã ħ +char ge +h u +ca kes +ve t +g lu +agre e +pr ices +n au +h l +g ru +ra j +streng th +b ic +sp ending +al es +av en +b last +: ( +yo f +nor mal +si x +qu ick +se a +d aw +mee ts +lo vers +upd ated +po tat +comple ted +coo k +opportun ities +p ure +organ ic +tem per +c am +avo id +par king +duba i +and o +di stri +to y +comple tely +don ald +tri al +bas s +b oun +back ground +v as +mar vel +lu m +ru s +t ool +com missi +throw back +fin ding +is lam +! ? +st op +e vil +or al +resi dents +i denti +o ak +ðŁİ ¶ +l il +span ish +chap ter +sto pped +direc t +ho sted +pic ked +lab our +lew is +defen se +à ® +health care +wh is +mat h +pe ak +ra ised +fi x +bu ll +th ir +chel sea +fol k +tr e +can di +pau l +ei ther +ad am +poe try +jewel ry +ðŁ ¦ +pr ay +Ø § +g c +o z +wi shes +fore ign +sun g +lear ned +en e +n ing +micha el +illu stration +legend ary +w av +b au +ðŁļ ¨ +cal end +stre ets +â Ĩ +mon ster +bu ck +g r +scho ol +ba th +wa ste +ne ck +ha wa +be ach +re plac +jec t +on er +fac tory +coun t +ðŁĵ ¸ +mor gan +der ing +se an +steph en +de p +no vel +vide os +ic al +press ure +arsen al +ex pre +ir s +tren ding +ss a +fla sh +re sear +thr ough +profess or +scul p +to s +gg ed +mm a +be e +a pe +hun ter +am i +he i +pla stic +bu cks +uni verse +le gen +niger ia +ple ased +ri s +thin ks +autu mn +i ds +d is +anth ony +ðŁı ½ +ak ed +gla sses +fin ance +z er +k as +con tract +nu mbers +sh aw +partner ship +t il +laun ched +s al +victor ia +theat er +usu al +nam es +perio d +eli za +i th +bar cel +ro cks +bag s +mat e +distri bu +j on +di ffic +ali zed +cur ren +sco red +b ha +du blin +ro se +in ted +soli d +beha vi +wal ker +simp ly +garden s +head ed +in i +ohi o +we ap +f o +gl en +e state +ran dom +th under +thr u +k ill +jac ket +it i +entertain ment +thanks giving +ent al +en coura +el o +a ther +tan k +high lights +f ting +ru le +model s +bor der +bj p +hus band +in done +ken ya +be ars +al o +n inten +pi x +str o +or ders +sal ad +ro ads +n or +l ation +sop hi +ðŁı ¼ +pi eces +b one +min s +inclu des +nu tr +phi l +s ent +fun dra +ga in +bor ough +n ad +mon day +activ ity +it ems +be coming +ken ne +de tro +car di +gue sts +u x +world wide +sever e +new s +thank ful +fic tion +ve ge +m all +si an +er al +inj ury +le e +men u +danc ing +scot ti +exam ple +( # +na i +studi os +ba i +ðŁĴ Ľ +j av +diam ond +vin ce +ric k +prote ction +lin col +cham ps +appro ach +d ar +m ile +clou ds +je ff +in fin +l ers +p les +pe ace +go p +âĻ ¡ +tech n +str a +a verage +ef fort +introduc ing +di versity +austr alian +am p +boo st +s ke +pati ent +appreci ate +ici ans +pu r +f ell +woo ds +illu str +ðŁ ĸ +ag ency +ac tions +brit ain +under way +se attle +el and +ag o +f ill +stre aming +pro test +challeng es +ky o +et sy +coo king +exper t +ru ss +rain bow +commer cial +sp in +be ats +c ry +val u +el i +th row +gr ams +le vels +michi gan +c ad +ador able +const itu +w s +pu b +mid night +th at +net fli +braz il +die go +regu lar +jo y +âĤ ¬ +li qu +ea stern +k ni +fl at +n p +bro wn +w er +se y +tt ers +ac ting +v anc +cy cling +program me +ra w +comple x +tat too +throwback thursday +se ssions +ro oms +si ght +speci es +bom b +lau gh +ke eps +mo on +offic ers +con ver +t r +ha sh +t ack +ri ous +ad ap +a j +reco gn +ex po +sug ge +confir med +rol ling +dre ssing +ic t +fri day +ph ones +ri dge +con cept +ro y +ke ys +ef for +c ate +k ne +ev en +l ay +commun ities +mo d +n az +every where +al ab +bit coin +ban ks +out door +feder al +sto res +h p +c al +m ely +sig nific +be ar +re public +clo ser +al lah +pic k +x d +pal ace +ch ill +b am +er ous +un a +al len +out standing +olym pic +supp ly +fi gu +v au +l p +char lie +un es +> >> +legen ds +ici al +co ast +benef it +mul ti +f its +far mers +am ount +si sters +har ve +hon ey +que en +b ers +pl ann +âŃ IJ +m u +barcel ona +al ber +stat us +re main +ex tra +c andy +vi ous +âľ Į +o v +warri ors +-- > +ju mp +am ar +x mas +stu dies +i ors +k or +don ate +pre p +fi sh +im a +pain ted +ad mini +co splay +spor ts +dro ps +fi ghter +evi dence +ðŁĴ ª +la ke +ro b +cine ma +pro file +à ± +stan ds +leg acy +sh ape +ro of +ci vil +i ans +sy l +sh am +vo ted +re tail +ph illi +li sted +du ty +n b +th es +f are +au ction +ffici al +stor ms +d p +l oun +sh ops +al y +ani me +multi ple +ðŁĺį ðŁĺį +psy cho +je an +ap art +candi date +gg y +con f +jose ph +w ick +me at +fr ame +c l +for got +ph y +f ing +li ed +re p +se ed +f all +u fc +nu t +lin d +mo de +fiel ds +en ce +s ley +ðŁ¤ Ķ +ch ill +follow ed +announ ces +cor ru +tro phy +them selves +ac le +al du +k ong +l on +s v +bro ke +ander son +ta i +stor y +tempor ary +activ ities +k ati +ari z +cry stal +spo ke +extre mely +tra ding +ðŁĴ ļ +à ¼ +in ch +ed in +out fit +equ ip +ma di +form ed +be ef +po p +ti ger +this day +ti red +neigh b +re tro +is a +un t +t as +kan sas +de st +secon ds +ta y +hur ric +o u +galax y +dad dy +bro w +bur ger +en ced +de sk +ac cur +secre tary +el ite +k ab +ch in +touri sm +bud dy +ici de +dre ssed +u d +vac ation +che ers +com for +charac ters +j et +bu ying +l ins +n ap +reale state +li e +af c +i ii +f ame +n r +b at +ag ent +ma kers +âĢ ¼ +sec tor +op ti +le on +di et +pra yer +hi p +mi r +le x +br y +an a +pas sing +w en +reco very +ak i +po pul +res ort +mar ia +stu ck +read s +ti er +perfe c +netfli x +p oo +cham p +o c +re duce +we red +comm ents +cla im +acci dent +s ag +h ack +sal t +kin da +k iller +i os +z y +ex change +lec ture +eng er +ic king +t au +reve als +pri son +z om +gh an +u l +jour nal +i ot +tr in +jon a +govern or +cap e +quar ter +spec tive +impre ssive +bab ies +t x +m ill +o y +har ri +jo int +su e +collabor ation +tren d +revolu tion +re new +alum ni +ge tt +sh ell +sun day +ent u +ni c +donald trump +block chain +paci fic +expla ins +sp y +ad voc +par adi +to f +star ring +p av +fe ed +br ac +smo ke +ham p +y am +to kyo +si mon +d h +e ffici +phys ical +n j +ell i +s low +gradu ate +americ ans +ti fy +f red +ap ore +fin ds +rob in +we t +not ice +se mi +un ve +k om +pil ot +scre ening +da ily +ðŁĴ Ĺ +roy al +sp a +vo tes +n ag +wh ate +att ending +exper im +ad dition +k ate +sto l +m ali +foo t +chri st +ch an +de e +lic en +glo bal +mo ore +ti a +bri gh +myster y +y ay +âĿ¤ï¸ı âĿ¤ï¸ı +cre ati +me chan +clo ck +di c +âĢ Ķ +pp er +al ph +through out +al low +re sources +selec tion +ham il +bb q +aa aa +virgin ia +dis ney +en g +so red +drin ks +f ancy +consi der +end a +jan e +hand made +du l +on tari +i us +s ville +color ado +whate ver +whe el +promis e +ne ver +desig ns +ab ly +sex ual +vanc ou +at i +con vention +cul tural +sing apore +pro mo +load ed +gla sgo +pp l +n oo +ke e +ste m +men tion +i do +cru ise +ri ding +be comes +be y +âļ½ ï¸ı +tw in +dedic ated +na sh +de si +work out +jen ni +i v +grou ps +rela x +pho eni +li ft +mix ed +m ck +p c +mu st +me tro +ci es +y ar +a im +ang er +i e +rec y +marri ed +dro pped +eng ag +le st +ambassad or +op h +de s +w ick +assi stant +nat ur +fa il +l td +shor t +k ap +sha w +bi gger +rema ins +crit ical +sur vey +co verage +er son +win d +n b +bil ly +let es +ac ts +jim my +at lan +al and +t c +import ance +dam age +f g +stor age +tw t +bon d +bal ance +cr ying +pu ppy +vo te +pu sh +ðŁĴ ľ +pol y +me l +lon don +terr ori +effec tive +corpor ate +atl anta +jac o +nas a +gre ek +sen ate +i sh +ev a +intellig ence +effor ts +al co +k un +h all +di ag +claim s +fir st +h b +ba e +v ul +pu ll + ° +se par +spe ed +vic ti +on thisday +audi ence +r ates +te ach +fil ming +bu sh +son g +y um +br un +ra ine +aw a +par ks +ð Ŀ +ra bb +ra ch +ra id +reach ed +ra il +mo ves +selec ted +fr i +ra ising +om y +st ones +su k +franc isco +cas es +cap it +con fu +w tf +po ke +equip ment +gre g +ess ential +off ering +ne x +pi es +be c +cre ation +chair man +cro wn +w al +john ny +shi ft +ne ck +ban g +bir d +ðŁĺ ı +du ck +re serve +de pu +ma sters +over all +no tic +ju ice +sne ak +che er +cla sses +eag les +n ca +car pet +ci vil +coach es +har ris +u ps +b alls +dec or +mar tin +ro s +v ice +announ cement +who se +ti gers +ste red +c ts +dr am +ste el +youn g +inst all +supp o +recor ding +de ck +se ats +l der +ang le +bo t +sty les +elec tions +for tun +n ab +but ter +ari an +ka sh +in ner +ou red +be ast +we i +ic onic +exper ts +ne cess +b eng +jam es +li a +gre ece +ðŁĵ · +ðŁĺ ģ +good bye +m itch +tw ice +mumb ai +ste am +ru sh +med al +ne tt +fashi on +t ar +r s +sav ing +ric ul +l m +sleep ing +brook lyn +mis s +sen ding +disco vered +sp here +of theday +k icks +missi ons +w right +er n +ght ly +i ous +mel bourne +star tu +mo ved +car ry +d ak +ag ues +bel gi +e ma +way ne +do t +er ie +pe l +it unes +matthe w +no body +est ab +cal m +win ds +lu c +prep are +tren ds +exerc ise +adv ant +ðŁĴ ¯ +athle tics +app s +c tions +adv ance +laun ches +litt le +real donaldtrump +eliza beth +carol ina +hu b +hi dden +n w +us er +pol l +great er +mo st +f ed +p at +life style +s ati +sco res +marri age +l r +aven ue +de serve +ri f +ðŁ Ĺ +wat ch +champion ships +gr ay +en ni +cot ton +g om +whe re +pack age +su m +ab solu +new ly +foo ds +ty ler +assemb ly +musli m +ban k +re memb +op tions +produc er +land o +fun ds +u pper +shad ow +pro gre +co p +ing e +leg s +detro it +hill ary +jo se +gi ants +sou p +sustain able +t us +clo thes +roc king +n z +min ne +mat eri +bru ce +ear t +ca sting +independ ent +thou sands +ta h +de cl +veter ans +li ons +wra p +âĢ ¦ +de ss +bl ing +st ine +e ggs +o on +clo sing +z ay +at t +bac on +fa il +ariz ona +de pre +gho st +new sp +w ers +vi p +li ked +id ent +volunte er +ad ult +pu pp +cir cle +mat erial +degre e +gro wn +boo m +calend ar +su r +vie wing +ath letes +ch and +re ll +asi an +en tr +vol ley +victi ms +bo dy +m ama +trans fer +ge ek +in dic +sav ed +ma i +g ent +it s +loun ge +k ol +the ory +situ ation +is lands +ar th +z oo +floo d +vi ously +show ed +parliam ent +ch ev +el ine +at trac +ab ad +ta il +h rs +lu s +por tu +gor y +provi des +to ys +de ath +in fe +an ce +g le +li am +lo ver +hu d +dv d +reve aled +g w +re ment +ca the +l ying +ra dio +der by +stor s +che mi +hosp it +âľ ¨ +' : +ilo ve +le mon +re public +s ni +ne ss +do or +re action +pre gn +fla v +schol ar +spo tify +is ation +vis ual +aw are +spon sored +jo ke +less ons +leg is +lo ck +si mil +ðŁĺ ĭ +kin d +la y +ma h +ho ping +vancou ver +as er +clean ing +gal a +thre at +la p +ach e +ro mance +ex pen +re post +z am +e pi +mir ror +o ak +ad ul +bat man +s lu +l c +vie wed +re views +d ates +indone sia +acti vi +off en +lea f +i si +ag ricul +costu me +s ites +spir itu +appear ance +ir y +st air +applic ation +spec tac +ic ity +ski es +hand le +pun k +paradi se +t n +de al +provi ding +do c +recei ving +bre w +micro soft +à ¶ +fer r +me tro +th ail +y um +car ter +à ¡ +gent le +bre aks +coo per +show case +cu tting +egy pt +bab y +semin ar +gl ori +ss on +fa ve +re hear +lo tte +la dy +al as +pre p +deli vered +nu clear +ir o +engag ement +at ta +con ven +z an +gl ory +hol ds +busine sses +str ange +sch e +it self +gra d +mar kets +f alling +st ats +ge on +bu dd +li s +she et +thi si +co lo +deser t +regi stration +ig n +expla in +inter ior +la ws +writ ers +spr ings +k r +fri ed +blo om +inf ra +a o +cre d +pa st +line up +bo o +bre a +boo ts +celebr ity +att acks +bro ok +ev es +ex cu +cher ry +oo p +fas cin +boy friend +se as +n ine +effec ts +po wered +k ha +ðŁĺ Ģ +sh out +con dition +i j +her o +enter pri +win ter +applic ations +sho e +g el +batt le +pro grams +w art +ðŁĴ ¥ +ra p +ho l +dang erous +di a +coun ter +ric s +i or +k night +co at +emo tional +at ures +d as +whe el +fore cast +tran sport +glasgo w +king dom +prepar ing +im medi +ff in +awar ded +prin ting +ro man +fight ers +any more +bel t +p ine +win e +x i +employe es +logi es +al led +de mo +birth day +ange les +lo g +dri vers +neck lace +k ath +s it +athle te +ef s +s burg +pur pose +resi stance +rele ases +t is +vari ous +deli ver +ch al +s anc +opp o +cra w +neu ro +dr a +suppor ters +sna p +diffic ult +swe ar +logi st +pa th +attemp t +à ¥ +swim ming +ste ve +hur t +inclu ded +b ap +wa re +ðŁĴ ĭ +end ers +ja ke +le eds +cli mb +l b +im ple +li sa +clo thing +ðŁĺ İ +d t +com pla +sw ing +stra w +v als +k le +us ers +stor m +cu ts +ontari o +p an +hand some +i ow +ar gu +chec king +scotti sh +Ķ ï¸ı +si er +em ma +po d +patter n +de sh +en h +ed ward +t ing +k h +hal f +lincol n +mo ther +al leg +r c +volley ball +d n +g ay +all y +le ton +gro ve +l oud +adv anced +re spec +cli ent +supre me +thail and +ho w +gi g +to i +do t +dol lar +ðŁij ĩ +p it +r b +h n +produc ed +gg ers +âĨ Ĵ +ml b +can vas +fin eart +us d +in the +p son +actu al +s l +t b +ip ad +en sure +u mb +w d +sk a +mar s +k end +f eli +th ing +count down +absolu te +r out +dra l +p y +inju red +min t +hun ting +mm er +s age +li gh +ac ity +ex pan +mur ray +ar o +sec ure +four th +eag le +reli ef +st akes +industri al +clar k +under standing +see m +pl enty +sil ver +cla u +thre at +sa il +pro duce +ab str +is is +b r +eng ers +wor ry +bie ber +s j +just in +reali ze +ky le +esp n +fil ter +s ch +ty pes +game dev +d ing +twit ter +soldi ers +p om +car bon +y ards +child hood +ri ed +ke l +ele ph +t ons +key note +qui et +wi re +po sting +is sa +repre senting +bac ks +alex ander +celebr ates +ta ining +| | +ch or +esc ape +pe ek +ti ves +fiel d +ssi e +im pac +spons or +r c +we dd +cann ab +si des +trac ks +com par +con trac +techn ical +bi ble +expl oring +sh are +tra v +n ate +ill o +sc ru +m ingham +gun s +of the +sh ame +se es +ca tho +ac cess +ce l +repor ted + » +mari o +p ad +hope fully +ou se +y on +disapp o +ol o +p itt +pa c +ga p +cru sh +s g +k le +ge m +emp ire +dir ty +a is +avi ation +ze aland +fac ing +high way +d anny +spi der +ot ta +ðŁĺ Ħ +w y +col ours +in fl +co sts +olym pics +au s +h m +ho ward +pas ses +lau ren +mu sh +op in +r ho +disc ount +oper ation +em ily +mm m +cham ber +d il +to yo +shi p +sam u +pic tured +un ic +po l +keep er +carto on +st en +ig nor +n ations +n l +ta sting +deta il +offici als +mo tor +franc is +ed itor +ðŁij ĩ +pe ts +rang ers +t g +r n +w ri +nic hol +i se +spo ts +ani e +chec k +tri ple +ku mar +spe akers +ic ing +pre pared +ab use +friend ship +mon th +swi m +air e +sc ent +hamil ton +indi an +j es +yum my +te ars +da wn +i zed +worl ds +ðŁ ķ +b illi +st one +n hs +ba sic +p or +st le +ir on +ol der +cle vel +e ing +ðŁĺįðŁĺį ðŁĺį +prin ts +fir m +air craft +fin est +devel op +aar on +t z +gra ham +own ers +fo li +less on +qu es +bab e +cra ft +ph en +ju n +bir mingham +v ine +ll er +i an +fineart america +evol u +st ab +im per +war d +com ic +wi z +inv ited +du ke +mat ch +por ts +ro ger +diag no +ke pt +te st +vis u +r hy +so c +to x +b aker +sur face +co vers +man s +b its +x box +ff le +n an +gar d +h art +wat ers +v illa +re tro +light ning +catho lic +democr acy +neigh bor +pen n +cr an +jona than +la ura +vi bes +su b +coach ing +clear ly +uk raine +bra ve +commit ment +t all +mar t +ra p +mo di +sco tt +bro s +show er +ðŁı ¾ +âĺº ï¸ı +cou sin +appro ach +br e +com pos +hil ari +phil ly +g ad +quick ly +ri an +t m +vir tual +hou ses +k t +phoeni x +w ire +ff y +b unch +anc ing +tal e +snap chat +star ter +h t +k icking +ap art +th y +) ! +blo gger +it z +com fort +ang els +w ash +" : +ar gent +re quest +hon est +mi ghty +bo bby +k g +ro l +thou se +ex po +h c +tab les +mag ical +po sts +de m +n w +or lando +ab er +* ** +ðŁĺ ľ +environ mental +trans formation +mi le +w ic +hir ing +ma ine +bo ar +r ying +ti s +nit ure +twee ted +anton io +opin ion +fin ale +di y +f is +th in +trou ble +le go +fi les +qu art +sp a +curren cy +cli mate +fan art +rail way +sp ace +ban ds +dani el +mo tion +l eng +hol der +oc cu +mar ie +cathe dral +bu zz +bi es +nas car +bm w +bat tery +char lotte +doc tor +zz le +se ven +in san +d dy +st en +lab or +thr illed +se ren +docu mentary +wav es +cer tain +can did +allow ed +ninten do +star wars +ta p +home made +d les +ther ing +bre e +emp ty +pi ano +pos iti +coun try +por k +pu ts +per ry +m atic +spot light +ti st +or ities +we alth +c p +bar bar +commit ted +as sau +pro fit +e ight +hu l +fini shing +run ner +ss o +insp ec +char ged +christ op +lo sing +co al +ho o +ele v +de le +mo ham +don ation +c able +clin ic +j in +manag ed +ter ing +â ¬ +ur ban +depu ty +bb er +bur n +acade mic +o tt +sta ke +it er +sto wn +ack er +advent ures +ad ams +gre g +pro m +vo l +ac qu +con gre +pa int +citiz ens +c all +af ford +v c +as ks +the tic +independ ence +â Ľ +h itting +bl on +fu ture +â ı +in no +gen e +bo ards +di stance +se t +re mem +th al +pre vent +l ang +ob jec +su sp +mat t +in duc +bor o +pi one +re di +vir tu +prin ted +sco pe +shar k +suc ce +a stron +il legal +j ag +c ting +ine e +at o +rob in +nutr ition +b f +du tch +b n +fur niture +for gotten +at ar +ru p +hy per +bran ch +communic ation +degre es +on ia +un cle +promo te +or che +wi i +j s +but ton +ma jor +c bs +bri stol +premi um +ordin ary +e dit +m g +we ed +st even +: ' +gu s +te s +cap tured +dru gs +do w +wr ites +bi shop +whe els +ali zation +disco very +w r +rach el +ne il +hy dr +cu test +entreprene ur +kore an +ore gon +ul ty +perfec tly +suppor ted +histor ical +t wins +ell y +we l +de vil +in come +scienti sts +de leg +h en +on i +ic ed +gi o +cur ry +reve al +e g +buff alo +n ol +op era +camer on +haha haha +j ab +gradu ation +cra ig +r al +i f +organi zation +le ge +g ang +su d +edin burgh +l ack +fli es +g ate +thr ones +q b +the real +e leg +pp in +c les +jam ie +tn am +cryp to +ou l +p ages +a se +roo ts +stu pid +a did +boo t +prote in +s ap +si um +su s +end or +fun ction +don t +en na +ch y +squ e +wor ker +m tv +e a +k an +ðŁĴ ļ +mu s +professi on +t to +oper ations +al lo +c tor +inv ite +sc and +ou th +z im +lin ks +cli ents +sam sung +discu sses +n ell +ul tra +some where +ste wart +ine t +de z +b out +fac tor +ti an +tr ans +jere my +d b +ðŁĩ ¬ +or n +develop ing +spo l +coo per +ma u +rememb ering +tre k +famil y +sen iors +fo ster +att ended +w ing +trans form +ele mentary +hor iz +li sting +malay sia +it ch +warri or +philipp ines +russ ell +m end +initi ative +cre ep +to ps +br iti +a ur +shar p +adverti sing +ug ly +achi ev +materi als +bu g +dev ice +bon us +fac ility +col e +nh l +y as +plann ed +pol e +excell ence +tr ick +con fl +r p +achi eve +lo an +swa g +jess ica +ho we +p our +sc u +z oo +r ated +dre sses +re bel +mex ican +co ordin +me ss +atlan tic +t l +osc ar +wal ks +phar mac +investig ation +... # +cc i +eas ily +monday motivation +y ment +au ti +for ced +ar med +colle agues +pap ers +pro per +sha ke +bu c +le an +exhi bit +e vement +co tt +bi z +sp er +k ent +sw an +/ @ +girl friend +haw k +âĺ Ģï¸ı +mon o +ðŁĴ Ľ +stat ue +ðŁĺ ³ +ra s +te eth +preci ous +t ile +p am +swi ft +v ali +no se +dr unk +experi ences +come back +gen ius +wor se +sh ef +ra d +ed it +hon our +au spol +lar ry +h ire +gor don +achi evement +.... .... +su icide +alter native +su p +sur roun +sha ke +ke ith +pe pper +tur k +crimin al +be ck +su m +w alls +cn n +an tic +of fe +col li +win es +high light +hawa ii +emb ar +l fc +ðŁĩ ® +m v +> > +at mo +wor d +car l +shout out +bre wing +ì Ŀ +do f +s ic +hot test +col on +hh h +shu t +low ing +volu me +apart ment +agre ement +de stro +we e +religi ous +iow a +ro d +land ing +re present +ðŁĵ· : +la s +usu ally +h l +c ac +sal v +al ong +laugh ing +be ans +remin ds +pha se +some body +ma sk +ran ked +dest roy +sc i +âĢ¼ ï¸ı +gab ri +le o +ro a +fa iled +si l +refuge es +re vi +r ing +ber ries +coo kies +y y +conserv ation +sh ab +human s +de termin +a in +ni all +as su +mb a +fro m +extre me +vic es +commer ce +ght ful +or dered +suppor ts +re cap +v or +dro pping +correc t +pay ing +mean ing +n j +qui z +" # +busine ss +ðŁĩ® ðŁĩ +indi gen +du st +box es +bl ind +x xx +zz y +ðŁĩ¬ ðŁĩ +ss els +s ant +dd le +hilari ous +desig n +wonder ing +vehic les +k re +ju d +rece ption +par ker +Ã Ń +pri vi +hy dro +sof tball +pol lu +lo cked +ba h +e ar +scri pt +di vi +br ace +geor ge +the ast +bel o +j al +tion ary +dent al +roc ket +pur ch +sh ak +manufac turing +e z +it is +con cep +tb all +ch s +direc ted +pra yers +oo k +phil os +vari ety +che ss +ser ver +g and +bal ti +ðŁĵ ¸ +sel y +cru z +spectac ular +bur ning +re present +i z +t one +mer ce +h ell +bed room +estab li +bo l +com mon +ãĥ » +ab or +kit ty +hei ghts +re pair +willi am +qu ake +alab ama +popul ation +re v +re tt +i sts +n ite +le m +a ha +clevel and +r m +po ver +ob se +mon tre +man ia + ® +con ne +car ni +sh ah +f y +u a +sc or +strugg le +bo b +' ' +appro pri +deci de +ff ed +ca ster +s ort +hun gry +dra g +ا Ù +gr ounds +d w +sli ghtly +car din +dead line +bron ze +web in +bar ry +sil ence +e uro +op tion +ear n +ðŁĴ ĸ +howe ver +na ren +na ils +bath room +v ine +ph d +min ing +gar age +( ) +shou lder +defe at +di r +o v +liber ty +ple as +x on +com pre +a v +j in +ab les +sil ent +fam ili +vis its +di pl +ha bit +milli ons +regar ding +innov ative +sen ator +r ts +v on +k l +wh il +requi red +âĿ Ħ +lu v +presi dential +po cket +hun dre +sho wn +fro zen +to ward +fa st +confi dence +r ough +indivi dual +qu et +ðŁı ½ +dom e +fi fa +engine er +z en +re mix +ðŁĺ ĥ +pl ant +min or +robin son +as y +pul led +cer tain +potat o +( : +pre s +oc ca +w it +it em +si e +d ating +thom pson +own ed +an u +vi e +te dly +good night +ex cept +ðŁĮ Ł +ira q +ki e +ren ces +li p +simil ar +sau di +vi g +arth ur +pic ks +mil an +hon da +ma xi +o g +ste st +ar ch +analy tics +ba sti +pear l +ter ry +hor se +ast ro +ac ce +laun ching +inter national +s no +ta sty +den ver +ir l +pe te +tor n +advant age +var sity +" " +sol e +g c +lan g +demon str +ol ds +un ity +ne ts +insp ire +cre te +nash ville +nel son +e ter +wal k +hy un +m ack +tre as +see king +ra ge +bru sh +ab and +whil st +co con +h ong +shel ter +i p +possi bly +so o +it ed +â Ħ +rac es +war ming +qu in +tele vision +mat ches +ra pi +ment al +pal m +jenni fer +rol ls +indi ana +b ars +cat ching +resc u +candid ates +fa re +âł Ģ +se o +vie tnam +alph a +michel le +visi ble +re gre +wn ed +app le +li p +f fe +li z +york shire +ha il +se asons +be gan +m d +k c +la p +fascin ating +hel p +ur y +u ms +nu ts +se m +along side +bri dge +ori al +o ve +world cup +briti sh +comfor table +i ve +hot els +fair s +hor ri +so x +d ining +stre am +bar ri +ss y +w im +ter ms +v u +pe re +l ens +wal ked +r or +l ars +shi eld +dou bt +pro to +cro ssing +me ant +medi um +ad ding +e b +che ap +fun c +pap er +bran ds +ry an +feed back +col lins +un known +tro pical +sand wich +fal len +for mu +selec t +lo ads +answ ers +or i +mag a +d or +du o +ali e +dru m +ur i +de er +sou l +sh ut +âĺ º +sto len +don ated +bu zz +patri ots +ha l +na sty +nomin ated +mon te +ki a +th ri +ing u +te sts +pe tro +ðŁij ij +ho sts +ne st +to pic +pat ch +m my +hu gh +ab ilities +ma the +s miles +g b +ag enda +insi ghts +chi p +ph an +fail ure +dg ers +ha i +signific ant +sho ck +ru ral +gl am +figu res +pot us +o ta +mini stry +appe ars +fe ar +r h +americ an +h att +son y +fi res +e di +n ou +e qui +wh en +univers al +mad ness +i x +sculp ture +b ach +t to +swe den +et a +en to +develop ed +month ly +ma ps +ra h +le d +del ta +sa ints +is lam +ben ch +fif th +v ard +so cks +wel coming +j e +tur ner +v b +ad i +nor way +ad y +hurric ane +por sche +tra dition +ex am +newsp aper +lu ci +a ver +ide al +d na +madi son +ðŁ § +wit ness +ac ou +insi ght +si mon +robo t +sna ke +n bc +ac o +ro ss +sh ment +religi on +ch ann +in su +camp bell +inst alled +we ather +hor ses +ol i +rober t +k az +ðŁı Ģ +veter an +th read +quar ter +ea sier +cap ture +hi pho +law rence +roman tic +pas sion +cl ay +ox ford +th ai +stu dying +fi a +elec ted +most ly +c b +tu mb +âĢįâĻ Ĥ +x l +sh an +fa ster +ev ans +sli de +sh ri +see k +mi es +chemi stry +pump kin +tu m +, , +ro om +fi red +li ps +pres ence +af f +brew ery +arri ve +sw ag +photo graph +pen gu +chi ps +at tor +val ues +accur ate +con temporary +princi pal +cannab is +ari o +any where +gi a +democr ats +buil dings +li ved +ap s +neg ative +m are +bal lo +li on +diam on +loo k +re form +tom my +il la +tre ats +hundre ds +port land +wor thy +ex cep +ar ia +ido l +be er +cd n +y u +aw k +ðŁĩ ¨ +c ells +à ³ +ident ity +dra wn +de vil +f inger +th am +ðŁij Ĭ +ear ned +fin tech +dol ph +twee ting +evolu tion +ðŁĵ į +est im +m vp +n one +ðŁĩºðŁĩ ¸ +toyo ta +au x +mar in +b old +l bs +ste ak +mur phy +it able +lou is +sol ve +pi a +sk ir +ill ino +webin ar +ban ana +lo v +th on +vo ters +afford able +defe ated +lm fa +air lines +super b +any way +deb t +bo red +ver si +me tal +responsi ble +m k +s se +f ay +cau sed +f p +recomm end +pla za +spor ting +alli ance +au stri +n n +t ours +surpri sed +arti f +th under +sur ve +wor e +bri ef +necess ary +z ie +ash ley +dra ke +r t +kni fe +im mun +char ges +a the +bri de +rep ly +g av +broad cast +pu er +brace let +cap acity +harve st +id k +perfor man +d ding +il ers +par a +jam a +pro vince +ch in +id ers +har i +te aser +ch en +re stor +r at +fl at +col om +ðŁĴ ŀ +ðŁĩ¨ ðŁĩ +smoo th +r t +p itch +stay ing +isra eli +t cot +per spective +do ck +open er +lo vel +x o +class room +l ington +go al +kenne dy +sh am +sp aces +mitch ell +home coming +uk i +claim ed +recru it +ing o +mu fc +mon it +g roo +resi dent +per cent +per man +otta wa +int ment +an xi +stand ards +wor ship +sche me +f x +pot ter +bi an +athle tic +af gh +s se +sat ell +par ties +âĿ¤ âĿ¤ +infra structure +rela x +mo du +wor n +smo king +y ach +practic es +wc w +am b +dome stic +tay lor +k entu +provi ded +mo di +ve g +" ... +ob serv +ðŁĺ © +be ard +m our +an gry +ðŁĺ ± +startu ps +woo den +di ve +na il +anti que +ro ses +torn ado +m at +^ ^ +su spect +far m +de vices +me ga +tu l +scholar ship +ge e +disa ster +arri val +po in +mar c +kati e +bb ed +fal se +deser ves +ric hard +ju ana +fre y +tion ed +hy bri +r w +sar ah +ach i +c ure +o le +mor ris +ch ic +broad way +la bel +pa k +pover ty +gol f +e red +f u +er ies +be es +alo gue +st el +wire less +je wish +ti de +blo cked +life time +b har +sp lit +am ster +th i +jo shu +br unch +ha ps +s for +oo ps +ka poor +hi king +suppo sed +ro of +re as +tra in +ti ght +tru mp +bas ically +r r +ea red +see ds +entr ance +c p +wi e +son ic +vic tim +he re +e h +ear rings +sal mon +arc tic +an ne +dou gla +corru ption +hann ah +ha sn +vo ices +con ce +att a +fle et +clin ical +democr atic +ton y +st ood +le f +twit ch +a il +honest ly +incre ased +dro me +don na +accep ted +visit ors +ap ar +ad or +p ar +jer ry +ra i +brand on +ab u +!! !!!! +me me +in gh +glori ous +b hu +pu mp +j ol +li ke +fi sher +ma z +ag an +destin ation +play list +le tters +gen u +br ace +celebr ated +bann er +r he +dra gon +ðŁĺ ħ +sig nature +gre y +âľ Ķï¸ı +al ice +be red +ph er +ber n +ca th +ga thering +sc oring +influ ence +sm iling +de pt +lo cal +a x +ac u +reti rement +hon or +her self +chem ical +asse ss +y all +fre qu +appreci ation +ac a +cho ir +cu z +so il +c il +repor ting +u h +enterpri se +gr at +jaco b +ru m +fe e +j ak +sp in +bi kes +phi a +ste re +p is +bloo d +t att +ra ft +war ren +sh eri +back stage +mar sh +hash tag +ther ine +re in +game day +guar an +reci pes +min ds +stron ger +issu ed +bic y +n ak +ment ed +sc ary +u x +pre vious +tt le +th ats +ac tors +u ma +tin a +bun ny +promo tion +u ss +oli ver +montre al +what s +appreci ated +la kes +excu se +kno wing +pri zes +musc le +shad es +sco t +ing redi +electr onic +ju an +comb at +s ri +e h +turk ish +l om +stri kes +pri son +re e +po pe +vi d +ol dest +dol l +sw iss +certi fied +cli p +re turning +lat or +le igh +tt es +wat son +heal ing +el im +per haps +ha ss +k au +d der +mou se +new castle +indigen ous +wel comes +co le +tau ght +no ise +appe ar +jo e +can on +wedne sday +u tah +c tive +dri ven +i v +c ell +stri p +ac c +focu sed +ar rest +sto cks +wo o +â Ĺ +notic ed +shad o +di spla +ter ror +bor ne +secon d +que ens +wo ke +ja il +no tt +cam bridge +har t +se af +fa x +ac cept +âĺ ħ +goo ds +k at +t win +h s +thou sand +s ins +su ite +amp ton +ar n +rele v +ric har +hoo ps +n bc +class ic +p ab +soldi er +de plo +le ans +install ation +cla sh +le ban +ee e +ti re +belo ved +fu sion +travel ing +ne i +coo kie +glo be +phys ics +s q +co l +wol ves +d l +ex it +" - +foo tball +le af +ster ling +hi de +minne so +fresh man +natu re +indi e +supp lies +bri s +iri sh +ink tober +doo dle +ic op +mess ages +adul ts +recor ded +fix ed +ar do +offe red +under ground +dr one +p ine +ma inten +and re +ham mer +s x +r ound +hi ke +bra d +ro me +fu ll +on ey +ro ws +colum bia +archi ves +appro ved +bat ch +illino is +recogn ition +shou ldn +fo g +nca a +ke vin +human ity +al though +pow ers +p ou +s ar +pe st +alco hol +con sci +phil adel +en o +t m +ok la +cate gory +particip ate +accu sed +bri ef +po em +clu bs +consul t +ja b +big data +amster dam +ac ing +certi fic +n u +d at +impro ved +and y +campa ig +pale stin +p ace +mo bi +feel ings +wol f +bra in +pro pos +inter active +prin ce +inde x +c is +cha e +peace ful +co vering +ac o +cour ses +mon key +re place +b l +bloo dy +tal es +brigh ton +neighbor hood +g ates +spiritu al +af raid +bre ast +b ones +ðŁij ī +vide o +w au +tou ch +inju ries +car l +ri x +une x +âĢ ¢ +fre d +consi dered +thu si +an ch +on y +u sa +graph ics +ac re +ðŁĺ © +com memor +com mod +go ti +guar dian +star bucks +pre vention +haha haha +admini stration +portu gal +fac ulty +bet a +ul a +al bert +bre ath +er i +le tting +tr ic +ment ation +incredi bly +ten nes +v d +ðŁĻ Ī +ed die +br ick +gr ill +bt w +wat ches +resear chers +t ney +ni e +p as +a ster +vi br +poke mon +ch rome +go at +pitt s +il ly +festi ve +y d +can al +ðŁ Ĩ +fi es +car los +re que +partic i +tra ins +sam ple +temper ature +sym ph +pic king +in door +z ers +playo ffs +____ ____ +ap es +ly rics +islam ic +performan ces +d ick +spar k +se as +hom a +gr ound +disc i +employe e +com mu +alas ka +al an +fe ast +dg ing +ban king +manu el +slow ly +tru cks +mc car +oo o +sc rat +orche stra +indivi du +m x +bre ath +stair s +equ ality +bla ke +loc ations +cocon ut +balti more +aa a +l c +ðŁı Ĩ +har vey +resi st +immigr ation +adid as +fil i +re f +lg bt +mo s +pp i +ken ny +terr or +ban e +apol is +s g +social media +ka i +hon est +as sas +bol lywood +âĢįâĻ Ģï¸ı +ferr ari +hor n +cryp to +bo om +mainten ance +i di +s man +w l +ext ended +in sul +ve s +go sp +tr i +pi g +tar ge +cel er +st ati +sm h +ri dic +appe al +? ) +con clu +cos me +she ep +christop her +en thusi +po lish +me ts +oun ded +sustain ability +creati vity +con crete +ra i +ali en +ble ss +te es +clu b +ro t +bo s +ex ist +perfe ction +lu ck +rock y +expen sive +mean while +happy birthday +pre t +thr iller +ca ve +playo ff +som er +l u +le x +def ence +am writing +home less +pro phe +ch et +past or +ðŁ¤ £ +land er +ww w +Ģ ï¸ı +tic a +! # +o tic +rad ar +po sters +pow der +po li +ha un +tra p +bl in +assau lt +shor ts +re y +sh y +squ ir +rac ist +gar lic +fu r +remo te +sm ell +impre ssed +fing ers +âł Ģ +din o +le ment +s nu +promo ting +str ing +produc tive +b age +ma son +ra z +direc tly +j k +ev al +ðŁij Ĭ +doc tors +co w +ri der +st v +re move +w u +na than +ro d +n r += > +affe cted +inve st +mp tion +g inger +o d +agricul ture +s que +mu g +coun ting +ke e +mag nific +coo k +ani stan +roo t +plac ed +sym po +gh ana +un d +che er +thro wing +secre ts +f illing +opti mi +butter fly +bu bb +ðŁĺ ī +terri ble +d g +sil k +obse ssed +lo u +ai de +sal ute +mon u +philadel phia +scienti fic +i st +u ae +dess ert +bott les +can yon +ðŁĺ Ī +car ib +o ther +w ich +re source +guil ty +un d +le on +e ss +kan e +el e +tra iner +he im +an te +man age +roo kie +tre ated +po ses +rs vp +cau ses +aw ak +je well +le tt +on ics +tit les +cardi ff +g aga +bu mp +use ful +? ! +loo se +bb ing +: : +argent ina +de bu +cy cl +wh el +dis gu +j el +k ills +bio logy +ex ter +tra sh +bo dies +tr am +circu it +expe ct +la ds +w ells +sho t +ge e +naren dr +fa stest +b ent +b ills +mar shall +h ats +intro duce +citi zen +im possible +gi b +az z +net working +r ant +thin k +in dy +st ops +f theday +bri an +* * +amo di +dom e +coura ge +pac king +af fairs +g n +si zed +ent ary +pol and +swit zer +afgh anistan +w u +ten der +subscri be +mo sco +att end +republic an +hon ey +âĢ ĭ +si mul +we ster +foo die +or o +midd le +ab t +co pies +ma je +narendr amodi +ty pical +inspir ational +vit am +wis con +cu bs +tiv ity +h ali +e ars +k ay +d are +mari juana +cu rious +an ia +tom ato +re mind +ðŁĩ · +sc ared +cou p +po et +land ed +ri d +wra pped +mor ri +climb ing +e ws +fe eding +con tra +tho logy +gri d +ti vely +read er +la ser +di ving +di g +lat in +ti ed +shake spe +o ci +ad m +show ers +chu ck +mar cus +oo s +kne e +o live +ow l +dy lan +an no +g ym +deci sions +well ness +arri ves +sati s +chri s +thur s +ðŁ¤ £ +inter views +thank you +switzer land +over night +journ alist +ser ves +vol can +.... ... +plo t +nic ol +car rying +mag ne +tre asure +ex p +be ver +ðŁĺ ¢ +mar ty +mo le +don ations +recogni zed +b h +du s +sh ann +al do +success fully +ent e +ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ +cab inet +cu is +tit led +d as +so l +strate gies +deli vering +ad ds +ani an +ne ther +ðŁĴ ĥ +con tain +su its +pa irs +to dd +rel la +ro pe +ci o +cro p +paint ings +su z +re jec +bu st +d h +fra ud +m h +contro l +je al +destroy ed +al lows +wo ol +minneso ta +om en +j u +sympo sium +d af +lim it +accoun ts +load ing +inter n +re solution +hol land +qu al +meet ings +gra ve +cam ping +v am +re nov +liber al +am ber +gre e +hu mb +fe ver +el ing +broo ks +à ² +be th +ad ed +al t +ro e +perform ed +jo sh +frank lin +nic ole +de ss +bb s +m g +net works +min im +al t +weap ons +gu y +jas on +g ha +harb our +at on +pra ise +kentu cky +bel fast +st icks +blo ss +ho pes +an thro +famili ar +wa it +ch ile +depre ssion +la x +je ts +le ice +recei ves +si er +an k +de x +inde ed +fle xi +fab ric +lam b +hel icop +am anda +âĢĶ âĢĶ +compe te +sn ack +techno logies +sy rian +mom s +mu ham +cho sen +an at +dev on +shar ks +re t +fundra iser +selfi es +st ations +communic ations +tennes see +tu tor +ro t +valu able +dynam ic +nur se +i ed +earth quake +deser ved +a ve +sar a +stre tch +dougla s +ne pal +à § +ob viously +d ame +ra pe +any body +k w +pat rol +hol ders +h anna +info graphic +ec o +be ating +stan ley +bo ats +ri bb +e z +wit ch +inv a +ac id +boar ding +- @ +gi l +da ve +care ers +opp os +l loy +in ter +do pe +re su +j agu +sh ade +in dy +on ist +rel ations +ag en +ab le +inci dent +me ter +shar ma +id r +pro ve +immedi ately +tro ops +am an +g low +gaz a +blo cks +person al +chron ic +all er +si d +sh r +whats app +lu cy +ar chae +ho u +journ alism +our selves +go t +the med +shap ed +we ak +cas ual +leng th +sla m +ab bey +e v +coun ter +est a +reci pi +cha pel +expan sion +sel f +suff ering +sp ice +n z +sp art +desp er +boo king +quart ers +y on +ðŁĴ Ĺ +p k +continu ed +- # +man hatt +tal ked +sh en +com bo +hybri d +je ans +liqu id +se al +re tweets +ac celer +collec tive +t as +: )) +profession als +ra w +o tt +su san +ir ing +okla homa +re ven +survi val +cre ator +tran sit +st ac +sur f +i k +ed iting +ch illing +bai ley +ste al +ra ble +pa rent +hun ger +sn app +collec t +philos oph +dedic ation +c f +c m +le ep +repe at +re ha +un fortun +a er +a ero +abstr act +mon itor +ag ents +bu l +sci ence +harb or +drag ons +floo ding +ac compli +d ash +juli a +the red +tues day +cy ber +b low +ta ined +le m +refe rence +pp o +ne goti +char le +con nor +au lt +access ories +commissi oner +rain y +re ar +advis ory +luc as +ma id +co al +k av +pol o +ðŁı ¾ +tran sport +mar gare +straw berry +bur ns +gre ens +ne v +partici pants +col in +belgi um +col our +in form +d ell +br on +cal y +kick off +strate gic +re union +hon ors +li b +egy p +âŃIJ ï¸ı +hy po +si zes +regi stered +bet es +relax ing +bloo m +inten se +valent ines +insan e +w wii +p x +tri o +bla de +wiscon sin +con e +plat in +ali ze +ra ven +incre asing +indi ans +il ian +bl u +rabb it +exten sion +je f +au di +fer ry +s ell +a day +us b +swe at +cham pag +metho d +mem ph +assi st +s by +ca pe +remo ved +mag n +v t +r ams +f bi +tack le +phe w +h on +motor cycle +su spec +eleph ant +sub ject +let te +da iry +whe at +awk ward +ac t +tro l +mit ted +zay n +sheri ff +ene my +con s +ke tt +bul ls +ev alu +bt c +satell ite +ho lo +por ter +dia betes +bet ter +rele asing +sur f +: - +se basti +collec ting +en cing +e thi +go ds +al ley +health y +m ills +sma sh +co pper +cr ack +read ers +sp ac +licen se +bas ket +bang la +en tic +om i +m ere +si vely +anim ation +lan es +dent ally +chill in +fi e +k aren +dep th +li pse +n g +ri p +mel o +sand y +ðŁijı ðŁijı +vin cent +nu t +hu g +who le +cre ates +? ??? +âĿ¤ï¸ı âĿ¤ï¸ı +bak ed +up grade +rober ts +har a +carib bean +auth entic +mb s +mosco w +attor ney +wi ki +ch lo +hu ll +cor k +" ! +sty lish +ðŁĵ¸ : +di ary +impro ving +ex pand +bri ght +pollu tion +k nights +person ality +chec ked +fac ilities +z el +bow ling +gu er +ðŁİ Ĥ +on going +un its +hoo k +be ck +confl ict +to dd +far ming +educ ational +k ak +cla y +stro ke +bel ly +explo re +mill enni +th m +loo p +sm s +consi st +cir ca +br yan +d ab +youn ger +soli dar +pp a +experi enced +b ella +bo ard +shef field +steph en +consu mer +sub mit +spon sor +t ang +ag gre +comb ined +trac king +sand ers +b az +survi ve +fer red +equ al +se p +re ed +str ong +priv acy +st ap +un g +ac ry +pa sta +pir ates +ag er +fair y +du p +introduc ed +wi p +let s +spr ay +ðŁĵ º +gre w +a sts +pitts burgh +new york +jo ey +lau ren +tra de +ch op +pi pe +cla ire +behavi or +v ap +cre ws +lap top +ðŁ¤ Ĺ +che ster +disci pl +d f +out doors +k s +go ver +super star +cas ino +far mer +; -) +re turned +ðŁı Ī +ma il +roa sted +co sta +v ill +pe z +gard ening +distribu tion +sh ining +inve stors +ra sp +dec ades +reali zed +bar n +p ti +st able +ut d +pan thers +m ens +b n +ca de +bu cket +yn n +when ever +wa ke +da is +ber nie +lo dge +ju lie +atmo sphere +ðŁĺĺ ðŁĺĺ +major ity +par ti +exc it +cu t +me h +musli ms +be gun +fli ghts +vene ss +ce me +po sing +so le +g ou +dark ness +pe ach +cel tic +auth ority +grand ma +ful ness +smi th +speci fic +gar cia +co ins +good ness +aldu b +recru iting +den nis +gar y +sle eve +weap on +pl z +disco ver +harri son +recruit ment +ja i +ch im +com pared +tom s +mo thers +am y +archi ve +t ask +ben jam +se g +law yer +al um +inve sting +mi e +che z +j p +a ke +fl am +wall paper +âĻ¥ ï¸ı +t ton +che st +favor ites +we igh +coo lest +r ating +relev ant +lo gan +ma ple +run ners +pri or +peop le +ma ur +terrori st +te sted +carni val +su spen +me asure +m v +cyber security +app ren +terror ism +o z +v ital +ni es +gon z +fun ded +twi st +assess ment +die sel +en for +colum n +ad dressing +ca sts +pay ment +x ton +fi er +, ' +la st +ne e +un less +clo se +sk ill +cuis ine +fun eral +ti les +a un +k ru +relation ships +ðŁĴ ¯ +ev ent +âĢįâĻĤ ï¸ı +kind ness +pro posed +acou stic +a es +defen der +dan ce +h tt +w at +vo y +ðŁ¤ ĺ +au s +cli ff +sear ching +beauti fully +in qu +at l +speci alist +ðŁIJ ¶ +da i +tra ils +class ics +inst ant +v ous +re venue +mar ch +kir k +fr inge +fire works +tri via +âĺ ħ +tr action +wal ter +mo to +l ily +att itude +cli mb +sc an +sav ings +c w +fa ith +cred its +ab led +gra ff +auto graph +he he +ran ch +ha d +ro gers +ðŁĮ ¹ +f in +re qu +fol k +ad ditional +lyn n +u ber +dol lars +lo gic +wor th +so m +the sis +p ound +bi c +st ur +cer am +spen cer +en tered +v amp +organi zed +âľ Ī +pp s +tr on +merce des +no ti +compet itive +do w +ous ness +vic tor +gr illed +na i +pu tin +ab ra +bl ame +alex and +anim al +dec ent +p ent +inter ior +:' ) +but ler +bal let +ðŁĴ Ķ +albu ms +down s +la d +si r +pla in +p ers +blon de +dis c +paki stan +se ment +ga a +w age +ch as +man i +co ps +terr it +lo l +lau ghter +ri vers +magnific ent +lam p +w b +new sle +char ts +ble ssing +p unch +lon gest +fl oral +cu tie +fare well +sto pping +mb b +bu d +chee se +de cla +si m +mc donald +de ter +you th +t ch +fre der +kin dle +fer n +at or +as leep +p ond +spr int +p ounds +la zy +gh e +fundra ising +dead ly +gran de +dou g +he y +lin da +consi dering +i um +gol den +vi k +auth ors +di ss +u ally +appropri ate +mor ning +y le +hon oring +foli o +be c +re bec +fin land +formu la +corn wall +sh ay +cau sing +bl end +sig nal +t ent +kash mir +nation als +har mony +sc out +acce ssi +he ight +medi eval +impro vement +ke es +prac tical +car d +de par +hu n +om ing +cal gary +ste l +bu bble +gur u +ma h +unex pe +n h +ed a +me at +i ge +si o +god dess +in ches +tun es +br itt +sti on +ra j +âĻ « +mer cy +ðŁĴ ĺ +sen ds +i est +pol ici +val e +reduc ed +as ap +vi jay +defen sive +celebr ations +ri ders +med itation +har mon +g ing + ¡ +program ming +in au +sud den +m h +replac ement +sk u +j ar +gra des +ta st +k itt +brand ing +k aw +boo t +f ought +p ays +g f +iz ation +ho p +k k +activi st +v end +coast al +cha os +ðŁĶ ´ +se me +bill board +li fting +cu mb +sc al +ðŁĸ ¤ +stru ck +l v +indie dev +beat en +jun gle +al right +destin y +m ing +k c +ch ances +om an +q atar +cra f +tra ined +pri x +char m +o tive +s mu +e c +and ers +hand ed +al ban +certain ly +arri ving +i ze +sa i +tr ack +pain ter +hu mble +appo intment +head line +manag ing +mo d +as pe +andre a +à ¤ +ethi op +un ited +exi st +bal i +k ad +n t +d red +re x +recogni ze +tam pa +be ers +ati a +he els +no te +transport ation +tur tle +re de +hipho p +sp icy +sp urs +⬠ĩ +cor p +ther n +to ast +hur ry +proper ties +ma ge +mar co +ele ments +bou ti +syn drome +ms g +develop er +gra ders +he im +re sil +off ices +del ay +di men +vin tag +barbar a +ðŁĺ ± +vene zu +cu lar +fac ed +bar n +ðŁĺ Ĩ +survi vor +wor m +confu sed +passion ate +Ø ± +identi fy +electr icity +sou ls +brad ley +repor tedly +lun ch +shel f +eli a +swee t +smoo th +emplo yment +am el +manhatt an +ste am +oun ts +ye p +li ving +un e +descri be +ca res +man ila +sha wn +ac ted +bas h +st even +re st +pet ition +div ine +wel sh +rac e +platin um +ðŁĮ ¸ +p b +extra ordinary +solidar ity +m all +on ion +schedu led +game of +fer gu +de ms +nor m +p k +tri als +polici es +publi shing +st ole +fron t +charac ter +van ia +ex ce +sti e +sc a +resi dential +sa iling +ðŁĶ¥ðŁĶ¥ ðŁĶ¥ +spons ors +th ick +champag ne +she pher +continu ing +ven ice +per th +na p +a ster +y ak +un limited +cho ices +ne o +hi v +repor ter +bru ssels +f old +dy s +se mi +la wn +it alia +wi fi +as k +em ed +fr ame +monit oring +ste ad +i da +gr in +is a +fli p +re stric +offen sive +atta ched +di sh +wh y +philli ps +gre et +p als +mix tape +v ou +fiel der +spar k +alber ta +g len +ca sh +s ri +u ri +ro dri +entreprene urs +climate change +p sy +d le +em ents +lin ked +nether lands +acci dentally +oppos ition +vel vet +ra ys +c w +om o +m f +lmfa o +newsle tter +: ) +toi let +liter ature +di sp +phili p +uni form +sudden ly +head er +cool er +-- - +prou d +bri g +nis san +scienti st +j ah +con centr +pac ks +appo inted +so ap +eng age +cho se +âĻ ¡ +se tup +jeal ous +har ry +g ation +tun nel +te mp +osc ars +dec ade +recomm ended +child ren +ab a +anxi ety +ve ments +sal on +pho too +organi z +mach ines +ab s +vil le +hy pe +ti ff +emer ging +av geek +[ # +contribu tion +bra dy +re sto +g mail +fit z +photo shoot +hel met +h t +eleg ant +ug anda +nur sing +or leans +pen n +na h +foo tage +em a +w o +w ad +concer ns +ve re +re mark +who ever +str ang +p t +qu it +sh ang +histor y +s ick +perman ent +ill ness +col d +visi on +he m +ar row +con vic +pin k +oc cup +bal d +ex hau +u of +am o +on t +ãĥ » +adop t +la id +smo ked +inter pre +ess enti +associ ated +b d +bb y +fi er +inst all +dipl om +con diti +c f +w ak +any a +gr aci +fi sher +s ss +ap r +il it +mus ician +symph ony +cor d +h ack +le gi +l v +bless ings +hum or +sc ra +e ti +min ster +trav elling +bu sh +jewell ery +li me +!! ! +pregn ant +pe e +lo b +cap ital +ip a +pen cil +la bor +duc ks +prou dly +wedd ing +dere k +m w +pe g +valent ine +an gu +re treat +pro spect +dang er +vul ner +up set +, # +sr k +x im +thur sday +n fl +kis ses +re ds +cr ack +re ward +c u +ko k +me te +aband oned +it t +me als +sp ell +stan bul +del ays +ru m +le op +gu m +no va +super man +ch ick +m is +dram atic +inno cent +r ounds +re c +auti sm +bangla desh +mor al +mo vie +sp oo +k la +âĥ £ +ou ting +mess i +ab road +loo kin +a im +q i +st ack +colla ge +à ¯ +hud son +sc an +ho e +ch au +oc cur +comm ander +ho les +ðŁİ Ħ +bi as +v on +stick er +ma k +responsi bility +colum bus +sa int +ed mon +rac ism +far ms +w en +gul f +may o +!!!! !!!! +corpor ation +ba chel +el a +inter nal +je ep +fol lows +di alogue +de rer +smart phone +he len +rich mond +equ ity +s land +b g +ne ar +av i +memph is +we ir +discu ssed +bad ge +p up +mi stake +phen omen +un ite +ðŁ Ľ +de pic +ri des +in augu +n at +sof twitter +comb ination +gosp el +âļ ¾ +ad mission +retro gaming +ðŁIJ ¾ +sch u +mb o +jun ction +al arm +à ¦ +gr ac +kh ali +k ul +m ale +cap tion +wi sh +te re +cor ps +ru bber +play station +er in +effici ent +l or +jo kes +in ary +nor man +lu is +inaugu ral +ch ed +âļ½ ï¸ı +di p +to e +str at +aa c +am u +pi er +co tt +comm and +tt en +sn oo +cu be +clo ses +class ical +s word +expre ssion +reach ing +n app +co st +affe ct +ric o +gi f +brea the +tri be +or tho +h ay +l g +fri es +n m +hi ding +richar ds +en de +mic ro +capit ol +cop y +ro m +regi me +mary land +tax i +di al +embar ra +un believ +ch t +v s +elim in +o dd +pen ny +sound track +l ings +trans ition +rema ining +a is +mali k +? !? +rand om +def end +ul tra +tru m +danc er +st ol +dri ve +a ver +ro ast +defin ition +se an +excit ement +partic ul +su rely +sh av +ber y +di shes +com m +is ol +i am +ob li +gho st +hugh es +chi efs +b as +conserv ative +speci al +fe min +sh ri +n ancy +inte l +tu ne +ðŁĩ ª +jo el +gg le +mo to +ðŁĺ Ķ +bu ck +d ag +antic ip +mont ana +gu id +fro g +ec raft +op e +dri ves +nu mer +x y +color ful +wednesday wisdom +illu min +bey on +inau gur +deep ly +pre fer +for tune +coo ked +ti ble +âĺ ķ +swe ater +it ter +tt y +u i +gi e +com plic +~ ~ +tax es +cu ps +di verse +sam anth +âłĢ âłĢ +ba king +sy mp +wa i +be half +mer cur +travel s +ðŁİī ðŁİ +or ia +eng aged +jump ing +reti red +n aked +p uni +speed way +sci ences +rehear sal +on ym +dy ou +pl ates +r ati +kri sh +jaz z +car ol +ra f +pen alty +tim eline +ru by +engine ers +ra f +bel le +do se +che on +esc ap +me g +ran k +or d +me gan +mer ch +ec lipse +âĺº ï¸ı +ple dge +kir k +per si +leice ster +sa k +w k +saf ely +yy y +je t +promis ed +j c +en ne +no ah +re no +re a +ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ +tra il +ðŁij Ģ +f d +soo o +ri min +w k +ภ² +i al +x ox +bis cu +d ale +fan dom +particip ating +fla g +privi lege +pe ach +mach ine +bo ston +gro ss +o g +mir acle +adop tion +u ss +mon sters +be ij +clar ke +pu shing +pra ying +ar o +d n +ell is +apol lo +od ds +refuge e +to w +b p +ðŁĩ¬ðŁĩ § +h end +app eared +memb ership +pe an +du m +viol ent +v y +potat oes +aw w +greet ings +t ts +ac on +sh ane +photograph ed +cra b +temper atures +cu ba +c fc +wel com +he l +in nings +m k +co de +kno ck +gra ss +swe dish +p ta +ick y +v at +lin ing +s q +sa p +ar c +announ cing +sk ins +cit yof +br ing +co x +gam er +it arian +i da +h d +ros se +sad ly +ge o +âļ ¡ï¸ı +tag s +fa ther +chan ge +l ance +whis key +adel aide +te c +stick ers +marke t +class y +bad ass +flo rence +lin er +fro st +k ate +ac on +scand al +es sex +ðŁĺ ı +vi vi +dr ill +blo ggers +recomm end +d ha +ac res +ro ma +bu y +gro cer +er ia +ma har +ff er +patter ns +ver i +com pu +st ev +ang a +ment or +do o +it ali +cdn poli +on ly +conduc t +elec tro +de f +wh ale +prepar ation +bicy cle +vi ral +turn out +bra ss +qu ad +hospit ality +pack aging +den cy +ceme tery +abo ard +dre aming +pic ture +t all +inv ent +ad mi +o e +tem ps +qu an +fun dam +pro mp +resi dence +mu d +sour i +âĦ ¢ +graff iti +gi f +d nd +com p +s war +pe eps +pale stine +devil s +san g +assi stance +bi ke +missi ssi +inter viewed +ne phew +dru ms +v and +gentle men +n sw +inst a +leban on +ee ee +oli via +ver y +rou gh +industri es +m ation +ðŁĺ Ĵ +bar rel +n ay +po ps +moder n +ill y +are st +on ents +protec ting +v ans +e o +vi kings +restaur ants +re ck +jac kie +andre w +w illing +he ath +citiz en +disc rimin +๠Ī +stu art +m ys +hi p +tran sp +" ? +te x +su shi +ke d +cro ssed +dist ur +pe dia +f ate +some how +mo th +proce ssing +is s +r in +u ts +yy c +ver t +lg bt +re id +on to +arab ia +habit at += = +stre ak +simp son +addic tion +wim ble +deli vers +challeng ing +ðŁİ ¶ +fran ch +e du +s me +ai ds +hur st +th am +tari an +remem bered +palestin ian +fe es +tru m +sket ch +ur u +fit ting +jes se +ðŁĶ¥ ðŁĶ¥ +---- ---- +ba ch +ici a +colo red +da h +associ ate +int el +s eller +p u +stu ffed +ac s +b s +sh in +cooper ation +certific ate +ab u +ingredi ents +re v +in ge +el der +christi an +bun dle +th ic +dir t +beij ing +comm it +ted dy +ed u +to day +s field +w yn +confir ms +lo o +j v +ene ss +al pha +vir us +ari um +gr ind +bri dges +introduc tion +pol ls +bac ter +z ach +termin al +ra iders +fla vor +zom bie +vo d +sp reading +gameof thrones +effici ency +lat ely +ale m +twee t +cri mes +cl er +de y +dg ed +hy un +pay ments +cir cus +ðŁĺŃ ðŁĺŃ +mis souri +lu b +episo des +c age +po s +mat ching +tumb lr +lin ed +ge st +am bi +nar r +ing ton +regu l +blo wn +is le +co co +on don +joshu a +tour ing +sm a +sau sage +best friend +bo eing +desi re +sav age +ra pper +de vo +te ar +take over +cow boys +po ker +par ag +pp e +h int +we ars +se th +ro les +l anc +man ga +form at +fl yer +c ay +mo or +ba ke +spla sh +v ad +ker ala +proce eds +sil ly +reflec tion +di str +wi d +su it +ci vic +yan kees +by n +migr ation +di stin +or ch +fe mini +quali fying +tu ri +o be +hun dred +cra p +wan g +mathe mat +bu re +expo sure +fergu son +seme ster +re serv +pl ym +a hu +fac ial +wa x +wor ried +ca b +vi o +as a +co d +to pics +p cs +hal o +rescu ed +horiz on +ar k +âļ ª +hol ly +el f +ul ti +pu p +quali fied +attend ance +ati vely +destro y +y c +for th +photoo ftheday +c ents +ic eland +meas ures +de sk +port folio +artic les +direc tors +dat ab +e w +creep y +oun ding +hon oured +mi st +j it +men tioned +port able +iti c +d ann +friday feeling +am id +ti ger +scri p +helicop ter +hard ware +expl or +work place +austri a +beat les +ber nar +spi der +disc o +cul t +lim its +shor tly +fin al +nin ja +lu ke +le bron +wal mart +o il +van illa +shi re +ye g +ak y +c s +bl er +collec ted +t g +rol led +speci als +b ff +pier re +sh im +vi er +flash back +restor ation +individu als +pro d +fre aking +tu rer +o a +re fre +mor oc +gre et +re yn +care ful +our ing +u sh +is d +g ill +vie w +thunder storm +b led +pic nic +guar di +pi g +ar k +syl vania +bann ed +u cl +vi jay +ori um +av engers +believ es +eu r +monu ment +concer ned +la bs +ber g +a ap +vi sh +sing les +can cel +z el +ar ab +ru th +too th +ar ta +sh af +chair s +r ack +dise ases +crow d +cl y +fle x +christ ma +artif icial +tom at +fin e +dra ws +advoc ate +fran ce +Ù Ĭ +ðŁĺ ³ +heav y +s our +compre hen +no ble +aa p +hin du +cor al +g ars +ow en +n l +st all +yel low +mar ina +in ver +suppor t +tou gh +promis es +pi e +master piece +sco re +for ce +mor tg +crypto currency +o x +r ors +rock in +pro vin +ho g +no stal +oak land +pat rick +inclu sion +tra ffic +ah med +a ha +lux ury +con secu +de mon +âĸ º +b lowing +st ag +: " +encoura ge +ben e +sku ll +do dge +bu ster +kin son +wit ne +er ror +lo west +fel low +à ° +sh re +bl ur +vir gin +compos er +sli p +mor nings +ga ins +tab le +gra in +ari st +braz ilian +w we +tu es +ribb on +an ag +di st +sac rif +em brace +entreprene ur +af fili +de o +t ali +touri st +fat al +ì Ĭ +autom atic +ðŁĩ µ +we ak +wel fare +confir m +benjam in +fi ghts +alleg ed +me ad +strugg ling +pro secu +che f +à ¨ +propos al +er n +ðŁĺ Ħ +dy k +on gs +hon g +m ack +mel on +on ent +ru sh +d ap +tol er +pro pag +c ze +trans lation +wal let +cott age +sa il +constitu tion +ðŁĴ Ģ +mun ici +fav or +storm hour +i h +ðŁĺ Į +approach ing +pin ned +j ed +niger ian +n ach +sh at +particul arly +mc don +camer as +anni e +admini str +he at +electr ical +char ming +gib son +bouti que +ex posed +ac tor +pil low +beach es +genu ine +margare t +ben nett +lou isi +pos itions +el y +shin y +ten tion +architec t +ren tal +ac qui +goo gle +sub way +mom ent +ðŁļ ¨ +ri m +metho ds +cy cli +nor folk +Ù Ī +over whel +ra pid +we ar +happy birthday +progre ssive +ðŁĴ ¥ +co gn +pap a +f ool +philosoph y +pol ar +jim my +wi g +ðŁĴ ĭ +oper ating +reduc tion +ph i +fla gs +to the +o di +a res +k oo +k ang +ar kansas +ash ton +wimble don +sci fi +attrac tive +mississi ppi +logi sts +ral ph +la bel +gradu ates +ma ha +home town +âľĮ ï¸ı +foun ded +on the +li z +trans l +mini mum +pre sti +ta m +gener ations +re bel +journ alists +par am +mc m +acry lic +death s +tes la +w t +bry ant +jer us +i stanbul +muham mad +ri ley +k ris +work shops +is o +coun ts +stre t +prote cted +trin ity +man ual +r hin +r il +pleas ant +le mon +ner d +har der +dar ren +bur y +ra h +bas is +mi gu +occa sion +li sts +âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ı +e b +de cre +hamp ton +ìĿ ´ +tra vis +trans form +puer to +nh l +av oc +tri ps +unexpe cted +ve t +di dyou +bar ber +st ages +m son +re presented +for t +l al +pp le +nic ely +ignor e +qu il +qu inn +h k +carri er +remin ded +am ong +pass enger +el len +gue z +sc ape +mu ral +youn gest +ma sh +d ill +rout ine +stain less +jack son +gand hi +th al +on ers +edit orial +convers ations +sd ale +autom ation +i ke +า ภ+ðŁĩ ª +hau l +la ying +men tions +am en +abor tion +i bi +coun ties +ca therine +man ds +jam e +roll er +au t +n am +o logical +cep tion +ran king +tox ic +sn acks +victor ian +bang kok +psycho logy +re g +ang ela +respon d +sty le +sophi e +dak ota +achiev ed +mar ked +imper ial +in as +glo ves +sli m +confi dent +att acked +gg er +lon ely +valentine sday +re b +craft beer +orig in +zim bab +ce iling +te ens +other wise +w b +f ers +day sof +advis or +y ah +âĻ ª +en der +republic ans +av a +skir t +pi pel +chi e +jan e +ja x +ðŁĺ ĭ +âľ Ĭ +j ays +bre tt +bal o +cru cial +d har +as is +de au +lloy d +chat ting +âĿĦ ï¸ı +rel ay +remark able +n s +we t +bris bane +ðŁĶ ´ +tion ally +f k +la yer +house hold +consecu tive +es is +pend ant +st ir +crit ic +su gar +photo shop +pa res +arti stic +do dgers +c un +cra fted +am end +bo at +âŃIJ ï¸ı +egyp tian +sa w +tra ge +small er +ox y +pa ired +nex t +i res +tac o +o y +u c +st i +a erial +: // +dr o +dot com +gg ins +r pg +ay e +le an +stri ker +lo bby +prote sts +pri ority +congre ss +am ate +inv it +r ington +mom my +th us +allow ing +pione er +enfor cement +g ori +tal k +dra g +du mb +bul let +san ge +er y +tar gets +ðŁĩ ¦ +he ather +consi der +seaf ood +ve st +ris ks +% . +p g +sac red +he ating +kick ed +tto t +. - +chan di +co ven +po ol +pul se +i a +ro ster +shakespe are +es a +car go +pean ut +tro op +ac tion +tab let +home work +cast le +stru ction +mus icians +free zing +bu tt +justin bieber +j j +bah rain +an them +au dit +didyou know +na vig +guid ance +âĸ ¶ +tur f +n un +fic ations +ye men +char ging +x c +bron cos +su bur +p ale +bor ing +among st +for the +em per +om fg +p j +expe cting +ðŁĴ « +st l +ad min +expect ations +sw an +shoo t +oooo o +min ent +ãĢ IJ +wall ace +stan g +satur day +adop ted +dou bles +hom ie +ome z +d han +vent ure +surroun ding +fi le +mob ility +de es +w ski +broo ke +emb ro +re members +kar a +test im +bo tan +m tv +sacrif ice +jerus alem +d l + ´ +proper ly +ili on +as i +leg it +co pe +m cla +recy cling +lar ger +ðŁĴ ĵ +pat ric +gener ous +ja red +p f +mol ly +thom as +ju dges +h b +sor ts +bl vd +o ven +enter ing +plan es +be et +integr ation +boo ked +fre ed +ver n +ash es +to pped +de pot +welcom ed +ren a +m ick +d and +see ks +gam er +ran kings +ren e +mu t +whis ky +fire fighters +gu es +ga ther +tour ney +de men +y ang +new ton +autom otive +back yard +deta iled +mi st +to bac +fi ber +un usual +grat itude +sp are +ne ys +: * +per i +flo ating +fin alist +don ating +dre ss +bro ad +be the +econom ics +tai wan +ed wards +plu g +pra iri +val en +bab a +f ad +an as +har per +dis order +app lied +p att +bi kin +li ver +cu ri +carol ine +ann er +juli an +wal king +mal col +screen shot +co ding +skin care +activi sts +myster ious +ex act +blo cking +mercur y +bat ter +du mp +âľ Į +en se +li sh +ridic ulous +prote sters +ðŁĻ Ī +lu st +swe at +as s +ali ke +co dy +re ments +win ds +as pir +vi enna +pra y +.. .@ +bo i +cand le +assi sts +te e +der son +p ony +f ence +con spir +âĺħ âĺħ +oo th +e pic +ba rely +a unt +b am +diamon ds +end less +scre ens +can cer +gr o +p st +pro spec +mo sque +help ful +ou ri +bro ther +gu jar +cri sti +ine z +to wers +ad dresses +gra y +bur ton +re tweeted +ðŁ¤ Ķ +n ity +du ck +super vis +jo an +kin der +sanc tu +pi ed +âı ° +ł ï¸ı +m ati +reven ge +ce ster +eli fe +desig ners +back ed +bo li +wei ght +cou ch +su res +s its +shri mp +la gos +auth orities +os ity +hol ly +compu ting +fac tors +ab e +pan els +ram ad +sent ence +missi on +hol m +r b +d ads +shang hai +mon ey +she ets +sk ate +thre w +cup cakes +infin ite +l is +practic ing +ess ay +ka i +as ci +mo b +u gh +hol mes +re gg +ik h +mo ck +collec tions +pe p +o va +sal t +nan dez +co y +thre ats +tex ts +cin nam +pregn ancy +pen ding +stam p +flow er +g is +agre ed +pay ne +ro ver +ph ra +sof t +f fin +fa thers +pass engers +aw ays +al a +h es +li van +in s +samu el +ingu i +h of +j j +chen nai +cat al +om ic +he ath +ni ece +pump ed +integr ated +are l +no m +produc tivity +wan ting +vis a +di ana +tw il +it v +cam ps +ro wing +d ley +black and +gu ards +b ells +re verse +vi be +ric ky +mo ss +ny t +âĺ Ģï¸ı +el le +tro y +cu dd +ev an +women s +fo to +mi stakes +wick ed +mi l +c led +me mes +co smo +schol ar +ren o +ðŁĺ Ģ +v ents +# âĢ¦ +terrori sts +ca sey +cardin als +ðŁĺĬ ðŁĺĬ +venezu ela +bol a +liter acy +t w +en o +con tains +au stin +fin anci +ev an +har vard +origin ally +chev ro +her ald +nott ingham +manag ers +âŀ ¡ +accep ting +wal sh +tutor ial +entrepreneur ship +yach t +requi rements +glen n +pe de +unfortun ately +ach ing +dais y +gi an +night mare +âĿ Ĺ +r ina +b art +ema ils +oppo site +who m +sa ke +pu zzle +da shi +par ty +blan ket +bus es +lo re +beau ty +reas on +pun jab +winds or +func tional +exi sting +hel lo +gli mp +con vin +la k +scre aming +rebec ca +bli ss +north west +infin ity +cosme tics +pul ling +coffe e +pl ing +op ho +colom bia +interior design +( + +emo tions +sa c +sun glasses +sav es +d f +six th +al y +ðŁĺ » +de en +dev ast +polit icians +lac rosse +g u +pe i +jav a +comb ine +coal ition +er ts +survi v +ch ad +stri an +n n +de vi +coun c +concer n +contro ller +bre ast +j ury +tu m +introduc es +la di +mobi le +al z +ste ady +nur ses +h acking +on line +oce an +ðŁİ Ħ +a am +ju ven +ic c +louisi ana +ar te +street art +is on +wn s +fr m +p anda +no ir +main tain +del ay +symp toms +thor n +ge ome +ter n +carri ed +p ru +pan or +as sy +per u +clou d +sp ra +pe di +e ste +tag ged +ðŁĺ Ŀ +shado ws +naz i +ا٠Ħ +cor ri +âĻ¥ âĻ¥ +j ad +ðŁĩ « +form al +spo ken +ðŁĮ ŀ +enjo y +lo pez +out look +in ho +w ander +Ù ħ +ma ya +pe e +d ine +ãĢ ij +brief ing +suppor ter +ar ily +ght ers +natur ally +doctor who +j en +v ar +new year +re se +si mm +re x +con sequ +tomat oes +bur st +bra vo +bur gers +cr acking +nor theast +bi om +mush room +mar que +dou ble +ni er +v ag +tw enty +key board +win ni +jama ica +par ish +: - +mental health +ali zing +ren der +wa king +ðŁİ Ĥ +g ly +na than +wa shing +mel issa +jun g +loy al +chil i +song writer +guit arist +bo wie +neighb ors +onym ous +as set +ta i +head quarters +ðŁĮ Ī +i hear +ci gare +sur g +) " +re pl +dar ling +ðŁĻ Ħ +z ak +sa re +ãħ ĭ +mic key +ware house +mass age +ine es +did nt +i w +hur ts +eng aging +mag ic +women in +k itten +mor s +c art +tit ans +colle ague +compe ting +er an +k hal +mar ble +dem and +del ight +et ary +bli zz +lou ise +m ls +fini shes +experim ent +conduc ted +electr onics +itt ers +car ing +wh ats +sym bol +jun g +e cu +pi x +con text +char ger +ðŁĺ ĩ +re ig +fra g +ë ĭ +ch ad +tru e +ker ry +def ending +a int +au ton +check out +bar nes +less ly +d t +m me +clou dy +second ary +are z +_ : +app a +const ant +" ) +ve ts +jo b +i ent +ðŁĺŃðŁĺŃ ðŁĺŃ +m j +fren ch +di ver +davi es +hh hh +e book +๠ī +mar iti +bree ze +susp ended +mat o +vi et +ra hu +se i +bol t +en ary +le is +kar l +fr amed +expla ining +ab c +de aling +nat o +ja ke +exp and +leon ard +establi shed +du b +ar men +el led +voc al +nichol as +ori ent +k yo +illustr ated +ah h +danc ers +milli on +ge ta +po pp +as u +mur dered +gi ble +sto ked +gri ffin +maxi mum +adri an +en counter +ther o +david son +ðŁį » +holi day +ev o +asse ts +car son +memor able +âļ ½ +ob am +represent ative +cb d +tr icks +vo gue +vo ice +mm mm +sebasti an +cli f +ath y +par alle +ðŁ¤ · +pa k +ev acu +e ats +ا Ø +tou ched +organ ised +spir its +can ad +gui ded +frame work +ðŁĮ Ł +pe d +natur al +ag ar +replac ed +anch or +ti t +sha h +organ is +super ior +r n +ch ro +eric a +st ill +cor on +chu ck +loc ks +or gan +ro sen +sc am +ben ed +/ # +ke en +tre vor +vamp ire +sor ted +! ' +af ford +in tro +gr ace +ðŁĺ ľ +sau r +kick starter +influ en +v u +y up +po c +ðŁİ ¥ +a ar +s ang +tre k +et sy +tb h +scre am +chevro let +pix el +shepher d +an or +gabri el +tw ood +sd cc +me ters +develop ers +clo sure +v w +twit ch +ì Ĺ +se oul +pr ice +ho g +n ish +hill ary +scrat ch +in cen +wag on +dis ability +pan ther +ch ats +g d +wit z +sus sex +l ate +den mark +ger ald +cancel led +net te +i x +nav al +bap tist +te t +y ad +ma th +ho y +r andy +po int +intel lec +fru its +w ool +gu in +pr on +the ft +con dem +mar ry +n ola +architec ts +cin cin +roc kets +gentle man +ex plan +t ate +do e +ra ises +wild life +w l +insi der +blan c +w p +for sale +ny c +po well +unbeliev able +pen s +goo dies +mu stang +p ens +st ays +squ ash +xox o +near by +ever ton +co co +le agu +k han +stu d +south west +con struc +s worth +cro atia +le a +su ms +aim s +e an +van ess +iti ous +pa thy +arc ade +b end +sugge sts +sac ram +roy als +ri er +em ir +in cl +an k +clar k +ri ght +vac c +ठ¾ +tan e +li b +u sc +sal es +hu h +s ally +ver a +p ga +gro ws +dru m +tre e +eth ics +sug gest +is ab +se aled +pre viously +anim ated +ab du +ri ses +glo b +pre dat +scar f +del ic +om ar +ll i +sx sw +py thon +ne bra +fun k +reflec t +pav ilion +tic ally +ch asing +bak ery +inva sion +ko h +believ ed +co hen +con qu +cra fts +nat i +cle ver +govern ance +sam ples +fa ils +â Ķ +ti mo +r itu +stri king +inclu sive +sho cking +can t +requi res +dra wings +à¸ Ń +purch ased +du m +z ach +war ner +con sole +man sion +foun tain +circu m +e sh +is land +mil k +pro fits +hali fax +ri val +âľĪ ï¸ı +jen ny +sand ra +ny e +k elly +y al +qu ad +no s +inste in +fin alists +mid fielder +cu e +excep tional +a an +sa pp +gett in +sa a +f ati +sl ice +vol k +s wal +la sting +sum mary +it as +sm o +s z +âĺ Ĩ +ip l +fl ames +ene ws +ha v +hoo die +pitch er +win dy +re vol +centr al +ton ite +ðŁİī ðŁİī +sol ved +mil wau +organiz ations +wee ts +re fin +s th +ãĥ ¼ +el in +ton a +cinnam on +ðŁİ ¨ +ðŁİ ģ +ron aldo +pen insu +ome ga +el ds +desig ning +e igh +blu et +ben z +nu g +ash a +robo ts +su dan +choo sing +en do +ser ge +clo sely +hand y +fing er +be ing +ar te +survi ved +fl ame +mile stone +gu t +d war +fu tures +é e +el o +fri dge +eli c +ou ch +u b +p v +tit an +col lar +st ation +nev ada +aur ora +r d +dun can +âģ ł +bri en +mar sh +Ð ¾ +to tal +ch ry +s ers +su ffe +ra chel +colle ge +to days +cour ts +ch it +re united +gym na +gen esis +be side +re presentation +ch ant +collec tor +ra k +ath ens +ni gh +mun ich +langu ages +fl u +particip ation +__ _ +c v +spec trum +so da +co ver +refe ren +ab bo +ap a +public ation +ed m +mon ica +ar my +ðŁļ Ģ +div or +dr y +stre ams +robo tics +ci der +bull ying +appro val +sto ke +plat forms +sier ra +ex tin +i b +ha yes +succe ed +suff er +at ically +da i +lyn ch +h ound +del ines +ack now +d ated +exclu sively +he res +fac ilit +dam aged +char ter +la kers +fal con +unve iled +wel ove +e ase +pati ence +l one +gent le +gene tic +produc ing +g our +shann on +bil ities +zimbab we +p int +dau ghters +liter ary +bel le +cl am +surroun ded +k any +ne il +pir ate +rang er +hb d +nat alie +bel ong +olym pi +emb assy +sc ol +en er +ak in +lo ren +b h +: / +di va +den im +hi pp +ðŁĩµ ðŁĩ +arn old +? ' +we ren +em power +dis abled +man or +rasp berry +b af +aw ful +dru mmer +kar dashi +n ash +machine learning +ch u +rebel s +tim ing +mon roe +ton gue +ran ge +pup ils +re ss +amaz on +b z +har ley +pal mer +ballo on +s ings +ic ec +j b +c ers +g ps +whi st +ri se +l t +oo oo +c attle +shoo ter +vod ka +uc l +mt g +le sli +jon as +di spo +at ric +ste in +vintag e +fir ms +flo yd +cow boy +soo oo +is aac +war craft +disney land +beauti ful +be am +franch ise +bu n +k ag +an on +tur bo +swee p +made in +kar achi +dete ctive +penn sylvania +contro versi +vitam in +a side +chron ic +descri bes +remo val +ha h +ap er +ten ed +u to +bad ly +mir ac +f ry +ye a +in jec +ther mal +comp act +th or +te ed +ur gent +l ite +g illi +sop hom +ic o +che m +p m +for k +fre ak +ch ak +recipi ent +i y +ni k +model ing +c ans +ðŁı Ģ +del ux +se am +surviv ors +rad ical +investig ating +reli able +f m +tur t +ligh thouse +to ol +go wn +) ) +bo ts +auto graph +a id +bu ffe +h mm +horri ble +ssi onal +ann i +๠Ģ +k its +sch i +eter nal +hu ss +sens itive +r u +tast es +chec ks +im o +por tion +sk ate +e den +half time +fri ed +ri hanna +ti se +fl ick +ca in +s gt +âľ Ķ +sh au +sta ined +ra ffle +dro ve +sal man +princi ples +sh o +ar u +je ss +gu ine +gar bage +my an +jel ly +dis ru +z ia +q ld +ent ries +la v +fle w +ad mit +objec ts +comp are +ny times +cann es +p n +suff ol +ro c +d ana +e gg +hi st +coun sel +' ! +phy si +imag ination +ad just +explo sion +plym outh +hor ror +elli ott +bour ne +de x +bre ed +au dio +lob ster +disappo inted +nation wide +( ( +incre ases +austr ali +ce dar +star ing +rac ial +e is +g mt +visi ons +stay ed +discu ssions +de an +cur tis +mai den +stel lar +happ iest +h wy +pre season +car av +mon days +hospit als +glimp se +schol ars +ja i +ter race +ann a +goo se +gra ded +lot us +hun g +grocer y +stam ps +emper or +sc oop +in ser +c as +exist ence +he al +fal cons +mar vel +reduc ing +terri fic +magne tic +perfor ms +bar re +p us +tre ating +ic on +w h +decla red +tra uma +do d +come dian +nik on +bu gs +as m +mont gom +ibi za +comprehen sive +ha s +san ti +fellow ship +da sh +p sal +louis ville +sp y +fau lt +d the +fi led +vi sta +de sc +fe ars +you tu +sp s +es p +ri g +cri me +ber ger +wonder land +k ent +in formed +stev ens +my th +ast on +ir i +visit or +at ri +produc ers +al la +person ally +separ ate +agen cies +af ri +il an +spo ke +n ina +squ ad +di ves +de pend +li v +fier ce +enter taining +cha in +sc at +bor ders +pal ette +sp ro +os is +der by +tobac co +zi o +willi e +ju vent +zoo m +hol y +enti rely +af e +mart inez +be ds +pe a +bull dogs +ðŁĩª ðŁĩ +ib m +ne on +ethiop ia +team mates +plan ting +tw er +any time +for bes +ó n +run way +ner vous +ro ger +p ile +ch anc +apo caly +u w +o i +dr ought +territ ory +br ick +cre atures +go in +w aff +gre n +sou theast +je an +am bul +ed ited +stra p +c v +aar on +ãĥ» ãĥ» +t su +descri ption +kin dly +clu tch +im mer +en or +women sday +or ange +ra g +ob vious +hy der +chann els +man go +me yer +ra ining +ge tty +pil gri +coordin ator +up load +ninten do +don uts +san chez +app arel +j r +zz i +, @ +jeff erson +accessi ble +great ly +e id +initi al +budd ha +par is +ma scot +â¬ĩ ï¸ı +sch war +si ri +sp inning +mortg age +e cho +end ange +ge dly +chlo e +enh ance +kar nat +k ry +explo res +ðŁĴ ģ +af fair +ic als +all a +dar t +dolph ins +diffe rences +squir rel +au gh +dr ones +ell en +re store +pa w +un for +pi ke +hil ton +colla b +consu mers +co inci +out comes +pp p +a q +coup on +li est +si ms +k ho +av es +spo on +pu dding +cor byn +hat ers +ex ams +sla ve +. ! +p sa +app les +tam il +se d +co ke +zz o +lo sange +car bon +cla ir +... ) +k hu +cra ig +explor ation +sanctu ary +su e +al way +demen tia +won ders +super hero +pakistan i +brown s +bluet ooth +lo cker +mar c +ev entu +delux e +rodri guez +âĿ¤ âĿ¤ +ro bb +ðŁĴ ¦ +lin ux +ten s +intellig ent +se ed +vo ter +s ler +pe aks +inter n +teen age +peninsu la +hand ling +ti e +cou sins +wen dy +me e +à¹Ģ ภ+din o +ðŁĴ ° +ðŁĺ ĥ +ze e +s bury +trage dy +b k +bo re +z in +war ns +idi ot +tou ching +contin ental +tac os +saf ari +wa shed +po dium +morri son +fore sts +c bc +al on +partic ular +be ads +inv ented +lo ch +li ghter +where ver +i de +docu ments +a we +k r +no where +min er +st it +ro x +contribu te +har dy +cl an +ob ject +ca it +ðŁĴķ ðŁĴķ +happ ier +vege tables +t art +g ag +nom inee +heav ily +pan ic +j d +there sa +at m +u ph +s fc +su ri +drin k +n al +re vel +k l +avoc ado +nom ination +ma donna +shar on +malcol m +control led +sh ers +revi val +legis lation +shoo ts +n in +comm entary +pro s +human rights +str anger +mit ch +pipel ine +leg ally +th u +gil bert +tol l +gran ted +gh s +ir anian +refre shing +du k +ab i +pri me +jose ph +mo sa +stati stics +produc tions +mer ry +pat el +sa x +human itarian +struc tures +e missions +town s +fre el +ster ing +rat ings +alle gedly +cab in +st l +w ade +fl yers +tri m +promis ing +z u +bal lot +compar ison +free ze +ou ter +great ness +as sign +snow y +r ale +tor ies +med iter +kno ck +consult ant +cincin nati +analy st +sc oo +je ws +appro xim +pu re +portra its +cy rus +ation al +lo ans +acqu is +el u +accep table +uni on +water color +ru st +batt les +per fu +seas onal +ser ial +mind set +ri ot +fel d +enni al +clo set +pri est +tan ks +int l +scre w +bu m +ab dul +ou x +expla ined +ric a +imag ing +law yers +bu ried +ãĥ»ãĥ» ãĥ» +ear l +âĢ ķ +l ton +resto red +stri pes +fo ss +de mands +ste aling +alex is +mun d +ak er +ur us +war dro +hu gs +gen re +e go +Ù Ħ +particip ated +bab es +ban quet +ti ous +he mi +ds b +lo st +milwau kee +jen ner +ge m +ou tra +lo ses +id i +re ps +ðŁİ § +regu lation +fla w +f ang +vibr ant +ram p +ra ins +well being +so viet +vie wers +de po +libr aries +bi go +ser y +g ill +de struction +co z +c x +bri dal +al ds +plan ted +amate ur +lu d +che ering +show cas +pro file +i u +ver tical +pack ers +wiz ard +ski p +s light +be au +air ways +mu ch +re ra +ðŁĮ Ĭ +ab sor +pati o +pack ages +s ells +ment ally +ðŁĺ ¢ +reyn olds +k are +tri bun +wal t +kn it +ta ste +sur rey +boun ce +cre ature +b are +bet ting +su re +mi ley +laugh s +al ore +cy n +t l +arti st +ann ah +war mer +dynam ics +lunch time +mariti me +vulner able +ðŁĴ ĥ +wol ver +dur ham +const antly +am in +si bl +: @ +bul let +k ach +angel o +wil der +doo m +desk top +law suit +k ca +hen derson +inv iting +bet ty +ta wards +ra fa +le aked +and i +ge ms +af l +vel o +mediter ran +pro be +to tten +steph anie +sn ation +com be +q s +over come +assas sin +ra v +fil ip +winni peg +sh il +determin ed +k as +ou tre +regre t +gui des +aa a +ðŁĺ Ī +wi ves +mani fe +er ly +sm y +sh ima +x ing +pix el +jac ob +ac commod +to y +on o +po o +ti er +an swe +ðŁĴ ģ +ro sa +le ase +bel ongs +th ar +eventu ally +nei ther +go a +ski ing +at ra +ag h +broad casting +f ury +py ram +d ice +volk swag +wom ens +provi der +bom bs +miss ile +whi p +d ick +nor we +back up +el der +mat ure +concer ts +gi ous +sque e +good morning +bra ves +^ _ +au ssie +lun a +mal es +he ck +for tn +rome o +steel ers +p n +pe er +re presents + « +kat y +migu el +requ ire +cha ins +l ur +immedi ate +ti mber +âĸ¶ ï¸ı +advoc acy +ex port +an z +tiff any +auth or +ðŁİ Ī +du des +chil ly +hi d +har m +bu g +mon ster +terri er +tu c +story telling +ta k +in ti +immigr ants +b is +reach es +com passion +john ny +contribu tions +ðŁIJ ¶ +mechan ical +impre ssion +ran ks +ko be +men ting +bloss om +pab lo +buil der +bom bing +tw el +sul livan +om o +pe te +de mi +ku dos +w bb +t gif +mass ach +neighb or +che fs +eng ines +pun e +ga ined +phan tom +s days +ext end +gr an +cent ers +jac qu +dat asci +sleep y +el vis +answe red +s lot +con y +flexi ble +ti ally +le tics +% , +andre ws +si ble +mom ma +vin o +do x +invit ational +twil ight +j ade +ill ery +joh ns +f ou +p v +-- -> +break down +billi on +prin ter +mon d +c bc +mag gie +legi on +du b +kur t +po or +paren ting +regi ons +bikin i +be ware +si onal +au burn +kid ding +amp les +sp an +con tempor +c ic +ha bits +ak o +pre fe +bud dies +it z +em ily +person nel +moun tain +ver sus +ðŁĺ ¬ +ear ning +s ink +dar i +u u +s win +i ster +bru tal +n ac +kat a +clo th +am and +ðŁĶ Ĺ +ne o +alu min +week ends +nebra ska +co des +delay ed +brun o +pro ven +in c +i ght +fl an +or o +lam bert +regu lat +w f +massach use +kardashi an +bern ard +fi esta +volcan o +grand pa +anc a +d re +st itu +mean ing +fo am +au ck +at ed +r l +hot el +pers ons +dy nasty +ell or +ma i +am ne +sty ling +avi er +e g +vege tarian +, âĢ¦ +foun ders +sta in +g d +cy cles +sky line +trac tor +exi sts +tra l +kid ney +mar il +inst ag +se tte +addic t +tri angle +flash back +controversi al +z on +p ins +i as +tr ay +town ship +deleg ates +sp am +h ms +cr ane +peop les +o lo +fac tion +but es +on ica +deleg ation +new profile +eli er +mc a +w and +g ely +losange les +ber ke +ti ve +dis rup +zz a +cas a +jor dan +ford shire +ga thered +ic hi +atten dees +à¸Ń ภ+pe ppers +co in +bour bon +ern ity +ro tary +behavi our +jere my +team work +compli ance +tre mend +ðŁĩ § +bu hari +cam bo +bu yers +ha gen +bu ds +bay ern +mon te +sm ells +an za +ath lon +descri bed +work force +gi ving +ap i +invest ments +da il +sel ena +datab ase +th um +mor tal +stu dent +bu yer +do ver +gar ten +att le +loy alty +gen oci +holo cau +theat ers +ru ling +ven us +pat ent +ch un +ab by +awa ke +mass acre +bang alore +break ing +simm ons +ju sti +hal e +ed chat +gg les +haw k +mar king +head lines +stro m +co ve +breath taking +med als +hair cut +christ ine +tele graph +gujar at +ju ra +can e +sho re +propag anda +mu eller +.... .... +sa vi +stom ach +thro ws +ta b +war m +j ong +reno wned +hi r +ra is +mush rooms +guaran teed +bo a +m j +revolu tionary +certi fication +bru ins +jo in +w es +pas sport +c g +sex u +cap able +w v +ton es +jac kets +ac compan +spin ach +fore ver +bla ir +wat ts +g l +cou ples +prairi e +newprofile pic +logi stics +massachuse tts +jagu ar +o id +we al +under water +mo z +y i +ma ths +myan mar +pre ps +suffe red +tr ace +wal i +ah hh +bor g +st itch +cu lin +real ise +infe ction +discrimin ation +sh ame +an kle +hu mid +y t +brac ket +tru ck +tri u +ea ster +commun ity +post card +invol ving +ty ler +car amel +over view +ex amples +integr ity +base ment +instru ments +ani um +at us +gh er +laun dry +achi eve +gen eva +pr icing +hyder abad +beli ef +me ta +j aw +accoun ting +lead er +cristi ano +cou ture +cy p +vis ed +, ,, +k nu +h ick +break er +br am +ra b +mo or +ham as +gradu ating +pupp ies +ak h +ta h +ach es +ri e +op ini +g ta +re ign +tra gic +re ver +p ill +pine apple +tou ches +da re +le ys +il o +inter iors +sc outs +bar t +en zie +don o +bro ck +christi ans +ense mble + · +cine mas +new port +air line +win ston +le igh +cont ents +pre scri +ur ge +tr out +fic ally +il ia +sub si +are r +âļ¾ ï¸ı +w ounded +ðŁĻ Ĥ +pe pper +ðŁĴ ŀ +fit ted +af f +re sur +thursday thoughts +z ero +archae ology +di v +je e +i on +awa iting +co zy +beauti es +bal d +dat a +gri zz +stal k +kin ds +cle ared +jess ic +regu lar +ali ens +plac e +bo s +bi zar +thisi s +ðŁĴ Ģ +totten ham +ma fia +s lam +ari ana +car roll +back pack +care y +uni v +r g +pe p +dig it +tatt oos +ag on +volunte ering +diffe ren +consu mption +ka thr +head phones +t shirt +o b +ele ment +re tail +sh ru +al gori +contain er +consci ous +fi l +com ing +ra sh +u rope +def ine +gi or +femini st +flow ing +rout es +gl aci +fer t +somer set +ant es +twee ps +$ $ +h our +endange red +year sof +ro h +po pped +bac king +ba sil +bra ke +mon aco +lgbt q +pra gue +ut ility +cas si +gate way +haun ted +sch ul +ðŁİ µ +shou ld +walking dead +comple ting +dann y +montgom ery +pengu in +ss i +mer chandi +ðŁij ij +chur ch +h ates +cap tain +brea thing +ce t +fair ly +approach es +compan ion +surpri sing +kany e +pe y +hin di +targe ted +lor ds +de ut +di gging +ger man +ru t +ener gy +close st +y un +apo logi +ภ± +s ack +ru p +dd y +port al +d ough +b ats +ðŁĵ ° +at ur +graph er +pi res +mo tors +ðŁĮ ¹ +j c +dan g +tu k +clu e +us c +pag e +d less +bro ws +ju s +ad ing +re marks +oo m +car dio +ste fan +arm strong +âĢ¢ âĢ¢ +ni est +belgi an +bi op +so y +lo f +í ĥ +q t +flashback friday +ce e +ģ ภ+wre ck +mar ines +amend ment +wardro be +vo y +bur ned +guit ars +ra inf +li fel +ssi l +oun ce +exter nal +c key +me sh +she ikh +inv itation +sugge sti +pop corn +phenomen al +an onymous +tun a +chic ago +o val +del y +loc als +( & +pro f +no vel +fin der +spar ks +la ven +in fu +nic ks +qu ant +ra e +exe c +dist ingui +st ances +mu tual +sh al +unve ils +edmon ton +zan ia +a dio +vie wer +brad ford +audit orium +qu is +re act +htt p +l ero +chee ky +impac ts +ta k +ed t +desper ate +t ay +ì Ħ +sett le +bar gain +resu me +un ite +thro wn +ke st +se ys +mar ching +am it +decl ine +sch ar +me tr +stan ford +lin ke +ber ra +dol ls +rug by +jam i +b or +road trip +dino saur +mi k +sun der +re m +b k +over seas +nau ghty +imple mentation +iam srk +lun cheon +fir ing +mi ami +pere z +the e +z on +gi fted +con version +ceram ic +¡ ï¸ı +pe dro +ì Ĩ +v ick +! @ +he ed +si d +b w +docu ment +pl un +gr ants +fant asy +predic tions +vali d +car ved +gradu ated +ðŁijį ðŁı» +nation ally +ch y +af l +re sso +blan k +ri vals +j ig +e ties +om ics +une mp +b ound +sk o +inspec tion +par al +high s +cri sp +b ans +ob a +[ @ +co spla +costu mes +rec all +mou th +ni gel +b ts +ter a +ko v +do cs +west minster +dic t +gra vity +kar i +ro gue +t ted +war k +ida ho +w end +aw i +queen sland +proce sses +cli ffe +m ick +com pens +op ol +the y +cl ari +wiki pedia +salman khan +haz ard +pre ston +swee test +pd f +che es +tr ilo +south africa +bur nt +( $ +con tain +t p +sub mitted +sound cloud +at u +re z +word press +corru pt +n f +ma ker +í ķ +par as +adv ent +ri al +ca fe +fo ssil +!!!! !!! +co ws +c j +sp ur +institu tions +land mark +ent it +re ut +h is +alz heim +we mb +regg ae +mo squ +st at +identi fied +deal er +re am +re land +ten sion +ðŁĩ © +wra pping +deep er +fr at +red dit +ar is +moroc co +.. " +b low +ma pping +pri orities +ing a +swa p +re wards +conspir acy +creati ve +c j +congre ssional +vau lt +ple x +sophom ore +shad ow +ele ss +ðŁĺ ħ +dar ts +aldu b +anno ying +pro ps +n as +alumin um +h bo +offen se +j ill +oni ons +la ur +ta e +har dest +sh ro +ga ining +meas ure +ed tech +cyp rus +tar a +ang eli +car lo +go on +all i +im plic +ju pit +resil ience +ha il +bal anced +) ... +joy ce +gr a +th eli +defin ed +shi pped +main ly +min a +l m +sac ri +o ber +p im +claim ing +ent ers +co rey +bo k +cri ed +cool ing +dani elle +pharmac y +thor ough +ca ke +k lo +outre ach +z ens +digital marketing +val ent +sn p +her b +mr w +caf é +cap tures +no tre +triu mph +pan cakes +cu mber +spi ke +d ation +bi gg +sp er +crit ical +am al +too th +foun ding +a stro +' # +quan tum +th ames +un c +pri de +air bus +kno cked +un defeated +mediterran ean +cal cu +clo wn +sens or +ham mer +for give +cu shi +ber ry +maje stic +elec t +polit an +g ta +k ari +bur ke +sea hawks +volkswag en +re i +landsc apes +cas u +grand father +list ened +/ / +star trek +rainf all +fur ry +vi er +star k +rif le +ff a +leg es +hillary clinton +min us +correc tly +architec tural +pre ce +up side +box er +ðŁĻĮ ðŁı¼ +is ai +de t +pro vo +tis sue +spoo ky +ve led +re con +prospec ts +que bec +âļ « +ig no +anat omy +shap es +w p +p interest +hor e +an es +pick up +ti p +pra desh +hu gh +co e +po k +gram my +well ington +sti gate +ri gh +lea p +king ston +scen ic +go sh +v ani +au g +s ary +zi er +bure au +lin son +con te +fra gr +all an +g aw +lan a +colli sion +surve ill +ren ais +ar range +s ali +do in +br ance +bren dan +our se +in coming +suspen sion +à ´ +l la +educ ators +in tri +da e +bio graphy +bul gar +villa in +go thic +rw anda +e w +may or +meet up +democr at +mor gan +su dden +te sco +car rot +bom ber +mck in +re ne +fun day +agricul tural +haha h +show time +form ing +col a +scor pi +quo te +po ppy +s life +d az +tu b +ne n +mo t +ðŁĺ » +s ore +elder ly +o ve +skin ny +um i +anc o +man ship +we re +g v +k ah +fol ding +ne at +samanth a +dan ish +uk rain +humid ity +nu tri +jak arta +cand les +oooo oooo +at ile +streng th +i bra +bap ti +charle ston +fr ames +girl s +clear ing +glu ten +# # +super natural +ju bi +ph one +he in +dr un +le ak +invest or +y er +dom ain +ball room +mi sh +app li +off shore +bla ze +dor o +âĺķ ï¸ı +win ery +shar if +ad ore +n ir +saf er +si gh +as cri +strong ly +trac y +ck er +ol l +faith ful +ey ed +deli ghtful +vis m +karnat aka +tit an +wh ar +jer seys +re fur +heav en +gri p +pan ama +pre li +glu ten +o dd +cont ent +pon ti +tion ing +e commerce +feder ation +flaw less +ge ar +ti res +by r +pol ice +cu ban +tri butes +tic ul +chur ches +nur sery +di aries +muse ums +snapp ed +i van +wi ght +touri sts +ramad an +t rent +prophe t +won dered +focu sing +hi d +ic ons +i q +ambul ance +pi st +fun niest +time less +sr ilan +bu ys +ki ds +colour ful +a shi +ch ir +mu m +ðŁĵ ļ +let ter +x en +reut ers +pre serve +in ting +ste p +fu ji +uni ver +i u +show down +po ems +surveill ance +suspec ted +ta e +sol ving +tom b +mother sday +car pen +recru it +pil ots +bro c +mix ing +fri days +ty r +represent atives +tra pped +abdu l +free style +clu ster +âļ łï¸ı +k d +sk ill +pit t +ex o +commer ci +muse um +loc ally +g ina +no bel +immun e +fr ac +cap su +main ed +attemp ts +bull dog +be spoke +sing ers +sp elling +seg ment +nat ures +tic k +lip stick +clean er +gett able +preci sion +âĢ¼ ï¸ı +th ood +re ef +no pe +bill y +di gi +mu si +ri val +figu red +tal ity +sun ny +ber k +aw ww +awa its +un real +co pen +asy lum +ex otic +bu en +mo ck +en able +arch y +fr a +pla stic +al mond +amp li +displa ys +abbo tt +s me +x p +ðŁĻ ĥ +graph ic +i ved +mar a +cau tion +lea ks +en berg +ul u +unic orn +cann on +appren tic +ðŁĺĺ ðŁĺĺ +b ball +wil low +at ics +am as +manufac turer +campaig ns +port ers +flo ors +l su +ty pe +ke j +honor ary +it im +to le +min ecraft +d x +ma sh +ri o +consequ ences +ron ald +go ssi +suffol k +mu se +r bi +live music +i van +ðŁİ ¤ +le u +patri ot +man it +lan ca +home decor +de ar +sig ma +ti de +str ings +v ita +sequ el +try na +inve stigate +bor is +ve gan +barri er +mind fulness +web b +hu stle +in da +tan zania +str ay +tex as +c ag +diagno sis +wom an +g w +ob session +l ative +nu fc +fl ynn +moment um +sof a +wal d +vege table +tu cker +supp er +se ab +ar ro +se ag +ven ting +counc ill +sp lat +cal cul +.. # +com fy +odi sha +sto pp +war fare +ca es +à ¨ +co y +price less +in sec +ðŁĺ Ľ +contro ls +empower ment +datasci ence +per pe +gen ic +e res +tru deau +man o +sla very +expand ing +ma he +fa iling +s aga +photograph s +cre st +re on +surf ing +hi e +ðŁį Ģ +ja e +fel lows +south ampton +sol om +ce ster +tab ility +hor n +se ct +he e +cole man +at las +explo rer +consul tation +copy right +organi zing +den ied +mon keys +noo dles +br is +fl or +dou gh +bon ds +sho cked +eco system +care fully +w m +apart ments +cur ve +san diego +must ard +comm en +cere mon +e ch +ru th +ðŁĻĮ ðŁı» +hawa i +fil med +te ar +as ingly +ca ir +wat t +instru ment +ou tta +ye ol +river side +ë ° +. : +nor wich +alo g +migr ants +new man +ri de +spr ink +targe ting +beli eve +tor ch +reflec ts +per mission +ff man +ene mies +bas ics +se ized +sun days +le i +hass an +en do +h c +st ad +le ments +kk kk +nan o +shar k +man a +on ic +treat ments +ear ly +collabor ative +shu ttle +bran ches +mis ses +mained cm +ap ers +ky le +carri e +leis ure +sh et +bir ding +adv ances +ðŁĵ Ŀ +popu lar +di ane +a be +re war +neigh bour +k pop +remem brance +play ground +ru b +krish na +e bola +inqu iry +ep a +lu min +organ isation +abra ham +norm ally +pre ten +jan et +w t +ðŁĴ İ +encoura ging +a stic +bu mp +syd ney +s z +ss ss +gar rett +ðŁĵ » +consul ting +roman ia +spo tting +chanc ellor +ar ma +presti gious +ðĿ IJ +t ad +cry st +compe tit +rati o +cat aly +bro w +j ur +vi king +commu te +y day +la yers +du mb +esc al +genoci de +f ill +gu pta +ste pping +se i +fo to +wild cats +col i +projec t +ear nings +st r +ge ons +comple tion +b m +decor ated +craw ford +af ghan +sc are +visi bility +hi b +direc tion +stro ll +christ ina +alter nate +cl are +sty list +be hold +s ance +leop ard +acqui red +narr ative +ash i +the a +?? ?? +pe as +at ch +sli des +le en +renew able +eng lish +qu ir +co aster +r x +fo ols +match day +mis m +amaz ing +z ig +ke ting +won t +to wel +di ab +sta ke +n m +mel t +e than +gra pe +polit ician +sm en +í ĺ +re o +wedd ings +cat cher +or acle +me mo +ðŁĮ ´ +ec k +rob bie +norwe gian +oper ator +am or +se wing +ju l +x ie +u v +fif ty +me ga +tatt oo +liber als +u pri +traffic king +richard son +su v +ki p +mess y +tremend ous +gl ou +cour tney +la d +stere o +my ers +i dio +^_ ^ +man ning +dy e +w d +thr one +jun k +as u +provin cial +k ook +wr c +fine art +hamp shire +renais sance +b red +fall out +s j +sn l +al am +tor ture +fy i +sh ines +pa w +ch ar +hen ry +c row +aci ous +di an +pa ige +ba re +stock holm +scen ery +ðŁĩ · +jef frey +pu sh +decor ation +ne d +cu te +brig ade +laven der +inv ites +e sports +vo ir +dri ed +tran spl +sur geon +no vels +pul ls +son y +lun ar +man e +i vy +fru str +dor set +sa i +tor res +ssi on +shut down +suggesti ons +writ ing +e o +battle field +u ga +ðŁIJ ¾ +vac u +spl ac +g it +u g +high land +% ) +mer maid +sacram ento +ta ils +p w +ka h +t ell +enh anced +ì ķ +auck land +cru el +ðŁ¤ © +au dre +sail or +gram mar +g love +de on +infl am +fresh ly +k ell +zi p +christi e +mil d +di xon +instru ctor +g ence +ãħ ł +sub jec +constitu tional +crow ds +in visible +ru ins +da k +si p +pla que +p ouring +comple x +z ine +ste ad +f let +trans mission +lo way +ar un +incre asingly +au d +transp aren +cro wned +sc oun +blizz ard +lux u +fi ers +achieve ments +hun ters +rock ed +bas in +vio let +pro ves +achiev ing +pro sper +se ga +flo at +vi an +xi v +pol ic +tur a +approxim ately +wander lust +keep ers +geta way +co d +pol is +br yan +col ts +tal ents +yo gur +gluten free +wri st +gr y +cze ch +ðŁİ Ī +ev ille +ðŁı Ī +to x +dani els +am er +bi ds +weare one +me tab +g t +boy z +pd x +pos session +pu shed +shr ine +reali stic +tri gger +na vi +ru mors +n af +jen kins +tr un +comm uni +Ã Ĺ +gam ers +arm or +moham med +bal cony +y ah +stron gest +rhy thm +unfor gettable +k p +ho bb +custo dy +greg or +r ita +aes thetic +il ation +sponsor ing +n ay +kid napp +sh s +ra jas +me g +signific antly +butt ons +la c +ver sions +essenti als +opini ons +k ro +d printing +wi dely +d k +ur an +y al +reque sted +c n +cur ric +plu m +gr un +v m +dev on +m yo +rel ation +juvent us +rou ge +min ority +min es +jupit er +n ine +oxy gen +fran kie +une sco +fab ric +disgu sting +sal man +dete ction +lan ka +d ac +ðŁĩ« ðŁĩ· +argu ment +shel ves +cel tics +rober to +pi gs +he dge +fau l +pow ering +butter flies +fi r +re make +att i +com o +emp ha +kend all +poke mon +se ating +d ans +bald win +ðŁij » +lesli e +one direction +ti mber +im an +fon t +e der +di on +ste ph +for mat +gre gory +pro p +he x +ru in +sor y +inf er +n aw +bar ak +sd gs +kar ao +lu sh +v ander +end ent +g is +a fro +soc cer +ay an +t uni +lun g +da yof +alex a +mar ath +addic ted +ag ile +hy gi +light weight +ì § +mand ela +jo ey +anc y +hu m +bi r +memor ial +jim in +ging er +v ak +jav ascri +cro ps +orig ins +d ari +pi per +im port +aggre ssive +predic tion +re pairs +cr acker +voy age +ni ke +mu mmy +linke din +country side +bor der +gla ss +per t +s als +sho e +autograph ed +wal nut +colle gi +sal ary +pa iring +ðŁĮ ¸ +cath ol +swee the +defe ats +streng then +roof top +impro vements +barri ers +ur u +t ally +ru led +ðŁĨ ļ +nai ja +emo ji +per cent +gi o +pro bs +on ce +adm its +pa ths +li ar +day tona +pe ters +cal i +cal li +mu g +o sa +ap h +ab y +hy de +eth nic +pla ins +ol f +haha hahaha +holi c +?! ?! +su bli +bl acks +mo t +gh ton +lo vin +b rent +bar u +l ati +de w +ate au +q a +pain ful +bu sters +st atic +ðŁĩ¨ðŁĩ ¦ +note book +out fits +si es +r f +floo ds +Ñ Ģ +thro at +su ici +ro vers +beng al +pre pares +blo g +mini ature +Ø ¨ +am phi +com b +r sp +in timate +green e +Ì ĩ +al tar +surg ical +ves sel +... ? +gav in +g ator +threat ened +z ar +rob bery +di er +promo ted +y g +x s +su bs +inter viewing +threat ening +do zen +me ado +water fall +nintendo switch +cal um +mini sters +dro p +univers ities +war ned +tac tics +ðŁĩ ² +refu se +ad ju +v ast +ðŁĺ ´ +mc fc +lib ya +no filter +distribu ted +re ser +ron nie +de co +javascri pt +mon k +intere sts +fle x +mar tha +sti es +oo d +ðŁ¤£ ðŁ¤£ +e un +b ali +g omez +sti mul +moder ate +d ity +ir is +stra w +consist ent +direc tions +adop t +sal sa +cro o +reco vered +black friday +lan caster +accep t +weareone exo +buil ds +free man +air plane +diti on +bel ong +jam ie +pit ching +li f +om in +cri spy +pre pping +ve g +chan g +accompli shed +graci as +dolph in +elec tor +culin ary +super bowl +wal a +pur suit +black berry +be an +cardin al +pro ved +immigr ant +stric tly +holocau st +pass age +ha us +cou p +pur se +har ass +< < +le ed +ado be +st ad +legis lat +par ked +pri yan +sil va +kri st +s the +fun ky +ig a +sett lement +ph s +t mrw +stre ssed +hun t +ho ckey +treas ures +cham bers +ol u +hu t +mar ley +tex ture +wilder ness +mm ing +poten tially +om aha +ju dy +to es +spo iler +distingui shed +feli x +ah u +recommend ations +zom bies +hit ler +tri ple +colla pse +motiv ated +ulti mat +gg ling +so y +ci gar +fo ren +vine yard +gl itter +fin dings +colon ial +hun ter +eri k +den s +beet le +lot te +sub tle +s matter +tru sted +experim ental +nam ents +ðŁĺ Ĩ +regi on +acquis ition +bre eding +quarter back +am reading +oo td +ru de +initi atives +st out +hy ung +out come +al fred +mic s +exper tise +bacter ia +pengu ins +jump er +valen cia +bar k +ing day +sell ers +contrac ts +hou ston +commissi oned +adap tation +swan sea +santi ago +common wealth +ju dging +sub mission +sco rer +tom my +ñ o +ex quis +fil ing +explan ation +alli son +wemb ley +ri dge +chev y +san tos +own ership +cogn itive +favour ites +sh ed +phil anthro +dele ted +go dd +s nor +gui delines +ff ing +je ep +cli ps +sw amp +an or +guil d +bol ton +spring field +munici pal +goal keeper +ye on +ðŁĺįðŁĺį ðŁĺįðŁĺį +ãħĭ ãħĭ +water front +gra ve +contempor ary +ar ity +ÃŃ a +sle eps +sy rup +al am +pi re +co yo +moto gp +ty son +kej ri +cir cul +sing ly +cr unch +complic ated +nostal gia +k op +mo ve +k ale +mac ro +mid west +h ans +tri bal +nu de +௠į +bey once +congratul ate +cat er +leagu e +ðŁĻ Ĭ +la dder +cra shed +tech nic +karao ke +harass ment +ro ts +experi encing +kri sten +ðŁĩ ³ +ðŁ¤ Ĺ +reflec tions +guin ness +illustr ator +ðŁĻı ðŁı» +cen ter +nar row +comm ons +regul ations +Ù Ĩ +har m +cro ft +cu ssion +hong kong +st ical +intern ship +zo e +cho p +hoo ds +estim ated +batter ies +berke ley +smooth ie +shau n +cro s +~ ~ +cam pe +hu mp +b g +proto type +cl ick +shaw n +re viewed +tem pl +p f +jed i +blo gs +ray mond +as th +ba h +av ail +scot ch +leaf s +nik ki +to k +hol low +ur ges +of t +un like +lat in +u e +cat ering +mil i +alter nati +ma ver +Ð ¸ +ag le +pre order +lu x +cu cu +ðŁijı ðŁijı +t art +âĿ¤âĿ¤ âĿ¤ +arab ic +rapi dly +ar rang +all en +travel tuesday +pa ws +flo ws +st ability +flu id +ca pp +can berra +uu uu +sp ani +demon stration +m la +plac ement +m w +presi dents +awe som +bever ly +ani st +ne al +father sday +referen dum +la hore +o aks +deb bie +half way +gho sts +de bor +matthe ws +fi at +t fw +pre sen +rob i +de d +bro ck +laugh ed +am ounts +bam boo +kinder garten +eat en +mtv hottest +break out +u sic +fra ser +legis lative +p ang +modu le +sam my +go ver +ear ns +expe dition +gar h +concep ts +char lie +la va +bachel or +veg gies +deter mine +el lie +un locked +fru it +dal la +cou pe +wash ington +depo sit +iv ory +pau la +chic ag +gu cci +ðŁİ ĥ +cul tiv +pier ce +li fted +stu mb +re cover +musc les +conduc ting +cb s +mcla ren +sophi a +cel lu +oce ans +up loaded +game play +mal dives +kim ber +avo i +rac er +ca ine +cav s +h ana +li ga +ra ven +inter vention +inaugur ation +oo h +at traction +merchandi se +tune in +li king +juni ors +int ended +att acking +aqu arium +i wd +comp onents +sur ing +cent u +yogur t +ðŁı ĥ +show room +op tical +ty our +ju dge +yi eld +an to +pl c +transparen cy +recy cled +chi ef +ar om +ambassad ors +plan et +âĿĦ ï¸ı +om ed +vaness a +cour t +mar gar +hal ey +v r +reg ina +pd ates +hi span +live stream +âģ £ +ya hoo +gal la +secu red +w ir +bene ath +off l +n il +am b +ye g +out let +u te +pe ep +lind say +bent ley +... ! +he el +trilo gy +vo s +ty re +there fore +tor onto +ab i +simp li +ja e +exten sive +eleph ants +s or +orient ation +im peach +re play +constru cted +peter son +pa is +por ted +custom s +colla p +ad u +high lands +sal em +shel by +ko vic +stra in +ro sie +sen ators +snap s +bo bb +suz uki +bla des +k p +lo lo +gener ate +si ght +ma e +struc tural +predic t +jump ed +ah mad +sun g +just ice +gla m +vol vo +jubi lee +de tention +lo sses +pu ri +every time +Ð ° +ra o +ed ge +li mer +rese mb +har old +re tri +sacri fic +surpri ses +am c +srilan ka +bar bie +men s +fin n +ag s +ukrain ian +em brac +î IJ +flav ors +hom er +lau re +ou th +pr iced +ver de +fir m +ah s +cu b +tre y +par anor +pro fit +in dv +who a +har sh +al ot +crit ics +hu bby +fi gur +gi ra +ca stro +chan el +in put +origin als +ten ant +yy yy +ture rs +lincol n +co on +lear n +ch ou +ac are +o les +din er +hy p +bizar re +mc r +let sgo +decor ating +ðŁĮ İ +al ison +ar vin +f d +reha b +mccar thy +lot tery +da h +minne apolis +eli gible +diagno sed +emer ald +destin ations +s ans +or y +bla zers +n v +ba il +digital art +no c +mal ta +sol ar +pi pes +alleg ations +no ck +po pe +bri d +premi er +n x +present ations +ef a +bo ws +val ve +opp onent +Į ë +visu al +ing le +cate gor +e ter +po is +dan i +at tract +neu tral +th ene +cra shes +fred die +ut ili +c st +awak ening +slo ven +quali fy +pro of +fair y +le v +fre ight +enjo ys +cup cake +flav our +â ķ +protec tive +ðŁijı ðŁı» +is u +ad mir +h mmm +continu ous +ai res +rap tors +showcas ing +y uk +pa ste +follow er +instru ctions +sp ru +@ __ +the o +debu ts +ve tte +sto w +es of +ach ed +sul tan +sand wich +som alia +franc o +car ne +flu ffy +al pine +jas mine +he ated +viol in +ple ss +divor ce +per former +phi es +port sm +dar a +kir by +lo p +chill i +for th +sky pe +ðŁĩ®ðŁĩ ¹ +celebr ities +ed y +ve e +po ison +ey el +gra bs +ssi c +un o +wester n +rail road +am er +numer ous +s v +fo w +fi st +âĢ ĭ +reque sts +mar tial +em my +accept ance +lau ra +ภ´ +er up +hyun dai +out lander +u tt +wrest le +esp resso +demand ing +g dp +geo graphy +sas kat +tro ll +confe der +su es +se m +be ts +t ful +to sh +teach es +col oured +gal way +mac y +dis orders +bb cra +at em +fen der +lit ter +e sh +provi ders +renov ation +nomin ate +ps g +nomin ations +jen na +shar p +some day +z ur +bra ins +che shire +pre y +hu go + ¿ +to ken +r v +car r +tac tical +zel da +kay la +fern ando +photograph ers +j our +umb rella +woo dy +congress man +du mp +le vy +ju an +d azz +sign als +la in +an u +mic hel +por ch +al den +sibl ings +y ale +pe el +sw ick +gg in +ll c +k ale +s con +il d +pat reon +re el +qu in +wit t +mar ty +moo dy +ton i +der y +g ators +speci fically +dd in +ly on +tr ick +meado ws +p j +bor gh +vi k +tu r +bron x +pu ff +lan tern +ðŁ¤ ¦ +g ently +be stie +fac t +refu sed +fas ci +mp y +ðŁĶ µ +cross over +mead ow +indian apolis +duc ation +sle y +loo m +mix er +new music +film maker +prosper ity +li m +week end +cre amy +neu tr +lu ther +h v +nor thern +tw o +h ra +cat ches +appear ances +ha bit +kitt ens +n v +illa c +inf an +regar dless +liz ard +dun k +cur tain +ac om +in tu +ve z +e min +fl ats +calend ars +em power +ru ined +hun gary +vi d +we x +u lum +aber deen +o sa +k t +ma ssi +se emed +s den +' ? +tele phone +de fi +insp ires +me ow +z ones +bl ind +pl y +tuc son +advent ure +ge d +oy ster +ðŁijıðŁijı ðŁijı +out put +tt t +metal lic +sma sh +ucl a +sco ts +perfe ct +lu cy +regular ly +sp ic +rel ative +ath ers +mis e +batt ling +deci des +mat a +occu pied +random ly +cat softwitter +gi an +ball y +al ties +al lies +im men +sy rac +ðŁĴľ ðŁĴľ +l lan +au r +k ut +lam ar +affe cts +n ra +star war +ðŁ¤ ĺ +sc ram +en chan +pro cess +luxu rious +ar ray +sher lock +comp ati +dor f +stre ss +m su +s with +sal a +sof instagram +fo il +under stood +qu ay +r p +c ade +ja w +en ab +en coun +ðŁİī : +do ck +satur n +mu ll +lay out +ra rely +happ ily +fix ture +or ph +over looking +her bs +m itt +pil lar +nol an +pe tty +str y +u i +mu k +o res +o vers +á µ +re creation +we sley +ri t +kejri wal +sto cking +g v +subscri bers +moo se +ma e +ber t +opp re +assign ment +u ro +high lighting +cal vin +we igh +cambo dia +av on +ke m +dis abilities +read y +char gers +p ads +iz ing +illi an +tru ste +col leges +associ ates +alban y +mil ton +cr on +bu r +har dly +si ghts +anti ques +e cho +surpri singly +ha iti +cap t +ph p +op io +ine quality +equ al +ken y +sch mid +autograph s +ren t +qu er +cit rus +challeng ed +te c +epi de +fe st +z hou +li me +citizen ship +cry stal +convin ced +mess enger +copen hagen +âĿĹ ï¸ı +war ran +develop ments +ï¸ı âĥ£ +fore x +hi ro +sne akers +xi de +vi va +stere o +bat ting +ss el +ho st +beng al +critic ism +q c +cr un +attemp ted +ry e +determin ation +cre ations +d read +label s +pos se +anc er +joh an +si ster +partner ships +les bian +k st +guaran tee +bar o +fix ing +ma son +m ous +chem icals +t less +bio diversity +par o +bhar at +ac ol +refu ge +en te +t iti +dys sey +respon ds +lef to +in er +se vel +rahu l +ol ine +frank fur +cho reo +enjoy able +c to +strugg les +wood land +heavy weight +gen s +rece p +ac cred +ðŁĺ ¡ +trans formed +list en +at op +n k +sur ge +be re +gover nor +prison ers +clau de +t ill +mu lator +emo tion +water loo +star t +ðŁĩ º +clean ed +grand mother +fear less +afric an +astron omy +ðŁı ģ +ภĻ +the world +su itable +anth ony +k and +tt en +meaning ful +disc lo +jaco bs +à ¸ +tom linson +ghe tti +ty pho +sub stan +as co +te k +nag ar +mu d +am on +vacc ine +f ty +fle sh +no el +infl ation +portu gue +glam our +tra m +v re +te qu +roun dup +w yn +rejec ted +mosa ic +si ghting +cal f +o ta +com position +go pro +gonz ale +e ed +b ard +tu e +effec tively +we en +al to +ri bs +rel ate +thir sty +fu rious +di m +ch ard +perfu me +s ny +chur chill +k of +master class +wa ve +ðŁĶ µ +er in +own s +to be +sk illed +te m +go f +en i +tor i +cra zy +l ick +resi stant +ici al +ag ar +! : +g ali +del aware +bl itz +koh li +pu ck +avail ability +hi malay +influ ential +cro chet +victor i +read ing +ho bby +vie t +j as +en gra +sk ul +ðŁĩ² ðŁĩ +educ ate +tech no +distric ts +blu es +se tt +seven th +lear ns +ee ee +apocaly pse +hang out +cru el +mu tu +bru h +hel en +she er +c tion +kle in +tex ans +ce real +sh ine +ne red +gra s +am bro +f ella +hin du +matthe w +li ma +mir anda +je wel +so ho +euro vision +neighb ours +chand ler +be sides +ðŁ¥ ° +ast ros +thu mbs +ren ault +ra ve +hi red +ðŁĸ ¤ +it ary +z or +bla zer +k ine +ea u +kat y +dc comics +pe c +ro dgers +water proof +kill ers +super int +pre serv +as so +brew ers +promo tional +sc am +villa ges +sket ches +ju icy +for life +au dit +so lo +fundam ental +len e +philipp ine +t end +conserv atives +sponsor ship +dd le +a ine +h tc +os i +hul k +w af +ภĻ +evalu ation +ant ine +sle e +robert son +roo sevel +ag i +sophi stic +emplo yers +bubb les +ko wski +inter action +sh u +bou le +ic an +j are +han k +leg itim +k nicks +kar ma +recei ver +per ks +u h +sta ir +sun i +labor atory +gra ves +voc als +oo t +c ture +thri ve +tic o +ãĥ ³ +b w +carto ons +mcdon alds +dra w +y ung +pl er +li d +eth ical +groo ve +ent a +international womensday +pat ron +wor ries +ðŁİ ħ +ðŁij ĭ +ka therine +di az +tor i +bach chan +tru st +min eral +ic om +buil ders +bor n +col oring +lat te +ca se +revolu tion +tra der +ox id +chi pot +inst antly +sou thern +se hun +pro b +her nandez +lis bon +hu awe +p ong +me a +ro oney +wheel chair +ke en +be tt +cor in +regulat ory +di splac +ka ren +sch em +sun sets +wh ales +remin is +he p +hi de +mar cel +pand ora +do yle +th fc +ot to +no kia +trans gender +ko v +hawai ian +sha ve +so vere +exc er +nick i +pu g +st or +ro th +wee t +leg al +dig nity +po w +hom age +ðŁĩ³ ðŁĩ +s re +can on +la x +wo ah +quart z +ñ a +gree ting +flick r +nai robi +advoc ates +an c +vi i +eu gene +th ra +c re +el an +pen sion +th letics +ton i +re agan +x v +sto re +ben ch +har lem +todd ler +sent enced +âĻ¥ ï¸ı +glob ally +che aper +u f +ma m +nic o +ik u +tho u +ni st +dam i +th ala +rho des +sal e +bow ls +â Ī +las vegas +sanc tions +adm ire +mat ched +un able +travel er +ele ven +straw berries +âĢĶâĢĶ âĢĶâĢĶ +stu dio +jac ques +im s +valu ed +s no +cheese cake +n xt +e os +s x +f x +ton ic +hat ch +chic ks +gra ds +hand ic +r ory +as p +ri pped +denti st +n en +lu fc +âľ Ĭ +di ge +hop kins +sher man +f da +for all +ash ley +str and +h y +liqu or +buffe t +ess ence +phar ma +suri ya +ðŁĴĻ ðŁĴĻ +festi vals +z an +re fresh +pur ple +uni forms +kenne th += ) +as an +hel sin +transform ers +k ali +person alized +chal k +bo bby +â Į +the mes +depar ture +prin t +illustr ations +qui et +agre es +gri ff +Ø ³ +m iti +toge ther +conven ience +ab ar +car lo +turt les +info sec +some what +ar lington +scholar ships +emir ates +mu ms +st ella +auton om +fe ather +g ore +nom inees +fragr ance +Ñ Ĥ +w ong +thea stern +gr e +z illa +is i +bump er +go o +do zens +ab duc +âļª ï¸ı +o ils +don ors +sil icon +i pod +fortn ite +ðŁĴ ¨ +tor o +spark ling +consci ousness +pal a +nu m +moun ted +ffin s +thi eves +team mate +pra b +om er +ta pes +bo d +mit su +ste w +e re +p bs +tu sc +lo we +ra de +parliam entary +h m +ed gar +ðŁijĩ ðŁijĩ +to a +a gh +hon i +s late +ge ek +ap t +hard t +ta p +horiz on +grow th +make over +hi l +paper back +id an +reha bil +gi u +possi bilities +let tu +fran co +bo ss +ach er +does nt +mo e +ta ker +huss ain +ml k +di l +th ia +ham a +real ised +raven s +curric ulum +m ith +k night +ted x +r v +isai ah +cumb ria +birth days +f ing +pre z +mu barak +exquis ite +clear ance +y en +par i +ev o +à º +modi fied +app lying +imple ment +disco vering +chap man +indie game +dis k +crowd funding +mach in +li vel +sty led +âĿ Į +ma king +rehear sals +nutr iti +subscri ption +and ro +cre ators +car ries +ky lie +cam den +appren tice +tax pay +c ca +tuesday thoughts +pis sed +er man +dete c +freed om +mer i +.. ! +psal m +sun light +per spec +be ings +book store +rock star +fun ctions +p ence +fav es +z n +obam acare +sp ill +coven try +pi geon +pi vo +ba it +kol kata +av al +don or +wa h +privi leg +tra ditions +rajas than +ten ess +portugue se +yn es +tack les +de fic +tor n +pol ling +thor ne +in a +bened ict +bar ry +cal ories +ver dict +save the +nor ton +off ice +main stream +impro ves +fr on +respon ding +real tor +scotti sh +de clar +r l +shi v +supp lier +re sting +swee ts +qu i +. âĢ¦ +whit ney +startu p +thank you +teach er +h alls +ha ve +hand made +pro ving +quar tet +ro chester +li an +virtu al +mend es +of icial +mid lands +x box +meas uring +o vo +accommod ation +bri des +collegi ate +intellec tual +in car +ni ag +ðŁį · +sf w +coco a +co ats +civil ians +presi dency +mat rix +sweethe art +tri athlon +wag ner +ra dic +plann er +the o +execu tion +k um +the walkingdead +sc ar +ro tation +blo gging +bom b +re son +bb les +st are +assi sted +e do +brand ed +war nings +thor pe +acknow le +satis fied +sho res +ri d +dor a +phys ically +bi gh +appro ves +ha h +ric al +vers atile +pret end +lu m +ab hi +ye e +sp it +ãĢ Į +dj s +ash tra +j t +ven ues +gram mys +cy clo +tr acker +over watch +repl ica +el yn +nr l +lind sey +hom o +ballo ons +kitch en +si s +am os +ende av +ðŁĴ » +a rec +thu g +hoo ked +hr c +new york +bur gh +americ as +patric ia +ug u +ap athy +ha st +psy chi +cor k +petro l +ðŁİ ¬ +ak u +po pping +psycho logical +au x +g ma +cad illac +wa ste +auth ent +bri stol +nam e +que er +to ber +jer ry +com in +ch ant +privileg ed +op ar +lo ser +tex t +mar ker +stri es +equ ally +ak i +christ mas +gare th +ble w +em ma +imag in +se als +che at +conditi oning +j ana +ren s +dar ies +o asis +disc ounts +coun cil +i ka +shir ley +vou cher +al ps +w x +q r +dri ft +attemp ting +ut c +Ø ª +gonzale z +m f +jo ker +paralle l +pa re +aspe cts +proce du +n p +am a +rale igh +bright en +gu ire +radi ation +cre scent +ho b +il le +str and +v ore +n ard +che st +di wali +av atar +al der +d ling +pa thetic +ðŁĴ ĺ +spir it +jor ge +film making +ðŁĻı ðŁĻı +challeng er +b j +down town +ht ml +ade qu +twi sted +in ely +( ' +wra ps +oper ational +y ne +n us +mag net +market place +health ier +snap shot +dam on +inter ven +fe derer +ow ls +biscu its +j p +ro deo +blue berry +lec tion +fron tier +summ ers +re yes +pede strian +go l +caf fe +refur bi +bou lder +me ghan +speci alty +la ss +e i +suspec ts +appro x +rr r +ra th +st im +cru shed +he d +wh un +lo af +cr ore +river a +gene tics +so ck +wa sted +ny pd +answ ering +do ve +bel la +ol in +du n +fi ji +pre tty +spar kle +y un +j d +euro pa +li fts +am ber +mu r +te k +boy d +roy alty +in do +ri b +go tham +ti est +inst alling +ke mp +the photo +cos mic +) )) +whole sale +loy ment +eas y +su ing +sett led +af p +pro ver +suppor tive +re es +ne ath +deli ber +c é +wel come +pic oftheday +new born +pat ty +sun s +si est +fl int +diffe rently +spo ilers +troop er +g ins +cor y +look out +equi pped +ta pe +to by +resear cher +u sh +ke yes +al ma +induc tion +k w +k har +sl ick +bri de +e ur +cra ving +book ings +ch es +tr unk +vern on +sp her +cryst als +rel atively +pom pe +uni ons +val ley +par a +w ant +ok c +de af +ser gio +len non +sh ay +cr a +v at +he e +t we +liqu id +pol y +ðŁİ ģ +b ent +be aring +motor sport +bar be +te sti +han i +fin ancing +astron aut +water colour +ri sh +comic con +gar t +wr ong +ber n +it an +ste pped +fil ters +c low +me x +dem ons +all o +expand ed +comm and +et ers +go ats +si ri +y r +pot tery +mari on +i le +el an +san to +person a +du ke +hom eless +li ghted +wheel er +chang er +cab bage +sur real +ham burg +sma shed +str an +k not +i art +ob i +be dro +di al +th ick +b ingo +fu s +vacu um +con ve +ati ve +accur acy +accoun t +re fer +ri z +spider man +ban a +r ite +u b +ab s +medic al +lin k +si em +> >>> +be tra +g lowing +re actions +pupp et +spa ghetti +ang s +re medi +pray for +roy ce +char lotte +£ ï¸ı +gh et +affe cting +ro de +soci alist +mo ses +az i +o it +re porters +cd t +ap ing +s nat +minim al +wa ist +sie ge +>> >> +ri g +schmid t +h are +ec a +thor n +he mp +es the +cly de +th a +don ut +moham ed +ling erie +le gg +carpen ter +perform ers +de a +imag ined +cur se +la sh +ct r +agu a +ro ar +gr i +ro le +j fk +resur rec +roosevel t +maril yn +sm alle +will is +wa ited +char ities +the res +li k +origin al +car i +c ough +cru ci +la gun +contra st +k ou +arm our +re moving +t ent +maz da +bri ghter +thi ef +cor ner +tequ ila +buzz ing +al bi +p am +az ure +disc oun +pixel art +possi bility +ham ont +tra des +bu da +hi ve +vers y +fin ch +tran spa +em i +terri fying +in qui +g ba +sub stitu +collec ti +plac ing +cin dy +k ann +pa tho +diamon d +mour inho +guine a +anthro po +air s +pu mps +ì ļ +pas o +cur ling +an ita +resi dency +ne wh +jo on +cigare tte +que ue +ex trac +gam es +spl en +ex press +public ly +bon nie +tribun e +ba ek +reason able +c or +timo thy +she eran +Ä ± +f dn +su tton +concentr ation +carav an +x avier +al ger +cy lin +freder ick +ner ve +pe ak +lettu ce +j ail +pre game +kav an +up graded +eco logy +squad ron +gra pes +goo g +pa stry +ðŁĹ £ +ãĥ¼ ãĥ +mil ano +awa z +presen ter +ðŁĮ ¿ +her d +king s +tem plate +fl our +h v +k ley +i ya +spe c +at er +frankfur t +co ch +tex ting +del i +communi st +regi ment +ele anor +anticip ated +ðŁijĮ ðŁı» +thephoto hour +ran o +survi ving +simul ation +daw son +ar in +aqu a +m or +âĢ¦ . +cin o +ira qi +sh az +dun dee +we s +dra u +hann ah +s news +occup ation +ste en +x m +ang les +sett ings +gur u +kno x +or ca +shap ing +w ent +dr illing +zz ie +br i +kis sing +fin d +ma ine +âŃIJï¸ı âŃIJï¸ı +ðŁĮ į +lar ry +bu sted +ta vern +acti vely +- " +replac ing +no d +un lock +. " +âŀ ¤ +affili ate +to w +l n +happy newyear +di f +j m +green wich +contro versy +daw g +con dol +sav annah +compens ation +touch down +te o +amb itious +embro i +convic ted +iart g +bar ack +tr ance +testim ony +au dition +thum b +my ths +be x +que z +orch id +den y +entit led +hoo d +gr ant +in box +blue jays +r illa +smalle st +bur den +in famous +divi ded +boun daries +t ter +el t +wy oming +be verage +me sm +one ws +budd hist +y ana +as sad +is ms +bar rett +predic ted +back to +tw it +e there +cap tains +escap ed +ay o +lam borgh +gard ner +la ps +k al +adverti sement +insec ts +na po +am en +ac y +r and +g k +te h +k athle +tri dge +pan cake +at ro +pyram id +bu la +paral ym +gau ge +en cies +tom y +biscu it +but cher +quali fier +coun ty +ke i +po ols +dar ker +should ers +ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸ +sp re +( " +writ ers +g m +ðŁİ ĵ +k nit +hu ff +mt b +philli es +o st +den is +g art +licen sed +inter face +ex cel +d well +from the +co fficial +az zi +appear ing +fore st +n ana +ke ith +manufac turers +beck ham +) ? +e se +col ony +delic ate +ut ter +mc in +transpl ant +pre ferred +par d +ari e +hu b +po ds +perspec tives +pic t +del u +app er +be than +p mo +crimin als +femin ism +sh ack +circum stances +fel las +prote sting +wa x +sugge sted +t ator +dre w +om ni +fa ke +kath y +re b +del ine +ber ni +mi sty +ðŁij © +er able +break through +men swear +millenni als +chan yeol +la z +inser t +rep lies +phra se +n x +ihear tawards +audre y +gran ite +rac ec +ori e +ter ra +innov ations +britt any +at eral +pe ar +bio logical +sh ments +institu tion +m sn +frequ ency +d man +neg lec +t f +ste fan +fox news +ty po +comm s +sequ ence +car men +wh ites +econom ist +exe ter +se um +re sorts +cas ually +bun de +divi de +Ø ¹ +ga g +cre ed +reti re +cau cus +rapi ds +wrestle mania +tul sa +sunder land +fundam ent +o di +yam aha +v ary +intri gu +el se +be acon +an gie +tra ded +tran sm +g ents +kn itting +gal ac +ðĿ Ĺ +u to +sea side +hol t +re rs +far go +train ers +mon soon +b ale +sou ght +mad die +h w +co li +fr an +fav s +ðŁĴ Ķ +int ent +r ally +s bs +lemon ade +barack obama +bre ad +stick y +explo sive +chel ten +t j +as soc +ram en +hom ies +v log +mi ster +lor d +âĢįâĻ Ģï¸ı +aly ssa +sketch book +ru mble +cat ch +migr ant +discipl ine +un likely +chronic les +fl ora +sl ams +am id +s boro +coo p +ju mps +tran qu +mel is +sof ia +en ri +gab e +sy ri +nicol as +cha i +w v +be cky +foo ty +ta o +suppo se +ðŁĺįðŁĺį ðŁĺįðŁĺį +plu sh +ri sh +ðŁ¤ ĵ +k ha +satur days +ac cent +he c +lim it +carl ton +wi red +taylor swift +ðŁĺ ij +sq l +har ro +recipi ents +g at +go p +th of +amaz ed +gh an +ðŁıĨ ðŁıĨ +por to +cla re +di stant +na c +ohi o +ðŁĻı ðŁı¼ +mt n +anti bio +dino sa +me sa +par tial +b v +lear nt +lov ato +questi on +ex tract +gossi p +gi bb +niag ara +ðŁij ¨ +displa yed +so oner +ste vie +nug gets +ml n +bro m +tur b +give aways +stu pi +bl ink +c ili +conven ient +mo h +vi ve +f ric +cau se +cham ber +cu les +ne arest +is se +small biz +t j +canadi ans +smar ter +bra sil +ra re +que tte +w ha +cand le +at omic +ðŁijį ðŁijį +warri or +relax ed +stri ps +ne ur +k ka +r fc +jen sen +reco vering +respon ses +sal am +ortho dox +acti ve +ell ers +n it +âŃ IJ +metro politan +centu ries +vi da +gra ding +transpa rent +sim ple +do ts +superint endent +elev ator +autom ated +red skins +ima m +summer time +jona than +ge aring +michel le +confl ic +m ice +to te +publi sh +pa x +) - +na iled +á ´ +tele scope +ser bia +ba b +ape u +st ically +sen ti +r ats +isol ated +grou p +hat red +paranor mal +stan ley +ali on +safe ty +l s +ठ° +nex us +alexand ra +mas ks ++ + +tr on +au k +brother hood +brow se +mix es +sim one +mu sk +appro ve +lo la +ex p +per th +fu turi +un seen +d m +chel se +sc outing +o we +portsm outh +k ram +mi ze +di spen +su p +d lc +adver t +tere sa +is le +cy cle +met all +shi elds +marin ers +ra z +ing en +fun d +an go +jon es +o ka +mad den +broc coli +domin ic +situ ations +mer o +cric ke +puni shment +d b +sha king +ðŁĺ ļ +m q +ari ans +le h +cla w +we ds +d ure +ni el +j elly +gour met +tra ders +le vi +w ages +kne es +wi se +heaven ly +avi d +melo dy +z ack +ban anas +apprentic e +pro p +fun ny +o de +respec ted +me gan +fe wer +dra fted +med it +gra pe +us army +cru sad +vo cali +prepar ations +non sense +us age +th r +ro th +wiz ards +insi de +promo tions +mon a +red sox +si g +eleg ance +ch ia +univer sal +ãĢ į +ra ja +un ga +pol lin +filip ino +ak a +t sun +ik on +bi king +decor ations +z ac +cade ts +hum our +ag m +re ppin +vac cin +elo ve +u w +dia be +galla gher +az er +do l +a while +pro minent +wel sh +t ann +' ) +bi en +wa g +in al +c wc +wic ket +ur st +q anon +x e +out door +dun n +star r +co logy +ric ky +u efa +reb ounds +s music +inf ant +ðŁĻ ĭ +so p +u mber +hand ing +beg in +sor ting +ha sh +sp ati +re k +buda pest +black hawks +dele te +ro m +can did +auth ori +de bris +spe cul +inter section +marri ott +im ran +ðŁĺģ ðŁĺģ +cru ises +ram sey +rafa el +aware ness +vas cular +beyon cé +ru g +ðŁĺ Į +festi v +ar am +s able +bas il +p ill +flo oring +un beaten +implic ations +u f +w ound +for ge +poin ting +po ts +popular ity +ðŁijı ðŁı» +mani pul +s lots +deb ates +abs ence +ver mont +never forget +wri st +gl oria +ren ce +hu sk +mel ting +ðŁİ Ł +br aces +tim ely +transform ing +am ps +ma k +po e +ah an +gener ally +nd p +ale ppo +unic ef +pro fs +nor d +ma sk +jackson ville +v v +sh ells +bloom ing +oper ators +char coal +ne ville +ma gi +chi p +sam a +ir an +re forms +accu mul +ru e +æ ľ +web sites +ga on +devast ating +sto s +glaci er +ra pp +chipot le +pr a +or ous +rom ney +seas on +decor ative +c isco +dit ch +compla in +ll o +assu me +ðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤ +n els +cent ric +ft w +car rots +tat a +can ter +per ience +li ers +demo s +bl unt +oper ate +reserv ations +le ah +sub stance +di son +an te +elec tion +v ue +squ are +non profit +ca a +f su +y am +ãĤ ¤ +v ladi +comple tes +mar i +philli p +ne ill +er as +ka it +men do +mahar ashtra +g p +dan e +provi dence +ther apeu +juven ile +me mo +in corpor +aa aa +seven teen +teen ager +à £ +or ns +wi de +cu teness +tw d +ff les +bar a +com edy +over time +y az +bar on +unemp loyment +ðŁij ĭ +exter ior +den se +cent res +match up +history month +artif icial +qu it +e sk +war n +cr itic +j af +ðŁĵ ² +inform ative +fu els +recy cle +nam ing +stri pe +sol ic +mole cular +dee pi +con vo +s sel +na e +de scent +ti z +accoun tability +ter ry +r ito +sl ay +em o +dem ol +sens ation +co v +tor e +round table +y ol +excu ses +ॠį +tur quo +hh hh +pod casts +cele b +me ssi +li o +man n +contribu ted +u z +gener ator +ele ts +veg gie +indu l +en suring +detro it +pun jab +tran spor +instru ction +ad d +por cel +pan eli +cir cles +persi st +clay ton +sp n +dog softwitter +is nt +sp r +retail ers +p w +hun gar +el ena +mon aster +gu atem +je ssie +an z +ra shi +fle e +car ving +fau x +l al +hen ri +d jo +du ll +s ana +lar a +glo be +cri mson +com pass +pau se +na b +lion el +ba ths +u fo +invent ory +sin gh +sat an +ðŁĩ ¸ +ce ments +in form +gener ated +bi den +av g +tas ks +de er +sa u +ja iled +pa stel +sc c +na il +steel e +per is +lamborgh ini +pur sue +mar gin +u ch +bo sch +dra in +cl ara +bo m +lat ino +web ster +rose mary +r ha +s oun +billion aire +not ch +percent age +con or +' " +hom es +earth day +h ort +big gest +di sin +wal ton +edit ors +im ma +om ar +equi valent +pharmac eu +ah med +cam eo +han ni +under rated +ge ment +micro bi +v oo +honor able +obe sity +âļ ¡ï¸ı +limer ick +invol vement +st agram +boule vard +bur g +blackand white +liber ation +fi ve +inter im +sm m +rival ry +cap abilities +stat ements +thu mb +ve d +sw ans +bar ber +e que +seren a +hel m +noo dle +sam pling +n awaz +sing le +thunder storms +sh on +in ev +ë ¯ +to pp +orch ard +bi an +ðŁĺ Ķ +door step +salv ation +marke ting +r ons +cle mson +ra vi +in take +stand with +sin a +ha iku +ple y +elector al +ph illy +la ys +electr ic +cap turing +u pp +er gy +believ ing +cul tures +es day +inva sive +ed ed +spee ch +end ur +viet nam +boy cott +pe de +deli ver +ðŁĴĸ ðŁĴĸ +mer chant +st ir +den ies +poc kets +o ti +cu ddle +ro land +mm ed +den ed +lear ners +hoo p +sour cing +h acked +di m +environ ments +ben son +jud icial +wor cester +pear ls +govern ments +arri vals +cor ners +tun ing +la bour +y m +or dering +le wi +i fe +hygi ene +thou ghtful +indone sian +campaig ning +princi ple +assau l +ru bb +at v +wil ly +en tre +il i +ph on +du ties +âĻ¥ âĻ¥ +sn akes +lo op +am ar +conver tible +bon ding +ment oring +max well +ethere um +destro ying +ax is +ca iro +fin nish +sho ck +ðŁĺ IJ +cal eb +com a +pe dal +co re +contin ent +el son +temp o +helsin ki +ac p +tack ling +st ated +bl a +dou b +sma shing +a ja +camer on +disru ption +warm th +being salmankhan +bullet in +o de +syrac use +ar an +mc gregor +bul k +an ton +confir mation +sp ine +im ran +instru c +jac ks +chi o +pal m +str e +embarra ssing +un t +elimin ate +to ss +c ise +a ws +oni sts +sh inee +jo s +ho se +li vely +opp onents +mo vements +recogni zing +sandwich es +sh akes +exerc ises +se at +profe ssion +merry christmas +lu gg +adopt dont +mar vin +byr ne +un le +he t +ku wait +rah man +aspe ct +humb led +gen es +f and +long time +) ; +cam pu +an gus +ðŁijį ðŁı¼ +q uran +sle eves +s lic +¸ ë +twel ve +your e +i ke +go gh +b st +dic tionary +reflec ting +to on +yar n +em bed +ðŁı ´ +re serves +floo ded +ver iz +du sk +estab lish +pro li +au d +ritu al +or bit +declar ation +recor dings +cam o +cas sette +good luck +cu tter +bo p +b ho +che ating +paci fic +ma res +tim er +col t +tr ous +tomor row +han sen +ci e +w ang +ban i +circu lar +ac ute +far mer +co ys +p se +ir ving +w j +haw kins +b ison +ur day +cru ising +o te +k ath +whi stle +your selves +ant is +sla sh +thorough ly +ke sh +ser ie +ex em +en ig +guil d +sh red +ho gan +ap o +ä ¸ +pu zz +ne tball +au ssi +panor ama +ws j +av is +ar ming +hum ph +brow ser +cri es +fo ggy +mat te +ðŁĮ » +it er +tal lest +by ron +cap tiv +je su +any ways +flag ship +p ton +we y +fay ette +financi al +f oul +solom on +jenni fer +cucu mber +ar gue +tex tile +wrest ler +john ston +pa stor +ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃ +cac tus +edi ble +re served +ric hie +met res +ingredi ent +h ella +un to +ch ol +cele bs +po ets +gra ham +hay den +coinci dence +b aw +communic ate +flet cher +/ - +tole do +ecu ador +coun sel +s laughter +line ar +at p +os u +jo el +ev ed +conqu er +ru stic +plic ity +recogn ise +room mate +cr acked +jas per +ph er +ðŁĮ º +wo ven +mo ist +ff c +ste ering +ni sh +stand ings +frequ ent +ar di +haz el +as msg +bau m +d art +si dd +nat h +ch ero +card board +c ss +n sfw +pa ir +ðŁĺį ðŁĺĺ +occur red +homeless ness +mal one +ph e +xi a +pad dy +decl are +theat re +b f +per sian +ta d +ax e +susp icious +lam b +mu cho +sen ior +st as +k ite +st ing +gra d +k af +wat ering +Ø ¯ +spi ral +th ms +educ ator +jer ome +of c +clo ck +su l +pe mb +.... ..... +park way +de aux +restric tions +m ons +need le +e j +le agues +water melon +am an +pl enary +max im +w ab +coming soon +bry ce +vi gil +super market +fortun ate +turquo ise +presi dent +li v +inter ns +feel in +fix tures +stun t +st aged +premi eres +lo k +prac titi +shor tage +log ne +ve c +con cor +roc ke +li g +com posed +syn thetic +di p +cam ila +ch is +j ou +su san +eye brows +supp lement +satis faction +moham mad +ti bet +house of +pu n +as sam +shado whun +psy ched +se duc +mand atory +her bert +sc allo +stream ers +proto col +block buster +produc es +sch nei +lau rel +tri be +time hop +pl a +mod elling +tv time +mtv stars +wi dow +me tric +ch am +con do +flow ering +ale c +d ms +inten sity + ¨ +mccar tney +islam abad +k b +f fi +ph al +anal og +f ond +h acks +positi vity +treat y +sub marine +conne ct +sel en +categor ies +cu b +organi ze +si k +quote oftheday +remin ding +am or +loc king +ðŁijı ðŁı¼ +comp ound +et te +b out +rec ur +fe rence +mi zz +tren d +hip ster +for tress +forth coming +preli min +o dyssey +ang p +del ici +even ings +ðŁĶ ¹ +i q +d w +da ir +kathr yn +christian ity +moon light +ha b +wh oo +f bf +se th +genu inely +pa x +char ity +deplo yed +b nb +bu cs +ju dg +con ge +plant ation +im press +car a +sc lub +sco py +land ers +compla ints +b ama +re build +x y +real ism +sh our +le in +brac elets +mer a +assas sin +an chor +ðŁijĮ ðŁı¼ +lin en +con fron +chronic le +comm ent +cat alog +il les +gor ge +me try +jung kook +love my +sent in +se em +fit ness +alli ed +ts man +digital transformation +pr an +lo ft +min ton +alden richards +en vel +cher ish +certain ty +zz z +rhin o +per kins +en rich +cape town +ome ter +sec tions +ske leton +def enders +ðŁĺ Ŀ +pen c +bri t +ja h +capital ism +ðŁ¥ ĩ +baz aar +re me +ex t +kk k +conver t +stor my +b ye +kar an +chry sler +ad os +pre ssed +syn c +ation day +dang er +bad ges +refu ses +em powering +ly m +ex ports +adoptdont shop +ðŁĩ ¯ +th c +awa ited +focu ses +fin ed +o at +haha hah +âģ © +n family +fi ona +luck ily +thr illing +ty ping +out break +di es +he u +craw l +ne sses +o ath +scri pts +gee ks +ðŁIJ Ŀ +p b +mathemat ics +al is +________ ________ +gymna stics +acti vism +recommend ation +gre n +wa in +cour ty +n apol +cau li +hor nets +g als +jo ckey +dir ty +at ar +enor mous +pe st +greg ation +an os +ii ii +def ends +black historymonth +at x +mb c +lugg age +wit ch +co b +la sts +cu m +gg g +ba thing +n ar +ce bu +ðŁį ĥ +navig ation +min e +re jo +ðŁİ Ģ +gif tide +re ta +use less +pu ll +defic it +al lu +ati me +it v +tr illion +pu e +ac ies +proce dure +l ori +jen ny +c ad +ul ously +dr ac +promo tes +ing the +can u +woo hoo +na omi +zar dari +ts u +be ir +sd g +le ver +we ber +ab ud +lun d +crow ded +deplo yment +ter rain +ken ny +ho f +witne ssed +lo ch +j k +bul ly +w ren +poe try +do ff +ww i +mo red +din i +cul ture +promp t + ¥ +maur ice +to pps +r m +cor respon +ab out +jewel s +gi br +eag le +ðŁĺĺ ðŁĺĺðŁĺĺ +l ending +sou ven +ç Ķ +contemporary art +establi shment +j ong +âĢ¦ " +gat or +patri otic +mc coy +v ape +human e +feli z +coach ella +re posting +ste als +fu ller +n ering +at ra +( - +bla ke +he ather +wor ms +discipl inary +rede mption +y ard +am in +" @_ +d nc +t ds +k appa +ne wark +comm its +spe ars +j ams +t and +msn bc +inter medi +aim ed +at ic +teen th +observ ation +kash mir +kavan augh +ou l +san francisco +re u +bel ated +cho w +pass word +st ills +deta ined +sar i +day ton +dar ren +itali an +ar th +amu sic +ar bit +w m +v m +he m +dou g +my r +a sho +pre v +vin d +bra h +sta g +ภµ +pre views +gu k +con taining +leon ardo +sad dle +ru shing +st av +lon gh +gam bling +ve gas +reserv ation +end ale +bal a +fl a +vari ant +he dge +bulgar ia +nat ali +we aver +sol st +encoura ged +ap c +as parag +ne st +cycli sts +fe l +ìĬ ¤ +overwhel ming +pey ton +j it +a post +mb le +ble eding +neighbour hood +a very +expre ssions +mac donald +gi gs +mon ds +illu sion +n ct +cam ero +over head +my th +ol y +vi o +et v +lau rie +unve iling +pri or +con n +iron man +di ff +day in +crit ici +con go +re vision +wal e +direc tor +p ines +black pink +gar ner +cur ated +manit oba +h ac +common ly +bar ton +.... # +mor tality +live smatter +philos op +shor ter +con vince +fre ak +vend ors +insi ghtful +el ly +sens ors +e led +s berg +weight loss +u kip +sp ur +priv ate +qu a +ss c +, ... +supervis or +advis er +amaz ingly +less er +at es +mah on +oooo oo +sar as +pmo india +waff le +un ders +toler ance +sculp tures +her sh +kno cking +smo ke +cathol ic +gri m +tra veled +fli p +ge off +dinosa urs +sle pt +scar let +ok i +compla int +ob sc +nam i +la g +cross fit +u fc +mc cain +refe ree +sad ness +pen ny +li eu +mo de +ki er +vol s +w is +el on +she a +ba o +son ia +cla ire +em manuel +moist ure +di gest +vi ii +t eller +ch on +access ory +night club +foss il +aw an +hu sky +ab original +brand on +ffici ent +cou gars +ste d +ad mitted +igno red +content marketing +ag as +v ase +execu ted +negoti ations +she ad +n and +tab lets +go th +ts al +d fw +on ep +protec tor +sp ho +gaz ette +andre as +ss er +comp ilation +ha v +contain ers +bro ker +soc al +porcel ain +hy uk +air ing +ðŁĴ ° +publi sher +scen ario +spart ans +re viewing +itu des +ed el +pear son +ba sh +mau i +a ad +ðŁĮ Ĭ +li u +ul ate +program mes +fav our +web design +real ty +motiv ational +cro sses +' ... +bus ch +adjust able +ar jun +mist ak +dimen sion +pi stol +weigh s +en y +unve il +indy car +gor don +f ade +fran ken +qual ities +bet t +loc ate +ker r +sp c +confu sion +ne e +luck y +bas es +dep ends +fire fighter +ol a +re t +mar oon +ðŁĶ Ĭ +w am +defin ing +whe at +bi l +é s +b hai +psy ch +ta u +ic ans +thi k +ob ile +inspec tor +ìĨ Įë +ill on +go s +ev angel +fa i +si st +voc ation +bur ge +chi stan +renew ed +enthusi asm +en ting +ag ri +ike a +m sc +aero space +sens iti +memo ir +hosp ice +co caine +der ry +mechan ics +Ħ ภ+tin o +reduc es +collec tors +in justice +supp re +v ana +ab un +nap a +su sa +os lo +e ff +en core +lic ence +ched dar +z al +moun t +ðŁĴ IJ +threat ens +!! " +archi e +fu tsal +scu ba +jo s +gn on +se xi +s official +compar ing +domin ant +tof theday +fa it +propos als +gi ft +y as +cn c +l r +ha b +reser voir +beli efs +gener al +mar ti +t d +est e +ì ł +wi l +ðŁij ¯ +ðŁĶ « +sp x +et work +excer pt +e instein +hir o +sil hou +team ed +per ception +corri dor +mental health +hin ts +ben ny +induc ted +sw x +wi desp +spe ak +cher yl +dru g +ðŁĺ ķ +h f +asparag us +myster ies +fitz gerald +off er +therap ist +care er +dam aging +ts d +per u +wei bo +y ay +phoeni x +disc re +mac book +bar ker +stig ma +sp read +roc kies +kang ar +bri dg +pa i +bi shop +ta iled +capsu le +ðŁĴ ĵ +ge of +roy ale +short listed +o ste +ash amed +ch app +key e +cl a +screen shot +austri an +nati ve +en ight +juli et +michel e +ðŁĮ ´ +travel ers +pi l +football er +win chester +ðŁĻ Ħ +azer bai +gold eng +organis ations +interpre tation +predat or +ofthe week +lo gan +pok é +mari e +cal la +t nt +cin de +ge tic +fit fam +gra v +ow ens +ðŁĮ ± +shoot out +sal is +commissi ons +co he +p tic +ni xon +hi a +amb ition +mar ine +cruel ty +t k +cru de +sal ty +jim a +mon go +ir ony +on wards +arre sts +strang ers +ig er +cycli st +ra g +exten ds +tra dio +bour g +mo i +el la +e able +lex us +au l +der a +histor ian +mor ton +ti ff +man ner +ko t +d k +po inted +mar qu +a an +en ey +du blin +on poli +em ili +secre t +fl o +âļ ¡ +ba j +ste ep +accompan ied +rum ours +dev i +purch asing +fi g +pu b +sch oo +autonom ous +go alie +x ia +autom atically +re vers +ter o +fu ku +titan ic +shoo k +sand als +see kers +exc av +nor dic +bigo live +ba ke +r att +z ak +ne p +ðŁĺ ¤ +cand y +billi ons +book worm +pp et +à ³ +sur faces +sc ars +phil ip +do gg +ci gars +co te +transl ated +cur ator +sin dh +han gover +bre wer +on es +el ton +ðŁĴª ðŁı¼ +mar cu +elli ot +righ te +di oce +ru ss +rail ways +grand son +as cen +apo logy +awa it +mob ili +re spir +parti san +oli vi +stri ke +yo o +white house +expre ssed +pu ps +bed ford +cul tur +fro gs +fly ing +cav ali +c ds +fri ger +street photography +re solve +tali ban +kan g +cru shing +ju m +ðŁĺ Ĵ +william son +tan g +cur ly +t man +veter an +fa ire +artificial intelligence +un anim +pre n +back drop +fr ances +oc cer +doro thy +work ing +ar thr +conver ted +day light +serv ant +pad dle +compla ining +thir ty +nad al +ak u +ibra him +ad dressed +p iss +green house +batt alion +si mulator +out lets +embroi dery +ðŁĵ ± +fis cal +ger ard +sas sy +ðŁİī ðŁİīðŁİī +vent ures +mer it +public ity +ðŁij Ī +sophistic ated +c tu +conven tional +condol ences +isra el +tra dition +ar an +te ss +gla d +ðŁĺĬ ðŁĺĬ +correc tion +ge on +am d +or ship +be ast +ch ment +ì ŀ +nic o +wk nd +wel s +cushi on +beli e +vo c +idio ts +under neath +pu ma +corn ell +en ation +lu l +swa ch +ab ig +u rer +mi e +form erly +ca f +er nal +chor us +juli us +sen ator +âľ į +wh ir +salv ador +ph d +uni fied +boo ster +graph ical +w rec +son ny +mi z +dere rs +s all +ven s +tusc any +wi d +y ong +kur ds +w az +trol ls +mac ro +cat urday +pre ssing +sa sha +cent ennial +gu sts +em c +be fore +den ise +cu st +ðŁĵ ¢ +lo oo +base l +eng land +y olo +ar du +manife sto +do ha +ì ľ +kni ves +bourne mouth +bi bl +bar b +al icia +Ø © +com er +cycl one +g it +ane ws +character i +vent ura +in tra +sf giants +hu t +be a +dar win +ell er +al v +re ese +bl y +kar an +conclu sion +man ny +fla kes +unite blue +nad u +co pp +ed ges +lanca shire +i als +o tta +philipp e +l ent +che e +ment ors +festi val +an ism +compli mentary +r j +pu g +d ine +we i +cli ffs +sar my +ti veness +treas ury +il and +after math +rabb i +ou n +bou quet +herit age +zi on +sur render +shen an +in ks +kar l +gh ty +pol icing +exam ination +ce y +per su +measure ment +hydro gen +lu han +âłĢâłĢ âłĢâłĢ +war i +о Ð +j y +fow ler +mis h +al fre +âĺ ij +bb naija +cat alogue +recogn ised +sa ver +hu skies +col in +mun do +si va +p ng +discoun ted +man utd +fre sno +de vin +prelimin ary +tro phies +pla stics +du g +pro cu +indi go +g ard +dy lan +pit ches +ground breaking +in son +bl ac +an thology +f h +expl ic +r ard +admi ral +so chi +la shes +splen did +en vy +ad v +sex y +festiv ities +stic king +bi b +thr ill +op p +ari el +botan ical +endur ance +fe males +br icks +vat ican +black pool +ber mu +br ough +roll er +bi d +sue de +sloven ia +mm ing +ml b +med alist +di ans +rehabil itation +ne on +s go +li thu +ram os +z ed +pi anist +inten sive +broad band +stu dy +peter sburg +lu ca +ah hhh +phys ician +dill on +tele com +gri ef +mu n +ac ro +si ded +s ly +blo ws +classic cars +tri um +ar gy +? : +h ri +marsh mal +âĢ ĵ +to pping +war saw +tran sc +preserv ation +b av +re friger +experim ents +ä º +gl it +sli ga +g age +fac tor +flav ours +br ony +sp o +cook book +carri age +aw ay +ny fw +on ian +w g +simp sons +ro lex +ðŁı ¿ +cro sby +ãħ ¤ +cre di +syn dic +pu bs +ali fe +poor ly +mac ed +ðŁĺ ŀ +behin dthe +w enger +n ats +ðŁİ Ł +rubb ish +procedu res +typho on +opho bia +er do +fu el +vi era +bu mps +millenni um +new zealand +lec tures +it on +mil ky +respon ded +ê ° +landsc ape +.. @ +bo ther +âĸ ¶ +z hang +huawe i +tu ition +s worn +in u +y or +pa olo +au ditions +ab il +malay sian +ho ps +fe athers +mp le +au ts +ã o +boun ty +ic he +ì ĺ +sh q +pin ot +ge ars +disapp ear +video games +t na +alzheim er +ðŁĮ ŀ +a ji +under wear +swit ching +sign age +o scar +ec on +dro w +cl int +pl ated +gun dy +emb lem +ho es +ici st +nel ly +juni or +road show +miner als +at le +alexand ria +ac claimed +v ell +shi va +ad he +en ne +amne sty +h ounds +councill or +ðŁĴ ¦ +aes the +part nering +influ enced +mag no +fl are +extin ction +civil ian +maje sty +va il +law makers +rac ks +mc c +ori an +sp ices +er rors +may er +co ca +pa i +s ooooo +reti ring +ba thro +ðŁĻĮ ðŁĻĮ +âĸ ª +su f +endor sement +buil ding +broo ch +pal la +arvin d +ag ent +kar ate +r hi +c tv +ta ine +um m +ba x +reig ns +uni of +enterpri ses +adel e +fla ke +at tire +bru ce +ba hamas +gra vy +sa in +che ek +tri vi +lo v +e en +bb lo +lady gaga +itt a +. "- +du stin +observ atory +eigh th +bloom berg +kh s +f cc +gi st +commemor ate +ve er +sexu ality +ed c +nic ole +vac ancy +u ser +son a +:' ( +dipl oma +t end +up grades +Å Ł +jura ssic +cardi ac +dr s +widesp read +à ł +dail ies +vend or +sim plicity +wi der +len ses +supp lements +de pos +ob served +vin es +parti ally +renew al +collabor ate +ali g +fin ity +ph u +zz y +pe tit +ðŁĵ ħ +z in +i gu +sm ack +fall on +ðŁĵ £ +back wards +comp onent +o so +compati ble +bin ding +zur ich +thom e +w ounds +ly ric +fresh men +sne aky +fi bro +di et +emplo yer +in sect +h ated +sch er +raz or +n sw +boo ker +califor ni +av fc + ° +preten ding +pep si +al is +un titled +k art +grand parents +e the +o ck +lux emb +visu als +small business +abdul lah +min ho +su baru +h ra +reve aling +heart breaking +clar ity +am g +sl r +** ** +âŀ ĸ +recor d +ici ary +min ded +ye h +exce ssive +knu ck +icec ream +tru th +ev ic +ta stic +ant arc +ren dering +, , +mit t +loren zo +st patrick +bound ary +zi g +vo cab +osa ka +fur n +tu n +gu l +s ounding +blo gger +utter ly +g af +adv ancing +l cd +mar gin +lifel ong +solst ice +sh ra +wa its +ple ar +bre ach +en ligh +ad er +itt le +c ation +ho on +stu died +?? ??? +k ash +ev angeli +ps l +wei ghts +met als +ty res +tur no +wi e +car b +g ale +se al +sun ite +am ic +patter son +á n +eu ph +up stairs +quali fiers +khali fa +apple music +ìĨĮë ħ +vau ghan +al ter +cru iser +mu a +t ana +kat rina +id ols +spo iled +secre tly +fi bre +part nered +um es +gi ov +com et +screenshot saturday +k eller +fil tr +fe t +con way +pe u +bad minton +gi d +m ound +don key +bu ff +lea ther +lar gely +bro ch +int ments +am use +r k +sto ve +impac ted +con t +cr acks +prison er +bar i +contrac tor +ori oles +domin ate +pol ar +am elia +dr c +ðŁijĮ ðŁijĮ +vi st +su arez +injec tion +blo oms +ðŁļ¨ ðŁļ¨ +sti ff +pay pal +sno wing +thur sdays +goo se +we dge +educ ated +weak ness +de cker +abud ha +bree zy +Û Į +hope ful +o bi +rai der +gh am +de u +se ve +par tly +fu t +infu sed +mer ri +than e +some time +hu e +me in +cre dit +sli ding +ran de +cher ry +dead pool +sh ol +ar am +under wood +sky e +distur bing +m nt +poli shed +guardi ans +ha dn +pic asso +ari us +ak shay +ir ri +j h +happ en +la kh +dal ton +at the +s well +mar sha +re h +cour s +j kt +top us +serv ice +r ink +hack ers +dono van +hor o +tc m +may hem +cha se +dev ops +ken sing +sc up +sh ere +quali fication +c live +ton g +n ancy +mar is +der dale +ber man +cinde rella +jol ly +ci c +loo t +collecti bles +hom icide +g ge +epide mic +su ites +mu ddy +gi mme +e rec +- * +tal la +lis le +embro ide +ðŁĩ© ðŁĩª +veriz on +ve ctor +be anie +arti san +ga in +flo res +vi gil +u so +ðŁĻı ðŁı½ +grin ding +gh er +air ports +respon sive +shaf t +can cel +ceremon ies +e me +at ari +bru shes +eag er +bo hemi +children s +yan kee +ma a +suspen se +mor an +mac ar +sun flower +cre w +vo id +ke ar +fashi oned +jen nings +sunday funday +sub missions +me ad +her man +wa i +crit ically +le um +baek hyun +for cing +co bra +ãģ ® +acqu ire +al k +ge ology +pri mar +import antly +ire z +bunde sliga +curi osity +sen a +stric t +con soli +win ters +ven om +chelten ham +ðŁį º +cen a +t at +ba in +glo ver +under cover +as ses +car n +memorial day +am eli +i rene +ch on +syn thesis +spe edy +mitsu bi +sla yer +compos ite +under stands +pe w +inter rup +hen ri +mor row +an om +thof july +g lee +thre e +ðŁĺ ® +and hi +ch att +renew ables +ye s +trans fers +!!!! !!!! +bab u +du ter +lo ops +pe ers +o ilers +pau lo +ic ation +h mu +war a +mer cer +hom eland +fu ji +ale y +year book +re m +re en +ab sur +bo is +] : +caes ar +shot gun +kur dish +o ren +ra e +anci es +ty pic +f h +def ault +re plic +lu k +trans actions +r ys +infan try +ðŁį ¾ +cho w +chick ens +ba gh +wy att +ay e +gg i +bre ws +ed itions +mi ra +commen cement +pre su +peris cope +ic hi +guatem ala +zam bia +pain ts +wit ches +wan i +un dere +cro y +vo ws +us mc +hear ted +theat res +shu ffle +le vel +mul tic +squee ze +fer n +app et +post al +mal t +on board +ld nt +co o +s sc +k ac +ðŁĺ ĩ +sc rap +mar cos +deal ers +ann u +mill er +co ve +ul ary +vladi mir +be ef +th ur +pick led +se same +bengal uru +mo tt +kathle en +hi st +no tor +dr ank +du chess +snow fall +e ff +tin y +j n +sy our +speci alists +scot us +bay lor +eve rest +mali bu +pre m +harm ful +l ali +b ates +g ye +differen ti +and ra +geome try +el over +black out +== == +ko ta +inter act +asi an +la yo +samu rai +fi del +exhau sted +gla di +pd t +spher ic +anti qu +guit ar +stu ri +ho pper +ang le +f ills +sla p +mi th +rod ney +ong i +in som +pre venting +cassi dy +ap ho +ore gon +lo in +ham mond +contribu ting +f n +gar ri +ori on +comp elling +escap ing +aim ing +plu mb +bi stro +be asts +concer ning +bo e +do pp +shop local +stumb led +âĤ ¹ +naz is +âĢįâĻĤ ï¸ı +gest ure +war ts +us open +hi ggins +char li +hang s +bom bers +° : +fe eds +c ch +st il +nic ola +ðŁĵ º +clam ation +tro pic +af ro +ou k +expen ses +der rick +al ine +fa w +reg ard +im er +sat in +thi um +ry der +pear l +te ss +mm mmm +sen ses +ðŁĩ ¹ +positi ve +exhau st +occu r +nor ris +lil ly +is les +direc ting +yo fficial +count less +sam ar +on stage +flo ck +mir rors +arch er +mo i +k d +vi v +in os +si kh +le i +sen sory +br its +kno x +chest nut +op y +coli seum +z af +di vin +adap ter +:) )) +tem ple +ku n +hel mets +t df +gu ide +m old +o ids +lu ther +he is +monaster y +sp ree +k lu +brit ney +jagu ars +gre ats +c cc +ky rie +machin ery +cric ket +re ro +ab o +aspir ing +semi finals +ale ss +sig natures +var d +me th +her bal +hol den +king dom +ap or +reg gie +ore o +palestin ians +em mys +sec tional +ro i +ney mar +qu el +cu ll +l ka +haz el +estim ate +ul ties +go w +be a +purch ases +bel ts +protec ts +m é +gue ssing +bb o +clau dia +fr acking +jon ny +el k +cel tic +al mighty +ra je +courty ard +ig i +can es +ðŁĴª ðŁı» +bank rup +le thal +âľĮ ï¸ı +graphic design +vad er +penc ils +rough ly +dan te +m fg +const ell +cam el +j b +bloss oms +en to +balo chistan +cine mato +ill ard +jer sey +con sent +dent ed +con templ +sch er +hol i +lou gh +st our +a yo +begin ners +cur b +v hs +a jax +du ff +av eng +dom est +commit ting +ai red +cha p +hedge hog +disappo inting +freel ance +in land +char ms +ðŁĺį âĿ¤ï¸ı +ai sh +m x +buck le +ti dal +per mit +bo ating +ra cha +kend rick +b ello +b hi +ple a +estim ates +l b +apo logies +jay a +bb l +ast oni +inter state +main taining +el bow +mu p +ep it +ðŁĺ ¡ +viol ations +def end +be h +sl c +am ir +pur i +ti um +fi fa +blur ry +scri m +ðŁĻı ðŁı¾ +ma ple +rel atives +âĺ Ŀ +cho c +con nor +⾨ ⾨ +whi sp +list ings +ma ze +than king +ri dd +grass roots +shi fting +desper ately +gor illa +den i +ju les +stra th +g ley +ja in +bu ick +t anner +ðŁĴ Ŀ +ga e +pri m +it ors +n ano +separ ation +armen ia +bor deaux +ðŁ ħ +pj net +bu rial +e bon +glo ss +re new +gri er +spe eds +comic books +sym boli +pur poses +ãħł ãħł +spati al +no table +ci on +n ps +ho ffman +nor man +rt g +du sty +situ ated +tr an +k fc +em en +nic kel +hast ings +sett ling +gr it +l ena +w aw +art s +gu m +ca regi +le wis +sapp hire +rememb er +embed ded +t lc +bl at +serge ant +el sa +boot camp +bow man +photo graphic +pill ars +direction ers +classi fied +no is +ve er +barre ls +wh oop +ðŁĺ± ðŁĺ± +fe male +petro leum +medi a +e fc +poké mon +ठķ +enthusi astic +var un +pro files +pedi atric +acci dents +con rad +jan g +jo jo +ac or +ob server +l f +live stock +for gi +fo s +el m +an and +go e +c ere +avoi ding +gri t +om an +thank fully +scat tered +nick y +cylin der +chees y +di ver +mahe sh +cav es +ear liest +qu inte +subjec ts +b end +gul f +vocali st +glu e +pat ches +un stopp +sny der +demonstr ating +pi o +hor ns +wic kets +and the +r ama +yo on +stra ight +bed time +or ang +bul lets +sa urus +min ers +inci dents +! ... +ðŁİ ¸ +ag ers +hand les +stat es +in ity +d ons +incredi ble +emin em +avi v +ru dy +moz art +folk lore +appli ances +mt l +fre y +di as +hu a +page ant +stri ve +im prison +bul lish +r ana +al erts +bb mas +hy per +derby shire +re cre +re dd +debor ah +cosmo s +law son +mel anie +psy cho +ho or +doo dles +sni per +shad y +man tle +canadi an +new year +inter actions +separ ated +cor ds +spiritu ality +ap u +it o +p ct +pel osi +rebel lion +se iz +wor cester +sec tors +ul i +san ta +Ð µ +ðŁĩªðŁĩ ¸ +bi ased +class ical +gam ma +dee plear +emer ge +back er +sur ance +hand crafted +ðŁİ ¥ +franc is +mill an +ic i +cro wn +wo w +stri ped +un fair +relax ation +³ ï¸ı +embrac ing +she alth +pale o +martin i +dist illery +wr ink +or k +na th +hay ley +cour thouse +si ber +sa di +quiet ly +mel t +m sm +me h +smart phones +rel ent +pp ing +war wick +co logne +gli a +cot ton +pro g +lon e +ip sw +star ters +expan ds +u mp +su ed +ski pper +infe ctions +ing le +à ¡ +cler k +demonstr ate +ac ar +ðŁĺĤðŁĺĤ ðŁĺĤ +ti bet +bun s +alo m +demol ition +ssi a +g st +[ ] +so ar +âĺ Ģ +ðŁĺ ª +ðŁĵ Ĭ +dee pest +beyon d +are t +att ends +activ ated +di mit +âļª ï¸ı +high lighted +magaz ines +rum or +az za +steph ens +dol ph +sho ckey +mat s +we av +mel an +serv ers +tra um +ku sh +æ Ĺ +bab ys +pa z +a al +la use +break ers +canter bury +ul ture +mi ri +euro s +tane ous +impre ssions +du tch +il d +gh i +pur due +adequ ate +l p +sy ner +ang ler +du rable +gal ore +ro wn +mg mt +ðŁĵ Į +lu cia +âĺij ï¸ı +zay n +bor row +. ( +north umber +cru sh +eng a +su sh +extra vag +t out +ma hal +ali stic +ther mo +gall eries +es se +chi bi +attrac tions +lex ington +legislat ure +docu mented +resi den +brow nies +w f +st ool +plan ets +sho ppers +conduc tor +ms p +tr icky +fru ity +end ra +feel the +whi pped +hair style +re fer +oo k +oc topus +audi ences +ku mar +after no +op tim +c fl +ni p +gen i +alpha bet +ann ab +lam in +accep ts +l ng +ðŁĺ « +t ine +ac om +cheer leaders +t k +gr on +v g +k ung +ja x +dha bi +r ss +mack enzie +beir ut +clean up +gy psy +st ell +bur ger +hurric anes +educ ation +st ina +âĻ¡ âĻ¡ +unfortun ate +jere mi +bad ger +at ers +: âĢ¦ +ter ra +subli me +stu d +y mca +mr u +duter te +bren nan +bul b +mel o +yl on +hack er +c red +gu d +as an +pad illa +embroide red +vietnam ese +pione ers +projec tion +re boot +id c +an ey +pri mer +suff ers +win ding +p on +sto day +mor n +u ch +all in +adid as +eliza beth +tu ck +o graphy +ðŁļ Ģ +be g +os borne +ghet to +r h +cn n +ir ma +ma kin +cab les +mur ders +oc ks +inst a +al as +si k +cu ff +la re +foo dies +o vic +at om +geome tric +em pathy +ภµ +cent enary +newsp apers +administr ative +ðŁİ Ĭ +sti ve +contrac tors +le tt +tas mania +awesom eness +den sity +ve en +prince ton +frequ ently +re ject +gh i +modu lar +ceram ics +sh ag +ki wi +can vas +sweat shirt +an j +ti mm +napol i +il er +appe als +hamil ton +ma yo +we ave +arrang ed +whar f +occu py +b vb +as aki +ot ter +nor m +vi es +de tox +tion al +dere k +id ad +ad missions +constitu ency +u pper +woo t +allo y +se ve +lu b +un comfortable +ed win +ab re +d wight +ar che +virtu ally +sp ol +pri e +ai i +er r +swit ch +bar ack +se ok +cou l +wn t +pou l +o live +caffe ine +cardi ff +notor ious +de mp +ex cess +bar r +t ford +a jay +bump ed +my thology +shel ley +fal con +shakespe are +must angs +no ted +bon e +civil ization +sy d +par sons +un official +hy ped +sp ends +oppo sed +v ings +space x +noti fication +deci ding +bio tech +out si +sal ah +! . +fe d +ss y +c ms +bad gers +cr o +ela ine +n ba +dy our +n ant +honey moon +climb ed +conom y +ath a +m ell +ne bula +nature photography +juli e +bm x +inve sted +mon o +lieu tenant +wat kins +techn ician +o se +ka e +ì Ľ +mc queen +pre ach +trav eller +flexi bility +ze bra +reta iler +p ant +ben der +brand t +squ id +war rant +veri fied +cas s +pier cing +hon ours +t ying +mor ris +kis sed +op rah +panor amic +me i +splat oon +wich ita +ari as +gal li +indy ref +good times +athe ist +confe ssion +ow ski +re pping +ad ditions +mechan ism +z im +j ans +su f +cho pped +beg innings +vitam ins +ãħ¤ ãħ¤ +or th +po les +ru b +antarc tica +indie film +web cam +ket ch +bre tt +cle ment +her on +defe ating +hydr o +buc ket +wand ering +sid ney +future of +b inge +on ies +knock out +administr ator +syn the +l ent +jan i +bar ley +premier league +ner ds +cr m +bra s +bot any +evol ved +rot ter +ro wed +tum or +weal thy +Â Ń +mon arch +li shed +da hl +ðŁİ ĥ +bu ch +ken yan +Ø § +red ness +assemb led +se mit +hud der +shro p +ran i +lear ning +mor y +iti a +geo graphic +worl dof +f b +pho sp +boo gie +am ped +? ... +che w +dwar f +ar us +s sen +ru sty +recru its +h k +gar de +app lause +vol umes +invol ves +ta c +hand bag +trans late +ffe l +se ym +aqu atic +trans fer +zo di +and r +acade mia +cr ater +te z +ar se +adap t +col oni +snow man +mal i +hang in +di schar +oy sters +pho e +colon el +w ba +hispan ic +thri ving +sh y +ag les +sales force +cre me +so les +la fayette +â ī +ter ia +ach a +sp erson +go go +car ly +the ore +am ore +vo x +af t +ãĤ ¹ +stap le +mu ffin +di agram +ino x +su stained +av ent +me ta +arbit r +dec ay +ado le +Ð ½ +ec ol +ph o +n k +o cu +gr anny +ç a +luxemb our +stad t +alber to +le vit +am as +d x +or phan +co bb +as c +lo gy +immen se +chan ts +off line +p ent +bre x +w inger +plan e +i el +nichol s +ca thy +nar uto +low ed +/ // +ignor ance +cat astro +you ts +sch en +buil d +haz i +s ine +critical role +du g +dete ct +lo gs +en amel +stpatrick sday +ed die +co pa +cigare ttes +ho ff +kay a +la goon +ra pha +air borne +choo se +puer tor +ke v +gui ding +fro sty +bor ough +mir a +ðŁİ Ĭ +cade t +anu sh +yo gi +e ger +fl ing +slo pe +nin th +we ston +foot wear +f n +may weather +a am +pla in +stair case +witne sses +work outs +ro bust +dex ter +co hort +ðŁļ Ĺ +sp ell +ha ze +o om +organ ising +wild fire +cont acts +av on +min o +upd ating +ðŁį » +li thium +ing ual +k is +au ga +lo com +de duc +u da +th ak +boy le +mp er +hot tie +eri k +re vised +is la +travel photography +oo za +en qui +confe rences +clo ver +g room +cur ves +live on +per f +displac ed +bo log +xx xx +ðŁĺ© ðŁĺ© +te al +ve ssels +rain forest +cal ci +pan ther +gira ffe +ta sted +imag ery +pad res +day time +bas s +ri pe +opio id +nu e +vin yl +invent or +sen s +process or +mu t +gad gets +bibl ical +shann on +jacqu eline +car y +the resistance +ali en +n vi +co sy +bi har +fo ley +ren d +mu gs +fa ken +cl one +ni allo +gra bbed +chi hu +power house +n tt +chero kee +spon ge +imple menting +rh ine +le one +ðŁį Ģ +pret tiest +infra red +impro v +swit ched +tu bes +con tr +bl k +projec ted +be aver +yo t +bbcra dio +thi gh +per secu +apologi ze +w ack +po ster +oli ver +az a +lou d +( ?) +f the +women shi +spar row +blu sh +us able +sc ales +it ative +peu ge +ne eding +legg ings +glam orous +mat ur +c z +wat t +da b +tam ar +et sym +bau er +heart felt +h n +else where +bir ch +alu mini +hu ck +e me +j l +traf ford +d z +por tions +ana sta +arthr itis +esp n +ber gen +viol ation +yo shi +c z +northumber land +clo sures +ðŁĩ¯ ðŁĩ +smi ley +r w +tel ugu +inten si +gre gg +ve ga +dun geon +south bound +ba il +domin ican +semi final +chap ters +h itch +van ity +trans iti +recomm ends +sati sf +bar ca +queen s +( ( +de struc +stra it +ra vi +dess erts +in tru +har am +k os +fo e +fat ty +pais ley +magn itude +dri dge +com ey +schem es +vision ary +our t +down loaded +ðŁĻĮ ðŁı½ +gd pr +lan i +p wc +gu ad +nic est +stake holders +re ferred +george town +arvind kejriwal +schnei der +in doors +all star +strand ed +gen der +ze pp +ma sses +ðŁIJ ± +pati ently +bl dg +z ab +we arab +vi vid +he ck +d ella +sy mb +je opar +la ger +à ª +comb ines +ne c +br ay +flo p +tx wx +jo ys +pon t +pro found +sur round +mad hu +ma ble +ay r +te as +n sa +open ly +er nest +ãĥ © +to po +g na +anti oxid +ti an +e tr +c ello +ma thi +gener osity +b iting +man ic +kel sey +chee ks +ten der +w th +pron oun +ultimat ely +gu sta +ari anag +ger ry +ble ed +red dy +mic h +mitsubi shi +oper ated +sex ually +ma u +cl lr +vi ds +co c +mel ted +ðŁĮ Ī +q ld +ite ch +instru mental +end game +ðŁĵ ĸ +ener gi +brow nie +tam il +at in +domin ated +pra ises +fire place +sens ational +men a +k arti +un prece +ru pt +ori ental +mc cor +tour naments +scen ter +re eves +prescri ption +sam e +fra u +tru ffle +em bo +roman s +bla sts +techno logical +pr at +b sb +y ar +tren dy +ac l +al ad +ðŁį ģ +o hh +bankrup t +tho ven +regar ds +is er +war wick +vine yards +real m +niallo fficial +do ta +ge mini +to do +v able +¨ ¨ +la u +wre ath +ju ve +nat asha +le ver +lor i +hor ser +cc tv +air bnb +es anders +sin clair +ema biggest +high school +con test +optimi stic +t te +ðŁĴķ ðŁĴķ +ss d +ye e +hel ena +con sen +ric ks +jes se +an ic +ðŁİ ¯ +re acts +ro be +independ ence +vol tage +m ington +s ant +à¸Ļ ภ+-------- -------- +sentin el +ke tt +rehear sing +aaaa aaaa +sof the +stir ling +sear ch +wi gan +stand out +sna il +pent agon +Ä ģ +ch lor +cru st +net any +chemi st +disapp eared +ric ardo +sp iders +bo se +war ren +me ssing +bann ers +gu el +par ach +ma id +coun ted +epi le +bon fire +speech less +se tter +meas ured +rejec ts +nik ki +le ster +foren sic +fab rics +alo ha +pre served +wat ford +deta iling +dar th +bo u +car ly +... ' +tail gate +noti fications +å ¤ +pas sive +trous ers +balo ch +ro ther +typic ally +à ¥ +sp it +wi z +sic ily +technic ally +ex pose +st age +hu bb +cre am +cap s +po ke +sle ek +ju ne +tempor arily +de z +awak ens +l ame +_ - +ji ha +tues days +advis ed +advis ors +exi sted +dis agree +news room +lo sers +world tour +dr ying +al di +har ness +foot print +hobb it +p mln +i ro +que red +asse ss +gaz e +sa b +th ian +í Ĭ +ti f +ob serve +ev il +dra wer +swee p +cor y +co dy +kyo to +cal lum +n inj +lau rent +be i +sket ching +custom ized +du r +regre ts +knox ville +ìķ Ħ +mess aging +grac ie +abun dance +bi dding +bre wed +fl ouri +therapeu tic +alt itude +ho gs +bur ner +elec tro +wonder fully +he ater +post pon +li very +r all +ad as +a ac +sau l +brook lyn +play house +âĻ¥âĻ¥ âĻ¥ +char itable +in y +z ah +compet itions +be av +plu gged +o is +do om +astron om +speci alized +max i +ta ps +cellu lar +depre ssed +folklore thursday +cri b +e mul +ë° © +fi gh +ru z +car lisle +spe ar +side walk +de i +depend ent +lac es +nh s +ðŁĮ Ļ +reali zing +net work +ric he +re gin +re fresh +st ral +pa thology +pla id +psyched elic +hin d +u ka +algori thm +lin king +progre ssi +fe y +d ade +hydr ated +b ant +fam ed +cot sw +bo ise +as c +rac ing +ja vier +ww en +mar lins +poo p +swe pt +toni ghts +we f +ani me +slo vak +âŀĸ âŀĸ +cla us +lem me +cli ppers +re ls +arianag rande +r te +ko t +thal apathy +hungar ian +zu ma +y von +is u +jour neys +clin ics +be be +ww f +n ws +super heroes +er it +sle ague +identi fication +mo tto +ba i +sour ced +ill er +ap i +pri se +unprece dented +dam as +tuni sia +dra in +undere stim +e ther +quarter ly +rewar ding +al ham +wolver ine +cab ine +hyp no +nad ine +hav ana +da e +ðŁĵ Ī +dr on +read ings +b ati +pic o +mer ci +iti an +wal kers +el ope +mi key +god zilla +bur lington +abu ja +social ism +at ility +sh ell +harry potter +g no +ab ur +re leg +fel ici +ro gen +neuro science +inst in +ath am +vou chers +j arre +fu se +def ici +monte rey +de port +mid day +pp ard +fre ed +ame ter +wil t +n ingham +pr att +liber ty +slo gan +o to +pr i +co ated +c pd +ne tt +il las +mal awi +evol ve +accessi bility +ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥ +or nament +b p +el is +son line +chi ro +fl ick +ib m +ar ak +en ables +gar land +san e +cu ties +tri p +rotter dam +n ys +lam ps +lu cas +bo g +ra ils +travel led +hic ks +en u +sab ha +scru b +hi er +hart ford +fo o +fer nandez +tre vor +mat tress +appo intments +ale j +fe i +o logist +saf ar +oc ta +sr c +sha un +ambi ent +dri c +bi ker +she e +must ache +h ta +bo one +her ty +car dio +bra kes +rec ital +consi sts +overwhel med +cau l +robb ins +im it +al th +ur l +bi bli +on ne +black livesmatter +diffic ulties +tel ang +tall er +ðŁĵ Ĩ +deb ating +bur rito +mo vember +strength ening +bo e +te stam +mirac les +base ball +re nee +ðŁijī ðŁı» +al fa +âĺ ĺ +unstopp able +ec s +g mo +giftide as +path way +fen cing +ðŁİ ¤ +b ham +ra s +sk o +d led +thel ast +magn um +bin ary +wil de +wil der +wh ati +barbe cue +h ism +can oe +kur di +eli ve +advant ages +mad ame +bi er +mis sing +enter tain +air force +y ama +c is +hash tags +j is +ve il +dream y +ten se +may ward +ch ateau +hunt ington +âļ ĵ +v all +up on +bl ouse +dun es +ðŁĺ ´ +fert ility +m ole +curren cies +st u +ber lin +toa sted +div as +wal t +lar k +por a +hit ter +um er +chil led +bal ancing +fa is +y in +or tiz +east enders +h ate +ur al +ap ril +tim el +à ± +per o +sto cked +respec ts +th t +best friends +giving tuesday +be ad +inv ent +im i +nap les +comb ining +tok ens +thir st +ma sc +par rot +sp u +dent on +* -* +t res +subur ban +wid th +si ve +con tender +siri us +lo k +troop ers +outra ge +tur bo +frag ile +me ssed +do h +disc ord +netany ahu +re sign +forgi veness +mo han +mun ch +cam ou +identi fying +enab ling +hot ter +thorn ton +jai pur +ar ya +ðŁı» âĢįâĻĢï¸ı +mu staf +maj ors +o ke +du ffy +roh ing +til t +ðŁĩ®ðŁĩ ³ +rock star +she ep +hend rix +ra v +in vention +do u +lagun a +gru mpy +sw is +im pe +) ' +you ths +bun ker +st ache +oppo se +indi es +acceler ate +ml p +ed en +w ann +k ail +akshay kumar +su pt +pol ym +midd leton +extra ordin +wil son +australi an +alumini um +way ne +alum nus +mat ics +gri m +er nie +opp a +competit ors +rand all +h ence +decla res +pre aching +sha he +can e +sustain able +stap les +le dge +ad ena +doctor al +bur gundy +decor ate +ren dered +ri sen +pr ank +di or +bee thoven +flo or +ac com +to t +ho dg +touri sm +say in +objec tive +mar kers +premi ership +en abled +camou fla +gi ant +Ñ ģ +smo key +ric ket +pan g +de pending +s ation +evol ving +inter cep +cen sus +tof the +re en +mendo za +trum pet +marke ters +an it +ðŁĻ Ĭ +north western +v la +foto gra +blackand white +che wan +wi g +tro om +ginger bread +k n +ro mero +n fc +or chi +fun ko +sour ce +f s +ra ped +o st +tar ot +ann ually +ðŁĺ ¬ +r ill +del av +.. !! +se s +can n +medic are +ph el +ape x +guardi an +rema ined +r pm +a ñ +story month +instag ood +neighb our +p ing +sem ite +my stic +as cot +mat er +hand ful +dang ers +ti d +ana heim +opol y +sh allow +nami bia +tor ia +procu rement +big bang +announ cements +prosecu tor +beng als +sal le +en roll +ga stro +sugge stion +ba k +ha ul +budd hism +berni esanders +flu te +fati gue +cyn thia +cho i +ir win +gu a +str ous +h p +ba p +satisf ying +play a +ðŁİ ¼ +inst ap +al ice +t p +irri gation +ðŁĩ¬ðŁĩ § +in tric +clu es +ple x +sa x +he pat +dump ed +signific ance +by u +medic ation +pro v +tough est +corn ish +âŀ ľ +kel ley +u v +si zz +si bling +me st +di stor +diplom atic +aun tie +b hat +son ic +bren da +pump kins +ro ch +black burn +ur ged +shi a +arrange ments +floo d +sa unders +lec turer +nou ri +popul ations +diplom acy +consist ently +ðŁ¤ Ļ +t mund +cauli flower +l ily +vocab ulary +vari eties +coo ker +up town +qu ent +mo sa +re inde +velo city +spru ce +social medi +i ber +volun tary +proce ssed +bal tic +y ang +leban ese +d p +dol ly +arrange ment +y uri +cran berry +kal yan +elev ation +cli ff +pu shes +ìĬ ¤ +sil ic +co wx +eter nity +sla ves +vine gar +glou cester +con tained +breaking news +aga inst +renov ated +norm andy +hero in +ys m +mo ds +gre ek +un di +tren ch +v h +encoura ges +head ache +gr ange +: ' +ever green +Ù Ĭ +reck on +ab used +th ru +cho ice +ti dy +col der +scho ice +ha in +bru m +li ars +bre it +yor ker +sh ack +he idi +micha els +sco pic +fasci st +play ful +ca c +yas ss +sh ad +.. ? +qu en +ram irez +clif ton +pr s +best fan +âģ ł +gener ating +head set +disappo intment +abstr act +bo iled +paren thood +azerbai jan +exhib iting +bom bay +oli vier +ko so +un lea +mat ernity +iz er +si ves +r hu +col l +saskat chewan +fre akin +de k +na g +stab ili +ðŁį ķ +organi zer +bo sses +ar u +u va +at able +ta un +after wards +fert ili +ver ge +az i +mor ph +๠ģภ+jer k +cosme tic +ko w +stru st +ap ache +post cards +for mul +ì ĭ +spin al +jack pot +elec tri +Ã Ń +lo y +gra der +diab lo +ar di +he sit +f w +arch ery +pa sh +the ories +repe al +re live +per cy +âĺ Ĩ +im in +syn chron +sham poo +coup ons +o to +la i +thou ght +luxembour g +mo v +ðŁĺ ¥ +ge mma +se ated +m ga +strat ford +un certainty +shi fts +est o +fo ol +fire arms +cor rie +ki ki +appa rent +p ills +olym pia +fi d +elev ated +de cks +ignor ing +av alan +ro v +whist le +p tsd +milit ants +robo tic +pac ers +quil t +bankrupt cy +lic h +per cussion +celebr ity +al s +( ; +su t +pokemon go +h g +off s +gibr altar +scre ams +billi e +gen ome +mar in +be ams +arch bishop +em in +bedro oms +g ated +ol ly +warran ty +at own +cudd les +gun na +k ic +vi ve +cy mru +nar row +pro b +le o +refe rences +manufac tured +cho pper +brun swick +sem is +don ia +r ye +man o +hur ting +? # +hol li +investig ations +c els +ðŁĵ ŀ +le ster +temp les +sto rey +mc mahon +toi lets +wo of +ï¸ İ +le verage +at om +night mares +victor ious +haun ting +custom er +ag i +yo ongi +mon ty +ver onica +w ur +inti mid +blan kets +volu tion +j m +âĺ İ +am on +jud ith +ðŁĺİ ðŁĺİ +distr acted +dri p +hurric ane +and es +revel ation +tro op +ab leg +col lin +tibet an +wor rying +inter nationally +eat er +camero on +brad or +y uk +ðŁĴĹ ðŁĴĹ +tra k +slo pes +ci er +ne a +ol er +ta ka +albi on +volcan ic +am n +a fi +ob stac +face time +ger ing +n pr +metall ica +organ ic +ðŁĴ ¡ +ki dd +d ances +pemb ro +wash er +m its +om er +emo tionally +tan go +ip o +do cks +scan ning +spec s +tho m +the ology +emer gen +om i +g pa +selec tions +un necessary +ima ge +ter s +induc ed +gi gan +rent als +supp lied +m fa +shan kar +lat er +pa jam +cla ve +Ù ģ +ma hin +carl son +avi an +ano va +kati e +aj ith +design ated +chocol ates +investig ators +gla zed +prin cess +er ry +ra gn +ou rable +hr u +sun dance +peuge ot +steam punk +gh lin +gre ase +hi res +z ap +per ce +j ill +tom e +he hehe +joy ful +mae stro +ni shed +gene alo +v ich +p its +fox es +good man +emer son +lo bes +con verse +o ats +thom son +ra him +mal ware +ah i +man kind +re sin +im g +sw ood +kin der +sc roll +ar a +sak ura +ro bbed +xi on +ny a +c ism +ce dar +be in +mour ning +tor to +heath row +done gal +bar b +hydr ation +k or +elim ination +su pdates +hill s +appe ti +star red +ko m +gw en +dd d +cra y +sc anner +personal ised +seren ity +re design +meta ph +box ed +judg ment +no se +ë ¹ +er ad +ac ne +supp liers +ener getic +v om +as ap +ðŁĶ ¸ +ir vine +hat ch +la ss +ad ren +waff les +accur ately +ici o +itt le +se un +occup y +web cam +thene w +ent es +ga i +j w +accoun table +vis or +ir rit +licen sing +hudder sfield +gen ie +ðŁİ ¾ +atmo spheric +ten sions +spart an +clif ford +ol an +north bound +ame en +cen sor +u el +ster y +$ $ +far rell +hy ster +cl t +se dan +rep lied +descri bing +micro wave +sla b +pro sp +assi sting +ru bio +e than +hh hhh +gu ay +z man +ra ise +roll ing +o e +n ile +ambro se +scar borough +hero ic +coo ks +mor t +chop ra +ðŁĮ · +to b +shav ing +stac ey +dor m +motor sports +wi ki +fol ds +sp iced +stress ful +liter al +fu dge +pe ggy +wa ite +tre sses +se sh +pr ic +ðŁİ ħ +fri ght +r va +mumb ai +po m +tt v +cel lar +tom e +andro id +dor is +tsun ami +tin der +o ec +m wc +dor tmund +no thin +l iti +so u +believe in +at u +kno cks +mag ni +ss sss +ro hit +ine ws +ang i +m andy +ke ttle +intermedi ate +av ant +cur l +endor sed +ori o +ur t +consider ation +wi res +shel ters +b ino +vik ram +imple mented +ly dia +bu k +paro dy +c news +under graduate +canu cks +sam i +polit ically +ro tten +gh z +tex tiles +over load +moder ni +recre ational +fli r +bat on +typo graphy +ov ation +intrigu ing +pilgri mage +al ge +ad ays +tcm party +sp elled +cur ls +boo ze +ste m +ann es +ir ls +spon ge +sho pper +sig nation +bra ss +mi stress +le ah +beg inner +lau derdale +augu st +pre school +ta ping +tai pei +execu tives +b d +rhe tor +esc or +immun o +deeplear ning +stat ues +it us +manu script +ly ric +cor vette +mol ly +la ge +de p +cn bc +le st +je ssi +fi fe +griff ith +oppo sing +ran g +dr ills +respec tful +p ity +d ell +har ding +play boy +blo ke +shut out +k ili +o sp +se attle +bc poli +mis es +journ als +team ing +es ther +fre ddy +Ķ ï¸ı +metr ics +no tre +gar ry +for ty +navi gate +perio ds +bened ic +j id +da w +ance stors +restor ing +con g +aller gy +tit anium +c ence +lean ing +ab bas +v ast +uc f +roof ing +e man +seve rely +vo gue +ve au +in bound +d z +tane ously +stret ching +man chester +dr yer +dav is +kan th +the game +it ted +re tain +el les +conge stion +frat ernity +ol lie +lo ki +fre ely +cho o +pon y +sc ep +tab ly +bal t +rock n +di me +lo gging +ðŁį · +ad u +ha voc +water ford +char is +swee tie +run ning +ner d +erdo gan +z ara +weigh ing +fif ty +pre cise +low ell +kurdi stan +r yo +or th +syn th +lin ers +phenomen on +art illery +il legally +constru ct +nostal gic +gar th +al ta +shel ton +a sean +w ander +dur ban +di versi +bon o +cl on +le man +sh un +obstac les +appet ite +fe eder +respir atory +di xie +formu la +an to +so ber +extin ct +au c +ing les +legitim ate +; ; +min nie +ipsw ich +dram atically +ðŁijı ðŁı¼ +ingh am +milit ary +mon et +us navy +for k +dun no +play er +q otd +st oo +ex or +ethiop ian +film fest +pe red +c ate +sau di +in ner +sin cere +tion ality +ale e +de eds +cooper ative +ir onic +cro cod +br ary +post season +cam per +can ary +e in +exten sions +nb d +sher wood +spo kane +hu mp +jit su +ê ¹ +dar yl +p si +stab bed +offer ings +expe cts +cav al +body building +fr aming +f ca +ye arly +bom bed +sk il +resear ching +jud iciary +gree ted +tu dor +mil o +innov ate +ðŁĺ Ľ +r hs +ru by +contribu tor +fam er +soci ally +m lin +fi ery +ut ter +beau t +it os +de voted +rain bow +bar ney +pe ren +ar jun +r na +gab by +ut i +hann ity +pick le +ser v +qu akes +pp e +fe m +wh itec +j n +victor ies +ðŁ§ ¡ +gol fer +congratul ates +resul ting +mechan ic +ur ve +cen tered +kie v +an s +in cub +< < +c mo +bestfan army +dap h +en ham +on cology +ku sh +t xt +ori ented +fashion able +c sr +sa hara +r ack +pd p +han son +ภĩ +ti ers +ra r +pan am +in sky +sa hi +testam ent +asth ma +in her +fisher ies +or der +ho we +gall on +ep is +suz anne +drow ning +paneli sts +ðŁĺ ² +ë ¦ +al ach +commemor ative +at tribu +ðŁij » +mo o +visi onal +week sary +gu st +ak in +poin te +ee e +di spar +ni pp +dent al +st all +pi an +bor e +ul ster +tic k +ir r +tae hyung +micro phone +bermu da +ga ard +el er +plumb ing +hu gely +âļ« ï¸ı +race way +cam bridge +mar cel +burn ley +to ast +holly wood +fa sting +me red +hib ition +ca pped +benef icial +ow ning +cont amin +arab ian +to on +cap ac +hul u +sm ir +nutri ents +se in +graph s +con ditional +ðŁij ħ +or ac +play in +nor the +tor nad +mar ian +ju mbo +lex i +incredible india +road to +uk one +confu sing +sp h +shan k +pi ed +mq m +positi vely +sher ry +path ways +consi ders +tof u +argu ments +resil ient +che tt +with dra +ter o +ated ly +sw ana +he b +fli ght +har ley +decre ase +kind le +book shop +³ ï¸ı +marty rs +sm ur +mc cl +concer to +sti me +rejo ice +app lau +cle ment +mer kel +jai me +im mortal +isle of +mar co +youtu ber +stal king +me too +st ack +sp ouse +u st +lu v +âļ¾ ï¸ı +eque strian +ev ing +fl in +nick name +the big +as ar +st acks +wal ker +bor a +kidnapp ed +hur ling +humb old +rec alls +co pper +ann is +se o +mer ger +mu ir +ad dy +ðŁĴª ðŁĴª +be x +cr acy +con an +congratul ation +mid st +âĻ ¬ +for bi +op tic +cr ate +crocod ile +mad agas +secur ing +ast on +o gue +savi or +salis bury +love it +fuji film +cast les +as st +ar rows +sp acious +tr s +poly vore +progre ssion +m ri +nel son +bi m +indic ator +o da +pe pe +re signation +gu t +sne aker +log ically +az y +are lla +te aring +jo shi +ssion ism +q pr +mari ah +p x +ble ed +mi an +med ley +we iss +ker ry +gat ory +at al +madi son +av enger +nab y +pl and +gi les +fresh water +d ington +ta j +demonstr ates +n tv +bul bs +sunday morning +pe ake +souven ir +wa h +ton nes +m kt +complex ity +con den +ross i +b ing +y ds +su k +n go +mid land +ol y +life is +ri pple +mo reno +dd ers +tu s +á ĥ +bou l +x a +hol dings +wn y +shadowhun ters +ke i +asp ire +m ous +ow en +so ak +skir ts +moun taine +stor ming +ch rome +ri ots +sar ato +amaz e +less ness +nav ar +crit eria +ra fa +indul ge +ay er +por to +nam o +........ ........ +yi elds +val le +j h +mac ron +sa ins +dur ant +tra ilers +wo t +confeder ate +sh rin +id ol +form ally +ten e +motor cycles +than g +no de +bang er +dal y +p ats +enroll ment +au ctions +at al +ar bor +lo gos +de arest +trans action +dom ingo +fle a +ser mon +de ck +sin cere +questi oning +juli o +was p +pre tz +armen ian +k ham +inflam mation +picture sque +acci dental +film makers +ðŁĺ ļ +ðŁĴ į +ca sey +so b +yee zy +good will +parag ra +ss ly +fe ather +dy ed +assassin ation +na de +b cs +app lies +femin ine +fe u +ext ent +depu ties +l ack +psy chic +go i +kill ings +pse u +ðŁ¤ ª +un c +mar l +tan e +mck enna +sur fer +influ ences +free way +hack ney +mal aria +el and +te au +rema stered +Ø ± +raz or +gg y +cor ro +lak sh +fla ir +honest y +hoor ay +de pp +am c +wedne sdays +q a +ed its +- $ +se villa +dou bled +human ities +c cot +som os +r ine +af a +si oux +re construction +wel ding +th reads +am ish +encoura gement +po der +bo ck +bal m +p tions +stand up +accompli shments +guar ding +convic tion +ac ion +napo leon +depic ting +att ack +su i +wear able +âĸª ï¸ı +pot ter +esc ort +vis e +to ts +bo on +event profs +angu lar +womenshi storymonth +bar row +sch i +ac comp +ti k +l end +kensing ton +wol fe +st acked +cra shing +exhi bit +wing ed +sab rina +ma sa +k ms +alway s +et t +pla sma +counsel ing +pick les +nfl draft +mr s +inev itable +coura geous +staf ford +writers life +ho s +e j +gh yun +trade mark +adri an +influen cer +coron ation +ra ging +explo red +usa f +excep tion +eu x +tan ker +sw ami +pac ket +ðŁij¨ âĢį +f en +she en +a ero +j l +re gal +nw t +au ster +meh ta +char ge +a ste +b ate +inf eld +racec ourse +collap sed +fle ece +z il +al lie +alternati ves +geor ges +ðŁĵ į +quir ky +fc b +nat geo +philanthro py +bra i +every day +ðŁIJ ° +ach ers +ja an +fin es +q i +fisher man +distin ct +gri mes +nation alist +comm ence +ro wn +âĢ ³ +z ing +f ter +hr w +baro que +bl ender +kitt y +hoo ks +c ited +w anda +consen sus +reinde er +an and +supp ly +me ds +v n +ol ph +rat chet +shel don +secur ities +ë°© íĥ +cro m +mosqu ito +j eric +im mac +dimen sions +â ¤ +di ssi +sponge bob +dami en +steven son +jo anne +del ish +yi kes +than x +surve ys +postpon ed +alco holic +al ised +ðŁĻı ðŁı» +do ch +sen tim +mered ith +com pares +b ago +happy days +mo ss +ãħ ĭ +ne c +gn ment +frustr ated +comb in +ri v +ec lec +col lo +compli ment +actor slife +ct to +nic ar +op hon +apar the +man t +ja de +trol ley +optimi zation +eye on +eco logical +qui st +ep he +ॠĩ +cin co +appo ints +old school +c pr +behavi oral +min aj +:- ( +tag ging +ev al +jo aqu +ðŁĺ « +ha k +de me +jama ican +so s +hy att +hand book +libr arian +hanni bal +pump ing +ch om +f man +ga i +hu ll +respon ders +green ville +n us +vau gh +ðŁİī ðŁİī +ta xi +gold berg +man tra +te ase +forbi dden +metho dist +ati vity +* *** +ec t +mc gr +Ħ ëĭ +se b +amid st +disapp ear +thy ro +phili ps +er ina +v icious +stream er +million aire +ma p +str ick +hack athon +gh a +ed ic +mi ka +pe ck +ill i +anto ine +ar ca +op tic +ma ure +ðŁĩ¦ ðŁĩº +cla shes +man ly +âĺ ģ +al var +and res +me i +el m +ww ww +al tered +l te +ê¹ Ģ +mo jo +for rest +thal ai +non t +spee ches +acknow ledge +ign ite +x factor +ðŁ¥ Ĥ +mead ow +disru pt +debu ted +scrim mage +pharmaceu tical +fi dd +found ations +philosop her +et al +publi shers +bo ys +c ke +ru gged +opti mism +re be +phil harmon +nar cis +ral lies +lu is +go blue +fol ded +un acceptable +optim al +li sa +pol aro ++ . +en za +âĿ £ï¸ı +mon opoly +grace ful +dair y +du a +diffic ulty +judge ment +o si +mer sey +flu x +new found +ter ns +dimen sional +in vic +al ba +am it +abudha bi +alger ia +autom obile +the ad +lo tion +acceler ator +vac ant +iti on +lu f +al ic +pl l +bla zing +ba z +sen e +ðŁij ¼ +villa ins +direc tory +eis en +to ck +broch ure +ri pp +hb d +zayn malik +nic he +lo lol +certific ates +mor se +fac up +x ham +un wanted +im ports +carne gie +fan sign +mo u +r alph +destroy er +sw ing +trek king +cili ation +pit bull +g aps +ho well +defin itive +mc le +f ps +et z +bol ly +lyn n +gan o +at ure +fur suit +co il +na v +but ts +tro jans +eu re +en ko +sch umer +horri fic +install ment +br b +subur bs +a bel +vi r +de sh +cun ningham +ðŁIJ » +span n +sch we +ke mp +tr u +ste alth +qu es +le w +deli ghts +ko ch +hu mili +cr iti +il t +sp ells +mi ley +car ic +ðŁį ´ +lc fc +substitu te +oun g +? !! +af fir +predic table +class of +er r +cy press +chand ra +age ing +__ __ +ther land +don caster +el in +yo shi +sail ors +har ris +jo anna +niger ians +h ers +pla gue +pro cra +k no +can ton +busine s +un h +pra kash +c in +bow en +co ating +m als +be gging +smith son +ponti ac +sp ies +dam ian +pl ine +und ant +al ta +one ss +shame less +da q +bb m +wal es +stam pede +ser um +Ù Ĩ +cataly st +x n +ab sc +free zer +ch un +ari os +mc cre +fore head +he ars +damas cus +tac oma +ardu ino +encoun ters +stan ton +lg b +ab as +" .. +ke te +drac ula +ele m +g ne +zepp elin +la brador +pul p +op tional +or n +russi ans +san itation +hil ary +etsym ntt +pen alties +au st +ig ans +olympi an +medic aid +vers ace +va pe +re stra +pe ep +sexi est +st alls +di le +the a +punjab i +pupp y +tuesday motivation +ðŁĵ ļ +the flash +roc ket +mo dest +chihu ahu +on na +k sa +hur dles +ca ve +fail ures +sp lit +bo ho +gur l +disappo int +ho ward +nug get +fran z +stal ert +kaz akh +for getting +sch ri +ag ate +am at +eve rett +du et +veter inary +juli an +ch ills +bra ve +ghost busters +lan do +gre ets +profit able +d é +ti r +ze e +om en +pd x +gray son +har i +fix es +stab bing +swim mer +symb ols +compli ments +po se +func tioning +th nx +gi r +corpor ations +bar low +lo e +off season +distin ctive +marvel ous +nik on +enri que +ky u +ja ws +amo to +lom bar +travel blogger +fa h +ouri sm +tri stan +so e +ce ase +ðŁı ħ +z ac +mck enzie +taxpay ers +swim suit +bl o +les ley +kan sas +w ks +ki el +provo king +my les +str ing +kangar oo +galac tic +fif th +s ke +we ir +ll is +mat ory +ðŁĩ ¿ +un ci +re productive +roo ting +ti des +gad get +.... ...... +alex ander +bow ler +scre w +apo log +eri ka +wal ters +shet ty +lan e +ban ter +as ant +me so +v ain +" "" +us i +fer din +accomp lish +man sfield +bom bar +collabor ating +cla p +it ure +s da +smo ky +na k +im person +car la +com ra +bur gl +lo co +ti es +in hi +trac ey +se is +diss er +rr rr +dra y +prote ct +cor ona +hun ger +ck en +c eli +trou bled +predat ors +fic tional +shav ed +riche st +metab oli +ful ham +gro oming +mono chrome +wa sting +as co +ast e +ti sta +remedi es +ung soo +south end +perman ently +bu mble +procra stin +ident ical +practic ally +ma scul +su ke +assu red +val erie +devi ant +grizz lies +thi er +pur a +ne pal +not ts +bil ateral +spo il +car mel +cine matic +ph l +ni fty +ma o +hypo cri +la ser +pan try +mathemat ical +el isa +coordin ation +bel mont +a it +radi ant +bo iler +man g +f ag +cr c +h ams +br in +â¬ĩ ï¸ı +famil ia +âĿ £ +sab er +ru pert +gg an +rit z +mic h +sal ford +le vi +gra l +ðŁĴ ¤ +n ino +ce d +business man +ul tr +sim ply +compre ssion +pa ins +hal t +ë°©íĥ Ħ +landsc aping +n f +croo ked +er d +itt in +ddle ston +sur passed +ino a +da g +bl en +exten ding +at ing +al gae +ball er +u mar +snoo ker +col lu +flo wn +thu b +ridic ulously +ki sh +op le +di re +as ser +ari sto +sc iss +h ating +trou ble +syl via +suc cul +plo ts +sincere ly +al er +laure ate +br ack +att n +rif les +me to +collec tible +cu omo +conte stant +consist ency +ant z +rang es +abig ail +de b +mini ster +grow ers +an oo +hoo ver +dream er +nu cle +resear ch +mi y +sha hid +ma v +d honi +cin i +do j +hin dus +part ying +dal i +alon so +inform al +clark son +it ton +ki an +cit yo +mor i +la sted +as pen +libr ary +susp ici +qu at +den ial +fol der +ch ori +swee ping +eni x +ðŁį Ĥ +Ø Ń +nas car +handmade hour +mou l +heat wave +em er +exam ine +ib n +gr ind +po v +tion ist +m bo +she ila +integr ate +om es +take away +cer v +con nie +tic ket +ce led +bi en +visu ally +madagas car +sor ry +gu i +park run +tra its +la be +pois oning +ॠĢ +vi able +bohemi an +denti stry +bad os +spr outs +mask ed +te ddy +ðŁĺ · +sa f +sa as +ji ang +ti ght +spe aker +withdra wal +bc n +as signed +class rooms +fle ming +ðŁĴ « +super girl +tot als +table top +e books +horizon tal +cra z +flu sh +j ard +c dc +er son +ãħ ł +green wood +ni h +co x +ad a +lit re +go ing +v icky +cur ved +lou ie +gra ins +hy e +lon ge +reme dy +tra inee +san jay +super stars +ma ser +man u +s age +wh l +ðŁĺĤ ðŁĺŃ +ðŁijį ðŁı» +m sd +en z +rab hu +j oo +gh u +ac er +e po +resurrec tion +justice for +bl ended +mo da +avalan che +france sco +re spective +g s +ye ast +wel ch +devo tion +ge tin +athe ism +am ic +carol yn +lo c +ld nont +ave c +us da +le gged +bra very +b lower +cow boy +he h +sti ble +buff al +chann el +run chat +âĺķ ï¸ı +ide ology +best seller +y oo +pe anu +bon ne +fel ic +edi son +fr actu +naren dra +pp ets +seym our +ri viera +he ctor +necess arily +bi anca +soci eties +the best +w g +sent ences +win k +vacc ines +pal ooza +jam ming +as f +mp us +agre ements +ec k +ba c +hon ore +com pul +wild cat +im posed +yo ga +hud son +can celed +l ich +fu zzy +es que +ch uk +w vu +se k +fli pping +r hon +wi shed +wh a +cap ability +len ovo +ìĨĮëħ Ħëĭ +vi vo +tv d +nor a +sil k +pas adena +yo semite +valu ation +clo cks +u ber +mr c +dar kest +au bre +ss o +bell y +wrest lers +kill in +lou der +buck ley +ge el +ad on +un s +appe aling +ðŁij ¯ +semit ism +list ens +fit z +ãĥ³ ãĥ +ny lon +ar ty +seem ingly +hal a +su ited +et y +she ds +mu ffins +ap ric +um ents +u ta +jam mu +chelse afc +star z +yo ko +roo t +clean sing +di ar +pione ering +ihear tradio +dig iti +fin dyour +can o +ðŁĴ İ +z ol +spac ecraft +six ers +moi sturi +b ile +ti sts +hor ton +rang ing +colum bi +mete oro +senti ment +ep l +foo th +text book +drain age +r ly +sc ue +imran khan +ðŁĴ ¸ +margar ita +ed dy +predic ts +gamer gate +advis e +growth hacking +love you +ug and +v f +beng hazi +s later +ne wor +ch el +independence day +p np +cul len +hoo dies +num bered +brit t +t sa +kl tu +s ages +mom o +onep lus +col l +gu ts +w ta +mesm eri +enh ancing +chiro prac +j is +teen agers +m one +constell ation +sweep stakes +e ze +slovak ia +la ye +pear ce +wa ver +po gba +k ron +sur geons +mar x +ti d +gg a +desc end +p ours +upri sing +wal la +sab bath +bachel ore +mack in +k am +peter borough +hor a +ðŁĮŁ ðŁĮŁ +think big +r j +hy drau +sp al +univers it +ðŁı ī +mail online +league of +ten ants +w ally +lan ce +heav ens +dd r +bol ts +am ir +i phone +ci gar +en du +re i +el abor +r inging +john son +characteri stics +sal oon +algori thms +tal kin +m tn +di ve +region als +ff ice +hat i +deviant art +so tto +shir o +l ama +k we +f aded +por ting +tu mmy +est ates +buen os +ðŁ¦ ģ +beli ever +pen etr +dar n +sp ite +can opy +fashi oni +t illa +pet als +eli jah +bra wl +marty r +ë°©íĥĦ ìĨĮëħĦëĭ +mid town +eric h +d apper +sm town +me gam +ww w +le le +on s +cat fish +fir th +fossil friday +ball park +th aw +pot ent +illi e +cre ep +car p +so ap +gun dam +infe c +yy yyy +ठ¨ +z ag +rit t +calcu lator +bo ca +ok o +to ad +threat en +refin ed +olym pic +accompli shment +bacter ial +a ji +tat um +feli z +she ed +j at +th ic +jam al +ðĿ ĺ +lin a +ðŁIJ ¯ +jo king +yot po +pin ch +ak ron +her b +motiv ation +li a +ho stage +cre ek +gam ble +russ ell +patt i +fo tos +c pc +bro ken +back the +cla ys +u mm +stock ton +mat ernal +ü r +la kel +cent ury +be k +infe cted +ภ¡ +smack down +man ned +ta hoe +sm es +bas a +su la +augu sta +. * +rohing ya +gre ed +counsel or +silhou ette +gra vit +cla use +' - +bo bc +occa sions +now adays +dic tat +be ard +n ally +brigh test +kab ul +inc india +dhan ush +archae ological +che ape +mizz ou +d hi +ov ski +bax ter +asse mble +à ¢ +gi gi +ac am +wis ely +haz ard +north ampton +âľĪ ï¸ı +me th +bla sting +re unite +mu lus +ali zes +t read +mil a +ed ward +ko va +pe sto +ðŁij ¶ +vit z +hydrau lic +refurbi shed +mo tel +isab ella +hom me +sever ance +uph ol +mis erable +f ari +lat ter +ef er +crack ers +es l +ac io +yy j +in an +ec b +z ind +pan as +tru cking +re ed +sh aker +burge ss +em pire +ag nes +n ington +art works +fr s +ti le +bi ome +eu n +ch ong +americ ana +god father +go blin +i shi +! ). +temp ted +gen omics +mand ate +ck y +ðŁĴĻ ðŁĴĽ +som ali +br andy +in ven +spoke sperson +pc b +yu an +h g +fa z +starwar s +ro wan +blue grass +don g +d day +trin idad +er ton +ban ning +re tention +cu red +tober fest +re set +we is +deta ched +behindthe scenes +immun ity +ph a +bra y +ðŁij ½ +ran cho +ram say +est onia +nd tv +] . +cab aret +tar o +d v +show cases +plu m +ðŁij ¸ +son oma +pre pa +memor ab +e stu +drive way +u les +magn us +x r +nn n +much as +en ge +stre amed +fore stry +audio book +tro y +reck less +kil om +ru ler +ra k +proce ssion +i ons +po ole +noc tur +wh s +farm house +per a +par me +hypocri sy +s ics +v ant +cas k +holi stic +au st +Ð ¿ +in do +ðŁij© âĢį +di so +disp atch +ol sen +make it +en nis +cent re +ar range +ðŁĮ ¼ +sal ted +ea siest +f ate +reg atta +mo zz +ac an +sin i +g ically +ch ops +chick en +work in +ha gg +invol ve +wee ds +book day +wake up +ky r +michel in +fu ss +re juven +vac ancies +incar cer +m st +sc ents +sovere ign +kick er +à § +bo d +âĢĶ > +sa h +mob il +shrop shire +oph one +dress er +mis suni +hep burn +i mo +foli age +diagno stic +as san +cycl ing +guil t +c sa +puertor ico +win elover +wake field +do ggy +k he +pa pp +co g +al lot +cu ck +poe tic +mi o +re vit +mag ician +ç ¥ +ant enna +west wood +mber g +lux e +oat meal +Ø ¬ +te at +ffe e +sear ches +l ly +plu to +el on +let tering +inno cence +fa i +ann on +telang ana +ma it +neu ral +can ni +ar oma +a stor +fe x +co cac +mon etary +f ent +un sure +' @ +indi rec +teh ran +isol ation +li bs +make up +merce des +ff y +he tero +de o +sco m +cur sed +veteran sday +franken stein +shre ws +de co +ge ese +lefto ver +ha did +vari able +acade mics +carol in +under going +vari ation +na h +ssi er +gamer sunite +pur suing +emer ged +ll ers +control ling +ro aring +mete or +vol t +daw gs +be aver +is life +bathro oms +aci onal +pre vent +lake district +in als +y ani +gra bbing +sac ks +le z +sw ay +k ool +time s +klo pp +la de +con cord +resul ted +revi ve +recon ciliation +ol and +az z +gir o +mand arin +de en +nutriti onal +is coming +van i +aw www +der ived +love your +stop the +shou ting +nov ak +ðŁĻĮ ðŁı¾ +lo af +displa ying +sunday with +ma guire +ch eri +ðŁı Ł +re match +qu ic +Ú © +y in +ðŁĺ ¹ +ili ve +z ip +our ke +down loads +sw at +missi ss +care rs +t ment +proper ty +hahahaha haha +gi bbs +sur rey +ar ise +tic ism +sti a +ir ling +fro g +co se +bas sist +fore ig +lea u +pil lows +hol la +eli e +disclo sure +peanu ts +inte ch +ww c +plun ge +trium ph +cor i +sli ppers +ðŁĻı ðŁĻı +neutr ality +ma re +hair y +gang ster +hu mming +cust ard +mer lin +ale a +s by +dam p +mo han +ver bal +j st +gu tted +b jor +un finished +ðŁĩ¯ðŁĩ µ +un happy +âļ« ï¸ı +by pass +at su +fis cher +sa v +afric ans +re use +mid way +demo lished +ger rard +her cules +Ä Ł +medic ines +cl icking +sur round +jo ong +wav ing +tri bes +wet lands +offici el +argu ing +l le +do va +su zy +club house +ne gro +ob tain +ga o +gl ance +assi st +ch os +ãĤ ¢ +âĺ ķ +adri d +occur s +st ans +par don +livel i +emplo yed +re visit +ff xiv +bb le +ne aring +min er +ðŁĺ ¹ +giov anni +up to +mar vell +mar se +to wels +cb n +engine ered +y elling +spart an +si ans +ðŁĻĮ ðŁı¼ +se v +coyo te +sta di +t cm +app en +shenan igans +open access +so aked +ma squ +le vine +stro kes +l k +aparthe id +hipho p +char don +may may +ha asan +stri pped +fr o +scri ption +f ton +h f +pri sons +marsh al +ķ ãĤ +an cho +com promise +classi fication +buzz feed +bblo ggers +deser ving +) / +s way +ob o +camp ers +poder nfamily +p oured +bri e +squir rels +se ize +: # +le k +ti mb +st acy +nas daq +repe atedly +br at +mi ghty +competit or +mah one +de si +o ke +bm w +shi e +f cb +cheape st +minim alist +par amount +n ate +har as +insan ity +lat eral +ment ality +mo zam +ta pped +yad av +u sp +b way +the od +bil t +ra ids +em press +adap ted +pat ron +nut shell +ag ra +be aded +sundaywith marsha +vi king +proce ed +main tained +thinkbig sundaywithmarsha +sn es +mus ica +to wer +ch ab +bo k +sm t +insul t +harve sting +windo w +ru ther +be ige +dec al +indic ate +ma iling +ri ft +po le +ander son +ch oral +sp ride +l ili +ev elyn +imrankhan pti +.... " +ke red +un dp +water falls +se ars +le mans +world series +ri el +ani e +app ar +score rs +lam p +a than +phys icians +qu inoa +refu sing +vu itton +unle ash +s la +pat i +shou ts +inten tions +fo amed +europe an +neighbor hoods +me er +man son +du h +br at +con es +bow l +kazakh stan +ठ¿ +in appropriate +del hi +ketch up +ful ton +s ys +consul t +gar field +to go +f ml +f led +b ds +facilit ate +ree bok +selfi e +elev ate +activ ate +bi ble +ca wx +b ys +cam ille +sy ou +sk ool +her t +w bc +ple dges +recor der +po sh +ac re +so aking +mat il +v sco +shoot ings +pla r +e con +ðŁĻĮ ðŁı» +rashi d +u bi +ðŁ¤ ¤ +sw inging +wi pe +rap tor +m su +music video +dur ham +at tic +apar ty +fe tus +activ ation +aa z +motiv ate +ðŁĴķ ðŁĴķðŁĴķ +j al +ठ® +ag on +sche er +stal ker +fo ster +az zo +tele gram +vi gor +s laugh +screen shots +entrepre neu +kri stin +inten tion +ch illi +fr action +don a +ge a +tc u +s ite +la k +em il +d nt +bor o +wil kinson +re cu +ato day +t anya +bl anco +cd n +brilli antly +g cc +ac c +evacu ated +ther ine +den ny +cait lin +she pard +pou ch +hand held +sou theastern +ha a +à ´ +re solutions +led ger +sr in +r ar +shat tered +chim ney +im with +mete or +hand led +ra ke +town send +en han +shi py +duc t +tw x +inflam matory +war hammer +theat rical +gro s +sk ar +sco tty +ni el +tit o +tin i +conne ction +_ . +goldeng lobes +sha q +ðŁı ³ï¸ı +hall way +fron ts +effec tiveness +gla ston +d hs +ex pi +to h +c pl +sc s +re o +ha g +resemb lance +hor an +abu sive +qu er +virtu e +cho lester +a q +shan e +m ce +carri ers +di stress +re wind + ¡ +voo doo +int act +ann o +ðŁĺ ¤ +pi led +adi a +ãĥ ³ +en ow +di gs +light ly +goo fy +turb ine +governor s +con te +re open +pa h +i ve +cra fting +swee ps +jo di +an de +zu cker +kaw aii +o ko +v ai +out line +kri sti +ts n +insp o +qu int +fil thy +lyn ne +listen ers +depar ting +or d +t weed +, & +ale k +sel fish +nor ther +recogni zes +i ps +be s +a ed +w ills +pe at +surround ings +mon uments +ais le +be cker +la v +quant ity +v ah +helicop ters +tu cked +alv arez +sha pe +o bey +ad diti +road side +m ite +bl ers +ep age +j au +ignor ant +b ins +lu lu +x o +c fo +ee eee +apprentice ship +shef fiel +to i +ho k +faken ews +deplo y +aid an +husk ers +ãĢ İ +west brook +mi ster +confi gur +car r +fic a +proceed ings +ha w +ste ak +mur derer +pay day +a jo +p vc +don ates +bi af +nom nom +be it +k ali +x rp +ahmed abad +se mic +che y +x tra +an twer +head lining +squ ares +roun ded +flu ore +bol d +disa sters +am oo +gener ic +cran es +brief ly +gi g +auster ity +anticip ation +for ti +treas urer +cann y +ce cil +dete cted +check list +ภ§ +pam ela +bar bados +an field +hear ty +tx lege +peren ni +arro g +ing ram +âĹ ı +ty ne +spo on +r ation +am ba +m be +cam el +h hs +york shire +reflec tive +fre aks +to k +ju do +partic les +du bs +ban jo +accred itation +prover bs +over dose +inte gral +gu ang +mc s +super car +af b +al vin +ail s +x tre +st aging +tw ent +rabb its +mar o +inste m +dol l +cr ay +sant ana +ble ach +mini ons +che ap +man t +di vers +catal onia +lo is +mat ri +cou gar +kay ak +e gre +p so +a ia +å ® +char lton +tr acked +sc ari +pe tt +f wd +x in +gra vel +br ic +bigg boss +ar den +hu gging +pal ms +st v +li mb +the movie +handic ap +ri me +z ai +stu b +indi a +lithu ania +rhy th +p ita +maced onia +high ered +brid get +schwar z +ske let +hi kes +ant arctic +c ps +mash up +Ð ° +n ell +chand ra +he ir +an us +sher idan +mi mi +muse u +bec ca +an ir +bar rie +dioce se +compar able +ðŁı³ï¸ı âĢį +yuk on +me p +hor mon +mer ic +al f +con quered +christ church +ðŁĴĻ ðŁĴĻ +hazard ous +poo h +cont ing +retro spective +par ame +na ir +con sor +ho tra +astoni shing +cater pillar +u man +ti sm +t vs +serv ic +croy don +mor ales +c g +cu m +te ur +scan ada +s all +magno lia +el ise +th our +à® ¿ +ag omez +phel ps +ë°©íĥĦìĨĮëħĦëĭ ¨ +wh os +weav ing +si sd +pro poses +cro ws +pre sale +econom ies +bernar do +sha hid +air show +mc cann +hor ticul +nr l +du el +mongo lia +tou lou +requi rement +struc tured +ed i +o lives +he a +cu ter +Ð º +enthusi ast +harri et +domin ion +sub mer +ðŁį ĥ +sa ab +nes burg +mo ff +def ended +bur t +rewar ded +gold man +op tics +khali d +house holds +buc kets +ce cil +che ss +substan tial +ef l +oper ation +evalu ate +st n +rece ssion +l ll +tom as +tru ths +ak bar +s words +p act +embarra ss +ha o +ay urve +scrip ture +ny cc +op t +di ameter +sc ented +organi zers +re lat +ha e +dream ers +de se +ðŁĮ » +restric ted +n ale +r hp +dol an +mun ster +ha ired +consult ants +jo ints +hu mil +d ill +relent less +t é +af il +ut ilities +japan ese +condem n +pet ite +colli de +q f +peach es +cou rier +l ore +âĺİ ï¸ı +reli ability +ch uk +ðŁĻ ĥ +stu res +ge ther +ho stel +bi er +- _- +â ĩ +e ze +ta ilo +di ent +blu ff +chu ffed +pil ip +mon arch +e em +bu chan +b ick +op au +ku ps +ภ¢ +pist ons +sp ins +m and +ce st +bur ne +v ile +cher ries +bec kett +need les +pan ch +ë Ĥ +haha h +trou bles +insi sts +do you +g mc +mor tar +deleg ate +in n +g anda +sin atra +ठ¤ +spee ding +pu pil +pre mises +ali gnment +pi kach +as us +j alan +Ø µ +lime stone +fol kl +parme san +ce il +mo y +shawn mendes +ac up +hu st +ot es +med ina +ma di +gta v +censor ship +ar g +swe eney +sy kes +col o +foot steps +cann ed +adv ance +gta online +healthy living +ðŁį ¾ +a ig +p ality +oc s +he brew +im minent +berk shire +jeremi ah +out going +bak er +entr ata +ma ids +gro ves +bo c +a del +m fw +con science +arm ys +nut ella +conte stalert +novel ist +la h +ban ker +marque z +ðŁı ¡ +to ff +out age +gr p +ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃ +musc le +du dley +nvi dia +mi di +m uni +ess ays +dat ac +car ter +ภ£ +t ans +i ves +public ations +al er +ok wx +il u +cu tt +har p +out law +luther an +br ill +bo lic +do well +green land +be sties +path i +pay ton +gue st +har den +ðŁ¤ © +ann ed +evacu ation +po ised +mc der +b han +o i +envel ope +ci d +ca vi +ta pas +book review +grey hound +âĻ ª +fe ud +lun gs +for te +rai der +ff er +oni x +dep end +yn wa +rel ating +de vs +ðŁĴ IJ +acqui res +d ha +j yo +priv ati +can ine +k b +cra b +sar din +imag ining +k j +em por +down hill +ne z +ta eyeon +nick imin +gb p +à µ +w ap +sec co +ma shed +ðŁĴ¥ ðŁĴ¥ +augu stine +diss ol +dic tator +â ĵ +vi per +ed fringe +vau x +hard work +book let +no x +chi ff +ðŁĴ ¨ +observ ations +xbox one +u sher +ke er +lu p +dal las +cal gary +ma dra +di ous +k bs +wood ward +hero ine +lu mber +sea world +o ws +mc ke +maver ick +gu la +cross roads +fan g +s ade +nik ol +chee tah +me c +pp g +er ick +ðŁİ µ +tox ic +bj j +viol a +sp ire +ch ino +tra vis +institu tional +ha as +low ry +w ac +ea e +hu mid +mp ton +ru ck +je w +c ine +zim mer +se f +bhar at +fre es +aam ir +ðŁĴ ħ +z inc +wan e +multi player +royal wedding +e el +preci pit +qu ery +kimber ly +isa bel +ful fill +ig an +vau l +pan e +sc y +dig it +gun n +u tah +dog day +fi on +xia omi +da c +el ast +cha vez +ro blo +g ine +ten th +ab h +ke to +hur dle +na dia +memorab ilia +ha bs +qu an +h w +hv ac +pix ar +ec cle +kram er +accu ses +ðŁĴļ ðŁĴļ +per se +mean time +wa hl +atle tico +âĢ¢âĢ¢ âĢ¢âĢ¢ +ott oman +no vo +k us +conne cted +tru sts +d mv +spen cer +rahu lg +do ve +sto kes +bolog na +enthusi asts +à ª +rockstar games +ted cruz +du ras +s acked +late x +immer sive +cer t +lu cin +princi pals +fa res +sa ils +far n +am ent +saf fron +quent in +check point +fer ris +ex cur +ðŁijī ðŁı¼ +bai ley +se h +ter re +mad am +s band +wan derers +cumber batch +yy c +digit ally +blackandwhite photography +roll in +moroc can +ðŁĮ ħ +din ner +d well +to om +m ye +ez ra +cp fc +war hol +me er +jon ah +no aa +s gate +so on +secu lar +g ating +ti o +dri ver +si ssy +assan ge +ta th +ed mund +bobc ats +ra ji +po stage +stu ds +m gm +kat o +edin burgh +meet the +shir t +fa a +mens fashion +sp reads +wi m +car ts +phoe be +j ars +bot swana +Ù Ĥ +ed war +sk ar +ri ve +gu sty +c tv +ferdin and +su therland +nickimin aj +k v +si us +bee ch +re z +desi res +on ial +camp o +quar ry +lor raine +gil more +ig gy +µ ï¸ı +ho pping +avi z +ðŁĮ º +uni sex +dedic ate +att itudes +ste er +jun kie +rail way +y b +whi sper +key an +k us +ju g +di x +a ins +sum mon +ov ich +sy ed +her ald +ma ison +me ded +wild flower +main land +ri sky +ru kh +over looked +ki c +destro ys +nam an +ki p +z ano +champion sleague +ban dit +quin cy +smi le +cal vin +open ings +ta pp +ol ulu +spec tro +accred ited +ap k +pra ised +bar nett +pol len +premi ered +selen agomez +tou red +screen ings +uu u +mis o +en se +adam lambert +guel ph +har yana +hu tto +le ar +l tc +po ached +brex it +æ Ŀ +tt c +pa vement +mon gers +ro e +ad ers +ling ton +particip ant +ca red +ga il +y ates +lan tic +dash board +jo o +feli pe +ssi onist +bu m +s end +a eri +thu gs +luci fer +a he +dete ctor +fil ly +gas oline +ham per +hump day +the ta +the band +fore casts +o hhh +lo bb +hol l +cp u +az u +ad ar +hai ley +bu b +car t +quo ted +an archy +pan cre +twit art +al den +st ash +the less +or ni +belie bers +mor mon +partic le +avi ation +⬠Ĩ +webcam toy +sad dened +cru is +ham let +n ct +roll ins +marque e +saw yer +reli ance +a ura +di ec +soo thing +sig nings +ak is +à ³ +at kins +aer op +ðŁĮ ¿ +y ab +sh ari +con nol +du bbed +manufac ture +convin cing +feelthe bern +ra u +pu lit +on ec +gem stone +ur ging +bag u +ga h +aci ds +fi anc +zodi ac +sn oop +her rera +initi ated +ven ge +profess ors +pro di +stron ger +e mission +bb a +hal le +ta pp +haw an +wh im +compe ted +myr tle +ir port +cold play +ach e +ske p +m son +ss ic +calli graphy +swim mers +me y +pp c +thri ft +po c +re places +commu ter +âģ¦ âģ¦@ +go ers +lo gue +para dig +bas kets +sensiti vity +joh an +atl antis +& & +suit case +anxi ous +l h +str i +gal loway +stre ad +war den +gr ounded +ffici ency +li feat +reli c +disgu ise +island ers +f cofficial +classical music +b mc +en field +bi que +oak ley +bat man +sla ying +ner ves +mul tit +calci um +projec tor +scott sdale +ant ino +gri ps +kim mel +des mond +prote stors +hi atus +metaboli sm +conclu ded +press er +ti pping +sli de +e to +hun ting +aus open +ri k +pp ery +innov ators +pitch ers +ag ger +fun gi +z ad +proli fic +rockn roll +bl ames +ct ar +stam ford +q ad +mozz arella +insan ely +den ver +ph ouse +nom ad +ï ¿ +s ris +pro du +hen ley +pag an +am trak +ru bi +in cl +tu tor +sco tia +wo es +sing apo +fun nel +turn bull +know ledge +gri mm +real madrid +we are +missi les +con sol +emo jis +sne ak +smi ths +ru iz +br ou +i el +ha ver +ðŁĮ ļ +kin gof +basil ica +circul ation +prin ters +ta pping +ri dley +dra gged +ha j +writ er +fundament als +personal ities +me tre +stereo types +bur le +best of +n ffc +ha th +mini stries +a ali +trac ing +pav ed +ł ï¸ı +g ic +insp ire +tu g +ha re +repe ated +ex pon +lol li +rho de +pre cin +install ations +instag ram +az ar +i es +sole ly +du kes +mission ary +van guard +fursuit friday +on d +pol ari +ma st +har an +jos é +jack ed +ec oun +al ities +ne ph +ra vel +moder ated +sco w +s fb +uru guay +as o +ni g +au du +p ints +lat ina +ben z +m itting +char ted +mat ology +cit ro +biop ic +ðŁij Ń +djo kovic +fox y +agu il +so to +an ada +sin king +sc rap +hair s +bethan y +fact friday +ðŁIJ IJ +unlea shed +) ( +contra dic +ram on +coast line +y ong +sn sd +li gan +p ome +mit age +ge tt +wat i +ri sk +so aring +bru sh +f pl +av an +å Ĩ +lar son +sh ear +mul til +blu r +multi media +chun ky +par i +n ani +weir d +cholester ol +char les +dream ed +tan ning +puzz les +fr am +hand ball +ch ag +beli ze +al u +bang s +Ñ Ħ +detec tives +mc g +ish q +bo thered +saf c +mp ing +ten eri +g ays +sail or +an gi +mul ticul +gue ssed +ros é +high ways +bro om +chatt anoo +- ' +see ker +on ed +at f +lu c +> < +bar i +per cep +jewel ry +as ph +sor row +sl ing +mam moth +jac kie +ë § +wilt shire +sa o +can cell +im paired +tor ial +bre ed +guy en +jud ice +tit le +pro spective +applic ants +ðŁį Ĭ +epis cop +e id +b yo +stock ings +ðŁĴĥ ðŁĴĥ +ll p +sna g +keep it +l ough +ol son +matur ity +!! !" +cop ter +i sha +bl i +wil mington +tr youts +th ai +ðŁ¥ ³ +pe bble +kra ft +f p + º +ssi vely +li vin +contest ants +tex tures +jo an +h dr +film festival +prov ence +wi do +op end +c si +sto wn +cro ati +ad just +host ile +analy sts +il an +cu ppa +bru m +newfound land +good win +me tt +mall orca +plu gs +bu k +bb hutto +wrest le +sa ire +sho pped +for za +le head +vi vo +ba st +ro xy +reg is +hard working +hon olulu +desp air +young sters +ni g +impro mp +roll tide +de emed +tre ason +ru shed +for ged +ff f +pikach u +bri ggs +do it +ac cent +la us +gla ze +compet ent +a ho +photo g +mid field +le go +har vard +min orities +re illy +slic ed +once upon +initi ally +financi ally +landscape photography +har dro +qu o +mm ers +par kinson +smu gg +read iness +bru tally +glou cester +mp ed +bbhutto zardari +mur der +ye d +dat aviz +sr t +dow ning +bi ans +m ü +fle ck +fli pped +s ly +brilli ance +ri m +k um +bubb a +ko i +knit ted +sor g +ma is +ðŁĮ ² +ti ss +su stain +sen su +ak han +zi est +exam ines +chardon nay +user name +short list +re bs +on o +dar ing +hard wood +che que +righte ous +light ening +dir k +shra dd +du ra +down stairs +sh al +ami gos +ru ff +s law +ri es +red nation +man us +ðŁĩ§ ðŁĩ· +distin ction +u bun +dur an +mi gra +thi ans +la ver +domest ic +k x +jaz zy +justi fy +belong ing +insul ation +color stv +drun ken +chann eling +qu and +xi ii +enligh ten +kan o +fati ma +teen choice +terri fied +p ba +as ley +met museum +dun e +pack er +ki o +ðŁĴľ ðŁĴľ +bo iler +fas cism +ar mored +back grounds +in mates +embarra ssed +defin es +th d +we go +silic one +lo on +el ding +bor rowed +he mp +ak sh +kaw asaki +br y +de af +kill er +dispo sal +ðŁĩ ° +glaston bury +un covered +o xide +po ff +d ant +k j +ku ro +dri zzle +peop les +fe e +pro pri +dd lovato +pi ggy +ot is +aller gies +u bis +pengu in +ser a +vi z +prosp erous +ici des +tornad oes +sene gal +web cast +sto red +enchan ted +bb cone +bay area +entrepreneu rial +rednation rising +experim enting +ang an +lot to +they re +por e +er p +seren e +east wood +bro kers +bar ge +stal lion +timber lake +tailo red +dy stop +b ate +lat ors +di xit +bran son +dynam o +ky lie +shame ful +bt wn +spring time +mix ture +s ounded +lu ton +dad es +mal a +op ra +en ic +rahulg andhi +se wer +~~ ~~ +ky u +nor theastern +ca er +bc u +nir vana +kitch ens +ous y +al m +river dale +hid den +fl int +sp d +pat rons +katy perry +au gh +exhib itions +sm c +shu ts +at ore +da in +some thing +ber th +bo g +por ter +gen to +con cussion +ang lic +ro we +gr illing +scar lett +master ing +mor nin +comm ented +si me +si zing +christ y +ce os +st m +at ry +tari ffs +vac ation +pre judice +p su +paren tal +far age +can a +cap com +koso vo +you re +men stru +stal in +grape fruit +br an +che sa +dav en +exc el +!! ) +๠Į +distribu tor +ce a +bride sma +millenni al +wa in +ob serving +mis ery +plan etary +expo sing +bra ised +comp ton +don gha +q l +spring steen +th ul +syl ve +cab o +pal ad +niel sen +gaz ing +ba ja +r oud +orchi ds +johan nesburg +se man +d ji +oper ative +affe ction +eclec tic +at c +mut ant +aw x +nic e +mel bourne +indu lg +tu lip +dias pora +wel p +big gie +mississ auga +retri ever +or an +tam my +c ta +hipp o +seas oned +ger mans +eng v +marvell ous +im f +rela ys +mon tan +maur iti +me ister +as surance +reig ning +su fficient +han e +no thing +pos se +nav y +in love +brigh ton +en qu +ch ung +sweat y +es c +cal ed +man s +nicar agua +sl ices +mo cha +washington post +bb n +dam ned +grow ing +en burg +lo an +me s +wh oops +believ ers +spi el +vo daf +l at +s led +cricke ter +brown e +golf ers +bar ra +wat chers +lu igi +sw amy +mom s +pit ched +san tor +cr s +si re +sc amp +bo de +ste war +jon ny +ent ity +pac qui +mind ful +min india +bear ded +temp t +scorpi on +eat on +authori zed +ar to +s vp +op athy +cch ini +house music +disney world +âĢĶ @ +pro pose +di y +expen se +ten g +pupp ets +sm el +d aca +per ry +fin n +boo sting +lefto vers +cou gs +satell ites +man y +az e +g ong +fi e +metho do +fer ries +ðŁ¤Ķ ðŁ¤Ķ +explore rs +load er +attrac ted +il ton +godd amn +pi azza +doc tr +sav ing +paragra ph +visu alization +may ors +work flow +ack les +ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ +ठ¸ +twer k +clu t +lo ver +te ases +si an +o te +deter ior +accor d +l fw +swar ovski +nat al +tra ps +k ina +analy ze +laye red +bever ages +un it +ran som +pe shaw +dest ined +astro logy +si pping +miley cyrus +cam ino +marshmal low +bli ss +out back +fa q +int oler +humil ity +po ppin +hallo ween +mon tene +op hy +nu n +tattoo ed +a as +ðŁĮ ³ +dale y +qual ity +du sa +fisher men +swi f +ter rac +st au +le in +trol ling +ship ment +garden er +march madness +head band +gr t +bur nett +w and +!!!! !!!!! +gh e +du x +hu d +war ner +ðŁĩ ¦ +ex ile +rescu e +rat a +d han +duc ati +dro wn +bl ends +spi e +alli gator +simul taneously +broo ke +u ke +k har +comm union +ri ka +ford fc +chin atown +you rown +me y +can al +syste matic +de pri +ox ford +an il +w ut +equ ation +be z +fle ur +the good +lang ley +ad ity +ed ith +al fie +о ÑĤ +en cry +br ill +ex emp +ce sar +mb ling +ab ri +sc icom +j ing +school ing +mi ka +mechan isms +impromp tu +rhe a +moo re +crime a +be sto +wri ght +el ders +ro ds +kam al +folkl ore +be et +mini on +reli eve +thr o +team usa +pas cal +made with +boli via +itt i +free bies +desi red +best selling +l iness +la den +ke ane +mi sts +hipp ie +atta chment +@ / +se w +flan agan +âĿĹ ï¸ı +supre mac +stl cards +si as +q u +rh ys +ste ep +val leys +v w +pav ing +disp at +al ison +por te +id u +new sc +soc ket +mo s +co star +re vo +prote ins +stanley cup +m cal +ear ring +se cs +mc lean +cap ric +nick elo +ad en +v c +shou se +adap tive +maxi mize +entertain er +pro se +gri ffi +six teen +lam ar +mi rage +saudi arabia +awe ather +ru st +in filtr +fashion week +ðŁĺĬðŁĺĬ ðŁĺĬ +selec tive +bubb le +a den +fen nel +deci sive +m ta +mock ing +mb les +st amp +mu le +bernar do +gr in +po tt +j ingle +vet tel +colom bian +cam o +motivation monday +ba han +p ly +dh ary +k ami +x men +sleep er +gar a +my sti +confi dential +conflic ts +p neu +ce s +insur tech +clean se +me rely +va is +tu x +the great +shar on +ma j +hol a +eco systems +aj ay +aa j +hu sh +har mon +backto school +wiki leaks +reflec ted +ðŁĺ ĵ +commemor ating +ac et +buck ingham +messi ah +tu ous +hor net +to be +d q +he ine +mi g +pl ate +nichol son +sp ie +cumber land +nor mal +pho bia +happy halloween +city fc +mc el +gilli an +ke to +lu de +de mise +su ga +str ate +mcgr ath +visit scotland +foo led +cb r +gc se +col ori +po td +missuni verse +fin ances +ma poli +for ks +Ø ´ +cann on +medic inal +ðŁĹ ĵ +kh o +wre ck +pan to +bag el +gu ll +syndic ate +ic y +pr c +ki en +zi ka +ti sh +pe ta +c co +li za +ch ut +ex traction +el g +gl i +fu eled +pos it +respec tively +leice ster +br ink +vulner ability +im ported +e sha +ðŁ¦ ħ +r ural +re ll +gam ing +atlan tic +aband on +no ah +re solved +pro state +aller gic +ps d +âĺ ¹ +dun geon +fang irl +illumin ated +m hs +white sox +d ently +ck o +endor se +over ly +dazz ling +prior iti +night life +ut il +be have +flam en +east bound +ðŁĴ Ł +ilove you +gov uk +mozam bique +alle gi +dr i +testim onial +ath s +ì§ Ģ +mm y +shab by +pro secco +friend ships +cal am +dam ages +off set +jura ssic +jun o +arre ll +ðŁĴ © +interven tions +dare devil +car ver +run away +ran e +truste es +ha ute +dep ths +ðŁİ Ń +me in +sacrific es +con cier +ne sting +i zzy +me tam +ilove my +ur ine +du lu +mal hotra +ve ins +night ly +co at +an di +he witt +lon el +ci ble +wr ite +jen nie +sant ac +ĸ ï¸ı +str ato +singapo re +sop rano +kri sten +cheer ful +flee twood +fa iri +m eli +wa st +tur nt +sfor sale +sc rolling +angel ina +ren dition +jeric ho +nick y +or b +fla vo +patri ot +ash eville +sick ness +re fund +aggre ssion +b pl +ãĥ ĥ +elu sive +thi story +hang er +bu ffs +vil las +at kinson +sp h +ja it +decl ined +wo k +supre macy +oo tball +ey ang +ðŁİ ĵ +s ford +ath i +consu me +road ster +e so +u pro +reci pe +au f +uc i +ar on +oo oh +cs go +re ich +mc d +min ute +ladi es +pun k +rut gers +mee k +ariz on +ta j +land lord +de gra +autu mn +lyn x +us f +b hi +fairy tale +dongha e +bet sy +explo ded +chen nai +op a +pro tag +br ant +ðŁĵ °: +g f +pal li +ðŁı¼ âĢįâĻĢï¸ı +su t +ill ini +colum nist +shir tless +de centr +sear ched +ec or +bu ggy +s ack +ðŁĺĤ ðŁĺŃ +de t +ther i +or naments +bring back +to v +quarter finals +ic he +con stra +gi er +buchan an +vi x +kay aking +mu stread +swal low +mel b +sc af +op al +may oral +har at +ðŁ¦ ĭ +schedu les +id f +ha gue +ro z +a ah +d mc +du plic +ca che +orph an +frac ture +rec on +ch av +bun nies +al ain +mustaf a +ðŁİ Ļ +vac ations +dynam ite +tex ted +broad caster +ðŁĴ £ +ste amed +rock er +di etary +luxury travel +inaugur ated +sa wards +vaugh n +lincoln shire +click ed +kra ja +f anc +remo ves +layo ffs +mc far +bre eds +win nie +jon ghyun +incen tive +vari ations +pat ton +atur day +persist ent +pr un +pi ers +dal es +æ ĸ +breast feeding +r ance +ta wa +Ĥ âĸ +mur doch +cap tive +thi stle +nic a +commod ity +cou ldnt +board walk +graci ous +practiti oners +n gc +scru m +ner o +camoufla ge +col on +he i +phys icist +saturday morning +ten er +si won +colum ns +bru ne +y vr +ba ir +reti res +hal am +cab er +shaz am +min u +cas cade +milk shake +gri d +d ren +vin cent +so dium +plat ter +cheer leader +chen ko +y ak +elimin ated +ty po +y man +re think +âĿ Ĺ +ts ville +bernardo kath +ex tr +ðŁĺģ ðŁĺģðŁĺģ +ta o +re per +mo ths +em powered +c iting +transpor ted +mon ks +san at +cle ars +bachelore tte +camp bell +racha el +har le +hand ler +climb s +inter ference +rele ase +sh and +r bs +hr h +ãģ ª +val le +r é +sli me +w akes +chu bby +slo an +el ves +ath en +attor neys +micro scope +ston er +sc aling +o be +c out +se man +mid week +bal sam +ðŁĺį âĿ¤ +ti ful +v ish +lo tta +ri pping +re mn +ti re +le ap +ha vent +la by +hi mach +whisp ers +we in +ðŁİ ¸ +wild flowers +se le +u cc +li ability +az ine +sw ings +k ya +ta ir +re main +e do +flo ps +poc ket +grand ad +exam iner +gr is +ffe ct +ðŁijĬ ðŁı» +stud ded +heart beat +de acon +firm ly +infec tious +ste f +out lines +le asing +cla ws +sen se +tab s +hoo t +mo sul +spa wn +co a +hog warts +ve in +alban ia +manu el +b ino +vaux hall +scot land +go bucks +mat ty +phy sio +tor ino +const able +investig ated +s lower +mistak en +bay er +wild fires +vo ic +x on +time to +chas sis +bar ric +pi on +bald head +woo k +regi str +dra fts +b hs +li gue +l ick +staf fordshire +baf ta +dar ry +je anne +ven ding +cor p +⼠³ï¸ı +kid dos +fen way +ca o +west bound +ðŁĺ Ļ +dv r +quick er +bla h +goo die +ðŁĴĭ ðŁĴĭ +vo x +esp er +fac ade +cor relation +red bull +rou p +decl ining +chi ve +mc gee +tur o +in der +f eller +fu g +il ysm +mar di +peshaw ar +ki eran +ine ma +meat balls +pe ck +depre ssing +sen sing +gi z +dd ington +spring watch +ro aming +yellow stone +horse shoe +am man +week day +ol or +ðŁ¥ ° +boo sts +spr int +scar ves +je e +bee tro +cl an +all the +ìĦ ¸ë +enlighten ment +ado be +re generation +? @ +cont ag +yach ts +to u +mor a +en voy +r ani +go li +dhanush kraja +wood working +streng ths +se di +disc s +ar ina +sc on +lit e +ano ther +ðŁ¥ Ĭ +ye men +gu ern +sav vy +lo yed +biom ed +heart break +comra des +milli e +pat ch +un f +jar vis +bl aming +commemor ation +ge y +å ¥ +cardio vascular +alig ned +docu ment +. ? +aesthe tics +em u +the irs +le h +ps ic +si f +pl ateau +ex pend +domin ating +rob es +mauriti us +excep tionally +hom er +discover ies +bra un +ten nant +insul in +ðŁİ ® +car bs +te as +? !" +zi e +franco is +brow sing +th ol +cla rence +hel per +ob tained +cas sie +le es +! , +pome gran +hu bs +presti ge +] [ +mach er +bott led +pun ch +pi pe +o ch +gall ons +deliver ies +u ra +un day +mon de +depic ts +re gency +outra geous +khal ed +car o +he arti +za g +develop mental +over coming +stati stical +flavo red +for ds +cre atives +lau rence +di as +sun screen +in ked +pre acher +n ul +impac ting +auti stic +âļ Ķï¸ı +o ss +pel icans +cele ste +v b +ru mp +mc gra +fair fax +hu mor +bbc news +row ling +cal der +seam less +ag ne +p ti +mix ed +t shirts +mer ci +b tob +women instem +genealo gy +pre ven +l our +cra dle +gi use +Ð ¾ +chron o +fair ness +chocol ate +tor y +as da +pre scott +stret ched +al man +u il +re charge +in tre +ob st +hosp ital +hay ward +teneri fe +fried man +vap ing +confe ssions +ye ah +bal li +luck now +cor pse +sculp tor +amp ton +t pp +indic ates +sur plus +tru man +ðĿ Ļ +sin ha +in vo +sovere ign +ke v +establi shing +engra ved +assu ming +ðŁı ģ +sou za +fab i +ton ed +oun ge +del oit +dow ney +no ble +om or +car tridge +ðŁı IJ +u hur +hol loway +succe sses +r sa +âĦ ¢ +ma zz +tw d +disc ourse +. < +y at +satis fy +com pri +ठ¹ +graph ite +disser tation +ar ter +í Ķ +b ally +zom bi +ly ons +a ic +u bc +pra da +e il +da x +cla i +grand daughter +extravag anza +chall enge +ðŁ¤ ŀ +po ver +primar ily +dad dy +man a +bi kers +inqui ries +da un +fel ine +gener ative +he f +benef iting +lind sey +pol ka +demonstr ated +al le +rand y +o su +low key +weir dest +red bull +our y +n ous +wood stock +cre denti +nic er +g ado +aly ss +ap h +prepa redness +station ary +incorpor ated +dy er +sarato ga +cele sti +: " +antibio tics +or gs +inde fin +ap ron +и Ð +fif teen +no f +ðŁĶ Ŀ +ph x +te ga +m z +organiz ational +on air +band ung +pleas ures +mor i +secre tari +rac coon +ca shi +pil ates +k on +geof frey +la o +kam p +depart ments +back packing +an am +à « +crack down +aun ty +on do +li zzie +ph ers +cu n +ðŁĩ ± +k pop +pu t +inten tional +connol ly +bar clays +hs fb +swin don +u ku +s ally +a int +âľ ħ +pen ang +up lifting +epile psy +inter ro +bun gal +go ku +blue berries +ठ¦ +u ssia +sil ky +mou red +i stic +bri efs +me ats +go b +ch aser +state wide +pra sad +gl itch +ar in +ban ff +memb er +ðŁĺŃ âĿ¤ï¸ı +lo ving +hall a +ภ¡ +smo kers +yak u +scicom m +physi o +sw ol +lem ons +gel ato +ch ool +capit als +ki stan +ti ghts +spi kes +trav ellers +ik lan +commissi oning +ar ine +emabiggest fans +empha sis +front line +pad dock +destruc tive +ba ha +l inger +je wish +shet land +mc gin +mon key +ko z +s one +raj ini +te h +y en +c vs +masqu er +gir ly +we sle +was nt +bro dy +termin ator +gil le +mag gi +bir die +jeopar dy +cu bic +vm ware +intric ate +an up +to pia +east on +sab res +investig ates +bu sting +bil ingual +valent ino +in format +fer re +advent ur +hydr ate +for sy +az iz +san to +e de +whist ler +continu ously +d ham +un used +ji had +addic tive +vi dy +do b +i do +fi ed +ni versary +n one +fu er +ðŁĺį ðŁĺĺ +coven ant +prin table +immac ulate +o em +cl t +serv ants +consu med +un released +sc um +pack aged +me re +ìĦ¸ë ¸ +to by +ta f +spo ons +me al +f ball +fair field +jan et +silver stone +dart mouth +follow me +voy ager +kom bat +anni ver +ene w +mag dal +ho ve +sa th +grizz ly +car di +gart ner +sand y +kan ye +post ure +po ign +im pulse +radio logy +horiz ons +si am +aish war += => +no che +tr is +el yn +com me +du i +ce c +councill ors +cudd ling +creep ing +loc ke +manag es +trans ferred +ne cks +di er +dan o +v ick +lun ches +d he +en sures +cri ss +ul ster +bann on +cont enders +sp am +sweet ness +med al +hon duras +arc tic +ultra sound +in fr +disco vers +ei ffel +ca sters +ru ben +du st +awe ed +atri um +lest we +se ared +ðŁĵº : +ty ne +ex changes +little mix +l le +astron auts +hersh ey +work day +kno b +so v +re signs +today show +der man +an th +af c +ta ster +sw oo +sa eed +per ing +narrow ly +rn li +best buy +panas onic +obst acle +farmer s +ðŁİ Ļ +pa wan +ki est +ang ers +absur d +oh my +sin o +pist achi +sp ice +giu li +prime time +ko w +k ens +ex agger +! ?! +u ba +midd les +ju dd +e jec +slam med +pen sions +of a +re create +b hp +xx l +liver pool +thre sh +pur ity +ni eu +hol ics +wr ath +ra do +gli o +am ma +dile mma +cr u +lets go +.... @ +âĿ ĵ +sugge sting +tru mps +hor us +f v +ic om +refer ring +predic tive +tar ts +ge tte +so ck +glo ssy +pin ky +al ec +thy me +ou ra +thero ad +pe tr +cr am +p fi +dv n +me ier +incen tives +tun nels +mobi l +rec ap +extra s +upri ght +rev amp +per severance +, - +ot p +mir ror +ar wx +ger ry +ma her +g or +hom epage +am is +ag ra +made le +best friend +sirius xm +bun dles +admir ing +t dsb +ðŁį ģ +ch as +slow ing +ro h +wall papers +âĢ¦ / +tek ken +gang s +tal a +lind say +shou l +line backer +tool kit +ur anium +caly p +ab rams +mat thi +ðŁı ¿ +hon ourable +da yo +ver sail +tan k +st c +fr itz +spl end +pat ag +anno yed +on day +devast ated +chattanoo ga +national ism +mas sey +jen n +tail or +dev gn +org ans +zu cchini +on fox +sat ire +wex ford +dis grace +no to +vol ta +âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ıâĿ¤ï¸ı +à ¶ +home owners +poin ter +m cr +au sten +day sto +mo ons +pal ma +gra zing +e so +influen cers +shahid kapoor +compli ant +measure ments +develop s +y d +par l +p vt +rand olph +tor tured +ger ald +eli as +deepi kap +war mup +hick ory +g ap +co ffin +am our +re neg +moun ting +seven s +ig le +hi er +dec ad +tri ght +esc apes +wer ner +t fl +ful filled +ni ger +sour dough +re aper +choo ses +spin ner +week nd +fil tered +sh uk +kat i +old ham +open source +kh anna +at elier +conne c +opho bic +gla s +complic ations +ar son +counc ils +sm ol +as sy +lur king +ling ui +han ks +e in +Ù ħ +ru gs +n guyen +nou veau +men ace +le v +alad din +ru ining +round about +k m +con or +shoo ps +may day +traum atic +prab has +ka iser +k ita +rou ter +pe dro +re tar +stun ner +spani sh +distur bed +acade my +e learning +wit ty +sen g +fer al +av y +sta b +ke aton +ur du +ko to +hu i +coo ke +ari an +the personal +u ma +se ap +a sting +rhetor ic +hand writing +munici pality +consor tium +ðŁIJ Ł +glasgo w +ra ya +eli za +polym er +bro th +prac ti +correspon dent +addic ts +gay le +ail ing +o fe +p li +hear tw +st itch +sight ings +prie sts +sam o +slo th +good wood +roc co +sab c +summ it +l ace +pres ley +itt en +cin cy +thepersonal network +s week +pe gas +af con +regi stry +ci m +le th +dic ap +cand ice +flu ent +sm ack +pede stri +al oud +car ac +priyan kach +p gh +ir ons +dol ce +lat via +dece ased +thero ck +cla p +cen e +fo am +morris sey +gre t +essenti ally +com cast +be agle +argu es +ing ed +- âĢ¦ +sa g +ha san +ðŁĻ Ĩ +ðŁį ° +nh ra +kann ada +indic ators +on er +bri xton +at as +screen play +sor ority +sha heed +he em +class mates +tain ment +es i +breast cancer +zucker berg +aur or +en cia +ref ers +kae per +vor tex +com part +lym ph +photograph ing +ste ff +rest ling +par sley +mom ento +th man +lac king +du tt +ocu lus +fin o +fren zy +ra sc +der n +dis missed +noo k +met gala +sh ill +rapha el +maver icks +exhib its +eag erly +c pa +amen ities +. âłĢ +exo dus +ern st +lit a +deal t +womens march +i ain +score board +campe ones +c en +ti ki +garri son +fidel ity +bra g +road map +psy chop +lo e +ble u +ðŁijĬ ðŁı¼ +sau vi +spr inger +temp tation +ru dolph +ac ura +wic z +parach ute +stro l +len ny +zi k +dom s +nb af +al pac +vivi an +ro ve +pre et +perpe tu +sna ke +air soft +infl atable +prin ces +ati e +ffe y +pati ent +m ire +chel le +sl ack +groo vy +# : +up loading +!!!!!!!! !!!!!!!! +siem ens +provi sion +v fx +need y +f ats +to poli +bhu tto +sa thletics +alu ms +t winning +south western +adop ting +last night +man ne +la ga +tw ell +ac ia +-- -- +eye wear +hur ley +fle e +sa ch +pe cker +cost ly +is k +cr ates +polic y +ero sion +in go +wer k +ðŁIJ į +torto ise +therap ies +inter net +chihuahu a +ri ps +fre i +ed or +tai ji +t fc +do d +demp sey +christ in +chen g +hi ps +gra eme +com passionate +cavali ers +histor ic +soul ful +crimin al +ja c +vin ci +expi red +sur at +turi smo +k ona +se aweed +ber ts +le ica +expre ssing +a al +wor t +break fast +her ring +am used +rhu barb +mar tian +cospla yer +y ash +stri al +ra ul +refer ral +dw ts +j w +ad ler +cur tains +gu r +val ence +tyr one +sw fc +coach ed +re born +diabe tic +cho ke +nor folk +investig ative +ðŁĴ¯ ðŁĴ¯ +z id +v mas +phi e +objec tives +âľ ĭ +over due +di vers +mat su +ðŁİŁ ï¸ı +casu alties +ภ§ +al k +stand ardi +re alist +arti facts +pand or +ke x +in vin +( !) +ine y +par aly +mr t +fay e +the voice +on ga +de ed +skin ner +az wx +speci men +priyankach opra +nu evo +bar kley +toulou se +resu mes +football ers +cit i +fe tch +è re +lestwe forget +ðŁĻ ĭ +ch unk +dri fting +manipul ation +equ als +pu tt +ky ungsoo +âĿ¤ï¸ı # +ela stic +par ano +fo y +do ping +cin cy +ss ler +interrup ted +al ay +ado res +ame thy +con voy +ãĢ ı +Ĭ ãģ +black list +gener als +sa chin +bru shed +oun ces +non stop +illi ams +bt sarmy +u av +ru ff +bur ma +bi k +defen ce +schul tz +bo asts +lonel iness +go re +trans forms +alum na +@ @ +ra ppers +ne hru +car o +himalay an +wearab les +ge h +pepper mint +re development +flam ingo +cos by +big baldhead +ag ri +bare foot +sco pes +re gram +gh ana +ðŁİ « +i heart +sa die +carri e +microbi al +ku ala +sk ater +quer que +âĻ © +gen res +reas oning +ch ased +as o +sli pped +en can +vam os +ker s +ad verse +mo il +commod ities +with you +sil ent +hy pe +an de +am ination +whi spe +lit z +âļ½ï¸ı âļ½ï¸ı +ri ff +pp y +lam bs +gan esh +ab sent +regu lator +marse ille +en roll +par cel +wa p +by rd +ðŁĩ Ń +tu ber +country music +par l +contro llers +responsi bilities +we y +ch ate +montene gro +chic o +mil an +l ms +tra inees +appropri ately +un certain +popp ies +ed sheeran +nutr itious +gar o +deut sch +awe some +ãĥ ¼ +comfor tably +land marks +et i +re usable +daniel le +ro sal +co les +just ic +c cs +f anny +ni m +mc u +clin ch +at ene +mer ge +im db +ang lo +uc cino +pan ini +an not +bur berry +feat ure +predic ting +fashioni sta +s ask +imag inary +mm o +south sudan +spe ar +hu bble +jo inthe +coyo tes +sli go +ko dak +sit com +polaro id +roo ted +corru p +ðŁĻĮ ðŁĻĮ +bris ban +at z +ah l +re my +tal ent +aval on +ra da +pau line +locom otive +go ons +ne mo +maser ati +ic u +stu tt +histor ically +sm b +pres by +avo id +so oners +rhine stone +w ad +ri sing +tro t +mo des +reg ent +optimi ze +re ece +sm u +ver ti +newyork city +cor tez +ra c +in case +sin c +fiel ding +e tta +tiff any +al monds +sad dle +k rat +mat ter +g low +star ving +gl o +cra ppy +sl ur +st d +monit ors +recei pt +maymay entrata +mc il +un is +rain bows +cal dwell +pacqui ao +j op +a fe +hoo k +es sen +wiz ard +medi an +fla ws +com s +âĿ Ħ +ing h +ha ynes +anton io +tem plates +ou ter +na w +cardi gan +bel grade +ðŁĴ ī +hom o +a ise +ro pes +no ve +what you +tri gge +concep tion +ad ukone +na di +fri ars +sw er +adju sted +hot line +san ity +kau r +down loading +c gi +ten or +eth nic +app alach +ภ¸ +pa g +gol ds +on set +investig ator +car tel +peace fully +jarre tt +cat alan +poli o +n um +fru stration +dhar ma +my life +âľĮ ðŁı» +aber deen +mu sa +bin der +spark ly +fle eing +instin ct +co ping +domin ance +ill ers +er a +u conn +lo oms +living ston +gal i +he s +c ma +bel a +se ley +mon k +la ch +mar x + ´ +m erica +woman in +es sex +ra ina +jim i +nep tune +z ack +chine se +mart ins +chand elier +her n +with us +ear l +asph alt +modu les +st p +ul la +psychi atric +mile age +captiv ating +si der +men to +mor t +tran ce +tal bot +ab by +ì ĥ +âľĮ ðŁı¼ +j ak +daw n +turn up +scre wed +fe ds +blue print +ðŁĴĸ ðŁĴĸ +har sh +er os +insom nia +ban kers +ta emin +mis conduct +hu mber +gi di +edu ardo +con a +musc ular +consu ming +ra sh +don nie +di pped +col lie +samu el +melt down +ðŁĺįðŁĺį ðŁĺį +me z +exam ining +schwar tz +pri stine +ðŁIJ Ŀ +ve it +ful filling +an esthe +gue sses +dra ft +som me +soli d +pati onal +ho ped +evolu tionary +all er +enter tained +sli ps +lud wig +conclu des +sen sible +bon net +cra ze +tra s +haz ards +const antine +ed ics +star trek +to c +occu pational +in cheon +deepikap adukone +pizz as +new comer +de part +oppre ssion +ebon y +foss ils +tro jan +el en +ste aks +k hou +positi oning +ug by +red cross +ak h +dol ce +us mnt +pp en +dil ig +ma vs +call er +cost ello +⼠Ħ +dy n +thing s +rhin os +a xi +sar kar +con vocation +att ers +ss ss +fun gus +eu gen +russ o +squ at +w sb +eli on +william sburg +s off +defici ency +be arer +o kin +key stone +t wain +cal ming +break able +wa res +horser acing +com bs +bun ting +u it +t land +ðŁĴĻðŁĴĻ ðŁĴĻ +ga stron +sab ot +ick ers +commissi oners +sen ate +ii ot +ath ena +nit rogen +an tony +ero tic +di alo +mis sou +hypo cr +âľ Ī +kaeper nick +can v +d roo +clevel and +o sh +mon sta +stefan o +^ ) +sh ul +po ison +ha e +commerci als +ma ul +nit ro +co worker +alo e +vap or +t ents +russi an +qu id +question able +mid get +po ker +girl friends +sin the +erit rea +ten ure +depos its +buc keyes +spot ter +theod ore +trin ity +joaqu in +u cci +follow the +caf c +mp a +ðŁIJ » +plo tting +dom ino +ta ek +sion ally +dicap rio +pa p +car mel +ig er +bt cc +beth le +www bigbaldhead +foo die +bagh dad +mason ry +off ended +à · +ภģ +sc ro +vers es +ori ent +ar ches +pi yu +know your +gre e +ta kers +gu ard +dish on +bucket list +bha fc +war dly +ðŁİīðŁİ Ĭ +leigh ton +pe w +stra y +assaul ted +in hal +ly fe +amar keting +l x +kat z +ubun tu +me o +carto onist +turno ver +mi z +dis like +mul len +mo f +bl and +hi des +emer ges +chori zo +truste e +ma hog +lan sing +paralym pic +fa int +fa una +ch al +sn ar +cat h +bent on +cast illo +sli ppery +apric ot +oec d +bar o +l z +he ming +clow ns +co workers +peru vian +commu ters +y ell +ðŁļ ´ +under ing +v j +tt p +fli pk +w ana +soc ent +Ĥâĸ Ĥâĸ +ठĤ +oo sa +jag ger +di sm +e less +d ham +cali f +a official +ec lip +harro gate +gra pp +com rade +n tr +concentr ate +thi ghs +bit coin +bel arus +ë ĵ +end uring +now watching +industri al +pi p +ar on +ar at + ® +whit by +oooo ooo +sa ree +tic als +mis leading +yo on +year s +sle igh +roman ian +sciss ors +vam pires +ac up +ab ba +th weeksary +cent ri +fl ye +u o +c bi +bu ena +sin d +mar ino +bur r +re building +ठ² +anniver saire +ac ca +ðŁĴĢ ðŁĴĢ +gett ing +tu lips +wolf pack +âľį ï¸ı +more than +ta kin +ðŁ¤ĺ ðŁı» +u be +mon ic +dou bts +mo wer +co balt +don ne +specul ation +argu ably +kak u +htt ps +prosecu tion +din ah +stam atic +disclo sed +bever ly +fl wx +cra bs +extraordin aire +war mest +imper i +o logists +trac es +par c +lake side +am r +ter i +hour ly +domin ation +ar row +shrews bury +ance stry +wr angler +trigge red +pen sac +roo ster +survi ves +a on +bo ko +val or +love is +la g +pe y +fo cal +out laws +bl anc +artic ho +wit s +marsh all +die go +support small +u ca +sa h +je et +syn ago +gover ning +ðŁĴ ¬ +sal ads +cre ate +miri am +cen sored +ami de +no u +z eta +allegi ance +* ) +bl m +ric an +pa stors +oly mpus +blo c +whir l +star ry +pr one +y k +p ne +congratul ating +be v +so ber +love island +sa ir +an ing +tutor ials +q e +lun d +in ist +cle ver +taxpay er +ali z +wren ch +dd ling +cap ri +h pa +ðŁı» âĢįâĻĤï¸ı +na j +o j +futuri stic +jelly fish +ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥ +cel ery +plan k +fil a +ne me +un healthy +lec tions +ðŁ§ ¡ +rit chie +n ws +mi kha +wonder woman +âĢ İ +hip stamatic +ka g +ðŁĴľðŁĴľ ðŁĴľ +poul try +mo w +wor ds +lo ff +ðŁ¤£ ðŁ¤£ +relat able +re mixes +keny atta +ke m +re signed +fo d +stra igh +j lo +hu tch +box ers +colle en +mag s +instruc tional +ko l +attrac ts +pra g +account ant +go ggles +br u +th ole +mar row +leu ke +oc to +pon ds +bubb ly +he ist +ìĹ ij +im p +a har +ha unt +hall mark +psy ch +kkkk kkkk +col umb +jump suit +cost co +si delines +ag gies +over turned +ni b +key chain +fu k +f af +mi am +assist ants +cy cled +ri der +dam mit +red wings +mag es +kin s +ì Ĥ +ho d +son t +carol ine +" ' +cu le +bra id +fel ony +ar ities +ruther ford +depic tion +isab elle +ro ach +k day +fifth harmony +em y +li gam +bari sta +albu querque +gro ss +ðŁį º +oo ks +ðŁij ¼ +dun can +try in +jag s +g ould +li tho +âģ £ +а Ð +sam my +tun g +cas ser +apo lo +aaaa a +man g +as ics +sh en +p ye +tur bul +ss p +saint sfc +on lin +n anny +he ster +do z +ภĶ +th read +ren ts +kh and +ðŁĴª ðŁı½ +un conditional +rob son +car re +ph on +sacrific ed + £ +auto s +par ker +oc a +log in +kee gan +hard cover +dough nuts +ðŁĮ İ +spit fire +refresh ments +saskat oon +commod ore +j f +rub ber +halam adrid +child care +stra da +io m +ri k +dak ar +ther mom +cro pped +gar u +ali k +ven i +i ft +si ka +ritu als +z ul +e ch + © +su dan +l land +i me +do cker +ì ¤ +fe ared +fa o +wal ter +no g +mutu als +l h +ali gn +mon ia +concep tart +ðŁĻı ðŁı¼ +sco e +compet ence +sw ine +ly me +laun ch +green er +abstract art +inqu is +gran ada +ga elic +flu ff +d backs +grave yard +ba be +acade mic +adventur ous +joh ann +~ ! +bi bi +| # +pl ings +gett y +as b +âĿ¤ï¸ı @ +staf f +religi ons +bang or +world bookday +me gh +de vin +ash ore +meri dian +gi thub +qui z +all stars +be stest +ir resi +ack er +do te +war rington +pol ly +newor leans +cr ou +wi gs +che y +smithson ian +la sag +de tour +bor is +stra ps +mari ah +inten tionally +ko h +ðŁį ¸ +ssi an +mar issa +cor al +episcop al +casu alty +tom o +supply chain +sam p +on go +ro o +cavi ar +p fw +clau dio +buff alo +s ations +mat ty +snap back +l ds +al arms +mat te +âĺ Ķï¸ı +conditi oner +d ors +he x +fi zz +a stri +sus sex +secur ity +qa eda +all star +cocac ola +as one +cl icks +sc ans +mu te +he avier +ðŁİ § +âĺ ŀ +lv l +book boost +youtu be +fla shes +f jor +c su +explo de +do dge +cair n +gonz ales +th ill +pel le +hart ley +renew able +re tin +e stre +costar ica +shipy ard +nc fc +pri ya +a ghan +an ath +plu gin +co rey +re bound +or u +kat rin +hor mone +gi m +mahin dra +s sus +park land +har per +fanta stic +infer no +ep ilo +wrest ling +fe ct +c it +ac oun +to ssed +monu mental +char tered +bu st +pe tra +âĮ ļ +wildflower hour +sweat ers +* . +bl er +ate ch +go wan +demo graphic +bra l +suici de +renov ations +vu el +sin ister +ar mani +miso gy +ph arrell +nap s +un iting +crusad ers +cor gi +insu red +than i +no or +g q +d ada +bicy cles +snu ggle +sch an +ten berg +ss al +fe mme +bo il +½ ï¸ı +re ap +occur ring +hus sein +divi d +sto ke +sh alom +na ia +o lic +frustr ating +Ù ĩ +ig s +gro ver +scen arios +n ds +bru tality +med alli +bu on +sas s +skate boarding +ony x +lor ry +ny u +gau tam +mm ings +gu g +end i +lo thian +comm ando +chal k +ph ora +asse ssing +ti gh +crun chy +ad ay +is l +ci ara +pilgri ms +kam al +p to +brit anni +t ani +sm c +l ure +app store +ab y +golf ing +cl c +fa u +an as +shu tting +regul ated +carn age +scow boys +all enge +c ma +humbold t +rel le +ku mb +her i +refin ery +sound check +d wayne +bos nia +i sp +the alth +anni v +relev ance +my a +bag gage +dre ad +s bc +th ed +bu h +hi jab +lo id +ke w +c te +respec t +lovel ies +cu bes +celebr ate +dir t +sav ers +_ , +gar ment +pulit zer +mas jid +beat port +al arts +encry ption +s ner +ple ads +found ry +sym metry +ru mi +birth place +scallo ps +supp le +pivo tal +t ati +no de +so d +pro xim +tr ics +col dest +bren t +mand u +cla ir +e ach +and alu +hi ddleston +ðŁIJ º +mel ts +v ance +pin n +se ments +scre ened +sa chs +o bl +ic ha +âĺĺ ï¸ı +school ers +heal ed +lo gged +ðŁ¤ĺ ðŁı¼ +ic us +bore dom +b ish +b ffs +tal king +sure sh +hoo kem +de on +de fl +ei leen +ðŁį ķ +women intech +ri sotto +rang er +adverti se +ภģภ+tel ly +la go +dart moor +d ong +sk ates +lo go +un ner +mail box +ma sala +lo oooo +amethy st +che wing +c bb +australi ans +rc mp +game art +# ... +kor n +extre mism +fruit ful +anci ent +pu bg +pol ite +wh it +mur als +m gr +line man +dav ao +ste ms +ten nis +av age +tu pac +gigan tic +hs bc +auto biography +up the +ี à¹Ī +re gal +fig uring +ku l +mis sy +hoo p +gra s +for ums +back lash +abduc ted +p nw +min ic +bu tt +bott oms +at on +ven g +ðŁĮ ı +del aney +prab hu +fan club +over haul +health ye +sy no +aa f +ren amed +kim i +un cle +man city +se u +qu anti +este em +um in +en zo +mel vin +under go +j har +far ah +coast ers +humph rey +mh z +children s +^ . +d hi +disrup tive +integr ating +r nb +over sized +a ide +ne au +docu mentation +ðŁijĢ ðŁijĢ +pal o +hear th +ri yad +pun ctu +abc news +secu res +boy band +bir ch +ju co +tra ff +legislat ors +bay a +ãĤ ¯ +no ises +collec ts +s warm +k ner +bi shops +stur geon +snapp ing +mo l +fre aky +chair person +tro p +lyn ch +car cin +art sy +e sto +cha i +fl ur +inv ali +sau sages +im el +j or +fun fact +wit ter +puni shed +ac ons +h ya +re versi +em c +dif fu +z x +sp aw +cla d +d mit +hol land +fre sco +pay roll +ab undant +stu ffing +mor o +c ny +boy cott +wend y +ele ven +pro voc +pil ot +tr x +be ad +climate action +ri on +assi e +ì ĸ +o sm +islam ic +ho ar +good reads +al ici +afterno ons +spoke sman +jo lie +it as +masc ara +âĻ© âĻ« +pre vail +beetro ot +lu jah +k li +dod ger + » +ru le +l n +scre am +ho bart +col bert +r tc +er m +pat ro +quo ting +s live +que st +non fiction +semin ary +prosecu tors +ve st +express way +g ge +nau tical +et f +ðŁİīðŁİ Ĭ +dur ation +cha ired +the film +fab io +she h +can o +ðŁĴª ðŁı» +with draw +! :) +cor pus +phen om +yel p +la wn +ent om +snapp er +but te +pin ball +pro xy +libr e +alle vi +n ada +gabri el +fo wl +eure ka +daph ne +tu nes +pun ched +wh ore +jo g +ren tial +man ners +o pe +wh ufc +gu th +revol t +sne aker +philharmon ic +ho ste +sovereign ty +ðŁĻıðŁĻı ðŁĻı +fish ing +sci art +fe ta +i pp +dump ing +kel own +gir i +dig its +sal u +san jay +twee ters +sp as +col chester +sc ab +ma dd +๠Ħภ+Ä ĩ +ged don +march for +do p +maure en +un plugged +di do +fashion blogger +up a +mex ic +tar y +pol ye +jame son +v t +grin der +mad dy +consult ancy +¬ ë +leagueof legends +ac cents +um ni +jane iro +tu ss +h ens +ampli fier +to shi +pret tier +pre vents +new town +red wood +vant age +ball ard +ar tof +a she +a sion +lac ey +ap at +gro ve +ภĦ +rw and +real tors +tra itor +bed ding +ö r +zi on +fla shing +cam pan +boom er +secretari at +ab ol +liti gation +cont amination +se dly +shred ded +in for +do herty +bench mark +ro che +skate board +sho vel +i zz +to pper +o ster +laby rin +autu m +k ong +hum mus +vi z +tech news +kla us +am using +socialmedi amarketing +i des +cast ell +ste e +underestim ate +cal ab +pa ign +b illing +unanim ously +g mb +fly fishing +hath away +commerci al +colour ing +skul ls +pivo t +te p +tb c +motor way +x press +construc tive +pu k +under lying +kir sten +mani ac +cha o +se ma +chiff on +ðŁijĮ ðŁı» +ver ona +kom o +stan doff +wi ped +c ated +bla ir +wor kin +m sc +bethle hem +swi pe +unexpe c +pe es +pe tri +orig ami +ðŁij ħ +mex ico +flav or +ru dd +cannab is +mar u +ri ddle +wor shi +sil on +sch at +ap se +tang er +bi ous +e er +questi oned +o zar +dan k +angle sey +char an +bak u +compe ten +re pri +bat ter +sa xon +cal ves +leng ths +$ $$ +âŀ ¡ï¸ı +immer sion +ga unt +car ry +cy to +b anda +shu tt +experi ence +el gin +mous se +ta z +ê µ +in correct +en z +b ham +mor on +so ver +ar un +ti pped +la ble +de arly +bau tista +í Ļ +mor tal +woo p +dt la +sho cks +dav os +ðŁĵ Ŀ +swim wear +her man +ðŁijĩ ðŁijĩ +z ir +neglec ted +grac ed +campu ses +av s +ar ora +swach hb +live pd +ac cra +enqui ries +shoo ters +kur t +vancou ver +brad ley +gar da +g ü +ol la +attrac ting +up ton +ne win +lu mia +furn ace +ev ers +e on +sw a +roo kies +a oc +v ss +bris ket +tor ch +yo da +heart land +tac o +ph ony +food bank +ab bey +bab ylon +u y +gre ate +expre sses +d andy +sc apes +survi vor +ron d +e ci +ha vin +ab el +chil dish +tor que +wav y +ur self +kanye west +year of +ale stine +o brien +al fon +sk ag +kore an +anchor age +val eri +de w +ðŁİ ¨ +land slide +car ole +christ en +go phers +af i +priyan ka +q q +power of +it te +pc so +tw ol +pr y +intellec tu +guer rero +pi les +wish list +w ren +time table +ë ı +prodi gy +gibb ons +. / +ne ur +anz ac +mur ray +vie st +pla ster +la ir +art gallery +inter continental +g br +bell ator +nam joon +mam mals +am el +y aw +saras ota +cam ar +bud ding +sum mari +aco sta +la sh +ey ou +post graduate +instruc tors +ti g +const ant +were wolf +ic os +cla s +glen n +bud ge +ðŁĻ Ĥ +er ta +sta ins +persecu tion +cumb ri +o ch +syner gy +hu ang +scand in +mid terms +comment ator +regar ded +perpe tual +bo iling +al p +lan ge +sch le +fac eli +twee ta +ri dden +ok toberfest +charlotte sville +ik lan +jo u +ch atham +b sc +ðŁį ¦ +stra uss +mel low +xx xx +happy hour +re actor +ww er +distr action +at orial +ðŁĴª ðŁı¼ +twin peaks +fay ette +a or +ko k +bro om +sy fy +ou se +am ag +Ø · +ubis oft +lu lu +hall mark +stu art +it ya +si deline +venge ance +re lu +sex ism +boun cing +un ites +gu stav +te ssa +stu mp +pro clamation +ima x +divid end +col by +ðŁį İ +play wright +un safe +co smo +ðŁĩ²ðŁĩ ½ +cup board +constitu ents +ang lia +ram page +ðŁĺįðŁĺį ðŁĺįðŁĺįðŁĺį +than ked +take aways +shro ff +de bat +kh ur +conduc ts +format s +à © +port age +graph ers +u ten +pre m +mo ines +condem ns +s ous +l ps +f cs +deal ership +leuke mia +bure au +ski d +guardi ola +ca ster +thir d +avoi ded +en cyclo +c sr +vi xx +analy zing +she ar +dulu th +shap iro +chan ting +stre sses +as be +mil itia +ãĥ ª +col lin +arsen e +sure sh +teach ings +yi xing +sh ill +nu des +sv u +clear water +war ped +pro life +artist son +it u +versail les +galax y +ax el +spring st +cal a +hu hu +sc u +commit ments +exe ter +poign ant +mo tion +conserv atory +row dy +rec alled +mu sk +emb elli +so the +âĺ Ģ +sto pper +sch ild +to pe +el mo +zi el +j om +barn sley +snow den +on tour +jour ney +hills borough +par ole +w ts +mo ving +ag ility +tiv o +ff ers +kindle unlimited +g wen +ann an +ah mad +tex tured +hepat itis +dra m +insi ders +tis sues +ãĥ Ħ +fc barcelona +cr atic +na acp +pe can +f gm +custom ize +concer t +g sm +pe g +p one +justin trudeau +super cars +happy holidays +bu lar +ado x +lap tops +digital health +destin ation +gradu ally +áĥ ¦ +popp y +ss l +inhi bit +star light +of fro +glo omy +x per +hal der +im plants +le to +hass el +a as +un told +en ci +liber ia +or an +con tests +il ah +sma g +sc out +mari anne +cr yo +schedu ling +lo s +kan e +stutt gart +ne se +law rence +da in +pho tom +car ou +ภ£ +g wy +national dogday +roa sting +band camp +kentu cky +stret ches +ke rel +ca she +ãĤ ¸ +sta x +tran si +dog gie +at ric +hal le +ci vic +brow ning +lein ster +cat day +high land +joy ous +in cumb +or lando +ro mo +col ton +del ta +car ab +ro tc +aster oid +goose bumps +mo logy +yo ko +an ds +tomor rows +red carpet +sm p +ca sio +ðŁ¤£ðŁ¤£ ðŁ¤£ +se au +rejec tion +rot ating +bi partisan +th un +mat i +bon i +ol l +ener gye +do it +l j +mother hood +lou ise +neck laces +el ite +ni x +l cs +en v +gl u +le sh +cran k +su sie +m clau +so tu +crow ley +rat ri +use d +bre ton +alfre do +ye o +travel pics +ti pp +elli son +sax ophone +me red +heu ghan +ta ine +f es +vi ro +suppo sedly +i as +dige stive +y le +li zzy +wildlife photography +bri anna +west field +ra ined +am her +ðŁĺĦ ðŁĺĦ +distribu te +bott om +pre serving +oil and +craf ty +de scen +col ling +shakespeare sunday +r wc +ang led +ci an +t ations +mon tage +me yers +france sca +ðŁĮ · +wi ggins +san ford +volunte er +car ra +bar k +vari ed +pl in +am u +kap il +rock ers +qu ind +br ane +in mate +ent al +impro vis +michi gan +re tweeting +progre ssing +mercedes benz +smo ker +physi ology +dor ado +watt pad +h wa +sr bachchan +w ga +vol atility +hi re +ac ap +wn ba +hein z +stit ches +kidnapp ing +bur ys +lim b +f itters +thumb nail +ton e +mir and +desi rable +ad dison +tar an +tamil nadu +spec tator +soci ology +amit shah +remo tely +âĻ ¦ +ham id +r ds +g lee +smooth ly +sch ro +er c +lali ga +he als +us f +ni shi +d hu +un il +h le +tro mb +bhu tan +pilip inas +se ung +whit man +te y +min ce +snow boarding +re au +k ker +av o +zach ary +ran veer +ti k +gover n +qu al +beck y +anthropo logy +att en +grocer ies +de bit +war p +sil icon +hawa ii +ðŁĴ ħ +pomegran ate +pe er +orang es +people schoice +end ure +ðŁĴĽ ðŁĴĽ +ãĤ¹ ãĥ +ac ial +a haha +stu k +imper ial +bl ond +pow der +kno ts +vin ce +wood lands +den a +watch in +mat cha +ma hat +galax ies +middles brough +k ö +stre e +resc ues +wal do +lero y +desp ic +real ities +tm nt +ha q +un o +pe c +bolly wood +blin ds +design thinking +he ms +and hra +ab sen +fan s +ste ch +shire hour +bla ine +shak ti +pu rely +ðŁı ı +tra fal +ke ynes +gr ate +to bias +spon taneous +satur ated +caval ry +pri sc +ðŁĺ ij +wh t +pas si +~~ ~ +vir at +patt inson +la o +weir do +sym pathy +ju da +occa sionally +cred ited +stat u +es co +hil ly +esc ape +dischar ge +se er +may nard +sud bury +z lat +or al +we er +encoun tered +sm elling +over sight +ê ¸ +that cher +mack ay +you can +fre ep +freed oms +prophe cy +ho e +ishq ba +dra ke +qu its +pel led +tur k +o vi +wesle yan +new music +leg g +ch eng +h illi +ay y +pan ties +ad versity +ad jac +vaccin ation +ju ke +ga c +exce ed +time sof +sta ining +ep cot +v ital +up ward +bethe sda +apar k +ma hi +camp fire +enchan ting +rha pso +h z +na ver +fa x +vali dation +ac ad +ny r +as ym +coordin ated +depar ted +all ery +var ies +spr ite +chap lin +ss occer +s wat +bre t +relu ct +tunes app +super star +reminis cing +o co +home grown +dough nut +un canny +la pd +thyro id +! âĿ¤ï¸ı +botan ic +bre s +sp ade +i ste +echo es +du lil +bur sting +qui ero +ðŁij İ +loy ola +amuse ment +ha ils +sleep y +burgl ary +âľ ı +ro gue +cot land +mo ors +low er +wic ked +ðŁĶ Ĭ +compet iti +argent ine +yvon ne +karti keyan +ili ary +gat sby +precin ct +six ty +na ji +cam s +practiti oner +ðŁĺ³ ðŁĺ³ +pu ne +neg li +juli en +inv aded +cali br +cla m +duba i +mu k +lan tic +produc t +fe dex +ï¸ı : +eu ra +dari us +s ling +virtual reality +home stead +ðŁı³ï¸ıâĢį ðŁĮĪ +pac ed +in ha +pul mon +la zy +premi ering +ma stered +in he +con gregation +ba jo +sport ing +new jersey +hor ny +lma oo +leng thy +du t +yo gh +swe aring +philosoph ical +pap ua +in ski +know les +dy ke +âĢ ² +to ken +mc guire +ri ot +probab ility +mc con +gro s +su mat +c ite +da a +on da +mad dow +che w +board games +spar ked +re claimed +ad hd +ny se +imwith her +equ inox +boo ths +balsam ic +ha zy +dor chester +ag os +se aw +moder ator +seri ea +ander sen +pilgri m +âŃIJ âŃIJ +itch en +hal li +x ton +nathan iel +mun ition +celesti al +ga f +zo om +mark le +pen thouse +cal e +s fa +bar king +tu cket +em ery +cal orie +li que +ad ar +mc nam +tor tilla +wood pecker +mo town +bad ger +ayr shire +scram ble +dd ay +cra ziest +per rie +cho co +cast e +i ot +wre cked +selec ting +uss r +gra ft +pun t +lab ou +ir st +ba ek +Û Į +su ki +que u +ach at +te ster +aug mented +wc vb +sin ks +ðŁĵ » +ra ke +inter ne +be cause +belle vue +une arth +light en +ðŁĺ £ +turn around +labe led +unemp loyed +twitter kurds +le ia +h ye +great er +ðŁIJ İ +tim ed +i red +e tt +limit ations +cab e +s out +bee ch +anni hil +re trac +yo ona +ang er +den nis +supp lying +di z +" ( +sc ur +gun man +su ho +sauvi gnon +ภ¥ +wi ley +land on +choreo graphy +pre historic +ðŁı ĥ +var gas +assess ments +pinn acle +di i +chamber lain +ì Ī +v p +present ers +deut sche +sun shine +sal utes +r one +bu siest +- .- +motor ists +hemi sphere +al wx +ps p +ow a +den ying +cho c +gu tier +han uk +mus kete +jait ley +se wage +t ame +thin kers +shi m +se quo +pap ar +middle east +k wa +ke g +patag onia +no y +bar ça +take off +he a +à ¬ +n sc +g dc +ðŁij Ī +mou stache +mel ania +thr a +â¬Ĩ ï¸ı +pier ced +ze us +fon ts +ber a +it iner +q atar +contr ary +ire land +i fy +ou los +commun al +fin s +un paid +pa a +ðŁijĩ ðŁı» +ri os +ou p +f iller +cafe teria +à¸ Ń +kas i +cali ber +z ulu +v sco +ts ford +dragon fly +smo kin +pi st +psycho logist +diplom at +we bs +buc cane +à® ¾ +motiv ational +du ne +ba e +c fs +with out +er on +i ac +ate e +pen sion +fra zier +en sis +sk is +par ting +ger y +territ ories +nach os +eni ght +ever lasting +msd honi +tel e +sp un +po di +sab ah +environ mentally +ce ase +beau mont +mar ta +kel vin +ho ff +sun il +n da +co b +sh ale +ree dus +un boxing +u bio +re opened +n all +capsu les +mar r +himalay as +swee ter +ja z +f mr +twee ter +dha ka +na u +de mi +d fs +ta urus +fad ing +it utes +ci p +over flow +jef frey +don ny +car tunesapp +ðŁį ij +prefe cture +danc ed +c pt +ple asing +ital k +earth quakes +ul ation +hi o +ãĢ ĭ +ant an +nutri ent +de ere +selec ts +enrich ment +r iti +tram pol +bl amed +j ia +contribu tors +chesa peake +pi geons +tribun al +mad uro +w su +ilo ve +effici ently +dar cy +war ms +ar ra +ec u +ho wer +strugg led +rajini kanth +ðŁĺ¢ ðŁĺ¢ +hou sing +str at +eli x +disp ro +raf fic +thi erry +na sty +c fb +staf fing +al ma +back ers +hen son +sky walker +reale state +roo s +ness y +chan ce +cair ns +c ci +pe dal +ly ft +cross word +wait er +only in +kru ger +k ir +alej andro +car tier +car rera +re paired +ou at +un clear +un breakable +today in +qu eries +jo dy +gen ital +win ner +to l +kelown a +fascin ated +ãĥ ¬ +sris ri +squ ared +spr ung +negoti ate +priv ately +av en +>> >>> +g ical +gav in +chester field +zu mba +or r +nat alia +impeach ment +mn l +car at +criti que +credi ble +trac y +tan i +musi k +jig saw +gam bia +tol kien +fe u +as per +sav ory +fo xx +f itt +mar lon +l rt +v ell +p br +imprison ed +i om +chu l +wind shield +kay e +ba a +chor d +s art +al gon +minister ial +nat geo +la zio +nor ms +ðŁijį ðŁijį +lic king +fut bol +un sung +dalla scowboys +sh red +distur b +dev ine +be ards +ch f +b day +ro sso +ig or +ay i +si ren +k air +sti les +ro f +mag nets +un cover +mou se +bang ing +si ghted +spe ople +impac t +row land +kir a +environ ment +love the +p sis +mish ra +gl endale +ca jun +o che +de ception +sex ist +stra ws +s ga +buff er +apost le +sp l +pop up +ðŁļ Ĺ +r g +up er +ball in +i dy +occa sional +national park +ðŁı Ĭ +u an +innov ation +ภ« +te aparty +re tte +counter fe +b ha +rec s +ig en +ðŁĮ IJ +humming bird +cu r +ha ven +la zar +pue blo +: : +zi onist +op ath +inver ness +promo ter +carto on +cabine ts +mahog any +surve ying +r ational +feel ing +testi fy +so w +oc on +ภ¢ +ne el +mar is +sol itary +che mo +rad cliffe +sim ons +ros ary +new er +jo die +re tali +pra wn +pad dy +hen ge +k ala +im plant +at y +bren twood +par adox +ene z +re designed +p our +wy d +al de +௠ģ +sol d +biomed ical +๠Ĥ +tt tt +mat teo +ys er +new ton +de bun +ner dy +loo l +wo on +elisa beth +ec c +wh i +ach o +salv age +sal aries +qu ity +navig ating +oph thal +con soles +re built +o pec +ast ers +sho red +set list +kathr yn +rhy mes +re visiting +ash ish +li ft +re post +sole il +âı ± +weal th +sa at +we c +king james +flipk art +field work +se gu +mo dal +bu b +are rs +ðŁį Ĵ +clo oney +pad dington +necess ity +guth rie +pen te +li mo +jo sie +ar tin +en c +l hs +betra yal +info graphics +i er +mo a +hear ings +bon jour +sym bolic +ag ro +wed ges +krist ina +wild flower +athle tic +photograph y +pe sh +ca hill +chi lean +gou l +fi oren +ðŁij ¶ +z il +sk im +bad oo +deli a +tre ble +n cc +ðŁĩ¦ ðŁĩ +a house +bul lock +sol itude +ا٠Ĩ +can cers +futureof work +hu tch +water shed +war mongers +sp illed +colom bo +mo th +associ ations +weigh ed +global goals +not just +christ i +tor g +swe ating +man eu +clu sters +âĢ¼ï¸ı âĢ¼ï¸ı +ta ped +ul y +tru sting +yu suf +te in +ra b +, ,,, +sin ai +audi ble +explic it +cro wns +sch iz +at least +ðŁĹ £ +de bra +je suit +ene gger +z hen +one sie +i it +ss f +gur gaon +chak ra +bear cats +k ran +k awa +reque sting +han over +g end +sor os +mer cy +lovel y +do omed +tim my +ku z +ul l +ab ram +sa ison +ãĥ « +clean ers +re mo +circu its +bar red +o th +mo ist +madele ine +gall o +u j +per mits +hea viest +car ols +az te +gior gio +flo ats +decl aring +us rc +min at +craf ts +pri ma +conven i +nickelo deon +danc ing +ceremon ial +blo gg +tw p +anglic an +she k +k nick +( (( +hubb ard +harve y +hit man +fen g +we some +for za +s word +op us +bro m +gi bility +z al +m unch +dance hall +gre edy +hd mi +re birth +ðŁĺĭ ðŁĺĭ +s world +figur ine +com post +k f +engra ving +gior no +st ana +k man +ham ster +compos ers +aj e +func tionality +pol k +is ons +air planes +te se +hor rors +musc at +gi ven +sp ence +ðŁĩ¸ ðŁĩ +eli ot +ach illes +fre ck +crypto currencies +sou ther +hal o +bor neo +polit ic +hahahaha h +up state +si ena +obsc ure +hau sen +lloy d +happy friday +motor bike +bon a +americ as +hol s +- ( +spor ty +un aware +reven ues +christop her +bank sy +av an +ev apor +com press +eyel iner +to dos +buff y +renewable energy +ly rical +ar chan +rapi st +fair trade +lma ooo +beat z +pro active +la pse +ir ical +revers al +po de +mcin tyre +mac au +ãĥ ķãĤ +nash grier +f sa +g all +çĶ Ł +perpe tr +il ya +configur ation +% ; +str ange +rac i +ภĩ +pic kups +kov sky +mam mal +w ps +g able +compar ative +z h +save our +da vey +on etsy +mu ssels +mis er +cri stina +electr on +cra ve +lo ren +precipit ation +m z +ðŁį « +vin cen +snow board +no ida +ah n +marin ated +g tr +town hall +min is +bethe l +adv an +su ra +shi el +fur ry +ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤ +lyn d +so il +sc ence +sen eca +shar jah +dick ens +credenti als +av ar +per k +requ iring +pre fer +j ian +de ca +r ach +ing for +del e +be ep +ðŁĴ » +cis ely +hu ddle +green sboro +haw king +ho ax +hang ar +ç ľ +mis o +lo vin +gre ta +ab ad +logi e +at an +snow flake +mahe sh +fear the +al kal +bobb lehead +ba hn +ju dged +fu tu +feli x +ðŁį ĵ +pi ke +der iv +notic es +au er +dis super +or da +wi pes +am ino +stri kers +foo tb +dram as +pun ching +score less +heming way +bi h +bal lad +chat ter +am mo +kle in +fabric ation +kari m +z end +hi sto +vol ta +rock y +marke ter +xtre me +sequ encing +paradig m +cle ats +boom ing +âģł âģł +block ade +promp ts +yogh urt +pur pose +nu r +regu late +nois y +ing rid +bird watching +bar tender +Ù ĥ +wor dof +cha otic +shor ty +el dest +z app +onceupon atime +fl yo +rit os +mike quind +ðŁIJ ´ +regi stering +. ] +ad ol +gg gg +pur ge +kid lit +ar bor +val ves +synago gue +o th +unanim ous +veri fication +dar rell +ãģ Ħ +vander bilt +tape stry +pro sper +did dy +dra fting +de cep +marqu is +st int +michael jackson +pee led +men us +bb b +sc are +ema il +wri gley +it is +f ell +some thin +bar ra +ed gar +di pping +pu ddle +sla de +lear ner +jal en +ðŁ§ IJ +the daily +mikequind azzi +ju x +iq bal +mckin ney +ra iser +ef an +dr one +cat o +pic ket +cro we +l att +uk o +giuse ppe +hin i +synthe si +ponti fex +song writing +to d +swit ches +din ners +h q +gabri elle +pensac ola +cir cle +expo ses +ev s +riyad h +pro men +o ck +sa j +cit ation +brew co +jo si +ep aper +dri f +point less +tang led +cri pp +line ups +fairi es +daz e +mour n +bla dder +sal z +bur undi +book mark +the people +sub sequ +princi pal +sk er +court ney +a oki +rac ers +ad m +mom a +critical role +hou n +shed ding +sa ka +ace ous +mck ay +hus bands + ½ +me da +accu sations +ro sel +nc is +witne ssing +or ama +go ds +hil ton +el man +ÃŃ n +meg ap +cra ven +announ cer +crit eri +sheffiel dissuper +milit ant +consu l +hoo ded +aby ss +b x +ma dam +lo cu +mary am +manic ure +grat is +ac tresses +ros ario +this dayin +king ly +gn ome +cel ine +r ous +he el +lil ac +vish al +ab h +thor ns +s ls +ne al +construc ting +be ren +s lang +ma ins +far ra +sar ko +pai ge +gu iller +l ala +ice berg +nou n +plann ers +u mmm +ou ses +ill ary +ma an +box ing +zi pper +srin agar +migu el +o str +mp o +responsi bly +lan terns +appli ance +x b +gren ade +neglec t +dy sle +ham mock +ne ctar +wit cher +r gv +di ence +ser bian +seed ed +cru z +bi sh +sp he +e q +sky rim +alge bra +phil ately +bungal ow +ge off +y ves +demand ed +consider ations +the vamp +pawan kalyan +co ded +grit ty +erup tion +se infeld +uni denti +ëĭ Ī +wor m +ac us +se ung +dun g +ro land +su d +di visions +ab lanc +shor test +j f +p oun +plant based +be to +tough er +mc o +don et +mark us +v fl +ðŁı ł +open ing +co ward +caber net +o xi +burle sque +sand ra +su mo +consi st +tho t +cay man +motor ola +gutier rez +d slr +y w +no bel +nov ice +moms demand +grun ge +sp or +d cc +pre sses +sli st +allot ment +voc ational +ft c +pu ja +lo ven +utt arak +tan dem +sh ep +come dians +anat om +cant wait +healthye ating +west side +mar gins +chi ang +asbe stos +stupi dity +proble matic +fit bit +: $ +ceil ings +shu a +protec tions +bio tic +beng ali +re sts +bien nale +tim o +cul min +e minent +affe ction +unbeliev ably +individu ally +canvas sing +wh itt +nov asco +chin son +h pe +go w +gloucester shire +pa o +thresh old +chev ron +s ine +we ther +pp ie +aqu ino +antwer p +âĸ ¬ +po on +inst af +equ ine +cinemato graphy +nbaf inals +vali ant +kil kenny +te rence +syste mic +sr l +p ound +made ira +pl ough +tre cht +mat ed +mp d +ransom ware +ph in +li qui +bb ce +boom er +i standwith +con ju +r te +nar a +foo lish +da shing +vier nes +br ite +da u +juni per +ai da +you now +ra zer +de i +repe ating +comfor ting +adjac ent +e to +ca sted +chat ur +mu er +syn th +san itary +mac le +independ ent +law ful +e erie +h or +ðŁĴ Ń +am rit +vel o +station ery +mu f +may may +contempl ating +elabor ate +gre gor +dri es +ac col +ภļ +schwarz enegger +ill nesses +day break +follow back +collu sion +electr onic +jo vi +hiro shima +ta w +hom ec +mic ah +qu itting +fro sting +ben fica +hel i +s ical +pic cad +corpor ate +ment orship +you are +sing er +shi va +ru ne +ing er +ri um +play able +doo p +wil low +ter re +ni p +at d +war bler +profession ally +er ase +proce ed +pedestri ans +mis chief +ben ding +alas kan +c kett +mo p +dd les +shut ter +ge ared +atene o +ma deline +g ations +o sha +der ick +sw ild +an gry +pat ents +hun k +decre ased +fr y +ðŁĴĸðŁĴĸ ðŁĴĸ +sal on +quant ities +d ario +ni gel +ku ma +jen n +happ ye +xx x +rex perience +pro s +au sch +rele ssly +ham burger +fuku shima +er ne +stat ec +ren d +may field +j one +lef ty +bern stein +sm il +gener ates +fore station +band its +ta yo +r ca +ac ci +rodri go +kn app +elo vers +vege tation +u ral +le ft +ħ ï¸ı +worl dre +sur i +embar k +w son +ba you +mu ller +mo vers +ðŁķ º +presby ter +l f +cre e +bat b +sal am +demonstr ations +an ec +n pc +it ics +to graphy +re inst +thur st +tal e +off ences +smart city +bro tha +ofthe year +in valuable +ear n +ðŁijı ðŁı½ +kre mlin +gra dy +town fc +guern sey +ma ha +contag ious +dre x +be en +( £ +nati vity +k tm +somer halder +comp ounds +íķ ĺ +" âĢ¦ +af g +ott news +h ound +fire fly +cil an +donet sk +volunte ered +ak ira +è ª +sing ul +st h +dro wned +mand o +he ir +ðŁİīðŁİ Ī +tax is +y uki +vel d +k ans +el k +ran ts +hash tag +t eng +ro g +a at +gru b +e ber +in india +colo ssus +sig ni +so ever +mile stones +der o +differen tial +phu ket +master mind +an gh +mel ani +bro ker +actor vijay +stun ned +continu ity +af fl +vo cal +perenni al +fianc é +in complete +hun ts +re issue +domin ates +tur meric +ro am +ri on +bag ged +nas sau +fu t +x ox +national trust +jo ye +san o +hearth stone +dis respect +le es +h se +siber ian +offe e +re stock +wolf gang +re gan +plan o +un wind +re par +mil le +] , +skul l +fat ally +concep tual +ðŁĮ ² +f é +ber to +b ms +u a +mag na +notre dame +le te +la undering +heartw arming +buffe tt +go at +pe abo +wind mill +v ac +continu ally +az alea +mem brane +can cels +make yourown +athe red +p to +tor pe +ðŁĺ ł +ðŁĴ § +sc ares +le aking +z et +pix els +ac i +kh il +marath i +ðŁĻı ðŁı½ +u la +tam u +chandi garh +z agre +aa b +pronoun ced +aubre y +sand er +pun ta +har low +ic elan +celebr atory +so t +unci ation +stru ly +mc dowell +deepi ka +remin ders +my stical +ct c +chat ted +s ica +bar gains +ch hat +ru bin +m net +oiland gas +pel ican +o at +mor ality +k our +i h +nu clear +gc u +ric her +vene zia +m ma +le ith +ac company +rich mond +sports net +ba ahu +smu ggling +mm i +ðŁĩ®ðŁĩ ª +twi sts +sahi b +.... . +amb itions +il lo +histor ical +fo rec +show biz +pon ies +chas ers +remo del +will ing +prince sses +am ple +cushi ons +ac les +lot r +da ch +an the +in corporate +new bury +ki ri +fried rich +ab v +ball ers +alber t +ðŁij Ń +let i +nan op +ci de +anal o +n sf +)) )) +griffi ths +valen ci +ro ano +fun run +babys itting +ca day +ent re +u ck +slu g +tic al +the sims +ro ar +car ney +g am +sto we +fi d +bun ny +sham rock +pe cu +mol ina +go cougs +con tributes +transform ation +mo y +v aj +sever y +antioxid ants +thir teen +sight seeing +l j +reversi ble +odd ly +hoo kah +nou vel +hal al +fe i +stab les +mul t +ho pped +bra ids +inter change +ghana ian +ww ww +eth no +con junction +ago v +ye ti +earth and +ts p +con serve +heir loom +metaph or +woo f +tor io +self less +n wa +em ilia +yl ene +y xe +gi ar +moder ating +pro bz +b fi +ne er +du mmy +hanuk kah +we bber +k v +eye brow +dag ger +su mp +ra ges +ork ney +tb o +hal sey +assign ments +tr onic +scri b +co on +an war +# âĢİ +jal ape +flori da +qu aid +haw keyes +âĻ¡ âĻ¡ +street car +ro g +dat lantic +gran ola +un changed +expect ation +Ù ĩ +mar lin +gu mmy +ðŁĻı ðŁı¾ +awareness month +oil painting +mu th +per ch +jun to +villa gers +mor g +che ated +web comic +the future +d ps +la kings +men tioning +vo or +ident ities +accor d +mc gu +l pga +rum our +massi vely +m pls +heal y +d ate +sp oli +re visited +on t +al and +scru tiny +lakel and +bl ending +< / +an kara +jami edor +metab olic +f ences +ann y +å ħ +semic on +oo tt +space ship +wack y +le ta +ap ac +she e +in herit +do res +ðŁĩ¨ðŁĩ ¦ +gent e +tw ick +ri ms +gal ve +de ville +king fisher +scorpi o +ow l +al ar +vari an +ðŁĹ ĵ +vene tian +star dust +then orth +q ing +har rington +consul ate +spectac le +ho bbs +tur ks +gre er +mat ing +ðŁİ Ģ +ðŁĮ Ģ +direc ts +í ĭ +pompe o +vo iced +la os +tz u +pro me +pri sm +mer c +fortun ately +bc fc +mcdon nell +not sorry +smi led +t ba +for war +mid term +dar by +we instein +up grading +wol ff +bron co +cab ello +ðŁ¥ ĩ +fi able +shar pe +bat tered +sat o +myth ical +instap ic +pre pped +eni um +e spo +di aper +explan ations +who pping +ragn ar +pe el +antibio tic +l acks +harri son +li sm +au l +qu ail +martin a +sent encing +sc ams +di di +tr onics +ãħł ãħł +go ff +za in +param ore +cha ined +clin ton +li ff +cott ages +em on +reve rend +consu mer +ce an +t any +lum pur +e bay +sto ol +ðŁĺ» ðŁĺ» +ta pro +h ath +modern art +just ine +prover b +app y +tra x +mani fest +am bu +nai k +pe pp +r sd +mer chants +kitch ener +shi fted +li zz +âĺħâĺħ âĺħâĺħ +âĢĶâĢĶâĢĶâĢĶ âĢĶâĢĶâĢĶâĢĶ +uto pia +tom o +ou ted +com ers +chiroprac tic +book club +cin dy +pro hibition +se uss +ë¯ ¼ +thin kin +rr rr +go fund +t ack +om b +catastro phic +ling u +guild ford +bo td +ॠĭ +plan ter +^ ^ +win k +kath mandu +sto ppers +smooth ies +re efs +hin d +bell amy +Ħ ë +waste water +vo or +nat l +! ] +re el +y ap +scoo by +work space +corin thians +bl un +obli gation +g bbo +dy son +cra vings +ell ington +dap l +wre xham +earthand clouds +uk runchat +positi oned +kal b +four square +jo ck +im pending +even ing +ath y +pro claimed +c ites +ann apolis +san i +mar th +ir l +accom mo +ka a +fin a +y aa +di sper +ec ar +bha k +will y +ðŁĺĢ ðŁĺĢ +mcder mott +mo j +gener ational +u said +train ing +lon ely +lo res +impe cc +âĢ IJ +beav ers +ma ki +he b +aap l +å ı +wolver hampton +leader board +me u +c fa +easter n +hu r +civil war +ou rage +hor ned +le high +awar ds +evi dent +gi gab +r ous +ma del +ro byn +ur gently +k ors +en as +heis man +bam bam +fab ian +f om +evalu ating +assemb ly +out sourcing +hun tsville +ðŁĶ ª +justi fied +cashi er +sp aper +buc keye +analy tical +illumin ati +au tho +o j +sha de +geel ong +wh ey +he aton +terri bly +ele k +un charted +sd live +moto cross +her mes +dar shan +dar lington +cash mere +gri pping +cilan tro +pun ish +... : +ðŁĴ Ħ +inst ance +der i +lo bal +muk her +sp ar +thin ker +fre mont +com piled +color ado +vig ne +sm d +whe ad +villa ge +le ek +formula e +ta res +persist ence +?? ???? +ped ago +he z +alzheim ers +vul ture +off ence +is great +suff ra +kick in +h mmmm +broad way +ï¸ı @ +art i +alli son +endor ses +ry u +lolli pop +soy bean +kend all +cer a +inv ade +( ðŁĵ·: +conver ter +car pets +ho bo +fr it +pe ac +es qu +ern an +ou f +an il +di ffer +ch ing +bre cht +sp g +daven port +stra va +sever n +n gos +stor ians +fe te +parame dic +j hb +al amo +sne aking +gold coast +roof s +isi l +depic ted +projec tions +nu mb +o ss +ep i +glu cose +zid ane +infin iti +íĺ Ħ +ran som +ton ics +fal k +g ler +ou tw +re ss +week ly +the on +n ole +ðŁĩªðŁĩ º +vol ley +sum mar +neg ativity +sam son +ye w +aus votes +ju l +ju dy +f art +pra yed +pal ate +multicul tural +double header +cycl ones +pier re +ãģ ¨ +âĺ łï¸ı +rt w +conver ting +wir ral +l ari +ir relevant +austin mahone +an che +ya an +sd f +$ . +explo ding +ulti mate +prof ici +gofund me +cell ence +ep stein +bul lied +sep tic +à® ¤ +lu mber +cu ff +vsco cam +pl or +ภ¥ +se ok +ro to +venezu elan +sor ta +spir ited +daniel padilla +team sisd +radio active +icelan dic +ðŁĴ ¤ +ver e +accommo date +shi pp +ot ter +ol ina +e go +su la +san antonio +de as +simil arities +âļ ¾ +y om +bro ward +å ° +can cun +veri fy +on te +candle light +ìł ķ +inf ants +az am +ðŁĺ ° +le ven +un stable +bloom ington +x ford +con tour +y p +innov ator +histor ies +po y +lolo lol +ex pires +cat alo +bill boards +an ab +el ic +novasco tia +fa ire +ìĿ ´ +rock well +gr ille +az tec +joh or +ur struly +fi ren +dun lop +id le +port man +jo es +tx hsfb +hol m +cham ele +under world +lo ss +ti em +therap ists +past ure +pa ste +ing now +vul can +ra gon +lar kin +o shi +ho co +child hood +umb rel +success or +kath y +iz en +° ï¸ı +share holders +ol ga +ai b +he ap +fl aming +ro u +air tel +rat t +z ane +vo w +thor ough +sn ag +par th +un conscious +ve y +new release +gh ee +croati an +facilit ating +swan son +astor ia +to logy +master y +ðŁ¤ ij +bil bao +trou pe +the ori +chey enne +ro tt +shore line +gra sso +master chef ++ ) +vi x +ellen show +as g +an ak +ku ya +safar ilive +debu ting +blu m +list ener +v ins +book shelf +smart cities +makeyourown lane +; ; +ðŁIJ ¯ +ri zz +on ward +bull dog +bear ish +vir uses +fri gh +lin den +we iser +sn t +gon a +dre sden +fl anders +cu k +wheel ing +ba u +atu esday +surf ers +swi ft +mc call +arbitr ation +aw d +mon c +b ine +at x +re fr +mi ro +po sey +n are +rit ter +âģ ¦ +play book +blow out +sports manship +s oooooo +malay alam +gri ms +bur bank +infin ity +sar gent +oit nb +joseph ine +ski pping +par kin +excur sion +semin ars +jo har +par tridge +post game +ll ll +blan che +temp ting +m na +lu ka +is ers +to ffee +bar ron +he mmings +sa e +go hawks +cu pid +li mbs +con se +un common +z ada +head shot +so ils +pione er +mam ma +sem itic +pan dey +jamiedor nan +spl its +vel a +son i +ra ff +t mobile +âŀ ĸ +pra wns +lit er +enjo yment +egg plant +tu b +cultur al +us ic +suspici on +sy cam +summ ed +ma du +ho ck +up wards +eye ing +ri ve +assas sins +âĤ ¬ +out fy +chi ves +t ner +la is +por ridge +sad dest +w cc +vick i +sna ils +biz italk +mill an +ðŁĮ į +sam oa +j ing +mi key +gu j +chel ms +eli gibility +arma da +thro p +surger ies +ãĤ ¿ +mo hawk +ex its +me m +is lington +c me +land fill +kait lyn +ðŁİ ¼ +combin ations +tomorrow land +ver b +cor a +pre cisely +na om +ðŁĨ ķ +shr ink +sof tly +merce de +mand el +poo dle +ball erina +sop h +jux ta +y at +ary an +hesit ate +lo wered +gu lar +dungeon sand +ron an +my ri +sp f +men opau +gra sp +pa thi +fe asi +fla w +shi story +ste ward +gg le +fay re +cli que +credi bility +yo g +sec tion +mu sko +se ville +no tt +cal m +mate o +indic ted +fi ba +by l +lin o +u kin +!! # +enig ma +siri us +bu sc +ðŁį Ĭ +mac kerel +psal ms +a at +tomorrow spaper +ðŁĺ ĸ +p fc +........ ... +shre k +mul let +o sh +danger ously +immen sely +am ur +ðŁį Ĥ +pro por +sy a +london marathon +abo ve +obli gatory +pro v +ra cha +alex is +pri mary +sh h +ether net +d stv +cou gar +un lucky +ni l +steak house +mel a +fc bayern +cause way +ca therine +fluore scent +nx t +to kyo +au sp +releg ation +qui zz +shored itch +proud tobe +promo s +inter acting +home brew +da esh +w pg +stead ily +provin ces +bal lots +i ah +al to +< << +you u +ri ley +prefe rence +tra verse +incen se +am munition +ho dges +# @ +hail state +tart an +witch craft +vent ilation +liber tarian +! âĢ¦ +ow es +% ! +ong chang +bru shing +le ic +fi ber +under attack +down load +ex pir +hy o +pompe y +mc bride +y ag +stre e +com bat +ten ding +ai ra +gug gen +ab ra +in na +fli ps +aw al +m ach +dol lar +inspir ations +z um +o du +it ty +video game +aqu aman +har u +bel fast +je b +but ch +us gs +calcu lus +go yal +mor gen +x finity +stand up +contrac ep +sab re +na be +in secure +gener ously +epit ome +l w +t ca +narr atives +don nell +pand as +ber gh +tu t +ker al +fel icity +br ampton +quinte t +nom ore +ðŁĶ ij +lo i +alham dulil +ðŁĶ¥ ðŁĶĹ +ston er +shaw l +clin ical +bren dan +gon e +fla wed +tri ppy +j g +al location +po aching +ve vo +mo cks +lef tist +bon uses +condem ned +abil ity +st ating +microbi ome +bio logist +for you +wahl berg +ss or +ift ar +w ul +ÑĦ оÑĤ +pom er +me me +ver te +tre ll +tra it +in let +hormon es +deliber ately +vill ar +battle ship +p bl +tw enti +ho kies +dal ail +say a +may fair +han s +die ts +⾨ ⾨ +od in +hot spur +pap i +k ana +k amp +fin na +flo tus +ti ans +unic orns +tribe ca +chang ers +fore ground +out a +inv aders +gett ys +tomorrowspaper stoday +mac millan +hand written +w fp +u de +state of +base d +âĺģ ï¸ı +cas m +psy ched +histor ians +fol d +d da +ag grav +p ans +green way +au sv +ðŁĺ ¶ +shradd ha +inde x +be sti +zim mer +t ness +eye shadow +ot te +go ts +distribu ting +pro min +yo l +ace a +tram rahim +hoo per +supre me +jam min +intu itive +quali fications +sli m +sid di +jay ne +tri pping +g tx +pun s +e manuel +om g +mid summer +in to +succul ent +ri en +new mexico +o or +hoo king +in f +ðŁ¤ Ŀ +flir ting +na hi +g friend +t ps +hel ix +z s +on ie +ct f +kri s +irresi stible +fla p +ðŁijıðŁı» ðŁijıðŁı» +us wnt +ru d +ram ps +pin oy +ot w +lol z +low ering +favor ite +t mc +phra ses +her mi +aver aging +em br +ben o +estu ary +sle eve +ribb ons +ta sh +ภ¹ +x f +aw gs +sun ited +brew eries +anir ud +pun ches +ol die +ip ads +wi fey +land lords +d ji +gun ner +íķ ´ +tex an +ex op +cas sandra +s off +ðŁļ « +igh ton +bak ers +awareness week +v all +ear p +bts bbmas +apologi zes +âļĵ ï¸ı +was ps +states man +snat ch +watch dog +ra fi +after party +spi ke +j er +peri ph +r nc +mu ll +le en +shi es +li eu +urstruly mahesh +mer ton +de sai +shi f +ðŁĮ ± +pe dic +gos ling +arrang ing +ww g +gen y +you uu +netfli x +e ttes +k wi +bernar dino +am iga +Ø ¨ +kashmir i +t ings +emer itus +de cat +ab domin +dc i +pha ses +d jan +be am +op ry +i shed +the ellenshow +the st +habit ats +to ons +mclau ghlin +ri pper +micro biology +tal aga +clu eless +ss u +cro che +bro mance +longe vity +zagre b +prev ented +tra ve +spo ilt +darry l +migra ine +al cat +dd dd +vi v +ser pent +mat tel +jam a +con quest +î Ħ +sam sung +presbyter ian +ket ch +fire fox +mo tif +le c +cho pping +cher no +j ann +ðŁIJ ° +pro lon +wake up +conver gence +mersey side +heart broken +lo oming +hal lucin +mai ze +commun ism +mo h +twitter storians +serge y +res eller +favor able +ed gy +re iter +mal aga +live me +ka hn +pul sion +big g +kim kardashian +ati o +tyr anny +ru ption +q ant +pro ven +by z +pu shaw +kri stin +e er +tar dis +ri z +awak en +mi ko +un documented +path finder +indirec t +resemb les +h ler +conce aled +scand al +re im +d nb +cr itters +attend ant +apprentice ships +aa u +scre amed +l su +fa h +har bour +ed d +bat sman +li ss +mi sha +spani el +it f +advan cement +fa c +close up +cecil ia +medi c +narcis si +lav ish +gi ac +ma ys +le it +wine wednesday +pushaw ard +let to +curren ts +bug atti +out ine +w j +un do +ler osis +devo tional +ðŁij « +on na +fais al +sa una +himach al +am ii +à® ® +di zzy +screen writing +ph x +sp n +ick i +ag irl +fi shes +wb z +pi m +bo ar +ac id +! .. +rocke feller +n ga +dra stically +simpli fy +dru mming +autum nal +gur mee +lor de +jo ann +give up +b our +am ura +der land +sim pler +wat son +tri dent +concor dia +bel lum +bre k +dum plings +vi on +dungeonsand dragons +sp ri +ascen sion +wil datlantic +u st +rob ins +legi on +insi st +jar o +gue ss +so b +bigh it +pool side +negoti ating +mc gill +bil d +techn icians +miti gation +ajay devgn +b to +ant en +cosmo politan +ðŁĺĬðŁĺĬ ðŁĺĬðŁĺĬ +patri oti +temp er +promen ade +nav ajo +nam m +wrink les +dc fc +le ach +bru nette +r f +cout inho +al ti +tradition ally +op tome +na z +accord ingly +rec ard +de ets +sw ell +po sure +whit ening +strang er +illi on +here ford +u wu +ro bber +cotsw olds +cl en +gor ge +nam aste +re lish +gri ff +adren aline +bla sio +val e +ê ² +toler ate +rail minindia +jen sen +ho ven +el lu +ob sole +eisen hower +unidenti fied +than niversary +body guard +Ø ¯ +i dge +sch al +stock port +sn i +re taining +po po +pix ie +oli thic +ki er +ha jj +sa z +cor bin +!!!! !!!!!! +v it +me gat +de h +circu it +af fleck +theore tical +hope less +u ab +slu mp +b ice +jam med +let stalk +can i +side ways +labyrin th +re fs +ha hn +jare d +ðŁį ¹ +jam bo +ph yl +enhan cement +c tr +ful lest +se ye +do ba +cho ic +yo s +cb j +andr é +re watch +pri ma +doctr ine +for gets +u hm +ar ound +u le +art lovers +shi raz +har th +ex tor +Å ¡ +unexpec tedly +eli us +y x +em my +se ac +ðŁijĩðŁijĩ ðŁijĩ +correc ted +com bu +wom anc +cou gh +what son +publi shes +divers ity +back bone +lock down +mesmeri zing +nor te +ma b +desig ner +í ģ +ra gh +mole cules +get outside +the beatles +semicon duc +nach o +lun es +ham mers +sul tan +o on +fe ren +att ach +ar qu +uttarak hand +s ash +; - +tre ad +i ko +ar thur +scandin avian +r ation +ga el +charge able +fish y +v ma +hand bags +char a +ay ne +de fam +sett lers +qad ri +pal ais +in wx +apocaly ptic +poo ja +a es +at ories +proof ing +n lp +ts la +v ina +li do +dee phouse +informat ics +v v +pp ings +di ss +à ¯ +uhur u +st ony +betra yed +b aff +my ra +as pen +allow ance +tam ara +ci f +cor bett +ser ge +di go +ambi gu +pain ters +p cr +p ca +nom s +lo ft +ve e +opend ata +ðŁIJ ± +alex andre +identi fies +fantasy football +re production +brom ley +ware agle +mm er +p ss +cu es +ay at +hut chinson +sar ac +jack man +ira h +ap ink +col s +aussi es +ex ecs +day ton +ðŁĻ Ĩ +im v +har am +chuck le +authent icity +ar do +incub ator +ภª +photo shopped +embrac ed +fight for +gor man +zz zz +schol astic +cri sps +te apo +mid night +ga ine +col lier +s ate +de tte +å Ń +imag ine +i ff +tw ili +i fication +teat ro +nor ma +es ur +emergen cies +rise up +r inger +hass le +cait lyn +tranqu il +vers a +se b +over look +gin i +bo go +se re +may ne +henri k +contamin ated +rhapso dy +pro portion +wildatlantic way +âģ© . +organis ers +tran e +stand ard +sper m +laun cher +ric ci +her ts +paper work +showcas ed +mer yl +pen a +p imp +disa strous +^. ^ +phar a +x is +fron tal +sw irl +sp ills +swag ger +smart watch +sizz ling +savi our +cat ar +bb cr +refurbi shment +dr is +citro en +absor b +patrioti sm +il leg +chro mo +fresh ers +ru s +lim iting +ef ish +down ed +man dir +hazel nut +p all +mac on +disappear ing +quali fies +bo on +bar racks +am ine +gen dere +ðŁļ ĺ +j es +ãĥ Ń +qu ito +middle weight +sch au +quad ru +aci ones +limit less +ðŁijĮ ðŁı½ +ch man +ar av +regulat ors +it up +batter sea +mil ford +g z +tic king +gh ou +cru shes +tu tu +dread ful +fam ine +for change +dalail ama +ðŁĴ į +whit aker +hash mi +h us +vo d +bet te +aa ah +iso o +ðŁ¥ Ī +ha ar +la ine +b v +all day +spr out +indie games +free bie +gree ks +but ler +ill in +ha al +ware ness +si ma +public health +gam a +wa a +oun g +goo oo +okin awa +off enders +im pose +ho c +young ster +story teller +sc ap +figh ter ++ , +whit es +music monday +re za +go ducks +bri a +mi um +cas per +cru mbs +a ad +marti alarts +ch p +ri gged +tn g +harve sted +sa k +do jo +mill wall +b nw +oc d +histor yof +t mr +si rens +fan ci +caregi vers +vir a +son i +recur ring +acknowle dged +ðŁı Ł +oph ile +bu cky +stre ssing +roo k +di gger +vi val +san do +fle et +si ers +sel caday +refre shed +anti fa +a que +po lo +disappear ance +de mb +âĮļ ï¸ı +ren ted +ber ger +g mb +cu la +ss al +goo dy +u hh +marcel o +w anna +soft ware +shop small +turt le +tom as +fri sco +ðŁĺį ðŁĴķ +jim enez +c su +day z +an do +wyn ne +choreo grapher +cerv ical +trail blazers +ed g +zend aya +travel blog +el s +whole some +co g +lab out +ar ney +del le +su isse +ma si +ine se +om be +fi ddle +re claim +pa u +wat cher +sla in +ber ty +opti mum +el ites +min is +tur key +patro ls +ger ard +au reli +wild ly +wal tz +br gy +w ob +cre st ++ ++ +ve z +fro sted +davi do +the x +param edics +p into +han k +du pont +ur g +fo stering +micro poetry +spec tre +---- > +ne uro +fri da +music al +galve ston +e ffic +sc ape +pal azzo +th all +pro visional +p js +au re +ðŁĶ ľ +mam amoo +kit ties +cre e +wa k +lo ool +lu pus +cn blue +à º +ðŁİ ¬ +rac ed +tro se +om as +stri de +co ors +⤠µï¸ı +in comparable +cy ril +broad er +arec lipse +ðŁį Ķ +inter val +ti ru +co working +w aco +a ham +a bee +flouri sh +the times +ol ini +kick boxing +lu cer +at la +as un +casser ole +mi aw +lobb ying +jan ice +cir que +re flex +le ary +sanat omy +tem pest +se mb +mur dering +us av +ro bo +on et +p cc +nati ves +life of +sa ha +ruth less +rel ates +appeti zer +pye ongchang +nor d +er u +a thing +ug ly +pl ying +bran ce +organ ise +kend ra +dat o +chees es +par ma +burn out +a stra +pre toria +adjust ment +uk u +sl o +li ken +fav ors +cli ve +be ets +snow donia +go tv +sy n +open house +pan i +portra yed +sl ated +me cca +ren al +supportsmall streamers +staf fs +da o +bi ker +vik tor +tit us +admi red +ðŁĵ ± +hurric an +he ats +gl ory +photo genic +mer i +de por +burn ham +or angu +dj ing +impre ssionism +ign ition +ca i +w ynn +de pe +cove ted +colla gen +sau s +or nam +administr ators +ss on +nh politics +hahahaha hahahaha +aspir ations +r gb +swol len +so we +sc r +diver gent +hou ghton +han oi +d ory +ni ki +land ry +b cci +ðŁijĮ ðŁijĮ +is mail +tri pod +her d +bhat t +dress age +tab by +ingu ish +hur on +à³ į +à ł +to das +evangel ical +chor ds +st john +slo ppy +marty r +face book +ali ght +sen sei +kath niel +r ites +zi one +u o +revel ations +weight lifting +pan o +nc wx +ac ton +à® ķ +Ø ² +som a +à¸ Ĺ +respec ting +mar che +fore man +be tty +ki k +shi bu +po on +argy le +k swx +et z +mar bella +brac kets +stand by +fire side +defi ance +v ex +britanni a +in habit +appo int +piyu sh +le ash +sci ento +fla sk +sen na +> : +at roc +sand erson +id lib +dhan ush +ðŁĺ Ļ +en thr +hit ch +de dly +al ley +dor k +mon do +cudd ly +mis sin +ye sss +night ing +j pn +w ary +ump ire +ma z +ê ³ +bab s +ĭ ãģ +stan ford +posse ssed +exce eded +ðŁĶ ¶ +wall art +tra p +j il +hi bis +sp ying +scri be +khali l +trans lator +lu mb +di zed +ch c +super vision +shut ter +ja g +_ * +yester days +ms f +hi hi +gonz aga +gille spie +vive k +ec static +this morning +ch us +ed es +ston ed +be es +ðŁĩ¹ ðŁĩ +tur in +ho ver +at rics +ster n +sam heughan +auti sm +mi ya +eye witness +writ ings +travel tips +chut ney +px rtg +keny ans +my stic +k rit +/ $ +red head +world ly +am us +op la +le ve +gab bana +se en +o clock +gang a +keen an +sc ent +ol dies +go green +corner stone +comp ly +con cours +ðŁİ¶ ðŁİ¶ +ha an +con fis +aw son +cle op +î Ģ +su zu +sau té +al gar +subscri ber +este emed +ãĤ¤ ãĥ +worth while +mel rose +flo ck +bri ghtly +viol inist +p ere +sli pping +and co +si gh +ha van +cu lo +m sa +fibro sis +matil da +ra fting +aw ard +ë ª +mm mm +ge aux +ste iner +sin n +help ers +beet les +ai mee +tai wan +pistachi o +mac beth +m zan +descend ants +on sale +in r +il m +grou se +sa ig +mo w +bi gre +adjust ments +tu la +mathe w +transl ates +mu h +bol lah +ðŁĴĽ ðŁĴĻ +amo res +ab outs +bomb shell +bla ster +x avi +s ns +k roger +ga ther +erad ic +daf t +chem o +ben ches +ðŁĩ© ðŁĩ +ut v +our a +n ko +gator ade +biaf ra +ok state +im danielpadilla +dom ains +open ingday +kid do +do i +ric e +day care +mac millan +ba thurst +cheer leading +ðŁ¦ ģ +cash back +k won +hob bies +exem pl +ries ling +âļ ª +ag les +ny s +every thing +nav is +ad di +magne sium +faceli ft +ark ham +grand es +extre mist +don at +vit ality +pump kin +be tta +sl td +arti san +li by +pe aked +ah hhhh +mary am +assi m +un sc +ment e +al aya +low ers +ar as +gri ev +le ip +gr ati +cri ses +spr ints +exe cute +w to +ms d +mag ical +re viewer +spark les +juke box +ðŁĺĤ âĿ¤ï¸ı +pay back +licen ses +dun kin +bel t +lake wood +h ateful +bud gets +rev amped +ph erson +ky iv +went worth +ro sen +cru ise +gi ggle +def star +assassin scre +ym outh +win kle +w fc +band wagon +b kk +w iring +kear ney +south side +pe tit +! ðŁĺį +nor dic +mir za +mu gabe +v l +scon es +k tv +sand al +du c +m alls +ðŁĴŀ ðŁĴŀ +it c +al ay +im pair +un rest +flo ss +c é +ab ou +var ying +muse o +ser ver +di ya +hibis cus +ero y +mer ritt +fin dom +f pp +un usually +go tt +conting ent +ali aa +ball on +jo l +hi ked +zy me +ay r +ag n +ga z +perio dic +spar ty +practi sing +lin ton +tal is +cy pri +womanin biz +radio disney +ðŁĮ ¼ +jump ers +endo cr +ðŁļ¨ ðŁļ¨ +and on +shar apo +mi er +ma sonic +fac tories +vi en +bb ers +ìĽ IJ +hol d +ke bab +be ak +approach ed +ac milan +mun ro +ko sher +excell ency +negoti ation +walt disneyworld +cr ouch +te asing +suppre ssion +en ya +b ce +transformation tuesday +cal lie +vis was +p gat +ic ted +end ings +esc u +recru ited +it fc +collabor ations +g ino +snu ck +ausch witz +i fc +x ii +ke sha +ger vais +clo ak +x l +sa ad +prob ation +pre cau +mac in +anasta si +le k +e azy +daysof code +mariah carey +yo g +stit ched +boy friends +sh ar +ph ile +ag u +twin kle +phi shing +week ender +ic ton +gurmee tramrahim +al ton +l eness +all an +pen ultimate +kry stal +go u +lan de +dis mant +ab using +nor se +pat erson +ed mun +ap an +xi umin +sk el +cat walk +re act +wal led +t angle +br yn +ve to +super moon +cas ablanc +appreci ates +ski d +bo th +catal ina +ele ague +cyber monday +cau tious +ðŁ¤ ĵ +nov o +hamp ton +ha ye +jose f +var an +lo bos +roano ke +orph ans +tt in +squ ads +ishqba aaz +black panther +e tu +k sh +cru mble +cess na +reli eved +scul ly +pollin ators +explore canada +ki es +kam loops +kir an +pri mal +sett lements +hot spot +brain storming +ce dric +bi ennial +sh ant +âĻ¡âĻ¡ âĻ¡ +do on +hear n +walk way +fe m +ve al +deport ation +tox ins +elimin ating +descen ding +by the +bla sphe +ha sta +comple ment +as cent +ri ga +provo st +âĸ ª +wee ping +anti semitism +employe e +unearth ed +pin o +natali e +bla d +ang ola +lock heed +in ian +ag r +ni ster +im pala +m ke +fan atic +âĺħ âĺħ +ðŁij ¸ +lu ch +simpli fied +gall ery +econom ic +cy borg +con i +sel ma +in ception +ko ala +dv ds +cre sted +m mor +visi ble +n sd +ðŁĻĮ ðŁı½ +w under +refriger ator +re opening +e era +carou sel +as p +balli stic +victor y +mo tive +tre y +sharapo va +si i +mon ter +int end +west chester +sp e +cy mb +vi dal +ll ama +uni v +fin er +crafts manship +jazz fest +b ch +ag gio +n cc +lamb da +tranqu ility +cis co +ba den +so bbing +of i +go ta +ru mored +war med +ore an +ac ton +mar ci +gh ani +âľ ĵ +as sorted +pembro ke +pen elope +da f +at ty +aim o +pretz el +carni val +than os +ko chi +mer sal +ham radio +ar twit +cas c +guer rilla +kush ner +k app +al ise +todd lers +steward ship +o tti +ter ri +tem pe +rest less +vit o +zay ed +rsp b +pi on +hi ppo +haw thorne +in as +am ily +nut cracker +lo p +d ali +tro pic +ðŁ¤ ł +ul o +jare dle +py rene +pale o +usa ir +m ould +it ated +gene tically +biom ass +ðŁĩ³ðŁĩ ± +do dd +practic ed +monarch s +un manned +m buhari +am al +photo gra +ko ol +bren don +ju ices +cu re +world bank +poin ters +ðŁĴ Ŀ +tur f +le ds +bor ussia +bapti sm +warwick shire +moun ts +gay o +be gg +co pied +asi ans +k g +moder nist +gi d +front man +concentr ated +y t +sc avenger +iron ically +adi c +ps n +ðŁ¥ ī +cultur ally +yu v +mac arthur +fertili zer +be withyou +ri gor +min ors +z oning +âĸ ł +ri r +adole scent +vin ny +ren g +sand stone +gu et +we sth +ple dged +lac ed +sp ide +v ai +ty coon +seiz ure +du p +appalach ian +ro k +cathol ics +sey chel +posse ss +la ger +jo di +cham p +stra s +d ina +cent uri +cal der +blur ay +ðŁĩ¨ðŁĩ ³ +mo do +an nette +youtu bers +chap s +ang ling +label ing +a qui +pk wy +ly le +bi sexual +lit ur +dug out +li bby +grey sanatomy +sub stances +august us +rall ying +fi del +ing ue +äº º +hallmark channel +tooth brush +m á +adi rond +ag gi +ðŁĵį : +cru sade +tax ation +k z +i ver +dou bling +room ie +wa b +en rolled +az on +a ju +grand children +as df +ðŁ¥ º +mat ic +ough ton +utili ze +ðŁĴ £ +pon der +rais in +dys function +co bain +butter nut +e man +su red +dri an +and friends +with the +on omy +heine ken +bri dal +leader ship +pyram ids +deutsch land +jo cel +bo wel +y qr +horse power +be acon +ing eni +gra dient +fer mented +mo om +thing y +pot assi +wrist band +bor d +bo died +ðŁĺŃ ðŁĺį +ma pp +ka u +cyber punk +ph ish +loo king +co ates +ap ur +am ie +uk labour +at in +g la +adop table +shel by +v illi +ri ya +m ingly +cli mber +bumble bee +ðŁĺ ¸ +c sd +âĿ ¥ +hospit alized +c ki +hat er +ch r +re tina +it a +fan base +beat rice +gwy ne +go ss +fo s +favor ited +swachhb harat +mal ade +mon mouth +" [ +si van +sh hh +command ing +sains burys +wee d +g man +ss w +rep tile +iv y +tro pics +roll ers +over cast +ex position +masquer ade +man crush +wa ist +spr inter +sle et +le vin +j pg +_ ( +o pel +explo it +ap a +po we +wrec king +jong in +or b +er ick +bo sco +pra ising +ber tr +to wing +in security +ku t +resto cked +rr p +prescri bed +trafal gar +per t +g ases +app rais +g har +music als +âĸ¬ âĸ¬ +mc fad +ag ony +conditi on +equi p +shi k +atra vel +ðŁĩ¿ ðŁĩ¦ +ke h +abduc tion +pe oria +wil kins +g ms +as d +ev i +ðŁĴĹ ðŁĴĹðŁĴĹ +u z +mo c +halle lujah +guad alu +lou vre +dra wing +go ve +ph ant +fri e +web dev +program mer +z able +games com +clari fy +li th +kin ky +âĿ £ +labour doorstep +son ata +ju ris +mai den +vi adu +buch arest +conditi oned +capit alist +u de +ps b +sp ca +lul la +footh ills +kay o +bon d +wom b +roun der +ce sar +bur sts +ap ra +sw oon +sab rin +fra grant +cle arer +ku brick +cli max +jour no +ag le +ðŁı½ âĢįâĻĢï¸ı +poo ch +hal e +sol it +sal mon +organis ms +bron son +art en +hodg son +alo ve +vent ure +bb i +ae a +ðŁIJ ¢ +ld n +d nr +o zone +el las +man ny +azz ur +un beat +tru ffles +th ong +ma ñ +las ers +ley e +gettys burg +back packs +or is +ma ison +craw ling +la bra +cl ing +dra gging +ste al +dou bt +de van +ck ers +agent sof +photo bomb +elon musk +abo y +dist ances +story line +sp i +nor than +europe ans +wh ale +ser pent +ðŁļ ² +fi or +tr it +ox o +awar ding +class mate +su fc +smar test +rich es +pr k +big foot +ar mb +bi polar +dw elling +om ars +k wan +gri me +m eng +freder ick +navar ro +sorry notsorry +jaredle to +pa ve +sl ack +barn sley +att ar +evic tion +accumul ation +o ir +cat chy +wel ter +vik as +has see +nik ita +mo yes +mathe ws +shi v +gat wick +pro filing +compan ions +mar rake +an tics +ðŁĻĮðŁĻĮ ðŁĻĮ +se se +bo i +bart lett +poison ous +ab uses +ym m +kam pala +guggen heim +imv kohli +dol om +bre e +thro ttle +gare th +fitz patrick +un ya +par ad +mar got +j nr +we a +potassi um +p nc +disgu ised +cra sh +ren ergy +ill ic +coup led +ni els +ci ones +æĹ ¥ +im ent +despic able +d ye +what cha +conne ctions +paralym pics +gaunt let +wait rose +suici dal +star ship +vap or +st ou +law maker +coo led +si mo +then o +offro ad +ja den +bas que +vick y +lu kaku +centr o +tri sh +strate gist +medic ations +hor st +b fc +gra il +sharp ly +ad itya +tom b +kau fman +tri pad +sam ba +pastor al +brit ney +sag an +hill side +mas ons +sar a +z one +x u +to tes +rob bie +app en +mon tag +der o +short film +charis matic +tat ors +ki ba +and ri +al arming +split ting +ic ar +th ug +scari est +sylve ster +an an +u trecht +a difference +me ade +bu ster +air strikes +cu ffs +account ants +ðŁĺ¡ ðŁĺ¡ +new t +bo tt +issu ing +cl ancy +wwen etwork +kyu hyun +rese mble +pajam as +sin k +kin ney +sul ph +or k +li es +la gh +or ton +ra hul +d sc +we will +re am +collo qui +shar ia +hec tic +sar casm +land er +tm z +endor f +ro z +ham mered +fri s +w adi +pope francis +he it +flash light +un born +op es +hol iness +ðŁIJ ¦ +nach t +im sa +gr acing +bj p +ver ts +c sc +home owner +a que +bigo try +anni e +bag h +âĿ¤ï¸ı ðŁĺį +car i +thom p +dispo sable +cardio logy +pat ented +hh hhhh +ld r +stephen son +cro res +fan ning +cli mat +ðŁijį ðŁijįðŁijį +ðŁijį ðŁı¼ +aer on +piccad illy +bank rupt +sil via +emplo y +don ny +commen ting +screen writer +io ta +ce an +anc ers +tu an +street wear +ठ¯ +sk ine +esp a +asi f +os ce +she ppard +more cam +bott le +der s +orac le +google play +aver aged +edmon ton +steph an +sister hood +cru sted +stag gering +methodo logy +congress woman +c abo +tri ggers +mil ky +gli de +tooth paste +room mates +nu ff +gu am +sprink les +alternati ve +wat fordfc +uof t +hal ey +cont acted +bun dy +pro stitu +gh ar +pre ston +on site +hil ar +g ts +c att +hamp stead +? ?! +ðŁĩ§ ðŁĩ +bbc qt +aless andro +resi st +ma idan +t ko +shad ing +pin up +gal lo +sin u +at ec +fun k +ac lu +stri des +rhy me +wet land +bbc springwatch +t ins +wild card +st our +flamen co +pau la +onto logy +gang sta +am ade +ãĤ « +t bs +skelet al +run ner +jard in +harri er +hun ted +z hen +believein film +de mean +au diti +re start +chon dri +âĿ¤ï¸ı ðŁĴĻ +mcla ren +ga b +sh um +au sa +lewi sham +y pg +k jv +fur nished +dor o +bon ded +mor ty +lat itude +_ ) +lo va +water ways +vin ai +shor th +drun k +c ay +ay ana +kap lan +capp uccino +spr o +life boat +has bro +spol ice +tor on +do ing +dam n +sh ree +foun tains +ent ation +mar u +boar der +to pless +j ada +chan ning +ul ls +en closure +gib son +fractu red +brit ton +à ¶ +t ous +por th +dra f +tra iling +mar gate +eli fe +down ward +lin n +gla des +girl power +ak rish +u ki +ron da +ts c +appreci ationday +vis ing +lo om +ðŁį ³ +mex ican +ar gos +y ya +jad ine +south port +d end +si sta +rede em +men g +bra xton +antioxid ant +s key +mp g +fin ding +vibr ation +ce u +kh art +di mini +cl ine +shel ly +hin es +ī ï¸ı +to pical +no ver +ma xx +prim itive +illustr ate +b ounds +tren ton +join tly +breed ers +u chi +wakeup america +b ada +ðŁĹ £ï¸ı +gu acam +sp heres +pere gr +youth ful +lo lo +bir min +t ly +jeremy corbyn +defe cts +co sm +a rent +v aa +bag els +medi ac +cori ander +ic ago +g haz +ab bas +re model +struc turing +pu m +out law +ad ani +r bc +gul ls +n li +confu se +ðŁijĩ ðŁı¼ +vil a +mcnam ara +correc tions +mug hal +ser i +re gain +ss b +lea ve +haha hah +gran de +di stressed +re chargeable +ho a +hou sed +sti l +attribu ted +opath ic +di ps +pri t +head phone +conclu de +pil o +he t +ut sa +nit in +je m +sni ppet +tutor ing +op er +sun k +en sla +cha u +ac orn +quinte ss +ran kin +affili ated +our lives +cl int +se ater +isa ac +ba shing +sme ar +nur se +doo dling +" ; +sa ku +atroc ities +im am +g fs +viol ating +comm end +brad shaw +er ville +b illed +b be +thul hu +i phones +moo se +di os +re w +me thane +strang ely +whis ky +ti ghtly +spiel berg +radi us +notic ing +wi f +ig nati +i fa +ap is +w ali +ha itian +bu shes +y z +v l +ex ited +asse l +tru ec +dom en +ash er +in king +newyear seve +hend ricks +bat i +ìĿ´ ì +rich ter +mon santo +con line +agre at +ðŁ¤ ¯ +master pieces +ar n +rough s +cle ve +se v +fashi ons +to ya +sh ail +cop eland +aqu ari +dec als +are you +y aya +a str +fon t +ml m +ar ca +pp or +pol lock +xper ia +conserv ation +chain saw +ag gie +?! ?!? +si le +sh on +ìĹ IJ +note books +marque tte +de us +bb led +spic er +mc cabe +nor wich +modi fication +boo sted +stru m +sales man +bang le +nis san +hez bollah +brea sts +a af +anth us +sk er +ow ed +her os +gi fs +fo sters +eat ers +du es +_ / +lymph oma +sf am +me gal +afri di +ag ic +p amp +jeal ousy +ðŁijĮ ðŁı¼ +calcul ate +napp ing +g ale +ðŁ¦ Ħ +lub bock +assu med +ren ting +íĥ ľ +subur b +ãĤ · +tech nic +u cla +in front +gar net +ster oids +stri ving +ho war +mo ver +le ton +bull do +is in +ci ao +sn z +fore front +d ams +mid wife +ma wards +cla pton +we in +subsi dies +spr oud +rother ham +phan tom +ar ach +spi el +rac ket +sel amat +no on +l bc +enti ally +ðŁĴ ¸ +sil ve +m oud +kine tic +y asi +ðŁİ © +o ol +mi ku +i za +fer a +flo ren +barber shop +groo t +z est +ne ars +stan is +z and +police man +juris dic +form ations +appar atus +sp d +arti fact +to sc +motiv ating +womanc rush +re dro +diagno stics +ra za +out fitters +el xn +dod gy +ry n +sh d +ortho don +ol de +jay anti +bal ances +quic kest +can ton +friday reads +! * +na a +a ak +ðŁĶ · +behavi ors +rasp berries +ä » +polit ical +cam il +å ľ +di k +ast ounding +lie be +novel ty +tur moil +sul ly +spring break +hon ouring +cc g +ðŁı Ĵ +my little +ky c +pro ms +ðŁķ Ĭ +à ¨ +bi ge +av ril +ðŁĩµðŁĩ ° +mari on +as ants +sur ya +oc tag +luf than +ac ron +fayette ville +ti que +love s +en ca +de kalb +ta ver +de vote +aux iliary +joh annes +tread mill +ay an +qu r +donald son +cher yl +" .... +s ven +kir sty +gun ners +ra dish +o ahu +v sky +i ble +con course +b ps +elo qu +ash ford +te bow +roblo x +ma da +dri ving +th day +spro ject +m ms +band ed +. !! +libr arians +flan nel +intoler ance +her al +ç µ +neme sis +list a +tar ak +cry pt +star plus +vish nu +sc ale +cr is +% ), +j illian +regg ae +pegas us +ol in +ip ment +man ic +l fc +godd ard +ite am +parl our +anch ors +lee minho +talla hassee +ant it +d ho +kid ney +y ash +batt led +az ad +gar is +faul kner +sni ff +papar azzi +ed m +phy llis +con tested +aa ay +se ca +k ton +vel ve +rain ier +for um +tam pab +ho sp +trac tors +ox fordshire +no tion +guang zhou +ðŁĺ ¯ +ref ill +wednesday motivation +sli der +mukher jee +pr att +fon taine +alph on +af ar +ts i +pest icides +fi ends +mo cking +bra w +tran sat +do ses +co res +hom ophobia +docu menting +zlat an +con doms +s é +sun set +kun st +ton ga +ภª +v ation +sp ray +chow der +ra ps +palla dium +nor wood +music history +hoo ker +si si +osp rey +ph ys +conce ded +bob cat +ar mad +ze it +Ù Ħ +ðŁĺģ ðŁĺģ +mer idi +ðŁĩ· ðŁĩº +corn wall +! ), +touch downs +ze it +chal et +mm m +al che +gor illa +fo ss +ati ku +lumin ous +ivan ka +be ek +sta res +sw iss +âĿ¤âĿ¤ âĿ¤âĿ¤ +scru bs +me ath +gusta v +jo gging +confe tti +as os +ers fc +breit bart +applic able +autho red +ya ho +h in +displac ement +j v +ðŁĮ¹ ðŁĮ¹ +ot c +non profits +diec ast +gu sto +inte stin +c ages +me en +lu kas +moon ey +ðŁĺ · +very day +tor ah +is sion +wa c +lever aging +ish able +cu se +le wood +may an +turn table +ju ice +tru sty +tu p +eti quette +supervis ors +stu n +gu zman +confe ren +ric o +fe ast +back ward +pol aris +mic he +jo g +h ing +field house +vel ing +sho cker +esc ence +ठ¾ +vi be +anasta sia +mar ched +kill ing +Ķ ë +fe tt +exop lan +... ( +snow day +lo h +ir ani +la khs +del a +po caly +boom ers +dictat orship +ac er +tur keys +quarter final +muskete ers +ðŁĴĽ ðŁĴļ +sf x +museum week +sc ala +ri sis +( ðŁĵ· +ãĢ Ĥ +z ies +bo eh +hu es +lu sci +dol a +impeach trump +roo d +don caster +tor re +hero es +fo yer +tar i +blur red +ke w +frank ly +dro id +ap al +Ð ¼ +y af +bre t +par agu +cac ao +ðŁĻĮ ðŁı¾ +ru e +head aches +shaw ty +char ley +pal er +go wns +correc tional +ðŁĺ© ðŁĺ© +breaking bad +ol ing +da p +endeav our +cit adel +tra d +incumb ent +medit ate +foo ted +ðŁĴ µ +shab bat +dayof the +wil lem +gal way +to red +marri age +f illion +sleeve less +aud itor +jin young +invin cible +kad una +a and +volcan oes +mon eti +indie gogo +buccane ers +ðŁijī ðŁı½ +ãĢ Ĥ +lay ton +cuck oo +hu mber +buzz er +Ï ī +to re +stra ins +sto m +pa ine +s we +du ff +z ou +si mi +li pp +ur n +se agu +ðŁĶ ® +sun dae +hi c +ðŁĺ ¨ +bull pen +u per +flyo ver +al dridge +glo bes +ali es +ken zie +ge es +y cle +sp lin +mag enta +j ha +bal u +gh orn +ti pper +wick er +taste of +con clave +ch ale +inv asi +cat er +dio xide +me gab +win n +at p +transform ative +nest led +hi g +bri dging +lil ies +chee red +bad dest +sc rolls +real is +dipl o +ðŁĶ « +conce ssion +prefe rences +explo des +er gon +introduc tory +ine au +ch af +som es +land rover +spir ation +sex y +sco recard +illustr ates +soul mate +wi en +inter disciplinary +fore casting +ent ities +glu ed +en lar +cur t +percep tions +boot leg +mi re +asho k +v az +hor ne +cal le +ac ulture +ther oy +night time +oc al +character design +ar mist +ðŁĺı ðŁĺı +yah oo +ac eae +to se +even to +sou t +nay anth +wh om +v are +ri gging +gen us +hi ve +com mands +sti e +day a +ethan ol +en f +hi fi +flu ence +cle mson +re invent +thermom eter +humor ous +emer ging +aci ón +ðŁĺĺ ðŁĺį +s ity +haw ke +accompan ying +t ility +ðŁĺ ª +re cess +protag onist +l ery +dun dal +int l +britt any +q bs +off the +marri ages +how to +viol ated +adel aide +wit t +lanc er +pak v +hu me +st ade +bra gging +ou tright +ad c +super st +real time +cu res +garden ers +ero ck +dale jr +ver o +bar tol +mo ti +mc fly +v pn +st ink +over rated +guer ra +e tis +ath ome +twd family +th ab +tn x +rafa el +family travel +x ley +sat anic +equ ations +ru dy +wal dorf +stan i +tu be +meas les +zimmer man +obli gations +i ously +bow ser +trans former +sho ppe +shak en +gh ouse +to d +ke tball +share holder +mar ca +kp mg +ak an +given chy +coast al +au th +roller coaster +mar ches +coordin ate +cine ma +apprentic es +par lor +mit o +men on +consider able +bar re +glo ss +enh ances +jaz eera +fal mouth +thra sh +stat en +k zn +eng el +samanth ap +flo ppy +sal om +ðŁıĨ ðŁıĨ +w ack +deliber ate +osc ill +herit ag +du sted +orni thology +pad dle +fer ns +bar un +cl ans +anticip ate +a ay +mat ically +é ĩ +tu mble +post man +unic ef +tro tter +op d +leaf let +ge ist +cease fire +scre ws +cre ation +wal nuts +longh orns +under statement +ab b +proxim ity +na x +un ity +turn pike +orda ined +dub step +chak ra +me ch +love her +look alike +donne in +vir on +Ù Ī +bang ers +vari ants +out dated +in ta +cri sto +sp elt +food and +f on +stefan i +margin al +hu tton +ti ara +tel ford +qu en +fair grounds +que tta +mikha il +heal er +v ball +ty re +under grad +gl end +hom ers +scri bed +main tains +po che +mis sal +mar ko +u as +á n +sh p +con vey +pad re +sab a +pu glia +madhu ri +pa xton +chap lain +n ago +ca si +... !!! +fli rt +sal eh +k are +di re +stam ped +extre me +ðŁĺĥ ðŁĺĥ +ho ppy +guadalu pe +advant aged +eu char +p low +un n +mac qu +port land +cla sh +pe s +lou bout +y p +keep ing +arca dia +fran kie +fi u +de th +encyclo pedia +si ze +inve sts +ðŁį © +geo logical +fran ç +con front +ðŁĺ ¥ +d ys +af m +tex an +graph ene +repost app +ac f +ur sula +gaz a +dd led +fu m +wsb tv +m be +fron tiers +chrono graph +ke s +inter faith +tab oo +spar ta +won do +flori st +em braces +ca w +no el +arch ers +ðŁIJ · +roman o +ban an +sh akers +melo dies +geo thermal +se phora +ìļ ° +оР´ +pro c +hand shake +pan de +popul ated +slow down +hor tons +registr ations +un deni +lan ts +pas sover +thak ur +li ef +adhe sive +pe tal +micro scopy +memph is +confir ming +air drop +mesm er +perce ived +ming le +lifel ine +gh j +worcester shire +pas sions +ach er +el lar +ah o +firen ze +bar ang +letter man +hat field +lu cha +je ter +e shop +william s +horo scope +pre de +east bourne +dur ga +di version +al trin +seis mic +premi osm +nar co +ti r +ori g +or m +land fall +ci ous +lin do +max ine +x ico +tra y +os wald +c ba +ric otta +n cr +mar au +ภ² +gladi ator +ch ery +lun g +u me +po psic +lon ging +can als +ta ya +decentr alized +sho pp +pres sures +mahar aj +eti had +wal greens +succe ssion +sign aling +li g +staf fer +north korea +def ying +as ma +de g +peri meter +oak ville +m sk +balti more +rece ip +de ple +ðŁĺŃ ðŁĺĤ +jambo ree +> .< +rsp b +puni sher +consider ably +in tothe +pari sian +acceler ated +polye ster +low es +fr ying +sauté ed +mou ths +seychel les +ra x +go dis +dak ota +house wives +the me +mat inee +black bird +ye sung +pre fers +pelle gr +in ated +trun ks +stronger together +re pet +re pairing +ped als +toler ant +her r +dun ne +indic ation +decat ur +b tv +exhibit ors +ik on +friday motivation +bra gg +live tweet +al ves +womens art +foreig ners +wal lets +min dy +lan ey +bb in +tv miaw +lif ter +tar get +tam e +dr ou +astro photography +mp c +g pu +nord strom +fric tion +run off +lov able +sp nfamily +ext ingui +bloo dy +sch el +arti stry +sw ish +scar ce +ph ils +max im +pos sum +com promised +sty li +sc fc +is sa +birmin gham +sket ched +angel ica +ordin ance +je ts +conqu er +ðŁĺ IJ +online shopping +s ori +reason ably +nue stro +ar turo +ch l +benef ici +spho to +wel t +ni kk +ðŁ¤ ŀ +dan ao +for mid +as se +af irst +âľ Ĥ +gil lette +as sor +an onym +sel ca +fe mi +bear able +y and +ar mory +cre pe +celtic fc +bra vo +in expensive +de lec +ge cko +new market +snow flakes +kab ir +con tra +can ning +mor pho +gar wal +ðŁĴĥ ðŁı» +fight ing +mu tation +woo dy +ju gg +gr aces +premiosm tvmiaw +kenne dy +gu p +sa e +op ha +off spring +fini sher +bet ts +span ning +mar j +h one +sh ing +contin ents +samanthap rabhu +un related +l acy +explo sions +benjam in +sophi e +no ting +micro soft +as sen +a hoy +i ker +ho fer +mo e +ah madi +yan n +an ak +ma hi +be u +aha h +creep er +baahu bali +am at +pri ory +haw keye +deloit te +sko da +print making +assemb ling +mirac ulous +no ch +sw o +leg a +oper ates +border lands +eli e +stron gh +rep tiles +pir ate +un fold + ¯ +qual comm +un predictable +ot r +rose wood +direc tional +counsel ors +corn ell +liber ated +j ad +ir regular +bulgar ian +high ness +vodaf one +sw ild +mini mize +gra zie +๠ĩ +r stats +stre ep +ome tric +humb le +lu mp +l ille +b ü +home depot +tripad visor +ki wan +a via +er z +ex ico +du f +blu men +mi zing +ar ma +in im +con stan +sor a +ju al +au n +tw ell +tren ches +her a +r k +po plar +recipe oftheday +ll an +bhu ban +short ages +ing don +bridge water +ðŁIJ ĺ +fortn ite +cam den +un cture +pro w +colon ies +t ks +n go +b hm +live pd +spl ace +sli ke +happye aster +ter rence +revol ver +j ed +yy yy +office of +m ts +exist ential +r ourke +explore bc +sse d +pri est +vix en +si ding +k pa +a har +ju ic +ob struc +foren sics +uk mfg +cancell ation +we ary +ab q +ele c +pri zed +deb ts +me zz +salv atore +m dc +gre tte +c gc +th on +snow storm +ts ch +cook ery +å ¹ +wa xing +n acional +mur s +ra ve +cap es +ger main +dri pping +sub mitting +ome lette +iter ation +aj es +shim mer +fu eling +ðŁĩ§ ðŁĩª +li po +bo bble +un follow +islam ist +hi ber +cat s +agentsof shield +sen si +____ _ +ster ia +inst al +ausp icious +har row +over land +femini sts +inst ant +char iot +blind ness +sp ed +sc arec +nu it +mini atures +ho seok +glo ck +fifa worldcup +e te +dis m +we iner +ex foli +ear ts +ภĶ +my art +man il +iss ant +form a +in cu +buffal ob +in tim +mc cul +anj ali +po po +un doub +hil a +fun gal +thank ful +fu tur +en dish +ren ds +th ar +she ff +ring o +nichol ls +io wa +po tom +cl ams +ãģ Ħ +acon f +stadi ums +di mp +di k +residen ces +do v +caric ature +seagu ll +kl m +confe ss +sla pped +cele b +turb ines +pp v +nur ture +el ab +.... .# +tu ff +de press +al far +amii bo +di spon +e wing +que er +friend s +for re +âĺ ¼ +sw t +aqu arius +head liner +cur d +fi gs +o tters +love fl +kare em +go vegan +fri yay +consol ation +at ri +ì§ Ħ +âĺĿ ï¸ı +poly ne +gu ed +o ya +la us +intestin al +cam illa +scal p +pi r +leed s +horri fying +bore tum +dand elion +fer rer +ell ic +as x +so ren +re loaded +ale ague +navig ator +ine tte +add ams +al chemist +ak shay +dystop ian +awe c +n aya +al isa +ai led +ag or +avi ator +ali zer +smo bile +findyour park +cop ying +to ddy +sh ti +mon ger +cal houn +nap kin +break up +y atra +se thu +ric hi +eras mus +fer ry +am ore +prac tise +bo bo +power point +oo se +li ffe +chin a +sh ka +fad navis +du ane +war on +fal se +ðŁļ Ĥ +wa shes +disc ip +==== ==== +g k +ab b +stub born +medi eval +p ci +ðŁį ª +maril yn +h yo +man di +cr i +prede cess +continu ation +om usic +s lat +wh al +mall ory +bon n +shen zhen +ca i +âĺ ĥ +sa fest +for wards +dra wers +bla sted +sle e +mor phe +mb ta +dumb ass +ÑĦоÑĤ о +alhamdulil lah +ec lub +al beit +heal ey +ayurve da +adverti sed +cro cs +itt les +bry son +be i +nj pw +honore e +fu sed +ðŁĶ ĺ +mul tin +n aga +de parts +ko p +kin o +jhar khand +ed na +ax le +mil ton +supremac ist +marrake ch +domin ic +tran script +] [# +: ). +wo c +sur rounds +o gil +leaf lets +co well +whe w +tru de +proli fer +succe s +sports man +con dom +po che +k up +imprison ment +{ } +scram bled +å Ľ +ka ine +cell phone +metam or +con i +remn ants +ee z +down pour +afterno on +exerc ising +ber ser +architec ture +wick low +m ns +is p +bo c +n iss +mn wild +stu mble +r si +lu ffy +sil en +dd ad +bul lies +haw ker +bb cc +scu ba +e pp +que ts +for aging +pal let +ha di +cinemato grapher +cat chers +to aster +k hi +lite coin +kid lit +amher st +maur icio +ip ad +mar malade +fe y +don nelly +g to +est as +cere bral +ant grasso +zz led +vir gil +swa pped +ðŁĺħ ðŁĺħ +no dapl +greate st +nhl bruins +fra ser +b mo +ane w +. âĿ¤ï¸ı +se gregation +remark ably +mccor mick +lo gger +er as +contrac ting +âłĢ âłĢ +yor ks +uku lele +touch screen +de cked +ben n +south wark +ra vin +nu mis +ðŁ¤ Ļ +ru t +gre co +eth ic +red neck +ar r +t cs +ih ri +ðŁĩ« ðŁĩ· +l k +inher ited +zy k +viadu ct +marty red +hi gu +ss n +be in +street style +fer gie +bank of +æĹ ¥ +stake holder +exempl ary +cre ss +ess a +ero tica +intre pid +gom es +bra un +bethan y +bang tan +pulmon ary +m illing +doctor ate +trump russia +ठ° +s ani +bl att +pla u +depri ved +t le +ful ly +bour n +st ak +lufthan sa +kio sk +far oo +def y +bad an +ðŁĺĺ âĿ¤ï¸ı +rit z +tri sha +ran ds +middle sex +arab s +pro j +sport scenter +repe ats +iv f +bleed blue +as sure +o bs +territ orial +ele n +bever ley +ann ah +âĿ¤ï¸ıâĿ¤ï¸ı âĿ¤ï¸ıâĿ¤ï¸ı +z l +for good +science fiction +gla u +son ya +pri th +st weets +mix ers +mari o +ant elope +writing community +went z +den ham +be di +sf o +harley davidson +look book +immuno therapy +or phe +es ville +ed ged +tas k +sb ball +corro sion +kilom eters +co sting +play back +ke ke +di visi +u ter +re location +yel led +pen g +up beat +ser ve +âļ ł +hal en +stir ring +reh man +en v +schu macher +frag ment +alkal ine +sb k +resil i +share point +rol lover +tra sh +counter part +âĻ « +ob itu +à ½ +ãĤ ¹ +mul berry +ðŁİ Ĩ +auton omy +spra ying +nat l +love you +fran ki +nu k +esc ar +can teen +ali baba +de plor +mole cule +pu d +fort night +blon die +sp hin +portra yal +ta che +bu te +consi sting +freep alestine +c sp +im mort +d ns +ðŁĴ¥ ðŁĴ¥ +tour de +coo king +archi val +ga thers +bit t +b anc +pre mature +snow ball +poetry day +lou dly +fug itive +ed ay +em ra +ðŁĩ¸ ðŁĩª +sci en +node js +jur gen +je ong +band ana +un is +fox sports +v andy +pro visions +wee p +tu k +i ko +h oun +zig gy +z r +fil let +bat a +tin k +con e +we want +k ilo +hor ace +sl t +sc t +stay tuned +victor ia +umb ria +att acker +ingham shire +fright ening +no ir +fr at +con tempt +lia ison +ho i +br ink +tr ill +ni agar +kick ass +dun das +not my +rho de +bu mble +no xi +fa g +spec tators +mancrush monday +jin ping +distr act +dais y +wal den +portra it +ar thistory +vol tron +ev el +is c +ac m +r ite +na o +de ported +swe ats +ru fus +lo bo +labor day +gam o +ihri thik +bl it +abdomin al +ãħ¤ãħ¤ ãħ¤ãħ¤ +i it +e q +bu sy +allu arjun +un disclosed +de ton +pro create +ki l +ðŁİĤ ðŁİĤ +mitch ell +ki i +inherit ance +al p +jo burg +pat rolling +compul sory +un signed +ni am +l ga +eshop suk +tr illi +ma w +appreci ating +rock ab +mañ ana +an tal +mal vern +roy o +grand prix +sut ton +go ftheday +dig i +ãħĭãħĭ ãħĭãħĭ +t les +varan asi +erec ted +discip les +cont act +ðŁĺ µ +li d +⬠ĩ +scen tre +radi ator +ing tips +trans itions +thursday motivation +chem ical +separ ati +sal is +mi m +geo graphical +book fest +/ . +âľ ĭ +v ae +cur rie +ag garwal +acceler ation +the ses +lg m +u mass +pro portions +nat a +ani ans +ku ch +be acons +ap r +@ # +ðŁĴª ðŁı¾ +nu ke +sher aton +ki o +ma kati +polit ico +mor ale +ì Ļ +econom ically +gg ly +ss en +pa stries +intern ships +vic ente +fanta ken +aveng ers +accu se +slee pover +indic ated +the dream +ster one +ren ders +fro st +ou i +gre gg +d ore +⾨ ⾨⾨ +pu gs +sat y +nu mb +hems worth +tam i +la ssic +schi ff +igle sias +ag awa +] " +re shi +game stop +divor ced +theat er +clau di +un conventional +prophe ts +ac in +twel f +tow ering +t ml +sc lerosis +k wan +ge ts +distur b +na ira +ener g +pir acy +pru itt +noti fied +hen na +bra m +ground water +bl s +opti mis +$ ) +luci e +biz hour +fang irling +gr ills +or l +ver se +c ina +law less +artistson twitter +tele vised +marshmal lows +radio head +bar r +m fc +bre vi +mmor pg +g aya +âĸ « +sub titles +j t +disney land +to bago +nh m +groo ve +fi awec +" / +ba o +scra bble +om ni +ff l +um c +si mba +ali er +ter rell +plu me +mi di +dig nit +co c +bru t +ad ata +alche my +d sm +ðŁĺĨ ðŁĺĨ +win try +spa res +cu er +conclu sions +to ys +od or +fl ann +gar vey +scrip tions +inspec tions +cat ap +ang lo +st louis +heim er +at ay +tr ich +en yc +chil ds +vent il +mont p +guiller mo +circu lare +z ell +mode led +craf tsman +al ina +stimul ation +cashe w +ju das +best of +to ire +susp ends +scol lege +real ising +by tes +bloo ds +as si +ðŁĴ ¿ +o hs +ðŁį ĭ +scallo p +ठµ +gi fting +camo gie +wil kes +o zzy +ðŁ¤ ¤ +ver onic +sav oy +deme tri +baby girl +ðŁĺį ðŁĺŃ +so x +cly de +induc tee +count down +self care +ठľ +vi ka +tor re +phd chat +pe ars +aw h +suff rage +le sn +admir ation +mp p +shark week +schul z +santor ini +clo ver +( * +stras bourg +ex iting +so yu +finger print +che a +ãĢ ľ +vin dic +song writers +so a +prou der +nam a += )) +simple st +delici ously +gil les +u q +mn wx +ep p +sh un +ken nel +fall on +ðŁIJ £ +sin d +tra gically +out es +modern ism +co ke +gy n +spi on +âĺ¹ ï¸ı +le am +compress or +apolog ise +twent yon +fan atics +âĻ » +sco tsman +sa wa +ko u +as er +ภļ +welter weight +phen om +twick enham +stri a +p out +ka z +gi am +cd p +ho y +emplo y +red mond +ภĦภ+sm ere +trance family +proto cols +pie ce +lu iz +iter acy +carl s +united states +har med +phd life +ch aw +foot prints +l é +cho ker +z ana +sli pper +eric sson +insul ting +articho ke +advis ing +acquis itions +op or +mut ations +re ar +ॠģ +pod cast +wi ther +kun g +íĺ ¸ +win slow +di apers +ðŁĵ¸ @ +ec ker +col lar +hu ey +gi ro +mono gram +kas ich +si veness +malay si +arom atic +gre s +gali leo +u ji +rob b +dr m +none theless +as a +: > +lo a +l np +at work +ag t +laksh mi +pipel ines +id al +stre l +re all +chain z +stone wall +san sk +ðŁı ´ +pied mont +hoste ss +ci u +t é +analy ses +wil helm +scott y +rw by +mosqu it +use mb +qu ins +ðŁij İ +tu cker +s conf +speci fications +psychi atry +broo kes +s ils +ol af +de to +co di +cli p +fil th +womancrush wednesday +go to +ang erous +be ale +w tc +paneli st +ne x +lar sen +emili o +tab leau +h itters +conce ived +americ ani +or tega +mar di +Ñ ĥ +pain tball +thir sty +new yorker +etis ation +go ss +we aker +u gh +tro ll +har ga +du al +ght ning +at ine +ðŁĺİ ðŁĺİðŁĺİ +cook out +pyrene es +po ss +authent ication +sports wear +yun ho +kir o +archi pel +shen ko +ren der +nov ation +divin ity +ðŁij £ +su fi +humb ling +ge opol +devote es +wait ress +tr ough +py ro +i ba +bl ing +gra f +epilo ts +bt r +of tball +bas king +domin os +so om +r ath +sher yl +qu el +astronom ical +wel d +track list +sig nee +slee pless +com man +ch ron +summ on +pure michigan +cri spr +sli p +la gi +ra q +um u +thal ap +char med +scru mp +quad copter +ski p +peter sen +mun i +ðŁĮ ¾ +mon aghan +tra ys +ick ed +canad aday +te gr +ï¿ ½ +hot ness +heavy metal +ab ar +gop debate +az ul +spider man +sun flowers +ľ ë +web comics +bar d +Ð ² +nichol as +slu sh +ram an +mark ham +ffici al +ff ler +íĬ ¸ +ple ss +anush ka +to to +sk aters +pro wrestling +compet es +ay ala +myster y +thr ills +mp g +independ ently +y ul +imper ative +formid able +tire less +st acking +ton gues +mal tese +pot ts +mat ti +char ting +chill out +super nova +ome o +sky sports +nu tty +ðŁĹĵ ï¸ı +ro han +insp ired +concier ge +ser ra +ma kk +gal at +chi pp +ye v +ì £ +reim bur +op ul +kimber ley +i eee +bre men +ch itec +or in +nak u +bon kers +foo ty +emer gence +ðŁĨ ĺ +sti p +serge i +zo ey +ai me +wou ld +dy es +destin y +vinai grette +dri er +circulare conomy +an archi +ss r +sch el +cin er +gro om +determin ing +gar min +cal ais +incarcer ation +bu kit +no i +chelms ford +mckin ley +chi pped +belong ed +tu mors +str oud +mi i +influen za +wwen xt +tun dra +tele communications +cat sofinstagram +t ages +beat ty +o du +ml kday +oo per +dang le +ak ley +cru mb +anti gua +ti mbers +rou hani +ðŁĴª ðŁĴªðŁĴª +ha fi +... !! +w cs +coo p +sn c +lit res +ãĢ Ĭ +ha z +co z +k ant +green field +cur ti +y ale +flye agles +what soever +wor thing +rou lette +flyeagles fly +un da +a inted +stand ing +lusci ous +h pc +effic acy +ash land +me ghan +ky wx +n pr +bath tub +ac os +h ani +mar cor +man tis +da isi +bo ba +ab bie +mu til +vi al +spy der +po z +g ti +el fie +nigh tw +metro id +anton i +mad die +dh ry +dar lings +ten ds +taek wondo +atlan ta +me ow +chlo e +ãĥ İ +ym es +siber ia +k con +gu es +mar iner +fac il +azz le +[ ... +han nover +bav aria +vir go +te uk +u sps +) # +wall a +sam pson +need less +ver bally +hay ley +bow led +pi us +lam pard +ham string +vol vo +road safety +cho king +sor bet +a hem +healthy food +brai ded +horticul ture +cr ative +che ek +ad do +the force +ko ko +schiz oph +j ie +w ada +twentyon epilots +h bcu +pro ton +pau ls +lou isa +lat am +kyr gy +com pac +sd k +sap i +?? ? +liber alism +ep silon +ai den +w usa +spra yed +baske tball +kim ono +blue wave +ali as +ë§ Ī +mug shot +ce c +do gre +ad ora +ðŁĵ· @ +kra kow +intrigu ed +exhau sting +astron omer +ven ison +lady bug +ci v +bra e +us m +bri be +acup uncture +pembro ke +ke ating +chi e +y ad +t si +sm i +see ding +gate shead +lis boa +gy p +canv ass +ðŁĶ´ âļªï¸ı +op i +ni r +soci etal +ly te +ati es +c sm +ar tery +al in +aka poor +abstr acts +âĢ¦ âĢ¦ +teen wolf +ne we +travel gram +sentim ental +per ched +han del +ho ek +f ay +coordin ating +anim ate +man ian +effor t +jer ky +f ck +adri enne +ma bly +tra ding +my el +spi ro +sol a +stor ing +over drive +monday morning +dream team +pul se +bon di +ber nie +pgat our +tri poli +son am +plat t +âļ ¡ +ag roup +îIJ Ĵ +inv ading +v cu +k ell +ñ os +un dead +pod casting +mercede sam +mana fort +cor tex +que so +impecc able +pal mer +wil doz +sport sc +guacam ole +dispen ser +cate gori +stun ts +per il +invit ations +dune din +xi e +achi eves +saf er +pre ds +ph an +knuck les +k ak +igno res +lovemy job +aru ba +ound ation +datac enter +co vert +gr ing +cou ple +ا ر +vol i +mc cle +arti sans +lu do +kal am +arom a +under taker +hu la +wiz kid +gu mb +god frey +bakers field +ker n +engine er +car ve +pal in +guaran tees +pe bbles +b ays +zi eg +fin k +â¬ĩï¸ı â¬ĩï¸ı +down pours +ro chelle +rasp berry +ðŁĺ ® +gra phies +stom p +caf es +ari zed +utt ar +cal vary +dri e +crusad er +bus an +tux edo +si u +seam us +cul tured +blan chard +town house +ge red +butter milk +flu ctu +roger federer +hel i +ðŁ¦ ĥ +u ous +ram esh +mu ppets +email marketing +ye ss +br ice +ri zio +pel o +donnein arte +u rable +inve stin +bump ing +raji v +sav a +thro wer +fore x +o hhhh +th rust +pull man +r fid +sep sis +le ed +fri ght +roun ding +ne b +ph ins +ai sha +utili zing +squ ats +gold smith +j ic +bo ks +vau s +i po +exclu sion +tari ff +po kes +min al +land s +en force +washington dc +or char +g x +mar ys +ey our +aussi e +bak ers +un popular +latin os +lar ge +pu tnam +bol o +wa de +pel o +di zz +ob struction +fla ppy +weare the +depend ence +pajam a +e te +y ann +e wan +disc la +a ay +kar ina +e ic +an trim +w soc +neg atively +kai do +fotogra fia +dh ru +colo ssal +mcle od +k wang +mani pu +ex hilar +us atoday +summer slam +co les +tapro om +unbeat able +de ma +tic ks +k ling +fil s +campaig ners +ภķ +brew ster +audu bon +qu ay +ch s +ki gali +d ler +strength ens +som al +sign ingday +gol ds +pig ment +orche stral +g q +lin kin +ðŁı ĩ +ta w +algar ve +ho v +ear le +gold fish +am ig +ex er +ben in +dru id +ðŁIJ ¸ +she m +quat tro +mer cen +men te +incorpor ating +bon anza +state fair +en de +concep tions +e es +âĻ¥ï¸ı âĻ¥ï¸ı +d son +fire arm +orb ital +we h +multi p +fo b +requi em +p light +thou se +sa id +oc re +remem brance +n old +chi pping +be v +er t +ca thy +sy m +ri ggs +m ley +dialo gues +sl ender +how l +gau teng +wd w +to bi +smo kes +im plo +b pm +ad n +mom basa +cap sul +bloom field +artic ul +cle o +goog led +flu ffy +l ard +en zyme +ve sti +ibra hi +fl ame +e mea +out ages +dispro por +ble ak +an sel +ick er +st louis +stock market +good friday +sau lt +stal led +pro m +ep som +b é +the se +sau ces +me w +lit fest +pre d +re u +kar ak +si enna +ell in +bio technology +ï¸ıâĥ£ - +tac tic +sa in +por k +mon za +ka j +lu sh +compart ment +chang ing +shraddha kapoor +fo al +ar tem +cu ando +can ola +ori ente +me sse +d ited +br c +box er +bbc two +s st +ment day +em ing +de wey +kof i +âŀĸâŀĸ âŀĸâŀĸ +reali zation +smo l +tw ood +san je +flag staff +ber wick +cor set +can ary +whistle blower +et ched +com posing +squee zed +bow er +auto desk +ne h +mathi eu +ba ja +Å Ĥ +hy dra +da im +am eri +insi sted +mer lot +gar ros +heart news +gaine sville +cut ler +bo de +ðŁĺī ðŁĺī +lew es +scoun try +g sa +us u +cc m +god awgs +phara oh +cra e +mor ley +hyp noti +f ades +neur ons +fu zz +ing co +high landers +star k +vig ne +pac kets +amar illo +reu ben +insul ts +bas ic +vec tor +n me +ac ruz +tro s +transm itter +ðŁĺ ŀ +interpre t +ðŁĺ ² +pre quel +mc gowan +dis semin +ðŁĴĺ ðŁĴĺ +mascul inity +indie gamedev +ali ve +te t +pe tal +ema iled +ar med +ko o +he er +ba ird +super junior +metro polis +delav in +decl ines +stit utes +Û ģ +p tbo +g lan +cho res +e aling +chri ssy +ste mc +vi an +assassin ated +pron ounce +illeg als +discover y +cav ill +fri fotos +f al +so i +sabot age +t int +p dc +ðŁİīðŁİ Ī +ãĤ Ĭãģ +ji o +endeav or +in sig +commit tees +she arer +me tz +mar rying +h dd +g by +fre t +tri sh +pu l +scrip ted +sa ki +l w +ke ye +shim i +nan aimo +ca h +à « +tem pered +ici an +du gg +dish washer +air field +s rugby +gr inch +y st +r ms +mahat ma +lan kan +disc ar +dige stion +no des +l ls +om ic +gu tter +tis garh +feder ico +election day +bo he +master card +fire ball +âľ Ķï¸ı +oy ster +p ong +do k +en route +m vc +beat the +ali stair +shu b +sh aming +cherno byl +ghi bli +the s +pin ion +d bs +sal ts +ic tion +epi ph +nc pol +in convenience +whit ley +inspec ting +wood ley +wi ener +skil let +no les +m ca +h ina +a sha +willing ness +well ness +tam ed +show time +dis advantaged +ber nat +us n +mission aries +coun selling +arrog ant +quant itative +leg alization +ho dge +energye fficiency +cameron dallas +pos sessions +p bb +harris burg +v g +hindu ism +happy thanksgiving +fi b +re acting +tweeta picture +pol iti +mu ppet +hur rah +pac e +coast guard +guar ded +as am +par ry +fore very +x q +oom f +ke anu +j ind +ri st +customer service +sac red +ðŁĺ º +ton er +occur rence +mat u +val dez +red d +is ak +power rangers +pe asant +raj ini +abra ham +e mil +car do +tr il +hair styles +obsole te +sam pler +direc tive +delavin kisses +ver ton +glo s +sp ay +paler mo +com ets +man ziel +chicag of +ski pped +pic torial +h ant +b mi +a ol +re opens +pad dling +devo s +fra ud +bas eline +que ues +sp ired +sn are +eu ve +descri ptions +daisi es +ca ching +gall eria +tri mmed +stin o +recy cla +ic ular +bir ken +raw lings +fli x +chic as +b gt +lik eli +argy ll +thel ove +ga ston +bl anca +ha k +f one +sailor moon +h aci +ima c +fl yn +de can +bel les +ap ic +zo g +taun ton +con stance +lasag na +ker nel +in ka +har bor +collec tively +calcul ated +av ille +shil pa +pur du +gi mm +fun er +a est +pembroke shire +nighting ale +n unes +hyper tension +hu bert +sli ders +infer tility +comm ended +transat lantic +metr ical +!! @ +Å Ł +ss g +bac ca +inver ted +fun factfriday +it ans +albu m +acqu ainted +ri er +whel an +sar ab +mu e +snoo ze +pi ff +agre eing +sp itting +jer maine +n ye +âľı ï¸ı +am bush +ze ph +con greg +univers ity +s app +wann abe +pat rice +ib d +do glo +fri dges +sun d +king ston +ar gon +kam en +hardro ck +ds ley +do lores +ì ° +ota ku +pi ping +be having +âŃIJï¸ıâŃIJï¸ı âŃIJï¸ı +blue bird +an sari +teapo t +fire work +cro p +log ans +ty ped +thick ness +ig ers +c fp +dys functional +contra sting +et ty +aston martin +tx st +dra grace +at tributes +marath on +manu scripts +john stone +ðŁĺ± ðŁĺ± +bo er +ay u +aru gula +poo rest +con du +assu mption +anag h +no h +delav in +sit ter +g ö +mor ow +kick start +com i +gl acial +ghe ad +ba in +ker shaw +en dof +fre ud +om at +i af +hu g +sign up +each other +defin ite +tu bing +shak ira +ðŁijı ðŁı½ +uu uu +sw in +sham bles +ol as +sk ell +brit ain +kn w +clu tter +om y +j ens +hang ed +city scape +scra ps +un locking +dead liest +er no +breast cancer +a it +inspec t +fu ri +ðŁĴ Į +ku d +ju le +or ah +mi ds +m dt +bur gring +r attle +pu sa +stal k +cle ans +iss ance +z ek +worth it +nam eis +musko ka +council man +urban art +bar rac +un solved +tu l +g ita +white board +soy beans +em ent +cont i +saturday motivation +conveni ently +doc king +t ado +âı © +sp ino +puppy love +po f +fabric ated +robb ers +adop ts +ti fied +kk r +indulg ence +notic eable +macqu arie +chap el +sensu al +ki ko +melan oma +lore tta +li ance +ab en +sp lus +ga al +ac ele +lib dems +compar isons +ðŁĮ µ +rhy thms +mer y +en capsul +nap ier +ðŁijĮ ðŁijĮðŁijĮ +ðŁij IJ +plat z +fre sno +re formed +ran bir +el it +the best +bhu shan +vin nie +impro vised +s ittin +re created +e ba +ec ker +ac rob +pon te +cor d +gi ddy +eur usd +fe ver +intu ition +gar i +dum mies +bud weiser +amend ments +te tra +sch nit +ay as +mar ys +ci st +k ani +ker mit +ðŁĺ±ðŁĺ± ðŁĺ± +tin ker +strol ling +di visional +niger i +omin ous +menstru al +kar ab +k hy +bw fc +pan handle +l illi +well er +stra pped +son the +transfer ring +ethe real +sne aks +ru dol +gab les +jac king +cin code +for tune +canadi ens +con for +ab normal +frank lin +tit a +mu la +persi st +cu ties +ki el +ðŁĩ± ðŁĩ +her mann +aw k +fi asco +ko to +we ta +hi ker +budd y +preven tive +mcgra w +game boy +forsy th +top shop +si ob +sad h +in tram +follow art +so aps +dragon ball +ou x +morri son +๠ĥ +lu bric +adul thood +morri sons +âļ łï¸ı +her mo +ta ka +stall one +mis use +team gb +ra gha +con fined +at y +hom ophobic +nw o +sky news +ho ya +ac rosse +wi iu +pur ée +jed dah +ðŁ¤ § +advis ers +ph ine +an is +scrump tious +ë° ķ +c ke +vin y +ter m +s dc +o do +home school +vas c +leop ards +debor ah +illic it +cur ran +as roma +nau ght +mar ig +brand i +em p +ðŁĺį ðŁijĮ +î Į +su spend +lu z +initi ation +sch aft +jensen ackles +craw ler +post doc +des ks +trail blazer +den omin +tri x +no ise +po et +± ï¸ı +s mug +vol atile +proof s +pharmac ist +sardin ia +mash able +kim chi +co ed +schal ke +doo dled +c sw +sh ur +ro x +do k +chris brown +mathemat ician +ab ound +ang elic +rock ford +d ole +yor kers +ms n +g man +xavi er +bor rowing +mark ings +longh orn +k ja +diver ted +mm it +euph oria +ay yy +te a +pa h +ck i +un cut +li ven +ky ung +fan art +mer ing +red ding +amo vie +gri di +c thulhu +schol arly +ju dah +th bewithyou +eu calyp +ðŁIJ ķ +hert fordshire +cour troom +by u +auc tioned +ple ase +mar cia +ê° ĵ +succe eded +el as +arvin d +t lot +saig on +re tt +ra kesh +fd ny +as en +se bring +gladi ators +you know +v lad +gol a +par ap +ÑĢ и +sab cnews +one team +oh l +sun e +ri j +cd c +star gate +run down +plat o +ph c +chat ter +ra viol +mn f +mand ala +li et +ภķ +mari a +hun gover +consoli dation +fer rell +tradition al +ilove art +gal ap +ðŁı Į +que zon +espa ña +ðŁĩ¨ðŁĩ Ń +ho bby +steam boat +mali gn +guil lau +pro hi +its me +íĥ Ģ +in scription +al z +mari an +k ade +mm on +adju sting +ne sts +intern ally +ci r +vik ram +mal ala +k ph +fel icia +the real +cap tivity +at is +marcor ubio +kale ido +che v +mano j +le more +gent ri +vi ps +tro pe +" âĢĶ +pair ings +mal nutrition +fr ay +desig nation +brun omars +az e +tor rential +pan zer +ga il +under the +the ological +schizoph re +dazz le +freder ic +mo par +ad illa +so ggy +ra un +medi ocre +colo rec +i fe +p inst +blu ef + ² +world water +gir oud +clar inet +ad olf +tar antino +receip ts +assu mp +ðŁij Ł +coffe es +âľĬ ðŁı¾ +du plex +s of +r x +lin o +timber wolves +pan dit +mo tm +e ga +ay ama +ach s +outsi der +ll en +co er +til ly +cheese burger +ma ds +ple dis +emp ty +national parks +az iz +p mi +jun kies +f ener +sq n +è s +gener ation +cleop atra +bhuban es +mosqu es +ty free +popp ins +tw c +or well +n age +ka whi +hol low +dal ai +¨¨ ¨¨ +ou ro +m health +gi on +az o +vis as +reneg ade +re ic +w sop +ðŁĴļ ðŁĴĽ +e chel +tox icity +mü n +bun k +stimul ating +asth our +\ ' +ep h +ende mic +cn bc +shrin king +peabo dy +michel angelo +can yon +wal e +su mi +si ders +inu it +? . +profession alism +dr acing +plat oon +p ons +out bound +maple leafs +de sol +cen cy +a than +ver ma +ru bbing +ok an +ðŁij ł +mull ins +authent ic +Å į +alman ac +ga ia +bb q +on imo +ke h +ty a +tou ts +y av +re posit +, . +wi ght +se eyou +cal lof +done sia +bar gaining +gr anth +sd su +amphi theater +p su +re watching +wine tasting +peak district +dete cting +thur man +phe e +èª ķ +u mich +re r +sculp ted +go le +name sake +ðŁĶ ģ +serv icing +bau gh +pu gh +pen cil +dar th +munch kin +at orium +ten ers +sun y +rolling stones +mag ing +star rer +i dris +fe instein +ag ron +âĺºï¸ı âĺºï¸ı +supervis ed +chamele on +aggre gate +succe ssive +mo gul +inst yle +pol dark +custom e +ohio state +ha ya +ci des +broker age +angel ou +fifa wwc +de forestation +al ton +pam ph +hu gged +ho bo +change able +ku ber +bur roughs +demon etisation +cape cod +vers atility +or ice +le ila +womenin science +tu a +he dges +embarrass ment +ali fe +so ars +ni ghter +hy mn +gi pp +chas u +tech s +ni all +k illa +hi ka +cam els +valu e + ¢ +sc oops +mah moud +clu sive +adri ana +pac o +oz il +un as +transl ations +whispe rer +s bi +bu xton +bio tics +indi ffe +ken ney +k lar +et ching +barra best +inst ability +se ine +vo tel +blo gged +whis key +my space +t ant +lan dia +give back +illu s +aw ak +ac ab +f bloggers +cloud computing +blat ant +syri ans +band ra +sty n +an em +ke ted +kar thik +barun sob +pin ot +gu bernat +gay e +arti ste +i fied +conven tions +hu an +geni uses +eeee ee +fol ly +somer ville +pride month +ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸ +chemo therapy +paul s +bak ar +ìĦ¸ë¸ IJ +taiwan ese +fol lo +c ss +re ign +nn nn +fla un +catastro phe +iti es +frag ments +extre mists +ym oun +car men +eze kiel +conne cting +se h +man ta +remodel ing +we ymouth +at oms +ce m +ne well +lu mi +the open +mo c +mili band +g land +z shq +mag gie +mani acs +m sp +ad y +cre ams +le anne +e sta +py g +af finity +pray er +dun bar +ligh troom +ac adi +wyn onna +roman tic +state dept +sick le +wh os +lam o +et our +fin ity +shru b +shar pen +pun dit +ed on +af ore +mar s +jeff ery +ter ps +medal list +kath arine +accu sing +ta z +roy d +from home +confron tation +alle gh +ðŁijī ðŁijī +refresh er +ran veer +never land +jo jo +lu crative +en am +ca ver +pa edi +man jaro +flu ids +the ssal +oppre ssed +mu ss +joh anna +Ø ® +cn g +buil dthe +sett les +s ith +fu ego +cl amp +ar ag +pay er +ted x +mand y +inter stellar +fr c +ch and +b cc +mo lo +len til +johan sson +grims by +nature lovers +ðŁļ¨ ðŁļ¨ðŁļ¨ +shin de +x in +international dayof +transiti onal +sat a +cad dy +wo d +if u +ha ys +holl yo +j ang +ir c +co im +grad able +" " +ðŁį ´ +ঠ¾ +a el +n yo +west lake +time out +sof i +phenom ena +cultiv ation +ag no +un armed +so t +con j +gen o +royal navy +nutriti on +fair mont +ti relessly +sn g +re ty +mic a +lu cent +slo ane +droo l +riz al +od ell +critici zed +. '" +la ze +deser ted +co der +pra s +l illian +itiner ary +dav y +an ap +whi pping +hobo ken +kare ena +çľ Ł +vi us +ter n +nan tucket +mis understood +bu laga +st ant +chin ook +z am +reli es +d ss +ed mond +sket chy +m ell +fe x +rec tor +dist ill +day dream +wine maker +ri pley +billion aires +hel ene +ati f +cul prit +bertr and +wou ldnt +ma pped +v ak +gla dly +parliam ent +kidlit art +ware ness +goli ath +âĨ ĵ +view point +tat ted +fu ls +dor sey +ang lers +li ds +ki ya +bow les +be h +b ite +compati bility +ance stral +pro x +beha ved +gubernat orial +ch field +sab an +z h +teen y +shibu ya +holli day +pan cy +âĿĦï¸ı âĿĦï¸ı +seun gri +? , +ðŁĩ¦ ðŁĩ· +im itation +impac tful +any i +gene vie +añ os +bate man +gli der +af ar +ra sheed +effor tless +sh war +dach sh +er un +at os +kin i +ch d +kha ki +k lin +felici dades +bel o +as l +to ppers +fin ley +stac ey +rigor ous +kar ting +le ppard +car michael +be ret +c se +ak hi +mer ingue +ab an +ha ke +ger i +er jee +re sto +comm anders +pr it +fl or +ad ven +ex termin +remain der +å IJ +es g +martin o +lulla by +| @ +mi gn +in store +big bang +cor di +cau ley +ante bellum +dg ate +cro ck +span dex +scaf folding +ore os +ê°ĵ ìĦ¸ë¸IJ +pom ona +ma uro +uni versi +re mi +af ootball +t ant +sm alls +ne h +worl do +tropic al +mor ph +jav elin +gla r +arqu itec +reminis cent +tu bs +spide y +make u +syl la +progressi ves +blo t +shor ten +keep in +ch ak +ang st +super food +decad ent +ston y +neuro logical +ar boretum +ann ak +fe ma +per cu +dis respectful +small biz +lo x +co om +c sc +bs bi +pre valence +him ss +esp an +mo ga +fr ampton +sky map +mas se +levi athan +( ). +noctur nal +car ameli +ang or +amne sia +outsi ders +she alth +rhin o +ant ag +ag io +ðŁĴ° ðŁĴ° +take me +kab addi +c si +m sh +coch rane +thessal oni +sil a +ha us +du sting +obe se +mack lemore +mani sh +len in +m dc +gro wn +shef field +s rs +ke le +car son +ch um +dah lia +can tore +opp o +how ling +cyber crime +sur realism +sc ran +fa iz +thre n +rac ists +r out +pk not +se mana +sin i +mc cull +ma chi +alfon so +y b +sar dar +kend rick +den g +reci pro +on f +doom sday +bri bery +custom iz +art is +c pi +ðŁĻĪ ðŁĻĪ +sla va +let te +en s +âĿ¤ï¸ı ðŁĺĺ +cra yon +ad an +tr c +migr ate +simp son +row ers +king sley +farmers market +shee han +ne phe +bor non +car ton +mic key +all ure +u lu +sli pknot +heb do +gui do +dog celebration +online marketing +acceler ating +) .. +origin ated +macar oni +ed tech +out field +mit z +disc us +adverti ser +man or +ha shi +descri p +cap ita +ful bright +recep tor +con n +con ey +spion age +r attle +pre st +u li +blog post +acker ay +) âĢ¦ +red velvet +mat th +inspir ing +b sd +ker ri +po con +mil lar +re pur +accent ure +ä ¹ +ram bo +ragnar ok +dele ting +british museum +pat ory +leip zig +flori an +sci fi +in ers +br ate +yo y +melis sa +ab er +ma sa +po te +mosquit oes +transpl ant +r pa +; )) +bast ille +yl an +joye ux +melo dic +cap tions +atri st +roch dale +gott i +pew die +cuties aturday +who is +aqu aculture +tiv a +sp el +he ss +ha ji +fred die +co per +brand o +v k +photo book +* , +my dayin +micha ela +brune i +sr ini +in te +Ä ± +de ol +d fc +separ ately +bun d +ve sts +to c +me ck +rein forced +constra ints +car roll +sq ft +re ver +cam per +bird man +in action +gener ators +triumph ant +pe sts +o vo +gy pt +al amo +sc aled +suresh pp +sd n +is mo +gi os +) @ +justic eleague +restaur ant +gab i +den gue +next gen +exemp li +ap ex +inspir ational +down side +kid z +u pl +et na +alvar o +fel dman +bar net +m ha +es ch +bloo ded +>>>> >>>> +kan i +ho fficial +casablanc a +bir ds +ty ga +sw amp +o day +new castle +nb ap +ci sion +cho ols +af lo +ne p +mon ton +ak b +super model +down time +th os +sc wx +snoo py +ag greg +yo ke +nor cal +we tt +prolon ged +me tast +beat er +f ta +t lap +disgu sted +y h +voice over +itch y +ip c +ðŁİ ¾ +phe asant +stra its +ram pant +j g +fer til +assu res +fortun es +sal inas +liz ards +kett le +i bs +cyn thi +he g +mc cr +soccer oos +happen ings +cor den +ðŁĺĤ ðŁijĮ +t ches +egre t +wolver ines +congratul ated +ho gg +bott ling +wr i +fer ri +bo sch +af ire +og den +s jo +j dm +sv t +con tex +tol lywood +min k +me se +super sonic +op oulos +å ¸ +âĶ ģ +knuck le +gu ise +gam i +chu cky +z inger +radi al +compla ined +bo da +fe tal +discipl ines +cor ro +ðŁĩ®ðŁĩ ¹ +op ted +filtr ation +ad nan +em cee +mi stre +insom ni +fer gus +tra jec +on don +med tech +tanger ine +madra s +gru e +cab s +z hu +sureshpp rabhu +insul ated +day swild +pp m +band ai +v day +s ff +squ id +lo thing +not dead +expre ssive +cu ll +ala stair +x u +up front +fish ers +en es +um d +dis missal +sti er +sel s +lu st +re active +prote ster +eyel ashes +al im +goo de +gre eng +da ir +com pen +anush ka +proto typing +ma pu +bear ings +ðŁIJ Ł +for me +bsbi botany +timo thy +out skirts +am bed +are tha +wend ell +stre aks +ni m +k pk +sne e +fit ter +quo ta +p ate +win ning +ðŁį Ń +sho pping +ma inst +cul ver +ste vie +mcfad den +counter parts +gren fell +fol som +dor set +tech crunch +⬠ħï¸ı +tip tuesday +us l +tre x +geor gie +ranveer official +lic ks +se wn +k f +' âĢ¦ +jap s +p ate +orth op +fe sta +stra s +mon tal +hammer smith +fore most +wido ws +mad re +ite z +mito chondri +lig ans +z ona +cari bou +m ss +andre i +weather channel +gh c +: ... +ta ft +awe ather +al isation +bru tal +bliss ful +nik ola +mal icious +q m +mpg vip +bro die +bl itz +applau d +dri bb +v ague +dog go +transl ating +interpre ted +hat ched +ge tyour +benefici aries +spar ring +caes ars +aw illiams +la hat +bro ke +ti mp +virtu es +rel ying +pie tro +k tn +ici sts +pab lo +lou i +a ag +pn pp +cha st +pul ses +fini sh +usair force +type writer +thomp son +dog s +ut to +ãģ į +sand al +new ly +do ge +z w +wan kers +ne gr +mu cha +determin es +black fish +sk unk +mu ps +instru ment +phy to +daysto go +skin ned +hai der +con ten +ðŁIJ¾ ðŁIJ¾ +we iler +undoub tedly +chair ing +wall is +sh ard +zind abad +adul t +absor ption +pre sto +deplo ying +drum mond +battle front +seag ulls +how dy +juda ism +des de +part ition +âľ Ŀ +no logy +national bestfriend +lesn ar +film fare +co asts +christen sen +ac an +mb u +co pped +ru bble +sw c +fun nier +far ther +where as +nano technology +with stand +pil low +bow ers +to pe +it ly +con fit +ma kar +comfor ts +bo sh +cli pper +bal la +sti k +mil b +safe guard +musi que +eas port +ya z +pad ded +bad er +fore ign +chop in +archi ve +o ka +tran sporting +tml talk +aj it +consequ ence +sc roo +ff o +collabor ated +pug chat +ye mi +jav ed +au burn +o of +ma w +sau cer +miti gate +i les +evangeli st +ter ie +re cl +indic tment +cat a +bright ness +may the +whim sical +un lv +key word +cu min +med way +west world +tra w +im posing +form ity +coul ter +ab z +ny pd +grass i +kel sey +qld pol +clock work +f dr +di anne +âĺ ij +ad h +p ann +bra vely +ae ge +un lawful +ver di +pocaly pse +phar o +kar la +reson ance +ma stiff +la dak +bu u +ma iled +hi i +craw ley +tor rent +mach ado +liby an +effort lessly +fal sely +q vist +ke ef +craf thour +cheri shed +val kyrie +s ari +kal amaz +be he +ðŁĮ Ļ +th im +ro ddy +col trane +but chers +ach im +wk end +awk ward +cab rera +:) ))) +fran c +decl an +con dos +a ja +pandor amusic +char ter +ph ill +mon trose +hatch back +handic app +gre aves +eucalyp tus +ut most +t son +bur ton +mid wives +in cur +ðŁĺį # +moo d +compre ssed +tom a +must ang +mo g +as ana +te stic +sho tel +in sol +cor sair +nh q +ben ny +sm ma +kap ur +in con +jon as +ener gies +don al +as ad +se z +n pa +archi ved +stimul ate +do p +hy d +gri eving +ãĥ Ī +ron a +why te +tree house +ss ell +sand ro +ko bo +ther most +se clu +hi ya +ge ez +mam as +prisc illa +flav oured +fas s +w old +maker space +cospla y +p tv +happy valentinesday +sequo ia +love craft +gu an +d tm +ci i +yoko hama +pos thum +re q +ðŁĶµ âļªï¸ı +galat asar +dol by +hamp tons +disturb ance +stone henge +ok c +disrup ting +month sary +jun gle +head lights +du stin +micro sof +happy mothersday +ko ko +gra zi +te sto +na idu +mal ay +ari al +ru mb +ab oo +har man +tra pe +spo ils +je ho +go dly +lock screen +z un +pi ous +ma gento +l enders +prob able +corpor al +m our +aw al +su a +call me +ton ne +go vin +devast ation +x j +gear box +war lock +per me +it ate +gaza underattack +du val +paras ite +clement e +le th +i va +fro zen +tho les +to bin +cair n +s ill +luc kiest +conver ts +st ale +pan cra +euro pale +wis dom +sch ur +ì ¶ +verti go +bi j +u bc +nu re +righte ousness +mt c +factor y +ver st +revers ed +hur i +hee chul +fab er +ar r +ul ous +ven om +ph at +green ery +bra dy +à ¦ +: (( +never giveup +di sha +mo ta +health care +dun ham +dex po +den zel +bb ins +f ics +wh am +mc g +eli an +wat a +str alia +tel lu +pe sky +spin off +ar moured +re acted +do fficial +te du +sag ar +mor ally +paralle led +fi os +dow ner +dau gh +re do +world cup +tari q +bar ne +glaci ers +oc cult +barbar ian +her mosa +!! !) +y ur +inter nation +p ss +sit u +p int +american air +sw am +dopp ler +ðŁĴĻ ðŁĴľ +cincode mayo +le van +hell enic +mc ne +ju di +yu h +st x +qu are +ðŁĺĤ . +sti g +g els +mot ley +hard work +euro zone +e ad +ç¥ Ń +seab ir +ci us +la id +alpac a +presu mably +pewdie pie +boo ted +am ari +tam ine +sol ace +bar row +acade mies +x ian +om ination +dun geons +b ma +de ity +ai k +stab il +hir a +affection ate +ving ne +new port +ãħĭ ãħĭ +thir ds +re tains +aroma therapy +ski er +ni ma +do pe +cr inge +con domin +to or +anim ator +sar aj +seas cape +minim alism +lake shore +calla way +berg man +à¤ Ĺ +whisp ering +stupi d +ri ghtful +requ is +ir n +se va +ut pol +tuber culo +squ ish +de but +govern mental +christ ine +all man +weap on +s ito +bur i +lo lita +leaf y +fu ch +tin ted +mck en +a hahaha +ðŁĩµðŁĩ ¹ +repe al +ne gan +ðŁķ Ĭ +tail gating +game insight +ðŁıŁ ï¸ı +yaku za +z t +ti ring +pro posing +bow lers +tra itors +ak shi +cler gy +cit o +up sets +tu scal +symph onic +sil ently +shu ff +black well +ðŁĺĤ ) +ko be +rober to +ri dg +dc u +mer ino +ft p +east side +. ~ +nb l +mn leg +ts for +frau dul +ca pping +in my +gymna st +ston es +ss in +twe aks +shag gy +oak land +dem sin +sang ria +mm va +hen nessy +down ton +ri ghtly +in it +aga ve +ob last +northe ast +friend ship +dal a +tro phy +ðŁij ½ +mag in +margar itas +ê · +ww fc +fa sh +di ke +cu d +char t +ðŁij ® +refuge es +jop lin +n cs +imp y +firm ware +pas cu +flam in +health tech +bell letstalk +w aka +ol ls +la go +co wan +bombar dier +sh ome +ðŁĻ ħ +mc master +na ve +well s +u ta +tell ers +mis fits +kap il +face off +af firm +a pro +whit epaper +super yacht +speci mens +al located +... , +- __ +ka w +dachsh und +djo ker +s work +qui ere +or um +ðŁIJ ł +som m +c mt +ingh our +skin ny +lgb ti +gi ggles +break away +resear ched +par ity +my al +ms l +re tained +si vity +make inindia +sol ves +defam ation +wal tham +sri racha +road way +concep tu +al in +iw ant +å Ī +del ft +tender loin +ga ins +faul ts +sw ire +st ellen +pol lo +dy ne +bornon thisday +asdf ghj +sq l +sali m +advis es +vo ip +ìĹij ìĨ +un touched +she il +ontari o +uph ill +so bre +de shi +nov ella +du tton +craw fish +ا٠Ĩ +ma a +tw ine +kal in +ðŁĩµðŁĩ Ń +ye ss +brook s +hoo siers +ton ka +umbrel las +ay ers +ate am +acqu iring +su ction +ä n +wi es +tari ans +soci o +mat tb +shepher ds +o so +charity tuesday +s logans +ninj as +al bat +by te +bash ir +trampol ine +mydayin la +i ja +bas el +ror y +gol die +fi rec +un noticed +pecu liar +sch a +ker son +mour ns +liquid ity +qu ipment +hi bs +ar s +aeron au +slide show +sla bs +delici ousness +sk itchen +hta fc +full erton +cre ighton +aer ob +procrastin ation +az ores +white hall +uss occer +medi ation +djoker nole +and me +um en +noxi ous +jo ss +ili fe +anni vers +sudan ese +et res +under mine +whole foods +diso be +kor i +ade le +eli z +can ti +al on +gymna sium +sarko die +meteoro logist +yl de +ste en +stamp collecting +nas al +lo tt +fran ks +ex ol +ack i +good year +animal rights +y les +vio lets +mm es +s thel +ra pping +tu scan +wai ver +tur ner +eat local +northe asthour +anim ations +tom morow +t sh +ff ame +bra e +pe tron +glam our +br yn +d cs +bal es +ðŁĶ ¶ +bro v +bre v +b ons +physi que +car ne +x e +elix ir +vol ved +l oma +ìľ ł +æ ĺ +van u +ri gs +bal ance +va res +bon ita +sprink le +perfec to +di on +le ak +calcu tta +o ba +d ma +c mon +tun er +pneu monia +bo gus +apolo ge +cl ough +bor ne +)) )) +revi ved +o varian +ner f +c legg +fan fest +cho u +reali zes +mc n +li gu +leg alize +just saying +for ster +bo sni +k hi +in dom +hei del +en cryp +si ss +ed di +mar bles +brisban e +y ing +pre paid +wal sall +cooper ate +orche str +mar isa +ho wie +che wy +bren ner +andro meda +e gan +sto cki +cav endish +ag an +ban o +de ir +go g +bl k +re thinking +ch ig +rhe u +sni p +p eng +semin ole +m swx +an nex +lyn da +lewisham ilton +cu mul +tb l +dolph in +agu ero +........ .... +pre lude +at our +gr anger +too ting +ro tun +dis ar +home items +da res +**** **** +ðŁij Ĩ +compre h +jin x +as well +iri e +circul ating +ðŁIJ ¥ +over board +cultiv ate +rhe tt +oriente ering +ca k +bal kans +s itt +jas min +britney spears +ro tor +se aling +g bc +oc ci +f as +eman cip +com er +war time +tic kle +son ny +pac es +log g +at rix +sr p +g win +do bbs +uz be +the wanted +dru sh +ex tru +m icky +honore es +dar win +re dux +mm j +ram i +jalape ño +io c +do ver +ju ju +whit ney +s eng +en ly +au ch +archipel ago +vigil ant +man gal +wil dest +parano id +hal i +bb ly +sanc tioned +real ms +con co +u ddin +c sk +play time +libr a +sav ag +oc tane +rec tan +re turn +par rish +mor rha +cc p +c mu +sa iled +se vent +ro sie +pil ing +he w +boar ded +seg ments +neph ro +( . +cr ats +bak es +ðŁį ¸ +back tothe +sibl ing +kirk land +ke o +gu wa +bre ads +ðŁĺľ ðŁĺľ +t q +haras sed +ga u +wil bur +j isoo +ep er +li sam +tri ppin +sh ino +ru kh +beast mode +cho a +inst aweather +rich land +gar i +fe z +cowboy snation +fur suit +k run +a en +sycam ore +se gun +ent ennial +di h +o ax +demsin philly +ðŁĻ Ģ +sn hl +pen nies +pass words +ma kin +ty e +d eng +kni gh +jeep life +hel pline +a for +zz zz +ste amy +pic ker +iter ate +happen ingnow +ki b +bloom berg +martyr dom +bul ly +assor tment +a hora +zo e +no i +illu stri +agar wal +p sc +electr onica +recruit er +gar diner +rad ha +naf ta +dot net +pi ero +geor g +bel s +ðŁĺĤ ðŁĺį +tuberculo sis +run nin +mor is +haul ing +ev oc +bre thren +sha ir +frame works +a stu +ri gid +ku ma +kre me +jin nah +insu rers +ny u +f ere +nol lywood +good vibes +- ... +toi le +sk ril +instaweather pro +cze ch +pa vel +one piece +nike plus +fi let +cav ity +ðŁı½ âĢįâĻĤï¸ı +ðŁİ £ +dra stic +dail ys +siam ese +re bu +oste o +lar k +f re +sh elling +p é +glad ys +ðŁıĢ ðŁıĢ +gusta ve +submer ged +grand stand +att u +won t +f pv +b ley +jon i +ang ames +weigh ted +al ou +ठ¶ +les bians +f j +anni es +am l +dor ia +dav in +be ta +can c +madewith unity +ha j +bad lands +mu l +blu ec +pa wn +cov ington +neuro logy +htt weets +dysle xia +thel ove +ne at +fork lift +autom ate +une ven +monte ss +he in +ha g +rel ics +competiti veness +can elo +mar tens +bullet proof +sk ittles +g ya +pri mo +americ afirst +woo o +abor tions +?? !! +ma che +ld ers +rl ly +preli ms +direc t +cour se +swa in +super cell +ec centric +sting ray +ple ts +wil cox +west in +okan agan +kir an +car bo +bomb ings +ra rest +bo h +gaw d +di gg +mo ana +enti rety +en closed +dodge ball +par ton +milky way +at r +thorough bred +re ally +qant as +epiph any +ine e +aero smith +spi eth +ar thro +ell ini +du bu +bra ving +âļ½ âļ½ +re structuring +illumin ate +equ ili +mp i +ash ton +pony tail +ma scots +flat tering +cru m +ast a +à® ° +stranger things +bar nab +ر ÙĬ +make shift +got cha +will am +cho irs +kilom etres +gho sh +eu than +dol ly +un ning +the ar +cre we +w sw +j ace +dis miss +ke an +ho ta +kh at +~ > +thir u +ren dez +hart man +tee ssi +cas ca +z ah +hydr ange +fo d +aw p +mzan si +thick er +nago ya +ne va +sti que +cast el +dam ian +there by +ji ang +ale k +music islife +ra q +calla han +gou ache +somal iland +sean hannity +ra heem +lo se +elo ve +whar ton +rectan gular +illustr ating +har ne +auti sma +scra pped +ell and +decre e +nag pur +ki pp +so re +n md +ma as +gun a +gart ner +bel li +then ight +je on +gendere quality +gi ver +a el +gar ments +ne u +mardi gras +mar sden +ro wer +pollu ted +camer aman +vin od +be asley +cro c +ji u +hollyo aks +anesthe sia +al les +ste ward +lati mes +ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸ ðŁĩºðŁĩ¸ +tic ian +gor ia +come dic +ðŁ¤Ķ ðŁ¤ĶðŁ¤Ķ +nai ve +sli ons +ł Ī +bur glar +ðŁĺŃðŁĺŃ ðŁĺŃðŁĺŃðŁĺŃ +york shi +se ñ +fan boy +lau rel +inci dence +potom ac +rober ta +presi den +pr yor +os bourne +w ku +te me +pal ae +ðŁ¥ º +re boun +itu de +red dish +k hand +coloni alism +north carolina +ðĿ Ĵ +manne quin +lady bird +ta sty +knowledge able +g shore +ðŁĮ Į +à® © +qu aker +salz burg +med alists +chy na +bridesma id +ma ori +ro p +outra ged +in adequate +truck ers +al ana +ìĿ ¼ +ri x +oooo oooo +command ments +lam beth +aa j +eco friendly +bla z +morecam be +boun cy +rou x +rai ded +mi zed +sh c +gaw x +labor atories +ru bs +rest room +consult ations +ca jun +virgin i +so ir +rev ue +ple in +wag er +ç ¹ +we do +growing up +! ðŁĺĬ +face ted +sin ners +ho vering +ti ene +seas oning +an ja +leg go +il is +fla x +dev o +ash ram +mati sse +ker i +go wer +bo tox +mar shes +unh cr +ts m +opti mus +dun i +stu ffs +so k +order ly +n bad +islam ophobia +raviol i +fab er +cre ds +won ka +in fusion +over weight +daily news +assi mil +acol lege +medalli on +kili manjaro +sti ff +tham es +sun ken +th ard +my dubai +hilari ously +han nel +plu mber +fair view +separ ating +rasc al +qui en +necess ities +confeder ation +ll ll +: ] +weak nesses +bron co +ra ffles +el ot +ãĤ¸ ãĥ +advent calendar +ðŁİ ¹ +stra vel +tun ic +k su +im peach +e spionage +! - +di ment +cur rant +bio de +commu ting +by ron +ðŁĴĵ ðŁĴĵ +shad ed +tr uro +cray ons +ar ne +h sc +fre aked +dram ati +fle ek +u cd +marl borough +^ - +cross ings +mal o +black ops +bin ance +cho ked +chen ey +pl o +ge stures +val edic +ryan air +rem ington +v cs +mc kee +ec z +be gs +nail art +mayor of +happy fathersday +war t +pet itions +n ingly +clean energy +bro x +sl alom +exist ent +ab ay +ug liest +tom p +stom a +sel by +goal scorer +ben ji +overwhel mingly +lan s +semiconduc tor +south korea +re scheduled +sk yl +en listed +dow ski +si del +rosen berg +nas ser +white head +pri us +har are +en n +ry der +í Ĥ +mon g +clas ico +transpor ter +po tty +is me +** *** +vic e +sk it +ode ssa +l mp +her n +raci ally +pin oy +paragu ay +obitu ary +go es +bu cha +side walks +angu lar +un constitutional +transiti oning +i bu +gu ys +un packing +oooo oo +black girl +ber gs + ¯ +wordof theday +trump train +thunder bolt +m si +fasci sts +ठ¬ +t sk +collap ses +raje sh +loveis love +migr ating +set back +ðŁĺĬ âĿ¤ï¸ı +t els +safety first +nar rated +jae joong +un answered +lique ur +en nes +dal go +bill ings +salt water +mer maids +lon gs +clap ham +we arec +pic collage +n ach +h ace +pois oned +lo th +ag na +adel rey +guar dia +poli shing +peace keeping +d all +p isa +la pland +process ors +de andre +so bs +p once +dra ins +c be +ðŁİ¥ : +spla sh +meat ball +fon tana +worcester shirehour +ne v +bri sk +b int +ac r +po x +cay enne +skril lex +j fc +hahahaha hahaha +gla s +en gul +tempor al +oni zed +con cre +com pose +vibr ations +plant ers +fer t +criticalrole fanart +t bli +sch allenge +huck abee +munici pal +iam bic +radi os +ne vis +dura bility +mc cla +horse back +inst itutes +ful fill +atta ch +ate ur +ak an +resi sting +illumin ation +hand le +hair care +om ent +macle od +ka iser +g no +bear down +ly f +gl omer +distor tion +z m +san k +roo sters +is now +as ports +ag en +wo ken +st george +ro mper +my le +econom ists +ru to +t will +health and +d ito +ws l +tair p +pra kash +mic heal +h ts +w rights +kat su +fioren tina +defen seman +d itch +var sity +texan scheer +ba ham +sc anned +we il +seduc tive +ðŁijį ðŁı½ +fu e +er win +dav ison +ter ran +moo ds +wool f +re source +@ . +cu sh +ðŁį ° +regre ssion +cur led +la zer +jo anne +ab bott +mo z +down ers +mm mmmm +valent ina +k hair +dream t +cro ok +che k +ste aming +nephe ws +cl eric +as ober +indefin itely +w ye +us news +joy ce +flu shing +wynonna earp +ron do +kis s +hot dog +bar ns +sax ophon +far ley +gas p +decre asing +al way +pe x +l sd +shi ft +p outine +ra zz +rescu ing +ni ko +ho ch +cc l +u aap +n ts +m car +il wx +conqu ering +ket tering +stur dy +delay ing +sto k +vani shed +cath ar +bin gham +in v +ic hiro +he mo +budge ting +[... ] +be ss +sebasti an +slow ed +ðĿ ij +musli m +stun s +acton climate +ve a +se ton +rose tta +oun t +hard in +flu id +ca w +ðŁ¥ Ĥ +yach t +un l +sp hy +provoc ative +or ic +is back +__ _ +nicol as +gy an +loo se +fl in +reb ate +: :: +! "@ +com icon +she ff +down stream +chic hester +beach life +mom life +diabe te +ar ra +van e +ok u +ye o +man go +try out +app ell +he irs +arjun a +dd u +na veen +movi c +soci alists +s back +criteri on +soyu z +k her +da z +yol anda +wine oclock +re ina +one w +leon ard +en dez +u bs +support local +facilit ated +carameli zed +b pa +vuel ta +my tho +m ami +spe are +nbap layoffs +fe vre +nick jonas +im print +c so +craig slist +la salle +gi deon +ha doop +dis regard +w ud +tu c +ma gee +acou stics +ta a +qui e +pol a +cr t +dw yer +dis sec +capit ol +men tion +kn oll +he igh +fin ders +plac ements +l se +indi ra +gur i +madhuri dixit +kingdom s +iambic pent +geor gina +je ky +conflic ting +bay an +aga tha +uph old +dr on +vic ar +ex pat +periph eral +pe ssi +fa f +ance stor +? .. +wid get +pun c +comm enced +beav s +air waves +ad dis +po a +de sses +co den +vu e +ru pee +kar in +spo ck +m sy +ภ° +pr ick +fill more +ti fication +thing sto +sar de +em ile +pere ira +n ad +bright ening +arre sting +wo king +usc g +sp ill +raspberry pi +hu go +ite c +is ma +cuff links +optimi zed +oc c +mi wx +en ka +el ited +afford able +sa kh +coron ado +ho h +at ul +ai oli +jim cantore +accoun ted +vin ay +her mit +groo ves +ran ch +r illa +we tter +ou tof +veter in +ni kov +ki an +fair banks +ram apho +n iti +k ko +ru sty +ne stle +tv xq +shahe er +âĿ¤âĿ¤ âĿ¤âĿ¤ +penn ant +gem stones +dem debate +ðŁIJ Ĭ +auton ews +support indiefilm +mach o +ve x +new sat +ne ti +conce ssions +can died +yof the +mac au +den ds +cricke ters +san iti +mari ano +gh at +ar toftheday +¡ ľ +e gos +gen oa +chat bots +bri er +al labout +mon ty +spi ed +r tr +comfor t +sni ppets +real time +gra in +exam ined +en lightening +tt u +god bless +release the +sing ular +ki ans +ha ka +sor ren +defe ct +mar g +equ ities +d orian +su ka +per l +aishwar ya +pul lover +preci sion +fair way +ne ve +rive ting +vill anova +en com +ak o +passion ately +europale ague +siem pre +x vi +enligh tened +c fr +âĺħâĺħ âĺħâĺħ +wast eland +is f +new comers +emergen cy +amphi theatre +- . +text books +figur ative +tre mb +pe sc +ab hin +ab bot +ac acia +har ds +por sche +kau ai +el isa +car rick +abo u +elli er +be ch +neu tron +galap agos +ru ben +in nis +how to +nun s +sab ine +i ac +clin ched +no tori +fi ves +cairn gor +per i +gr c +ðŁĴ¯ ðŁĴ¯ +mal m +twelf th +di ff +rout ines +marty n +lin den +synthesi zer +nu mber +game cube +fal kirk +byz antine +queu ing +gr ill +scal able +char red +rou ting +her bali +gri zz +ðŁĺŃðŁĺŃ ðŁĺŃ +tol l +termin als +l pc +ab d +war mups +remo vable +¯ \ +vi go +pap aya +ne ve +lov ingly +jo kers +ib les +sse tt +poten ti +pel e +gi gi +sadi q +leg acy +son o +ru pees +retar ded +ele e +par r +fi ance +ey re +say ers +pend ants +mak nae +al bans +adap ting +p ff +pu berty +ji u +ing rad +hypocr ite +diplom ats +phys ical +rob by +bon sai +ãģ · +f att +catal unya +âľ ĸï¸ı +ro ma +more land +so e +conver sions +stl blues +shol m +gra ssy +pra do +on u +assaul ting +> _ +sett es +dis graceful +aph ra +âļ½ï¸ı âļ½ï¸ı +ठª +kil n +goal tender +s ru +philanthro pist +b als +th n +stu den +sando val +dogre scue +eli ons +asse ssed +lar go +hec tares +sh rm +sa if +cle avage +no ches +n ene +fat alities +cur ing +clean ser +al es +p vp +south bank +pizz eria +marsh als +kni fe +an dover +tbli ghtning +sr sly +ou te +digi mon +timesof india +prome the +le bo +f su +wit z +rever e +man as +mam ba +ch ica +gu an +exhibit or +csr racing +d ere +xx xxx +gu sta +story time +ston ey +organ ics +and u +se am +min ogue +anushka sharma +ab a +ðŁİĻ ï¸ı +ugand an +chro matic +as sn +document aries +sh t +ru paul +loy d +k ats +e us +ite ch +me dusa +pan ty +kel logg +et to +talla de +sha a +do st +p ms +mari ana +je ster +croo ks +ðŁĶ ¬ +min danao +ind hoven +ðŁ¤ ª +le xi +tv n +jan is +co te +ãģ Ĩ +ser rano +iw m +ðŁIJ ¬ +k ke +distribu tors +cap u +counterfe it +camp site +ag gie +ðŁĺ ¼ +chhat tisgarh +~ @ +state u +san di +prevent able +cl s +can ne +mm c +i ver +sa haran +pal is +night out +do s +ap ia +absc bn +manag erial +aro se +mo wx +aro sa +ðŁĮ ³ +under dog +remo ver +astronom ers +lent ils +su scep +smoo ther +pend leton +fau cet +e mory +dal mati +af cb +tic us +exem pt +en rol +d heim +ðŁIJ º +restric tion +star fish +sto w +snor kel +thunder birds +she ad +homo sexual +dy n +as li +andre tti +dou che +dom o +tar mac +slu mber +pr onto +first dayof +mini ature +mari achi +argu s +recomm ending +mobi les +in ce +illustri ous +or c +adver ts +gr its +wea sel +pag oda +over pass +gre ys +maxi mus +arma gh +wood land +sun ni +ðŁĴ ī +ë Ŀ +ti one +soci o +ho s +ðŁ¤Ĺ ðŁ¤Ĺ +wind sor +subsequ ent +munch ies +id h +exclu ding +e mi +cu th +z ai +week days +law suits +barn ard +Ø ª +pe tting +net es +mul ligan +pharmac ists +ra quel +e ton +cran ston +gil ded +cle ary +ce ph +ra a +pam per +lombar di +as in +sher ry +pro d +for te +ari anism +buffalob ills +æľ ¬ +ðŁĶ¥ # +uu u +just ices +car ina +nat in +mas low +dro oling +cog nac +cam ber +el ong +r dr +in en +convic tions +am use +tro ck +harm less +visit ation +gen omic +bl and +beno it +chim p +tuscal oosa +gre asy +x po +gil t +se q +per mitted +christma seve +book s +mu e +old school +human right +be ati +ðŁĶ Ŀ +sh at +sculp ting +h wan +fern andes +sci utto +fu entes +endeav ors +maid stone +un paralleled +shou ted +queen of +mer c +band ic +ve da +sel angor +pi le +ja han +intimid ating +disapp ears +cl ich +za ha +w urst +hi v +fod ils +cor dless +aaaa aa +hy dra +bel inda +e els +bu f +su staining +rugby league +no c +brig itte +( ðŁĵ¸: +tromb one +soo the +smo g +ad p +stab le +ing ley +diagno se +ms g +we ss +tic keting +one e +nsw pol +e up +auto psy +adity anath +sun down +river front +si ya +p is +hier archy +dur ango +di jk +ren shaw +he aps +epide mi +david bowie +interne tof +dd i +nation ality +mb ar +air y +win der +w alia +elli ott +c x +bav arian +pl att +an tw +wi wx +sof ter +ne ha +h eller +th and +dani ela +bo ast +degra dation +ðŁĴ¦ ðŁĴ¦ +transform ing +man e +av ut +ðŁĺĪ ðŁĺĪ +vo ter +the e +t ate +pu ff +in door +sop roud +boy ce +boris johnson +wait in +immun ology +ðŁıĨðŁıĨ ðŁıĨ +âĿ Į +street food +liz asober +cavali er +c elia +need le +motor ing +g ato +, ) +ra de +harve st +t ms +jar pad +on ey +air men +v re +impair ment +abhi shek +snoo p +l ant +fam ously +bl ou +s ze +g ander +un touch +tu f +dee jay +col lateral +b ind +ðŁļ © +pin ning +ic n +' ; +the economist +ul tram +worldwater day +ti poff +the i +feed ers +campa ign +sc umb +day weekend +yo m +pe dic +h ough +ps v +pl in +on de +boston marathon +az zy +* _* +con ley +thi ago +hoo o +gal erie +luci d +je tt +gl itz +final fantasy +achiev ers +y ung +peregr ine +op hi +dam es +biom ar +âĺĢï¸ı âĺĢï¸ı +sk c +l ics +fl ank +ar rahman +ho of +uphol stery +t ats +wo z + ¿ +snor ing +ra er +l ju +ap d +pl ating +kan u +im ation +fragr ances +m ra +mor ay +mo tt +im muni +hearti es +bho pal +tim ers +g ata +color way +car nation +win get +si ghs +s ville +optimi st +chate au +olympi ans +ci o +singer songwriter +ny o +fi bers +bur ch +ag ro +mil ne +ig bo +cr amer +ation als +dan ube +pad ma +nor mani +en forced +bre ck +boeh ner +ar den +sur rendered +pros thetic +om a +ha iled +calcul ations +w fa +bi b +fcb live +fon da +west coast +que sts +friend ly +to wie +fit ch +bal ot +star dom +scrat ching +ho sa +thi ka +o ven +stro ke +out post +pharmaceu ticals +hi kari +mu y +af d +fallon tonight +squ at +or u +dra ined +chocol at +ë¯ ¼ +wor ths +ri b +mu j +that s +residen te +it el +boo st +mi gos +mul led +la a +etsy shop +don keys +me k +p tc +flin ders +e hs +ro hit +mu ir +g ad +compos itions +åĨ Ļ +combu stion +i kh +yemen i +wav ed +gar ci +ak os +oo ds +fu sion +se que +s lan +pl ur +kic chasu +shenan do +s ams +worl den +horo witz +with me +mic robes +k ki +ðŁĴĶ ðŁĴĶ +w su +patch work +fre er +y aki +the art +symboli sm +mil er +bt n +ma bu +side kick +motiv ates +sag itt +natur als +serv iced +ps ori +pa ola +qu ig +i badan +gi ggs +ë ³ +sciento logy +si oux +salam at +d res +cad bury +d hawan +ci ón +_ ' +swa pping +maris ka +james bond +explo sives +ay les +af er +s agu +cen sor +tom a +jeff erson +ring ed +par tist +ir responsible +aguil ar +vac ay +equ itable +altrin cham +ac ur +man ish +ger min +schoo led +pu tter +ed ad +nav al +toast y +sol areclipse +dish u +coy ne +ac co +mu ck +mar an +el os +len der +cro ix +worth less +ha ber +gun men +ðŁį ĵ +zen ith +t enders +hur st +hol tz +itali ans +car low +u cd +characteri stic +bun g +av l +u th +sa sia +rs l +red man +neighbor ing +green peace +sti ps +follow party +y gk +en os +omni bus +na issance +chri ssy +secu re +call back +ji hoon +memor y +block er +l anta +daf fodils +bil t +ffer ty +fau st +ie c +nipp les +so g +m nd +jagu ar +bol dly +ab poli +pro position +gun sense +evan sville +cu tters +we go +dou n +do x +stal lions +ka j +shi ppers +j awa +vol o +le ven +pap rika +kov ich +jor di +induc tees +app alling +dial ysis +allevi ate +âĢĶ âĢĶ +pie ter +mid wi +q tr +juli ette +inter mission +haw ks +act ment +one ill +k lin +vam ps +fam ous +cou ld +autom obi +da an +west end +elli p +nh c +mel anch +web series +ton gue +snat ched +smy th +tan gible +sl i +e asing +bar stool +over lay +afford ability +ting ed +ter as +ay ush +wanna one +rh ine +dan a +sh ana +kend al +fer tile +w ir +repl eni +lar vae +is ro +con vos +ab brevi +u cc +hun gry +bur rows +ag er +nav i +mat in +du per +cer n +ma don +ķ ï¸ı +é ģ +tu ps +hy att +sh ep +friday night +wis er +hei di +hat ton +p gh +foun tain +wrist bands +ahmadi yya +aeri al +subscri bed +so los +m ace +sla yed +for fe +dul ce +christ mass +arun jaitley +viol ate +ob stru +ni eces +w vu +idy l +fa ze +pre serves +infr inge +premi ers +inter vals +agen cy +( © +stand alone +di mes +bo er +param eters +ge tit +ðŁĺĺðŁĺĺ ðŁĺĺðŁĺĺ +tu lane +for given +scol l +mb ps +smash bros +rob bi +prima vera +ali st +ghost ly +ay at +ye ats +impre ssionist +ear phones +caul field +wai kiki +sal ute +sc ou +mu ay +louis vuitton +bak hta +ado g +inven tions +hur d +forec lo +stream line +thalai var +ch snews +will ard +t sn +euro parl +cru sher +my sore +gro wer +ra ping +pat ti +g den +sm w +muf ti +kid man +ab r +soun ders +skep tical +ðŁĶ İ +sun dar +i me +fer g +feather weight +ar lington +pas qu +ag azine +wearab le +nati c +mccl ure +inter mitt +hor de +six ties +car te +bha v +ze al +experi ential +ador ned +som mer +eno te +hypo thesis +stin ky +pro to +dead lines +vo gel +mus ings +monc ton +gu ter +f le +aci on +voice of +ta sha +inhabit ants +type face +s ba +bts x +ðŁĶ Ĵ +wor x +u hc +jo ko +cell ars +gor o +continu um +... & +weather cee +ha p +sr k +ris ers +lonely planet +un named +co eur +ðŁį Į +the world +ili ke +fa sten +ami go +ri ba +ramapho sa +staf fers +had ley +? ?" +fi ore +sal ut +hu ff +bez os +Ñ ĭ +ra der +kam ala +in line +fill ers +um atic +all in +shat ter +re in +o ku +ch ases +fla gged +baby metal +water stones +ts b +cut out +op hel +aam a +rockab illy +sto lic +jet blue +ich ick +down ton +uzbe kistan +pat na +la q +gr ange +) _/ +subsi di +sc p +newsc ast +it sa +twee tyour +e mor +archae ologists +uni fication +por ta +q x +protec tors +pro hib +charis ma +car tag +ren fre +scul pt +guwa hati +de ma +boo p +unf pa +dex ter +lay la +alleg es +sou ps +never again +l ys +cal c +bar oness +visu alize +ger ber +absor bed +i ers +a han +fon tein +detec tors +verst appen +sv c +formul ated +ac dc +li x +in competent +bh k +lour des +water house +snow ed +appreci ative +sig ma +lizasober ano +pen ned +pay check +tall inn +fanc afe +par isi +av alley +vi g +ru fc +hard ship +so cute +po ise +ì ¹ +roth schild +k ly +???? ???? +l hp +il ay +f hs +am ad +ide als +brad bury +bal boa +nic ot +kid nap +wol ve +tas manian +op t +matthi as +ãĥ³ ãĤ +super markets +mylittle pony +me lee +li ster +gr oun +fe dora +kind ness +en en +bra hms +¯\ _( +ros well +mar lene +ic u +re formation +or ail +he brides +dispar ities +terrac otta +swal lows +re id +influ encing +flu or +den e +tum our +blon des +thunder bird +sh eva +moga dishu +ka b +cre eps +i ving +ene ed +anno y +âĶ Ģ +intri gue +enqu iry +ar aj +tur al +kuber netes +end lessly +divi dends +tor a +ti sh +commemor ates +un ra +tri b +pon ty +ne m +diss ent +brew ingco +ðŁĺ ½ +nor mali +bi of +( ... +chil len +ì£ ¼ +mell on +av is +mccor mack +ing ra +enrich ed +custome rexperience +testo sterone +snu g +sett i +ger onimo +inqui rer +bre aches +very thing +bloom ing +mu ra +dispo s +bi de +de va +shade sof +in trin +sh ev +s ven +nayanth ara +gan esha +c ws +ber ta +label led +use um +nick named +ma han +car uso +ap ur +ðŁij Ĩ +w q +orphan age +discar ded +mag nu +lu e +je on +bridge port +pac ing +mercur y +( ðŁĵ¸ +marx ist +amphi bious +transplant ation +stit ching +then burg +gradu al +ãĤ Į +ro ft +ma ils +ine c +guy ana +dopp elg +ver o +re write +head less +harb augh +gate way +car sforsale +sw i +st is +mach t +un de +sura baya +stap leton +nur turing +mil ner +ya o +lma oooo +ko sh +arsen al +k ame +er ry +ar royo +dis misses +ru bbed +rc b +lew d +dil u +and or +vi de +ur in +inter sec +ha ar +al b +year swith +app leton +é al +ul livan +suc cu +monter rey +d mx +artem is +ron nie +farm land +s football +gro tto +anth i +ãĢ ģ +à® Ł +vid ya +jimmy fallon +ൠį +t zer +gravit ational +w thr +u hhh +e hr +tin ker +ti juana +scran ton +ram charan +bar clay +re van +m si +ka p +wr s +we thenorth +tor al +sat u +gro m +fac ep +erick son +z yn +se dge +oo dle +spur sofficial +ds p +sic ilian +soli hull +recei vers +ladak h +hend rick +ther i +presi ding +mc guinness +litt ers +gun nar +gh oul +wi b +n tv +kar o +fro ck +b lau +ampli fy +all is +ul lah +memo irs +kh loe +intercep tions +pet day +lo oney +con fin +ch ay +piyush goyal +frequ encies +ut z +event ual +warm ly +obli vion +an ka +ta it +âĿ¤ï¸ı . +director ial +ru lers +prince s +mu ck +stur ridge +deu ce +abri dged +bagu ette +un cles +pen du +min ding +forre ster +av ila +wall er +wall street +ment or +hin o +high way +crom well +fanart friday +mb i +co yle +a hi +tro ve +spie gel +pay tm +mcin tosh +jan sen +nit i +nash ville +len o +leicester shire +le gos +dic t +ðŁĵ ½ +sp ad +beverly hills +sy rah +separ ates +z ain +un fit +dra gs +tan ia +over flowing +hri thik +haw thorn +z ani +mac far +fi de +to tem +pe ds +fundament ally +cal ico +sin ner +j ä +hil de +ds d +ten ay +ta hit +mil f +lie b +inform ing +up lift +ra el +mortg ages +lec t +ii ii +guillau me +compos ites +old smobile +l end +gar th +com mish +bapti zed +scorpi ons +ru cker +bringback our +alli ance +thalap athy +tal i +sp ans +eri dge +wither spoon +lin da +sky lar +kor n +hom s +Ä į +sil enced +caf fe +ar ty +dist inguish +to wed +pun g +jessic a +ear nest +beau fort +t ama +study abroad +si khs +new bie +nav ratri +mar ble +loun ging +lit ter +dal it +so sa +iz es +gra de +com promising +tr iton +de tta +v j +chau ffe +spec tral +powe red +montess ori +artic ulate +hal ton +al co +ye y +mn twins +acoun ty +ðŁijı ðŁı¾ +âī Ī +mad men +kal a +gru m +chi k +ati s +su me +akh tar +job search +high lighter +bo ath +âĦ ¹ +tar zan +lam bo +âĽĦ ï¸ı +ox fam +dump ster +pretz els +mac os +incl ined +fac tual +adverti sers +shu i +pu ree +ml pfi +anti dote +cap o +pa str +merc ado +but ton +ar min +ag g +lol la +horri bly +er rands +christop he +time snow +monday motiv +li ss +scand als +mc i +dispropor tion +âĺ İ +sur pass +samar itan +so tho +pu rest +fl att +trivi atuesday +delec table +leop old +hermi one +chou dhary +en rich +¡ ¡ +subsi diary +ine qualities +bachel or +auto immune +la kota +i hop +ad jec +the simpsons +sh es +se k +gret chen +up stream +hin akhan +coper nic +x tina +lu g +tough ness +e ad +cli pped +bi us +sl v +fah ren +dee pak +ca u +x an +im mature +dig ni +bo bs +shred ding +but tery +accommod ations +de ven +chun ks +super league +sky bet +kil dare +je et +ë į +ce k +wrec ks +pro pane +oh l +tb d +quo i +trum pp +mi mo +reluct ant +ver ne +o ic +ma gh +ar nau +se ver +li dge +stair way +kicchasu deep +ðŁĶ º +mach ining +aama admi +ot i +c da +al it +pan y +inst alls +ac ct +e shop +di em +hard well +fulfill ment +sc afe +qu ack +extrac ts +swee tened +fi ghton +f di +d inger +wal tham +us ur +refe rees +seok jin +gran n +af rin +th n +sch af +par cels +bet is +amar ine +nom an +kh tar +mor itz +cou pling +bar ons +ðŁIJ ¸ +à ¸ +sl p +sad ler +x ander +tri ad +mc millan +kh z +divi ding +ìĹijìĨ Į +dar yl +zed d +le ys +pla ques +flu ori +tipper ary +on nell +di dier +lang ford +im c +the sun +bir dies +ar cha +ye ssss +t di +dar ia +cand ace +al tam +pal aces +ch it +sant am +event ful +book of +ad b +mon stax +cre ole +co el +âĸ ½ +we aren +sten nis +she ath +ati sm +gron ingen +mlpfi m +le pre +wrong ly +rsp ca +rendez vous +acknowle dging +pel vic +solic itor +sla ys +nue stra +lo d +is lander +fer oci +fashion show +ra ss +dge on +adole scents +sma shes +negli gence +grate ful +ved ere +sw oop +ing l +apol ice +vand alism +gan n +jo ao +di supdates +zimbab we +under age +radi ance +w of +bour geo +pla s +cr ani +gh ue +wrec kem +warran ts +re form +jim mie +at wood +ys l +neil himself +l bj +i man +tan to +nois se +ver bs +equip o +al together +mam ent +l ice +dou glass +tier ney +pri med +j hal +furn itu +braz ili +v ill +past els +n ison +u ff +paral ysis +jay e +im po +ðŁij ģ +strate gically +pakistan is +was sup +super bike +thank u +tru elove +sha ikh +israel is +vi p +to g +li en +la ker +grey hounds +cul ars +bian chi +balot elli +ar ran +loo s +str ates +he bron +ar vo +sunder land +the al +tomb stone +sand man +c pac +thanks giving +love him +lat ino +an in +aka if +ĭ ãĤ +tor quay +di est +alli anz +ðŁĺ ķ +golf club +cl lr +wal cott +sch nau +promp ted +nomin ating +len nox +val et +mon ro +may ward +e ph +ðŁĶ Ķ +inter oper +r da +re flex +arm chair +ê° ķ +stri pper +por ti +ph arm +ham za +ni reland +ne ue +h pv +port foli +sun burn +fris bee +be al +bapti ste +x h +ty m +pr ati +o vers +haz rat +deser t +der ry +us ky +em mett +ach arya +)_/ ¯ +shu d +may a +ham ill +ra im +nr c +fitt ings +cur vy +ðŁı ĩ +ster ling +ॠĢ +wal kin +short cuts +mil ly +ast ur +alpha be +pl i +pe z +miss you +rad ford +ml g +ta eyang +notjust lakes +du mps +seren dip +le ur +ra ving +e ster +de priv +absc bn +ðŁijĩ ðŁı» +scar city +o cr +mean ings +cap t +da hl +fer mentation +bri oche +to win +out lander +massi mo +en cro +ðŁ¥ ³ +buil t +po tam +kir i +tm w +monit ored +k ites +peoples vote +gray son +íģ ¬ +afri ka +a dies +i vote +gy ne +g annon +di x +c mc +ou ral +fox andfriends +bel i +ig ne +gl an +katrin akaif +co politics +qual itative +p si +lu cci +disc oura +âĺ ® +kel li +gau tam +carac as +reale st +pu la +in us +hill top +make aw +atten borough +tw y +r arity +peck ham +ma hon +corn elius +clin icians +ton line +tb i +paradi se +ka si +inev it +fresh ness +colling wood +lun atic +defen se +cop d +in fra +wain wright +sains bury +alab am +te ma +lac o +chec ker +releg ated +tren t +stal ks +huff post +bhubanes war +ast ral +share your +prim rose +hi me +cat an +end ment +en dow +cle mens +mal oney +hil ary +game time +den ise +collabor ators +b wo +radic als +gue tta +ici on +au a +snap matic +sat chel +excav ation +base man +s ão +gn ation +fel d +surve y +shah zad +ma st +anirud hofficial +tru cker +ot ago +geo graph +ethe l +âļ¡ï¸ı âļ¡ï¸ı +s ver +mu tt +internetof things +ancho red +wh ouse +bang la +bal main +ç¹ ĭãģ +break fa +á Ģ +twi ster +te tris +ca v +stag s +g z +au b +stor med +hel ens +yar mouth +st asy +gustav o +co sc +vin son +up p +sc ricket +assump tions +app e +nu h +u er +pre mise +n aga +e amon +coron ary +na f +north side +el mer +ro tar +out lining +el f +re surg +kat elyn +in can +hyster ia +ce e +am bani +pro lly +Į ãĤĬãģ +ax es +san jose +rem brandt +mag pie +even ly +scor sese +qu aint +f g +b buk +indian football +weare all +spd wy +pis ces +ec g +âĺħâĺħâĺħâĺħ âĺħ +pre orders +: | +ni pple +sal azar +ju me +jail break +min n +bas sett +ze tta +jef free +ad jun +tic on +san diego +drink local +chol era +solic itors +o bo +com post +ni an +wr a +tre ach +ic ic +profession al +del ve +leg ate +histor ia +cro issant +con noisse +nam o +palli ative +chem trails +i ority +global warming +comic art +behavi oural +re sted +li as +cli mates +Ł ãģĦ +rut land +nou rish +menopau se +hot ties +demen ti +ve spa +mel ville +anal ogue +tz man +str ung +im perfect +gl are +cir cling +ros berg +rec o +oc ity +lo ire +em be +do ssier +ne el +nan do +me a +gal vani +fin esse +ag p +berke ley +asi m +âĺº âĺº +quil ted +ish ere +un matched +po tion +for z +at re +selfi es +juli ana +ðŁļ ¶ +âĸ º +mel ton +âłĢâłĢâłĢâłĢ âłĢâłĢâłĢâłĢ +spin rilla +pur cell +ed p +at leti +tony awards +ra ja +pro gno +mol ten +stu ff +p ally +nobel prize +âĻ» ï¸ı +spiritu al +spe ake +sa sha +bri um +tru ss +critici ze +assassinscre ed +yor uba +u lo +fire man +workin progress +ef cc +fla res +ro bot +hi kers +cl l +shado wing +pat sy +leh man +c ns +å ± +guad al +à± į +ra pe +r honda +paralle ls +son ja +langu age +land ings +z ola +cr amps +bur ning +apprais al +jol la +ham m +kas a +gul ly +f go +uly sses +ri be +ðŁĴ Ħ +ib u +eti enne +bri ar +fin ely +comb ating +y ql +go tham +we chat +to paz +primar ies +l se +iz z +hel e +dispon ible +cy stic +bel ichick +th rush +kansas city +ge om +soli di +red bubble +by stand +cambridge shire +par fait +ast le +ow o +ind ore +stom ping +sm elly +ðŁ¤ ĸ +locom o +adm itting +hol me +clock wise +min sk +mc co +for get +ev p +cam ra +ab ella +yo tes +universit yof +mé xico +silver ado +ric ket +crom bie +pu j +eradic ate +deli ght +y go +glam ping +vic a +du ggan +coun ters +cf d +sc our +react js +pu ram +paras ites +in ki +vill en +stel la +li mbo +ang as +k cr +ðŁĴļðŁĴļ ðŁĴļ +vap ori +mum ford +oli gar +à ¼ +al oo +boo ties +ad r +k elli +dru mmers +av ici +nature uk +ron al +in trac +un splash +le che +g oma +el ine +envir o +bi onic +bu eno +mi k +av in +star ling +em powers +cake day +boy cot +ðŁĴļ ðŁĴļ +ðŁĮ¸ ðŁĮ¸ +v ach +m ci +fractu res +ger i +sk ing +exclu ded +lu ce +ja ve +ig gy +evi den +aki stan +a wn +mor als +luci fer +ha ban +tumb ling +sunday motivation +mo sley +captain america +sch icago +the one +mo td +d ts +ðŁIJ ¼ +rep ell +ii i +locu st +geo spatial +mer sey +immer se +desc end +ber nade +j s +boat sales +win der +cran k +sing leton +candid acy +ben a +ðŁı» âĢį +high lander +ol t +k prs +healthy lifestyle +four teen +end the +ith aca +circul ated +r ans +pre valent +ha vas +splend or +roo ster +kalamaz oo +jewell ers +enne dy +rou sey +es y +cann ons +ornam ental +// // +ren don +win ne +mol ding +eid mubarak +coun tess +simon a +ha wa +fo es +du ster +sb u +por tray +mar ries +goo dday +cho co +achi ever +ðŁĺ¹ ðŁĺ¹ +pre neur +tr amp +tom i +n bat +garden chat +farra khan +ever glades +ab ru +sou sa +se ce +homes wee +terre strial +bar it +sri devi +ol u +mel inda +f rick +can dies +ðŁĺŃ ðŁĴķ +qu reshi +family fun +exor cist +cardin al +ny t +dies el +cu mulus +capric orn +si ology +lor na +dou gie +an die +super sport +c fl +п ÑĢи +say ang +pe ek +ภĬ +lo be +j em +ing lis +gg led +c sn +amne sty +chu ps +ba es +sau er +ðŁı IJ +mongo lian +en et +back street +dr illed +acce ssing +ce o +b se +ai ken +pur r +wor sen +whe res +war k +testi fying +bu ri +bla st +aw g +ðŁĵ ĭ +re defining +hear ing +u ci +c mp +bon i +tail oring +ta ji +noc chi +em t +stephen king +ne et +compla ins +campaig ner +luci ano +twili ght +ti esto +pas sports +flo yd +cathe dr +na ked +caregi ver +b coz +ade cides +ku ri +ly k +br aries +dren ched +disc lose +ðŁĴª ðŁı½ +le blanc +je tty +gar ty +chip mun +b su +rhyth mic +ic z +fri d +anne x +ame x +solo ist +lanc ers +arro whead +speci fication +simul ated +na is +inver te +bo wing +wor ship +f z +abo ss +sha q +ì¶ ķ +challeng ers +an arch +aamaadmi party +ãħĭãħĭ ãħĭ +suffol k +so corro +sn ell +cla dding +absor bing +shaw a +particip ates +ðŁį Ķ +book stores +bak u +seap ort +ko jima +gab y +pack ard +electr ician +let it +mo wing +fa wad +young jae +hot mail +men ing +u rie +intim acy +con ti +: ") +lifeis good +in ciner +i dri +craz iness +jour nos +fran chi +bott len +al da +ff es +k x +south we +air a +clay ton +sco ti +f j +bri ga +ðŁ¤ĺ ðŁı» +demonstr ators +y z +stor k +na q +casc ades +travel chat +plat a +pad ma +fran ci +at tain +bat girl +lom bard +hoo s +d dos +neon atal +discla imer +r ss +r ant +di sen +tex aste +so cal +frac tal +cam ry +stri fe +sn acking +mu h +sant ander +mor ons +gra f +par ades +hu ston +dru pal +mi ento +kir stel +hy de +vom it +forti fied +sphin x +da v +bir yani +win nings +s baseball +mer ged +lovel ondon +ling ering +dream big +car leton +liveli hood +djan go +astri d +gri ds +down e +bru ised +s ne +scarec row +hel ium +f nc +bi ggs +an ter +restor ative +em pires +ab del +life style +kiwan is +colloqui um +me en +pr ick +anti que +ze b +mi mic +edmon ds +ðŁijĬ ðŁijĬ +q ing +pp el +mc gill +interpre ting +âŀ ķ +rash ad +do ka +narr ator +electro magnetic +ash by +sau ra +iran deal +âģ īï¸ı +krish nan +in di +ff en +bre a +os man +multin ational +chi ppe +recruit ers +aus biz +p ounding +re gen +cur sor +refu sal +mac s +in ak +ax ial +wa ifu +up cycled +hindu stan +cas sini +carly le +scrat ches +re ef +man atee +eat ery +ðŁĵ ¢ +un condition +sen pai +on ther +comic book +pro sciutto +de mar +mi se +ma ge +fre ec +aye sha +al der +android games +ley ton +ho ck +door way +chicagof ire +aali yah +sw elling +bi x +. ðŁĺĤ +evan kirstel +torpe do +kon stant +genevie ve +ma ia +ha user +do torg +hide ous +fi k +sp raw +e ek +z appa +wan dered +' ' +ra jan +bam bi +( $) +wid ening +tool box +sa ir +illumin ating +pra ys +out patient +i w +day o +lo b +sw fl +sha des +gu ms +coo kin +ko di +gri ffin +traum ati +ste a +slaugh tered +god bless +air time +pseu do +b sa +hau led +ar if +à¸Ńภĩ +le l +wc po +mil iti +char ters +worl da +ru k +k gs +digital india +is able +idyl lic +esp ino +marie tta +e bo +team canada +ab our +wil ton +rock stars +fav ored +phys ic +wrink le +tb r +d print +ball arat +ad al +z ey +ðŁĺį ðŁĶ¥ +tom lin +mt r +pal sy +fener bah +tight en +phil ia +ir oning +ry u +b ant +enqu ire +ca ir +abur ger +tru n +green berg +chau han +ir ina +sh ani +trend setter +pre tt +zaf ar +alo ve +v ici +pan ic +no o +lu stre +disrup ted +bal lis +son sof +mon si +inst ac +ake st +ëĭ ¤ +kw ame +horror movies +distric t +sau cy +mb an +ar mies +with drawn +med ics +loft us +er oom +be kind +ar ns +all on +un ison +davi ds +cr at +nicot ine +so or +sm x +on co +cospla ying +zombi es +har ms +e ger +ro sy +moon shine +fe in +ce tt +du brov +reg ents +ben itez +ðŁijıðŁı¼ ðŁijıðŁı¼ +ste c +m alia +prioriti ze +ic eland +ft se +v amo +lam ont +homo sexuality +bre es +regu i +cb p +te j +sky sports +deter gent +sha sta +de rel +conserv ancy +colori zed +accol ades +vis o +show your +nan ow +bice ps +us ability +bi m +dailys ketch +pearl jam +stran gest +mega deth +broad casts +bar ren +ar ton +chri ss +confi gu +lu res +is the +e ul +railway ana +global health +gi anni +u aap +s lum +consci ously +ab re +n up +bud get +v ada +e sch +real ness +er ased +th unt +be z +armist ice +ðŁij ¹ +sh run +o led +driver less +ðŁ¤· ðŁı»âĢįâĻĢï¸ı +won dr +sk an +sal aam +mother land +h wang +gen o +gang nam +tw right +endor sing +en ic +ador ation +pau sed +patric ks +do cked +plat te +ff xv +ethnic ity +auto show +side show +after life +re located +orphan ed +food network +dare to +and ra +sla ps +v live +swim s +re imagined +mist le +re vise +real ity +bhar ti +ðŁĴĻ ðŁĴĽ +late st +prou dest +gra sses +lan yard +fresh est +carcin oma +anom aly +zieg ler +sum ner +ly rix +gor g +is d +av el +swild life +me squ +john cena +euro league +sab er +master ful +yar ra +cogn ition +jacob son +abo lic +sir loin +shuk la +moj ito +su pere +st weet +me z +e sa +rudol f +gur a +where you +tt m +win s +trust worthy +ny k +bra den +table top +good food +es on +be k +lingui stic +gra ys +ch ath +h cs +mon i +de ans +cu ssions +ch ell +slo ws +he mi +d app +shar pie +boo sters +a os +str ack +se dona +mu eller +hard wick +or nate +thor a +sal ud +o twol +ch um +mi ho +for age +thel ittle +tear ful +ones elf +min dy +sm g +gmb h +emer ald +ðŁĶ´ âļªï¸ı +tu tti +recep tions +re vising +i brox +tope ka +sal ami +expan se +i books +dob son +cli o +at s +ðŁļ Į +mo ha +is ance +shu tters +moo t +jan ine +marvel comics +jor dani +pos er +kenne th +hy ung +de ja +ase ball +speci ality +eu ston +classic car +had ith +ðŁIJ ī +chas ing +iz o +gros ven +ag lia +thisdayin history +t row +om ile +hu ar +by n +sal ine +div ine +demon ic +ty ran +han dover +revit alization +pa ella +cryp tic +se dg +m end +dun kirk +bre d +wal d +sport scar +a ard +whe aton +da ener +k lan +br t +bakhta war +spi res +schu bert +ro ti +poli sh +o se +ag ame +wonder con +prote stant +bo sa +ðŁĺ Ł +d ü +joy ride +ger trude +âĿ Ŀ +gil a +v h +tw a +tra v +swal lowed +star ve +la in +ent ren +rei ki +su kh +cra ic +az u +web page +kee fe +hypo the +hir sch +hel le +camp ground +w amy +tra vi +sha hi +san deep +ru i +han uman +dw p +reposit ory +no or +no ff +un real +p ell +black history +har vick +ma scar +pay ee +pa sha +gastron omy +d ÃŃ +ai g +rosen thal +open day +embelli shed +t tip +sun bathing +go pack +end ome +ï¸ı # +invali d +final four +st fu +squish y +ra sta +mo sch +jam esc +die trich +sel a +mel b +el vi +t dp +sun i +sli t +j ha +bi za +spi ked +l li +l illard +vam pi +syno psis +az har +kendrick lamar +ĮãĤĬãģ ŁãģĦ +heart less +country file +air play +arrog ance +pre e +virtu oso +ãħłãħł ãħłãħł +raj u +le bu +for ward +tu g +dro s +mondaymotiv aton +concep cion +thel o +pad i +looo ol +ÑĢ од +it ss +eth ical +end uro +__ : +expend iture +mon ste +mas king +terri ers +ib is +e mber +cu mple +punctu ation +pi per +ir vin +ade e +yy yyyy +flash backs +cel sius +don nie +bo gota +ben evol +the script +shil pa +pro se +fin dia +ze ke +ne ko +do ves +blues lyrix +fro sh +sowe to +mp lo +al ai +sab i +raq qa +wf tv +stro ller +ian somerhalder +ðŁĶ ª +an on +mo seley +! ?!? +sta king +mol y +car tri +c sg +ast or +transc end +ma er +de ux +cow girl +sas k +pun ter +ma ken +o ates +love tt +grow ler +sag in +v n +ssi ble +officeof rg +y mc +sab ar +faul ty +ap ha +ak on +ðŁij « +snow don +ae w +raise the +ðĿ ĵ +grue some +clement ine +sp ing +lat a +worlden viron +mi mic +can aria +bakhtawar bz +ao a +fal a +ãĤ Ń +avi va +you uuu +thi gh +la dders +gu mbo +tz ky +fu zz +plastic pollution +est ate +strength ened +k ant +dr in +cal vert +transform ational +frigh tened +mac lean +elited angerous +ear thy +t son +to da +j nu +.. , +mic hal +i ban +je ong +is real +sim coe +exclu sives +blue bells +ben e +te u +pil sner +pens ke +athe ists +m pu +cartag ena +ðŁĴĹ ðŁĴĹ +million aires +kk kk +it ar +subscri ptions +remo te +ma fi +hin ton +w cc +ho k +ds b +ab leton +sevent y +pun ks +e indhoven +sh one +mcfar lane +lim popo +empha si +à ¼ +sin fo +pe tre +man grove +ch ino +ber tie +play lists +push awards +p af +deb bie +c do +r ino +ðŁı¾ âĢįâĻĤï¸ı +fol ke +bon nar +th ine +sl an +hal ter +evi e +aw some +vul tures +spar ky +seiz ures +âľ Ķ +ram one +ine ffe +al n +pro ctor +ast ra +the voice +gro te +sci on +dead line +am aya +tain ted +patter ned +exce eding +cross fit +kay lee +drop box +ru shes +tack led +mo by +retro gamer +n cbd +benef itting +shay kh +guild hall +gen try +dream cast +dread ed +bun dled +th aw +revol ving +n pt +kylie jenner +imagin ative +ron i +over came +family time +ds burg +car naval +relation ship +recogni zable +cor oner +ho le +fan fic +emir ates +bur ritos +analy se +thin ner +ne es +galli poli +bl r +cat woman +-- >> +au lt +ada ily +nau ghty +ili o +solit aire +mtv br +jocel yn +arun ach +rep ent +south gate +hy acin +essenti al +fent on +and um +it or +go pal +sl inger +po sei +aw il +wi elding +ra ila +eli as +a sto +à ¤ +tend ency +str ata +ker t +< - +im acele +da es +sti mulus +han ley +fit nes +ec stasy +lim ous +ha iling +ðŁ¤ Ń +chis wick +tar ies +sla v +pul i +moderni zation +black mail +b ingham +h fx ++ + +ðŁĩ®ðŁĩ ³ +ni v +we a +profess or +k off +bol ster +su ave +sequ ences +pepper oni +not te +dre n +ãģ¨ ç¹ĭãģ +hs v +o ga +ap tly +z ad +excel si +rin ka +mol dova +min n +ma bel +conferen cing +bas ing +of er +ob si +hamill himself +care less +brief ed +inhe rent +par ish +dub nation +town sville +sar awak +gee ky +doncaster isgreat +was abi +gu p +phen o +dra inthe +carrie underwood +ble eds +bbc world +ane w +alta f +dul wich +ani ston +w ti +sumat ra +gra fton +bl n +me ster +bode ga +re go +es q +an jo +sump tuous +mai sie +ï¿ ½ +wil t +jak ob +el vis +se pul +mu ster +air pollution +president e +happy monday +exten sively +fl ondon +t ls +play ing +pe ed +din ho +var dy +pi ka +n iro +au cus +ðŁį ¦ +nu ll +el ondon +juvent us +imag ines +dis ab +lit o +d ura +work places +promo te +mc caf +wood work +waw x +à® ª +tt ino +shar i +sem per +better together +ðŁijĬ ðŁı» +ze bra +pon dering +en chil +ho m +cosm ic +tan z +mo cked +ec cc +ath ed +abo lish +prop eller +paris agreement +assemb lies +indu stry +fraudul ent +pe sa +chang min +ax x +ðŁĴ µ +irr ational +cu sa +ramad han +octa via +on elove +jac ki +bar ak +taxi der +seri ous +nathan fillion +mc en +ch k +po part +grav ity +copp ola +reading fc +illu sions +j ig +ww x +re sh +ex porting +buzz ard +âĻ ¤ +p cm +lan apar +ko s +arom as +antal ya +ww dc +ven a +phil a +ball in +ðŁij Ħ +quin ta +ma o +f ery +eigh ty +sentim ents +safe guarding +r wa +pu ffs +luc ille +de cath +sl u +nu gent +de ter +braz il +ze iss +super bowl +subsi dy +alter n +hi dalgo +enz ymes +ä ½ +tag ne +hair dresser +adri en +walk out +oppo ses +can tina +bed side +af an +ðŁĶ Ĺ +prophe tic +dan es +un successful +super charged +pk k +exem ption +hart le +secu lar +cli pping +br s +united way +c net +pat chy +ha gan +e en +âļ ľ +var a +sym pathi +never trump +affir mation +om f +ny cfc +ma ja +sur ro +keer th +up scale +sandal wood +mon archy +kno bs +å ĭ +po tholes +hunger games +ter races +na sir +coun sell +welcome to +wa q +se aman +m ita +stun ningly +on theroad +in ability +) !! +bon go +ant v +sp ut +worldenviron mentday +resu sc +y td +fi m +eun hyuk +sa chin +rose anne +cler mont +ape c +am ina +v ening +n antes +al most +sin us +ex as +ty l +ti en +ple ad +lanc s +bur naby +re k +jo om +observ ers +disco graphy +cl g +âĻ ¦ +sn ack +r ti +o ily +crystal li +bru te +web development +topp ings +la f +an is +ad der +reli ving +car lin +battle of +we g +syri an +pon t +n dc +lagh ate +yu ma +sp p +p iti +ro bbing +mart ing +rey kja +raj put +nc ds +kie wicz +âĢ¢ âĢ¢ +vam pire +substan tially +opio ids +nepal i +k line +ar oo +under stand +lit t +u it +thro mbo +sar ies +qu ot +b alling +t tr +s gh +philip p +br ant +ac l +m ello +whit taker +. ; +defi ant +b gc +repl ying +mir ren +metamor pho +sch wab +bul ge +utili zed +pick ering +par don +d sa +ภĪ +doo ley +cumul ative +Ð » +ur gency +e mir ++ /- +¦ Ī +ot as +âı ³ +station ed +grape vine +ar ac +karan johar +f ancy +sau l +coo gs +lgbt q +ا٠ħ +jav i +u mmer +pl l +den is +dai pur +pu ffin +lewi sham +fand om +co pe +ves matter +s ve +hel pless +deo dor +ostr ich +kaz an +friday the +con dor +v x +sophom ores +rob les +cu tt +cli mbers +ë¦ ¬ +sle g +sn f +mac ys +hydr ating +grou pe +po yn +mou lin +hg tv +lmfa ooo +sulph ur +asdfghj kl +annab elle +hump back +bra ved +viswas am +multi purpose +hu midi +escor ted +barb ican +f ad +cor sa +ðŁ¤ « +pi ppa +here to +can y +ser gi +or cas +o vie +ed ou +s any +glob alization +man cini +food truck +f is +defi brill +sch re +sma fia +love wins +la ut +k aka +hol lande +game on +resurg ence +out side +olympi ad +int an +abstr action +rapi d +pal om +cal le +jas min +attack ers +swag g +mit ra +ky lo +à® ² +her mitage +gor do +e ira +so sfam +roll out +exc ite +sy nod +mer rill +c als +as sa +liveli hoods +ju ve +the black +gopack go +ant lers +alban ian +wool ly +qu iche +puri fication +are th +smar thome +ne k +all blacks +mex icans +is m +ger ms +comple xion +mar ck +u shi +ðŁIJ IJ +char l +ca stic +till erson +giuli ani +biode gradable +mal bec +bo is +ju bil +im es +r ame +gene tic +esp nu +ch ley +so ho +go pher +g sc +buu ren +cu be +bridesma ids +webin ars +to e +mani pur +viol ently +notic ias +ex changing +chi ev +replac eable +muay thai +bu ss +sp il +instal ment +div ya +cait lin +o lim +fil tering +whirl wind +sta red +prior it +pr am +pompe ii +mono logue +k ite +bu ka +âĢ¦ .. +vac cine +bre ro +woz ni +sol ent +re ferr +my rt +gridi ron +galatasar ay +fro ze +clare mont +ðŁ¥ ĥ +victori as +ssel dorf +pa stures +net neutrality +ch or +ðŁij ģ +ಠ¿ +we ho +symp tom +jo sel +in ous +dragon con +power ball +p te +four thofjuly +ec la +ear buds +where abouts +salt life +depriv ation +ch ter +wi ggle +syste m +ps st +ch az +d any +ri mo +oax aca +lanapar rilla +barcel on +melanch oly +way back +ho tro +n si +l illy +kur o +ja han +intellec t +board game +ðŁı Ĭ +sneak peek +k prc +jail s +cand el +zan zi +mor timer +star ch +ra gs +p fa +long live +k art +gir ona +cro cker +christop h +precau tions +war ship +per m +paren t +van gogh +gif ford +allegh eny +ra yn +ut m +sten cil +rec alling +pen ney +z azzle +ìĥ Ŀ +hin ds +aren as +nu ev +law ler +gu in +do this +ðŁij ķ +ì¶ķ íķĺ +we g +ti b +ri din +complex es +turbul ent +pe sos +de marcus +vall arta +sam sun +kis ses +hein rich +deport es +wil ms +ur d +then ext +inki gayo +ho wi +fir sts +carri age +clean liness +mas war +is ch +ax el +si zzle +road house +fr ans +ent ourage +co bble +boo th +benedic t +tal on +fc u +year ofthe +ray on +raider nation +fo yle +ko val +pi anos +l pg +bur mese +man ure +geo caching +cosc ino +b np +fer ra +stro phy +mar ais +ce es +legen dof +kat niss +eno ch +av ed +you know +d prk +ðŁĺ¢ ðŁĺ¢ +sp un +pro st +sor rows +cent red +ke a +gal icia +? ðŁ¤Ķ +ÑĢод а +bou chard +ðŁĴĻ ðŁĴľ +yu i +seed lings +jon ah +reco vers +ny rd +board room +su ma +my japs +tun g +sha i +ir gc +eli o +wag ons +ka shi +polic emen +john nie +ale coscino +shop ify +dot ted +de tri +va w +to fficial +in your +chal mers +trac ed +no vi +by es +ari el +nipp on +la pel +gri ez +b gs +fool ing +d ita +vijay sethu +nm wx +as ot +kr anti +hel m +ve di +sic kest +mo chi +k abo +shru bs +he red +b sp +sq m +ham r +dul kar +anth a +nr f +avoid ance +at en +publi x +be arers +nas i +ha p +h ells +ðŁĸ ¥ +ภ· +thelast jedi +oh wx +ðŁį « +wa hoo +there se +rec aps +ss nhq +bird photography +v ay +pet ti +pau lo +bel vedere +( * +gr l +du vet +c pec +sa it +por sch +meas urable +avi ators +fre mantle +bre en +on om +me and +life saving +eu ref +en don +embar as +aira sia +el is +dun kin +star magic +s ill +porto bello +ki efer +ex e +mu ted +ãģ ¦ +we thepeople +logi a +liber al +theforce awakens +min ed +haun ts +freck les +care taker +s india +âķ IJ +dev lin +list on +direction er +oh n +fi garo +em manuel +du bois +cl ones +bru ise +ðŁİĪ ðŁİī +disin fe +der matology +as r +s watch +dis comfort +tam anna +pi day +mack en +k atic +delu sional +shaw nee +gu d +al bino +p ali +din gh +cucu mbers +coffe y +anticip ating +treas ured +web summit +shel tered +sav or +pedago gy +m gs +sh ma +s bu +den ali +cam pos +bubble gum +o ir +le aps +y ler +r one +sansk rit +min t +meat less +futuri st +du de +a vel +prote sted +squ ire +z aki +sz n +har court +cycl one +bour dain +gather ings +d ant +advent urer +parag on +alt man +dd ing +ban erjee +snorkel ing +mother well +mis sy +en der +glo ws +ki wis +chick pea +por o +e fron +app t +u y +speci fied +gab by +e strada +com bos +bour bon +vin i +var un +steph ani +key words +car vings +amit abh +wr ought +tw al +re els +clu bbing +ubi quit +cri t +ambed kar +æ Ļ +prun ing +vaccin ated +boe ing +s ks +lo ona +hypno sis +edel man +pho l +he w +colo sse +mckin sey +u on +to te +sacrific ing +ox i +n ang +e mu +пÑĢи ÑĢода +m th +kers wednesday +argu ed +timel apse +ris king +regul ating +ni gh +likeli hood +cu bic +au ction +rein for +pi stor +no ses +ye l +snu ggles +pe i +jean ette +ta ku +ri th +guy z +ภŀ +y te +ver ted +pay soff +jau regui +hoo ligans +procedu ral +mi b +har dy +el eng +chec kers +all ine +the met +prou dof +keerth yofficial +collabor ator +ni u +infl icted +adv ani +re twee +memor iam +f icial +ti ghter +sal em +re viewers +br ics +ben digo +am ell +tur kish +sush maswar +paul son +pal awan +mol lie +stitch er +s burgh +ir u +hay dn +en ers +aro a +u zzi +saraj evo +hel a +apol lo +nine ty +vac a +sp on +vent u +jel ena +hei fer +avo ids +sp ine +pri ze +mar ist +re creating +me de +woo den +find lay +ro fl +n di +compreh end +yu go +y ü +to work +u fos +son ar +pi ston +recor ding +tent ative +art forsale +pel lets +fre do +ÙĪ ر +mu ses +custom ization +pro found +is ner +ide ally +si am +plan kton +cm dr +man ger +fran ken +customiz able +ठ® +walk away +swi vel +vast ly +no ton +lex a +ex moor +z as +tan te +reduc tions +lol ly +hip sters +benef ited +ë ² +ww www +mascul ine +fi ji +dre y +ph ill +ane ous +nic ol +men dez +disapp ro +ch ner +through s +shen mue +east man +ðŁIJ İ +yu ck +under tale +re ys +go beavs +eng en +c na +mer r +bir k +ãģ¨ç¹ĭãģ ĮãĤĬãģŁãģĦ +âĥ£ @ +yn na +ste ed +offen der +at um +vani shing +presi denti +love them +g nocchi +fri ggin +per il +mad hya +ag ne +dee jay +mar nock +m tb +fold able +@ ___ +stand re +bron x +bow ski +fin ite +cro ckett +b sf +ge tit +seren awilliams +mir o +ignati us +sla y +rin se +fon due +sel dom +s more +gan i +dy ce +dmit ry +cru mb +late post +pri mark +oh ana +flor als +do a +remembrance day +d ds +azi one +toon ami +air port +æĿ ± +th ad +fi st +dine sh +dr who +ad words +admi rer +pro je +kyrgy z +à « +manife station +le wan +j ic +thi bau +le ased +van ity +nouri shed +never theless +aug mente +fu elled +che ad +wil shere +ru di +p z +my co +mor ro +herbali fe +hardro ck +de man +dre ality +sp ades +ce vic +bha i +bar on +ultimat efan +hou news +to bi +stru t +ke el +affili ation +the masters +sm al +hu e +este ban +con v +om nic +datab ases +co v +ter ti +st g +snoop dogg +metab ol +leth bridge +ðŁı» âĢįâĻĢï¸ı +year ling +residente vil +nws l +iy aki +griez mann +c ous +ðŁĵĿ : +tor ian +sam i +ðŁĶ¥ðŁĶ¥ ðŁĶ¥ðŁĶ¥ðŁĶ¥ +g are +alli ances +whit field +we ther +refin ing +coy i +kra ken +ðŁĺĺ âĿ¤ +singul arity +lil i +h ns +bol dand +waw rinka +misogy ny +lo vers +c q +b dg +ad ona +gar ter +women of +sc d +recogn ising +mun a +str ou +sign alling +lare do +hell boy +alek sand +un available +pedi atric +as in +mer ia +ri shi +futuri sm +w ye +polari zed +e we +pro pel +in forms +cre ase +~ " +arti ston +like for +heidel berg +er ra +life in +len ny +inter rupt +cohe rent +ca z +vick ers +le veled +f bs +cab ins +bu mmed +apost les +we h +ten don +souven irs +infu ri +pier ce +asse t +m las +go th +di ggin +ann as +yl or +th waite +sw el +pan era +mur derers +croo ked +bs go +ac u +a on +re an +one of +ko hl +bloo dh +pest icide +lost dog +fle xing +ëĤ ĺ +su pra +eter nally +ðŁļ Ļ +pa olo +ol an +mom o +is elle +captain marvel +s lou +mistak enly +akhi lesh +mer t +il inan +bu on +bal kan +mir ro +mill en +der ail +dam on +tit i +bi os +re don +pic ard +par te +ðŁ¤ Ł +Ø º +son ics +fir sth +dd c +veg ans +tur ban +ni gan +lot tie +lyn don +star buck +pink floyd +life styles +am ara +a she +r sc +val a +sm er +cw gc +cli ent +buen as +jag an +coo ps +ðŁijij ðŁijij +speci alizes +snag ged +g lar +ben net +wildlife wednesday +bow den +pi k +art in +empor ium +ar l +re ba +pas ser +disappo ints +additi ve +âľĬ ðŁı½ +bay er +missou la +ha skell +comm ences +ni x +ne man +explo ited +plastic surgery +cc d +aso cial +vo t +sie gel +fro ome +kap am +far a +e ha +pro bes +mw f +meet ing +p bb +ak ins +mistle toe +kingdom hearts +for kids +ec r +bal e +escor ts +adidas originals +k wa +k ts +hallo ffame +ðŁĺį . +wag s +pot ted +o wing +honey comb +he fty +uro logy +mer le +b pd +stri pping +re ich +k state +gu ay +yon ge +shak ti +g loom +bat t +son om +n ery +el ba +blan ks +hel le +triple ts +bom bay +ak arta +ab ia +transm itted +rol f +ja is +angular js +fi erc +m ss +trac e +ॠĩ +tom bs +old man +kom bucha +fo l +e health +cere als +are lli +in ari +ðŁĴ © +wo l +liber ties +fa wn +af firm +nun avut +hyster ical +k drama +art es +âĢ¢âĢ¢âĢ¢âĢ¢ âĢ¢âĢ¢âĢ¢âĢ¢ +valent in +man slaughter +gal es +eo in +energi zed +del s +with draws +st les +sar castic +ram esh +incredi bles +lock hart +ya wn +ultimatefan live +oooooooo oooooooo +mu en +guru dev +te er +pe eling +new snow +lingui stics +direc tv +ag end +uni lever +ru ger +han dedly +ero se +li mel +the c +royal ties +fini shers +nr g +m gt +fid get +com ps +bac on +aggre ssively +ab it +ch â +tar de +slu gger +q anda +gre ening +d ats +ensla ved +spec tor +o ye +fre ef +b hand +stop brexit +mis conceptions +cav a +ðŁĺįðŁĺįðŁĺįðŁĺį ðŁĺįðŁĺįðŁĺįðŁĺį +multit asking +hou sel +ferre ira +cen time +ank les +jo dh +hel ly +fro me +out tuesday +nar nia +bal aji +l bloggers +jyo ti +ðŁį ĩ +lan cia +cap ri +y ap +nat ash +down fall +." âĢĶ +à ® +ligam ent +coat ings +ai ded +hi ko +fall ing +encryp ted +yeg food +infringe ment +cu di +ce p +ðŁĺį ðŁĺĤ +tra d +super rugby +ed win +wh iche +vi meo +lay ne +in vigor +he he +dubrov nik +bie ber +u tr +sham an +op ers +ham ill +en ig +di f +ar um +scrap book +min h +diver gence +mckin non +life time +guter res +wil le +ple as +patt y +mic ron +k z +dom aine +ru sher +m ds +ches ney +screw driver +âģ© , +sle dge +hau er +chan a +stam ina +sprink ler +pl n +he ff +bol ton +om on +car rington +accor dion +jor ge +inter ception +in puts +gu ll +tran scription +vanu atu +it ical +eth os +tic h +spac ey +pee king +u mi +ha ger +psycho tic +illi an +illi a +bonnar oo +an ese +pu c +laghate parth +en hall +econom ical +dre dge +% - +u we +tu bular +scoun cil +pe asants +fl er +tumb ler +he p +ford ham +row ley +initi als +ev asion +er nation +plu gins +coch ran +c attle +acid ity +ðŁİĬ ðŁİī +re grann +jump man +ef ace +x ma +patri archy +esco bar +cristi an +tip ton +nu eva +hack ney +back seat +kill arney +aid an +sta dion +simul taneous +ida ho +a je +u th +figu re +clo s +bur k +volun tar +rec ite +macfar lane +cur few +bou do +w gn +sti x +sla p +scrat ched +philli p +jour ne +ex pelled +wa z +u ke +tati ana +ou e +ho pp +dimit ri +ðŁĵ £ +mato logist +electri fying +blu ffs +bill smafia +az cardinals +y aa +x mas +shar a +r ith +g ills +dre s +bar ton +authori zation +imperi alism +home of +to do +foot path +band width +visit spain +moh sin +erup ted +mi ki +insig nia +mike l +ss h +ger a +bank holiday +aw an +t weak +star craft +e al +construc tion +skelet ons +le ep +ine m +bar clay +ship wreck +monsi eur +yo h +ron t +form ative +ser o +le p +horse man +hoo sier +haz mat +cylin ders +cen ti +ðŁĴ¥ðŁĴ¥ ðŁĴ¥ +re em +na ire +mus ically +gras shopper +est onian +termin ology +ro main +blogger rt +tox in +stan ce +cultiv ated +an ast +ðŁIJ į +shi mano +go pher +ene i +recycla ble +gam ification +fight for +c q +avoc ados +ke ys +eli ke +gly cer +shak ur +mobili zation +gal ley +expla in +ex changed +pe th +obe dience +illa ge +en nis +ãĥ ŀ +wi v +walla bies +ma ar +ig ers +fin tech +fin alized +wo j +meaning less +in field +onna ise +e et +bron te +pass ages +ðŁij § +strick land +northern lights +lom ond +h tc +wr ay +shi fter +di alog +ðŁį į +>> >>>> +te atime +ste ch +sic huan +qu ill +fran ca +comple mentary +bar rington +marcu s +mal am +goo oo +for sa +elec tra +af s +âĹ Ĩ +tri fe +sn azzy +fo lia +and olan +after dark +wood son +stra de +litt lest +o gun +con wy +co wards +ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ ðŁĺĤðŁĺĤðŁĺĤ +íĬ ¸ +se ul +mur phy +dun ks +kapil shar +jo achim +wom ack +equal ity +aver ages +a ine +ðŁ¦ Ī +tac ular +dis ability +u ked +mid century +bar thol +teas ers +tab ern +nj caa +sp out +op i +ku bball +bl om +so ar +popu lism +meth yl +ðŁijĬ ðŁı¼ +o spre +alo ils +ðŁĵ ĸ +ðŁĮ ļ +x er +sp illing +publ ica +car dam +adi sh +sa cha +p kg +bu da +lyric ist +i bc +gru mp +ho ver +hal ep +anti body +anem one +âĻ¥âĻ¥ âĻ¥âĻ¥ +m cl +litho graph +cc u +s fest +path ic +calli ster +otta wa +gun sn +rut ger +hali but +en vision +differenti ate +ðŁļĢ ðŁļĢ +pir an +lat el +uc n +trou bad +ra ine +fierc ely +learn english +lea se +wex mondays +em it +dray ton +bur rell +scuba diving +hol ler +dr u +clo cked +w ral +ap ro +trans lucent +w bo +patri arch +mo ja +lan nister +fish ery +ne derland +mil dly +mi rai +ma ko +ja p +ðŁĺ©ðŁĺ© ðŁĺ© +pro statec +p anna +ar ama +under taking +tomp kins +ne op +soli ds +sav oury +e ames +cut lery +wood bridge +steam er +ri zzo +wild cat +rat na +lamin ated +kin eni +jal ap +ai des +acknowle dges +?! ?!?! +! ðŁİī +w afc +mag gio +ha ves +dar je +of i +gr il +v asi +bru x +mo hd +fake speare +arn old +r mb +for be +wal leye +ro di +therapeu tics +strate gi +ob ste +mu dder +download able +dd ings +d ca +asi angames +campe on +appropri ation +th century +ram atta +dra ped +bul lion +mu c +one x +se greg +ophel ia +bod ily +âĿ¤ ðŁĺį +wi zar +te ased +ade my +to id +sur a +lazar us +sn ickers +ma se +lo h +bow ed +bibli o +x change +har lan +gho shal +flavor ful +bha gat +alle z +whiche ver +ten stein +disc er +organ iser +mt g +dream liner +t se +hok kaido +mo k +indulg ent +hick man +blin ded +al yn +aaa ah +sp ool +lough borough +inter pret +et v +aristo tle +optimi zing +avici i +madu rai +ju li +naw az +mat chups +ab ide +paint ing +w elling +vel i +octag on +in scribed +po king +plac er +life cycle +kili g +g sp +eli ves +cle ments +na sheed +me sut +incarcer ated +dist illed +wal ang +delic acy +del gado +che z +ch ita +ad ero +tu x +pati l +o do +abh cosmetics +tv c +p bc +in accurate +hardwork paysoff +ball er +quot ation +merchandi sing +ga stri +defen ses +dro gba +bex hill +ban kno +win ona +si eg +p gs +hahah ha +agu chi +su bram +mirac le +de sch +li bre +ba cher +ent ine +bbcra di +lou dest +r ps +pi erc +fr yer +storm trooper +rafael nadal +pas co +exhau stion +epic onetsy +rc tid +kel lie +ga ines +d bz +sm riti +s bridge +lim ited +cla w +technic al +bio graphical +ado red +ภ° +exclu de +ac adia +key boards +fur man +so ca +sur u +ni ps +sw aps +server less +run e +pu ffy +north ampton +nish ings +hen der +cartri dges +gun shot +ðŁĵ ¹ +fil ament +respon dents +pey ton +mountaine er +mer ging +life span +intimid ation +p afc +nl wx +expan sive +pur r +f ck +ca e +at ti +tele thon +so hn +mend el +lo pes +dor i +un broken +te red +tast ings +in active +disin tegr +t assel +share the +pi ano +is lay +air space +z awa +ricci ardo +ming ton +fresh er +cur ry +re vs +pharo ah +h mv +exhilar ating +wh oo +lin kin +kri spy +competen cy +ste wards +ne bu +kat su +ad mins +baz ar +as ar +giving back +s summit +song z +lin us +raj kumar +farm ington +fanta sia +ðŁĺ´ ðŁĺ´ +so bri +lis se +barry more +pri sm +blo b +sen ew +mono xide +exp ire +eigh teen +di pper +xi ao +kil t +hin ch +bbc sport +bam boo +p ter +ex al +ðŁ¦ ĭ +ham lin +expe ditions +star gazing +food security +wy lie +ul f +st ingly +on storm +lo eb +bro ome +bn ha +pancre atic +eli ve +!!!!!!!! !!! +ther apper +ortho pedic +avengers endgame +antit rust +ìļ ° +go te +om d +off side +gy llen +win eries +white water +ad l +lu pita +exce eds +consi sted +chew bacca +ash leigh +nhl jets +is san +sh ld +hay at +cran berries +ðŁ¤ĺ ðŁı½ +rock the +spring training +fall out +dairy free +wa j +un decided +so wn +rc n +north wales +htt r +fu mble +d its +comp elled +popu list +min ted +blan chett +. '' +pro pulsion +m illa +au berg +her tz +h ta +u daipur +serendip ity +azte cs +als ace +ðŁIJ ij +lu n +sho es +char li +gar za +ðŁĴ Ł +pro biotics +fox tv +ol is +mi ff +loc alized +diffu ser +si gue +fun ko +rend ous +ðŁĴ ij +jeky ll diff --git a/comfy/sd1_tokenizer/special_tokens_map.json b/comfy/sd1_tokenizer/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..2c2130b544c0c5a72d5d00da071ba130a9800fb2 --- /dev/null +++ b/comfy/sd1_tokenizer/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "<|startoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "pad_token": "<|endoftext|>", + "unk_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + } +} diff --git a/comfy/sd1_tokenizer/tokenizer_config.json b/comfy/sd1_tokenizer/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..5ba7bf706515bc60487ad0e1816b4929b82542d6 --- /dev/null +++ b/comfy/sd1_tokenizer/tokenizer_config.json @@ -0,0 +1,34 @@ +{ + "add_prefix_space": false, + "bos_token": { + "__type": "AddedToken", + "content": "<|startoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "do_lower_case": true, + "eos_token": { + "__type": "AddedToken", + "content": "<|endoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "errors": "replace", + "model_max_length": 77, + "name_or_path": "openai/clip-vit-large-patch14", + "pad_token": "<|endoftext|>", + "special_tokens_map_file": "./special_tokens_map.json", + "tokenizer_class": "CLIPTokenizer", + "unk_token": { + "__type": "AddedToken", + "content": "<|endoftext|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false + } +} diff --git a/comfy/sd1_tokenizer/vocab.json b/comfy/sd1_tokenizer/vocab.json new file mode 100644 index 0000000000000000000000000000000000000000..469be27c5c010538f845f518c4f5e8574c78f7c8 --- /dev/null +++ b/comfy/sd1_tokenizer/vocab.json @@ -0,0 +1,49410 @@ +{ + "!": 0, + "!!": 1443, + "!!!": 11194, + "!!!!": 4003, + "!!!!!!!!": 11281, + "!!!!!!!!!!!!!!!!": 30146, + "!!!!!!!!!!!": 49339, + "!!!!!!!!!!": 35579, + "!!!!!!!!!": 28560, + "!!!!!!!!": 21622, + "!!!!!!!": 15203, + "!!!!!!": 9168, + "!!!!!": 5203, + "!!!!": 2360, + "!!!\"": 28048, + "!!!)": 42532, + "!!!": 995, + "!!\"": 20556, + "!!#": 34997, + "!!)": 28352, + "!!": 748, + "!!@": 40705, + "!\"": 2947, + "!\"@": 43819, + "!#": 9670, + "!'": 13222, + "!),": 37904, + "!).": 26225, + "!)": 4571, + "!*": 37737, + "!,": 29325, + "!-": 43499, + "!...": 22121, + "!..": 35475, + "!.": 22517, + "!:)": 31671, + "!:": 17545, + "!": 256, + "!?!": 29767, + "!?!?": 47081, + "!?": 6004, + "!@": 15117, + "!]": 34466, + "!âĢ¦": 35068, + "!âĿ¤ï¸ı": 32559, + "!ðŁİī": 49085, + "!ðŁĺĬ": 43434, + "!ðŁĺį": 36438, + "\"": 1, + "\"!": 10377, + "\"\"": 41530, + "\"\"\"": 25539, + "\"\"": 8575, + "\"#": 8345, + "\"'": 31065, + "\"(": 32741, + "\")": 13112, + "\",": 4332, + "\"-": 9375, + "\"....": 37785, + "\"...": 9049, + "\"..": 25403, + "\".": 2811, + "\"/": 39486, + "\":": 7811, + "\";": 37549, + "\"": 257, + "\"?": 11727, + "\"@": 1512, + "\"@_": 20236, + "\"[": 36930, + "\"âĢ¦": 33993, + "\"âĢĶ": 41151, + "#": 2, + "##": 15483, + "#...": 31491, + "#:": 30144, + "#": 258, + "#@": 35062, + "#âĢ¦": 12834, + "#âĢİ": 34262, + "$": 3, + "$$": 24233, + "$$$": 31859, + "$$": 14929, + "$)": 39460, + "$.": 34682, + "$": 259, + "%": 4, + "%!": 35070, + "%),": 37819, + "%)": 16063, + "%,": 14505, + "%-": 48784, + "%.": 12475, + "%;": 33379, + "%": 260, + "&": 5, + "&&": 27791, + "&": 261, + "'": 6, + "'!": 13781, + "'\"": 19479, + "'#": 15319, + "''": 46594, + "''": 8445, + "')": 19175, + "',": 5662, + "'-": 26152, + "'...": 20474, + "'.": 4645, + "':": 7182, + "';": 44517, + "'": 262, + "'?": 17242, + "'@": 26397, + "'d": 1896, + "'ll": 1342, + "'m": 880, + "'re": 982, + "'s": 568, + "'t": 713, + "'ve": 1200, + "'âĢ¦": 42120, + "(": 7, + "(!)": 30253, + "(\"": 18741, + "(#": 6229, + "($)": 46597, + "($": 15186, + "(&": 15042, + "('": 18235, + "((": 22944, + "(((": 33287, + "((": 13796, + "().": 41737, + "()": 8475, + "(*": 48004, + "(*": 39575, + "(+": 12903, + "(-": 20228, + "(...": 45159, + "(.": 43055, + "(:": 8528, + "(;": 23983, + "(": 263, + "(?)": 22885, + "(@": 2181, + "(£": 33987, + "(©": 44886, + "(ðŁĵ·:": 34610, + "(ðŁĵ·": 37999, + "(ðŁĵ¸:": 44422, + "(ðŁĵ¸": 45204, + ")": 8, + ")!!": 47518, + ")!": 7805, + ")\"": 13046, + ")#": 39981, + ")'": 23613, + ")(": 27956, + "))": 13720, + "))))": 42911, + "))))": 34181, + ")))": 18305, + "))": 5167, + "),": 2361, + ")-": 19034, + ")...": 15274, + ")..": 41822, + ").": 1818, + ")/": 26616, + "):": 4143, + ");": 19686, + ")": 264, + ")?": 18765, + ")@": 41928, + ")_/": 45028, + ")_/¯": 45781, + ")âĢ¦": 41844, + "*": 9, + "*)": 30956, + "**": 9825, + "****": 21326, + "********": 42974, + "*****": 43571, + "****": 25167, + "***": 7829, + "**": 4441, + "*,": 41895, + "*-*": 23568, + "*.": 31304, + "*": 265, + "*_*": 44535, + "+": 10, + "+)": 34810, + "++": 47298, + "+++": 35986, + "++": 19056, + "+,": 35885, + "+.": 25238, + "+/-": 47614, + "+": 266, + ",": 11, + ",\"": 3823, + ",#": 11215, + ",&": 26905, + ",'": 10599, + ",)": 44493, + ",,": 21340, + ",,,,": 33225, + ",,,": 14811, + ",,": 8844, + ",-": 29821, + ",...": 20365, + ",.": 41277, + ",": 267, + ",@": 13975, + ",âĢ¦": 14601, + "-": 12, + "-\"": 18646, + "-#": 10151, + "-$": 24946, + "-'": 28010, + "-(": 33345, + "-)": 3535, + "-*": 21527, + "--": 2154, + "----": 5753, + "--------": 11772, + "----------------": 23122, + "----": 30164, + "---->": 35999, + "---": 11079, + "--->": 14518, + "--": 2432, + "-->": 6422, + "-->>": 47252, + "-.-": 32765, + "-...": 43147, + "-.": 44040, + "-": 268, + "->": 5081, + "-@": 10087, + "-_-": 27227, + "-__": 42718, + "-âĢ¦": 30047, + ".": 13, + ".!!": 37805, + ".!": 14030, + ".\"": 18650, + ".\"-": 21234, + ".\"": 1081, + ".\"âĢĶ": 48703, + ".#": 5014, + ".'\"": 41558, + ".''": 49379, + ".'": 5938, + ".(": 22294, + ".)": 5376, + ".*": 26145, + ".,": 5276, + ".-": 12481, + "..": 608, + "..!!": 23707, + "..!": 17994, + "..\"": 15229, + "..#": 15735, + "..,": 47143, + "...": 3002, + "...!!!": 38351, + "...!!": 39915, + "...!": 16860, + "...\"": 5240, + "...#": 8195, + "...&": 44979, + "...'": 23167, + "...(": 37981, + "...)": 14040, + "...,": 42717, + "....": 2386, + "....\"": 26689, + "....#": 20346, + ".....": 34151, + ".....#": 38867, + "........": 8246, + "................": 24855, + "............": 42965, + "...........": 35008, + "..........": 25526, + ".........": 19881, + "........": 14720, + ".......": 9917, + "......": 5590, + ".....": 3104, + "....": 1390, + "....@": 29790, + "...:": 34570, + "...": 678, + "...?": 16388, + "...@": 12672, + "..": 852, + "..?": 23875, + "..@": 21124, + "./": 31975, + ".:": 15811, + ".;": 47596, + ".": 269, + ".<": 29442, + ".?": 29294, + ".@": 1230, + ".]": 33511, + ".~": 42651, + ".âĢ¦": 18047, + ".âĿ¤ï¸ı": 39085, + ".âłĢ": 30097, + ".ðŁĺĤ": 46580, + "/": 14, + "/#": 13217, + "/$": 36266, + "/-": 19811, + "/.": 39382, + "//": 15348, + "////": 46271, + "///": 22734, + "//": 3502, + "/": 270, + "/@": 8216, + "0": 15, + "0": 271, + "1": 16, + "1": 272, + "2": 17, + "2": 273, + "3": 18, + "3": 274, + "4": 19, + "4": 275, + "5": 20, + "5": 276, + "6": 21, + "6": 277, + "7": 22, + "7": 278, + "8": 23, + "8": 279, + "9": 24, + "9": 280, + ":": 25, + ":\"": 29498, + ":\")": 46432, + ":\"": 12089, + ":#": 26625, + ":$": 33769, + ":'": 8017, + ":'(": 21250, + ":')": 10701, + ":'": 23851, + ":((": 42496, + ":(": 5965, + ":)": 11070, + ":))))": 42339, + ":)))": 21840, + ":))": 10164, + ":).": 39010, + ":)": 1408, + ":*": 12617, + ":-": 13021, + ":-(": 25137, + ":-)": 4223, + ":-": 10323, + ":...": 42140, + "://": 12441, + ":/": 13604, + "::": 33077, + ":::": 43818, + "::": 9788, + ":": 281, + ":>": 39677, + ":@": 14339, + ":]": 43486, + ":|": 45986, + ":âĢ¦": 22365, + ";": 26, + ";))": 41873, + ";)": 3661, + ";-": 35657, + ";-)": 10475, + ";;": 34824, + ";;": 24492, + ";": 282, + "<": 27, + "<-": 47280, + "": 34308, + "<<": 24588, + "<": 283, + "<<": 16482, + "<<<": 35054, + "<|endoftext|>": 49407, + "<|startoftext|>": 49406, + "=": 28, + "=))": 39587, + "=)": 17840, + "=": 284, + "==": 11748, + "====": 21734, + "========": 38952, + "==>": 29688, + "=>": 9714, + ">": 29, + ">.<": 38507, + ">:": 36196, + ">": 285, + "><": 28015, + ">>": 8270, + ">>": 2988, + ">>>": 6395, + ">>>>": 18461, + ">>>>": 18435, + ">>>>>": 32972, + ">>>>>>": 48947, + ">>>>>>>>": 41947, + ">_": 44144, + "?": 30, + "?!": 9785, + "?!!": 25342, + "?!\"": 29315, + "?!": 2835, + "?!?!": 16349, + "?!?!?!": 49084, + "?!?!?": 37619, + "?!?": 11395, + "?\"": 3283, + "?#": 24018, + "?'": 13610, + "?)": 9626, + "?,": 41628, + "?...": 22641, + "?..": 43905, + "?.": 41251, + "?:": 21067, + "?": 286, + "??": 5195, + "??!!": 43219, + "??!": 37341, + "??\"": 44996, + "??": 2197, + "???": 40017, + "???": 3824, + "????": 15936, + "????": 10362, + "?????": 21370, + "??????": 34589, + "????????": 45091, + "?@": 29258, + "?ðŁ¤Ķ": 47928, + "@": 31, + "@#": 39397, + "@.": 43730, + "@/": 28639, + "@": 287, + "@@": 30314, + "@_": 2692, + "@__": 17042, + "@___": 48308, + "A": 32, + "A": 288, + "B": 33, + "B": 289, + "C": 34, + "C": 290, + "D": 35, + "D": 291, + "E": 36, + "E": 292, + "F": 37, + "F": 293, + "G": 38, + "G": 294, + "H": 39, + "H": 295, + "I": 40, + "I": 296, + "J": 41, + "J": 297, + "K": 42, + "K": 298, + "L": 43, + "L": 299, + "M": 44, + "M": 300, + "N": 45, + "N": 301, + "O": 46, + "O": 302, + "P": 47, + "P": 303, + "Q": 48, + "Q": 304, + "R": 49, + "R": 305, + "S": 50, + "S": 306, + "T": 51, + "T": 307, + "U": 52, + "U": 308, + "V": 53, + "V": 309, + "W": 54, + "W": 310, + "X": 55, + "X": 311, + "Y": 56, + "Y": 312, + "Z": 57, + "Z": 313, + "[": 58, + "[#": 11115, + "[...": 39975, + "[...]": 43790, + "[": 314, + "[@": 15148, + "[]": 22240, + "\\": 59, + "\\'": 41239, + "\\": 315, + "]": 60, + "]\"": 39434, + "],": 34067, + "].": 26262, + "]:": 21641, + "]": 316, + "][#": 39009, + "][": 29329, + "^": 61, + "^)": 30720, + "^-": 43516, + "^.": 31552, + "^.^": 35791, + "^": 317, + "^^": 34454, + "^^": 9064, + "^_": 14423, + "^_^": 15995, + "_": 62, + "_'": 44701, + "_(": 36951, + "_)": 37393, + "_*": 36237, + "_,": 31417, + "_-": 23193, + "_.": 26841, + "_/": 37647, + "_:": 13109, + "_": 318, + "__": 2355, + "__:": 47043, + "__": 3838, + "___": 43812, + "___": 13530, + "____": 4727, + "____": 25350, + "_____": 38803, + "________": 9549, + "________________": 20115, + "`": 63, + "`": 319, + "a": 64, + "a": 320, + "aa": 1821, + "aa": 3894, + "aaa": 14376, + "aaa": 9583, + "aaaa": 6727, + "aaaa": 19336, + "aaaaa": 31095, + "aaaaaa": 44413, + "aaaaaaaa": 23126, + "aaaah": 49151, + "aaah": 35856, + "aaay": 37846, + "aab": 34108, + "aac": 23251, + "aac": 11346, + "aad": 20464, + "aad": 35894, + "aaf": 37638, + "aaf": 31534, + "aag": 42174, + "aah": 28990, + "aaj": 28727, + "aaj": 43411, + "aak": 37739, + "aal": 22268, + "aal": 30208, + "aali": 27896, + "aaliyah": 46577, + "aam": 12943, + "aam": 22775, + "aama": 45018, + "aamaadmi": 45563, + "aamaadmiparty": 46406, + "aamir": 27456, + "aan": 20705, + "aan": 13426, + "aand": 38054, + "aap": 12023, + "aap": 12052, + "aapl": 34516, + "aar": 4695, + "aar": 13234, + "aard": 46932, + "aaron": 13948, + "aaron": 7709, + "aas": 28542, + "aas": 32205, + "aat": 34018, + "aat": 35004, + "aau": 35426, + "aay": 38281, + "aay": 40249, + "aaz": 26770, + "ab": 596, + "ab": 3937, + "aba": 44204, + "aba": 11102, + "abad": 33444, + "abad": 7155, + "aban": 41662, + "aband": 8595, + "abandon": 28805, + "abandoned": 11227, + "abar": 17860, + "abar": 39805, + "abas": 25402, + "abay": 43542, + "abb": 38954, + "abb": 38297, + "abba": 30870, + "abbas": 37494, + "abbas": 24412, + "abbey": 31927, + "abbey": 10132, + "abbie": 39949, + "abbo": 13536, + "abbot": 44046, + "abbott": 43737, + "abbott": 15649, + "abbrevi": 44843, + "abby": 30586, + "abby": 14694, + "abc": 13137, + "abc": 5334, + "abcnews": 31566, + "abd": 44093, + "abdel": 46511, + "abdomin": 35335, + "abdominal": 39328, + "abdu": 13361, + "abduc": 17884, + "abducted": 31520, + "abduction": 36984, + "abdul": 14227, + "abdul": 15593, + "abdullah": 21317, + "abe": 15856, + "abe": 12734, + "abee": 36037, + "abel": 31938, + "abel": 25318, + "abella": 46156, + "aben": 40865, + "aber": 7828, + "aber": 41867, + "aberdeen": 30539, + "aberdeen": 17236, + "abh": 27484, + "abh": 33649, + "abhcosmetics": 49189, + "abhi": 18113, + "abhin": 44045, + "abhishek": 44502, + "abi": 16867, + "abi": 14161, + "abia": 48604, + "abide": 49163, + "abig": 20863, + "abigail": 25686, + "abil": 21135, + "abilities": 8724, + "ability": 35146, + "ability": 3024, + "abit": 48668, + "ablanc": 33716, + "able": 10102, + "able": 863, + "abled": 10655, + "ableg": 24055, + "ables": 8486, + "ableton": 47169, + "ably": 6748, + "abnormal": 40934, + "abo": 2889, + "abo": 21861, + "aboard": 11661, + "abol": 31768, + "abolic": 46827, + "abolish": 47403, + "aboo": 42433, + "abor": 8416, + "aboriginal": 20422, + "abortion": 12336, + "abortions": 43218, + "aboss": 46401, + "abou": 36455, + "abou": 44053, + "abound": 41037, + "abour": 46637, + "about": 20204, + "about": 781, + "abouts": 36339, + "above": 35019, + "above": 4348, + "aboy": 37077, + "abpoli": 44779, + "abq": 38767, + "abr": 44932, + "abra": 10694, + "abra": 35087, + "abraham": 40623, + "abraham": 15869, + "abram": 33255, + "abrams": 29852, + "abre": 22472, + "abre": 46756, + "abri": 28605, + "abridged": 45333, + "abroad": 11253, + "abru": 46295, + "abs": 18431, + "abs": 11109, + "absc": 25389, + "abscbn": 44260, + "abscbn": 45810, + "absen": 32453, + "absence": 19240, + "absent": 30363, + "absol": 4624, + "absolu": 7055, + "absolut": 4666, + "absolute": 7501, + "absolutely": 4703, + "absor": 14303, + "absorb": 35806, + "absorbed": 45059, + "absorbing": 46412, + "absorption": 42210, + "abstr": 7530, + "abstract": 23885, + "abstract": 10197, + "abstractart": 31170, + "abstraction": 47696, + "abstracts": 40065, + "absur": 21639, + "absurd": 29757, + "abt": 9850, + "abu": 9167, + "abu": 11787, + "abud": 20180, + "abudha": 21450, + "abudhabi": 25256, + "abuja": 23371, + "abun": 20544, + "abundance": 23236, + "abundant": 31611, + "abur": 23377, + "aburger": 46660, + "abuse": 7678, + "abused": 23855, + "abuses": 37132, + "abusing": 36558, + "abusive": 26858, + "abv": 34172, + "aby": 16342, + "aby": 31378, + "abyss": 33632, + "abz": 42292, + "ac": 546, + "ac": 2816, + "aca": 9213, + "acab": 41388, + "acacia": 44047, + "acad": 32537, + "acade": 2892, + "academia": 22662, + "academic": 31178, + "academic": 7935, + "academics": 26417, + "academies": 42569, + "academy": 29968, + "academy": 4041, + "acadi": 41455, + "acadia": 49236, + "acam": 26172, + "acan": 42227, + "acan": 26318, + "acap": 32357, + "acar": 22232, + "acare": 16961, + "acc": 26805, + "acc": 9318, + "acca": 30883, + "acce": 8564, + "acceler": 10161, + "accelerate": 23619, + "accelerated": 38513, + "accelerating": 41821, + "acceleration": 39387, + "accelerator": 25261, + "accent": 28110, + "accent": 18931, + "accents": 31738, + "accenture": 41853, + "accep": 4616, + "accept": 16447, + "accept": 9338, + "acceptable": 14209, + "acceptance": 17090, + "accepted": 9159, + "accepting": 12855, + "accepts": 22338, + "access": 7596, + "access": 3822, + "accessi": 10787, + "accessibility": 23407, + "accessible": 13977, + "accessing": 46339, + "accessories": 10220, + "accessory": 20417, + "acci": 4263, + "acci": 33943, + "accident": 6608, + "accidental": 24895, + "accidentally": 11061, + "accidents": 22072, + "acclaimed": 21172, + "acco": 44730, + "accol": 33858, + "accolades": 46731, + "accom": 23658, + "accommo": 34495, + "accommod": 14386, + "accommodate": 34708, + "accommodation": 18066, + "accommodations": 45536, + "accomp": 24985, + "accompan": 14746, + "accompanied": 20715, + "accompany": 34142, + "accompanying": 38179, + "accompli": 10205, + "accomplish": 25542, + "accomplished": 16462, + "accomplishment": 26100, + "accomplishments": 24965, + "accor": 4182, + "accord": 34293, + "accord": 28513, + "according": 4717, + "accordingly": 35535, + "accordion": 48760, + "accoun": 3081, + "account": 18424, + "account": 4684, + "accountability": 19377, + "accountable": 24216, + "accountant": 31026, + "accountants": 37222, + "accounted": 43951, + "accounting": 14805, + "accounts": 9974, + "accra": 31900, + "accred": 17451, + "accreditation": 27015, + "accredited": 27647, + "acct": 45569, + "accu": 5618, + "accumul": 19275, + "accumulation": 37112, + "accur": 6551, + "accuracy": 18423, + "accurate": 8858, + "accurately": 24206, + "accusations": 33615, + "accuse": 39414, + "accused": 9434, + "accuses": 27496, + "accusing": 41474, + "acdc": 45067, + "ace": 2675, + "ace": 804, + "acea": 35219, + "aceae": 38153, + "acele": 40868, + "aceous": 33610, + "acer": 37990, + "acer": 25809, + "aces": 5725, + "acet": 28735, + "acf": 38389, + "ach": 972, + "ach": 987, + "acha": 22686, + "acharya": 45780, + "achat": 32706, + "ache": 27771, + "ache": 7214, + "ached": 17048, + "acher": 38442, + "acher": 17936, + "achers": 25051, + "aches": 14823, + "achi": 3264, + "achi": 9087, + "achiev": 8160, + "achieve": 14798, + "achieve": 8175, + "achieved": 12359, + "achievement": 8245, + "achievements": 16114, + "achiever": 46286, + "achievers": 44544, + "achieves": 40123, + "achieving": 16120, + "achilles": 33327, + "achim": 42335, + "aching": 12864, + "acho": 33130, + "achs": 41195, + "aci": 4359, + "aci": 34100, + "acia": 30163, + "acial": 32422, + "acid": 35474, + "acid": 10085, + "acidity": 48800, + "acids": 27751, + "acies": 20162, + "acin": 39442, + "acing": 9442, + "acio": 26202, + "acion": 44965, + "acion": 24968, + "acional": 26435, + "aciones": 35832, + "acious": 16020, + "acity": 7511, + "ación": 38175, + "ack": 877, + "ack": 725, + "acked": 5698, + "acker": 31201, + "acker": 7940, + "ackeray": 41843, + "acki": 42857, + "acking": 5515, + "ackles": 28503, + "acknow": 13563, + "acknowle": 18100, + "acknowledge": 25209, + "acknowledged": 35913, + "acknowledges": 49083, + "acknowledging": 45645, + "acks": 3858, + "acl": 47593, + "acl": 23073, + "acle": 6504, + "acles": 34164, + "aclu": 37354, + "acm": 39317, + "acmilan": 36500, + "acne": 24195, + "aco": 9463, + "aco": 8800, + "acol": 17431, + "acollege": 43468, + "acom": 17224, + "acom": 22342, + "acon": 11621, + "acon": 11571, + "aconf": 38851, + "acons": 31599, + "acor": 22076, + "acorn": 37537, + "acos": 39943, + "acosta": 31994, + "acou": 8794, + "acoun": 31295, + "acounty": 45449, + "acoustic": 10616, + "acoustics": 43873, + "acp": 19627, + "acqu": 7946, + "acquainted": 40713, + "acqui": 12194, + "acquire": 21576, + "acquired": 15932, + "acquires": 27376, + "acquiring": 42785, + "acquis": 14207, + "acquisition": 16543, + "acquisitions": 39649, + "acr": 43648, + "acre": 26749, + "acre": 9493, + "acres": 11630, + "acro": 21060, + "acrob": 40891, + "acron": 37770, + "across": 2500, + "acrosse": 40979, + "acruz": 40455, + "acry": 10440, + "acrylic": 12252, + "acs": 11782, + "act": 10305, + "act": 1393, + "acted": 10971, + "acti": 4786, + "acting": 6319, + "action": 12493, + "action": 1816, + "actions": 6271, + "activ": 3430, + "activate": 26737, + "activated": 22249, + "activation": 26769, + "active": 19009, + "active": 4046, + "actively": 18645, + "activi": 7230, + "activism": 20117, + "activist": 10850, + "activists": 12649, + "activities": 6514, + "activity": 6206, + "actment": 44807, + "acton": 36167, + "acton": 36697, + "actonclimate": 43797, + "actor": 12181, + "actor": 4035, + "actors": 9255, + "actorslife": 25117, + "actorvijay": 34033, + "actress": 5805, + "actresses": 33639, + "acts": 6816, + "actu": 2375, + "actual": 7488, + "actually": 2955, + "acu": 9204, + "acu": 48475, + "aculture": 38145, + "acup": 30869, + "acup": 27278, + "acupuncture": 40043, + "acur": 44719, + "acura": 30120, + "acus": 33710, + "acute": 19734, + "acy": 18717, + "acy": 2356, + "ad": 594, + "ad": 680, + "ada": 25785, + "ada": 1886, + "adaily": 47254, + "adal": 46646, + "adam": 6037, + "adam": 4944, + "adamlambert": 27659, + "adams": 7942, + "adan": 41802, + "adani": 37499, + "adap": 6341, + "adapt": 22666, + "adaptation": 16566, + "adapted": 26657, + "adapter": 21839, + "adapting": 44120, + "adaptive": 28672, + "adar": 27702, + "adar": 32681, + "adas": 23250, + "adata": 39500, + "aday": 31367, + "aday": 10280, + "adays": 24337, + "adb": 45630, + "adc": 38201, + "add": 19408, + "add": 3536, + "addams": 38912, + "added": 4149, + "adder": 47557, + "addi": 36378, + "addic": 5709, + "addict": 14614, + "addicted": 16275, + "addiction": 11751, + "addictive": 29638, + "addicts": 29997, + "adding": 8676, + "addis": 43911, + "addison": 32369, + "additi": 26927, + "addition": 6698, + "additional": 10666, + "additions": 22575, + "additive": 48546, + "addo": 40001, + "address": 5834, + "addressed": 20817, + "addresses": 12702, + "addressing": 10594, + "adds": 9944, + "addy": 24746, + "ade": 2194, + "ade": 1928, + "adecides": 46374, + "aded": 9994, + "adee": 47054, + "adel": 4434, + "adel": 27308, + "adelaide": 38193, + "adelaide": 11611, + "adele": 42843, + "adele": 21220, + "adelrey": 43627, + "ademy": 49123, + "aden": 28669, + "aden": 28688, + "adena": 23648, + "adequ": 18232, + "adequate": 22281, + "ader": 21365, + "adero": 49185, + "aders": 27672, + "ades": 5793, + "adh": 42301, + "adhd": 32649, + "adhe": 21175, + "adhesive": 38429, + "adi": 2486, + "adi": 8779, + "adia": 26874, + "adic": 36780, + "adid": 8086, + "adidas": 22396, + "adidas": 9589, + "adidasoriginals": 48575, + "adies": 45834, + "adifference": 37217, + "adilla": 41167, + "ading": 15000, + "adio": 15060, + "adirond": 36843, + "adish": 49009, + "adity": 28596, + "aditya": 37186, + "adityanath": 44437, + "adjac": 32517, + "adjacent": 33836, + "adjec": 45512, + "adju": 16413, + "adjun": 45995, + "adjust": 13784, + "adjust": 28073, + "adjustable": 20476, + "adjusted": 30515, + "adjusting": 41132, + "adjustment": 36081, + "adjustments": 36331, + "adl": 49351, + "adler": 30222, + "adm": 9892, + "adm": 33604, + "admi": 11666, + "admin": 12528, + "admini": 6434, + "administr": 12174, + "administration": 9502, + "administrative": 22424, + "administrator": 22603, + "administrators": 36123, + "admins": 49297, + "admir": 17031, + "admiral": 21013, + "admiration": 39569, + "admire": 17791, + "admired": 36103, + "admirer": 48344, + "admiring": 29835, + "admission": 11315, + "admissions": 22463, + "admit": 13769, + "admits": 16332, + "admitted": 20427, + "admitting": 46148, + "adn": 40339, + "adnan": 42037, + "ado": 4775, + "ado": 2933, + "adobe": 29256, + "adobe": 16484, + "adog": 44913, + "adol": 33512, + "adole": 22704, + "adolescent": 36793, + "adolescents": 45656, + "adolf": 41179, + "adon": 25907, + "adona": 48419, + "adop": 4183, + "adopt": 16441, + "adopt": 11159, + "adoptable": 36905, + "adoptdont": 19674, + "adoptdontshop": 20089, + "adopted": 12538, + "adopting": 30158, + "adoption": 11544, + "adopts": 40853, + "ador": 4992, + "ador": 9162, + "adora": 40031, + "adorable": 6298, + "adoration": 46781, + "adore": 15502, + "adored": 49233, + "adores": 30290, + "adorned": 44953, + "ados": 20079, + "adox": 32188, + "adp": 44426, + "adr": 46189, + "adren": 24204, + "adrenaline": 35552, + "adri": 5935, + "adrian": 25012, + "adrian": 13163, + "adriana": 41363, + "adrid": 26562, + "adrien": 47469, + "adrienne": 40081, + "ads": 2485, + "adu": 16882, + "adu": 24446, + "adukone": 30511, + "adul": 7222, + "adult": 42209, + "adult": 7115, + "adulthood": 40964, + "adults": 9391, + "adv": 1647, + "adv": 21018, + "advan": 33411, + "advance": 27291, + "advance": 7022, + "advanced": 7465, + "advancement": 35437, + "advances": 15852, + "advancing": 21355, + "advani": 48189, + "advant": 7017, + "advantage": 8573, + "advantaged": 38361, + "advantages": 23506, + "adven": 41670, + "advent": 3071, + "advent": 15199, + "adventcalendar": 43492, + "adventur": 29627, + "adventure": 17251, + "adventure": 4377, + "adventurer": 48098, + "adventures": 7941, + "adventurous": 31179, + "adver": 4806, + "adverse": 30348, + "adversity": 32516, + "advert": 19080, + "adverti": 5682, + "advertise": 31473, + "advertised": 38987, + "advertisement": 18713, + "advertiser": 41829, + "advertisers": 45472, + "advertising": 8158, + "adverts": 44306, + "advice": 4973, + "advis": 4634, + "advise": 25962, + "advised": 23196, + "adviser": 20367, + "advisers": 40984, + "advises": 42761, + "advising": 39648, + "advisor": 12380, + "advisors": 23197, + "advisory": 10224, + "advoc": 6657, + "advocacy": 14443, + "advocate": 12044, + "advocates": 17757, + "adwords": 48343, + "ady": 41446, + "ady": 8781, + "ae": 5548, + "ae": 4542, + "aea": 37048, + "aed": 26912, + "aege": 42304, + "ael": 41533, + "ael": 43340, + "aen": 43085, + "aer": 10195, + "aeri": 27685, + "aerial": 44866, + "aerial": 12440, + "aero": 10196, + "aero": 25026, + "aerob": 42824, + "aeron": 37286, + "aeronau": 42816, + "aerop": 27735, + "aerosmith": 43253, + "aerospace": 20530, + "aes": 10617, + "aes": 35677, + "aest": 40694, + "aesthe": 21181, + "aesthetic": 16179, + "aesthetics": 29295, + "aew": 47108, + "af": 702, + "af": 4391, + "afa": 24953, + "afan": 47474, + "afar": 41637, + "afar": 37866, + "afb": 27022, + "afc": 29742, + "afc": 6571, + "afcb": 44276, + "afcon": 30019, + "afd": 44626, + "afe": 30487, + "afe": 13912, + "afer": 44707, + "aff": 8849, + "aff": 14864, + "affair": 13998, + "affairs": 9830, + "affe": 4556, + "affect": 11361, + "affected": 9715, + "affecting": 18448, + "affection": 33780, + "affection": 28381, + "affectionate": 42578, + "affects": 17285, + "affili": 12120, + "affiliate": 18652, + "affiliated": 37540, + "affiliation": 48377, + "affinity": 41451, + "affir": 25343, + "affirm": 42711, + "affirm": 48625, + "affirmation": 47495, + "affl": 34036, + "affleck": 35584, + "afford": 7951, + "afford": 13223, + "affordability": 44828, + "affordable": 43944, + "affordable": 8926, + "afg": 33994, + "afgh": 9029, + "afghan": 15919, + "afghanistan": 9836, + "afi": 24074, + "afi": 31958, + "afil": 27209, + "afire": 42010, + "afirst": 38601, + "afl": 15132, + "afl": 14356, + "aflo": 41959, + "afm": 38385, + "afootball": 41694, + "afor": 43102, + "afore": 41468, + "afp": 18311, + "afraid": 9474, + "afri": 13888, + "afric": 2136, + "africa": 3093, + "african": 17471, + "african": 4736, + "africans": 26534, + "afridi": 37651, + "afrika": 45833, + "afrin": 45586, + "afro": 16267, + "afro": 21795, + "afs": 48960, + "aft": 22693, + "after": 2278, + "after": 953, + "afterdark": 48966, + "afterlife": 46790, + "aftermath": 20958, + "afterno": 22330, + "afternoon": 39035, + "afternoon": 2716, + "afternoons": 31631, + "afterparty": 35305, + "afterwards": 23911, + "ag": 602, + "ag": 5241, + "aga": 1050, + "aga": 4654, + "again": 1495, + "against": 23838, + "against": 1601, + "agame": 46943, + "agan": 42946, + "agan": 9178, + "agar": 13199, + "agar": 17544, + "agarwal": 43117, + "agas": 20430, + "agate": 25454, + "agatha": 43896, + "agave": 42671, + "agawa": 39433, + "agazine": 44942, + "age": 4758, + "age": 805, + "aged": 3889, + "ageing": 25349, + "agen": 10101, + "agen": 43696, + "agencies": 13887, + "agency": 44885, + "agency": 6270, + "agend": 48653, + "agenda": 8728, + "agent": 21210, + "agent": 6576, + "agents": 10199, + "agentsof": 37074, + "agentsofshield": 38801, + "ager": 44847, + "ager": 10443, + "agers": 22123, + "ages": 2321, + "agg": 45482, + "aggarwal": 39386, + "agger": 27836, + "aggi": 36844, + "aggie": 44244, + "aggie": 37618, + "aggies": 31047, + "aggio": 36685, + "aggrav": 35203, + "aggre": 10426, + "aggreg": 41968, + "aggregate": 41318, + "aggression": 28900, + "aggressive": 16295, + "aggressively": 48667, + "agh": 17917, + "agh": 14402, + "aghan": 31276, + "agi": 24036, + "agi": 17645, + "agic": 37652, + "agile": 16276, + "agility": 32161, + "aging": 4336, + "agio": 41746, + "agirl": 35469, + "agle": 37035, + "agle": 16702, + "agles": 36374, + "agles": 22679, + "aglia": 46912, + "agm": 19162, + "agn": 36474, + "agna": 43626, + "agne": 29374, + "agne": 48303, + "agnes": 26213, + "agno": 41540, + "ago": 6276, + "ago": 1468, + "agomez": 27127, + "agon": 26775, + "agon": 14901, + "agony": 36977, + "agor": 38920, + "agos": 32657, + "agov": 34227, + "agp": 46048, + "agr": 36639, + "agra": 26660, + "agra": 29830, + "agram": 2447, + "agre": 3180, + "agreat": 37594, + "agree": 5953, + "agreed": 12774, + "agreeing": 40720, + "agreement": 8286, + "agreements": 25865, + "agrees": 17854, + "agri": 20527, + "agri": 30326, + "agricul": 7234, + "agricultural": 15440, + "agriculture": 9720, + "agro": 33178, + "agro": 44589, + "agron": 41314, + "agroup": 40099, + "ags": 16926, + "agt": 39681, + "agu": 3922, + "agu": 36544, + "agua": 18482, + "aguchi": 49206, + "ague": 2095, + "aguero": 42964, + "agues": 7000, + "aguil": 27946, + "aguilar": 44715, + "ah": 1772, + "ah": 1288, + "aha": 12082, + "aha": 8429, + "ahah": 38661, + "ahaha": 32423, + "ahahaha": 42620, + "aham": 36036, + "ahan": 45061, + "ahan": 19255, + "ahar": 31038, + "ahar": 38760, + "ahe": 27688, + "ahead": 3158, + "ahem": 39995, + "ahh": 13152, + "ahhh": 14769, + "ahhhh": 21054, + "ahhhhh": 36392, + "ahi": 45349, + "ahi": 24154, + "ahl": 30433, + "ahmad": 32167, + "ahmad": 16902, + "ahmadi": 38656, + "ahmadiyya": 44865, + "ahmed": 19491, + "ahmed": 12081, + "ahmedabad": 26966, + "ahn": 33405, + "aho": 28114, + "aho": 38444, + "ahora": 43113, + "ahouse": 33197, + "ahoy": 38652, + "ahs": 16937, + "ahu": 11908, + "ahu": 16515, + "ai": 2014, + "ai": 2215, + "aia": 27046, + "aib": 34780, + "aic": 29454, + "aid": 13723, + "aid": 5182, + "aida": 33830, + "aidan": 48814, + "aidan": 26945, + "aide": 31558, + "aide": 9746, + "aided": 48707, + "aiden": 40020, + "aides": 49082, + "aids": 11759, + "aig": 27295, + "aig": 46989, + "aii": 22478, + "aik": 42575, + "aiken": 46342, + "ail": 1457, + "ail": 9154, + "ailed": 38919, + "ailing": 29999, + "ails": 27024, + "aim": 6787, + "aim": 11255, + "aime": 39872, + "aimed": 20247, + "aimee": 36318, + "aiming": 21768, + "aimo": 36706, + "aims": 13326, + "ain": 8326, + "ain": 2210, + "aine": 48983, + "aine": 17634, + "ains": 27621, + "aint": 29543, + "aint": 13099, + "ainted": 39933, + "aioli": 43949, + "air": 1281, + "air": 1922, + "aira": 35085, + "aira": 46444, + "airasia": 48020, + "airbnb": 23098, + "airborne": 22755, + "airbus": 15324, + "aircraft": 7706, + "airdrop": 38434, + "aire": 7682, + "aired": 21938, + "aires": 17034, + "airfield": 40525, + "airforce": 23511, + "airing": 20453, + "airline": 14847, + "airlines": 8929, + "airmen": 44499, + "airplane": 16451, + "airplanes": 33319, + "airplay": 47024, + "airpollution": 47362, + "airport": 48337, + "airport": 3259, + "airports": 21543, + "airs": 18539, + "airshow": 27139, + "airsoft": 30134, + "airspace": 49280, + "airstrikes": 37220, + "airtel": 34784, + "airtime": 46617, + "airwaves": 43910, + "airways": 14299, + "airy": 44453, + "ais": 7616, + "ais": 11393, + "aise": 30505, + "aish": 21946, + "aisha": 40211, + "aishwar": 29687, + "aishwarya": 44019, + "aisle": 26917, + "ait": 25613, + "ait": 40814, + "aj": 3990, + "aj": 6342, + "aja": 42343, + "aja": 19633, + "ajax": 21933, + "ajay": 22494, + "ajay": 28726, + "ajaydevgn": 35515, + "aje": 48818, + "aje": 33315, + "ajes": 38791, + "aji": 26102, + "aji": 21153, + "ajit": 42261, + "ajith": 24118, + "ajo": 26958, + "aju": 36855, + "ak": 819, + "ak": 1196, + "aka": 19154, + "aka": 3412, + "akaif": 45736, + "akan": 43678, + "akan": 38244, + "akapoor": 40064, + "akarta": 48603, + "akb": 41962, + "akbar": 27180, + "ake": 10558, + "ake": 5776, + "aked": 6115, + "aker": 14245, + "aker": 3074, + "akers": 5788, + "akes": 4764, + "akest": 46679, + "akh": 14821, + "akh": 30660, + "akhan": 28158, + "akhi": 41660, + "akhilesh": 48495, + "akhtar": 45458, + "aki": 18173, + "aki": 6592, + "akin": 24630, + "akin": 13601, + "aking": 1809, + "akins": 48568, + "akira": 34001, + "akis": 27732, + "akistan": 46221, + "akley": 39908, + "ako": 44027, + "ako": 14541, + "akon": 47105, + "akos": 44659, + "akrish": 37434, + "akron": 26115, + "aks": 2953, + "aksh": 28226, + "akshay": 21483, + "akshay": 38914, + "akshaykumar": 23624, + "akshi": 42634, + "aku": 18151, + "aku": 20815, + "aky": 11977, + "al": 526, + "al": 566, + "ala": 12783, + "ala": 3449, + "alab": 6365, + "alabam": 45880, + "alabama": 8422, + "alach": 24622, + "alad": 23074, + "aladdin": 29951, + "alai": 47072, + "alain": 28999, + "alam": 16612, + "alam": 16012, + "alamo": 41922, + "alamo": 34632, + "alan": 9563, + "alan": 5773, + "alana": 43405, + "aland": 34304, + "aland": 6819, + "alar": 34333, + "alarm": 11321, + "alarming": 37209, + "alarms": 31236, + "alarts": 31422, + "alas": 7276, + "alas": 22412, + "alaska": 9562, + "alaskan": 33898, + "alastair": 42062, + "alay": 30289, + "alay": 36450, + "alaya": 36397, + "alb": 45248, + "alba": 25254, + "alban": 10882, + "albania": 29170, + "albanian": 47721, + "albans": 44119, + "albany": 17359, + "albat": 42797, + "albeit": 38984, + "alber": 6413, + "albert": 34174, + "albert": 9507, + "alberta": 11048, + "alberto": 22714, + "albi": 18512, + "albino": 48062, + "albion": 24071, + "albu": 2216, + "album": 40712, + "album": 2431, + "albums": 10705, + "albuquerque": 31079, + "alcat": 35361, + "alche": 37909, + "alchemist": 38913, + "alchemy": 39501, + "alco": 6848, + "alco": 45446, + "alcohol": 9426, + "alcoholic": 25098, + "ald": 4539, + "ald": 2928, + "alda": 46440, + "alde": 33114, + "alden": 17155, + "alden": 27710, + "aldenrichards": 20051, + "alder": 18220, + "alder": 46571, + "aldi": 23204, + "aldo": 9933, + "aldridge": 38084, + "alds": 14285, + "aldu": 6505, + "aldub": 10532, + "aldub": 15247, + "ale": 1440, + "ale": 1336, + "alea": 26518, + "aleague": 38909, + "alec": 29804, + "alec": 19954, + "alecoscino": 47948, + "aled": 4970, + "alee": 24515, + "alej": 23440, + "alejandro": 32950, + "alek": 26906, + "alek": 43310, + "aleksand": 48429, + "alem": 11825, + "aleppo": 19258, + "aler": 25674, + "aler": 27335, + "alert": 4662, + "alerts": 22144, + "ales": 44171, + "ales": 5962, + "aless": 21864, + "alessandro": 37344, + "alestine": 31945, + "alex": 2959, + "alex": 4134, + "alexa": 16273, + "alexand": 10696, + "alexander": 25527, + "alexander": 7563, + "alexandra": 19054, + "alexandre": 35711, + "alexandria": 21171, + "alexis": 35023, + "alexis": 14243, + "aley": 21635, + "alf": 27098, + "alfa": 23482, + "alfar": 38870, + "alfie": 28598, + "alfon": 31947, + "alfonso": 41784, + "alfre": 20982, + "alfred": 16553, + "alfredo": 32291, + "algae": 25654, + "algar": 36291, + "algarve": 40290, + "alge": 24336, + "algebra": 33694, + "alger": 18568, + "algeria": 25257, + "algon": 33007, + "algori": 14912, + "algorithm": 23295, + "algorithms": 26039, + "alham": 23352, + "alhamdulil": 35129, + "alhamdulillah": 38982, + "ali": 835, + "ali": 3558, + "alia": 2492, + "aliaa": 36468, + "alian": 3464, + "alias": 40026, + "alibaba": 39231, + "alic": 25265, + "alice": 23759, + "alice": 9192, + "alici": 31630, + "alicia": 20914, + "alie": 8697, + "alien": 22846, + "alien": 9639, + "aliens": 14883, + "alier": 39493, + "alies": 38086, + "alife": 41347, + "alife": 21100, + "alig": 21272, + "alight": 36157, + "align": 31160, + "aligned": 29292, + "alignment": 27267, + "alik": 31141, + "alike": 12665, + "alim": 42075, + "alin": 42746, + "alin": 40063, + "alina": 39529, + "aline": 21799, + "aling": 5169, + "alion": 19049, + "alis": 21308, + "alis": 20114, + "alisa": 38918, + "alisation": 42143, + "alise": 36718, + "alised": 25099, + "alism": 5607, + "alison": 28653, + "alison": 16970, + "alist": 44900, + "alist": 3320, + "alistair": 40551, + "alistic": 22302, + "alists": 5653, + "alit": 45566, + "alities": 27925, + "ality": 1694, + "alive": 40467, + "alive": 4716, + "aliz": 30979, + "alization": 8026, + "alize": 10268, + "alized": 6141, + "alizer": 38922, + "alizes": 26181, + "alizing": 13023, + "alk": 30246, + "alk": 21577, + "alkal": 33450, + "alkaline": 39210, + "all": 813, + "all": 615, + "alla": 13884, + "alla": 14000, + "allabout": 43996, + "allah": 6378, + "allan": 36552, + "allan": 15404, + "allblacks": 47728, + "allday": 35862, + "alle": 4870, + "alle": 29478, + "alled": 7379, + "alleg": 7456, + "allegations": 16992, + "alleged": 12133, + "allegedly": 14177, + "alleges": 45051, + "allegh": 41479, + "allegheny": 47851, + "allegi": 28832, + "allegiance": 30955, + "allen": 16712, + "allen": 6386, + "allenge": 31387, + "aller": 10116, + "aller": 30630, + "allergic": 28809, + "allergies": 28247, + "allergy": 24408, + "allery": 32542, + "alles": 43354, + "allevi": 31682, + "alleviate": 44799, + "alley": 36205, + "alley": 10329, + "allez": 49137, + "alli": 4123, + "alli": 15268, + "alliance": 45404, + "alliance": 8945, + "alliances": 48403, + "allianz": 45740, + "allie": 25040, + "allied": 20045, + "allies": 17277, + "alligator": 28574, + "allin": 45007, + "allin": 22395, + "alline": 48182, + "alling": 2992, + "allis": 45309, + "allison": 34602, + "allison": 16578, + "allman": 42611, + "allo": 8107, + "allo": 18389, + "allocated": 42716, + "allocation": 35139, + "allon": 46693, + "allot": 26363, + "allotment": 33750, + "allow": 5645, + "allow": 6722, + "allowance": 35696, + "allowed": 7885, + "allowing": 12458, + "allows": 9966, + "alloy": 22467, + "alls": 1997, + "allstar": 31247, + "allstar": 22974, + "allstars": 31198, + "allthe": 29253, + "allu": 20157, + "alluarjun": 39333, + "allure": 41814, + "ally": 7461, + "ally": 769, + "alm": 28303, + "alma": 32933, + "alma": 18337, + "alman": 29394, + "almanac": 41268, + "almighty": 21898, + "almond": 15646, + "almonds": 30468, + "almost": 47534, + "almost": 2671, + "aln": 47203, + "alo": 3435, + "alo": 6183, + "aloe": 30728, + "alog": 15813, + "alogue": 9101, + "aloha": 23160, + "aloils": 49002, + "alom": 22236, + "alon": 14097, + "alon": 42846, + "alone": 4702, + "along": 8300, + "along": 2528, + "alongside": 8646, + "alonso": 25704, + "aloo": 46187, + "alore": 14323, + "alot": 16945, + "alou": 43180, + "aloud": 30028, + "alove": 46669, + "alove": 37045, + "alp": 32020, + "alp": 39342, + "alpac": 30128, + "alpaca": 42561, + "alph": 6720, + "alpha": 11807, + "alpha": 8624, + "alphabe": 45796, + "alphabet": 22335, + "alphon": 37865, + "alpine": 17055, + "alps": 18191, + "already": 2426, + "alright": 10866, + "als": 23982, + "als": 938, + "alsace": 49388, + "also": 1446, + "alt": 9995, + "alt": 10006, + "alta": 24470, + "alta": 25378, + "altaf": 47342, + "altam": 45624, + "altar": 16385, + "alter": 4949, + "alter": 21393, + "altered": 25201, + "altern": 47463, + "alternate": 15926, + "alternati": 16699, + "alternative": 37327, + "alternative": 8248, + "alternatives": 25041, + "alth": 23463, + "alth": 5863, + "although": 9421, + "alti": 35531, + "alties": 17276, + "altitude": 23241, + "altman": 48100, + "alto": 35053, + "alto": 17518, + "altogether": 45689, + "alton": 41331, + "alton": 36550, + "altrin": 38458, + "altrincham": 44718, + "alty": 5546, + "alu": 4776, + "alu": 27991, + "alum": 5404, + "alum": 10553, + "alumin": 14563, + "alumini": 22908, + "aluminium": 23631, + "aluminum": 15251, + "alumna": 30313, + "alumni": 6646, + "alumnus": 23633, + "alums": 30155, + "alv": 20928, + "alvar": 25196, + "alvarez": 26924, + "alvaro": 41941, + "alves": 38547, + "alvin": 27023, + "alway": 14046, + "alway": 43764, + "always": 24997, + "always": 1466, + "alwx": 32768, + "aly": 6468, + "aly": 12910, + "alyn": 49150, + "alyss": 29490, + "alyssa": 18898, + "alz": 12936, + "alz": 41128, + "alzheim": 15212, + "alzheimer": 21151, + "alzheimers": 34592, + "am": 548, + "am": 687, + "ama": 18206, + "ama": 1696, + "amad": 45095, + "amade": 37366, + "amag": 32049, + "amal": 15315, + "amal": 36753, + "aman": 19890, + "aman": 10110, + "amand": 14560, + "amanda": 10036, + "amar": 6424, + "amar": 19607, + "amara": 48522, + "amari": 42565, + "amarillo": 40449, + "amarine": 45591, + "amarketing": 30788, + "amas": 22716, + "amas": 15667, + "amat": 38664, + "amat": 25455, + "amate": 12453, + "amateur": 14287, + "amaya": 47210, + "amaz": 1185, + "amaze": 24846, + "amazed": 18944, + "amazing": 15949, + "amazing": 1370, + "amazingly": 20368, + "amazon": 13630, + "amazon": 4140, + "amb": 9042, + "amb": 16853, + "amba": 27003, + "ambani": 45967, + "ambas": 5634, + "ambassad": 5758, + "ambassador": 6795, + "ambassadors": 16832, + "ambed": 42089, + "ambedkar": 48131, + "amber": 18292, + "amber": 9986, + "ambi": 11844, + "ambient": 23447, + "ambigu": 35702, + "ambition": 20673, + "ambitions": 34152, + "ambitious": 18666, + "ambro": 17585, + "ambrose": 24253, + "ambu": 34423, + "ambul": 13944, + "ambulance": 15555, + "ambush": 40725, + "amc": 24942, + "amc": 16921, + "amd": 20845, + "ame": 3995, + "ame": 780, + "amed": 5660, + "ameen": 24229, + "amel": 31988, + "amel": 10960, + "ameli": 21599, + "amelia": 21433, + "amell": 48198, + "amen": 18716, + "amen": 12335, + "amend": 12425, + "amendment": 15019, + "amendments": 40901, + "amenities": 30096, + "ament": 27528, + "amer": 17081, + "amer": 16147, + "ameri": 40422, + "americ": 1283, + "america": 2224, + "americafirst": 43216, + "american": 8746, + "american": 2151, + "americana": 26221, + "americanair": 42538, + "americani": 39726, + "americans": 6676, + "americas": 33343, + "americas": 18142, + "ames": 5469, + "ameter": 23393, + "amethy": 30291, + "amethyst": 31485, + "amex": 46390, + "amg": 21324, + "amher": 32311, + "amherst": 39065, + "ami": 6100, + "ami": 3065, + "amic": 25824, + "amic": 21383, + "amid": 18908, + "amid": 11953, + "amide": 30952, + "amidst": 25172, + "amie": 36901, + "amig": 40294, + "amiga": 35329, + "amigo": 44991, + "amigos": 28176, + "amii": 35462, + "amiibo": 38871, + "amily": 36732, + "amin": 14337, + "amin": 20235, + "amina": 47531, + "amination": 30355, + "amine": 35823, + "aming": 3507, + "amino": 33464, + "amir": 26029, + "amir": 21973, + "amis": 29829, + "amish": 24958, + "amit": 15083, + "amit": 25255, + "amitabh": 48124, + "amitshah": 32374, + "aml": 43185, + "amma": 29786, + "amman": 29243, + "ammo": 33474, + "ammunition": 35060, + "amn": 24073, + "amne": 14596, + "amnesia": 41741, + "amnesty": 46330, + "amnesty": 21177, + "amo": 4833, + "amo": 11156, + "amodi": 9826, + "amon": 17492, + "amon": 24046, + "among": 12310, + "among": 4265, + "amongst": 12520, + "amoo": 26977, + "amor": 19977, + "amor": 15973, + "amore": 38937, + "amore": 22691, + "amores": 36338, + "amos": 18133, + "amoto": 25492, + "amount": 6403, + "amounts": 16747, + "amour": 29908, + "amovie": 41062, + "amp": 3521, + "amp": 6259, + "amped": 22640, + "amphi": 16379, + "amphibious": 45206, + "amphitheater": 41285, + "amphitheatre": 44039, + "ample": 34162, + "amples": 14536, + "ampli": 15647, + "amplifier": 31743, + "amplify": 45308, + "amps": 19252, + "ampton": 29410, + "ampton": 9347, + "amr": 30916, + "amreading": 16546, + "amrit": 33849, + "ams": 1396, + "amster": 9110, + "amsterdam": 9441, + "amtrak": 27855, + "amu": 11347, + "amu": 32336, + "amur": 35014, + "amura": 35487, + "amus": 36269, + "amuse": 21421, + "amuse": 44367, + "amused": 30212, + "amusement": 32570, + "amusic": 20266, + "amusing": 31789, + "amwriting": 9660, + "amy": 10547, + "amy": 5187, + "an": 514, + "an": 550, + "ana": 6588, + "ana": 1388, + "anab": 34742, + "anada": 27948, + "anag": 12115, + "anagh": 40774, + "anaheim": 23728, + "anak": 34814, + "anak": 38658, + "anal": 2785, + "analo": 34179, + "analog": 19963, + "analogue": 46031, + "analy": 4611, + "analyse": 47246, + "analyses": 39695, + "analysis": 5296, + "analyst": 14198, + "analysts": 28075, + "analytical": 34550, + "analytics": 8558, + "analyze": 28519, + "analyzing": 32107, + "anam": 29525, + "anan": 37215, + "anand": 25073, + "anand": 22083, + "anap": 41566, + "anarch": 46405, + "anarchi": 39879, + "anarchy": 27707, + "anas": 31382, + "anas": 12633, + "anast": 48902, + "anasta": 22915, + "anastasi": 36534, + "anastasia": 37975, + "anat": 10045, + "anath": 31277, + "anatom": 33759, + "anatomy": 15376, + "anc": 1124, + "anc": 17758, + "anca": 14583, + "ance": 7165, + "ance": 884, + "anced": 5071, + "ancer": 17415, + "ancers": 37296, + "ances": 3515, + "ancestor": 43904, + "ancestors": 24405, + "ancestral": 41615, + "ancestry": 30922, + "anch": 9489, + "anche": 34679, + "ancho": 26610, + "anchor": 20030, + "anchor": 13201, + "anchorage": 31950, + "anchored": 45926, + "anchors": 37830, + "anci": 4192, + "ancient": 31495, + "ancient": 5810, + "ancies": 21647, + "ancing": 7797, + "anco": 15459, + "ancy": 16282, + "ancy": 3633, + "and": 672, + "and": 537, + "anda": 2911, + "andalu": 31443, + "andco": 36302, + "ande": 26889, + "ande": 30354, + "ander": 3740, + "ander": 3935, + "anders": 10880, + "andersen": 32661, + "anderson": 26683, + "anderson": 6510, + "andes": 24052, + "andfriends": 36871, + "andhi": 21617, + "andhra": 32452, + "andi": 28870, + "andi": 14354, + "andie": 46318, + "andme": 42831, + "ando": 35950, + "ando": 5986, + "andolan": 48965, + "andon": 36488, + "andor": 45243, + "andover": 44177, + "andr": 22661, + "andra": 46795, + "andra": 21730, + "andre": 2657, + "andre": 9400, + "andrea": 10895, + "andreas": 20444, + "andrei": 42137, + "andres": 25197, + "andretti": 44291, + "andrew": 11717, + "andrew": 4847, + "andrews": 14506, + "andri": 37208, + "andro": 4417, + "andro": 17980, + "android": 24284, + "android": 5191, + "androidgames": 46572, + "andromeda": 42942, + "andré": 35609, + "ands": 32257, + "andthe": 22111, + "andu": 44200, + "andum": 47266, + "andy": 9447, + "andy": 2888, + "ane": 5846, + "ane": 3051, + "anec": 33965, + "anem": 41395, + "anemone": 49019, + "aneous": 48273, + "anes": 15381, + "anese": 48778, + "anesthe": 30622, + "anesthesia": 43353, + "anew": 39084, + "anew": 47341, + "anews": 20919, + "aney": 22387, + "anfield": 26993, + "ang": 883, + "ang": 2704, + "anga": 11641, + "angames": 43178, + "angan": 28264, + "angas": 46180, + "ange": 2960, + "ange": 3039, + "angel": 5029, + "angel": 5130, + "angela": 12354, + "angeles": 7382, + "angeli": 15265, + "angelic": 41038, + "angelica": 38582, + "angelina": 28890, + "angelo": 14342, + "angelou": 41328, + "angels": 7809, + "anger": 32737, + "anger": 6788, + "angerous": 39716, + "angers": 29756, + "angh": 34030, + "angi": 28003, + "angi": 24301, + "angie": 18859, + "angle": 21749, + "angle": 6946, + "angled": 32322, + "angler": 22284, + "anglers": 41608, + "angles": 18627, + "anglesey": 31850, + "anglia": 32076, + "anglic": 28322, + "anglican": 33284, + "angling": 36824, + "anglo": 39515, + "anglo": 30408, + "ango": 19090, + "angola": 36636, + "angor": 41740, + "angp": 19992, + "angry": 33910, + "angry": 9054, + "angs": 18441, + "angst": 41714, + "angu": 11209, + "angular": 43584, + "angular": 24981, + "angularjs": 48608, + "angus": 19688, + "ani": 1326, + "ani": 3624, + "ania": 9866, + "anian": 9945, + "anians": 39393, + "anic": 23113, + "anie": 26697, + "anie": 7671, + "anil": 28589, + "anil": 34619, + "anim": 2190, + "animal": 10697, + "animal": 4668, + "animalrights": 42859, + "animals": 4995, + "animate": 40076, + "animated": 13360, + "animation": 10344, + "animations": 42870, + "animator": 42591, + "anime": 23314, + "anime": 6469, + "anin": 45735, + "aning": 30972, + "anir": 27089, + "anirud": 35278, + "anirudhofficial": 45917, + "anis": 40986, + "anis": 47556, + "anism": 20947, + "anist": 16729, + "anistan": 9727, + "aniston": 47344, + "anit": 23683, + "anita": 18544, + "anium": 14794, + "anj": 22443, + "anja": 43440, + "anjali": 38834, + "anjo": 47353, + "ank": 13339, + "ank": 10029, + "anka": 45324, + "ankara": 34309, + "ankle": 14777, + "ankles": 48688, + "ann": 850, + "ann": 5424, + "anna": 13821, + "anna": 2160, + "annab": 22336, + "annabelle": 47661, + "annah": 39166, + "annah": 14327, + "annak": 41720, + "annan": 32166, + "annapolis": 34491, + "annas": 48467, + "anne": 9139, + "anne": 4083, + "anned": 27352, + "anner": 12642, + "annes": 24343, + "annette": 36821, + "annex": 42958, + "annex": 46389, + "anni": 2438, + "anni": 13728, + "annie": 37270, + "annie": 12173, + "annies": 43184, + "annihil": 32734, + "annis": 24742, + "anniv": 31399, + "anniver": 29671, + "annivers": 42836, + "anniversaire": 30882, + "anniversary": 3048, + "anno": 9901, + "anno": 26871, + "annon": 26385, + "annot": 30411, + "announ": 1806, + "announce": 3682, + "announced": 4103, + "announcement": 6932, + "announcements": 23735, + "announcer": 33626, + "announces": 6500, + "announcing": 11593, + "annoy": 45138, + "annoyed": 29863, + "annoying": 15248, + "annu": 21698, + "annual": 2906, + "annually": 23703, + "anny": 34313, + "anny": 5291, + "ano": 5617, + "ano": 2658, + "anom": 21612, + "anomaly": 46811, + "anon": 47079, + "anon": 13667, + "anonym": 38605, + "anonymous": 15036, + "anoo": 25690, + "anor": 13243, + "anor": 16596, + "anos": 20132, + "another": 29274, + "another": 1380, + "anova": 24116, + "ans": 24586, + "ans": 885, + "ansari": 40748, + "ansel": 40356, + "answ": 3369, + "answe": 14391, + "answer": 4518, + "answered": 14499, + "answering": 18280, + "answers": 8692, + "ant": 1103, + "ant": 773, + "anta": 3023, + "antag": 41745, + "antal": 39355, + "antalya": 47440, + "antan": 32899, + "antarc": 21338, + "antarctic": 27077, + "antarctica": 22587, + "ante": 19311, + "ante": 9769, + "antebellum": 41683, + "antelope": 39177, + "anten": 35517, + "antenna": 26370, + "anter": 46508, + "antes": 14927, + "antgrasso": 39074, + "anth": 3737, + "anth": 29741, + "antha": 47981, + "anthe": 34167, + "anthem": 12504, + "anthi": 45261, + "anthology": 21009, + "anthony": 17477, + "anthony": 6113, + "anthro": 10019, + "anthropo": 18538, + "anthropology": 32407, + "anthus": 37639, + "anti": 3120, + "anti": 3564, + "antibio": 18954, + "antibiotic": 34387, + "antibiotics": 29499, + "antibody": 49018, + "antic": 8260, + "anticip": 11435, + "anticipate": 38280, + "anticipated": 18605, + "anticipating": 48067, + "anticipation": 26983, + "antics": 37126, + "antidote": 45476, + "antifa": 35926, + "antigua": 39910, + "antine": 17641, + "antino": 27818, + "antioxid": 23010, + "antioxidant": 37452, + "antioxidants": 34208, + "antiqu": 21745, + "antique": 46517, + "antique": 9060, + "antiques": 17365, + "antis": 19748, + "antisemitism": 36630, + "antit": 37833, + "antitrust": 49343, + "antlers": 47720, + "antly": 5265, + "anto": 16826, + "anto": 24486, + "antoine": 25188, + "anton": 5497, + "anton": 19644, + "antoni": 39958, + "antonio": 30497, + "antonio": 7842, + "antony": 30707, + "antrim": 40252, + "ants": 1589, + "antv": 47520, + "antw": 44460, + "antwer": 26970, + "antwerp": 33797, + "antz": 25684, + "anu": 8537, + "anu": 17152, + "anup": 29617, + "anus": 27084, + "anush": 22765, + "anushka": 42080, + "anushka": 39822, + "anushkasharma": 44203, + "anwar": 34261, + "anxi": 9021, + "anxiety": 11103, + "anxious": 27793, + "any": 1307, + "any": 1504, + "anya": 11173, + "anybody": 10071, + "anyi": 41632, + "anymore": 7372, + "anyone": 2302, + "anything": 3582, + "anytime": 13924, + "anyway": 8931, + "anyways": 19778, + "anywhere": 8863, + "anz": 14445, + "anz": 19425, + "anza": 14669, + "anzac": 31977, + "ao": 7313, + "ao": 5703, + "aoa": 47119, + "aoc": 31918, + "aofficial": 30840, + "aoki": 33602, + "aol": 40643, + "aon": 30928, + "aon": 48476, + "aor": 32044, + "aos": 46860, + "ap": 688, + "ap": 2728, + "apa": 36954, + "apa": 13537, + "apac": 34320, + "apache": 23921, + "apal": 38017, + "apan": 36562, + "apar": 9161, + "apark": 32528, + "apart": 6474, + "apart": 7803, + "aparthe": 25121, + "apartheid": 26597, + "apartment": 8285, + "apartments": 15791, + "aparty": 26767, + "apat": 31755, + "apathy": 18145, + "apc": 20300, + "apd": 44563, + "ape": 6098, + "ape": 2609, + "apec": 47530, + "aper": 13681, + "aper": 5858, + "apers": 15846, + "apes": 9550, + "apeu": 19040, + "apex": 41935, + "apex": 23712, + "aph": 16341, + "aph": 29491, + "apha": 47104, + "apho": 21758, + "aphra": 44147, + "api": 23342, + "api": 14674, + "apia": 44259, + "apic": 40679, + "aping": 18456, + "apink": 35725, + "apis": 37575, + "apk": 27648, + "apo": 4089, + "apo": 19758, + "apocaly": 13932, + "apocalypse": 17571, + "apocalyptic": 35675, + "apol": 5023, + "apolice": 45663, + "apolis": 9598, + "apollo": 48213, + "apollo": 11554, + "apolo": 31094, + "apolog": 25530, + "apologe": 42908, + "apologi": 14977, + "apologies": 21959, + "apologise": 39608, + "apologize": 22879, + "apologizes": 35298, + "apology": 20768, + "apor": 21871, + "apore": 6679, + "apost": 20309, + "apostle": 33051, + "apostles": 48457, + "app": 882, + "app": 2231, + "appa": 4884, + "appa": 13110, + "appalach": 30523, + "appalachian": 36806, + "appalling": 44797, + "appar": 26698, + "apparatus": 37716, + "apparel": 13972, + "apparent": 23963, + "apparently": 5287, + "appe": 3748, + "appe": 45949, + "appeal": 9625, + "appealing": 25909, + "appeals": 22447, + "appear": 5544, + "appear": 9308, + "appearance": 7238, + "appearances": 17214, + "appeared": 11561, + "appearing": 18759, + "appears": 8743, + "appell": 43833, + "appen": 37201, + "appen": 26589, + "apper": 18780, + "appet": 21686, + "appeti": 24179, + "appetite": 24481, + "appetizer": 36065, + "applau": 24713, + "applaud": 42152, + "applause": 22650, + "apple": 8629, + "apple": 3055, + "applemusic": 21390, + "apples": 14032, + "appleton": 45250, + "appli": 15495, + "appliance": 33677, + "appliances": 22134, + "applic": 4235, + "applicable": 37927, + "applicants": 28035, + "application": 7241, + "applications": 7341, + "applied": 12636, + "applies": 24910, + "apply": 4356, + "applying": 17965, + "appo": 5433, + "appoint": 36190, + "appointed": 11087, + "appointment": 10890, + "appointments": 23439, + "appoints": 25132, + "apprais": 36972, + "appraisal": 46108, + "appreci": 3474, + "appreciate": 6263, + "appreciated": 9264, + "appreciates": 36573, + "appreciating": 39352, + "appreciation": 9212, + "appreciationday": 37438, + "appreciative": 45074, + "appren": 10582, + "apprentic": 15662, + "apprentice": 19122, + "apprentice": 17985, + "apprentices": 38252, + "apprenticeship": 26939, + "apprenticeships": 35425, + "appro": 2398, + "approach": 7781, + "approach": 6241, + "approached": 36499, + "approaches": 14962, + "approaching": 12164, + "appropri": 8446, + "appropriate": 10768, + "appropriately": 30383, + "appropriation": 49110, + "approval": 13549, + "approve": 19064, + "approved": 9412, + "approves": 18107, + "approx": 18266, + "approxim": 14201, + "approximately": 16128, + "apps": 7020, + "appstore": 31377, + "appt": 48112, + "appy": 34420, + "apr": 39396, + "apr": 11177, + "apra": 37027, + "apric": 25923, + "apricot": 30815, + "april": 23548, + "april": 2484, + "apro": 42712, + "apro": 49051, + "apron": 29502, + "aps": 8868, + "apse": 31843, + "apt": 17921, + "aptly": 47313, + "apu": 22166, + "apur": 36900, + "apur": 45193, + "aq": 14018, + "aq": 26862, + "aqu": 4458, + "aqua": 18613, + "aquaculture": 41885, + "aquaman": 35098, + "aquari": 37605, + "aquarium": 16814, + "aquarius": 38879, + "aquatic": 22658, + "aque": 35927, + "aque": 37268, + "aqui": 36826, + "aquino": 33796, + "ar": 516, + "ar": 625, + "ara": 24161, + "ara": 3340, + "arab": 5405, + "arab": 12028, + "arabia": 11746, + "arabian": 24663, + "arabic": 16709, + "arabs": 39155, + "arac": 47620, + "arach": 37689, + "arag": 41502, + "araj": 45142, + "arak": 23416, + "aram": 19223, + "aram": 21473, + "arama": 49066, + "aran": 20839, + "aran": 19641, + "aras": 36399, + "arat": 30856, + "arav": 35836, + "arbit": 20267, + "arbitr": 22702, + "arbitration": 34845, + "arbor": 33516, + "arbor": 24878, + "arboretum": 41719, + "arc": 4997, + "arc": 11592, + "arca": 25189, + "arca": 37612, + "arcade": 13331, + "arcadia": 38372, + "arch": 2458, + "arch": 8557, + "archa": 45619, + "archae": 10121, + "archaeological": 26163, + "archaeologists": 45035, + "archaeology": 14868, + "archan": 33359, + "archbishop": 23994, + "arche": 22474, + "archer": 21824, + "archers": 38407, + "archery": 23935, + "arches": 30771, + "archi": 4479, + "archie": 20557, + "archipel": 39750, + "archipelago": 43025, + "architec": 3359, + "architect": 12192, + "architects": 13290, + "architectural": 15360, + "architecture": 39038, + "architecture": 4920, + "archival": 39249, + "archive": 42257, + "archive": 10548, + "archived": 42379, + "archives": 9411, + "archy": 15643, + "arctic": 29716, + "arctic": 9138, + "ard": 3793, + "ard": 746, + "arden": 44600, + "arden": 27057, + "ardi": 23932, + "ardi": 19837, + "ardo": 35735, + "ardo": 9394, + "ards": 1654, + "ardu": 20906, + "arduino": 25398, + "are": 1076, + "are": 631, + "area": 2445, + "areas": 5429, + "arec": 18136, + "areclipse": 36030, + "ared": 5369, + "arel": 12798, + "arella": 24784, + "arelli": 48619, + "aren": 4033, + "aren": 4318, + "arena": 5463, + "arenas": 47860, + "arent": 37487, + "arer": 14857, + "arers": 33159, + "ares": 12224, + "arest": 11708, + "aret": 22247, + "areth": 47725, + "aretha": 42090, + "areyou": 37607, + "arez": 13108, + "arg": 27285, + "argent": 7812, + "argentina": 9789, + "argentine": 32582, + "argon": 40737, + "argos": 37443, + "argu": 7440, + "arguably": 30899, + "argue": 19788, + "argued": 48153, + "argues": 30045, + "arguing": 26549, + "argument": 16224, + "arguments": 24693, + "argus": 44300, + "argy": 21066, + "argyle": 36179, + "argyll": 40667, + "ari": 1221, + "ari": 3681, + "aria": 8883, + "arial": 42431, + "arian": 29980, + "arian": 6953, + "ariana": 14892, + "arianag": 23025, + "arianagrande": 23321, + "arianism": 44351, + "arians": 19104, + "arias": 22567, + "arie": 18774, + "ariel": 47959, + "ariel": 21025, + "aries": 5213, + "arif": 46621, + "arily": 12993, + "arin": 29564, + "arin": 18612, + "arina": 29271, + "arine": 29586, + "aring": 2142, + "ario": 8862, + "arios": 25392, + "aris": 15227, + "arise": 26490, + "arist": 12110, + "aristo": 25666, + "aristotle": 49156, + "arities": 31069, + "arity": 16608, + "arium": 11809, + "arius": 21482, + "ariz": 6516, + "arized": 40167, + "arizon": 28936, + "arizona": 7106, + "arjun": 24565, + "arjun": 20477, + "arjuna": 43835, + "ark": 11921, + "ark": 12010, + "arkansas": 12227, + "arkham": 36381, + "arl": 48542, + "arlington": 44940, + "arlington": 17865, + "arly": 3637, + "arm": 5671, + "arm": 4793, + "arma": 15887, + "arma": 38716, + "armad": 37897, + "armada": 34938, + "armagh": 44313, + "armani": 31314, + "armb": 37096, + "armchair": 45757, + "armed": 40471, + "armed": 8202, + "armen": 13145, + "armenia": 22008, + "armenian": 24891, + "armies": 46686, + "armin": 45481, + "arming": 19766, + "armist": 38150, + "armistice": 46765, + "armor": 16167, + "armored": 28214, + "armory": 38610, + "armour": 18503, + "armoured": 42514, + "arms": 5706, + "armstrong": 15005, + "army": 13541, + "army": 3133, + "armys": 27311, + "arn": 9348, + "arn": 37597, + "arnau": 45556, + "arne": 43509, + "arney": 35962, + "arnold": 49096, + "arnold": 13609, + "arns": 46692, + "aro": 7514, + "aro": 11551, + "aroa": 48209, + "arom": 16831, + "aroma": 40143, + "aroma": 26390, + "aromas": 47439, + "aromatherapy": 42584, + "aromatic": 39669, + "aron": 30855, + "aron": 28926, + "aroo": 47581, + "arora": 31897, + "arosa": 44264, + "arose": 44262, + "around": 35615, + "around": 1630, + "arqu": 35654, + "arquitec": 41703, + "arr": 39106, + "arr": 42489, + "arra": 32918, + "arra": 43827, + "arrahman": 44554, + "arran": 45722, + "arrang": 16711, + "arrange": 15410, + "arrange": 26311, + "arranged": 22451, + "arrangement": 23822, + "arrangements": 23792, + "arranging": 35321, + "array": 17293, + "arre": 4374, + "arrell": 28846, + "arrest": 9320, + "arrested": 5845, + "arresting": 43930, + "arrests": 20683, + "arri": 2115, + "arrival": 9073, + "arrivals": 19583, + "arrive": 8851, + "arrived": 3514, + "arrives": 9905, + "arriving": 10884, + "arro": 15729, + "arrog": 26997, + "arrogance": 47025, + "arrogant": 40582, + "arrow": 30920, + "arrow": 11149, + "arrowhead": 46393, + "arrows": 24768, + "arroyo": 45237, + "ars": 42815, + "ars": 864, + "arse": 22665, + "arsen": 5330, + "arsenal": 45234, + "arsenal": 6084, + "arsene": 32117, + "arson": 29937, + "art": 1486, + "art": 794, + "arta": 12031, + "arte": 13482, + "arte": 12947, + "artem": 40387, + "artemis": 45256, + "arten": 37043, + "arter": 29449, + "artery": 40062, + "artes": 48629, + "artforsale": 48239, + "artgallery": 31982, + "arth": 7146, + "arth": 20265, + "arthistory": 39313, + "arthr": 20807, + "arthritis": 22916, + "arthro": 43255, + "arthur": 35660, + "arthur": 8550, + "arti": 1635, + "arti": 34601, + "artic": 3003, + "articho": 30937, + "artichoke": 39647, + "article": 3550, + "articles": 11939, + "articul": 40343, + "articulate": 45444, + "artif": 8950, + "artifact": 37718, + "artifacts": 30249, + "artificial": 19357, + "artificial": 12040, + "artificialintelligence": 20799, + "artillery": 24465, + "artin": 33168, + "artin": 48540, + "artis": 41794, + "artisan": 36389, + "artisan": 21535, + "artisans": 40140, + "artist": 14326, + "artist": 2456, + "artiste": 41402, + "artistic": 12421, + "artiston": 48443, + "artistry": 38570, + "artists": 4899, + "artistson": 32127, + "artistsontwitter": 39469, + "artlovers": 35617, + "arto": 28464, + "artof": 31751, + "artoftheday": 43990, + "arton": 46744, + "arts": 22040, + "arts": 3812, + "artsy": 31588, + "arturo": 38591, + "artwit": 36713, + "artwork": 4188, + "artworks": 26215, + "arty": 45417, + "arty": 25916, + "aru": 13757, + "aru": 23907, + "aruba": 40131, + "arugula": 40770, + "arum": 48732, + "arun": 16105, + "arun": 31877, + "arunach": 47260, + "arunjaitley": 44874, + "arus": 22644, + "arvin": 16971, + "arvind": 21209, + "arvind": 41079, + "arvindkejriwal": 22971, + "arvo": 45726, + "arwx": 29824, + "ary": 4617, + "ary": 856, + "arya": 23594, + "aryan": 34966, + "as": 587, + "as": 601, + "asa": 39676, + "asa": 11914, + "asad": 42376, + "asaki": 22455, + "asam": 40603, + "asan": 22379, + "asan": 17841, + "asana": 42363, + "asant": 25536, + "asants": 37766, + "asap": 24199, + "asap": 10822, + "asar": 24733, + "asar": 49299, + "asb": 31186, + "asbe": 32113, + "asbestos": 33765, + "asc": 22720, + "asc": 23305, + "ascen": 20767, + "ascension": 35499, + "ascent": 36625, + "asci": 12753, + "asco": 25578, + "asco": 17488, + "ascot": 23723, + "ascri": 15506, + "asd": 36988, + "asda": 29391, + "asdf": 36857, + "asdfghj": 42758, + "asdfghjkl": 47660, + "ase": 8083, + "ase": 894, + "asean": 24472, + "aseball": 46903, + "ased": 2134, + "asen": 41085, + "aser": 39615, + "aser": 7209, + "ases": 3762, + "asf": 25863, + "asg": 34813, + "ash": 2067, + "ash": 2612, + "asha": 40572, + "asha": 13472, + "ashamed": 20633, + "ashby": 46531, + "ashe": 48523, + "ashe": 31752, + "asher": 37585, + "ashes": 12587, + "asheville": 28897, + "ashford": 37796, + "ashi": 15563, + "ashi": 15934, + "ashish": 33145, + "ashland": 39938, + "ashleigh": 49356, + "ashley": 17825, + "ashley": 8957, + "asho": 20273, + "ashok": 38141, + "ashore": 31194, + "ashram": 43445, + "ashton": 43264, + "ashton": 12228, + "ashtra": 18118, + "asi": 3596, + "asi": 12562, + "asia": 5741, + "asian": 21737, + "asian": 7128, + "asiangames": 49108, + "asians": 36771, + "asics": 31097, + "aside": 13676, + "asif": 37302, + "asim": 46050, + "asin": 48432, + "asin": 44347, + "asing": 4194, + "asingly": 15803, + "asion": 31753, + "asis": 12398, + "ask": 11027, + "ask": 2765, + "asked": 3993, + "asking": 5914, + "asks": 7953, + "asl": 41650, + "asleep": 10749, + "asley": 28206, + "asli": 44290, + "asm": 13851, + "asma": 38497, + "asmsg": 19839, + "aso": 30343, + "aso": 27932, + "asober": 43749, + "asocial": 48557, + "ason": 1163, + "asone": 31249, + "asons": 4249, + "asos": 37924, + "asot": 47968, + "asp": 17814, + "asp": 36666, + "asparag": 20301, + "asparagus": 20604, + "aspe": 10894, + "aspect": 19681, + "aspects": 18203, + "aspen": 35695, + "aspen": 25712, + "asper": 32991, + "asph": 28019, + "asphalt": 30574, + "aspir": 12669, + "aspirations": 36127, + "aspire": 24836, + "aspiring": 21862, + "asports": 43695, + "asr": 48052, + "asroma": 41000, + "ass": 12664, + "ass": 5301, + "assa": 47715, + "assad": 18699, + "assam": 19930, + "assan": 26352, + "assange": 27565, + "assas": 9603, + "assassin": 14366, + "assassin": 20029, + "assassinated": 40488, + "assassination": 24907, + "assassins": 34918, + "assassinscre": 36428, + "assassinscreed": 46082, + "assau": 7908, + "assaul": 19596, + "assault": 9679, + "assaulted": 30785, + "assaulting": 44143, + "asse": 3166, + "asse": 38600, + "assel": 37582, + "assemb": 5531, + "assemble": 26169, + "assembled": 22627, + "assemblies": 47406, + "assembling": 38670, + "assembly": 34542, + "assembly": 7059, + "assen": 38651, + "asser": 25665, + "asses": 21596, + "assess": 9209, + "assess": 23211, + "assessed": 44160, + "assessing": 31364, + "assessment": 10590, + "assessments": 32753, + "asset": 48463, + "asset": 13039, + "assets": 13170, + "assi": 2907, + "assi": 39540, + "assie": 31624, + "assign": 14190, + "assigned": 25767, + "assignment": 17342, + "assignments": 34257, + "assim": 36394, + "assimil": 43467, + "assist": 26558, + "assist": 10286, + "assistance": 11685, + "assistant": 6799, + "assistants": 31054, + "assisted": 18095, + "assisting": 24243, + "assists": 12675, + "assn": 44208, + "asso": 17617, + "assoc": 18891, + "associ": 3566, + "associate": 11777, + "associated": 11164, + "associates": 17358, + "association": 5578, + "associations": 33209, + "assor": 38604, + "assorted": 36701, + "assortment": 43112, + "asst": 24767, + "assu": 8328, + "assume": 19294, + "assumed": 37661, + "assuming": 29422, + "assump": 41182, + "assumption": 40773, + "assumptions": 45948, + "assurance": 28408, + "assure": 39161, + "assured": 25591, + "assures": 41988, + "assy": 29940, + "assy": 12963, + "ast": 1761, + "ast": 1242, + "asta": 43269, + "aste": 25033, + "aste": 25579, + "aster": 11013, + "aster": 9526, + "asteroid": 32253, + "asters": 33139, + "asth": 16684, + "asthma": 24610, + "asthour": 41238, + "astic": 15876, + "asting": 29984, + "astle": 46141, + "asto": 47275, + "aston": 24760, + "aston": 13879, + "astoni": 21962, + "astonishing": 27110, + "astonmartin": 40760, + "astor": 26391, + "astor": 47086, + "astoria": 34798, + "astounding": 37748, + "astr": 37609, + "astra": 47205, + "astra": 36079, + "astral": 45889, + "astri": 31243, + "astrid": 46499, + "astro": 8563, + "astro": 15318, + "astrology": 28526, + "astron": 7982, + "astronaut": 18376, + "astronauts": 29733, + "astronom": 23264, + "astronomer": 40036, + "astronomers": 44268, + "astronomical": 39775, + "astronomy": 17472, + "astrophotography": 38559, + "astros": 17598, + "asts": 10452, + "astu": 43137, + "astur": 45795, + "asu": 13157, + "asu": 16001, + "asun": 36044, + "asure": 3813, + "asus": 27269, + "aswell": 42978, + "asx": 38906, + "asy": 8524, + "asy": 2333, + "asylum": 15638, + "asym": 32539, + "at": 527, + "at": 536, + "ata": 4236, + "atable": 23909, + "atal": 24877, + "atal": 24797, + "atan": 33446, + "atar": 20128, + "atar": 7995, + "atari": 21549, + "atas": 30057, + "atay": 39518, + "atc": 28383, + "atch": 15938, + "atd": 33890, + "ate": 992, + "ate": 671, + "ateam": 42784, + "ateau": 16359, + "atec": 37352, + "atech": 31306, + "ated": 14589, + "ated": 943, + "atedly": 24698, + "atee": 32839, + "ateful": 5419, + "atelier": 29932, + "ately": 3862, + "atem": 17116, + "aten": 47984, + "atene": 30405, + "ateneo": 33904, + "ater": 18597, + "ater": 5877, + "ateral": 18819, + "aters": 22364, + "ates": 20370, + "ates": 1150, + "atest": 1705, + "ateur": 43677, + "atf": 28013, + "ath": 1374, + "ath": 1649, + "atha": 22530, + "atham": 23383, + "athan": 41260, + "athan": 26701, + "athe": 8963, + "athed": 47402, + "atheism": 25823, + "atheist": 22571, + "atheists": 47155, + "athen": 29112, + "athena": 30705, + "athens": 13524, + "ather": 6171, + "ather": 1817, + "athered": 34091, + "athers": 17266, + "athi": 28918, + "athing": 36069, + "athle": 3310, + "athlete": 7388, + "athletes": 7125, + "athletic": 33182, + "athletic": 9028, + "athletics": 7019, + "athlon": 14670, + "athome": 38217, + "athon": 4951, + "aths": 28835, + "athy": 34488, + "athy": 13183, + "ati": 591, + "ati": 6751, + "atia": 10908, + "atic": 20248, + "atic": 2647, + "atically": 13558, + "atics": 15666, + "atie": 30137, + "aties": 40060, + "atif": 41592, + "atiku": 37912, + "atile": 15474, + "atility": 23373, + "atime": 20158, + "atin": 36903, + "atin": 23047, + "atine": 39741, + "ating": 25653, + "ating": 1074, + "atio": 35401, + "ation": 2265, + "ation": 656, + "ational": 14205, + "ational": 3108, + "ationals": 44593, + "ationday": 20082, + "ations": 986, + "atis": 45456, + "atis": 41142, + "atism": 45638, + "ative": 18422, + "ative": 1648, + "atively": 11929, + "atives": 5629, + "ativity": 25166, + "atkins": 27734, + "atkinson": 28908, + "atl": 5411, + "atl": 10629, + "atla": 36043, + "atlan": 6818, + "atlanta": 39964, + "atlanta": 6839, + "atlantic": 28804, + "atlantic": 8189, + "atlantis": 27790, + "atlas": 15775, + "atle": 21170, + "atleast": 33231, + "atleti": 46067, + "atletico": 27501, + "atm": 14127, + "atmo": 8271, + "atmosphere": 10506, + "atmospheric": 24223, + "ato": 7987, + "ato": 4364, + "atoday": 26799, + "atom": 22418, + "atom": 24031, + "atomic": 18996, + "atoms": 41434, + "aton": 31525, + "aton": 10012, + "atop": 17455, + "ator": 10748, + "ator": 1962, + "atore": 28314, + "atorial": 32040, + "atories": 35678, + "atorium": 41306, + "ators": 3389, + "atory": 5920, + "atos": 41643, + "atour": 42967, + "atown": 24000, + "atp": 38105, + "atp": 19817, + "atr": 43247, + "atra": 20227, + "atra": 14401, + "atravel": 36981, + "atre": 46057, + "atri": 13882, + "atri": 38889, + "atric": 32238, + "atric": 13652, + "atrics": 36253, + "atrist": 41879, + "atrium": 29725, + "atrix": 43003, + "atro": 18724, + "atroc": 36197, + "atrocities": 37551, + "atry": 28334, + "ats": 46890, + "ats": 1032, + "atsu": 26531, + "att": 1017, + "att": 7103, + "atta": 7282, + "atta": 9146, + "attach": 43676, + "attach": 35653, + "attached": 11038, + "attachment": 28638, + "attack": 24971, + "attack": 3815, + "attacked": 12366, + "attacker": 39288, + "attackers": 47701, + "attacking": 16813, + "attacks": 7321, + "attain": 46459, + "attar": 37110, + "attemp": 4933, + "attempt": 7409, + "attempted": 17408, + "attempting": 18195, + "attempts": 15610, + "atten": 4084, + "atten": 32408, + "attenborough": 45860, + "attend": 9841, + "attend": 5802, + "attendance": 11928, + "attendant": 35424, + "attended": 8140, + "attendees": 14648, + "attending": 6696, + "attends": 22248, + "attention": 4936, + "atters": 30675, + "atthe": 21489, + "atti": 49265, + "atti": 16235, + "attic": 26766, + "attire": 21222, + "attitude": 10648, + "attitudes": 27611, + "attle": 14685, + "attle": 5030, + "attn": 25677, + "attor": 8856, + "attorney": 10372, + "attorneys": 29113, + "attrac": 7154, + "attract": 17010, + "attracted": 28493, + "attracting": 31909, + "attraction": 16807, + "attractions": 22307, + "attractive": 12231, + "attracts": 31024, + "attribu": 24624, + "attributed": 37520, + "attributes": 40763, + "attu": 43173, + "atty": 36705, + "atu": 15191, + "atu": 24295, + "atuesday": 34841, + "atul": 1744, + "atul": 43948, + "atum": 48295, + "atur": 14986, + "aturday": 29027, + "ature": 25305, + "ature": 4490, + "atures": 7358, + "atus": 14795, + "atv": 19598, + "atwood": 45680, + "atwork": 39680, + "atx": 34849, + "atx": 20136, + "aty": 40974, + "aty": 33107, + "atz": 30432, + "au": 627, + "au": 2566, + "aua": 45906, + "aub": 45938, + "auberg": 49382, + "aubre": 25899, + "aubrey": 34110, + "auburn": 42269, + "auburn": 14534, + "auc": 24489, + "auch": 43024, + "auck": 14588, + "auckland": 16072, + "auction": 48160, + "auction": 6462, + "auctioned": 41073, + "auctions": 24876, + "aucus": 47374, + "aud": 16107, + "aud": 19711, + "audi": 5091, + "audi": 10277, + "audible": 33227, + "audience": 6863, + "audiences": 22328, + "audio": 13792, + "audio": 5766, + "audiobook": 26282, + "audit": 12505, + "audit": 17625, + "auditi": 37377, + "audition": 18673, + "auditions": 21134, + "auditor": 38050, + "auditorium": 15063, + "audre": 16075, + "audrey": 18812, + "audu": 27934, + "audubon": 40275, + "auer": 33460, + "auf": 28924, + "aug": 15397, + "aug": 5720, + "auga": 22797, + "augh": 28310, + "augh": 14005, + "augmente": 48356, + "augmented": 32708, + "augu": 2610, + "august": 24353, + "august": 3171, + "augusta": 26144, + "augustine": 27397, + "augustus": 36835, + "auk": 19058, + "aul": 20695, + "aul": 34391, + "ault": 47253, + "ault": 10219, + "aun": 10608, + "aun": 38721, + "aunt": 12685, + "auntie": 23783, + "aunty": 29528, + "aur": 8156, + "aur": 17282, + "aura": 27728, + "aure": 36010, + "aureli": 35980, + "auror": 30067, + "aurora": 13500, + "aus": 10624, + "aus": 7630, + "ausa": 37384, + "ausbiz": 46543, + "ausch": 33926, + "auschwitz": 36523, + "ausopen": 27831, + "ausp": 35039, + "auspicious": 38806, + "auspol": 8241, + "aussi": 19762, + "aussie": 40230, + "aussie": 14424, + "aussies": 35727, + "aust": 26301, + "aust": 25418, + "austen": 29885, + "auster": 25030, + "austerity": 26982, + "austin": 12845, + "austin": 5125, + "austinmahone": 34678, + "austr": 2518, + "australi": 13798, + "australia": 3444, + "australian": 23630, + "australian": 6258, + "australians": 31488, + "austri": 8946, + "austria": 11960, + "austrian": 20638, + "ausv": 35206, + "ausvotes": 34661, + "aut": 12343, + "auth": 2381, + "auth": 38247, + "authent": 18158, + "authentic": 41266, + "authentic": 10369, + "authentication": 39746, + "authenticity": 35734, + "autho": 34552, + "author": 14447, + "author": 4358, + "authored": 37928, + "authori": 19207, + "authorities": 12729, + "authority": 10524, + "authorization": 48854, + "authorized": 28463, + "authors": 10765, + "auti": 8200, + "autism": 36256, + "autism": 11244, + "autisma": 43324, + "autistic": 29360, + "auto": 3917, + "auto": 5668, + "autobiography": 31509, + "autodesk": 40415, + "autograph": 10657, + "autograph": 13722, + "autographed": 16309, + "autographs": 17376, + "autoimmune": 45509, + "autom": 4114, + "automate": 43203, + "automated": 19022, + "automatic": 12126, + "automatically": 20725, + "automation": 12328, + "automobi": 44813, + "automobile": 25258, + "automotive": 12607, + "auton": 13100, + "autonews": 43975, + "autonom": 17870, + "autonomous": 20722, + "autonomy": 39223, + "autopsy": 44436, + "autos": 31118, + "autoshow": 46788, + "auts": 21140, + "autu": 5445, + "autum": 31783, + "autumn": 28940, + "autumn": 6110, + "autumnal": 35481, + "aux": 18154, + "aux": 8909, + "auxiliary": 37778, + "av": 722, + "av": 8484, + "ava": 12385, + "avage": 31505, + "avail": 1651, + "avail": 16686, + "availability": 17551, + "available": 1685, + "aval": 18012, + "avalan": 23970, + "avalanche": 25815, + "avalley": 45082, + "avalon": 30436, + "avan": 27971, + "avan": 33351, + "avant": 24305, + "avar": 33423, + "avatar": 18219, + "ave": 10062, + "ave": 4860, + "avec": 25828, + "aved": 47918, + "avel": 46817, + "avel": 48088, + "aven": 5963, + "aven": 32971, + "aveng": 21935, + "avenger": 24799, + "avengers": 39413, + "avengers": 12016, + "avengersendgame": 49342, + "avent": 22700, + "avenue": 7042, + "aver": 8788, + "aver": 11403, + "average": 6254, + "averaged": 37310, + "averages": 48982, + "averaging": 35266, + "avery": 20313, + "aves": 14023, + "avfc": 21304, + "avg": 19452, + "avgeek": 11114, + "avi": 3324, + "avi": 11297, + "avia": 38710, + "avian": 24115, + "aviation": 27717, + "aviation": 7617, + "aviator": 38921, + "aviators": 48011, + "avici": 46192, + "avicii": 49158, + "avid": 19118, + "avier": 14598, + "avila": 45339, + "aville": 40689, + "avin": 46204, + "avis": 45163, + "avis": 19765, + "aviv": 22130, + "aviva": 47122, + "aviz": 27607, + "avl": 44749, + "avo": 4496, + "avo": 32400, + "avoc": 12291, + "avocado": 14135, + "avocados": 48911, + "avoi": 16797, + "avoid": 30448, + "avoid": 5983, + "avoidance": 47983, + "avoided": 32103, + "avoiding": 22086, + "avoids": 48220, + "avon": 22790, + "avon": 17348, + "avril": 37763, + "avs": 31896, + "avut": 44472, + "avy": 29973, + "aw": 808, + "aw": 5557, + "awa": 4820, + "awa": 6872, + "await": 20769, + "awaited": 20092, + "awaiting": 14872, + "awaits": 15635, + "awak": 9776, + "awak": 41387, + "awake": 14695, + "awaken": 35412, + "awakening": 17017, + "awakens": 23191, + "awal": 42447, + "awal": 35090, + "awan": 48869, + "awan": 20420, + "awar": 5745, + "award": 36310, + "award": 2047, + "awarded": 7368, + "awarding": 37089, + "awards": 34528, + "awards": 2320, + "aware": 4427, + "aware": 7196, + "awareness": 19217, + "awareness": 4823, + "awarenessmonth": 34278, + "awarenessweek": 35294, + "away": 21088, + "away": 1520, + "aways": 12782, + "awaz": 18586, + "awd": 34846, + "awe": 1693, + "awe": 14106, + "aweather": 42142, + "aweather": 28681, + "awec": 38916, + "aweed": 29724, + "awesom": 16727, + "awesome": 30390, + "awesome": 1848, + "awesomeness": 22430, + "awful": 13617, + "awg": 46350, + "awgs": 35275, + "awh": 39566, + "awhile": 19171, + "awi": 15167, + "awil": 47271, + "awilliams": 42163, + "awk": 8888, + "awk": 40943, + "awkward": 42337, + "awkward": 10304, + "awn": 46222, + "awp": 43300, + "aws": 19658, + "awsome": 47196, + "awson": 36286, + "aww": 11568, + "awww": 15634, + "awwww": 26460, + "awx": 28385, + "ax": 3165, + "ax": 9203, + "axe": 19861, + "axel": 47889, + "axel": 32131, + "axes": 45970, + "axi": 30672, + "axial": 46550, + "axis": 19614, + "axle": 39003, + "axx": 47411, + "ay": 658, + "ay": 551, + "aya": 5917, + "ayala": 39827, + "ayama": 41194, + "ayan": 37781, + "ayan": 16269, + "ayana": 37400, + "ayas": 40904, + "ayat": 44902, + "ayat": 35720, + "aye": 21661, + "aye": 12446, + "ayer": 24852, + "ayers": 42783, + "ayesha": 46570, + "ayi": 33025, + "ayles": 44706, + "ayne": 35669, + "ayo": 21929, + "ayo": 18708, + "ayr": 23002, + "ayr": 36473, + "ayrshire": 32687, + "ays": 785, + "ayu": 40769, + "ayurve": 27185, + "ayurveda": 38986, + "ayush": 44831, + "ayy": 32514, + "ayyy": 41052, + "az": 854, + "az": 5468, + "aza": 22883, + "azad": 37838, + "azalea": 34087, + "azam": 34727, + "azar": 27911, + "azcardinals": 48846, + "aze": 41157, + "aze": 28485, + "azer": 19169, + "azerbai": 20649, + "azerbaijan": 23888, + "azhar": 47019, + "azi": 23914, + "azi": 18452, + "azine": 29140, + "azione": 48335, + "aziz": 41205, + "aziz": 29630, + "azo": 41227, + "azon": 36854, + "azores": 42826, + "azte": 33270, + "aztec": 34749, + "aztecs": 49387, + "azu": 27701, + "azu": 46963, + "azul": 39807, + "azure": 18514, + "azwx": 30262, + "azy": 24783, + "azz": 9817, + "azz": 26453, + "azza": 22255, + "azzi": 18758, + "azzle": 39974, + "azzo": 26779, + "azzur": 37055, + "azzy": 44534, + "añ": 23716, + "años": 41634, + "b": 65, + "b": 321, + "ba": 932, + "ba": 1792, + "baa": 33004, + "baahu": 34145, + "baahubali": 38663, + "bab": 1202, + "bab": 19039, + "baba": 12631, + "babe": 31177, + "babe": 7716, + "babes": 14253, + "babies": 6635, + "babs": 36217, + "babu": 21623, + "baby": 7268, + "baby": 1794, + "babygirl": 39554, + "babylon": 31928, + "babymetal": 45013, + "babys": 22266, + "babysitting": 34186, + "bac": 2791, + "bac": 25867, + "bacca": 40708, + "bach": 11773, + "bach": 8758, + "bachchan": 17690, + "bachel": 11283, + "bachelor": 45508, + "bachelor": 16766, + "bachelore": 26009, + "bachelorette": 29093, + "bacher": 49211, + "back": 1663, + "back": 893, + "backbone": 35635, + "backdrop": 20802, + "backed": 12721, + "backer": 22183, + "backers": 32934, + "background": 5994, + "backgrounds": 28215, + "backing": 14935, + "backlash": 31519, + "backpack": 14894, + "backpacking": 29524, + "backpacks": 37063, + "backs": 7562, + "backseat": 48812, + "backstage": 9236, + "backstreet": 46337, + "backthe": 26127, + "backto": 18703, + "backtoschool": 28730, + "backtothe": 43059, + "backup": 14415, + "backward": 37964, + "backwards": 21283, + "backyard": 12608, + "bacon": 48666, + "bacon": 7104, + "bacter": 11814, + "bacteria": 16556, + "bacterial": 26101, + "bad": 2564, + "bad": 2103, + "bada": 37475, + "badan": 39149, + "badass": 11616, + "baddest": 38112, + "baden": 36690, + "bader": 42254, + "badge": 11301, + "badger": 32686, + "badger": 22363, + "badgers": 22521, + "badges": 20084, + "badlands": 43192, + "badly": 13684, + "badminton": 21412, + "badoo": 33192, + "bados": 25755, + "bae": 32834, + "bae": 6855, + "baek": 18557, + "baek": 32702, + "baekhyun": 21572, + "baes": 46332, + "baf": 13616, + "baff": 35693, + "bafta": 29199, + "bag": 3408, + "bag": 3365, + "bage": 9698, + "bagel": 28777, + "bagels": 37489, + "baggage": 31402, + "bagged": 34047, + "bagh": 21659, + "bagh": 37271, + "baghdad": 30763, + "bago": 25105, + "bags": 6136, + "bagu": 27749, + "baguette": 45334, + "bah": 8372, + "bah": 16685, + "baha": 29592, + "baham": 43718, + "bahamas": 21224, + "bahan": 28704, + "bahn": 33452, + "bahrain": 12503, + "bai": 6232, + "bai": 23339, + "bail": 22933, + "bail": 16986, + "bailey": 27535, + "bailey": 10180, + "bain": 40784, + "bain": 21593, + "bair": 29059, + "baird": 40474, + "bait": 18010, + "baj": 20713, + "baja": 40418, + "baja": 28374, + "bajo": 32619, + "bak": 4059, + "bak": 23742, + "bakar": 41414, + "bake": 20736, + "bake": 11878, + "baked": 10364, + "baker": 27303, + "baker": 7743, + "bakers": 35293, + "bakers": 40231, + "bakersfield": 40149, + "bakery": 13377, + "bakes": 43057, + "bakhta": 44912, + "bakhtawar": 46937, + "bakhtawarbz": 47118, + "baking": 11467, + "baku": 46417, + "baku": 31852, + "bal": 1398, + "bal": 2282, + "bala": 20291, + "balaji": 48694, + "balance": 42894, + "balance": 6827, + "balanced": 15273, + "balances": 37733, + "balancing": 23541, + "balboa": 45098, + "balcony": 16169, + "bald": 11153, + "bald": 14875, + "baldhead": 29191, + "baldwin": 16242, + "bale": 48573, + "bale": 18873, + "bales": 42879, + "bali": 16432, + "bali": 10900, + "balkan": 48499, + "balkans": 42987, + "ball": 3807, + "ball": 1069, + "balla": 42246, + "ballad": 33472, + "ballarat": 46645, + "ballard": 31750, + "baller": 49194, + "baller": 25655, + "ballerina": 34962, + "ballers": 34173, + "ballet": 10703, + "balli": 29406, + "ballin": 47444, + "ballin": 33057, + "balling": 47588, + "ballis": 46675, + "ballistic": 36667, + "ballo": 8871, + "ballon": 36469, + "balloon": 13634, + "balloons": 18130, + "ballot": 14185, + "ballots": 35051, + "ballpark": 26080, + "ballroom": 15493, + "balls": 6927, + "bally": 17275, + "bally": 29451, + "balm": 24962, + "balmain": 45929, + "balo": 12395, + "baloch": 23173, + "balochistan": 21918, + "balot": 44615, + "balotelli": 45721, + "bals": 44154, + "balsam": 29121, + "balsamic": 32654, + "balt": 24441, + "balti": 8400, + "baltic": 23817, + "baltimore": 38502, + "baltimore": 9582, + "balu": 38093, + "bam": 6383, + "bam": 12686, + "bama": 20021, + "bambam": 34538, + "bambi": 46596, + "bamboo": 49322, + "bamboo": 16748, + "ban": 1159, + "ban": 2777, + "bana": 18428, + "banan": 38410, + "banana": 8922, + "bananas": 19121, + "banc": 39252, + "band": 4613, + "band": 1963, + "banda": 31865, + "bandai": 42054, + "bandana": 39265, + "bandcamp": 32229, + "banded": 37804, + "bandic": 44400, + "bandit": 27639, + "bandits": 33940, + "bandra": 41393, + "bands": 7858, + "bandung": 29512, + "bandwagon": 36432, + "bandwidth": 48859, + "bane": 9597, + "banerjee": 48102, + "banff": 29565, + "bang": 3524, + "bang": 6907, + "bangalore": 14697, + "banger": 24872, + "bangers": 38311, + "banging": 33033, + "bangkok": 12351, + "bangla": 10339, + "bangla": 45928, + "bangladesh": 11245, + "bangle": 37634, + "bangor": 31190, + "bangs": 27992, + "bangtan": 39131, + "bani": 19732, + "banjo": 27014, + "bank": 7061, + "bank": 2723, + "banker": 27316, + "bankers": 30599, + "bankholiday": 48868, + "banking": 9566, + "bankno": 49201, + "bankof": 39120, + "bankrup": 21904, + "bankrupt": 23077, + "bankrupt": 37288, + "bankruptcy": 23978, + "banks": 6367, + "banksy": 33350, + "bann": 5304, + "banned": 12012, + "banner": 9185, + "banners": 23145, + "banning": 26246, + "bannon": 29710, + "bano": 42947, + "banquet": 14254, + "bans": 15146, + "bant": 23301, + "bant": 46657, + "banter": 25535, + "bao": 39487, + "bao": 20408, + "bap": 7415, + "bap": 23754, + "bapti": 15477, + "baptism": 36765, + "baptist": 13274, + "baptiste": 45770, + "baptized": 45400, + "bar": 1040, + "bar": 2411, + "bara": 19345, + "barack": 18670, + "barack": 22481, + "barackobama": 18885, + "barak": 47419, + "barak": 16260, + "barang": 38446, + "barb": 24173, + "barb": 20913, + "barbados": 26992, + "barbar": 7906, + "barbara": 10937, + "barbarian": 42530, + "barbe": 18372, + "barbecue": 23501, + "barber": 19517, + "barber": 12296, + "barbershop": 37707, + "barbican": 47668, + "barbie": 16923, + "barca": 22942, + "barcel": 6134, + "barcelon": 47820, + "barcelona": 6412, + "barclay": 48877, + "barclay": 45276, + "barclays": 29538, + "bard": 39812, + "bard": 17514, + "bare": 16023, + "bare": 14318, + "barefoot": 30327, + "barely": 12684, + "bargain": 15076, + "bargaining": 41282, + "bargains": 34126, + "barge": 28272, + "bari": 21428, + "bari": 28016, + "barista": 31078, + "barit": 46300, + "bark": 32333, + "bark": 16560, + "barker": 20618, + "barking": 32676, + "barkley": 30266, + "barley": 22607, + "barlow": 25483, + "barn": 10490, + "barn": 10942, + "barnab": 43272, + "barnard": 44332, + "barne": 42527, + "barnes": 13102, + "barnet": 41943, + "barnett": 27650, + "barney": 24563, + "barns": 43759, + "barnsley": 37109, + "barnsley": 32153, + "baro": 17422, + "baro": 30817, + "baron": 48371, + "baron": 19349, + "baroness": 45056, + "barons": 45596, + "baroque": 25065, + "barr": 39473, + "barr": 22492, + "barra": 28442, + "barra": 33542, + "barrabest": 41376, + "barrac": 40835, + "barracks": 35822, + "barre": 13840, + "barre": 38257, + "barred": 33261, + "barrel": 11703, + "barrels": 22059, + "barren": 46743, + "barrett": 18701, + "barri": 8660, + "barric": 29189, + "barrie": 27090, + "barrier": 15706, + "barriers": 16321, + "barrington": 48954, + "barron": 34881, + "barrow": 42568, + "barrow": 24983, + "barry": 18028, + "barry": 8461, + "barrymore": 49310, + "bars": 8616, + "barstool": 44826, + "bart": 14838, + "bart": 12870, + "bartender": 33498, + "barthol": 48989, + "bartlett": 37130, + "bartol": 38209, + "barton": 48853, + "barton": 20345, + "baru": 16356, + "barun": 38278, + "barunsob": 41398, + "barça": 32788, + "bas": 1244, + "bas": 11420, + "basa": 26142, + "base": 2776, + "base": 4579, + "baseball": 23479, + "baseball": 3470, + "based": 35196, + "based": 2812, + "basel": 42803, + "basel": 20903, + "baseline": 40648, + "baseman": 45910, + "basement": 14792, + "bases": 20496, + "bash": 20462, + "bash": 10972, + "bashing": 37545, + "bashir": 42799, + "basic": 40452, + "basic": 7696, + "basically": 9125, + "basics": 15825, + "basil": 19225, + "basil": 14936, + "basilica": 27879, + "basin": 16117, + "basing": 47321, + "basis": 12278, + "baske": 3713, + "basket": 10338, + "basketball": 40023, + "basketball": 3835, + "baskets": 27787, + "basking": 39769, + "basque": 37175, + "bass": 22831, + "bass": 5992, + "bassett": 45992, + "bassist": 26496, + "bast": 28092, + "basti": 8559, + "bastille": 41874, + "bat": 2121, + "bat": 6575, + "bata": 39277, + "batb": 33962, + "batch": 9413, + "bate": 25034, + "bate": 28277, + "bateman": 41635, + "bates": 21727, + "batgirl": 46460, + "bath": 6064, + "bath": 5713, + "bathing": 20144, + "bathro": 21201, + "bathroom": 8470, + "bathrooms": 26434, + "baths": 19442, + "bathtub": 39942, + "bathurst": 36365, + "bati": 23362, + "bati": 37589, + "batman": 27811, + "batman": 7223, + "baton": 24331, + "bats": 14984, + "batsman": 35432, + "batt": 2407, + "batt": 48595, + "battalion": 20820, + "batter": 12654, + "batter": 31855, + "battered": 34375, + "batteries": 16666, + "battersea": 35839, + "battery": 7870, + "batting": 17401, + "battle": 7344, + "battle": 3528, + "battled": 37837, + "battlefield": 16055, + "battlefront": 42214, + "battleof": 47560, + "battles": 14213, + "battleship": 35165, + "battling": 17268, + "bau": 6055, + "bau": 34840, + "bauer": 22903, + "baugh": 41301, + "baum": 19840, + "bautista": 31881, + "bav": 21075, + "bavaria": 39977, + "bavarian": 44458, + "baw": 19808, + "bax": 21216, + "baxter": 26168, + "bay": 3631, + "bay": 2174, + "baya": 31573, + "bayan": 43895, + "bayarea": 28260, + "bayer": 48548, + "bayer": 29183, + "bayern": 14666, + "baylor": 21721, + "bayou": 33955, + "bays": 40156, + "baz": 10430, + "baz": 25268, + "bazaar": 20070, + "bazar": 49298, + "bb": 1174, + "bb": 3529, + "bba": 27762, + "bball": 15664, + "bbb": 33535, + "bbc": 5123, + "bbc": 5188, + "bbcc": 39052, + "bbce": 33818, + "bbcnews": 29370, + "bbcone": 28259, + "bbcqt": 37343, + "bbcr": 35802, + "bbcra": 17115, + "bbcradi": 49213, + "bbcradio": 22876, + "bbcsport": 49321, + "bbcspringwatch": 37358, + "bbctwo": 40395, + "bbcworld": 47340, + "bbe": 37559, + "bbed": 9077, + "bber": 7933, + "bbers": 36494, + "bbhutto": 28085, + "bbhuttozardari": 28135, + "bbi": 37047, + "bbin": 38553, + "bbing": 9787, + "bbins": 42504, + "bbl": 21961, + "bble": 26570, + "bble": 5924, + "bbled": 37626, + "bbles": 18093, + "bblo": 21231, + "bbloggers": 26614, + "bbly": 43031, + "bbm": 25382, + "bbmas": 22145, + "bbn": 28427, + "bbnaija": 20984, + "bbo": 21892, + "bbq": 41270, + "bbq": 6726, + "bbs": 10002, + "bbuk": 45978, + "bby": 11166, + "bby": 3810, + "bc": 3116, + "bc": 2162, + "bcc": 41509, + "bcci": 36138, + "bce": 36510, + "bcfc": 34359, + "bch": 36684, + "bcn": 25766, + "bcoz": 46373, + "bcpoli": 24389, + "bcs": 24909, + "bcu": 28299, + "bd": 24358, + "bd": 11165, + "bday": 33022, + "bday": 5781, + "bdg": 48418, + "bds": 26732, + "be": 571, + "be": 655, + "bea": 21886, + "bea": 20925, + "beach": 6068, + "beach": 2117, + "beaches": 12183, + "beachlife": 43824, + "beacon": 36883, + "beacon": 18858, + "beacons": 39395, + "bead": 31621, + "bead": 23557, + "beaded": 26661, + "beads": 14099, + "beagle": 30044, + "beak": 36498, + "beal": 45769, + "beale": 39717, + "beam": 35339, + "beam": 13663, + "beams": 23993, + "bean": 16471, + "bean": 5328, + "beanie": 21534, + "beans": 8302, + "bear": 6375, + "bear": 4298, + "bearable": 38608, + "bearcats": 33242, + "beard": 26157, + "beard": 9052, + "bearded": 28459, + "beardown": 43687, + "beards": 33020, + "bearer": 30686, + "bearers": 47986, + "bearing": 18370, + "bearings": 42083, + "bearish": 34829, + "bears": 6182, + "beasley": 43349, + "beast": 20847, + "beast": 6957, + "beastmode": 43076, + "beasts": 21771, + "beat": 3774, + "beat": 3018, + "beaten": 10864, + "beater": 41974, + "beati": 44386, + "beating": 10078, + "beatles": 11961, + "beatport": 31421, + "beatrice": 36922, + "beats": 6289, + "beatthe": 40550, + "beatty": 39903, + "beatz": 33363, + "beau": 1016, + "beau": 14298, + "beaufort": 45423, + "beaumont": 32857, + "beaut": 24559, + "beauti": 1154, + "beauties": 14874, + "beautiful": 13662, + "beautiful": 1215, + "beautifully": 10627, + "beauty": 12881, + "beauty": 2488, + "beav": 23260, + "beaver": 26432, + "beaver": 22874, + "beavers": 34513, + "beavs": 43909, + "bebe": 23331, + "bec": 6899, + "bec": 10773, + "became": 5464, + "because": 32714, + "because": 1631, + "becca": 27088, + "bech": 44055, + "beck": 8256, + "beck": 10396, + "becker": 26918, + "beckett": 27249, + "beckham": 18764, + "becky": 32406, + "becky": 18921, + "become": 2989, + "becomes": 6766, + "becoming": 6208, + "bed": 4152, + "bed": 2722, + "bedding": 31761, + "bedford": 20779, + "bedi": 39181, + "bedro": 18415, + "bedroom": 8411, + "bedrooms": 23996, + "beds": 13914, + "bedside": 47473, + "bedtime": 22115, + "bee": 6097, + "bee": 5028, + "beech": 32733, + "beech": 27596, + "beef": 21703, + "beef": 6529, + "beek": 37915, + "been": 33986, + "been": 1025, + "beep": 33432, + "beer": 8885, + "beer": 2544, + "beers": 10907, + "bees": 36249, + "bees": 9100, + "beet": 12582, + "beet": 28621, + "beethoven": 23656, + "beetle": 16534, + "beetles": 36317, + "beetro": 29251, + "beetroot": 31638, + "beets": 36087, + "before": 20898, + "before": 1348, + "beg": 2219, + "beg": 22401, + "began": 8636, + "begg": 36769, + "begging": 25371, + "begin": 19197, + "begin": 4947, + "beginner": 24351, + "beginners": 21930, + "beginning": 5791, + "beginnings": 22581, + "begins": 4635, + "begs": 43531, + "begun": 10514, + "beh": 21971, + "beh": 41612, + "beha": 5737, + "behalf": 11470, + "behave": 28825, + "behaved": 41617, + "behavi": 6149, + "behaving": 40745, + "behavior": 10461, + "behavioral": 25135, + "behaviors": 37741, + "behaviour": 14655, + "behavioural": 46019, + "behe": 42329, + "behin": 2335, + "behind": 2403, + "behindthe": 21104, + "behindthescenes": 26253, + "behold": 15929, + "bei": 38991, + "bei": 23227, + "beige": 26677, + "beij": 11547, + "beijing": 11796, + "bein": 39117, + "bein": 24168, + "being": 13481, + "being": 1265, + "beings": 17998, + "beingsalmankhan": 19637, + "beir": 20176, + "beirut": 22352, + "beit": 26963, + "bek": 46846, + "bek": 26135, + "bekind": 46691, + "bel": 1308, + "bel": 3543, + "bela": 30555, + "belarus": 30849, + "belated": 20256, + "belfast": 35100, + "belfast": 10015, + "belgi": 7001, + "belgian": 15008, + "belgium": 10239, + "belgrade": 30502, + "beli": 1859, + "beli": 45842, + "belichick": 46132, + "belie": 20854, + "beliebers": 27714, + "belief": 14802, + "beliefs": 20575, + "believ": 4972, + "believe": 15819, + "believe": 2649, + "believed": 13380, + "believein": 24294, + "believeinfilm": 37375, + "believer": 26057, + "believers": 28434, + "believes": 12017, + "believing": 19551, + "belinda": 44415, + "belize": 27990, + "bell": 5417, + "bell": 3718, + "bella": 18282, + "bella": 10418, + "bellamy": 34461, + "bellator": 31985, + "belle": 13587, + "belle": 11496, + "belles": 40678, + "bellevue": 32715, + "belli": 43335, + "bellletstalk": 42695, + "bello": 21954, + "bells": 12811, + "bellum": 35493, + "belly": 25901, + "belly": 10404, + "belmont": 25612, + "belo": 8379, + "belo": 41649, + "belong": 16453, + "belong": 13596, + "belonged": 39893, + "belonging": 28193, + "belongs": 14395, + "beloved": 9363, + "below": 3788, + "bels": 43127, + "belt": 36416, + "belt": 7373, + "belts": 21888, + "belvedere": 48003, + "ben": 1465, + "ben": 3518, + "bena": 46249, + "bench": 17770, + "bench": 8771, + "benches": 36349, + "benchmark": 31775, + "bend": 22100, + "bend": 13332, + "bender": 22551, + "bendigo": 48197, + "bending": 33897, + "bene": 12091, + "bene": 47151, + "beneath": 16850, + "bened": 13216, + "benedic": 24402, + "benedict": 47896, + "benedict": 18027, + "benef": 3260, + "benefici": 38593, + "beneficial": 24660, + "beneficiaries": 42160, + "benefit": 6399, + "benefited": 48266, + "benefiting": 29474, + "benefits": 5465, + "benefitting": 47222, + "benevol": 47060, + "benfica": 33873, + "beng": 6962, + "bengal": 17404, + "bengal": 16374, + "bengali": 33774, + "bengals": 23737, + "bengaluru": 21707, + "benghazi": 25967, + "benin": 40296, + "benitez": 46711, + "benjam": 10550, + "benjamin": 38647, + "benjamin": 12131, + "benji": 43548, + "benn": 39097, + "bennet": 48536, + "bennett": 12186, + "benny": 42369, + "benny": 20595, + "beno": 35268, + "benoit": 44373, + "benson": 19578, + "bent": 9809, + "bent": 18369, + "bentley": 16859, + "benton": 30812, + "benz": 27937, + "benz": 13470, + "ber": 867, + "ber": 1516, + "bera": 32802, + "bere": 17458, + "bered": 9193, + "beren": 33654, + "beret": 41658, + "berg": 12022, + "berg": 3294, + "bergen": 22918, + "berger": 35933, + "berger": 13873, + "bergh": 35120, + "bergman": 42597, + "bergs": 43592, + "berk": 15633, + "berke": 14639, + "berkeley": 46049, + "berkeley": 16667, + "berkshire": 27300, + "berlin": 23532, + "berlin": 5891, + "berman": 21514, + "bermu": 21032, + "bermuda": 24644, + "bern": 9195, + "bern": 18382, + "bernade": 46242, + "bernar": 11962, + "bernard": 14579, + "bernardino": 35328, + "bernardo": 27137, + "bernardo": 28696, + "bernardokath": 29081, + "bernat": 40578, + "berni": 18798, + "bernie": 40093, + "bernie": 10503, + "berniesanders": 23745, + "bernstein": 33936, + "berra": 15089, + "berries": 8319, + "berry": 15334, + "berry": 3488, + "bers": 6408, + "berser": 39037, + "bert": 17340, + "bert": 2358, + "berta": 45187, + "berth": 28317, + "bertie": 47182, + "berto": 34073, + "bertr": 36962, + "bertrand": 41594, + "berts": 30205, + "berty": 35973, + "berwick": 40407, + "bery": 11411, + "bes": 26911, + "bes": 3635, + "beside": 13519, + "besides": 17596, + "bespoke": 15612, + "bess": 43791, + "best": 3419, + "best": 949, + "bestbuy": 29749, + "bestest": 31199, + "bestfan": 23880, + "bestfanarmy": 24590, + "bestfriend": 29832, + "bestfriend": 11856, + "bestfriends": 23555, + "besti": 35210, + "bestie": 17188, + "besties": 27346, + "besto": 28615, + "bestof": 27892, + "bestof": 39533, + "bestseller": 25841, + "bestselling": 28632, + "bet": 1051, + "bet": 4430, + "beta": 43188, + "beta": 9505, + "betes": 10255, + "beth": 9993, + "beth": 4892, + "bethan": 18781, + "bethany": 39130, + "bethany": 27952, + "bethe": 12624, + "bethel": 33410, + "bethesda": 32527, + "bethle": 30760, + "bethlehem": 31827, + "betis": 45590, + "beto": 33721, + "betra": 18436, + "betrayal": 33171, + "betrayed": 35692, + "bets": 17107, + "betsy": 28946, + "bett": 17715, + "bett": 20489, + "betta": 36387, + "bette": 35855, + "better": 10320, + "better": 1539, + "bettertogether": 47392, + "betting": 14319, + "betts": 38637, + "betty": 36175, + "betty": 14350, + "between": 1957, + "beu": 38660, + "bev": 40324, + "bev": 30968, + "bever": 9924, + "beverage": 18694, + "beverages": 28521, + "beverley": 39165, + "beverly": 30906, + "beverly": 16728, + "beverlyhills": 45363, + "beware": 14532, + "bewithyou": 36787, + "bex": 18676, + "bex": 24748, + "bexhill": 49200, + "bey": 3234, + "bey": 6767, + "beyon": 11447, + "beyonce": 16632, + "beyoncé": 19219, + "beyond": 22246, + "beyond": 4432, + "bez": 28592, + "bez": 46764, + "bezos": 45000, + "bf": 19858, + "bf": 7990, + "bfc": 37183, + "bff": 11984, + "bffs": 31462, + "bfi": 34244, + "bg": 16674, + "bg": 11295, + "bgc": 47598, + "bgs": 47963, + "bgt": 40665, + "bh": 9930, + "bh": 13603, + "bha": 6144, + "bha": 33068, + "bhafc": 30779, + "bhagat": 49136, + "bhai": 48370, + "bhai": 20508, + "bhak": 34501, + "bham": 31874, + "bham": 23491, + "bhan": 27356, + "bhand": 48679, + "bhar": 9108, + "bharat": 27454, + "bharat": 17430, + "bharti": 46803, + "bhat": 23784, + "bhatt": 36143, + "bhav": 44950, + "bhi": 28943, + "bhi": 21955, + "bhk": 45070, + "bhm": 38741, + "bho": 19721, + "bhopal": 44573, + "bhp": 29776, + "bhs": 29195, + "bhu": 9172, + "bhuban": 38729, + "bhubanes": 41213, + "bhubaneswar": 45888, + "bhushan": 40884, + "bhutan": 32391, + "bhutto": 30153, + "bi": 717, + "bi": 3035, + "bia": 3841, + "biaf": 26961, + "biafra": 36355, + "bian": 19531, + "bian": 9027, + "bianca": 25854, + "bianchi": 45720, + "bians": 28141, + "bias": 11268, + "biased": 22178, + "bib": 44607, + "bib": 21022, + "bibi": 31182, + "bibl": 20912, + "bible": 26738, + "bible": 7583, + "bibli": 23465, + "biblical": 22841, + "biblio": 49131, + "bic": 5960, + "bic": 10675, + "bice": 35589, + "biceps": 46735, + "bick": 27238, + "bicy": 9247, + "bicycle": 11652, + "bicycles": 31326, + "bid": 21035, + "bid": 5553, + "bidding": 23237, + "bide": 45178, + "biden": 19451, + "bids": 16148, + "bie": 5561, + "bie": 4173, + "bieber": 48725, + "bieber": 7535, + "bien": 19176, + "bien": 25742, + "biennale": 33776, + "biennial": 36609, + "bier": 27226, + "bier": 23508, + "bies": 7867, + "big": 1915, + "big": 1205, + "bigbaldhead": 30325, + "bigbang": 41680, + "bigbang": 23734, + "bigdata": 9440, + "bige": 37762, + "bigfoot": 37095, + "bigg": 15312, + "bigg": 35399, + "biggboss": 27056, + "bigger": 6806, + "biggest": 19483, + "biggest": 3505, + "biggie": 28392, + "biggs": 46507, + "bigh": 18106, + "bighit": 35508, + "bigo": 14278, + "bigolive": 20735, + "bigotry": 37269, + "bigre": 36330, + "bih": 33471, + "bihar": 22849, + "bij": 42478, + "bik": 30306, + "bike": 11686, + "bike": 3701, + "biker": 36100, + "biker": 23449, + "bikers": 29468, + "bikes": 9227, + "bikin": 12638, + "biking": 19157, + "bikini": 14531, + "bil": 3092, + "bil": 20506, + "bilateral": 25599, + "bilbao": 34802, + "bild": 35512, + "bile": 25943, + "bilingual": 29623, + "bilities": 13582, + "bility": 4694, + "bill": 4444, + "bill": 2886, + "billboard": 10856, + "billboards": 34741, + "billed": 37558, + "billi": 7693, + "billie": 23990, + "billing": 31797, + "billings": 43615, + "billion": 14520, + "billion": 5729, + "billionaire": 19475, + "billionaires": 41590, + "billions": 20742, + "bills": 9810, + "billsmafia": 48845, + "billy": 15626, + "billy": 6814, + "bilt": 44770, + "bilt": 26654, + "bim": 46737, + "bim": 24775, + "bin": 4849, + "bin": 5346, + "binance": 43520, + "binary": 23497, + "bind": 44513, + "binder": 30541, + "binding": 21287, + "bine": 34848, + "bing": 24818, + "bing": 5665, + "binge": 22600, + "bingham": 43785, + "bingham": 47296, + "bingo": 18418, + "bino": 29172, + "bino": 24313, + "bins": 26934, + "bint": 43647, + "bio": 2830, + "bio": 5162, + "biode": 43502, + "biodegradable": 47740, + "biodiversity": 17428, + "biof": 45158, + "biographical": 49232, + "biography": 15423, + "biological": 18821, + "biologist": 35149, + "biology": 9796, + "biom": 13010, + "biomar": 44549, + "biomass": 36746, + "biome": 26218, + "biomed": 29280, + "biomedical": 33117, + "bionic": 46201, + "biop": 15009, + "biopic": 27942, + "bios": 48505, + "biotech": 22514, + "biotechnology": 40375, + "biotic": 33773, + "biotics": 41371, + "bious": 31845, + "bipartisan": 32266, + "bipolar": 37097, + "bique": 27809, + "bir": 921, + "bir": 16284, + "birch": 31569, + "birch": 22907, + "bird": 6908, + "bird": 3329, + "birdie": 29612, + "birdies": 45618, + "birding": 15851, + "birdman": 41915, + "birdphotography": 47999, + "birds": 41951, + "birds": 4337, + "birdwatching": 33497, + "birk": 48289, + "birken": 40661, + "birmin": 37482, + "birmingham": 38580, + "birmingham": 7720, + "birth": 1128, + "birth": 5397, + "birthday": 7381, + "birthday": 1166, + "birthdays": 17954, + "birthplace": 31429, + "biryani": 46489, + "bis": 5064, + "bis": 14461, + "biscu": 11532, + "biscuit": 18731, + "biscuits": 18248, + "bisexual": 36829, + "bish": 33690, + "bish": 31461, + "bishop": 20625, + "bishop": 8024, + "bishops": 31579, + "bison": 19741, + "bistro": 21770, + "bit": 3010, + "bit": 2010, + "bitcoin": 30848, + "bitcoin": 6366, + "bite": 41613, + "biting": 23016, + "bits": 7747, + "bitt": 39251, + "bius": 45525, + "bix": 46579, + "biz": 8212, + "biz": 5431, + "biza": 47013, + "bizar": 14886, + "bizarre": 16965, + "bizhour": 39462, + "bizitalk": 34929, + "bj": 4592, + "bj": 18229, + "bjj": 27437, + "bjor": 26525, + "bjp": 37264, + "bjp": 6178, + "bk": 15099, + "bk": 14083, + "bkk": 36433, + "bl": 833, + "bl": 9467, + "bla": 2205, + "bla": 19630, + "blac": 21008, + "black": 2025, + "black": 1449, + "blackand": 12809, + "blackandwhite": 23688, + "blackandwhite": 19506, + "blackandwhitephotography": 27544, + "blackberry": 16470, + "blackbird": 38526, + "blackburn": 23789, + "blackfish": 42193, + "blackfriday": 16445, + "blackgirl": 43591, + "blackhawks": 19203, + "blackhistory": 46982, + "blackhistorymonth": 20135, + "blacklist": 30295, + "blacklivesmatter": 23467, + "blackmail": 47295, + "blackops": 43519, + "blackout": 21733, + "blackpanther": 36592, + "blackpink": 20339, + "blackpool": 21031, + "blacks": 16351, + "blackwell": 42642, + "blad": 36635, + "bladder": 33593, + "blade": 10264, + "blades": 16893, + "blah": 29212, + "blaine": 32457, + "blair": 31824, + "blair": 14749, + "blake": 20229, + "blake": 9579, + "blame": 10695, + "blamed": 32906, + "blames": 27841, + "blaming": 29287, + "blan": 4609, + "blanc": 30936, + "blanc": 13301, + "blanca": 40670, + "blanchard": 40177, + "blanche": 34875, + "blanchett": 49378, + "blanco": 26801, + "bland": 44372, + "bland": 30799, + "blank": 15134, + "blanket": 12878, + "blankets": 24042, + "blanks": 48599, + "blasio": 35553, + "blasphe": 36622, + "blast": 46349, + "blast": 5964, + "blasted": 38976, + "blaster": 36341, + "blasting": 26178, + "blasts": 23067, + "blat": 22048, + "blatant": 41391, + "blatt": 39138, + "blau": 45307, + "blaz": 43413, + "blaze": 15497, + "blazer": 17606, + "blazers": 16984, + "blazing": 25267, + "bldg": 22981, + "ble": 1447, + "ble": 1059, + "bleach": 27034, + "bleak": 40355, + "bled": 12006, + "bleed": 23027, + "bleed": 24791, + "bleedblue": 39160, + "bleeding": 20311, + "bleeds": 47339, + "blen": 25651, + "blend": 10780, + "blended": 25813, + "blender": 25066, + "blending": 34307, + "blends": 28572, + "bler": 31305, + "bler": 11979, + "blers": 26930, + "bles": 5763, + "bless": 9640, + "bless": 5387, + "blessed": 4411, + "blessing": 10729, + "blessings": 11185, + "bleu": 30114, + "blew": 18176, + "bley": 43176, + "bli": 1450, + "bli": 28051, + "blin": 9678, + "blin": 5406, + "blind": 17248, + "blind": 8351, + "blinded": 49149, + "blindness": 38812, + "blinds": 32449, + "bling": 39764, + "bling": 7097, + "blink": 18976, + "bliss": 28531, + "bliss": 12893, + "blissful": 42145, + "blit": 39327, + "blitz": 42151, + "blitz": 17548, + "blizz": 13075, + "blizzard": 16111, + "blk": 42950, + "blk": 22872, + "blm": 30957, + "bln": 47348, + "blo": 1204, + "blo": 25505, + "blob": 49312, + "bloc": 30961, + "block": 4638, + "block": 4593, + "blockade": 33489, + "blockbuster": 19939, + "blockchain": 6653, + "blocked": 9106, + "blocker": 44767, + "blocking": 12652, + "blocks": 10113, + "blog": 16376, + "blog": 2589, + "blogg": 33282, + "blogged": 41380, + "blogger": 21352, + "blogger": 7806, + "bloggerrt": 48898, + "bloggers": 11627, + "blogging": 18090, + "blogpost": 41842, + "blogs": 16682, + "bloke": 24384, + "blom": 48996, + "blon": 7958, + "blond": 32426, + "blonde": 10711, + "blondes": 45130, + "blondie": 39236, + "bloo": 2373, + "blood": 9231, + "blood": 3590, + "blooded": 41946, + "bloodh": 48480, + "bloods": 39539, + "bloody": 38568, + "bloody": 9468, + "bloom": 7311, + "bloom": 10257, + "bloomberg": 43109, + "bloomberg": 21238, + "bloomfield": 40342, + "blooming": 45175, + "blooming": 19266, + "bloomington": 34731, + "blooms": 21439, + "bloss": 10017, + "blossom": 14472, + "blossoms": 21916, + "blot": 41710, + "blou": 44506, + "blouse": 23525, + "blow": 15230, + "blow": 10211, + "blower": 25832, + "blowing": 12087, + "blown": 11848, + "blowout": 34857, + "blows": 21063, + "blr": 47250, + "bls": 39458, + "blu": 1263, + "blu": 10273, + "blue": 3829, + "blue": 1746, + "bluebells": 47150, + "blueberries": 29551, + "blueberry": 18251, + "bluebird": 40747, + "bluec": 43194, + "bluef": 41174, + "bluegrass": 26241, + "bluejays": 18684, + "blueprint": 30594, + "blues": 17566, + "blues": 5159, + "blueslyrix": 47068, + "bluet": 13469, + "bluetooth": 14052, + "bluewave": 40025, + "bluff": 27232, + "bluffs": 48844, + "blum": 34818, + "blumen": 38714, + "blun": 34472, + "blunt": 19305, + "blur": 12102, + "blur": 27976, + "bluray": 36818, + "blurred": 38013, + "blurry": 21977, + "blush": 22889, + "blvd": 12578, + "bly": 20930, + "bly": 4426, + "bm": 4773, + "bm": 15916, + "bma": 42573, + "bmc": 27807, + "bmi": 40642, + "bmo": 39083, + "bms": 34074, + "bmw": 26637, + "bmw": 7869, + "bmx": 22535, + "bn": 10496, + "bn": 7992, + "bnb": 20010, + "bnha": 49336, + "bnp": 47910, + "bnw": 35903, + "bo": 647, + "bo": 2525, + "boa": 14732, + "boar": 7837, + "boar": 35473, + "board": 10419, + "board": 1972, + "boarded": 43052, + "boarder": 37414, + "boardgame": 47829, + "boardgames": 32646, + "boarding": 10086, + "boardroom": 47937, + "boards": 7963, + "boardwalk": 29043, + "boast": 44467, + "boasts": 30309, + "boat": 12426, + "boat": 4440, + "boath": 45461, + "boating": 21951, + "boats": 10080, + "boatsales": 46244, + "bob": 8444, + "bob": 4423, + "boba": 39948, + "bobb": 16891, + "bobble": 38796, + "bobblehead": 33451, + "bobby": 17847, + "bobby": 7816, + "bobc": 26153, + "bobcat": 37896, + "bobcats": 27568, + "bobo": 38939, + "bobs": 45533, + "boc": 27307, + "boc": 39042, + "boca": 26094, + "bock": 24961, + "bod": 17904, + "bod": 26340, + "boda": 42030, + "bode": 28452, + "bode": 40429, + "bodega": 47350, + "bodied": 36892, + "bodies": 9799, + "bodily": 49119, + "body": 7132, + "body": 1774, + "bodybuilding": 24538, + "bodyguard": 35565, + "boe": 23476, + "boe": 21773, + "boeh": 38002, + "boehner": 44599, + "boeing": 48135, + "boeing": 11857, + "boer": 44889, + "boer": 40768, + "bog": 23426, + "bog": 28318, + "bogo": 35769, + "bogota": 47059, + "bogus": 42907, + "boh": 43238, + "bohe": 40541, + "bohemi": 21552, + "bohemian": 25753, + "boho": 25444, + "boi": 37129, + "boi": 12673, + "boil": 31332, + "boiled": 23886, + "boiler": 28212, + "boiler": 25615, + "boiling": 32019, + "bois": 47742, + "bois": 21640, + "boise": 23304, + "bok": 26671, + "bok": 15289, + "boko": 30929, + "boks": 40216, + "bol": 2860, + "bol": 8413, + "bola": 12840, + "bold": 26975, + "bold": 8911, + "boldand": 48413, + "boldly": 44778, + "boli": 12722, + "bolic": 27343, + "bolivia": 28628, + "bollah": 36336, + "bolly": 25302, + "bollywood": 32448, + "bollywood": 9604, + "bolo": 40236, + "bolog": 22818, + "bologna": 27513, + "bolster": 47304, + "bolt": 13131, + "bolton": 48757, + "bolton": 16598, + "bolts": 26028, + "bom": 3012, + "bom": 19469, + "bomb": 18091, + "bomb": 6331, + "bombar": 25544, + "bombardier": 42700, + "bombay": 48602, + "bombay": 23890, + "bombed": 24542, + "bomber": 15436, + "bombers": 21786, + "bombing": 14475, + "bombings": 43236, + "bombs": 14410, + "bombshell": 36340, + "bon": 1871, + "bon": 4216, + "bona": 33342, + "bonanza": 40304, + "bond": 37022, + "bond": 6826, + "bonded": 37390, + "bondi": 40092, + "bonding": 19609, + "bonds": 15786, + "bone": 22502, + "bone": 6195, + "bones": 9476, + "bonfire": 23151, + "bongo": 47519, + "boni": 32269, + "boni": 46356, + "bonita": 42896, + "bonjour": 33176, + "bonkers": 39865, + "bonn": 38969, + "bonnar": 47191, + "bonnaroo": 48777, + "bonne": 25844, + "bonnet": 30636, + "bonnie": 18555, + "bono": 24476, + "bons": 42883, + "bonsai": 44129, + "bonus": 8164, + "bonuses": 35144, + "boo": 824, + "boo": 7317, + "boogie": 22639, + "book": 2828, + "book": 1116, + "bookboost": 31257, + "bookclub": 34438, + "bookday": 26327, + "booked": 12584, + "booker": 21302, + "bookfest": 39381, + "booking": 10145, + "bookings": 18345, + "booklet": 27405, + "bookmark": 33596, + "bookof": 45629, + "bookreview": 27362, + "books": 44382, + "books": 2161, + "bookshelf": 34821, + "bookshop": 24705, + "bookstore": 17999, + "bookstores": 46416, + "bookworm": 20743, + "boom": 9609, + "boom": 7121, + "boomer": 33819, + "boomer": 31766, + "boomers": 37988, + "booming": 33487, + "boon": 24979, + "boon": 35821, + "boone": 23453, + "boop": 45047, + "boost": 44639, + "boost": 6260, + "boosted": 37631, + "booster": 20877, + "boosters": 46859, + "boosting": 28480, + "boosts": 29247, + "boot": 10843, + "boot": 8087, + "bootcamp": 22051, + "booted": 42564, + "booth": 47895, + "booth": 3971, + "booths": 32653, + "booties": 46188, + "bootleg": 38139, + "boots": 7319, + "booze": 24341, + "bop": 19720, + "bor": 1141, + "bor": 15093, + "bora": 24736, + "bord": 36891, + "bordeaux": 22009, + "border": 16304, + "border": 6177, + "borderlands": 38676, + "borders": 13900, + "bore": 14084, + "bore": 24638, + "bored": 8933, + "boredom": 31460, + "boretum": 38902, + "borg": 14770, + "borgh": 17180, + "boring": 12519, + "boris": 31212, + "boris": 15704, + "borisjohnson": 44481, + "born": 17695, + "born": 2683, + "borne": 42910, + "borne": 9328, + "borneo": 33332, + "bornon": 41811, + "bornonthisday": 42757, + "boro": 26796, + "boro": 7974, + "borough": 22761, + "borough": 6203, + "borrow": 22293, + "borrowed": 28224, + "borrowing": 41045, + "borussia": 36764, + "bos": 14885, + "bos": 9644, + "bosa": 46946, + "bosch": 42009, + "bosch": 19466, + "bosco": 36960, + "bose": 23142, + "bosh": 42244, + "bosni": 42924, + "bosnia": 31396, + "boss": 17935, + "boss": 4206, + "bosses": 23906, + "boston": 11540, + "boston": 4399, + "bostonmarathon": 44533, + "bot": 4136, + "bot": 6947, + "botan": 12554, + "botanic": 32560, + "botanical": 21026, + "botany": 22612, + "botd": 34451, + "both": 36575, + "both": 2212, + "bother": 21125, + "bothered": 27997, + "botox": 43449, + "bots": 13721, + "botswana": 27584, + "bott": 3520, + "bott": 37225, + "bottle": 37306, + "bottle": 5392, + "bottled": 29331, + "bottlen": 46439, + "bottles": 9754, + "bottling": 42006, + "bottom": 32314, + "bottom": 5931, + "bottoms": 31524, + "bou": 3728, + "bou": 23165, + "bouchard": 47930, + "boudo": 48827, + "bought": 4142, + "boul": 24830, + "boulder": 18260, + "boule": 17652, + "boulevard": 19504, + "boun": 5993, + "bounce": 14316, + "bouncing": 32060, + "bouncy": 43415, + "bound": 15140, + "bound": 4567, + "boundaries": 18690, + "boundary": 21344, + "bounds": 37469, + "bounty": 21142, + "bouquet": 20961, + "bour": 2934, + "bour": 35486, + "bourbon": 48118, + "bourbon": 14652, + "bourdain": 48095, + "bourg": 20690, + "bourgeo": 45672, + "bourn": 39143, + "bourne": 13789, + "bourne": 5192, + "bournemouth": 20911, + "bout": 19982, + "bout": 8123, + "bouti": 10926, + "boutique": 12179, + "bow": 2297, + "bow": 4040, + "bowden": 48538, + "bowed": 49130, + "bowel": 36880, + "bowen": 25368, + "bower": 40414, + "bowers": 42238, + "bowie": 13036, + "bowing": 46398, + "bowl": 26719, + "bowl": 3814, + "bowled": 39987, + "bowler": 25528, + "bowlers": 42632, + "bowles": 41611, + "bowling": 10390, + "bowls": 17787, + "bowman": 22052, + "bows": 17000, + "bowser": 38234, + "bowski": 48311, + "box": 2774, + "box": 2063, + "boxed": 24190, + "boxer": 40394, + "boxer": 15363, + "boxers": 31019, + "boxes": 8350, + "boxing": 33669, + "boxing": 5554, + "boy": 2927, + "boy": 1876, + "boyband": 31568, + "boyce": 44480, + "boycot": 46208, + "boycott": 31615, + "boycott": 19559, + "boyd": 18295, + "boyfriend": 7328, + "boyfriends": 36541, + "boyle": 22802, + "boys": 25223, + "boys": 2034, + "boyz": 16152, + "bp": 23410, + "bp": 11558, + "bpa": 43855, + "bpd": 48587, + "bpl": 28901, + "bpm": 40338, + "bps": 37794, + "br": 711, + "br": 7532, + "bra": 1195, + "bra": 5860, + "brac": 6663, + "brace": 8376, + "brace": 9183, + "bracelet": 8969, + "bracelets": 20027, + "braces": 19249, + "brack": 25676, + "bracket": 14780, + "brackets": 36183, + "brad": 4848, + "brad": 9405, + "bradbury": 45097, + "braden": 46842, + "bradford": 15062, + "bradley": 31905, + "bradley": 10952, + "brador": 24062, + "bradshaw": 37556, + "brady": 42494, + "brady": 11117, + "brae": 42874, + "brae": 40040, + "brag": 30110, + "bragg": 38545, + "bragging": 38199, + "brah": 20276, + "brahms": 45114, + "brai": 25048, + "braid": 31067, + "braided": 39997, + "braids": 34221, + "brain": 9454, + "brain": 4812, + "brains": 17129, + "brainstorming": 36607, + "braised": 28363, + "brake": 14937, + "brakes": 23456, + "bral": 31309, + "bram": 14815, + "bram": 39456, + "brampton": 35124, + "bran": 3684, + "bran": 28348, + "brance": 36072, + "brance": 15413, + "branch": 7998, + "branches": 15843, + "brand": 3910, + "brand": 2896, + "branded": 18097, + "brandi": 41003, + "branding": 10841, + "brando": 41892, + "brandon": 20423, + "brandon": 9166, + "brands": 8681, + "brandt": 22552, + "brandy": 26232, + "brane": 32340, + "branson": 28280, + "brant": 28951, + "brant": 47592, + "braries": 46377, + "brary": 24520, + "bras": 22611, + "brasil": 18991, + "brass": 24348, + "brass": 11655, + "brat": 26717, + "brat": 26631, + "brate": 41864, + "braun": 39129, + "braun": 29309, + "brave": 25461, + "brave": 7769, + "braved": 47663, + "bravely": 42303, + "bravery": 25831, + "braves": 14422, + "braving": 43258, + "bravo": 38613, + "bravo": 13006, + "braw": 37871, + "brawl": 26066, + "braxton": 37451, + "bray": 26256, + "bray": 22993, + "braz": 4625, + "brazil": 47459, + "brazil": 6305, + "brazili": 45697, + "brazilian": 12111, + "brb": 25316, + "brc": 40393, + "bre": 887, + "bre": 7782, + "brea": 7318, + "brea": 46538, + "breach": 21363, + "breaches": 45173, + "bread": 18886, + "bread": 5066, + "breads": 43064, + "break": 2206, + "break": 2568, + "breakable": 30691, + "breakaway": 42732, + "breakdown": 14519, + "breaker": 14814, + "breakers": 22270, + "breakfa": 45931, + "breakfast": 30210, + "breakfast": 3290, + "breaking": 14698, + "breaking": 2755, + "breakingbad": 38032, + "breakingnews": 23837, + "breakout": 16752, + "breaks": 7263, + "breakthrough": 18802, + "breakup": 38931, + "breast": 12930, + "breast": 9475, + "breastcancer": 40813, + "breastcancer": 30065, + "breastfeeding": 29033, + "breasts": 37637, + "breath": 9508, + "breath": 9576, + "breathe": 11364, + "breathing": 14959, + "breathtaking": 14709, + "brecht": 34622, + "breck": 44598, + "bred": 46929, + "bred": 16008, + "bree": 7892, + "bree": 37138, + "breed": 28030, + "breed": 13791, + "breeders": 37472, + "breeding": 16544, + "breeds": 29021, + "breen": 48013, + "brees": 46721, + "breeze": 13125, + "breezy": 21451, + "breit": 23864, + "breitbart": 37926, + "brek": 35494, + "bremen": 39861, + "bren": 5209, + "brenda": 23786, + "brendan": 35134, + "brendan": 15414, + "brendon": 36756, + "brennan": 22372, + "brenner": 42941, + "brent": 31439, + "brent": 16355, + "brentwood": 33108, + "brero": 47781, + "bres": 32561, + "bret": 38020, + "bret": 32548, + "brethren": 43134, + "breton": 32290, + "brett": 22591, + "brett": 12394, + "brev": 42882, + "brevi": 39475, + "brew": 5048, + "brew": 7253, + "brewco": 33582, + "brewed": 23238, + "brewer": 20756, + "breweries": 35277, + "brewers": 17618, + "brewery": 8850, + "brewing": 8275, + "brewingco": 45155, + "brews": 21663, + "brewster": 40274, + "brex": 22726, + "brexit": 27666, + "brexit": 5801, + "brgy": 35983, + "bri": 1036, + "bri": 18636, + "bria": 35890, + "brian": 9824, + "brian": 4989, + "brianna": 32308, + "briar": 46119, + "bribe": 40042, + "bribery": 41792, + "bric": 27055, + "brice": 40190, + "brick": 13937, + "brick": 9518, + "bricks": 21029, + "brics": 48196, + "brid": 16995, + "bridal": 36875, + "bridal": 14284, + "bride": 18342, + "bride": 8964, + "brides": 18067, + "bridesma": 28356, + "bridesmaid": 43399, + "bridesmaids": 47754, + "bridg": 20623, + "bridge": 8647, + "bridge": 2465, + "bridgeport": 45201, + "bridges": 11811, + "bridget": 27073, + "bridgewater": 38732, + "bridging": 38109, + "brie": 26622, + "brief": 9435, + "brief": 8954, + "briefed": 47326, + "briefing": 12991, + "briefly": 26980, + "briefs": 29557, + "brien": 13504, + "brier": 43995, + "brig": 11081, + "briga": 46448, + "brigade": 16032, + "briggs": 28108, + "brigh": 6710, + "bright": 10383, + "bright": 4852, + "brighten": 18208, + "brightening": 43929, + "brighter": 18507, + "brightest": 26159, + "brightly": 36298, + "brightness": 42280, + "brighton": 28416, + "brighton": 9470, + "brigitte": 44421, + "brill": 27342, + "brill": 28601, + "brilli": 3821, + "brilliance": 28146, + "brilliant": 4106, + "brilliantly": 26803, + "brin": 25620, + "bring": 11596, + "bring": 2430, + "bringback": 28969, + "bringbackour": 45403, + "bringing": 4777, + "brings": 5138, + "brink": 39296, + "brink": 28796, + "brioche": 45818, + "bris": 9385, + "bris": 15783, + "brisban": 30431, + "brisbane": 42932, + "brisbane": 12407, + "brisk": 43646, + "brisket": 31920, + "bristol": 18159, + "bristol": 8010, + "brit": 2318, + "brit": 20066, + "britain": 40802, + "britain": 6272, + "britanni": 31373, + "britannia": 36188, + "brite": 33827, + "briti": 8155, + "british": 8651, + "british": 3504, + "britishmuseum": 41858, + "britney": 37192, + "britney": 21853, + "britneyspears": 42990, + "brits": 21832, + "britt": 10811, + "britt": 25976, + "brittany": 38187, + "brittany": 18818, + "britton": 37422, + "brium": 46079, + "brixton": 30056, + "bro": 927, + "bro": 4410, + "broad": 3491, + "broad": 12623, + "broadband": 21050, + "broadcast": 8967, + "broadcaster": 29005, + "broadcasting": 14403, + "broadcasts": 46742, + "broader": 36029, + "broadway": 34599, + "broadway": 9092, + "broc": 15587, + "broccoli": 19094, + "broch": 21419, + "brochure": 25275, + "brock": 14841, + "brock": 16745, + "brodie": 42150, + "brody": 29608, + "broke": 42165, + "broke": 6509, + "broken": 26126, + "broken": 5107, + "broker": 34032, + "broker": 20449, + "brokerage": 41327, + "brokers": 28271, + "brom": 18972, + "brom": 33296, + "bromance": 35353, + "bromley": 35715, + "bron": 4011, + "bron": 10243, + "bronco": 43488, + "bronco": 34370, + "broncos": 12516, + "bronson": 37042, + "bronte": 48936, + "bronx": 48310, + "bronx": 17183, + "brony": 21084, + "bronze": 8459, + "broo": 5204, + "brooch": 21207, + "brook": 4782, + "brook": 7322, + "brooke": 28576, + "brooke": 12549, + "brookes": 39707, + "brooklyn": 23253, + "brooklyn": 6983, + "brooks": 42779, + "brooks": 9991, + "broom": 32046, + "broom": 28008, + "broome": 49335, + "bros": 7776, + "broth": 29994, + "brotha": 33974, + "brother": 12697, + "brother": 3157, + "brotherhood": 19059, + "brothers": 4548, + "brou": 27874, + "brough": 21033, + "brought": 4222, + "brov": 42881, + "brow": 6547, + "brow": 15895, + "broward": 34719, + "brown": 6315, + "brown": 2866, + "browne": 28440, + "brownie": 23045, + "brownies": 22312, + "browning": 32241, + "browns": 14051, + "brows": 14998, + "browse": 19060, + "browser": 19768, + "browsing": 29318, + "brox": 43539, + "brs": 47485, + "brt": 46936, + "bru": 1698, + "bru": 31028, + "bruce": 21223, + "bruce": 7085, + "bruh": 17575, + "bruins": 14736, + "bruise": 48048, + "bruised": 46502, + "brum": 23862, + "brum": 28078, + "brun": 6870, + "brunch": 9113, + "brune": 29057, + "brunei": 41898, + "brunette": 35528, + "bruno": 14568, + "brunomars": 41156, + "brunswick": 24012, + "brush": 27969, + "brush": 8594, + "brushed": 30298, + "brushes": 21550, + "brushing": 35072, + "brussels": 11020, + "brut": 39499, + "brutal": 42144, + "brutal": 14556, + "brutality": 31348, + "brutally": 28132, + "brute": 47552, + "brux": 49093, + "bry": 6587, + "bry": 28228, + "bryan": 16134, + "bryan": 10412, + "bryant": 12256, + "bryce": 19895, + "bryn": 36569, + "bryn": 42877, + "bryson": 38990, + "bs": 11783, + "bs": 1329, + "bsa": 46619, + "bsb": 23070, + "bsbi": 41728, + "bsbibotany": 42086, + "bsc": 32031, + "bsd": 41848, + "bse": 46341, + "bsf": 48314, + "bsgo": 48474, + "bsp": 47977, + "bst": 19698, + "bsu": 46385, + "bt": 3317, + "bt": 4205, + "btc": 10315, + "btcc": 30759, + "btn": 44681, + "bto": 35516, + "btob": 29379, + "btr": 39767, + "bts": 15154, + "bts": 4007, + "btsarmy": 30302, + "btsbbmas": 35297, + "btsx": 44971, + "btv": 38541, + "btw": 9520, + "btwn": 28284, + "bu": 609, + "bu": 5831, + "bub": 27704, + "bub": 33158, + "bubb": 9739, + "bubba": 28149, + "bubble": 28687, + "bubble": 10799, + "bubblegum": 48078, + "bubbles": 17648, + "bubbly": 31034, + "buc": 8207, + "buccane": 32830, + "buccaneers": 38058, + "buch": 22623, + "bucha": 43582, + "buchan": 27237, + "buchanan": 28975, + "bucharest": 37013, + "buck": 6061, + "buck": 11433, + "bucket": 22596, + "bucket": 10498, + "bucketlist": 30778, + "buckets": 27168, + "buckeye": 34549, + "buckeyes": 30741, + "buckingham": 28736, + "buckle": 21948, + "buckley": 25905, + "bucks": 6103, + "bucky": 35916, + "bucs": 20011, + "bud": 2942, + "bud": 10737, + "buda": 18520, + "buda": 49012, + "budapest": 19202, + "budd": 7296, + "buddha": 13981, + "buddhism": 23744, + "buddhist": 18697, + "buddies": 14543, + "budding": 31992, + "buddy": 40948, + "buddy": 6557, + "budge": 32005, + "budget": 46758, + "budget": 5639, + "budgeting": 43789, + "budgets": 36419, + "buds": 14665, + "budweiser": 40900, + "buen": 15640, + "buena": 30876, + "buenas": 48529, + "bueno": 46202, + "buenos": 26055, + "buf": 44417, + "buff": 5456, + "buff": 21416, + "buffal": 25836, + "buffalo": 31231, + "buffalo": 8054, + "buffalob": 38831, + "buffalobills": 44352, + "buffe": 13724, + "buffer": 33050, + "buffet": 17829, + "buffett": 34081, + "buffs": 28906, + "buffy": 33356, + "bug": 14453, + "bug": 8162, + "bugatti": 35451, + "buggy": 28963, + "bugs": 13850, + "buh": 31406, + "buhari": 14661, + "buick": 22000, + "buil": 1354, + "build": 22739, + "build": 3289, + "builder": 14474, + "builders": 17694, + "building": 21206, + "building": 2307, + "buildings": 8866, + "builds": 16449, + "buildthe": 41497, + "built": 45824, + "built": 3874, + "buk": 28084, + "buk": 24317, + "buka": 47778, + "bukit": 39888, + "bul": 2572, + "bul": 10200, + "bula": 18726, + "bulaga": 41575, + "bular": 32187, + "bulb": 22373, + "bulbs": 24808, + "bulgar": 15424, + "bulgaria": 20295, + "bulgarian": 38693, + "bulge": 47603, + "bulk": 19643, + "bull": 4537, + "bull": 6029, + "bulldo": 37675, + "bulldog": 34828, + "bulldog": 15611, + "bulldogs": 13916, + "bullet": 14340, + "bullet": 12465, + "bulletin": 19638, + "bulletproof": 43212, + "bullets": 22117, + "bullied": 34689, + "bullies": 39050, + "bullion": 49114, + "bullish": 22142, + "bullock": 33198, + "bullpen": 38081, + "bulls": 10313, + "bully": 43111, + "bully": 20190, + "bullying": 13548, + "bum": 27683, + "bum": 14226, + "bumble": 25585, + "bumble": 39303, + "bumblebee": 36911, + "bummed": 48456, + "bump": 9783, + "bump": 15877, + "bumped": 22495, + "bumper": 17881, + "bumping": 40196, + "bumps": 21115, + "bun": 2591, + "bun": 13665, + "bunch": 7796, + "bund": 41905, + "bunde": 18841, + "bundesliga": 21582, + "bundle": 11793, + "bundled": 47228, + "bundles": 29834, + "bundy": 37332, + "bung": 44748, + "bungal": 29549, + "bungalow": 33696, + "bunk": 41236, + "bunker": 23615, + "bunnies": 28998, + "bunny": 34198, + "bunny": 9258, + "buns": 22235, + "bunting": 30695, + "buon": 31350, + "buon": 48498, + "bur": 1039, + "bur": 17362, + "burbank": 34862, + "burberry": 30412, + "burch": 44588, + "burden": 18687, + "bure": 11902, + "bureau": 32098, + "bureau": 15400, + "burg": 19505, + "burg": 3499, + "burge": 20522, + "burger": 22356, + "burger": 6548, + "burgers": 13007, + "burgess": 26211, + "burgh": 18141, + "burgh": 4965, + "burgl": 25554, + "burglar": 43365, + "burglary": 32573, + "burgring": 40823, + "burgundy": 23650, + "buri": 46348, + "buri": 42614, + "burial": 22012, + "buried": 14233, + "burk": 48822, + "burke": 15340, + "burle": 27891, + "burlesque": 33732, + "burlington": 23370, + "burma": 30305, + "burmese": 47906, + "burn": 7934, + "burn": 4285, + "burnaby": 47541, + "burne": 27246, + "burned": 15022, + "burner": 23243, + "burnett": 28558, + "burnham": 36111, + "burning": 46107, + "burning": 8405, + "burnley": 24653, + "burnout": 36078, + "burns": 10234, + "burnt": 15185, + "burr": 30879, + "burrell": 49045, + "burrito": 23473, + "burritos": 47245, + "burroughs": 41337, + "burrows": 44846, + "burst": 13005, + "bursting": 32566, + "bursts": 37026, + "burt": 27162, + "burton": 42354, + "burton": 12704, + "burundi": 33595, + "bury": 12276, + "bury": 3899, + "burys": 32362, + "bus": 1319, + "bus": 2840, + "busan": 40172, + "busc": 35000, + "busch": 20475, + "buses": 12879, + "bush": 11191, + "bush": 6867, + "bushes": 37578, + "busiest": 32764, + "busine": 4598, + "busines": 25364, + "business": 8346, + "business": 1716, + "businesses": 7287, + "businessman": 25635, + "buss": 47764, + "bust": 31299, + "bust": 9959, + "busted": 18643, + "buster": 37219, + "buster": 12094, + "busters": 16362, + "busting": 29622, + "busy": 39332, + "busy": 4354, + "but": 2201, + "but": 767, + "butch": 35102, + "butcher": 18732, + "butchers": 42334, + "bute": 39240, + "butes": 14630, + "butler": 35867, + "butler": 10702, + "butt": 12500, + "butt": 31523, + "butte": 31678, + "butter": 5427, + "butter": 6952, + "butterflies": 16232, + "butterfly": 9738, + "buttermilk": 40180, + "butternut": 36867, + "buttery": 45535, + "button": 45480, + "button": 8007, + "buttons": 16188, + "butts": 25309, + "buu": 42313, + "buuren": 47752, + "buxton": 41370, + "buy": 11632, + "buy": 2131, + "buyer": 14682, + "buyers": 14663, + "buying": 6566, + "buys": 15560, + "buzz": 7866, + "buzz": 8706, + "buzzard": 47434, + "buzzer": 38064, + "buzzfeed": 26613, + "buzzing": 18511, + "bv": 18958, + "bv": 35861, + "bvb": 22454, + "bw": 17672, + "bw": 15120, + "bway": 26652, + "bwfc": 40918, + "bwo": 45902, + "bx": 33633, + "by": 1713, + "by": 638, + "bye": 20076, + "bye": 4460, + "byes": 47958, + "byl": 34994, + "byn": 46917, + "byn": 11890, + "byo": 28039, + "bypass": 26530, + "byr": 15534, + "byrd": 30369, + "byrne": 19676, + "byron": 43504, + "byron": 19775, + "bys": 26740, + "bystand": 46138, + "byte": 42798, + "bytes": 39538, + "bythe": 36621, + "byu": 41072, + "byu": 23770, + "byz": 35406, + "byzantine": 44081, + "bz": 13631, + "bé": 40365, + "bü": 38706, + "c": 66, + "c": 322, + "ca": 772, + "ca": 1684, + "caa": 19316, + "cab": 3033, + "cab": 11912, + "cabaret": 26263, + "cabbage": 18407, + "cabe": 32731, + "cabello": 34371, + "caber": 29062, + "cabernet": 33730, + "cabin": 14178, + "cabine": 23354, + "cabinet": 9937, + "cabinets": 33083, + "cabins": 48455, + "cable": 7925, + "cables": 22408, + "cabo": 37318, + "cabo": 28370, + "cabrera": 42338, + "cabs": 42048, + "cac": 8298, + "cac": 23872, + "cacao": 38022, + "cache": 28993, + "caching": 40655, + "cactus": 19794, + "cad": 6297, + "cad": 20166, + "caday": 34187, + "cadbury": 44698, + "caddy": 41521, + "cade": 10497, + "cade": 17306, + "cadet": 22764, + "cadets": 19160, + "cadillac": 18156, + "cae": 49264, + "caer": 28298, + "caes": 15740, + "caesar": 21642, + "caesars": 42162, + "caf": 3471, + "caf": 20867, + "cafc": 30748, + "cafe": 15201, + "cafe": 4979, + "cafes": 40166, + "cafeteria": 32817, + "caffe": 18258, + "caffe": 45416, + "caffeine": 22487, + "café": 15304, + "cag": 15714, + "cage": 11838, + "cages": 37939, + "cah": 40519, + "cahill": 33185, + "cai": 38971, + "cai": 36116, + "cain": 13747, + "caine": 16799, + "cair": 15804, + "cair": 46659, + "cairn": 31264, + "cairn": 42467, + "cairngor": 44067, + "cairns": 32941, + "cairo": 19615, + "cait": 14116, + "caitlin": 47768, + "caitlin": 26809, + "caitlyn": 35763, + "cajun": 43425, + "cajun": 33044, + "cak": 42986, + "cake": 15295, + "cake": 2972, + "cakeday": 46207, + "cakes": 5950, + "cal": 1198, + "cal": 6372, + "cala": 32133, + "calab": 31795, + "calais": 39886, + "calam": 28841, + "calc": 45055, + "calci": 22824, + "calcium": 27815, + "calcu": 15328, + "calcul": 15734, + "calculate": 37656, + "calculated": 40688, + "calculations": 44605, + "calculator": 26093, + "calculus": 35104, + "calcutta": 42901, + "calder": 29372, + "calder": 36817, + "caldwell": 30484, + "cale": 32674, + "caleb": 19619, + "caled": 28421, + "calend": 6057, + "calendar": 7122, + "calendars": 17229, + "calf": 17508, + "calgary": 27415, + "calgary": 10797, + "calhoun": 38929, + "cali": 2857, + "cali": 16337, + "caliber": 32820, + "calibr": 32597, + "calico": 45379, + "calif": 30839, + "califor": 3526, + "californi": 21303, + "california": 3729, + "call": 7950, + "call": 1620, + "calla": 20658, + "callahan": 43313, + "callaway": 42596, + "callback": 44764, + "calle": 47699, + "calle": 38144, + "called": 2726, + "caller": 30666, + "calli": 16338, + "callie": 36512, + "calligraphy": 27775, + "calling": 4597, + "callister": 49026, + "callme": 42449, + "callof": 41280, + "calls": 4572, + "callum": 23224, + "calm": 34990, + "calm": 7011, + "calming": 30690, + "calorie": 32679, + "calories": 18029, + "cals": 47714, + "calum": 16405, + "calvary": 40169, + "calvert": 47134, + "calves": 31857, + "calvin": 27642, + "calvin": 17345, + "caly": 10244, + "calyp": 29851, + "cam": 1004, + "cam": 5982, + "camar": 31991, + "camber": 44362, + "cambo": 14662, + "cambodia": 17347, + "cambridge": 24651, + "cambridge": 9334, + "cambridgeshire": 46139, + "camden": 38735, + "camden": 17984, + "came": 1986, + "camel": 27005, + "camel": 21914, + "camels": 41357, + "cameo": 19492, + "camer": 4961, + "camera": 3934, + "cameraman": 43347, + "cameras": 12172, + "camero": 20320, + "cameron": 19634, + "cameron": 8057, + "camerondallas": 40587, + "cameroon": 24061, + "camil": 37745, + "camila": 19919, + "camilla": 38897, + "camille": 26741, + "camino": 28529, + "camo": 28702, + "camo": 19716, + "camogie": 39547, + "camou": 23588, + "camoufla": 23667, + "camouflage": 29049, + "camp": 2854, + "camp": 2877, + "campa": 2793, + "campaig": 9448, + "campaign": 44524, + "campaign": 3193, + "campaigner": 46364, + "campaigners": 40272, + "campaigning": 19594, + "campaigns": 15669, + "campan": 31765, + "campbell": 29094, + "campbell": 8806, + "campe": 16672, + "campeon": 49109, + "campeones": 30105, + "camper": 41914, + "camper": 24522, + "campers": 26619, + "campfire": 32530, + "campground": 46969, + "camping": 9982, + "campo": 27600, + "campos": 48077, + "camps": 12806, + "campsite": 44243, + "campu": 19687, + "campus": 4560, + "campuses": 31895, + "camra": 46155, + "camry": 46472, + "cams": 32590, + "can": 950, + "can": 753, + "cana": 28341, + "canad": 13193, + "canada": 2698, + "canadaday": 39800, + "canadi": 4329, + "canadian": 22160, + "canadian": 5255, + "canadians": 18989, + "canadiens": 40932, + "canal": 28585, + "canal": 9535, + "canals": 38483, + "canaria": 47117, + "canary": 40409, + "canary": 24523, + "canberra": 16719, + "canc": 43189, + "cancel": 12026, + "cancel": 21546, + "canceled": 25874, + "cancell": 28027, + "cancellation": 38765, + "cancelled": 13270, + "cancels": 34089, + "cancer": 12690, + "cancer": 3148, + "cancers": 33201, + "cancun": 34721, + "cand": 4986, + "candace": 45623, + "candel": 47834, + "candi": 6034, + "candice": 30024, + "candid": 7884, + "candid": 19206, + "candidacy": 46248, + "candidate": 6475, + "candidates": 8619, + "candied": 43982, + "candies": 46305, + "candle": 18995, + "candle": 12674, + "candlelight": 34724, + "candles": 15472, + "candy": 20741, + "candy": 6417, + "cane": 23644, + "cane": 14716, + "canelo": 43210, + "canes": 21902, + "cani": 35592, + "canine": 27380, + "cann": 4139, + "cann": 23709, + "cannab": 7577, + "cannabis": 31837, + "cannabis": 8861, + "canne": 44252, + "canned": 27290, + "cannes": 13773, + "canni": 26389, + "canning": 38621, + "cannon": 28771, + "cannon": 15661, + "cannons": 46269, + "cannot": 4785, + "canny": 26986, + "cano": 31668, + "cano": 25937, + "canoe": 23503, + "canola": 40389, + "canon": 17749, + "canon": 9310, + "canopy": 26061, + "cans": 13707, + "cant": 13395, + "cant": 5784, + "canteen": 39230, + "canter": 19301, + "canterbury": 22271, + "canti": 42845, + "cantina": 47472, + "canton": 37735, + "canton": 25363, + "cantore": 41769, + "cantwait": 33760, + "canu": 20171, + "canucks": 24321, + "canv": 30714, + "canvas": 22441, + "canvas": 7483, + "canvass": 40054, + "canvassing": 33783, + "cany": 47674, + "canyon": 41246, + "canyon": 9755, + "cao": 29207, + "cap": 1289, + "cap": 3938, + "capabilities": 19512, + "capability": 25885, + "capable": 14742, + "capac": 24665, + "capacity": 8970, + "capcom": 28342, + "cape": 10288, + "cape": 6631, + "capecod": 41339, + "capes": 38785, + "capetown": 20059, + "capit": 6889, + "capita": 41833, + "capital": 11198, + "capital": 5439, + "capitalism": 20068, + "capitalist": 37015, + "capitals": 29579, + "capitol": 43880, + "capitol": 11375, + "capo": 45477, + "capp": 16718, + "capped": 24659, + "capping": 42656, + "cappuccino": 37402, + "capri": 48699, + "capri": 30982, + "capric": 28667, + "capricorn": 46314, + "caps": 23185, + "capsu": 15608, + "capsul": 40341, + "capsule": 20627, + "capsules": 32870, + "capt": 45815, + "capt": 17369, + "captain": 14958, + "captain": 4621, + "captainamerica": 46229, + "captainmarvel": 48492, + "captains": 18706, + "caption": 11327, + "captions": 41878, + "captiv": 19776, + "captivating": 30580, + "captive": 29038, + "captivity": 41141, + "capture": 8818, + "captured": 8020, + "captures": 15305, + "capturing": 19548, + "capu": 44241, + "car": 811, + "car": 1615, + "cara": 20016, + "carab": 32251, + "carac": 30029, + "caracas": 45854, + "caramel": 14788, + "carameli": 41739, + "caramelized": 43854, + "carat": 32981, + "carav": 13814, + "caravan": 18566, + "carb": 21379, + "carbo": 43235, + "carbon": 14038, + "carbon": 7549, + "carbs": 29313, + "carcin": 31587, + "carcinoma": 46810, + "card": 10793, + "card": 2601, + "cardam": 49008, + "cardboard": 19845, + "cardi": 6211, + "cardi": 29677, + "cardiac": 21256, + "cardiff": 22488, + "cardiff": 9781, + "cardigan": 30501, + "cardin": 8457, + "cardinal": 46310, + "cardinal": 16472, + "cardinals": 12837, + "cardio": 15003, + "cardio": 23455, + "cardiology": 37276, + "cardiovascular": 29291, + "cardo": 40625, + "cards": 4094, + "care": 2050, + "care": 1776, + "cared": 27675, + "career": 20609, + "career": 3061, + "careers": 10090, + "careful": 11999, + "carefully": 15789, + "caregi": 22042, + "caregiver": 46372, + "caregivers": 35909, + "careless": 47325, + "carers": 26484, + "cares": 10968, + "caretaker": 48037, + "carey": 14895, + "cargo": 12490, + "cari": 18497, + "cari": 37273, + "carib": 9757, + "caribbean": 10368, + "caribou": 42135, + "caric": 25337, + "caricature": 38857, + "carina": 44357, + "caring": 13083, + "carl": 8273, + "carl": 9482, + "carla": 25552, + "carleton": 46496, + "carlin": 47559, + "carlisle": 23276, + "carlo": 17861, + "carlo": 15266, + "carlos": 9538, + "carlow": 44745, + "carls": 39635, + "carlson": 24114, + "carlton": 18934, + "carly": 23166, + "carly": 22689, + "carlyle": 46555, + "carmel": 30757, + "carmel": 25601, + "carmen": 41427, + "carmen": 18834, + "carmichael": 41657, + "carn": 21597, + "carnage": 31385, + "carnation": 44577, + "carnaval": 47238, + "carne": 17053, + "carne": 42885, + "carnegie": 25287, + "carney": 34194, + "carni": 8438, + "carnival": 36708, + "carnival": 10577, + "caro": 30317, + "caro": 29344, + "carol": 4242, + "carol": 11489, + "carole": 31955, + "carolin": 26418, + "carolina": 7027, + "caroline": 31064, + "caroline": 12641, + "carols": 33269, + "carolyn": 25825, + "carou": 32224, + "carousel": 36665, + "carp": 26085, + "carpen": 15584, + "carpenter": 18475, + "carpet": 6922, + "carpets": 34612, + "carr": 26951, + "carr": 17136, + "carra": 32332, + "carre": 31114, + "carrera": 32952, + "carri": 4739, + "carriage": 47885, + "carriage": 21087, + "carrick": 44052, + "carrie": 30334, + "carrie": 15848, + "carried": 12960, + "carrier": 12308, + "carriers": 26865, + "carries": 17982, + "carrieunderwood": 47338, + "carrington": 48759, + "carroll": 41911, + "carroll": 14893, + "carrot": 15435, + "carrots": 19299, + "carry": 31863, + "carry": 6998, + "carrying": 9920, + "cars": 3346, + "carsforsale": 45222, + "carson": 41766, + "carson": 13171, + "cart": 27705, + "cart": 13065, + "cartag": 45042, + "cartagena": 47157, + "carte": 44949, + "cartel": 30529, + "carter": 27330, + "carter": 7260, + "cartier": 32951, + "carto": 5487, + "carton": 41812, + "cartoon": 33082, + "cartoon": 7651, + "cartoonist": 30793, + "cartoons": 17673, + "cartri": 47084, + "cartridge": 29432, + "cartridges": 49249, + "carts": 27581, + "cartunesapp": 32888, + "caruso": 45192, + "carve": 40152, + "carved": 15127, + "carver": 28850, + "carving": 19428, + "carvings": 48123, + "cary": 22844, + "cas": 1671, + "cas": 13831, + "casa": 14643, + "casablanc": 36572, + "casablanca": 41950, + "casc": 36714, + "casca": 43296, + "cascade": 29065, + "cascades": 46454, + "case": 17698, + "case": 2068, + "cases": 6888, + "casey": 24899, + "casey": 12836, + "cash": 11050, + "cash": 5131, + "cashback": 36368, + "cashe": 32233, + "cashew": 39531, + "cashi": 29517, + "cashier": 34547, + "cashmere": 34566, + "casi": 38350, + "casino": 10473, + "casio": 32261, + "cask": 26299, + "casm": 35198, + "casper": 35892, + "cass": 22556, + "cassandra": 35289, + "casser": 31093, + "casserole": 36045, + "cassette": 19717, + "cassi": 14942, + "cassidy": 21757, + "cassie": 29323, + "cassini": 46554, + "cast": 2509, + "cast": 1970, + "caste": 32693, + "casted": 33838, + "castel": 43306, + "castell": 31792, + "caster": 32101, + "caster": 8449, + "casters": 29721, + "castic": 47737, + "castillo": 30813, + "casting": 7087, + "castle": 12496, + "castle": 3540, + "castles": 24766, + "castro": 16950, + "casts": 10595, + "casu": 15345, + "casual": 10129, + "casually": 18840, + "casualties": 30244, + "casualty": 31222, + "cat": 1481, + "cat": 2368, + "cata": 42279, + "catal": 12792, + "catalan": 30532, + "catalina": 36576, + "catalo": 34740, + "catalog": 20036, + "catalogue": 20985, + "catalonia": 27039, + "catalunya": 44132, + "cataly": 15894, + "catalyst": 25387, + "catan": 45893, + "catap": 39514, + "catar": 35801, + "catastro": 22736, + "catastrophe": 41422, + "catastrophic": 34448, + "catch": 18901, + "catch": 3042, + "catcher": 15965, + "catchers": 39060, + "catches": 17213, + "catching": 8617, + "catchy": 37114, + "catday": 32243, + "cate": 6357, + "cate": 24510, + "cated": 31823, + "categor": 17006, + "categori": 40117, + "categories": 19971, + "category": 9432, + "cater": 16634, + "cater": 38101, + "catering": 16697, + "caterpillar": 27111, + "catfish": 26077, + "cath": 9196, + "cath": 30811, + "cathar": 43784, + "cathe": 7174, + "cathedr": 46370, + "cathedral": 7865, + "catherine": 35035, + "catherine": 12339, + "catho": 7595, + "cathol": 16315, + "catholic": 20382, + "catholic": 7757, + "catholics": 36808, + "cathy": 40326, + "cathy": 22731, + "cation": 21367, + "cato": 33558, + "cats": 38800, + "cats": 3989, + "catsofinstagram": 39901, + "catsoftwitter": 17273, + "catt": 37339, + "cattle": 48799, + "cattle": 13644, + "caturday": 20892, + "catwalk": 36565, + "catwoman": 47251, + "cau": 1121, + "cau": 45529, + "caucus": 18847, + "caught": 4520, + "caul": 23460, + "cauley": 41682, + "caulfield": 44906, + "cauli": 20123, + "cauliflower": 23802, + "cause": 18982, + "cause": 1394, + "caused": 8940, + "causes": 9775, + "causeway": 35034, + "causing": 10779, + "caution": 15656, + "cautious": 36579, + "cav": 4942, + "cav": 45935, + "cava": 48682, + "caval": 24537, + "cavali": 20783, + "cavalier": 44488, + "cavaliers": 30194, + "cavalry": 32467, + "cave": 25441, + "cave": 9654, + "cavendish": 42945, + "caver": 41487, + "caves": 22096, + "cavi": 27360, + "caviar": 31228, + "cavill": 40492, + "cavity": 43156, + "cavs": 16800, + "caw": 38405, + "caw": 43804, + "cawx": 26739, + "cay": 11876, + "cay": 37399, + "cayenne": 43650, + "cayman": 33737, + "caz": 48451, + "cb": 4034, + "cb": 8830, + "cba": 38472, + "cbb": 31487, + "cbc": 14096, + "cbc": 14523, + "cbd": 13176, + "cbe": 43639, + "cbi": 30875, + "cbj": 35608, + "cbn": 26579, + "cbp": 46723, + "cbr": 28762, + "cbs": 16788, + "cbs": 8009, + "cc": 2976, + "cc": 2021, + "cca": 17987, + "ccc": 21856, + "ccd": 48556, + "ccg": 37755, + "cch": 21789, + "cchini": 28467, + "cci": 32942, + "cci": 8196, + "ccl": 43773, + "ccm": 40435, + "cco": 28786, + "ccot": 24950, + "ccp": 43045, + "ccs": 30400, + "cctv": 23097, + "ccu": 49023, + "cd": 4308, + "cd": 4480, + "cda": 45565, + "cdc": 41098, + "cdc": 25779, + "cdn": 8886, + "cdn": 26802, + "cdnpoli": 11645, + "cdo": 47187, + "cdp": 39624, + "cds": 20784, + "cdt": 18455, + "ce": 685, + "ce": 629, + "cea": 28355, + "cean": 34409, + "cean": 37295, + "cease": 32856, + "cease": 25499, + "ceasefire": 38291, + "cebu": 20146, + "cec": 29694, + "cec": 40029, + "cecil": 26987, + "cecil": 27169, + "cecilia": 35440, + "ced": 25634, + "ced": 2323, + "cedar": 24167, + "cedar": 13799, + "cedric": 36608, + "cee": 45966, + "cee": 15015, + "cees": 47914, + "ceil": 27275, + "ceiling": 12374, + "ceilings": 33770, + "cek": 45544, + "cel": 2269, + "cel": 7597, + "cele": 1314, + "celeb": 38862, + "celeb": 19393, + "celebr": 1372, + "celebrate": 31414, + "celebrate": 2694, + "celebrated": 9184, + "celebrates": 7564, + "celebrating": 3382, + "celebration": 4615, + "celebrations": 10825, + "celebratory": 34115, + "celebrities": 17071, + "celebrity": 23981, + "celebrity": 7320, + "celebs": 19803, + "celed": 25741, + "celer": 9621, + "celery": 30990, + "celeste": 29364, + "celesti": 29497, + "celestial": 32669, + "celi": 25567, + "celia": 44489, + "celine": 33644, + "cell": 9316, + "cell": 5533, + "cellar": 24282, + "cellars": 44976, + "cellence": 34687, + "cello": 23013, + "cellphone": 39029, + "cells": 8890, + "cellu": 16791, + "cellular": 23268, + "cels": 24021, + "celsius": 47057, + "celtic": 21897, + "celtic": 10523, + "celticfc": 38612, + "celtics": 16226, + "cem": 41435, + "ceme": 10517, + "cement": 4369, + "cements": 19448, + "cemetery": 11660, + "cen": 1306, + "cen": 30106, + "cena": 21591, + "cence": 24410, + "cency": 41259, + "cene": 30038, + "censor": 24230, + "censor": 44709, + "censored": 30951, + "censorship": 27284, + "census": 23677, + "cent": 1784, + "cent": 3662, + "centenary": 22422, + "centennial": 20895, + "center": 16651, + "center": 2119, + "centered": 24584, + "centers": 14494, + "centi": 48889, + "centime": 48687, + "centr": 2370, + "central": 13448, + "central": 3339, + "centre": 26310, + "centre": 2916, + "centred": 47925, + "centres": 19354, + "centri": 30872, + "centric": 19297, + "centro": 37178, + "cents": 11934, + "centu": 16818, + "centuri": 36816, + "centuries": 19014, + "century": 26134, + "century": 4275, + "ceo": 46340, + "ceo": 3559, + "ceos": 28332, + "cep": 2632, + "cep": 48714, + "ceph": 44343, + "cept": 3678, + "ception": 12346, + "cer": 1364, + "cer": 1925, + "cera": 34608, + "ceram": 10677, + "ceramic": 15112, + "ceramics": 22438, + "cere": 3984, + "cere": 22085, + "cereal": 17581, + "cereals": 48618, + "cerebral": 39073, + "ceremon": 15796, + "ceremonial": 33281, + "ceremonies": 21547, + "ceremony": 5193, + "cern": 44851, + "cers": 13638, + "cert": 27522, + "certain": 8526, + "certain": 7883, + "certainly": 10883, + "certainty": 20054, + "certi": 4888, + "certific": 9443, + "certificate": 11786, + "certificates": 25281, + "certification": 14735, + "certified": 9288, + "cerv": 25738, + "cervical": 35953, + "ces": 28715, + "ces": 1604, + "cesar": 37025, + "cesar": 28603, + "cess": 2314, + "cess": 1554, + "cessna": 36596, + "cest": 27245, + "cester": 15769, + "cester": 12718, + "cet": 14960, + "cett": 46708, + "ceu": 37457, + "cevic": 48369, + "cey": 20971, + "cf": 10189, + "cf": 11171, + "cfa": 34521, + "cfb": 32931, + "cfc": 11577, + "cfd": 46171, + "cfl": 46320, + "cfl": 22332, + "cfo": 26937, + "cfp": 40756, + "cfr": 44033, + "cfs": 32835, + "cg": 27118, + "cg": 14740, + "cgc": 38775, + "cgi": 30520, + "ch": 540, + "ch": 634, + "cha": 1587, + "cha": 4541, + "chab": 26670, + "chad": 13095, + "chad": 12923, + "chae": 9460, + "chaf": 38123, + "chag": 27989, + "chai": 31590, + "chai": 18919, + "chain": 13898, + "chain": 3946, + "chained": 34402, + "chains": 14438, + "chainsaw": 37617, + "chainz": 39687, + "chair": 4728, + "chair": 4269, + "chaired": 31664, + "chairing": 42205, + "chairman": 6901, + "chairperson": 31584, + "chairs": 12033, + "chak": 13702, + "chak": 41713, + "chakra": 38304, + "chakra": 33241, + "chal": 7397, + "chal": 30809, + "chale": 38099, + "chalet": 37907, + "chalk": 31362, + "chalk": 17846, + "chall": 2073, + "challeng": 4138, + "challenge": 29462, + "challenge": 2836, + "challenged": 17380, + "challenger": 18228, + "challengers": 46404, + "challenges": 6280, + "challenging": 11754, + "chalmers": 47955, + "cham": 1290, + "cham": 19951, + "chamber": 18983, + "chamber": 7642, + "chamberlain": 32756, + "chambers": 16501, + "chamele": 34759, + "chameleon": 41317, + "champ": 36813, + "champ": 6602, + "champag": 10283, + "champagne": 11007, + "champi": 1680, + "champion": 2643, + "champion": 3950, + "champions": 4227, + "championship": 3429, + "championships": 7047, + "championsleague": 27638, + "champs": 6240, + "chan": 1255, + "chan": 6704, + "chana": 48752, + "chanc": 13931, + "chance": 32940, + "chance": 2594, + "chancellor": 15886, + "chances": 10870, + "chand": 7126, + "chand": 41508, + "chandelier": 30570, + "chandi": 12482, + "chandigarh": 34106, + "chandler": 17595, + "chandra": 27082, + "chandra": 25348, + "chanel": 16951, + "chang": 2233, + "chang": 16461, + "change": 11608, + "change": 1799, + "changeable": 41335, + "changed": 4907, + "changer": 18406, + "changers": 35185, + "changes": 4938, + "changing": 40384, + "changing": 5621, + "changmin": 47410, + "chann": 8804, + "channel": 25837, + "channel": 3847, + "channeling": 28197, + "channels": 13961, + "channing": 37417, + "chant": 18165, + "chant": 13521, + "chanting": 32111, + "chants": 22723, + "chanyeol": 18805, + "chao": 31815, + "chaos": 10853, + "chaotic": 33501, + "chap": 3825, + "chap": 21939, + "chapel": 40859, + "chapel": 10137, + "chaplain": 38348, + "chaplin": 32545, + "chapman": 17968, + "chapp": 20634, + "chaps": 36823, + "chapter": 6014, + "chapters": 22936, + "char": 1054, + "char": 16017, + "chara": 35668, + "charac": 2792, + "character": 10997, + "character": 4009, + "characterdesign": 38149, + "characteri": 20920, + "characteristic": 44747, + "characteristics": 26037, + "characters": 6564, + "charan": 31851, + "charcoal": 19268, + "chard": 17524, + "chardon": 26599, + "chardonnay": 28161, + "charge": 25032, + "charge": 5948, + "chargeable": 35664, + "charged": 7916, + "charger": 13090, + "chargers": 17352, + "charges": 8962, + "charging": 12514, + "chariot": 38811, + "charis": 24449, + "charisma": 45041, + "charismatic": 37205, + "charitable": 23256, + "charities": 18493, + "charity": 20008, + "charity": 4607, + "charitytuesday": 42794, + "charl": 47736, + "charle": 10217, + "charles": 27983, + "charles": 5127, + "charleston": 15478, + "charley": 38027, + "charli": 21784, + "charli": 49392, + "charlie": 16764, + "charlie": 6393, + "charlotte": 18445, + "charlotte": 7871, + "charlottesville": 32027, + "charlton": 27048, + "charm": 10876, + "charmed": 39790, + "charming": 12177, + "charms": 21944, + "charred": 44085, + "chart": 42685, + "chart": 5053, + "charted": 27939, + "charter": 42345, + "charter": 13569, + "chartered": 31298, + "charters": 46626, + "charting": 39841, + "charts": 10728, + "chas": 10717, + "chas": 29838, + "chase": 21503, + "chase": 3859, + "chased": 30342, + "chaser": 29560, + "chasers": 34158, + "chases": 45011, + "chasing": 46909, + "chasing": 13376, + "chassis": 29188, + "chast": 42176, + "chasu": 41352, + "chat": 5355, + "chat": 2402, + "chatbots": 43994, + "chate": 30377, + "chateau": 44582, + "chateau": 23520, + "chath": 46849, + "chatham": 32030, + "chats": 13263, + "chatt": 21618, + "chattanoo": 28009, + "chattanooga": 29866, + "chatted": 34124, + "chatter": 33473, + "chatter": 41103, + "chatting": 12401, + "chatur": 33839, + "chau": 11263, + "chau": 37536, + "chauffe": 45440, + "chauhan": 46663, + "chav": 28997, + "chavez": 27480, + "chaw": 39639, + "chay": 45317, + "chaz": 47815, + "chc": 36233, + "chd": 41645, + "che": 983, + "che": 3842, + "chea": 39580, + "chead": 48358, + "cheap": 27036, + "cheap": 8678, + "cheape": 26164, + "cheaper": 17776, + "cheapest": 26640, + "cheat": 18180, + "cheated": 34285, + "cheating": 19722, + "chec": 1113, + "check": 7672, + "check": 1217, + "checked": 10387, + "checker": 45883, + "checkers": 48181, + "checking": 7441, + "checklist": 26989, + "checkout": 13101, + "checkpoint": 27531, + "checks": 13737, + "ched": 11341, + "ched": 2146, + "cheddar": 20551, + "chee": 5326, + "chee": 20944, + "cheek": 40000, + "cheek": 21227, + "cheeks": 23019, + "cheeky": 15068, + "cheer": 9733, + "cheer": 6918, + "cheered": 38111, + "cheerful": 28882, + "cheering": 14289, + "cheerleader": 29072, + "cheerleaders": 22343, + "cheerleading": 36366, + "cheers": 6562, + "chees": 15182, + "cheese": 10738, + "cheese": 4108, + "cheeseburger": 41200, + "cheesecake": 17803, + "cheeses": 36076, + "cheesy": 22093, + "cheetah": 27431, + "chef": 12137, + "chef": 4895, + "chefs": 14486, + "chek": 43745, + "chel": 3084, + "chel": 25970, + "chell": 46854, + "chelle": 30141, + "chelms": 34936, + "chelmsford": 39890, + "chelse": 19071, + "chelsea": 6031, + "chelseafc": 25927, + "chelten": 18889, + "cheltenham": 21589, + "chem": 5667, + "chem": 13698, + "chemi": 7179, + "chemical": 39376, + "chemical": 9208, + "chemicals": 17426, + "chemist": 23138, + "chemistry": 8841, + "chemo": 33095, + "chemo": 36348, + "chemotherapy": 41412, + "chemtrails": 46015, + "chen": 5907, + "chen": 8983, + "cheney": 43522, + "cheng": 32512, + "cheng": 30190, + "chenko": 29073, + "chennai": 28948, + "chennai": 12791, + "cheon": 11498, + "cheque": 28168, + "cher": 3597, + "cher": 3466, + "cheri": 26471, + "cherish": 20053, + "cherished": 42325, + "cherno": 35376, + "chernobyl": 40554, + "chero": 19844, + "cherokee": 22860, + "cherries": 27248, + "cherry": 21470, + "cherry": 7325, + "chers": 5789, + "chery": 38478, + "cheryl": 37784, + "cheryl": 20600, + "ches": 18346, + "ches": 1910, + "chesa": 28349, + "chesapeake": 32909, + "cheshire": 17130, + "chesney": 48747, + "chess": 27170, + "chess": 8397, + "chest": 18217, + "chest": 10563, + "chester": 10466, + "chester": 3343, + "chesterfield": 32975, + "chestnut": 21834, + "chet": 9663, + "chett": 24695, + "chev": 7152, + "chev": 41145, + "chevro": 12850, + "chevrolet": 13240, + "chevron": 33792, + "chevy": 16581, + "chew": 32645, + "chew": 22642, + "chewan": 23689, + "chewbacca": 49355, + "chewing": 31486, + "chewy": 42940, + "chey": 26968, + "chey": 31208, + "cheyenne": 34805, + "chez": 49183, + "chez": 10556, + "chf": 33021, + "chfield": 41619, + "chhat": 34127, + "chhattisgarh": 44246, + "chi": 1337, + "chi": 4039, + "chia": 19147, + "chiang": 33764, + "chibi": 22306, + "chic": 2627, + "chic": 9091, + "chica": 44190, + "chicag": 16778, + "chicago": 15038, + "chicago": 3530, + "chicagof": 40638, + "chicagofire": 46576, + "chicas": 40664, + "chichester": 43823, + "chick": 3170, + "chick": 11238, + "chicken": 26322, + "chicken": 3717, + "chickens": 21658, + "chickpea": 48109, + "chicks": 17810, + "chico": 30379, + "chie": 40046, + "chie": 12388, + "chief": 16830, + "chief": 3455, + "chiefs": 11419, + "chiev": 47761, + "chiff": 27407, + "chiffon": 31817, + "chig": 42952, + "chihu": 22857, + "chihuahu": 25437, + "chihuahua": 30181, + "chik": 45455, + "chil": 1333, + "child": 4392, + "child": 2913, + "childcare": 31133, + "childhood": 34772, + "childhood": 7551, + "childish": 31939, + "childre": 2135, + "children": 11101, + "children": 2153, + "childrens": 31551, + "childrens": 21553, + "childs": 39521, + "chile": 10022, + "chilean": 33186, + "chili": 13033, + "chill": 6498, + "chill": 6382, + "chilled": 23540, + "chillen": 45160, + "chilli": 26787, + "chilli": 17067, + "chillin": 10347, + "chilling": 10179, + "chillout": 39842, + "chills": 25460, + "chilly": 14450, + "chim": 10543, + "chimney": 26821, + "chimp": 44374, + "chin": 6555, + "chin": 8979, + "china": 38943, + "china": 2817, + "chinatown": 28582, + "chine": 4013, + "chinese": 30568, + "chinese": 4271, + "ching": 34621, + "ching": 1439, + "chino": 47181, + "chino": 27440, + "chinook": 41577, + "chinson": 33786, + "chio": 19650, + "chip": 19271, + "chip": 8730, + "chipmun": 46384, + "chipot": 17702, + "chipotle": 19284, + "chipp": 39854, + "chippe": 46541, + "chipped": 39892, + "chipping": 40323, + "chips": 8855, + "chir": 15564, + "chiro": 23413, + "chiroprac": 25987, + "chiropractic": 34437, + "chis": 19920, + "chistan": 20523, + "chiswick": 47290, + "chit": 13515, + "chit": 45626, + "chita": 49184, + "chitec": 39862, + "chive": 29222, + "chives": 34921, + "chk": 47424, + "chl": 38592, + "chley": 47748, + "chlo": 10374, + "chloe": 39966, + "chloe": 13992, + "chlor": 23135, + "chman": 35835, + "chment": 20848, + "chner": 48277, + "cho": 1327, + "cho": 5150, + "choa": 43077, + "choc": 32772, + "choc": 21983, + "choco": 46285, + "choco": 32692, + "chocol": 3443, + "chocolat": 44631, + "chocolate": 29389, + "chocolate": 3820, + "chocolates": 24120, + "choi": 23749, + "choic": 35606, + "choice": 23857, + "choice": 4051, + "choices": 11016, + "choir": 9214, + "choirs": 43277, + "choke": 30231, + "choked": 43521, + "choker": 39642, + "choking": 39993, + "chol": 19802, + "cholera": 45999, + "cholester": 26861, + "cholesterol": 27982, + "chom": 25151, + "chon": 20416, + "chon": 21601, + "chondri": 37379, + "chong": 26220, + "choo": 3869, + "choo": 24437, + "chool": 29578, + "chools": 41958, + "choose": 22756, + "choose": 5073, + "chooses": 29923, + "choosing": 13475, + "chop": 10458, + "chop": 16663, + "chopin": 42256, + "chopped": 22580, + "chopper": 24011, + "chopping": 35375, + "chopra": 24258, + "chops": 26321, + "chor": 7567, + "chor": 47795, + "choral": 26684, + "chord": 33005, + "chords": 36152, + "choreo": 17443, + "choreographer": 35952, + "choreography": 32749, + "chores": 40483, + "chori": 25718, + "chorizo": 30802, + "chorus": 20869, + "chos": 26559, + "chose": 11090, + "chosen": 10044, + "chou": 16960, + "chou": 42917, + "choudhary": 45503, + "chow": 20257, + "chow": 21657, + "chowder": 37886, + "chp": 35896, + "chr": 36918, + "chri": 1135, + "chris": 9907, + "chris": 2978, + "chrisbrown": 41035, + "chriss": 46745, + "chrissy": 44762, + "chrissy": 40485, + "christ": 1403, + "christ": 6703, + "christchurch": 27100, + "christen": 31956, + "christensen": 42226, + "christi": 3328, + "christi": 33213, + "christian": 11792, + "christian": 4729, + "christianity": 20000, + "christians": 14842, + "christie": 16084, + "christin": 30189, + "christina": 15925, + "christine": 42610, + "christine": 14712, + "christma": 12039, + "christmas": 18174, + "christmas": 1677, + "christmaseve": 44381, + "christmass": 44873, + "christop": 7917, + "christoph": 47844, + "christophe": 45486, + "christopher": 33349, + "christopher": 9630, + "christy": 28331, + "chro": 13207, + "chromatic": 44207, + "chrome": 24843, + "chrome": 9529, + "chromo": 35809, + "chron": 5577, + "chron": 39781, + "chronic": 10115, + "chronic": 13677, + "chronicle": 20034, + "chronicles": 18905, + "chrono": 29387, + "chronograph": 38397, + "chry": 13508, + "chrysler": 20078, + "chs": 40277, + "chs": 8391, + "chsnews": 44919, + "cht": 11384, + "chter": 47811, + "chu": 3799, + "chu": 13622, + "chubby": 29109, + "chuck": 13211, + "chuck": 9894, + "chuckle": 35733, + "chucky": 42026, + "chuffed": 27233, + "chuk": 25878, + "chuk": 27221, + "chul": 33001, + "chum": 46869, + "chum": 41767, + "chun": 14693, + "chun": 25391, + "chung": 28418, + "chunk": 30275, + "chunks": 45538, + "chunky": 27978, + "chups": 46331, + "chur": 2309, + "church": 14956, + "church": 2735, + "churches": 15539, + "churchill": 17527, + "chus": 36246, + "chut": 28788, + "chutney": 36261, + "chy": 15131, + "chy": 8096, + "chyna": 43398, + "châ": 48669, + "ci": 698, + "ci": 5798, + "cia": 4019, + "cial": 1143, + "cian": 32323, + "ciao": 37677, + "ciara": 31369, + "cible": 28873, + "cic": 14539, + "cic": 21517, + "cid": 27359, + "cide": 34178, + "cider": 13547, + "cides": 41326, + "cie": 19730, + "cier": 24067, + "cies": 6785, + "cif": 35698, + "cigar": 26031, + "cigar": 16525, + "cigare": 13044, + "cigarette": 18548, + "cigarettes": 22750, + "cigars": 20750, + "cii": 42408, + "cil": 9217, + "cil": 2998, + "cilan": 33998, + "cilantro": 34568, + "cili": 18977, + "ciliation": 25294, + "cim": 30021, + "cin": 2396, + "cin": 25367, + "cina": 39467, + "cincin": 13291, + "cincinnati": 14197, + "cinco": 25131, + "cincode": 40930, + "cincodemayo": 42542, + "cincy": 30015, + "cincy": 30286, + "cinde": 20660, + "cinderella": 21515, + "cindy": 34439, + "cindy": 18532, + "cine": 4015, + "cine": 27451, + "cinema": 38251, + "cinema": 6443, + "cinemas": 14845, + "cinematic": 25602, + "cinemato": 21919, + "cinematographer": 39059, + "cinematography": 33802, + "ciner": 39882, + "cing": 4014, + "cini": 25699, + "cinnam": 12768, + "cinnamon": 13460, + "cino": 18616, + "cio": 44584, + "cio": 9954, + "cion": 22024, + "ciones": 37155, + "cious": 38466, + "cip": 32884, + "cir": 2459, + "cir": 41135, + "circa": 10411, + "circle": 33574, + "circle": 7117, + "circles": 19411, + "circling": 46036, + "circu": 5143, + "circuit": 35583, + "circuit": 9801, + "circuits": 33260, + "circul": 16618, + "circular": 19733, + "circulare": 39525, + "circulareconomy": 39878, + "circulated": 46258, + "circulating": 42980, + "circulation": 27880, + "circum": 13406, + "circumstances": 18786, + "circus": 11833, + "cirque": 36049, + "cis": 9459, + "cis": 23513, + "cisco": 36689, + "cisco": 19290, + "cise": 19657, + "cisely": 33434, + "cision": 41957, + "cism": 24166, + "cist": 40906, + "cit": 4420, + "cit": 31294, + "citadel": 38036, + "citation": 33581, + "cite": 32641, + "cited": 25069, + "cites": 34490, + "citi": 4280, + "citi": 30270, + "cities": 5441, + "citing": 29088, + "citiz": 5816, + "citizen": 11720, + "citizen": 9814, + "citizens": 7949, + "citizenship": 17386, + "cito": 42636, + "citro": 27941, + "citroen": 35805, + "citrus": 17379, + "city": 5002, + "city": 1305, + "cityfc": 28751, + "cityo": 25709, + "cityof": 11595, + "cityscape": 40808, + "ciu": 39693, + "cius": 42559, + "civ": 40039, + "civic": 32240, + "civic": 11888, + "civil": 6923, + "civil": 6450, + "civilian": 21187, + "civilians": 18076, + "civilization": 22503, + "civilwar": 34524, + "ción": 44700, + "cj": 15238, + "cj": 15205, + "ck": 916, + "ck": 868, + "cke": 25224, + "cke": 40989, + "cked": 3441, + "cken": 25566, + "cker": 15509, + "cker": 4744, + "ckers": 37073, + "cket": 5525, + "ckett": 33899, + "ckey": 15029, + "ckey": 3657, + "cki": 36916, + "cki": 41055, + "cking": 4805, + "cko": 28818, + "cks": 2031, + "cky": 26229, + "cky": 3083, + "cl": 969, + "cl": 6482, + "cla": 940, + "cla": 20636, + "clad": 31606, + "cladding": 46411, + "clai": 29459, + "claim": 4290, + "claim": 6607, + "claimed": 9010, + "claiming": 15286, + "claims": 6852, + "clair": 31441, + "clair": 14039, + "claire": 20410, + "claire": 10460, + "clam": 13588, + "clam": 32598, + "clamation": 21793, + "clamp": 41501, + "clams": 38849, + "clan": 29252, + "clan": 14114, + "clancy": 37227, + "clans": 38279, + "clap": 30037, + "clap": 25546, + "clapham": 43619, + "clapton": 37683, + "clar": 3617, + "clara": 19468, + "clare": 18948, + "clare": 15927, + "claremont": 47789, + "clarence": 29320, + "clari": 15175, + "clarify": 37004, + "clarinet": 41178, + "clarity": 21323, + "clark": 13340, + "clark": 7521, + "clarke": 11548, + "clarkson": 25706, + "clas": 32003, + "clash": 38367, + "clash": 9359, + "clashes": 25193, + "clasico": 43567, + "class": 2876, + "class": 1874, + "classes": 6919, + "classi": 2507, + "classic": 9353, + "classic": 2713, + "classical": 22179, + "classical": 11355, + "classicalmusic": 27806, + "classiccar": 46906, + "classiccars": 21064, + "classics": 10634, + "classification": 26612, + "classified": 22056, + "classmate": 37090, + "classmates": 30062, + "classof": 25345, + "classroom": 9001, + "classrooms": 25768, + "classy": 11615, + "clau": 7526, + "claude": 17461, + "claudi": 39439, + "claudia": 21893, + "claudio": 31230, + "claus": 23317, + "clause": 26151, + "clave": 24111, + "claw": 49230, + "claw": 19106, + "claws": 29161, + "clay": 10402, + "clay": 8823, + "clays": 26128, + "clayton": 46445, + "clayton": 19413, + "clc": 31380, + "cle": 1321, + "cle": 2537, + "clean": 3572, + "clean": 3772, + "cleaned": 17468, + "cleanenergy": 43538, + "cleaner": 15619, + "cleaners": 33258, + "cleaning": 7210, + "cleanliness": 47886, + "cleans": 40827, + "cleanse": 28717, + "cleanser": 44170, + "cleansing": 25931, + "cleanup": 22353, + "clear": 4631, + "clear": 3143, + "clearance": 17959, + "cleared": 14880, + "clearer": 37031, + "clearing": 15481, + "clearly": 7767, + "clears": 29092, + "clearwater": 32124, + "cleary": 44342, + "cleats": 33486, + "cleavage": 44165, + "cled": 12827, + "clegg": 42915, + "clemens": 45896, + "clement": 22592, + "clement": 24714, + "clemente": 42461, + "clementine": 47112, + "clements": 49175, + "clemson": 38170, + "clemson": 19537, + "clen": 35547, + "cleo": 40344, + "cleop": 36287, + "cleopatra": 41212, + "cler": 11828, + "clergy": 42635, + "cleric": 43748, + "clerk": 22230, + "clermont": 47529, + "cles": 8077, + "cleve": 37599, + "clevel": 7701, + "cleveland": 30716, + "cleveland": 8430, + "clever": 30977, + "clever": 13385, + "clg": 47546, + "cli": 1503, + "clich": 44407, + "click": 16676, + "click": 3585, + "clicked": 29015, + "clicking": 26542, + "clicks": 31250, + "client": 48528, + "client": 7467, + "clients": 8114, + "clif": 13182, + "cliff": 23827, + "cliff": 10625, + "cliffe": 15170, + "clifford": 24226, + "cliffs": 20953, + "clifton": 23878, + "climat": 37283, + "climate": 7854, + "climate": 4589, + "climateaction": 31622, + "climatechange": 11055, + "climates": 46022, + "climax": 37033, + "climb": 7421, + "climb": 10649, + "climbed": 22528, + "climber": 36910, + "climbers": 47648, + "climbing": 9877, + "climbs": 29098, + "clin": 2879, + "clinch": 30404, + "clinched": 44064, + "cline": 37460, + "cling": 37068, + "cling": 4760, + "clinic": 7926, + "clinical": 35133, + "clinical": 9148, + "clinicians": 45866, + "clinics": 23330, + "clint": 37542, + "clint": 21160, + "clinton": 34403, + "clinton": 5820, + "clio": 46889, + "clip": 39712, + "clip": 9289, + "clipped": 45524, + "clipper": 42245, + "clippers": 23319, + "clipping": 47484, + "clips": 16594, + "clique": 34983, + "clive": 36086, + "clive": 21509, + "cll": 46091, + "cllr": 45743, + "cllr": 23034, + "clo": 1194, + "cloak": 36528, + "clock": 19878, + "clock": 6716, + "clocked": 49049, + "clocks": 25895, + "clockwise": 46150, + "clockwork": 42297, + "clon": 24477, + "clone": 22854, + "clones": 48047, + "clooney": 33161, + "clos": 48821, + "close": 10603, + "close": 2660, + "closed": 4552, + "closely": 13478, + "closer": 6377, + "closes": 11354, + "closest": 14975, + "closet": 14221, + "closeup": 35439, + "closing": 7101, + "closure": 13249, + "closures": 22923, + "cloth": 14559, + "clothes": 7080, + "clothing": 7425, + "clou": 4069, + "cloud": 12965, + "cloud": 3887, + "cloudcomputing": 41390, + "clouds": 6244, + "cloudy": 13106, + "clough": 42909, + "clover": 39574, + "clover": 22812, + "clow": 18386, + "clown": 15329, + "clowns": 30820, + "cls": 44251, + "clt": 29651, + "clt": 24236, + "clu": 996, + "club": 9642, + "club": 1736, + "clubbing": 48128, + "clubhouse": 26553, + "clubs": 9437, + "clue": 14994, + "clueless": 35350, + "clues": 23764, + "clusive": 41362, + "cluster": 15595, + "clusters": 33217, + "clut": 28507, + "clutch": 13953, + "clutter": 40804, + "cly": 12037, + "clyde": 39557, + "clyde": 18469, + "cm": 10190, + "cm": 3741, + "cma": 30554, + "cma": 31388, + "cmc": 45839, + "cmdr": 48250, + "cme": 34946, + "cmo": 24589, + "cmon": 42904, + "cmp": 46355, + "cms": 22520, + "cmt": 42727, + "cmu": 43046, + "cn": 3886, + "cn": 16200, + "cna": 48287, + "cnbc": 41242, + "cnbc": 24371, + "cnblue": 36018, + "cnc": 20571, + "cnet": 47487, + "cnews": 24319, + "cng": 41496, + "cnn": 22405, + "cnn": 8259, + "cns": 46095, + "cny": 31614, + "co": 622, + "co": 1320, + "coa": 29167, + "coach": 3275, + "coach": 2312, + "coached": 30228, + "coachella": 20222, + "coaches": 6924, + "coaching": 7766, + "coal": 10227, + "coal": 7919, + "coalition": 12920, + "coast": 6398, + "coast": 3720, + "coastal": 38246, + "coastal": 10852, + "coaster": 15944, + "coasters": 31548, + "coastguard": 40601, + "coastline": 27959, + "coasts": 42225, + "coat": 28869, + "coat": 7356, + "coated": 23401, + "coates": 36899, + "coating": 25369, + "coatings": 48706, + "coats": 18075, + "cob": 20140, + "cob": 32863, + "cobain": 36866, + "cobalt": 30896, + "cobb": 22719, + "cobble": 47894, + "cobra": 21574, + "coc": 23036, + "coc": 39498, + "coca": 21197, + "cocac": 26393, + "cocacola": 31248, + "cocaine": 20534, + "coch": 18599, + "cochran": 48798, + "cochrane": 41752, + "coco": 11850, + "coco": 13316, + "cocoa": 18074, + "cocon": 8597, + "coconut": 9581, + "cod": 16132, + "cod": 11915, + "code": 11582, + "code": 3217, + "coded": 33703, + "coden": 43914, + "coder": 41561, + "codes": 14566, + "codi": 39711, + "coding": 12647, + "cody": 23222, + "cody": 12666, + "coe": 15386, + "coed": 41028, + "coel": 45633, + "coer": 41198, + "coeur": 44986, + "coffe": 2255, + "coffee": 12898, + "coffee": 2453, + "coffees": 41184, + "coffey": 48066, + "cofficial": 18757, + "coffin": 29907, + "cog": 26362, + "cog": 35960, + "cogn": 12210, + "cognac": 44361, + "cognition": 46825, + "cognitive": 16584, + "cohe": 20669, + "cohen": 13381, + "coherent": 48450, + "cohort": 22782, + "coil": 25307, + "coim": 41528, + "coin": 14651, + "coin": 4170, + "coinci": 14015, + "coincidence": 19807, + "coins": 10530, + "coke": 39602, + "coke": 14035, + "col": 754, + "col": 9371, + "cola": 15444, + "colbert": 31647, + "colby": 32068, + "colchester": 31715, + "cold": 11146, + "cold": 3153, + "colder": 23859, + "coldest": 31438, + "coldplay": 27770, + "cole": 9305, + "cole": 8166, + "coleman": 15774, + "coles": 40265, + "coles": 30398, + "coli": 18877, + "coli": 15910, + "colin": 20989, + "colin": 10238, + "coliseum": 21836, + "coll": 25982, + "coll": 23898, + "colla": 2929, + "collab": 14013, + "collabor": 4437, + "collaborate": 21271, + "collaborated": 42265, + "collaborating": 25545, + "collaboration": 6642, + "collaborations": 36520, + "collaborative": 15841, + "collaborator": 48186, + "collaborators": 45901, + "collage": 11258, + "collagen": 36120, + "collap": 16881, + "collapse": 16520, + "collapsed": 25037, + "collapses": 43601, + "collar": 39662, + "collar": 13497, + "collateral": 44512, + "colle": 1801, + "colleague": 13067, + "colleagues": 8203, + "collec": 1733, + "collect": 10186, + "collected": 11980, + "collecti": 18530, + "collectible": 25680, + "collectibles": 21519, + "collecting": 10325, + "collection": 2548, + "collections": 12760, + "collective": 10162, + "collectively": 40687, + "collector": 13522, + "collectors": 20540, + "collects": 31576, + "colleen": 31020, + "college": 13512, + "college": 2229, + "colleges": 17357, + "collegi": 16311, + "collegiate": 18068, + "colli": 8262, + "collide": 27214, + "collie": 30611, + "collier": 35748, + "collin": 24056, + "collin": 32116, + "colling": 32319, + "collingwood": 45873, + "collins": 8684, + "collision": 15407, + "collo": 25115, + "colloqui": 37243, + "colloquium": 46514, + "collu": 25658, + "collusion": 33864, + "colo": 7300, + "colo": 27288, + "cologne": 22216, + "cology": 19187, + "colom": 8987, + "colombia": 12901, + "colombian": 28701, + "colombo": 33207, + "colon": 8280, + "colon": 29050, + "colonel": 22674, + "coloni": 22667, + "colonial": 16530, + "colonialism": 43385, + "colonies": 38738, + "colony": 18767, + "color": 4036, + "color": 3140, + "colorado": 34580, + "colorado": 6742, + "colorec": 41171, + "colored": 11775, + "colorful": 11444, + "colori": 28764, + "coloring": 17696, + "colorized": 46730, + "colors": 5389, + "colorstv": 28195, + "colorway": 44576, + "colossal": 40258, + "colosse": 48142, + "colossus": 34022, + "colour": 10240, + "colour": 4769, + "coloured": 17111, + "colourful": 15562, + "colouring": 31803, + "colours": 7626, + "cols": 35726, + "colt": 19726, + "colton": 32249, + "coltrane": 42333, + "colts": 16135, + "colum": 4164, + "columb": 31043, + "columbi": 25947, + "columbia": 9410, + "columbus": 11273, + "column": 10593, + "columnist": 28958, + "columns": 29056, + "com": 610, + "com": 2464, + "coma": 19620, + "comb": 3587, + "comb": 16380, + "combat": 35083, + "combat": 9275, + "combating": 46121, + "combe": 14363, + "combin": 25112, + "combination": 11312, + "combinations": 34950, + "combine": 12919, + "combined": 10427, + "combines": 22991, + "combining": 23561, + "combo": 10155, + "combos": 48117, + "combs": 30694, + "combu": 35629, + "combustion": 44654, + "comcast": 30043, + "come": 4225, + "come": 891, + "comeback": 8234, + "comedian": 13848, + "comedians": 33758, + "comedic": 43360, + "comedy": 19346, + "comedy": 4749, + "comer": 42997, + "comer": 20916, + "comers": 34436, + "comes": 2091, + "comet": 21405, + "comets": 40636, + "comey": 22957, + "comfor": 6563, + "comfort": 44000, + "comfort": 7808, + "comfortable": 8652, + "comfortably": 30392, + "comforting": 33835, + "comforts": 42243, + "comfy": 15736, + "comi": 40781, + "comic": 7729, + "comic": 4962, + "comicart": 46018, + "comicbook": 46564, + "comicbooks": 22018, + "comiccon": 18379, + "comicon": 43820, + "comics": 4256, + "comin": 18164, + "coming": 14916, + "coming": 1171, + "comingsoon": 19894, + "comm": 965, + "comm": 11413, + "comman": 39780, + "command": 18391, + "command": 11350, + "commander": 11265, + "commanders": 41667, + "commanding": 36933, + "commandments": 43409, + "commando": 31361, + "commands": 38163, + "comme": 29692, + "commemor": 9495, + "commemorate": 21242, + "commemorates": 45149, + "commemorating": 28734, + "commemoration": 29288, + "commemorative": 24623, + "commen": 15795, + "commence": 25059, + "commenced": 43908, + "commencement": 21666, + "commences": 48551, + "commend": 37555, + "commended": 40702, + "comment": 20035, + "comment": 5761, + "commentary": 14146, + "commentator": 32016, + "commented": 28328, + "commenting": 37292, + "comments": 6606, + "commer": 4028, + "commerce": 8333, + "commerci": 15601, + "commercial": 31802, + "commercial": 6287, + "commercials": 30724, + "commish": 45399, + "commissi": 6000, + "commission": 5292, + "commissioned": 16565, + "commissioner": 10221, + "commissioners": 30702, + "commissioning": 29585, + "commissions": 20668, + "commit": 3041, + "commit": 11797, + "commitment": 7770, + "commitments": 32136, + "commits": 20241, + "committed": 7907, + "committee": 5636, + "committees": 40504, + "committing": 21937, + "commod": 9496, + "commodities": 30350, + "commodity": 29041, + "commodore": 31129, + "common": 8414, + "common": 4176, + "commonly": 20344, + "commons": 16653, + "commonwealth": 16569, + "comms": 18832, + "commu": 9561, + "commun": 1515, + "communal": 32809, + "communi": 16164, + "communic": 4784, + "communicate": 19809, + "communication": 7999, + "communications": 10052, + "communion": 28579, + "communism": 35387, + "communist": 18602, + "communities": 6361, + "community": 14784, + "community": 1927, + "commute": 15898, + "commuter": 27782, + "commuters": 30823, + "commuting": 43503, + "como": 16236, + "comp": 2561, + "comp": 11679, + "compac": 40014, + "compact": 13690, + "compan": 1995, + "companies": 5361, + "companion": 14963, + "companions": 37124, + "company": 2634, + "compar": 7580, + "comparable": 27092, + "comparative": 33388, + "compare": 13771, + "compared": 10544, + "compares": 25104, + "comparing": 20564, + "comparison": 14186, + "comparisons": 40870, + "compart": 30072, + "compartment": 40383, + "compass": 19438, + "compassion": 14463, + "compassionate": 30193, + "compati": 17295, + "compatibility": 41614, + "compatible": 21286, + "compe": 5254, + "compelled": 49375, + "compelling": 21766, + "compen": 42079, + "compens": 15172, + "compensation": 18663, + "compet": 2932, + "compete": 10038, + "competed": 27767, + "competen": 31853, + "competence": 31165, + "competency": 49293, + "competent": 28113, + "competes": 39826, + "competing": 13068, + "competit": 15892, + "competiti": 32581, + "competition": 3742, + "competitions": 23259, + "competitive": 10687, + "competitiveness": 43209, + "competitor": 26633, + "competitors": 23638, + "compilation": 20446, + "compiled": 34579, + "compla": 7428, + "complain": 19292, + "complained": 42029, + "complaining": 20812, + "complains": 46363, + "complaint": 20391, + "complaints": 20020, + "comple": 1730, + "complement": 36624, + "complementary": 48953, + "complete": 3263, + "completed": 5976, + "completely": 5989, + "completes": 19321, + "completing": 14949, + "completion": 15915, + "complex": 16099, + "complex": 6324, + "complexes": 47870, + "complexion": 47732, + "complexity": 24815, + "compli": 5270, + "compliance": 14658, + "compliant": 29893, + "complic": 11460, + "complicated": 16621, + "complications": 29936, + "compliment": 25116, + "complimentary": 20948, + "compliments": 25477, + "comply": 36281, + "component": 21284, + "components": 16816, + "compos": 7783, + "compose": 43659, + "composed": 19916, + "composer": 12104, + "composers": 33314, + "composing": 40412, + "composite": 21606, + "composites": 45395, + "composition": 17510, + "compositions": 44652, + "compost": 46002, + "compost": 33307, + "compound": 19980, + "compounds": 33991, + "compre": 8483, + "compreh": 42976, + "comprehen": 12050, + "comprehend": 48230, + "comprehensive": 13854, + "compress": 33353, + "compressed": 42359, + "compression": 25638, + "compressor": 39607, + "compri": 29445, + "compromise": 26611, + "compromised": 38576, + "compromising": 45436, + "comps": 48665, + "compton": 28364, + "compu": 11639, + "compul": 25869, + "compulsory": 39345, + "computing": 12732, + "comra": 25553, + "comrade": 30844, + "comrades": 29282, + "coms": 30493, + "con": 616, + "con": 2457, + "cona": 30605, + "conan": 24750, + "conce": 9145, + "concealed": 35419, + "conceded": 37895, + "conceived": 39725, + "concentr": 11085, + "concentrate": 30846, + "concentrated": 36776, + "concentration": 18565, + "concep": 8389, + "concepcion": 47035, + "concept": 6353, + "conceptart": 31162, + "conception": 30510, + "conceptions": 40307, + "concepts": 16763, + "conceptu": 42745, + "conceptual": 34070, + "concer": 2228, + "concern": 12928, + "concerned": 12020, + "concerning": 21772, + "concerns": 11134, + "concert": 32180, + "concert": 3066, + "concerto": 24710, + "concerts": 14418, + "concession": 38117, + "concessions": 43981, + "concier": 28859, + "concierge": 39850, + "conclave": 38098, + "conclu": 9627, + "conclude": 37525, + "concluded": 27825, + "concludes": 30634, + "conclusion": 20932, + "conclusions": 39507, + "conco": 43034, + "concor": 19913, + "concord": 26448, + "concordia": 35492, + "concours": 36282, + "concourse": 37793, + "concre": 43658, + "concrete": 9637, + "concussion": 28321, + "condem": 13287, + "condemn": 27212, + "condemned": 35145, + "condemns": 32092, + "conden": 24816, + "conditi": 11170, + "condition": 36978, + "condition": 7336, + "conditional": 24671, + "conditioned": 37014, + "conditioner": 31239, + "conditioning": 18181, + "conditions": 5892, + "condo": 19952, + "condol": 18661, + "condolences": 20836, + "condom": 39021, + "condomin": 42589, + "condoms": 37878, + "condor": 47643, + "condos": 42342, + "condu": 40772, + "conduc": 5379, + "conduct": 11647, + "conducted": 13080, + "conducting": 16787, + "conductor": 22317, + "conducts": 32084, + "cone": 39279, + "cone": 10266, + "cones": 26718, + "coney": 41837, + "conf": 6477, + "confe": 1968, + "confeder": 17104, + "confederate": 24864, + "confederation": 43484, + "conferen": 37961, + "conference": 2230, + "conferences": 22811, + "conferencing": 47320, + "confess": 38860, + "confession": 22572, + "confessions": 29404, + "confetti": 37923, + "confi": 5005, + "confidence": 8510, + "confident": 12365, + "confidential": 28712, + "configu": 46746, + "configur": 26950, + "configuration": 33378, + "confin": 45316, + "confined": 40973, + "confir": 3930, + "confirm": 12130, + "confirmation": 19645, + "confirmed": 6346, + "confirming": 38433, + "confirms": 11803, + "confis": 36285, + "confit": 42241, + "confl": 8173, + "conflic": 19029, + "conflict": 10397, + "conflicting": 43894, + "conflicts": 28713, + "confor": 40933, + "confron": 20033, + "confront": 38382, + "confrontation": 41478, + "confu": 6890, + "confuse": 37503, + "confused": 10946, + "confusing": 24683, + "confusion": 20493, + "cong": 24407, + "conge": 20013, + "congestion": 24432, + "congo": 20334, + "congr": 1227, + "congrats": 1887, + "congratul": 1750, + "congratulate": 16633, + "congratulated": 42004, + "congratulates": 24580, + "congratulating": 30967, + "congratulation": 24751, + "congratulations": 1864, + "congre": 7947, + "congreg": 40727, + "congregation": 32618, + "congress": 12452, + "congress": 4599, + "congressional": 15239, + "congressman": 17145, + "congresswoman": 37317, + "coni": 39031, + "coni": 36651, + "conj": 41543, + "conju": 33821, + "conjunction": 34226, + "conley": 44536, + "conline": 37593, + "conn": 41836, + "conn": 20329, + "conne": 8437, + "connec": 29933, + "connect": 19969, + "connected": 27506, + "connecting": 41429, + "connection": 26840, + "connections": 37161, + "connie": 25739, + "connoisse": 46012, + "connol": 27739, + "connolly": 29537, + "connor": 21984, + "connor": 10218, + "conom": 2664, + "conomy": 22529, + "conor": 29955, + "conor": 19478, + "conqu": 13382, + "conquer": 38585, + "conquer": 19821, + "conquered": 27099, + "conquering": 43778, + "conquest": 35367, + "conrad": 22073, + "cons": 10311, + "consci": 9427, + "conscience": 27310, + "conscious": 14914, + "consciously": 46755, + "consciousness": 17894, + "conse": 34887, + "consecu": 12084, + "consecutive": 12413, + "consen": 23110, + "consensus": 25071, + "consent": 21922, + "consequ": 13003, + "consequence": 42262, + "consequences": 15682, + "conserv": 4649, + "conservancy": 46729, + "conservation": 37616, + "conservation": 8322, + "conservative": 11421, + "conservatives": 17631, + "conservatory": 32140, + "conserve": 34231, + "consi": 2899, + "consider": 12471, + "consider": 6734, + "considerable": 38256, + "considerably": 38510, + "consideration": 24310, + "considerations": 33700, + "considered": 9487, + "considering": 10761, + "considers": 24691, + "consist": 10410, + "consist": 33735, + "consisted": 49354, + "consistency": 25683, + "consistent": 16439, + "consistently": 23799, + "consisting": 39241, + "consists": 23458, + "consol": 27869, + "consolation": 38888, + "console": 13403, + "consoles": 33136, + "consoli": 21586, + "consolidation": 41111, + "consor": 27108, + "consortium": 29988, + "conspir": 12680, + "conspiracy": 15236, + "const": 3826, + "constable": 29179, + "constan": 38718, + "constance": 40682, + "constant": 32000, + "constant": 13111, + "constantine": 30640, + "constantly": 14336, + "constell": 21913, + "constellation": 25991, + "constitu": 6299, + "constituency": 22464, + "constituents": 32075, + "constitution": 12157, + "constitutional": 16091, + "constra": 28973, + "constraints": 41910, + "constru": 3983, + "construc": 13321, + "construct": 24467, + "constructed": 16876, + "constructing": 33653, + "construction": 48873, + "construction": 4585, + "constructive": 31810, + "consu": 4689, + "consul": 5295, + "consul": 33630, + "consulate": 34341, + "consult": 9438, + "consult": 26727, + "consultancy": 31735, + "consultant": 14196, + "consultants": 27203, + "consultation": 15777, + "consultations": 43424, + "consulting": 15883, + "consume": 28919, + "consumed": 29653, + "consumer": 34408, + "consumer": 10422, + "consumers": 14014, + "consuming": 30607, + "consumption": 14904, + "cont": 2036, + "cont": 21425, + "contact": 39367, + "contact": 3523, + "contacted": 37331, + "contacts": 22789, + "contag": 29259, + "contagious": 33984, + "contain": 9948, + "contain": 15187, + "contained": 23836, + "container": 14913, + "containers": 20448, + "containing": 20281, + "contains": 12844, + "contamin": 24662, + "contaminated": 35773, + "contamination": 31770, + "conte": 15402, + "conte": 26882, + "contempl": 21924, + "contemplating": 33854, + "contempor": 14538, + "contemporary": 16607, + "contemporary": 8859, + "contemporaryart": 20212, + "contempt": 39293, + "conten": 42201, + "contender": 23573, + "contenders": 29711, + "content": 15526, + "content": 4750, + "contentmarketing": 20429, + "contents": 14850, + "contest": 23103, + "contest": 4576, + "contestalert": 27313, + "contestant": 25682, + "contestants": 28062, + "contested": 37845, + "contests": 32210, + "contex": 42015, + "context": 13089, + "conti": 46431, + "conti": 40842, + "contin": 1918, + "continent": 19623, + "continental": 14089, + "continents": 38642, + "conting": 27104, + "contingent": 36467, + "continu": 4688, + "continually": 34086, + "continuation": 38964, + "continue": 3942, + "continued": 10150, + "continues": 4305, + "continuing": 11009, + "continuity": 34035, + "continuous": 17033, + "continuously": 29634, + "continuum": 44978, + "contour": 34733, + "contr": 22871, + "contra": 9880, + "contra": 38620, + "contrac": 7581, + "contracep": 35109, + "contract": 6120, + "contracting": 39091, + "contractor": 21429, + "contractors": 22427, + "contracts": 16563, + "contradic": 27957, + "contrary": 32805, + "contrast": 18501, + "contrasting": 40758, + "contribu": 4753, + "contribute": 14112, + "contributed": 19397, + "contributes": 34203, + "contributing": 21762, + "contribution": 11116, + "contributions": 14465, + "contributor": 24553, + "contributors": 32908, + "contro": 2372, + "control": 9963, + "control": 3366, + "controlled": 14140, + "controller": 12929, + "controllers": 30374, + "controlling": 26427, + "controls": 15746, + "controversi": 13674, + "controversial": 14617, + "controversy": 18659, + "conv": 48382, + "conve": 18421, + "conven": 7283, + "conveni": 33278, + "convenience": 17859, + "convenient": 18978, + "conveniently": 40844, + "convention": 6752, + "conventional": 20835, + "conventions": 41404, + "conver": 6336, + "convergence": 35381, + "convers": 4577, + "conversation": 5690, + "conversations": 12326, + "converse": 24149, + "conversion": 15111, + "conversions": 44137, + "convert": 20074, + "converted": 20808, + "converter": 34611, + "convertible": 19608, + "converting": 34674, + "converts": 42470, + "convey": 38342, + "convic": 11150, + "convicted": 18668, + "conviction": 24967, + "convictions": 44366, + "convin": 12889, + "convince": 20351, + "convinced": 17388, + "convincing": 27742, + "convo": 19372, + "convocation": 30674, + "convos": 44842, + "convoy": 30292, + "conway": 21410, + "conwy": 48971, + "cony": 14501, + "coo": 1664, + "coo": 21691, + "coogs": 47624, + "cook": 9726, + "cook": 5977, + "cookbook": 21086, + "cooke": 29979, + "cooked": 11452, + "cooker": 23806, + "cookery": 38779, + "cookie": 9367, + "cookies": 8320, + "cookin": 46610, + "cooking": 39248, + "cooking": 6283, + "cookout": 39743, + "cooks": 24256, + "cool": 5594, + "cool": 2077, + "cooled": 37170, + "cooler": 11078, + "coolest": 10566, + "cooling": 15291, + "coom": 41726, + "coon": 34260, + "coon": 16958, + "coop": 39917, + "coop": 18910, + "cooper": 7264, + "cooper": 8133, + "cooperate": 42936, + "cooperation": 11785, + "cooperative": 24517, + "coops": 48531, + "coordin": 8187, + "coordinate": 38250, + "coordinated": 32540, + "coordinating": 40075, + "coordination": 25611, + "coordinator": 13967, + "coors": 36025, + "cop": 3196, + "cop": 7070, + "copa": 22749, + "copd": 45876, + "cope": 47635, + "cope": 12564, + "copeland": 37604, + "copen": 15637, + "copenhagen": 17390, + "coper": 41891, + "copernic": 45519, + "copied": 36770, + "copies": 9851, + "coping": 30545, + "copolitics": 45846, + "copp": 20937, + "copped": 42229, + "copper": 24741, + "copper": 10333, + "coppola": 47427, + "cops": 10719, + "copter": 28049, + "copy": 11376, + "copy": 4509, + "copying": 38925, + "copyright": 15778, + "cor": 851, + "cor": 18559, + "cora": 34953, + "coral": 31220, + "coral": 12054, + "corbett": 35699, + "corbin": 35578, + "corbyn": 14026, + "cord": 40893, + "cord": 11181, + "corden": 41999, + "cordi": 41681, + "cordless": 44412, + "cords": 22164, + "core": 19622, + "core": 5000, + "cores": 37874, + "corey": 31279, + "corey": 15288, + "corgi": 31320, + "cori": 26508, + "coriander": 37491, + "corin": 17716, + "corinthians": 34471, + "cork": 18148, + "cork": 10376, + "corn": 5202, + "corn": 5894, + "cornelius": 45865, + "cornell": 38689, + "cornell": 20859, + "corner": 18509, + "corner": 5253, + "corners": 19584, + "cornerstone": 36280, + "cornish": 23774, + "cornwall": 37903, + "cornwall": 10777, + "coron": 13210, + "corona": 25564, + "coronado": 43946, + "coronary": 45955, + "coronation": 25014, + "coroner": 47241, + "corp": 29203, + "corp": 10918, + "corpor": 4258, + "corporal": 42445, + "corporate": 33877, + "corporate": 6838, + "corporation": 11282, + "corporations": 25482, + "corps": 11330, + "corpse": 29408, + "corpus": 31672, + "correc": 5011, + "correct": 8340, + "corrected": 35628, + "correction": 20843, + "correctional": 38030, + "corrections": 37507, + "correctly": 15359, + "correlation": 29218, + "correspon": 20203, + "correspondent": 29996, + "corri": 12974, + "corridor": 20592, + "corrie": 23961, + "corro": 24936, + "corro": 42033, + "corrosion": 39191, + "corru": 6501, + "corrup": 30429, + "corrupt": 15194, + "corruption": 9141, + "corsa": 47670, + "corsair": 42367, + "corset": 40408, + "cortex": 40109, + "cortez": 30461, + "corvette": 24367, + "cory": 23221, + "cory": 18329, + "cos": 5865, + "cos": 5700, + "cosby": 30324, + "cosc": 45944, + "coscino": 47909, + "cose": 26495, + "cosm": 37486, + "cosme": 9628, + "cosmetic": 23918, + "cosmetics": 12896, + "cosmic": 47398, + "cosmic": 18304, + "cosmo": 12829, + "cosmo": 32072, + "cosmopolitan": 35518, + "cosmos": 22151, + "cospla": 15149, + "cosplay": 42401, + "cosplay": 6435, + "cosplayer": 30215, + "cosplaying": 46701, + "cost": 11360, + "cost": 4713, + "costa": 10480, + "costar": 28659, + "costarica": 31272, + "costco": 31045, + "costello": 30667, + "costing": 39193, + "costly": 30170, + "costs": 7628, + "costu": 5786, + "costume": 7235, + "costumes": 15150, + "cosy": 22848, + "cot": 4718, + "cot": 5871, + "cote": 44234, + "cote": 20751, + "cotland": 32576, + "cotsw": 23303, + "cotswolds": 35546, + "cott": 8211, + "cott": 11349, + "cottage": 12155, + "cottages": 34405, + "cotton": 22218, + "cotton": 7050, + "cou": 1368, + "couch": 12724, + "cougar": 35028, + "cougar": 27042, + "cougars": 20425, + "cough": 35631, + "cough": 18498, + "cougs": 28482, + "coul": 22483, + "could": 44812, + "could": 1510, + "couldn": 4072, + "couldnt": 29042, + "coulter": 42291, + "coun": 939, + "counc": 12927, + "council": 18187, + "council": 3620, + "councill": 15732, + "councillor": 21179, + "councillors": 29695, + "councilman": 40833, + "councils": 29938, + "counsel": 13780, + "counsel": 19814, + "counseling": 25000, + "counsell": 47510, + "counselling": 40581, + "counselor": 26148, + "counselors": 38688, + "count": 6073, + "count": 5887, + "countdown": 39559, + "countdown": 7500, + "counted": 23149, + "counter": 10134, + "counter": 7352, + "counterfe": 33067, + "counterfeit": 44242, + "counterpart": 39216, + "counterparts": 42106, + "counters": 46170, + "countess": 46276, + "counties": 12338, + "counting": 9723, + "countless": 21819, + "countries": 5489, + "country": 7896, + "country": 2157, + "countryfile": 47023, + "countrymusic": 30372, + "countryside": 16303, + "counts": 12264, + "county": 18734, + "county": 2116, + "coup": 9871, + "coup": 16479, + "coupe": 16773, + "couple": 40136, + "couple": 3377, + "coupled": 37153, + "couples": 14752, + "coupling": 45595, + "coupon": 14019, + "coupons": 23945, + "cour": 1391, + "coura": 4436, + "courage": 9828, + "courageous": 25005, + "courier": 27217, + "cours": 21493, + "course": 43225, + "course": 2613, + "courses": 9464, + "court": 16837, + "court": 2908, + "courte": 5088, + "courtesy": 5228, + "courthouse": 22205, + "courtney": 33601, + "courtney": 15990, + "courtroom": 41071, + "courts": 13514, + "courty": 20121, + "courtyard": 21900, + "cous": 48397, + "cousin": 7780, + "cousins": 14073, + "cout": 29118, + "coutinho": 35530, + "couture": 14808, + "cov": 19384, + "cov": 48385, + "cove": 21700, + "cove": 14708, + "coven": 12483, + "covenant": 29647, + "coventry": 18007, + "cover": 13534, + "cover": 2202, + "coverage": 6810, + "covered": 5603, + "covering": 9462, + "covers": 7745, + "covert": 40134, + "coveted": 36119, + "covington": 43196, + "cow": 5076, + "cow": 9706, + "cowan": 42699, + "coward": 33729, + "cowards": 48972, + "cowboy": 25833, + "cowboy": 13657, + "cowboys": 11864, + "cowboysnation": 43082, + "cowell": 39015, + "cowgirl": 47090, + "coworker": 30727, + "coworkers": 30821, + "coworking": 36034, + "cows": 15204, + "cowx": 23831, + "cox": 25784, + "cox": 11597, + "coy": 12765, + "coy": 15742, + "coyi": 48407, + "coyle": 45348, + "coyne": 44729, + "coyo": 16614, + "coyote": 26586, + "coyotes": 30423, + "coys": 19736, + "coz": 39922, + "coz": 14282, + "cozy": 14873, + "cp": 7905, + "cp": 9130, + "cpa": 30095, + "cpac": 45731, + "cpc": 26125, + "cpd": 23402, + "cpec": 48007, + "cpfc": 27553, + "cpi": 41795, + "cpl": 26852, + "cpr": 25134, + "cps": 27078, + "cpt": 32892, + "cpu": 27700, + "cq": 48910, + "cq": 48417, + "cr": 1075, + "cr": 3483, + "cra": 1184, + "cra": 18362, + "crab": 27382, + "crab": 11574, + "crabs": 30908, + "crack": 11222, + "crack": 10334, + "crackdown": 29527, + "cracked": 19826, + "cracker": 16298, + "crackers": 26200, + "cracking": 13008, + "cracks": 21426, + "cracy": 24749, + "cradle": 29384, + "crae": 40438, + "craf": 10873, + "craft": 7717, + "craft": 3588, + "craftbeer": 12371, + "crafted": 12424, + "crafthour": 42324, + "crafting": 26886, + "crafts": 33276, + "crafts": 13383, + "craftsman": 39528, + "craftsmanship": 36682, + "crafty": 32317, + "craic": 46962, + "craig": 14042, + "craig": 8061, + "craigslist": 43865, + "cram": 29809, + "cramer": 44592, + "cramps": 46106, + "cran": 7761, + "cranberries": 49361, + "cranberry": 23824, + "crane": 14626, + "cranes": 26979, + "crani": 45674, + "crank": 46246, + "crank": 32283, + "cranston": 44340, + "crap": 11899, + "crappy": 30475, + "crash": 37150, + "crash": 5033, + "crashed": 16638, + "crashes": 17013, + "crashing": 24991, + "crat": 46696, + "crate": 24756, + "crater": 22663, + "crates": 30172, + "cratic": 32175, + "crative": 39999, + "crats": 43056, + "crave": 33397, + "craven": 33625, + "craving": 18344, + "cravings": 34476, + "craw": 7400, + "crawfish": 42772, + "crawford": 15918, + "crawl": 20106, + "crawler": 41012, + "crawley": 42316, + "crawling": 37066, + "cray": 24184, + "cray": 27032, + "crayon": 41801, + "crayons": 43508, + "craz": 25776, + "craze": 30637, + "craziest": 32690, + "craziness": 46436, + "crazy": 17540, + "crazy": 3578, + "crc": 25618, + "cre": 798, + "cre": 17762, + "cream": 23184, + "cream": 3867, + "creams": 41447, + "creamy": 17206, + "crease": 48441, + "create": 30949, + "create": 3380, + "created": 4080, + "creates": 10361, + "creati": 6714, + "creating": 5524, + "creation": 38293, + "creation": 6900, + "creations": 17411, + "creative": 15237, + "creative": 4450, + "creatives": 29352, + "creativity": 9636, + "creator": 10173, + "creators": 17981, + "creature": 14317, + "creatures": 13938, + "cred": 7314, + "cred": 22377, + "credenti": 29487, + "credentials": 33422, + "credi": 21097, + "credibility": 34984, + "credible": 32983, + "credit": 21467, + "credit": 3900, + "credited": 32480, + "credits": 10654, + "creds": 43462, + "cree": 33961, + "cree": 36014, + "creed": 18845, + "creek": 26120, + "creek": 5526, + "creep": 8153, + "creep": 26084, + "creeper": 38662, + "creeping": 29697, + "creeps": 45135, + "creepy": 11943, + "creighton": 42823, + "creme": 22681, + "creole": 45632, + "crepe": 38611, + "crescent": 18211, + "cress": 39124, + "crest": 35985, + "crest": 15760, + "crested": 36656, + "crete": 8584, + "crew": 21560, + "crew": 3462, + "crewe": 43284, + "crews": 10463, + "cri": 1621, + "cri": 38962, + "crib": 23271, + "cric": 4328, + "cricke": 19098, + "cricket": 21859, + "cricket": 5373, + "cricketer": 28439, + "cricketers": 43986, + "cried": 15290, + "cries": 19769, + "crime": 13872, + "crime": 4896, + "crimea": 28614, + "crimes": 11827, + "crimin": 5874, + "criminal": 30197, + "criminal": 8255, + "criminals": 18783, + "crimson": 19437, + "cringe": 42588, + "cripp": 33588, + "cris": 37818, + "crises": 36403, + "crisis": 5712, + "crisp": 15145, + "crispr": 39784, + "crisps": 35744, + "crispy": 16458, + "criss": 29708, + "cristi": 12699, + "cristian": 48808, + "cristiano": 14807, + "cristina": 33395, + "cristo": 38315, + "crit": 3613, + "crit": 48130, + "criteri": 33627, + "criteria": 24849, + "criterion": 43841, + "criti": 25333, + "critic": 12417, + "critic": 19361, + "critical": 15314, + "critical": 6808, + "critically": 21570, + "criticalrole": 33606, + "criticalrole": 22742, + "criticalrolefanart": 43663, + "critici": 20333, + "criticism": 17405, + "criticize": 46081, + "criticized": 41557, + "critics": 16946, + "critique": 32982, + "critters": 35423, + "crm": 22610, + "cro": 1192, + "cro": 22522, + "croati": 28072, + "croatia": 13323, + "croatian": 34795, + "croc": 43350, + "croche": 35352, + "crochet": 17554, + "crock": 41685, + "crocker": 47843, + "crockett": 48313, + "crocod": 24519, + "crocodile": 24757, + "crocs": 38988, + "croft": 16657, + "croissant": 46011, + "croix": 44735, + "crom": 25082, + "crombie": 46162, + "cromwell": 45345, + "cron": 17361, + "croo": 16443, + "crook": 43744, + "crooked": 48473, + "crooked": 25644, + "crooks": 44226, + "crop": 40751, + "crop": 9955, + "cropped": 31139, + "crops": 16290, + "crore": 18274, + "crores": 37281, + "cros": 16670, + "crosby": 21095, + "cross": 5266, + "cross": 3417, + "crossed": 11731, + "crosses": 20473, + "crossfit": 47214, + "crossfit": 20395, + "crossing": 8673, + "crossings": 43517, + "crossover": 17194, + "crossroads": 27427, + "crossword": 32945, + "crou": 31206, + "crouch": 36506, + "crow": 3138, + "crow": 16019, + "crowd": 12036, + "crowd": 4570, + "crowded": 20182, + "crowdfunding": 17971, + "crowds": 16092, + "crowe": 33560, + "crowley": 32287, + "crown": 22190, + "crown": 6902, + "crowned": 16109, + "crowns": 33229, + "crows": 27134, + "croy": 21676, + "croydon": 27116, + "crs": 28449, + "crt": 43877, + "cru": 1815, + "cru": 29788, + "cruci": 18499, + "crucial": 12396, + "crude": 20677, + "cruel": 16073, + "cruel": 17573, + "cruelty": 20675, + "cruis": 27721, + "cruise": 36425, + "cruise": 6764, + "cruiser": 21394, + "cruises": 19214, + "cruising": 19743, + "crum": 43268, + "crumb": 48327, + "crumb": 39909, + "crumble": 36595, + "crumbs": 35893, + "crun": 17407, + "crunch": 16620, + "crunchy": 31366, + "crusad": 19133, + "crusade": 36846, + "crusader": 40171, + "crusaders": 31319, + "crush": 22296, + "crush": 7610, + "crushed": 18270, + "crusher": 44923, + "crushes": 35844, + "crushing": 20790, + "crust": 23136, + "crusted": 37314, + "cruz": 33689, + "cruz": 8403, + "cry": 2837, + "cry": 6290, + "crying": 6828, + "cryo": 32215, + "cryp": 4865, + "crypt": 37814, + "cryptic": 46925, + "crypto": 8080, + "crypto": 9608, + "cryptocurrencies": 33329, + "cryptocurrency": 12070, + "cryst": 15891, + "crystal": 17387, + "crystal": 6517, + "crystalli": 47551, + "crystals": 18350, + "cs": 11978, + "cs": 2804, + "csa": 26355, + "csc": 41727, + "csc": 37266, + "csd": 36913, + "cse": 41659, + "csg": 47085, + "csgo": 28928, + "csi": 41750, + "csi": 28070, + "csk": 43036, + "csm": 40061, + "csn": 46329, + "cso": 43864, + "csp": 39243, + "csr": 32105, + "csr": 24598, + "csrracing": 44193, + "css": 41418, + "css": 19846, + "cst": 17016, + "csu": 35948, + "csu": 31261, + "csw": 41031, + "ct": 3381, + "ct": 1122, + "cta": 28397, + "ctar": 27842, + "ctc": 34123, + "cte": 31410, + "cted": 2910, + "ctf": 35250, + "cthulhu": 41064, + "cting": 7985, + "ction": 17578, + "ction": 1569, + "ctions": 7021, + "ctive": 9313, + "cto": 17445, + "ctor": 8108, + "ctr": 35602, + "ctr": 18481, + "cts": 6936, + "ctto": 25118, + "ctu": 20834, + "cture": 17668, + "ctv": 21213, + "ctv": 27590, + "cu": 729, + "cu": 11224, + "cuando": 40388, + "cub": 16938, + "cub": 19972, + "cuba": 11576, + "cuban": 15536, + "cube": 47753, + "cube": 11353, + "cubes": 31413, + "cubic": 48159, + "cubic": 29614, + "cubs": 9858, + "cuck": 26364, + "cuckoo": 38062, + "cucu": 16705, + "cucumber": 19787, + "cucumbers": 48065, + "cud": 42684, + "cudd": 12820, + "cuddle": 19568, + "cuddles": 24001, + "cuddling": 29696, + "cuddly": 36208, + "cudi": 48713, + "cue": 13424, + "cuer": 39506, + "cues": 35719, + "cuff": 34693, + "cuff": 22414, + "cufflinks": 43938, + "cuffs": 37221, + "cuis": 9938, + "cuisine": 10605, + "cuk": 34838, + "cul": 1877, + "cula": 35935, + "cular": 10940, + "culars": 45719, + "cule": 31066, + "cules": 18984, + "culin": 14772, + "culinary": 16466, + "cull": 21880, + "cull": 42061, + "cullen": 25973, + "culmin": 33778, + "culo": 36305, + "culprit": 41593, + "cult": 11965, + "cultiv": 16781, + "cultivate": 42983, + "cultivated": 48901, + "cultivation": 41539, + "cultur": 20780, + "cultural": 34908, + "cultural": 6753, + "culturally": 36783, + "culture": 20197, + "culture": 3673, + "cultured": 40176, + "cultures": 19552, + "culver": 42103, + "cum": 20142, + "cum": 27119, + "cumb": 10858, + "cumber": 15309, + "cumberbatch": 27541, + "cumberland": 28747, + "cumbri": 32010, + "cumbria": 17953, + "cumin": 42285, + "cumple": 47050, + "cumul": 42961, + "cumulative": 47610, + "cumulus": 46313, + "cun": 12423, + "cun": 29532, + "cunningham": 25321, + "cuomo": 25681, + "cup": 5059, + "cup": 1937, + "cupboard": 32074, + "cupcake": 17025, + "cupcakes": 12747, + "cupid": 34885, + "cuppa": 28077, + "cups": 11463, + "cur": 1092, + "cur": 33073, + "curated": 20341, + "curator": 20753, + "curb": 21931, + "curd": 38881, + "cure": 36758, + "cure": 9088, + "cured": 26248, + "cures": 38204, + "curfew": 48826, + "curi": 12640, + "curing": 44169, + "curiosity": 21583, + "curious": 9865, + "curl": 24306, + "curled": 43734, + "curling": 18543, + "curls": 24340, + "curly": 20795, + "curran": 40999, + "currant": 43501, + "curren": 6142, + "currencies": 23530, + "currency": 7853, + "current": 3653, + "currently": 3792, + "currents": 35450, + "curric": 16201, + "curriculum": 17947, + "currie": 39385, + "curry": 49285, + "curry": 8051, + "curse": 18479, + "cursed": 26408, + "cursor": 46546, + "curt": 38137, + "curtain": 17223, + "curtains": 30223, + "curti": 39925, + "curtis": 13808, + "curve": 15792, + "curved": 25789, + "curves": 22814, + "curvy": 45788, + "cus": 2736, + "cusa": 47414, + "cuse": 37950, + "cush": 43731, + "cushi": 15333, + "cushion": 20853, + "cushions": 34163, + "cussion": 16658, + "cussions": 46853, + "cust": 20900, + "custard": 26516, + "custo": 4376, + "custody": 16176, + "custom": 2662, + "custom": 4996, + "custome": 41323, + "customer": 24035, + "customer": 5102, + "customerexperience": 45167, + "customers": 5528, + "customerservice": 40611, + "customiz": 41793, + "customizable": 48253, + "customization": 48244, + "customize": 32179, + "customized": 23229, + "customs": 16880, + "cut": 10511, + "cut": 3032, + "cute": 16031, + "cute": 2242, + "cuteness": 19342, + "cuter": 27151, + "cutest": 8032, + "cuth": 44328, + "cutie": 10733, + "cuties": 40939, + "cuties": 23420, + "cutiesaturday": 41883, + "cutler": 40428, + "cutlery": 49073, + "cutout": 45016, + "cuts": 7435, + "cutt": 27338, + "cutt": 47647, + "cutter": 19719, + "cutters": 44783, + "cutting": 7266, + "cuz": 9215, + "cv": 13531, + "cv": 13947, + "cvs": 29603, + "cw": 10652, + "cw": 11065, + "cwc": 19179, + "cwgc": 48527, + "cws": 45186, + "cx": 44457, + "cx": 14283, + "cy": 1470, + "cy": 1678, + "cyber": 5830, + "cyber": 10210, + "cybercrime": 41772, + "cybermonday": 36578, + "cyberpunk": 36896, + "cybersecurity": 10581, + "cyborg": 36650, + "cycl": 9791, + "cycle": 19083, + "cycle": 5072, + "cycled": 31055, + "cycles": 14605, + "cycli": 12201, + "cycling": 26353, + "cycling": 6321, + "cyclist": 20686, + "cyclists": 20303, + "cyclo": 18122, + "cyclone": 48094, + "cyclone": 20917, + "cyclones": 34669, + "cylin": 18569, + "cylinder": 22092, + "cylinders": 48888, + "cymb": 36677, + "cymru": 24005, + "cyn": 14324, + "cynthi": 41994, + "cynthia": 23748, + "cyp": 14809, + "cypress": 25347, + "cypri": 36481, + "cyprus": 15263, + "cyril": 36028, + "cyrus": 14204, + "cystic": 46131, + "cyto": 31864, + "cz": 22898, + "cz": 22921, + "cze": 12152, + "czech": 43151, + "czech": 16141, + "cé": 36454, + "cé": 18317, + "d": 67, + "d": 323, + "da": 925, + "da": 1140, + "daa": 32642, + "daan": 44814, + "dab": 10413, + "dab": 22900, + "dac": 16222, + "dac": 27478, + "daca": 28477, + "dach": 34166, + "dachsh": 41641, + "dachshund": 42720, + "dad": 4346, + "dad": 2639, + "dada": 31325, + "daddy": 29466, + "daddy": 6546, + "dade": 23299, + "dades": 28289, + "dads": 12741, + "dae": 23358, + "dae": 15422, + "daener": 46934, + "daes": 47282, + "daesh": 35047, + "daf": 9972, + "daf": 36704, + "daffodils": 44769, + "daft": 36347, + "dag": 11434, + "dag": 25650, + "dagger": 34251, + "dah": 16976, + "dah": 11776, + "dahl": 45816, + "dahl": 22621, + "dahlia": 41768, + "dai": 13559, + "dai": 10632, + "dail": 14676, + "dailies": 21260, + "daily": 6689, + "daily": 2873, + "dailynews": 43466, + "dailys": 43160, + "dailysketch": 46738, + "daim": 40421, + "dain": 32222, + "dain": 28315, + "daipur": 47631, + "dair": 19998, + "dair": 42078, + "dairy": 25243, + "dairy": 10302, + "dairyfree": 49366, + "dais": 10502, + "daisi": 39947, + "daisies": 40654, + "daisy": 39310, + "daisy": 12865, + "dak": 6999, + "dak": 16095, + "dakar": 31137, + "dakota": 38522, + "dakota": 12358, + "dal": 2476, + "dal": 5601, + "dala": 42675, + "dalai": 41222, + "dalail": 35169, + "dalailama": 35849, + "dale": 11533, + "dale": 4677, + "dalejr": 38207, + "dales": 29031, + "daley": 28544, + "dalgo": 43614, + "dali": 36735, + "dali": 25703, + "dalit": 45432, + "dall": 43631, + "dalla": 16772, + "dallas": 27414, + "dallas": 5759, + "dallascowboys": 33016, + "dalmati": 44275, + "dalton": 21488, + "daly": 24873, + "dam": 1880, + "dam": 4926, + "damage": 6822, + "damaged": 13568, + "damages": 28842, + "damaging": 20610, + "damas": 23345, + "damascus": 25396, + "dame": 10069, + "dames": 44548, + "dami": 17783, + "damian": 43307, + "damian": 25375, + "damien": 25090, + "dammit": 31057, + "damn": 37409, + "damn": 4451, + "damned": 28428, + "damon": 48503, + "damon": 18244, + "damp": 26520, + "dams": 37680, + "dan": 2257, + "dan": 2284, + "dana": 44834, + "dana": 13777, + "danao": 38598, + "danc": 3945, + "dance": 10619, + "dance": 2724, + "danced": 32891, + "dancehall": 33300, + "dancer": 11400, + "dancers": 13153, + "dances": 24083, + "dancing": 33280, + "dancing": 6226, + "dand": 12593, + "dandelion": 38903, + "dandy": 31932, + "dane": 19330, + "danes": 47477, + "dang": 4283, + "dang": 14992, + "danger": 20083, + "danger": 11212, + "dangerous": 7350, + "dangerously": 35012, + "dangers": 23726, + "dangle": 39907, + "dani": 3001, + "dani": 17009, + "daniel": 7859, + "daniel": 4981, + "daniela": 44466, + "danielle": 30396, + "danielle": 15292, + "danielpadilla": 34702, + "daniels": 16146, + "danish": 15467, + "dank": 31849, + "dann": 11951, + "danny": 14950, + "danny": 7621, + "dano": 29703, + "dans": 16241, + "dant": 48097, + "dant": 28237, + "dante": 21911, + "danube": 44594, + "dany": 47816, + "dao": 36099, + "dap": 12149, + "dap": 38034, + "daph": 24591, + "daphne": 31687, + "dapl": 34478, + "dapp": 46857, + "dapper": 26071, + "daq": 25381, + "dar": 1377, + "dar": 6242, + "dara": 17064, + "darby": 34366, + "darcy": 32916, + "dare": 14833, + "dare": 9863, + "daredevil": 28849, + "dares": 42973, + "dareto": 46794, + "dari": 16292, + "dari": 14552, + "daria": 45622, + "daries": 18184, + "daring": 28166, + "dario": 33918, + "darius": 32606, + "darje": 49089, + "dark": 5724, + "dark": 3144, + "darker": 18737, + "darkest": 25898, + "darkness": 10521, + "darling": 13048, + "darlings": 39961, + "darlington": 34565, + "darn": 26059, + "darrell": 33522, + "darren": 20263, + "darren": 12275, + "darry": 29200, + "darryl": 35359, + "darshan": 34564, + "dart": 14001, + "dart": 19841, + "darth": 41304, + "darth": 23164, + "dartmoor": 31477, + "dartmouth": 29667, + "darts": 15246, + "darwin": 43013, + "darwin": 20926, + "daryl": 45607, + "daryl": 24532, + "das": 9940, + "das": 7359, + "dash": 13858, + "dash": 10206, + "dashboard": 27679, + "dashi": 12876, + "dashing": 33825, + "dat": 1717, + "dat": 9445, + "data": 14876, + "data": 2281, + "datab": 11941, + "database": 14678, + "databases": 48384, + "datac": 27329, + "datacenter": 40133, + "datasci": 14496, + "datascience": 15748, + "dataviz": 28138, + "date": 34300, + "date": 1524, + "dated": 13564, + "dates": 7228, + "dating": 8534, + "dation": 15311, + "datlantic": 34270, + "dato": 36075, + "dats": 48674, + "dau": 3162, + "dau": 33828, + "daugh": 42523, + "daughter": 3944, + "daughters": 13585, + "daun": 29470, + "dav": 3700, + "dav": 46488, + "davao": 31502, + "dave": 10089, + "dave": 5077, + "daven": 28350, + "davenport": 34624, + "davey": 33391, + "davi": 1732, + "david": 4640, + "david": 2259, + "davidbowie": 44448, + "davido": 35989, + "davids": 46695, + "davidson": 13166, + "davies": 13120, + "davin": 43187, + "davis": 24426, + "davis": 5536, + "davison": 43725, + "davos": 31887, + "davy": 41565, + "daw": 5971, + "daw": 24404, + "dawg": 18660, + "dawgs": 26431, + "dawn": 30590, + "dawn": 7689, + "dawson": 18611, + "dax": 29458, + "day": 1405, + "day": 575, + "daya": 38165, + "daybreak": 33862, + "daycare": 36363, + "daydream": 41587, + "dayin": 20332, + "daylight": 20809, + "dayo": 29856, + "dayo": 46605, + "dayof": 16272, + "dayofthe": 38043, + "days": 1161, + "daysof": 12379, + "daysofcode": 36537, + "daysto": 29886, + "daystogo": 42198, + "dayswild": 42052, + "daytime": 22830, + "dayton": 35729, + "dayton": 20262, + "daytona": 16335, + "dayweekend": 44526, + "dayz": 35949, + "daz": 15449, + "daz": 43844, + "daze": 33591, + "dazz": 17149, + "dazzle": 41164, + "dazzling": 28821, + "db": 19100, + "db": 8128, + "dbacks": 31175, + "dbs": 40558, + "dbz": 49226, + "dc": 5074, + "dc": 2743, + "dca": 49107, + "dcc": 33747, + "dccomics": 17610, + "dcfc": 35526, + "dci": 35336, + "dcs": 42878, + "dcu": 42647, + "dd": 1353, + "dd": 3766, + "dda": 35202, + "ddad": 39049, + "dday": 32689, + "dday": 26243, + "ddc": 48513, + "ddd": 24183, + "dddd": 35362, + "dden": 5013, + "dder": 9300, + "dders": 24827, + "ddi": 44450, + "ddin": 17175, + "dding": 48101, + "dding": 8974, + "ddings": 49106, + "ddington": 29238, + "ddle": 17633, + "ddle": 8357, + "ddled": 38392, + "ddles": 33901, + "ddleston": 25647, + "ddling": 30981, + "ddlovato": 28244, + "ddos": 46463, + "ddr": 26027, + "dds": 48334, + "ddu": 43836, + "ddy": 14981, + "ddy": 7876, + "de": 561, + "de": 654, + "dea": 18477, + "deacon": 29155, + "dead": 3906, + "dead": 2747, + "deadliest": 40811, + "deadline": 47209, + "deadline": 8458, + "deadlines": 44959, + "deadly": 10756, + "deadpool": 21471, + "deaf": 28229, + "deaf": 18358, + "deal": 7249, + "deal": 2696, + "dealer": 15218, + "dealers": 21697, + "dealership": 32096, + "dealing": 13138, + "deals": 4469, + "dealt": 30101, + "dean": 13807, + "dean": 5828, + "deandre": 43635, + "deans": 46852, + "dear": 15696, + "dear": 3817, + "dearest": 24880, + "dearly": 31880, + "deas": 34715, + "death": 7163, + "death": 2767, + "deaths": 12253, + "deau": 12399, + "deaux": 19883, + "deb": 2987, + "deb": 25687, + "debat": 32082, + "debate": 5196, + "debates": 19239, + "debating": 23472, + "debbie": 47186, + "debbie": 16735, + "debit": 32410, + "debor": 16738, + "deborah": 40997, + "deborah": 22150, + "debra": 33233, + "debris": 19208, + "debt": 8932, + "debts": 38770, + "debu": 9790, + "debun": 33123, + "debut": 42608, + "debut": 4085, + "debuted": 25215, + "debuting": 34817, + "debuts": 17044, + "dec": 3063, + "dec": 4628, + "deca": 33428, + "decad": 29914, + "decade": 11099, + "decadent": 41716, + "decades": 10488, + "decal": 26678, + "decals": 37606, + "decan": 40677, + "decat": 35334, + "decath": 47455, + "decatur": 38540, + "decay": 22703, + "dece": 3534, + "deceased": 30035, + "december": 3864, + "decent": 10698, + "decentr": 28960, + "decentralized": 38485, + "decep": 33529, + "deception": 33046, + "deci": 2262, + "decide": 8447, + "decided": 4939, + "decides": 17269, + "deciding": 22513, + "decision": 5575, + "decisions": 9903, + "decisive": 28690, + "deck": 24885, + "deck": 6943, + "decked": 39096, + "decker": 21449, + "decks": 23968, + "decl": 7091, + "decla": 10739, + "declan": 42341, + "declar": 18040, + "declaration": 19714, + "declare": 19856, + "declared": 13845, + "declares": 23641, + "declaring": 33273, + "decline": 15084, + "declined": 28911, + "declines": 40478, + "declining": 29221, + "deco": 26412, + "deco": 16422, + "decor": 5148, + "decor": 6928, + "decorate": 23651, + "decorated": 15917, + "decorating": 16968, + "decoration": 16029, + "decorations": 19158, + "decorative": 19289, + "decre": 12284, + "decrease": 24703, + "decreased": 33913, + "decreasing": 43763, + "decree": 43327, + "ded": 16744, + "ded": 1241, + "dedic": 4701, + "dedicate": 27610, + "dedicated": 6770, + "dedication": 10188, + "dedly": 36204, + "deduc": 22799, + "dee": 5268, + "dee": 6705, + "deed": 30260, + "deeds": 24516, + "deejay": 48304, + "deejay": 44511, + "deemed": 28102, + "deen": 26456, + "deen": 12912, + "deep": 5462, + "deep": 3383, + "deepak": 45528, + "deeper": 15224, + "deepest": 22245, + "deephouse": 35684, + "deepi": 19371, + "deepika": 34120, + "deepikap": 29903, + "deepikapadukone": 30646, + "deeplear": 22181, + "deeplearning": 24362, + "deeply": 11449, + "deer": 19454, + "deer": 8700, + "deere": 32901, + "dees": 12547, + "deets": 35537, + "def": 2044, + "def": 11649, + "defam": 35670, + "defamation": 42741, + "default": 21650, + "defe": 4148, + "defeat": 8477, + "defeated": 8927, + "defeating": 22594, + "defeats": 16317, + "defect": 44013, + "defects": 37485, + "defen": 3619, + "defence": 30307, + "defence": 9659, + "defend": 21970, + "defend": 11397, + "defended": 27161, + "defender": 10618, + "defenders": 20063, + "defending": 13098, + "defends": 20134, + "defense": 45875, + "defense": 6021, + "defenseman": 43714, + "defenses": 49198, + "defensive": 10824, + "defi": 17244, + "defiance": 36186, + "defiant": 47597, + "defibrill": 47684, + "defic": 18022, + "defici": 23387, + "deficiency": 30685, + "deficit": 20156, + "defin": 3188, + "define": 14919, + "defined": 15278, + "defines": 28218, + "defining": 20504, + "definite": 40793, + "definitely": 4824, + "definition": 11405, + "definitive": 25298, + "defl": 31467, + "deforestation": 41330, + "defstar": 36427, + "defy": 39148, + "defying": 38496, + "deg": 38498, + "degra": 28939, + "degradation": 44468, + "degre": 4653, + "degree": 7119, + "degrees": 8000, + "deh": 35582, + "dei": 33833, + "dei": 23279, + "deir": 42948, + "deity": 42574, + "deja": 46902, + "dek": 23901, + "dekalb": 37775, + "del": 1233, + "del": 2003, + "dela": 37986, + "delaney": 31528, + "delav": 23706, + "delavin": 40477, + "delavin": 40776, + "delavinkisses": 40631, + "delaware": 17547, + "delay": 12955, + "delay": 10934, + "delayed": 14567, + "delaying": 43781, + "delays": 11232, + "dele": 7922, + "dele": 33431, + "delec": 38615, + "delectable": 45500, + "deleg": 8046, + "delegate": 27259, + "delegates": 14623, + "delegation": 14632, + "delete": 19204, + "deleted": 16588, + "deleting": 41857, + "delft": 42749, + "delgado": 49182, + "delhi": 26723, + "delhi": 5717, + "deli": 1932, + "deli": 18601, + "delia": 33193, + "deliber": 18316, + "deliberate": 38271, + "deliberately": 35163, + "delic": 13366, + "delicacy": 49181, + "delicate": 18768, + "delici": 19993, + "delicious": 3959, + "deliciously": 39589, + "deliciousness": 42819, + "delight": 46165, + "delight": 13073, + "delighted": 5943, + "delightful": 15513, + "delights": 25330, + "deline": 18797, + "delines": 13562, + "delish": 25093, + "deliver": 19561, + "deliver": 7396, + "delivered": 7278, + "deliveries": 29336, + "delivering": 9943, + "delivers": 11753, + "delivery": 5619, + "dell": 24381, + "dell": 10242, + "della": 22986, + "delle": 35963, + "deloit": 29428, + "deloitte": 38667, + "dels": 48636, + "delta": 32250, + "delta": 8768, + "delu": 18779, + "delusional": 48059, + "delux": 13709, + "deluxe": 14056, + "delve": 46008, + "dely": 15040, + "dem": 3251, + "dem": 7825, + "dema": 40268, + "dema": 45046, + "deman": 48366, + "demand": 13072, + "demand": 5650, + "demanded": 33699, + "demanding": 17099, + "demands": 14241, + "demar": 46566, + "demarcus": 47873, + "demb": 35930, + "demdebate": 43973, + "deme": 25143, + "demean": 37376, + "demen": 12604, + "dementi": 46028, + "dementia": 14047, + "demetri": 39553, + "demi": 32879, + "demi": 14480, + "demise": 28756, + "demo": 2930, + "demo": 7380, + "democr": 3573, + "democracy": 7758, + "democrat": 15431, + "democratic": 9149, + "democrats": 8865, + "demographic": 31308, + "demol": 19382, + "demolished": 26537, + "demolition": 22237, + "demon": 5635, + "demon": 12085, + "demonetisation": 41338, + "demonic": 46920, + "demons": 18388, + "demonstr": 8579, + "demonstrate": 22231, + "demonstrated": 29477, + "demonstrates": 24806, + "demonstrating": 22107, + "demonstration": 16722, + "demonstrations": 33964, + "demonstrators": 46450, + "demos": 19304, + "demp": 22490, + "dempsey": 30188, + "dems": 10989, + "demsin": 42664, + "demsinphilly": 43091, + "den": 1177, + "den": 1181, + "dena": 32431, + "denali": 48076, + "dence": 3370, + "dency": 11659, + "dend": 37447, + "dends": 43985, + "dene": 45128, + "dened": 19571, + "deng": 43098, + "deng": 41788, + "dengue": 41932, + "denham": 39180, + "deni": 21995, + "denial": 25716, + "denied": 15780, + "denies": 19565, + "denim": 13606, + "denis": 47630, + "denis": 18750, + "denise": 45900, + "denise": 20899, + "denmark": 13268, + "dennis": 32738, + "dennis": 10534, + "denny": 26808, + "denomin": 41016, + "dens": 16533, + "dense": 19353, + "density": 22431, + "dent": 3593, + "dent": 1258, + "dental": 24635, + "dental": 8382, + "dentally": 10346, + "dented": 21923, + "denti": 4418, + "dential": 5459, + "dentist": 17816, + "dentistry": 25754, + "dently": 28817, + "denton": 23567, + "dents": 1517, + "denver": 27847, + "denver": 8569, + "deny": 18679, + "denying": 32771, + "denzel": 42503, + "deo": 26406, + "deo": 12121, + "deodor": 47639, + "deol": 41902, + "deon": 31466, + "deon": 16079, + "dep": 6079, + "dep": 24370, + "depar": 10794, + "depart": 5343, + "depart": 30649, + "departed": 32541, + "departing": 26902, + "department": 5744, + "departments": 29523, + "departs": 38998, + "departure": 17850, + "depe": 36118, + "depend": 13894, + "depend": 27371, + "dependence": 40243, + "dependent": 23280, + "depending": 23673, + "depends": 20497, + "depic": 11307, + "depicted": 34637, + "depicting": 24970, + "depiction": 31071, + "depicts": 29340, + "deple": 38504, + "deplo": 9356, + "deplor": 39232, + "deploy": 26944, + "deployed": 20009, + "deploying": 42212, + "deployment": 20183, + "depo": 14276, + "depor": 36110, + "deport": 23389, + "deportation": 36617, + "deported": 39320, + "deportes": 47878, + "depos": 21266, + "deposit": 16775, + "deposits": 30740, + "depot": 12589, + "depp": 24941, + "depre": 7107, + "depress": 38869, + "depressed": 23269, + "depressing": 29235, + "depression": 10023, + "depri": 28587, + "depriv": 45809, + "deprivation": 47810, + "deprived": 39140, + "dept": 9201, + "depth": 10350, + "depths": 28855, + "depu": 6912, + "deputies": 24914, + "deputy": 7932, + "der": 839, + "der": 801, + "dera": 20696, + "derail": 48502, + "derby": 13904, + "derby": 7177, + "derbyshire": 22147, + "derdale": 21513, + "dere": 5701, + "dere": 44194, + "dered": 3776, + "derek": 22461, + "derek": 11205, + "derel": 46728, + "derer": 11289, + "derers": 20882, + "deri": 34573, + "derick": 33908, + "dering": 6076, + "deriv": 33458, + "derived": 26461, + "derland": 35488, + "derman": 29740, + "dermatology": 48051, + "dern": 30086, + "dero": 37203, + "dero": 34026, + "derrick": 21798, + "derry": 45777, + "derry": 20535, + "ders": 37307, + "ders": 1923, + "derson": 12677, + "dery": 17172, + "des": 6797, + "des": 1437, + "desai": 35316, + "desc": 13866, + "descen": 32318, + "descend": 26004, + "descend": 46241, + "descendants": 36323, + "descending": 36620, + "descent": 19375, + "desch": 49209, + "descri": 4637, + "describe": 10967, + "described": 14671, + "describes": 13678, + "describing": 24239, + "descrip": 41832, + "description": 13951, + "descriptions": 40653, + "desde": 42218, + "dese": 27195, + "deser": 3659, + "desert": 45776, + "desert": 7301, + "deserted": 41560, + "deserve": 7043, + "deserved": 10061, + "deserves": 9079, + "deserving": 26615, + "desh": 25320, + "desh": 7448, + "deshi": 42769, + "desi": 6772, + "desi": 26635, + "desig": 1250, + "design": 8359, + "design": 1681, + "designated": 24119, + "designation": 41155, + "designed": 4486, + "designer": 35640, + "designer": 5728, + "designers": 12720, + "designing": 13467, + "designs": 6747, + "designthinking": 32450, + "desirable": 32368, + "desire": 11858, + "desired": 28631, + "desires": 27598, + "desk": 11937, + "desk": 6550, + "desks": 41014, + "desktop": 14345, + "desmond": 27821, + "desol": 41258, + "desp": 3642, + "despair": 28097, + "desper": 10144, + "desperate": 15072, + "desperately": 21993, + "despic": 32442, + "despicable": 37158, + "despite": 5325, + "dess": 7096, + "dess": 10001, + "dessert": 9753, + "desserts": 22948, + "desses": 43913, + "dest": 6540, + "dest": 4549, + "destin": 4934, + "destination": 32191, + "destination": 9179, + "destinations": 16981, + "destined": 28525, + "destiny": 39875, + "destiny": 10867, + "destro": 8287, + "destroy": 8308, + "destroy": 11930, + "destroyed": 9965, + "destroyer": 25291, + "destroying": 19613, + "destroys": 27634, + "destruc": 22945, + "destruction": 14281, + "destructive": 29591, + "det": 28966, + "det": 15366, + "deta": 1914, + "detached": 26252, + "detail": 7657, + "detailed": 12609, + "detailing": 23163, + "details": 2353, + "detained": 20260, + "dete": 5606, + "detec": 17991, + "detect": 22744, + "detected": 26988, + "detecting": 41290, + "detection": 16220, + "detective": 13672, + "detectives": 27994, + "detector": 27689, + "detectors": 45063, + "detention": 16908, + "deter": 10742, + "deter": 47458, + "detergent": 46726, + "deterior": 28512, + "determin": 8325, + "determination": 17410, + "determine": 16768, + "determined": 14371, + "determines": 42192, + "determining": 39884, + "deth": 38375, + "deto": 39710, + "deton": 39335, + "detour": 31211, + "detox": 22459, + "detri": 47951, + "detro": 6210, + "detroit": 19404, + "detroit": 7073, + "detta": 45438, + "dette": 35750, + "deu": 21457, + "deuce": 45332, + "deus": 37625, + "deut": 14970, + "deutsch": 30389, + "deutsche": 32760, + "deutschland": 36878, + "deux": 47089, + "dev": 2797, + "dev": 3670, + "deva": 45179, + "devan": 37072, + "devast": 12913, + "devastated": 29865, + "devastating": 19280, + "devastation": 42452, + "devel": 1820, + "develop": 1966, + "develop": 7708, + "developed": 8763, + "developer": 10929, + "developers": 13248, + "developing": 8131, + "development": 2855, + "developmental": 29347, + "developments": 17393, + "develops": 29895, + "deven": 45537, + "devgn": 29871, + "devi": 12926, + "devi": 20717, + "deviant": 25593, + "deviantart": 26046, + "device": 8163, + "devices": 9067, + "devil": 8894, + "devil": 8043, + "deville": 34329, + "devils": 11683, + "devin": 31193, + "devin": 20996, + "devine": 33019, + "devlin": 48040, + "devo": 11861, + "devo": 43444, + "devon": 16205, + "devon": 10046, + "devops": 21504, + "devos": 40646, + "devote": 37777, + "devoted": 24561, + "devotees": 39759, + "devotion": 25821, + "devotional": 35456, + "devs": 27374, + "dew": 31952, + "dew": 16358, + "dewey": 40399, + "dex": 10030, + "dex": 13790, + "dexpo": 42502, + "dexter": 45049, + "dexter": 22781, + "dey": 11829, + "dez": 23190, + "dez": 8122, + "df": 12908, + "df": 10468, + "dfc": 41903, + "dfs": 32880, + "dfw": 20439, + "dg": 2394, + "dg": 9742, + "dgate": 41684, + "dge": 4016, + "dge": 1360, + "dged": 11830, + "dgeon": 45655, + "dgers": 8733, + "dges": 5432, + "dging": 9565, + "dh": 6669, + "dh": 9960, + "dha": 11629, + "dha": 27377, + "dhabi": 22349, + "dhaka": 32877, + "dham": 29635, + "dham": 30838, + "dhan": 12542, + "dhan": 28569, + "dhanush": 26162, + "dhanush": 36200, + "dhanushkraja": 29266, + "dhar": 12397, + "dharma": 30536, + "dhary": 28706, + "dhawan": 44699, + "dhe": 29706, + "dheim": 44280, + "dhi": 31553, + "dhi": 26166, + "dho": 37834, + "dhoni": 25698, + "dhru": 40257, + "dhry": 39960, + "dhs": 26849, + "dhu": 32387, + "di": 570, + "di": 1618, + "dia": 7351, + "dia": 3357, + "diab": 15954, + "diabe": 19167, + "diabete": 43826, + "diabetes": 10319, + "diabetic": 30230, + "diablo": 23931, + "diag": 6851, + "diagno": 7736, + "diagnose": 44429, + "diagnosed": 16979, + "diagnosis": 15715, + "diagnostic": 26351, + "diagnostics": 37723, + "diagram": 22697, + "dial": 18416, + "dial": 11381, + "dialo": 30709, + "dialog": 48945, + "dialogue": 11288, + "dialogues": 40330, + "dialysis": 44798, + "diam": 4347, + "diameter": 27189, + "diamon": 8873, + "diamond": 18535, + "diamond": 6235, + "diamonds": 12687, + "dian": 16021, + "dian": 4998, + "diana": 12803, + "diane": 15855, + "dianne": 42299, + "dians": 21041, + "diaper": 34382, + "diapers": 39659, + "diar": 25932, + "diaries": 15541, + "diary": 10380, + "dias": 22137, + "dias": 29354, + "diaspora": 28390, + "diaz": 17688, + "dic": 1404, + "dic": 6717, + "dicap": 30023, + "dicaprio": 30755, + "dice": 14406, + "dick": 14413, + "dick": 9554, + "dickens": 33421, + "dict": 45360, + "dict": 15159, + "dictat": 26156, + "dictator": 27399, + "dictatorship": 37989, + "dictionary": 19699, + "did": 1861, + "did": 1335, + "diddy": 33527, + "didi": 34396, + "didier": 45614, + "didn": 2376, + "didnt": 13057, + "dido": 31725, + "didyou": 12295, + "didyouknow": 12506, + "die": 3150, + "die": 2082, + "diec": 27729, + "diecast": 37936, + "died": 3622, + "diego": 30940, + "diego": 6306, + "diem": 45571, + "dience": 33686, + "dient": 27231, + "dier": 29702, + "dier": 16394, + "dies": 20104, + "dies": 1862, + "diesel": 46312, + "diesel": 10591, + "diest": 45739, + "diet": 21295, + "diet": 6582, + "dietary": 29009, + "dietrich": 47005, + "diets": 35173, + "dif": 18656, + "dif": 48731, + "diff": 44073, + "diff": 20331, + "diffe": 1967, + "differ": 34620, + "differen": 14903, + "difference": 4731, + "differences": 14003, + "different": 2731, + "differenti": 21729, + "differential": 34027, + "differentiate": 49032, + "differently": 18325, + "diffic": 6140, + "difficult": 7405, + "difficulties": 23468, + "difficulty": 25245, + "diffu": 31603, + "diffuser": 49400, + "dig": 1831, + "dig": 9887, + "dige": 17820, + "digest": 20413, + "digestion": 40533, + "digestive": 32304, + "digg": 43240, + "digger": 35919, + "diggin": 48466, + "digging": 14971, + "digi": 15627, + "digi": 39361, + "digimon": 44181, + "digit": 14899, + "digit": 27472, + "digital": 4704, + "digital": 2794, + "digitalart": 16987, + "digitalhealth": 32190, + "digitalindia": 46630, + "digitally": 27543, + "digitalmarketing": 15299, + "digitaltransformation": 20047, + "digiti": 25935, + "digits": 31710, + "digni": 45532, + "dignit": 39497, + "dignity": 17744, + "digo": 35701, + "digs": 26877, + "dih": 43089, + "dii": 32755, + "dijk": 44444, + "dik": 38854, + "dik": 37747, + "dike": 42683, + "dil": 7643, + "dil": 17942, + "dile": 25428, + "dilemma": 29787, + "dilig": 30664, + "dill": 12318, + "dill": 27206, + "dillon": 21056, + "dilu": 45242, + "dim": 19576, + "dim": 17523, + "dime": 24443, + "dimen": 10935, + "dimension": 20479, + "dimensional": 25252, + "dimensions": 25086, + "diment": 43500, + "dimes": 44888, + "dimini": 37459, + "dimit": 22250, + "dimitri": 48840, + "dimp": 38853, + "din": 1462, + "din": 5673, + "dina": 36815, + "dinah": 30903, + "dine": 20951, + "dine": 12989, + "diner": 16963, + "dinesh": 48341, + "ding": 7545, + "ding": 796, + "dinger": 45580, + "dingh": 48064, + "dings": 5473, + "dington": 24804, + "dinho": 47370, + "dini": 20196, + "dining": 8658, + "dinner": 27548, + "dinner": 2571, + "dinners": 33570, + "dino": 9692, + "dino": 14077, + "dinosa": 18955, + "dinosaur": 15095, + "dinosaurs": 20387, + "dio": 3779, + "dio": 1521, + "dioce": 20763, + "diocese": 27091, + "dion": 42899, + "dion": 16250, + "dior": 23655, + "dios": 37563, + "dious": 27417, + "dioxide": 38102, + "dip": 19918, + "dip": 11343, + "dipl": 8490, + "diplo": 38115, + "diplom": 11169, + "diploma": 21251, + "diplomacy": 23798, + "diplomat": 32828, + "diplomatic": 23782, + "diplomats": 44126, + "dipped": 30610, + "dipper": 49317, + "dipping": 33544, + "dips": 37522, + "dir": 4251, + "dir": 8478, + "dire": 38355, + "dire": 25664, + "direc": 1534, + "direct": 43224, + "direct": 6016, + "directed": 8392, + "directing": 21817, + "direction": 15923, + "direction": 5407, + "directional": 38687, + "directioner": 48042, + "directioners": 22055, + "directions": 16440, + "directive": 40630, + "directly": 9701, + "director": 20337, + "director": 2681, + "directorial": 45327, + "directors": 11940, + "directory": 25272, + "directs": 34349, + "directv": 48652, + "dirk": 28171, + "dirt": 31415, + "dirt": 11795, + "dirty": 20127, + "dirty": 7615, + "dis": 1518, + "dis": 6112, + "disa": 3882, + "disab": 47380, + "disabilities": 17350, + "disability": 48986, + "disability": 13261, + "disabled": 13613, + "disadvantaged": 40577, + "disagree": 23199, + "disapp": 5384, + "disappear": 21148, + "disappear": 25173, + "disappearance": 35929, + "disappeared": 23139, + "disappearing": 35819, + "disappears": 44406, + "disappo": 7605, + "disappoint": 25446, + "disappointed": 13794, + "disappointing": 21941, + "disappointment": 23884, + "disappoints": 48545, + "disappro": 48276, + "disar": 42971, + "disaster": 9072, + "disasters": 26976, + "disastrous": 35790, + "disc": 1472, + "disc": 10712, + "discar": 40532, + "discarded": 45197, + "discer": 49140, + "dischar": 22671, + "discharge": 32485, + "disci": 9559, + "discip": 38951, + "discipl": 10467, + "disciples": 39366, + "disciplinary": 20232, + "discipline": 18903, + "disciplines": 42032, + "discla": 40248, + "disclaimer": 46465, + "disclo": 17481, + "disclose": 46379, + "disclosed": 30905, + "disclosure": 26502, + "disco": 2475, + "disco": 11964, + "discography": 47545, + "discomfort": 48054, + "discord": 23582, + "discoun": 18515, + "discount": 7638, + "discounted": 20993, + "discounts": 18186, + "discoura": 45850, + "discourse": 29441, + "discover": 10539, + "discover": 4834, + "discovered": 6986, + "discoveries": 29308, + "discovering": 17967, + "discovers": 29719, + "discovery": 40491, + "discovery": 8027, + "discre": 20616, + "discrimin": 11721, + "discrimination": 14775, + "discs": 29270, + "discu": 1984, + "discus": 41828, + "discuss": 4312, + "discussed": 11300, + "discusses": 8116, + "discussing": 5900, + "discussion": 5060, + "discussions": 13806, + "dise": 4262, + "disease": 5336, + "diseases": 12035, + "disen": 46468, + "disgrace": 29877, + "disgraceful": 44146, + "disgu": 9793, + "disguise": 27803, + "disguised": 37149, + "disgusted": 41977, + "disgusting": 16218, + "dish": 11039, + "dish": 4531, + "disha": 42498, + "dishes": 11412, + "dishon": 30777, + "dishu": 44728, + "dishwasher": 40524, + "disin": 19484, + "disinfe": 48050, + "disintegr": 49275, + "disk": 17970, + "dislike": 30796, + "dism": 30836, + "dism": 38821, + "dismant": 36557, + "dismiss": 43287, + "dismissal": 42068, + "dismissed": 30087, + "dismisses": 45238, + "disney": 6729, + "disney": 4696, + "disneyland": 39481, + "disneyland": 13661, + "disneyworld": 28469, + "diso": 26305, + "disobe": 42841, + "dison": 19310, + "disorder": 12635, + "disorders": 17114, + "disp": 11073, + "dispar": 24633, + "disparities": 45122, + "dispat": 28652, + "dispatch": 26306, + "dispen": 19077, + "dispenser": 40116, + "disper": 34499, + "displa": 9326, + "displac": 17718, + "displaced": 22817, + "displacement": 37931, + "display": 4456, + "displayed": 18967, + "displaying": 26468, + "displays": 15648, + "dispo": 13651, + "dispon": 38872, + "disponible": 46130, + "dispos": 45177, + "disposable": 37275, + "disposal": 28231, + "dispro": 32927, + "dispropor": 40354, + "disproportion": 45492, + "disregard": 43869, + "disrespect": 34055, + "disrespectful": 41723, + "disru": 13763, + "disrup": 14641, + "disrupt": 25214, + "disrupted": 46674, + "disrupting": 42419, + "disruption": 19635, + "disruptive": 31554, + "diss": 10766, + "diss": 35688, + "dissec": 43879, + "dissemin": 40463, + "dissent": 45154, + "disser": 25560, + "dissertation": 29448, + "dissi": 25088, + "dissol": 27398, + "dissuper": 33461, + "dist": 5479, + "dist": 12116, + "distance": 7964, + "distances": 37078, + "distant": 18949, + "distill": 41586, + "distilled": 49179, + "distillery": 22200, + "distin": 11892, + "distinct": 25056, + "distinction": 28183, + "distinctive": 25486, + "distingui": 15053, + "distinguish": 45418, + "distinguished": 16513, + "distor": 23781, + "distortion": 43690, + "distr": 11885, + "distract": 39309, + "distracted": 24049, + "distraction": 32039, + "distress": 26866, + "distressed": 37515, + "distri": 5987, + "distribu": 6138, + "distribute": 32313, + "distributed": 16419, + "distributing": 35216, + "distribution": 10484, + "distributor": 28354, + "distributors": 44240, + "distric": 3208, + "district": 46683, + "district": 3506, + "districts": 17565, + "distur": 11732, + "disturb": 33018, + "disturb": 39449, + "disturbance": 42416, + "disturbed": 29967, + "disturbing": 21476, + "disupdates": 45667, + "dit": 5752, + "dit": 2524, + "dita": 47965, + "ditch": 43715, + "ditch": 19291, + "dited": 40392, + "diti": 2363, + "dition": 16452, + "dition": 3015, + "ditional": 4322, + "ditions": 4503, + "dito": 43705, + "dits": 49374, + "dity": 16436, + "dium": 2903, + "div": 5293, + "div": 14869, + "diva": 13605, + "divas": 23534, + "dive": 26042, + "dive": 9058, + "diver": 13119, + "diver": 22094, + "divergence": 48735, + "divergent": 36132, + "divers": 30241, + "divers": 27038, + "diverse": 11464, + "diversi": 24475, + "diversion": 38457, + "diversity": 35634, + "diversity": 6257, + "diverted": 41049, + "dives": 13893, + "divi": 8375, + "divid": 31337, + "divide": 18842, + "divided": 18689, + "dividend": 32067, + "dividends": 45146, + "dividing": 45605, + "divin": 21838, + "divine": 46919, + "divine": 10976, + "diving": 9886, + "divinity": 39754, + "divisi": 39196, + "division": 5378, + "divisional": 40912, + "divisions": 33715, + "divor": 13543, + "divorce": 17060, + "divorced": 39437, + "divya": 47767, + "diwali": 18218, + "dix": 45838, + "dix": 27620, + "dixie": 24484, + "dixit": 28279, + "dixon": 16086, + "diy": 28472, + "diy": 7845, + "diya": 36459, + "diz": 32740, + "dized": 36232, + "dizz": 40239, + "dizzy": 35464, + "dj": 3761, + "dj": 3723, + "djan": 35338, + "django": 46498, + "dji": 35284, + "dji": 28379, + "djing": 36113, + "djo": 19432, + "djoker": 42721, + "djokernole": 42830, + "djokovic": 27944, + "djs": 18117, + "dk": 20702, + "dk": 16196, + "dl": 12558, + "dl": 9373, + "dlc": 19079, + "dle": 11057, + "dle": 3287, + "dled": 23494, + "dler": 40279, + "dles": 7890, + "dless": 14997, + "dley": 12808, + "dling": 18221, + "dly": 3069, + "dm": 19070, + "dm": 4667, + "dma": 42903, + "dman": 18826, + "dmc": 28991, + "dmit": 31607, + "dmitry": 48326, + "dms": 19955, + "dmv": 27508, + "dmx": 45255, + "dn": 11552, + "dn": 7459, + "dna": 8790, + "dnb": 35422, + "dnc": 20237, + "dnd": 11678, + "dnr": 37051, + "dns": 39245, + "dnt": 26795, + "do": 639, + "do": 818, + "doa": 48332, + "dob": 29640, + "doba": 35605, + "dobbs": 43006, + "dobson": 46888, + "doc": 3009, + "doc": 7251, + "doch": 25101, + "dock": 17311, + "dock": 8997, + "docked": 46784, + "docker": 31152, + "docking": 40845, + "docks": 24091, + "docs": 15157, + "doctor": 7872, + "doctor": 5547, + "doctoral": 23649, + "doctorate": 39134, + "doctors": 9705, + "doctorwho": 12996, + "doctr": 28497, + "doctrine": 35612, + "docu": 4433, + "document": 29293, + "document": 15121, + "documentaries": 44209, + "documentary": 7881, + "documentation": 31560, + "documented": 22310, + "documenting": 37876, + "documents": 14105, + "dod": 13847, + "dod": 30187, + "dodd": 36748, + "dodge": 31263, + "dodge": 12093, + "dodgeball": 43244, + "dodger": 31641, + "dodgers": 12422, + "dodgy": 37727, + "doe": 13296, + "does": 2397, + "does": 1897, + "doesn": 2503, + "doesnt": 17937, + "dof": 8277, + "doff": 20193, + "dofficial": 42516, + "dog": 4326, + "dog": 1929, + "dogcelebration": 41819, + "dogday": 27475, + "doge": 42187, + "dogg": 20749, + "doggie": 32237, + "doggo": 42155, + "doggy": 26359, + "doglo": 40733, + "dogre": 40030, + "dogrescue": 44158, + "dogs": 42182, + "dogs": 3255, + "dogsoftwitter": 19415, + "doh": 23581, + "doha": 20908, + "doherty": 31774, + "doi": 36361, + "doin": 15412, + "doing": 37408, + "doing": 1960, + "doit": 32272, + "doit": 28109, + "doj": 25700, + "dojo": 35901, + "dok": 40547, + "dok": 41034, + "doka": 46528, + "dol": 2287, + "dol": 19170, + "dola": 38005, + "dolan": 27200, + "dolby": 42414, + "dolce": 30033, + "dolce": 30661, + "dole": 41040, + "doll": 27031, + "doll": 9286, + "dollar": 35092, + "dollar": 7474, + "dollars": 10669, + "dolls": 15090, + "dolly": 43281, + "dolly": 23821, + "dolom": 37137, + "dolores": 40741, + "dolph": 8900, + "dolph": 22257, + "dolphin": 42963, + "dolphin": 16464, + "dolphins": 14002, + "dom": 2164, + "dom": 1919, + "domain": 15492, + "domaine": 48744, + "domains": 36358, + "dome": 8515, + "dome": 9827, + "domen": 37584, + "domest": 21936, + "domestic": 28189, + "domestic": 9043, + "domin": 4361, + "dominance": 30546, + "dominant": 20565, + "dominate": 21431, + "dominated": 23048, + "dominates": 34043, + "dominating": 29303, + "domination": 30919, + "domingo": 24882, + "dominic": 39007, + "dominic": 19095, + "dominican": 22934, + "dominion": 27155, + "domino": 30752, + "dominos": 39770, + "domo": 44293, + "doms": 30126, + "don": 1067, + "don": 847, + "dona": 26789, + "donal": 42375, + "donald": 5990, + "donald": 4335, + "donaldson": 37783, + "donaldtrump": 6652, + "donat": 36384, + "donate": 6429, + "donated": 8705, + "donates": 26960, + "donating": 12621, + "donation": 7924, + "donations": 9928, + "doncaster": 38008, + "doncaster": 25352, + "doncasterisgreat": 47333, + "done": 5136, + "done": 1700, + "donegal": 24172, + "donesia": 41281, + "donet": 33724, + "donetsk": 33999, + "dong": 26242, + "dong": 31478, + "dongha": 28365, + "donghae": 28945, + "donia": 24014, + "donkey": 21415, + "donkeys": 44644, + "donna": 9158, + "donne": 30897, + "donnein": 38308, + "donneinarte": 40193, + "donnell": 35118, + "donnelly": 39070, + "donnie": 47058, + "donnie": 30609, + "donny": 37291, + "donny": 32887, + "dono": 14840, + "donor": 18013, + "donors": 17887, + "donovan": 21499, + "dons": 22127, + "dont": 8094, + "dont": 4632, + "donut": 18471, + "donuts": 13970, + "doo": 4543, + "doo": 11643, + "doodle": 9388, + "doodled": 41030, + "doodles": 22156, + "doodling": 37548, + "dooley": 47609, + "doom": 23263, + "doom": 14344, + "doomed": 33251, + "doomsday": 41791, + "doon": 36612, + "doop": 33886, + "door": 7188, + "door": 2489, + "doors": 4228, + "doorstep": 19533, + "doorway": 46575, + "dop": 42381, + "dop": 31722, + "dope": 42587, + "dope": 10094, + "doping": 30285, + "dopp": 21774, + "doppelg": 45216, + "doppler": 42540, + "dor": 2766, + "dor": 8695, + "dora": 18104, + "dorado": 32350, + "dorchester": 32656, + "dore": 39423, + "dores": 34323, + "dorf": 17296, + "dori": 49270, + "doria": 43186, + "dorian": 44016, + "doris": 24285, + "dork": 36206, + "dorm": 24263, + "doro": 15498, + "doro": 37389, + "dorothy": 20805, + "dors": 31240, + "dorset": 42109, + "dorset": 16047, + "dorsey": 41607, + "dortmund": 24290, + "dory": 36135, + "dos": 44258, + "dos": 5474, + "dose": 11497, + "doses": 37873, + "dossier": 46042, + "dost": 44222, + "dot": 7473, + "dot": 7004, + "dota": 23085, + "dotcom": 12443, + "dote": 31202, + "dothis": 47864, + "dotnet": 43124, + "dotorg": 46587, + "dots": 19019, + "dotted": 47950, + "dou": 1756, + "dou": 23608, + "doub": 19631, + "double": 13013, + "double": 3200, + "doubled": 24948, + "doubleheader": 34668, + "doubles": 12539, + "doubling": 36850, + "doubt": 37071, + "doubt": 8671, + "doubts": 30894, + "douche": 44292, + "doug": 20271, + "doug": 10758, + "dough": 15785, + "dough": 14983, + "doughnut": 32555, + "doughnuts": 31124, + "dougie": 46317, + "dougla": 9140, + "douglas": 10065, + "douglass": 45692, + "doun": 44785, + "dov": 38856, + "dova": 26551, + "dove": 27511, + "dove": 18281, + "dover": 43019, + "dover": 14683, + "doves": 47067, + "dow": 8022, + "dow": 10688, + "dowell": 27344, + "down": 1833, + "down": 1136, + "downe": 46501, + "downed": 35814, + "downer": 42522, + "downers": 43739, + "downey": 29429, + "downfall": 48702, + "downhill": 27387, + "downing": 28140, + "download": 35076, + "download": 3794, + "downloadable": 49105, + "downloaded": 22961, + "downloading": 30519, + "downloads": 26481, + "downpour": 39034, + "downpours": 40160, + "downs": 10706, + "downside": 41937, + "downstairs": 28174, + "downstream": 43822, + "downtime": 41964, + "downton": 45023, + "downton": 42668, + "downtown": 18230, + "downtown": 5061, + "downward": 37430, + "dowski": 43556, + "dox": 44786, + "dox": 14510, + "doyle": 17728, + "doyou": 27256, + "doz": 31106, + "dozen": 16401, + "dozens": 17883, + "dp": 23820, + "dp": 6465, + "dprint": 46644, + "dprinting": 16194, + "dprk": 47920, + "dps": 34288, + "dq": 28741, + "dr": 1084, + "dr": 1701, + "dra": 1114, + "dra": 7402, + "drac": 20168, + "dracing": 41253, + "dracula": 25405, + "draf": 37426, + "draft": 30624, + "draft": 5198, + "drafted": 19129, + "drafting": 33528, + "drafts": 29194, + "drag": 8452, + "drag": 12463, + "dragged": 27884, + "dragging": 37069, + "dragon": 9187, + "dragon": 5471, + "dragonball": 40959, + "dragoncon": 47802, + "dragonfly": 32824, + "dragons": 10203, + "dragrace": 40762, + "drags": 45368, + "drain": 23347, + "drain": 19467, + "drainage": 25953, + "drained": 44630, + "drains": 43638, + "drainthe": 47337, + "drake": 32504, + "drake": 8958, + "dral": 7503, + "dram": 6937, + "dram": 32170, + "drama": 5055, + "dramas": 33467, + "dramati": 43512, + "dramatic": 11240, + "dramatically": 24495, + "drank": 21712, + "draped": 49113, + "drastic": 43159, + "drastically": 35478, + "drau": 18621, + "draw": 17675, + "draw": 4001, + "drawer": 23219, + "drawers": 38975, + "drawing": 36996, + "drawing": 3610, + "drawings": 13397, + "drawn": 8893, + "draws": 12043, + "dray": 25562, + "drayton": 49044, + "drc": 21434, + "dre": 960, + "dre": 14584, + "dread": 17412, + "dread": 31403, + "dreaded": 47227, + "dreadful": 35846, + "dreality": 48367, + "dream": 4595, + "dream": 2984, + "dreambig": 46495, + "dreamcast": 47226, + "dreamed": 27984, + "dreamer": 25692, + "dreamers": 27194, + "dreaming": 11662, + "dreamliner": 49143, + "dreams": 4405, + "dreamt": 43743, + "dreamteam": 40090, + "dreamy": 23517, + "dred": 10903, + "dredge": 48783, + "dren": 29068, + "dren": 47309, + "drenched": 46378, + "dres": 48852, + "dres": 44697, + "dresden": 34836, + "dress": 12622, + "dress": 2595, + "dressage": 36144, + "dressed": 6559, + "dresser": 26346, + "dresses": 8184, + "dressing": 6348, + "drew": 18792, + "drew": 5281, + "drex": 33985, + "drey": 48271, + "dri": 1203, + "dri": 28833, + "drian": 36870, + "dribb": 42153, + "dric": 23448, + "dridge": 22956, + "drie": 40170, + "dried": 16037, + "drier": 39877, + "dries": 33857, + "drif": 33585, + "drift": 18194, + "drifting": 30276, + "drill": 11626, + "drilled": 46338, + "drilling": 18634, + "drills": 24378, + "drin": 3375, + "drin": 47133, + "drink": 14131, + "drink": 3979, + "drinking": 5778, + "drinklocal": 45998, + "drinks": 6732, + "drip": 24050, + "dripping": 38787, + "dris": 35804, + "drive": 11402, + "drive": 2620, + "driven": 9314, + "driver": 27563, + "driver": 4383, + "driverless": 46769, + "drivers": 7384, + "drives": 11441, + "driveway": 26273, + "driving": 37800, + "driving": 4161, + "drizzle": 28240, + "drm": 39674, + "dro": 1494, + "dro": 12442, + "drogba": 49199, + "droid": 38016, + "drome": 9157, + "dron": 43898, + "dron": 23360, + "drone": 33557, + "drone": 9397, + "drones": 14006, + "droo": 30715, + "drool": 41554, + "drooling": 44360, + "drop": 16407, + "drop": 3387, + "dropbox": 47216, + "dropped": 6792, + "dropping": 8339, + "drops": 6437, + "dros": 47033, + "drou": 38558, + "drought": 13935, + "drove": 13753, + "drow": 21159, + "drown": 28571, + "drowned": 34005, + "drowning": 24618, + "drs": 21257, + "dru": 2275, + "dru": 49048, + "drug": 20601, + "drug": 5600, + "drugs": 8021, + "druid": 40297, + "drum": 13353, + "drum": 8698, + "drummer": 13618, + "drummers": 46191, + "drumming": 35480, + "drummond": 42213, + "drums": 11690, + "drun": 15488, + "drunk": 37398, + "drunk": 8232, + "drunken": 28196, + "drupal": 46481, + "drush": 43009, + "drwho": 48342, + "dry": 13544, + "dry": 4501, + "dryer": 24425, + "drying": 23203, + "ds": 3361, + "ds": 646, + "dsa": 47607, + "dsb": 47168, + "dsb": 14257, + "dsburg": 47237, + "dsc": 37240, + "dsd": 45383, + "dsley": 40740, + "dslr": 33740, + "dsm": 39502, + "dson": 40310, + "dsp": 45291, + "dss": 41580, + "dstv": 35027, + "dt": 13104, + "dt": 7427, + "dthe": 13863, + "dtla": 31885, + "dtm": 42407, + "dts": 46233, + "du": 691, + "du": 3686, + "dua": 25244, + "dual": 39739, + "dual": 5347, + "duane": 38946, + "dub": 14526, + "dub": 13144, + "duba": 5485, + "dubai": 32599, + "dubai": 5985, + "dubbed": 27740, + "dublin": 20707, + "dublin": 6145, + "dubnation": 47329, + "dubois": 48046, + "dubrov": 46709, + "dubrovnik": 48724, + "dubs": 27013, + "dubstep": 38303, + "dubu": 43257, + "duc": 979, + "duc": 36446, + "ducati": 28570, + "ducation": 17197, + "duce": 3660, + "duchess": 21713, + "duck": 12708, + "duck": 6910, + "ducks": 11202, + "duct": 26829, + "dude": 48087, + "dude": 5710, + "dudes": 14449, + "dudley": 27324, + "due": 2887, + "duel": 27143, + "dues": 37646, + "duet": 25457, + "duf": 38713, + "duff": 38071, + "duff": 21934, + "duffy": 23599, + "dug": 22743, + "dug": 21000, + "dugg": 40523, + "duggan": 46169, + "dugout": 36831, + "duh": 26716, + "dui": 29693, + "duk": 14160, + "duke": 18402, + "duke": 7732, + "dukes": 27914, + "dul": 6738, + "dulce": 44872, + "dulil": 32565, + "dulkar": 47980, + "dull": 19433, + "dulu": 28865, + "duluth": 32109, + "dulwich": 47343, + "dum": 13400, + "dum": 11564, + "dumb": 15901, + "dumb": 12464, + "dumbass": 38980, + "dummies": 40899, + "dummy": 34246, + "dump": 12655, + "dump": 17146, + "dumped": 23768, + "dumping": 31707, + "dumplings": 35495, + "dumps": 45804, + "dumpster": 45467, + "dun": 2616, + "dun": 18284, + "dunbar": 41453, + "duncan": 31084, + "duncan": 13502, + "dundal": 38185, + "dundas": 39300, + "dundee": 18619, + "dune": 32833, + "dune": 28208, + "dunedin": 40121, + "dunes": 23526, + "dung": 33712, + "dungeon": 28812, + "dungeon": 22931, + "dungeons": 42572, + "dungeonsand": 34970, + "dungeonsanddragons": 35497, + "dunham": 42501, + "duni": 43454, + "dunk": 17222, + "dunkin": 48022, + "dunkin": 36415, + "dunkirk": 46928, + "dunks": 48977, + "dunlop": 34753, + "dunn": 19185, + "dunne": 38538, + "dunno": 24502, + "duo": 8696, + "dup": 36805, + "dup": 10445, + "duper": 44850, + "duplex": 41186, + "duplic": 28992, + "dupont": 35994, + "dur": 4355, + "dur": 23230, + "dura": 28173, + "dura": 47382, + "durability": 43671, + "durable": 22285, + "duran": 28185, + "durango": 44443, + "durant": 24861, + "duras": 27518, + "duration": 31663, + "durban": 24474, + "dure": 19108, + "durga": 38456, + "durham": 26765, + "durham": 14335, + "during": 1590, + "dus": 9931, + "dusa": 28546, + "dusk": 19708, + "dust": 29723, + "dust": 8349, + "dusted": 38274, + "duster": 46280, + "dustin": 42423, + "dustin": 21235, + "dusting": 41756, + "dusty": 22029, + "dut": 32625, + "dutch": 22277, + "dutch": 7991, + "duter": 21624, + "duterte": 22371, + "duties": 19603, + "dutt": 30081, + "dutton": 42771, + "duty": 6458, + "duval": 42459, + "duvet": 48006, + "dux": 28562, + "dv": 4288, + "dv": 26265, + "dvd": 7170, + "dvds": 36655, + "dvn": 29811, + "dvr": 29210, + "dw": 8455, + "dw": 19997, + "dwar": 13487, + "dwarf": 22643, + "dwayne": 31395, + "dwell": 27549, + "dwell": 18755, + "dwelling": 37098, + "dwight": 22473, + "dwp": 46976, + "dwts": 30220, + "dwyer": 43878, + "dx": 22717, + "dx": 15679, + "dy": 1444, + "dy": 907, + "dyce": 48325, + "dye": 37159, + "dye": 15997, + "dyed": 24906, + "dyer": 29495, + "dyes": 39874, + "dying": 5115, + "dyk": 12142, + "dyke": 32632, + "dylan": 21004, + "dylan": 9900, + "dyn": 44289, + "dyn": 30669, + "dynam": 5735, + "dynamic": 10057, + "dynamics": 14329, + "dynamite": 29003, + "dynamo": 28281, + "dynasty": 14593, + "dyne": 42756, + "dyou": 11484, + "dyour": 22525, + "dys": 11022, + "dys": 38384, + "dysfunction": 36865, + "dysfunctional": 40757, + "dysle": 33681, + "dyslexia": 43199, + "dyson": 34475, + "dyssey": 17435, + "dystop": 28276, + "dystopian": 38915, + "dz": 24421, + "dz": 22913, + "dé": 25466, + "dü": 46948, + "dÃŃ": 46988, + "e": 68, + "e": 324, + "ea": 2150, + "ea": 8100, + "eable": 20693, + "each": 31442, + "each": 2416, + "eachother": 40792, + "ead": 42556, + "ead": 45523, + "eae": 27446, + "eag": 3743, + "eager": 21551, + "eagerly": 30094, + "eagle": 20207, + "eagle": 7517, + "eagles": 6920, + "eal": 48872, + "ealing": 40484, + "eames": 49072, + "eamon": 45954, + "ean": 13327, + "ear": 1055, + "ear": 8373, + "earbuds": 47807, + "eared": 9127, + "earl": 30573, + "earl": 14235, + "earle": 40292, + "earlier": 4297, + "earliest": 22097, + "early": 15840, + "early": 2090, + "earn": 33977, + "earn": 8465, + "earned": 8898, + "earnest": 45422, + "earning": 14550, + "earnings": 15912, + "earns": 16760, + "earp": 35296, + "earphones": 44905, + "earring": 28664, + "earrings": 9136, + "ears": 9861, + "eart": 7086, + "earth": 5184, + "earth": 3475, + "earthand": 34229, + "earthandclouds": 34480, + "earthday": 19481, + "earthquake": 10060, + "earthquakes": 32895, + "earthy": 47139, + "earts": 38824, + "eas": 5740, + "ease": 13574, + "easier": 8817, + "easiest": 26314, + "easily": 8197, + "easing": 44825, + "easport": 42251, + "east": 5022, + "east": 2602, + "eastbound": 28827, + "eastbourne": 38455, + "eastenders": 23545, + "easter": 14783, + "easter": 4811, + "eastern": 34522, + "eastern": 6311, + "eastman": 48280, + "easton": 29619, + "eastside": 42650, + "eastwood": 28270, + "easy": 18308, + "easy": 3176, + "eat": 5418, + "eat": 3384, + "eaten": 16750, + "eater": 24060, + "eaters": 37645, + "eatery": 46559, + "eating": 4371, + "eatlocal": 42868, + "eaton": 28462, + "eats": 13188, + "eau": 17608, + "eazy": 36536, + "eb": 12283, + "eb": 8677, + "eba": 40889, + "ebay": 34412, + "ebay": 4099, + "eber": 34020, + "ebo": 46635, + "ebola": 15864, + "ebon": 22013, + "ebony": 30651, + "ebook": 13122, + "ebooks": 25774, + "ec": 747, + "ec": 10879, + "eca": 18465, + "ecar": 34500, + "ecb": 26205, + "ecc": 33128, + "eccc": 47401, + "eccentric": 43228, + "eccle": 27494, + "ece": 2163, + "eces": 5905, + "ecg": 45983, + "ech": 15797, + "ech": 31147, + "echel": 41233, + "echo": 17366, + "echo": 13989, + "echoes": 32564, + "eci": 31936, + "eck": 25866, + "eck": 15969, + "ecker": 39661, + "ecker": 40890, + "ecla": 47806, + "eclec": 25114, + "eclectic": 28382, + "eclip": 30841, + "eclipse": 11505, + "eclub": 38983, + "eco": 5106, + "eco": 10077, + "ecofriendly": 43412, + "ecol": 22706, + "ecological": 25127, + "ecology": 18578, + "ecommerce": 15529, + "econ": 26755, + "econ": 21158, + "econom": 2768, + "economic": 36649, + "economic": 5259, + "economical": 48782, + "economically": 39406, + "economics": 12625, + "economies": 27136, + "economist": 18836, + "economists": 43701, + "economy": 5644, + "ecor": 28962, + "ecosystem": 15788, + "ecosystems": 28725, + "ecoun": 27924, + "ecr": 48572, + "ecraft": 11439, + "ecs": 23485, + "ecstasy": 47286, + "ecstatic": 36244, + "ect": 25168, + "ecu": 13087, + "ecu": 32919, + "ecuador": 19813, + "ecz": 43530, + "ed": 843, + "ed": 538, + "eda": 10804, + "edad": 44724, + "eday": 39258, + "edc": 21245, + "edchat": 14702, + "edd": 35431, + "eddi": 42930, + "eddie": 22748, + "eddie": 9517, + "eddy": 25959, + "ede": 29632, + "eded": 19555, + "edel": 20460, + "edelman": 48139, + "eden": 23621, + "eden": 13741, + "eder": 16249, + "edes": 36247, + "edfringe": 27402, + "edg": 35955, + "edgar": 33543, + "edgar": 17914, + "edge": 16914, + "edge": 5461, + "edged": 39188, + "edges": 20938, + "edgy": 35393, + "edi": 8750, + "edi": 27148, + "edible": 19795, + "edic": 25184, + "edics": 30641, + "edin": 6524, + "edinburgh": 27574, + "edinburgh": 8068, + "eding": 5742, + "edison": 25846, + "edit": 8239, + "edit": 8013, + "edited": 13945, + "edith": 28597, + "editing": 10178, + "edition": 3062, + "editions": 21664, + "editor": 7661, + "editorial": 12325, + "editors": 19486, + "edits": 24945, + "edm": 37843, + "edm": 13539, + "edmon": 11275, + "edmond": 41581, + "edmonds": 46520, + "edmonton": 37311, + "edmonton": 15058, + "edmun": 36561, + "edmund": 27567, + "edna": 39002, + "edo": 29145, + "edo": 18096, + "edon": 41467, + "edor": 30184, + "edou": 47678, + "edp": 46066, + "eds": 1941, + "edsheeran": 30386, + "edt": 15071, + "edtech": 41825, + "edtech": 15262, + "edu": 11757, + "edu": 11799, + "eduardo": 30604, + "educ": 2200, + "educate": 17563, + "educated": 21447, + "education": 22358, + "education": 2806, + "educational": 10400, + "educator": 19875, + "educators": 15420, + "edwar": 27586, + "edward": 26184, + "edward": 7450, + "edwards": 12627, + "edwin": 48718, + "edwin": 22471, + "edy": 17072, + "edy": 4144, + "ee": 2644, + "ee": 4708, + "eed": 17513, + "eee": 24632, + "eee": 9361, + "eeee": 11696, + "eeee": 17570, + "eeeee": 26938, + "eeeeee": 41407, + "eek": 46591, + "eel": 27462, + "eels": 44416, + "eem": 27236, + "een": 47490, + "een": 21230, + "eer": 35409, + "eer": 31846, + "eera": 36664, + "eerie": 33846, + "ees": 40308, + "eet": 48935, + "eez": 39033, + "ef": 1490, + "ef": 1829, + "efa": 16999, + "eface": 48804, + "efan": 33556, + "efc": 22065, + "efcc": 46087, + "efer": 26199, + "eff": 20548, + "eff": 21715, + "effe": 2808, + "effec": 3943, + "effect": 5436, + "effective": 6837, + "effectively": 17516, + "effectiveness": 26847, + "effects": 7331, + "effic": 36004, + "efficacy": 39937, + "effici": 6670, + "efficiency": 11823, + "efficient": 11334, + "efficiently": 32915, + "effor": 6356, + "effort": 40078, + "effort": 6255, + "effortless": 41639, + "effortlessly": 42320, + "efforts": 6847, + "efish": 35813, + "efl": 27172, + "efron": 48111, + "efs": 7389, + "eg": 8053, + "eg": 14599, + "ega": 41193, + "egan": 42943, + "eger": 46704, + "eger": 22767, + "egg": 13778, + "egg": 5911, + "eggplant": 34906, + "eggs": 7099, + "ego": 34712, + "ego": 14250, + "egos": 43992, + "egre": 27044, + "egret": 42002, + "egy": 5224, + "egyp": 10250, + "egypt": 7267, + "egyptian": 12428, + "eh": 9277, + "eh": 9135, + "eha": 48563, + "ehealth": 48617, + "ehr": 45271, + "ehs": 44648, + "ei": 4006, + "ei": 18264, + "eic": 40251, + "eid": 28038, + "eid": 13979, + "eidmubarak": 46275, + "eiffel": 29720, + "eigh": 13468, + "eight": 7910, + "eighteen": 49316, + "eighth": 21237, + "eighty": 47449, + "eil": 29457, + "eileen": 31468, + "ein": 29944, + "ein": 24524, + "eindhoven": 47172, + "eing": 7702, + "einstein": 20587, + "eira": 47708, + "eis": 13802, + "eisen": 25273, + "eisenhower": 35562, + "either": 6036, + "ej": 19887, + "ej": 25009, + "ejec": 29771, + "ek": 4212, + "ek": 2092, + "el": 544, + "el": 832, + "ela": 11284, + "ela": 3787, + "elab": 38866, + "elabor": 26034, + "elaborate": 33855, + "elaine": 22523, + "elan": 17763, + "elan": 18399, + "eland": 24930, + "eland": 6275, + "elas": 41078, + "elast": 27479, + "elastic": 30282, + "elba": 48598, + "elbow": 21965, + "eld": 5684, + "elder": 11791, + "elder": 14416, + "elderly": 15455, + "elders": 28617, + "eldest": 33503, + "elding": 28223, + "elds": 13466, + "ele": 2084, + "ele": 9766, + "eleague": 36577, + "eleanor": 18604, + "elearning": 29969, + "elec": 1564, + "elec": 38768, + "elect": 15336, + "elected": 8828, + "election": 19312, + "election": 4247, + "electionday": 40540, + "elections": 6949, + "elector": 16465, + "electoral": 19544, + "electr": 3654, + "electra": 48959, + "electri": 23927, + "electric": 19547, + "electric": 5031, + "electrical": 12176, + "electrician": 46422, + "electricity": 10950, + "electrifying": 48843, + "electro": 11648, + "electro": 23244, + "electromagnetic": 46530, + "electron": 33396, + "electronic": 33865, + "electronic": 9273, + "electronica": 43119, + "electronics": 13081, + "eled": 20357, + "elee": 44112, + "eleg": 8075, + "elegance": 19146, + "elegant": 11124, + "elek": 34559, + "elem": 25406, + "element": 14909, + "elementary": 8143, + "elements": 10925, + "elen": 30654, + "elen": 39164, + "elena": 19421, + "eleng": 48180, + "eleph": 7554, + "elephant": 10299, + "elephants": 16871, + "eler": 24646, + "eless": 15244, + "eless": 30837, + "elets": 19400, + "elev": 7921, + "elevate": 26736, + "elevated": 23967, + "elevation": 23826, + "elevator": 19021, + "eleven": 31617, + "eleven": 17795, + "elf": 45961, + "elf": 11924, + "elfie": 39955, + "elg": 28790, + "elgin": 31868, + "eli": 1018, + "eli": 6292, + "elia": 10956, + "elian": 42508, + "elias": 47274, + "elias": 29902, + "elic": 34743, + "elic": 13492, + "elie": 38677, + "elie": 26501, + "elier": 14634, + "elife": 37429, + "elife": 12719, + "eligibility": 34937, + "eligible": 16978, + "elijah": 26065, + "elike": 48913, + "elim": 9296, + "elimin": 11386, + "eliminate": 19655, + "eliminated": 29075, + "eliminating": 36619, + "elimination": 24176, + "elin": 25353, + "elin": 13458, + "eline": 46199, + "eline": 7153, + "eling": 9990, + "elio": 47943, + "elion": 30682, + "elions": 44159, + "eliot": 33326, + "elis": 23411, + "elis": 48021, + "elisa": 25610, + "elisa": 44051, + "elisabeth": 33127, + "elise": 27124, + "elit": 40882, + "elite": 32277, + "elite": 6553, + "elited": 43943, + "elitedangerous": 47138, + "elites": 35975, + "elius": 35623, + "elive": 49338, + "elive": 23505, + "elives": 49174, + "elix": 32926, + "elixir": 42887, + "eliz": 42844, + "eliza": 6132, + "eliza": 29992, + "elizabeth": 22397, + "elizabeth": 7026, + "elk": 34013, + "elk": 21896, + "ell": 826, + "ell": 812, + "ella": 20692, + "ella": 2957, + "elland": 43326, + "ellar": 38443, + "ellas": 37053, + "elle": 12818, + "elle": 4765, + "elled": 13146, + "ellen": 14007, + "ellen": 12312, + "ellenshow": 34812, + "eller": 20927, + "eller": 4465, + "ellers": 19010, + "elles": 24431, + "elli": 3367, + "elli": 6673, + "ellic": 38905, + "ellie": 16769, + "ellier": 44054, + "ellin": 40374, + "elling": 2220, + "ellington": 34477, + "ellini": 43256, + "elliot": 20761, + "elliott": 44456, + "elliott": 13788, + "ellip": 44816, + "ellis": 11553, + "ellison": 32295, + "ello": 2512, + "ellor": 14594, + "ells": 2433, + "ellu": 35560, + "elly": 8041, + "elly": 20355, + "elm": 25199, + "elm": 22082, + "elman": 33622, + "elmer": 45958, + "elmo": 32150, + "elo": 6170, + "elo": 13490, + "elon": 26381, + "elon": 20406, + "elondon": 47377, + "elong": 44363, + "elonmusk": 37076, + "elope": 23367, + "eloqu": 37795, + "elos": 44733, + "elot": 43490, + "elove": 43319, + "elove": 19165, + "elover": 21732, + "elovers": 33946, + "els": 35958, + "els": 1645, + "elsa": 22050, + "else": 18857, + "else": 3344, + "elsewhere": 22906, + "elson": 19624, + "elt": 18692, + "elton": 20758, + "elu": 14208, + "elusive": 28903, + "elves": 29111, + "elvi": 47008, + "elvis": 47359, + "elvis": 14498, + "elxn": 37726, + "ely": 12189, + "ely": 1273, + "elyn": 29691, + "elyn": 18126, + "em": 908, + "em": 2270, + "ema": 7002, + "ema": 11131, + "emabiggest": 23101, + "emabiggestfans": 29587, + "email": 33537, + "email": 4462, + "emailed": 40470, + "emailmarketing": 40188, + "emails": 12871, + "eman": 24416, + "eman": 36868, + "emancip": 42996, + "emanuel": 35232, + "emb": 3692, + "embar": 8266, + "embaras": 48019, + "embark": 33953, + "embarra": 11382, + "embarrass": 27183, + "embarrassed": 28217, + "embarrassing": 19653, + "embarrassment": 41346, + "embassy": 13598, + "embe": 46041, + "embed": 19703, + "embedded": 22046, + "embelli": 32144, + "embellished": 46992, + "ember": 47049, + "emblem": 21163, + "embo": 23065, + "embr": 35267, + "embrac": 16928, + "embrace": 12118, + "embraced": 35739, + "embraces": 38404, + "embracing": 22196, + "embro": 12550, + "embroi": 18667, + "embroide": 21530, + "embroidered": 22381, + "embroidery": 20823, + "emc": 20897, + "emc": 31602, + "emcee": 42038, + "eme": 22910, + "eme": 21548, + "emea": 40352, + "emed": 11028, + "emen": 22033, + "ement": 40841, + "ement": 2057, + "ements": 11058, + "emer": 3132, + "emer": 25727, + "emerald": 46878, + "emerald": 16980, + "emerge": 22182, + "emerged": 26425, + "emergen": 24096, + "emergence": 39867, + "emergencies": 35759, + "emergency": 44038, + "emergency": 5897, + "emerges": 30801, + "emerging": 38174, + "emerging": 11113, + "emeritus": 35333, + "emerson": 24147, + "emery": 32678, + "emi": 44327, + "emi": 18525, + "emil": 26794, + "emil": 40624, + "emile": 43926, + "emili": 20709, + "emilia": 34238, + "emilio": 39722, + "emily": 14545, + "emily": 7640, + "emin": 17227, + "emin": 23995, + "eminem": 22129, + "eminent": 33779, + "eming": 40398, + "emir": 13337, + "emir": 47613, + "emirates": 47244, + "emirates": 17867, + "emission": 27761, + "emissions": 14172, + "emit": 49043, + "emma": 18177, + "emma": 7445, + "emmanuel": 48045, + "emmanuel": 20411, + "emmett": 45779, + "emmy": 35625, + "emmy": 17089, + "emmys": 21875, + "emo": 3738, + "emo": 19381, + "emoji": 16327, + "emojis": 27870, + "emon": 34406, + "emor": 45034, + "emory": 44274, + "emotion": 17464, + "emotional": 7357, + "emotionally": 24088, + "emotions": 12904, + "emp": 3831, + "emp": 41004, + "empathy": 22420, + "emper": 12522, + "emperor": 13828, + "empha": 16237, + "emphasi": 47176, + "emphasis": 29588, + "empire": 26212, + "empire": 7614, + "empires": 46510, + "emplo": 3409, + "employ": 37290, + "employ": 39626, + "employe": 5037, + "employed": 26567, + "employee": 36631, + "employee": 9560, + "employees": 7377, + "employer": 21296, + "employers": 17647, + "employment": 10959, + "empor": 27386, + "emporium": 48541, + "empower": 13612, + "empower": 17230, + "empowered": 29087, + "empowering": 20086, + "empowerment": 15747, + "empowers": 46206, + "empress": 26656, + "empty": 41203, + "empty": 7893, + "emra": 39259, + "ems": 2858, + "emt": 46360, + "emu": 48149, + "emu": 29296, + "emul": 23272, + "emy": 31076, + "en": 524, + "en": 576, + "ena": 3452, + "enab": 17308, + "enable": 15642, + "enabled": 23666, + "enables": 23417, + "enabling": 23590, + "enam": 41486, + "enamel": 22746, + "enary": 13132, + "enas": 34536, + "enation": 20860, + "enberg": 15658, + "enburg": 28430, + "enc": 33169, + "enca": 37774, + "encan": 30345, + "encapsul": 40874, + "ence": 6495, + "ence": 954, + "enced": 6549, + "ences": 3777, + "enchan": 17290, + "enchanted": 28258, + "enchanting": 32531, + "enchil": 47396, + "enci": 32207, + "encia": 30068, + "encies": 18729, + "encing": 10326, + "enclosed": 43243, + "enclosure": 37419, + "encom": 44026, + "encore": 20549, + "encoun": 17309, + "encounter": 13164, + "encountered": 32492, + "encounters": 25399, + "encoura": 6169, + "encourage": 12090, + "encouraged": 20299, + "encouragement": 24959, + "encourages": 23848, + "encouraging": 15875, + "encro": 45822, + "encry": 28600, + "encryp": 42928, + "encrypted": 48710, + "encryption": 31423, + "ency": 3484, + "encyclo": 32104, + "encyclopedia": 38376, + "end": 945, + "end": 806, + "enda": 6735, + "endale": 20290, + "endange": 13990, + "endangered": 14931, + "ende": 11373, + "ende": 40306, + "endeav": 18134, + "endeavor": 40502, + "endeavors": 44394, + "endeavour": 38035, + "ended": 2622, + "endemic": 41241, + "endent": 16265, + "ender": 48106, + "ender": 12383, + "enders": 7418, + "endez": 43850, + "endgame": 23042, + "endi": 31359, + "ending": 2695, + "endings": 36516, + "endish": 38841, + "endless": 12688, + "endlessly": 45145, + "endment": 45894, + "endo": 13476, + "endo": 15830, + "endocr": 36486, + "endof": 40786, + "endome": 46996, + "endon": 48018, + "endor": 8092, + "endorf": 37249, + "endorse": 28819, + "endorsed": 24307, + "endorsement": 21205, + "endorses": 34603, + "endorsing": 46779, + "endow": 45895, + "endra": 22321, + "ends": 1339, + "endthe": 46256, + "endu": 26032, + "endur": 19557, + "endurance": 21027, + "endure": 32419, + "enduring": 30851, + "enduro": 47042, + "ene": 3297, + "ene": 6049, + "ened": 2494, + "eneed": 45137, + "enegger": 33235, + "enei": 48906, + "enemies": 15824, + "enemy": 10310, + "enen": 45113, + "ener": 2244, + "ener": 13600, + "energ": 39451, + "energetic": 24197, + "energi": 23044, + "energies": 42374, + "energized": 48635, + "energy": 14974, + "energy": 2650, + "energye": 32271, + "energyefficiency": 40586, + "eners": 48208, + "enes": 42066, + "eness": 11806, + "enet": 46336, + "enew": 29672, + "enews": 13442, + "eney": 20706, + "enez": 33110, + "enf": 38167, + "enfield": 27808, + "enfor": 10592, + "enforce": 40224, + "enforced": 44597, + "enforcement": 12460, + "eng": 1035, + "eng": 6730, + "enga": 22297, + "engag": 6793, + "engage": 11089, + "engaged": 11475, + "engagement": 7281, + "engaging": 13060, + "enge": 26279, + "enge": 2742, + "engel": 38265, + "engen": 48286, + "enger": 6618, + "engers": 7533, + "engine": 3355, + "engine": 5857, + "engineer": 40151, + "engineer": 8517, + "engineered": 26580, + "engineering": 5273, + "engineers": 11494, + "engines": 14487, + "england": 20904, + "england": 3595, + "english": 15942, + "english": 3469, + "engra": 17560, + "engraved": 29421, + "engraving": 33309, + "engul": 43655, + "engv": 28401, + "enh": 7449, + "enhall": 48781, + "enham": 24592, + "enhan": 26827, + "enhance": 13993, + "enhanced": 16070, + "enhancement": 35601, + "enhances": 38259, + "enhancing": 25986, + "eni": 4395, + "eni": 17538, + "enic": 46780, + "enic": 28292, + "enig": 19754, + "enig": 48730, + "enight": 32848, + "enight": 20640, + "enigma": 34998, + "ening": 1133, + "enium": 34380, + "enix": 25720, + "enjo": 1498, + "enjoy": 12981, + "enjoy": 2218, + "enjoyable": 17444, + "enjoyed": 5045, + "enjoying": 3603, + "enjoyment": 34905, + "enjoys": 17024, + "enka": 43942, + "enko": 25312, + "enlar": 38136, + "enligh": 21364, + "enlighten": 28200, + "enlightened": 44032, + "enlightening": 44005, + "enlightenment": 29255, + "enlisted": 43555, + "enly": 43023, + "enn": 43563, + "enna": 8095, + "enne": 21176, + "enne": 11518, + "ennedy": 46266, + "ennes": 43613, + "enni": 7049, + "ennial": 14220, + "ennis": 48923, + "ennis": 26309, + "eno": 9429, + "eno": 12843, + "enoch": 47917, + "enor": 13955, + "enormous": 20129, + "enos": 44759, + "enote": 44955, + "enough": 2744, + "enow": 26876, + "enqu": 28417, + "enqui": 22810, + "enquire": 46658, + "enquiries": 31901, + "enquiry": 45141, + "enri": 18915, + "enrich": 20058, + "enrich": 45504, + "enriched": 45166, + "enrichment": 32903, + "enrique": 25489, + "enrol": 44279, + "enroll": 23739, + "enroll": 30366, + "enrolled": 36853, + "enrollment": 24875, + "enroute": 40548, + "ens": 41799, + "ens": 1323, + "ense": 12657, + "ense": 27658, + "ensemble": 14843, + "ensis": 32842, + "ensla": 37535, + "enslaved": 48675, + "ensure": 7492, + "ensures": 29707, + "ensuring": 19403, + "ent": 724, + "ent": 621, + "enta": 17681, + "ental": 32342, + "ental": 6168, + "entary": 9833, + "entation": 37412, + "ente": 17433, + "ente": 9935, + "ented": 3800, + "entennial": 43088, + "enter": 2963, + "enter": 3819, + "entered": 10679, + "entering": 12580, + "enterpri": 7339, + "enterprise": 9220, + "enterprises": 21219, + "enters": 15287, + "entertain": 5566, + "entertain": 23510, + "entertained": 30631, + "entertainer": 28674, + "entertaining": 13897, + "entertainment": 6166, + "entes": 24213, + "enthr": 36202, + "enthusi": 9631, + "enthusiasm": 20525, + "enthusiast": 27153, + "enthusiastic": 22068, + "enthusiasts": 27514, + "enti": 1938, + "ential": 5194, + "entially": 37695, + "entic": 10340, + "entine": 49212, + "enting": 20526, + "entire": 4709, + "entirely": 13911, + "entirety": 43242, + "entit": 15209, + "entities": 38134, + "entitled": 18680, + "entity": 28455, + "ently": 2922, + "ento": 21917, + "ento": 8762, + "entom": 31676, + "entourage": 47893, + "entr": 7129, + "entrance": 9129, + "entrata": 27304, + "entre": 34188, + "entre": 19600, + "entren": 46959, + "entrepre": 4583, + "entreprene": 4789, + "entrepreneu": 26784, + "entrepreneur": 12119, + "entrepreneur": 8033, + "entrepreneurial": 28261, + "entrepreneurs": 11054, + "entrepreneurship": 12858, + "entries": 13766, + "entry": 5362, + "ents": 870, + "entu": 6650, + "enty": 5657, + "enu": 23430, + "env": 32280, + "env": 39207, + "envel": 20052, + "envelope": 27358, + "envir": 3512, + "enviro": 46200, + "environ": 3599, + "environment": 33039, + "environment": 5501, + "environmental": 7831, + "environmentally": 32855, + "environments": 19577, + "envision": 49031, + "envoy": 29263, + "envy": 21017, + "eny": 20482, + "enya": 36509, + "enyc": 39520, + "enz": 25805, + "enz": 31873, + "enza": 25239, + "enzie": 14839, + "enzo": 31543, + "enzyme": 40348, + "enzymes": 47465, + "eo": 16054, + "eo": 11712, + "eoin": 48634, + "eon": 31915, + "eos": 17805, + "ep": 1178, + "ep": 1117, + "epa": 15866, + "epage": 26931, + "epaper": 33584, + "epcot": 32524, + "eper": 43071, + "eph": 45752, + "eph": 41240, + "ephe": 25129, + "epi": 7219, + "epi": 34641, + "epic": 12683, + "epic": 4991, + "epiconetsy": 49222, + "epide": 17382, + "epidemi": 44447, + "epidemic": 21522, + "epile": 23150, + "epilepsy": 29547, + "epilo": 31291, + "epilots": 39766, + "epiph": 40561, + "epiphany": 43251, + "epis": 24616, + "episcop": 28037, + "episcopal": 31221, + "episo": 2708, + "episode": 2965, + "episodes": 11837, + "epit": 21967, + "epitome": 35114, + "epl": 25950, + "epo": 25810, + "epp": 39054, + "epp": 39593, + "eps": 4090, + "epsilon": 40019, + "epsom": 40364, + "epstein": 34688, + "eq": 39331, + "eq": 33692, + "equ": 2563, + "equal": 17373, + "equal": 10433, + "equality": 48981, + "equality": 9578, + "equally": 18172, + "equals": 30278, + "equation": 28591, + "equations": 38225, + "eque": 19518, + "equestrian": 24728, + "equi": 8752, + "equili": 43262, + "equine": 33801, + "equinox": 32652, + "equip": 6526, + "equip": 36979, + "equipment": 6893, + "equipo": 45688, + "equipped": 18331, + "equitable": 44717, + "equities": 44015, + "equity": 11293, + "equivalent": 19489, + "er": 517, + "er": 528, + "era": 30548, + "era": 2072, + "erable": 18801, + "erad": 24194, + "eradic": 36346, + "eradicate": 46164, + "eral": 6222, + "eran": 13069, + "eras": 19325, + "eras": 39090, + "erase": 33893, + "erased": 46762, + "erasmus": 38935, + "erc": 5360, + "erc": 32382, + "erd": 25645, + "erdo": 21112, + "erdogan": 24453, + "ere": 17907, + "ere": 642, + "erec": 21526, + "erected": 39365, + "ered": 9097, + "eres": 15751, + "ergon": 38120, + "ergy": 19550, + "eri": 2769, + "eri": 9509, + "eria": 11634, + "erial": 5409, + "eric": 1206, + "eric": 5396, + "erica": 13208, + "erich": 26070, + "erick": 27434, + "erick": 36959, + "erickson": 45286, + "ericsson": 39645, + "eridge": 45408, + "erie": 7005, + "eries": 9099, + "erik": 22805, + "erik": 16532, + "erika": 25531, + "erin": 17532, + "erin": 11333, + "erina": 25176, + "ering": 1785, + "erit": 23335, + "eritrea": 30738, + "erjee": 41665, + "erly": 14380, + "erm": 31649, + "erman": 17990, + "ern": 6992, + "ern": 12140, + "ernal": 20868, + "ernan": 34617, + "ernation": 48796, + "erne": 33930, + "ernest": 23006, + "ernie": 23636, + "ernity": 14653, + "erno": 40812, + "ernst": 30099, + "ero": 3211, + "ero": 3732, + "erock": 38206, + "eron": 32837, + "eroom": 46690, + "eros": 30597, + "erose": 48657, + "erosion": 30174, + "erotic": 30708, + "erotica": 39126, + "erous": 6384, + "eroy": 36461, + "erp": 28268, + "err": 22479, + "err": 25346, + "erra": 48446, + "errands": 45485, + "error": 12097, + "errors": 21195, + "erry": 45236, + "erry": 24124, + "ers": 4840, + "ers": 612, + "ersfc": 37925, + "ership": 2884, + "erson": 25780, + "erson": 6811, + "ert": 40325, + "ert": 3112, + "erta": 32007, + "erton": 26245, + "erts": 12921, + "eru": 36068, + "erun": 41642, + "erup": 17093, + "erupted": 48862, + "eruption": 33705, + "erville": 37557, + "erwin": 43724, + "ery": 12467, + "ery": 1692, + "erz": 38711, + "es": 957, + "es": 542, + "esa": 46834, + "esa": 12489, + "esanders": 23099, + "esc": 3330, + "esc": 28420, + "escal": 15902, + "escap": 11499, + "escape": 32484, + "escape": 7568, + "escaped": 18707, + "escapes": 29916, + "escaping": 21767, + "escar": 39229, + "escence": 37972, + "esch": 46760, + "esch": 41945, + "esco": 32482, + "escobar": 48807, + "escor": 24360, + "escort": 24976, + "escorted": 47667, + "escorts": 48574, + "escu": 36517, + "esday": 19553, + "ese": 18766, + "ese": 2260, + "esg": 41674, + "esh": 17119, + "esh": 13407, + "esha": 28799, + "eshop": 38451, + "eshop": 45570, + "eshopsuk": 39349, + "esi": 30064, + "esis": 12414, + "esk": 19359, + "esl": 26201, + "eso": 29890, + "eso": 28921, + "esof": 17047, + "eson": 46845, + "esp": 3849, + "esp": 13870, + "espa": 37301, + "espan": 41731, + "españa": 41118, + "especially": 4878, + "esper": 29216, + "espino": 46633, + "espionage": 43498, + "espn": 22917, + "espn": 7540, + "espnu": 47747, + "espo": 34381, + "esports": 16035, + "espresso": 17098, + "esq": 47352, + "esqu": 34616, + "esque": 25877, + "ess": 3118, + "ess": 9764, + "essa": 39125, + "essay": 12751, + "essays": 27328, + "esse": 22305, + "essen": 30489, + "essence": 17830, + "essenti": 11163, + "essential": 47264, + "essential": 6895, + "essentially": 30042, + "essentials": 16191, + "essex": 30563, + "essex": 11623, + "est": 2291, + "est": 1509, + "esta": 41449, + "esta": 10135, + "estab": 7010, + "establi": 8412, + "establish": 19709, + "established": 13143, + "establishing": 29420, + "establishment": 20213, + "estas": 39072, + "estate": 47130, + "estate": 6159, + "estates": 26054, + "este": 12968, + "este": 20579, + "esteban": 48381, + "esteem": 31541, + "esteemed": 36293, + "ester": 45808, + "esthe": 18468, + "esther": 24393, + "estim": 8904, + "estimate": 21883, + "estimated": 16665, + "estimates": 21957, + "esto": 31589, + "esto": 23958, + "estonia": 26260, + "estonian": 48895, + "estrada": 48116, + "estre": 31271, + "estu": 26272, + "estuary": 35269, + "esur": 35758, + "esville": 39187, + "esy": 46268, + "et": 1169, + "et": 875, + "eta": 8761, + "etal": 25221, + "etary": 13074, + "etc": 5353, + "etched": 40411, + "etching": 41375, + "ete": 38820, + "ete": 40245, + "eter": 8587, + "eter": 17007, + "eternal": 13732, + "eternally": 48486, + "eternity": 23832, + "eters": 18392, + "etf": 31661, + "eth": 4819, + "eth": 5927, + "ethan": 24245, + "ethan": 15958, + "ethanol": 38166, + "ethe": 21312, + "ethel": 45921, + "ether": 23349, + "ethere": 18705, + "ethereal": 40925, + "ethereum": 19612, + "ethernet": 35026, + "ethi": 10327, + "ethic": 39104, + "ethical": 47041, + "ethical": 17679, + "ethics": 13355, + "ethiop": 10897, + "ethiopia": 13920, + "ethiopian": 24507, + "ethnic": 30522, + "ethnic": 16344, + "ethnicity": 46787, + "ethno": 34225, + "ethos": 48768, + "eti": 11188, + "eti": 30394, + "etienne": 46118, + "eties": 15137, + "etihad": 38489, + "etiquette": 37957, + "etis": 38216, + "etisation": 39733, + "etna": 41940, + "eto": 27829, + "eto": 33837, + "eton": 44339, + "etour": 41462, + "etr": 23012, + "etres": 42838, + "ets": 3442, + "etsy": 13237, + "etsy": 6282, + "etsym": 22902, + "etsymntt": 25416, + "etsyshop": 44643, + "ett": 32729, + "ett": 24998, + "etta": 30466, + "ette": 19981, + "ette": 5212, + "ettes": 35326, + "etto": 44219, + "etty": 40759, + "etu": 36593, + "etv": 49155, + "etv": 20325, + "etwork": 20585, + "ety": 25920, + "ety": 2746, + "etz": 36181, + "etz": 25301, + "eu": 1506, + "eu": 3238, + "eucalyp": 41068, + "eucalyptus": 42351, + "euchar": 38362, + "eugen": 30678, + "eugene": 17760, + "eul": 46749, + "eun": 16431, + "eun": 26219, + "eunhyuk": 47526, + "eup": 44435, + "euph": 21386, + "euphoria": 41051, + "eur": 18343, + "eur": 12018, + "eura": 32605, + "eure": 25311, + "euref": 48017, + "eureka": 31686, + "euro": 2039, + "euro": 8463, + "euroleague": 46821, + "europa": 18290, + "europale": 42473, + "europaleague": 44029, + "europarl": 44922, + "europe": 4198, + "europe": 3848, + "european": 26712, + "european": 4759, + "europeans": 37082, + "euros": 22274, + "eurovision": 17593, + "eurozone": 42555, + "eurusd": 40895, + "eus": 44214, + "euston": 46905, + "euthan": 43280, + "euve": 40652, + "eux": 25019, + "ev": 776, + "ev": 10133, + "eva": 6845, + "evacu": 13187, + "evacuated": 26806, + "evacuation": 27353, + "eval": 25139, + "eval": 9703, + "evalu": 10314, + "evaluate": 27174, + "evaluating": 34541, + "evaluation": 17640, + "evan": 12821, + "evan": 12847, + "evangel": 20518, + "evangeli": 21372, + "evangelical": 36151, + "evangelist": 42275, + "evankirstel": 46581, + "evans": 8836, + "evansville": 44782, + "evapor": 33352, + "evasion": 48795, + "eve": 5732, + "eve": 1866, + "eved": 19820, + "evel": 39315, + "evelyn": 26687, + "evement": 8210, + "even": 6359, + "even": 1427, + "evening": 34487, + "evening": 2285, + "evenings": 19994, + "evenly": 45974, + "event": 10612, + "event": 1655, + "eventful": 45628, + "evento": 38155, + "eventprofs": 24980, + "events": 3667, + "eventu": 14055, + "eventual": 45321, + "eventually": 14397, + "ever": 888, + "ever": 1247, + "everest": 21722, + "everett": 25456, + "everglades": 46294, + "evergreen": 23852, + "everlasting": 32849, + "evers": 31914, + "everton": 13315, + "every": 1091, + "every": 1505, + "everybody": 5901, + "everyday": 25049, + "everyday": 5160, + "everyone": 1584, + "everything": 36376, + "everything": 2410, + "everytime": 16911, + "everywhere": 6364, + "eves": 7323, + "evi": 5348, + "evi": 36989, + "evic": 21336, + "eviction": 37111, + "eviden": 46220, + "evidence": 6439, + "evident": 34529, + "evie": 47195, + "evil": 23218, + "evil": 6006, + "eville": 16143, + "eving": 24729, + "evo": 17962, + "evo": 13169, + "evoc": 43133, + "evol": 5350, + "evolu": 7725, + "evolution": 8902, + "evolutionary": 30629, + "evolve": 23406, + "evolved": 22613, + "evolving": 23675, + "evp": 46154, + "evs": 33576, + "ew": 11942, + "ew": 15428, + "ewan": 40247, + "ewe": 48438, + "ewing": 38873, + "ews": 9878, + "ex": 659, + "ex": 4118, + "exac": 5460, + "exact": 12651, + "exactly": 5840, + "exagger": 29766, + "exal": 49324, + "exam": 4428, + "exam": 8785, + "examination": 20970, + "examine": 25728, + "examined": 44004, + "examiner": 29149, + "examines": 28160, + "examining": 30616, + "example": 6228, + "examples": 14790, + "exams": 14028, + "exas": 47536, + "exc": 1302, + "excav": 20733, + "excavation": 45909, + "exce": 10999, + "exceed": 32521, + "exceeded": 36221, + "exceeding": 47213, + "exceeds": 49353, + "excel": 28351, + "excel": 18754, + "excell": 3298, + "excellence": 8171, + "excellency": 36503, + "excellent": 4239, + "excelsi": 47315, + "excep": 8882, + "except": 8541, + "exception": 25018, + "exceptional": 13425, + "exceptionally": 29306, + "excer": 17737, + "excerpt": 20586, + "excess": 22491, + "excessive": 21332, + "exchange": 6616, + "exchanged": 48919, + "exchanges": 29730, + "exchanging": 47760, + "excit": 10510, + "excite": 47711, + "excited": 1889, + "excitement": 11407, + "exciting": 4300, + "exclu": 3114, + "exclude": 49235, + "excluded": 46216, + "excluding": 44326, + "exclusion": 40219, + "exclusive": 3747, + "exclusively": 13565, + "exclusives": 47149, + "excu": 7324, + "excur": 27533, + "excursion": 34869, + "excuse": 9266, + "excuses": 19388, + "exe": 3554, + "exe": 48027, + "exec": 15052, + "execs": 35728, + "execu": 4360, + "execute": 36405, + "executed": 20432, + "execution": 18085, + "executive": 5944, + "executives": 24357, + "exem": 19753, + "exemp": 28602, + "exempl": 36371, + "exemplary": 39123, + "exempli": 41934, + "exempt": 44278, + "exemption": 47481, + "exer": 40295, + "exerc": 5932, + "exercise": 7016, + "exercises": 19669, + "exercising": 39036, + "exeter": 32137, + "exeter": 18837, + "exfoli": 38823, + "exhau": 11154, + "exhaust": 21812, + "exhausted": 21741, + "exhausting": 40035, + "exhaustion": 49221, + "exhi": 3022, + "exhib": 3783, + "exhibit": 24992, + "exhibit": 8209, + "exhibiting": 23889, + "exhibition": 4219, + "exhibitions": 28311, + "exhibitor": 44192, + "exhibitors": 38542, + "exhibits": 30093, + "exhilar": 40262, + "exhilarating": 49289, + "exi": 5297, + "exico": 38712, + "exile": 28566, + "exist": 10899, + "exist": 9645, + "existed": 23198, + "existence": 13832, + "existent": 43541, + "existential": 38752, + "existing": 12886, + "exists": 14608, + "exit": 9374, + "exited": 37581, + "exiting": 39577, + "exits": 34943, + "exmoor": 48260, + "exo": 15600, + "exo": 5842, + "exodus": 30098, + "exol": 42856, + "exop": 35288, + "exoplan": 37980, + "exor": 24506, + "exorcist": 46309, + "exotic": 15639, + "exp": 9923, + "exp": 19066, + "expan": 7512, + "expand": 10382, + "expand": 13141, + "expanded": 18390, + "expanding": 15755, + "expands": 22223, + "expanse": 46886, + "expansion": 10138, + "expansive": 49261, + "expat": 43900, + "expe": 2560, + "expect": 9802, + "expect": 5716, + "expectation": 34273, + "expectations": 12529, + "expected": 5573, + "expecting": 12525, + "expects": 24536, + "expedition": 16761, + "expeditions": 49327, + "expelled": 48834, + "expen": 7216, + "expend": 29302, + "expenditure": 47044, + "expense": 28473, + "expenses": 21797, + "expensive": 9649, + "exper": 1533, + "experi": 4723, + "experience": 31867, + "experience": 2415, + "experienced": 10417, + "experiences": 8233, + "experiencing": 16643, + "experiential": 44952, + "experim": 6697, + "experiment": 13079, + "experimental": 16539, + "experimenting": 28263, + "experiments": 21077, + "expert": 6284, + "expertise": 16555, + "experts": 6960, + "expi": 26850, + "expir": 35077, + "expire": 49315, + "expired": 30200, + "expires": 34739, + "expl": 3261, + "expla": 3517, + "explain": 48918, + "explain": 7304, + "explained": 14229, + "explaining": 13136, + "explains": 6655, + "explan": 13294, + "explanation": 16577, + "explanations": 34383, + "explic": 21011, + "explicit": 33228, + "explo": 3586, + "explode": 31262, + "exploded": 28947, + "explodes": 38119, + "exploding": 34683, + "exploit": 36953, + "exploited": 48554, + "explor": 11958, + "exploration": 14043, + "explore": 10405, + "explore": 5147, + "explorebc": 38754, + "explorecanada": 36600, + "explored": 25016, + "explorer": 15776, + "explorers": 28491, + "explores": 13996, + "exploring": 7584, + "explosion": 13785, + "explosions": 38646, + "explosive": 18888, + "explosives": 44705, + "expo": 7820, + "expo": 6344, + "expon": 27905, + "export": 14444, + "exporting": 47433, + "exports": 20088, + "expose": 23181, + "exposed": 12180, + "exposes": 33575, + "exposing": 28362, + "exposition": 36943, + "exposure": 11903, + "expre": 6085, + "express": 18553, + "express": 5642, + "expressed": 20777, + "expresses": 31931, + "expressing": 30207, + "expression": 11357, + "expressions": 20314, + "expressive": 42060, + "expressway": 31658, + "exquis": 16575, + "exquisite": 17958, + "ext": 5711, + "ext": 20072, + "exten": 5555, + "extend": 14492, + "extended": 9614, + "extending": 25652, + "extends": 20688, + "extension": 10275, + "extensions": 24525, + "extensive": 16870, + "extensively": 47365, + "extent": 24913, + "exter": 9797, + "exterior": 19352, + "extermin": 41671, + "external": 15028, + "extin": 13553, + "extinct": 24488, + "extinction": 21186, + "extingui": 38567, + "extor": 35620, + "extr": 29082, + "extra": 6416, + "extra": 4231, + "extrac": 18550, + "extract": 18962, + "extraction": 28789, + "extracts": 45576, + "extraordin": 23628, + "extraordinaire": 30909, + "extraordinary": 10982, + "extras": 29817, + "extravag": 22299, + "extravaganza": 29461, + "extre": 3978, + "extreme": 38357, + "extreme": 8331, + "extremely": 6519, + "extremism": 31493, + "extremist": 36383, + "extremists": 41425, + "extru": 43010, + "ey": 1541, + "ey": 1477, + "eyang": 28915, + "eye": 5034, + "eye": 3272, + "eyebrow": 34250, + "eyebrows": 19923, + "eyed": 15512, + "eyeing": 34916, + "eyel": 17075, + "eyelashes": 42074, + "eyeliner": 33354, + "eyeon": 25126, + "eyes": 3095, + "eyeshadow": 35213, + "eyewear": 30165, + "eyewitness": 36258, + "eyou": 31996, + "eyour": 40229, + "eyre": 44115, + "ez": 10082, + "ez": 8387, + "eze": 25993, + "eze": 27229, + "ezekiel": 41428, + "ezra": 27552, + "f": 69, + "f": 325, + "fa": 778, + "fa": 2800, + "faa": 27577, + "fab": 2833, + "fab": 5492, + "faber": 43461, + "faber": 42488, + "fabi": 29425, + "fabian": 34539, + "fabio": 31666, + "fabric": 16217, + "fabric": 10033, + "fabricated": 40851, + "fabrication": 33476, + "fabrics": 23159, + "fabulous": 5189, + "fac": 1053, + "fac": 35438, + "facade": 29217, + "face": 2545, + "face": 1710, + "facebook": 36156, + "facebook": 2943, + "faced": 10941, + "faceli": 32023, + "facelift": 36380, + "faceoff": 42710, + "facep": 45285, + "faces": 4905, + "faceted": 43435, + "facetime": 24076, + "facial": 11909, + "facil": 39973, + "facilit": 13567, + "facilitate": 26733, + "facilitated": 43853, + "facilitating": 34796, + "facilities": 10388, + "facility": 8165, + "facing": 7619, + "fact": 17189, + "fact": 3598, + "factfriday": 27953, + "faction": 14629, + "factor": 21082, + "factor": 8124, + "factories": 36492, + "factors": 12733, + "factory": 42483, + "factory": 6072, + "facts": 5085, + "factual": 45471, + "faculty": 9504, + "facup": 25283, + "fad": 12632, + "fad": 47669, + "fade": 20486, + "faded": 26051, + "fades": 40441, + "fading": 32882, + "fadnavis": 38945, + "faf": 31052, + "faf": 43903, + "fag": 25617, + "fag": 39305, + "fah": 25495, + "fah": 35429, + "fahren": 45527, + "fai": 20519, + "fai": 26384, + "fail": 7105, + "fail": 6801, + "failed": 8314, + "failing": 15757, + "fails": 13388, + "failure": 8732, + "failures": 25442, + "faint": 30807, + "fair": 3031, + "fair": 2849, + "fairbanks": 43962, + "faire": 34745, + "faire": 20798, + "fairfax": 29368, + "fairfield": 29664, + "fairgrounds": 38325, + "fairi": 28884, + "fairies": 33590, + "fairly": 14961, + "fairmont": 41547, + "fairness": 29388, + "fairs": 8655, + "fairtrade": 33361, + "fairview": 43479, + "fairway": 44022, + "fairy": 17021, + "fairy": 10444, + "fairytale": 28944, + "fais": 23542, + "faisal": 35459, + "fait": 20567, + "faith": 10653, + "faith": 5080, + "faithful": 15511, + "faiz": 41775, + "fake": 18794, + "fake": 5777, + "faken": 22853, + "fakenews": 26943, + "fakespeare": 49095, + "fal": 2778, + "fal": 40494, + "fala": 47120, + "falcon": 22498, + "falcon": 13571, + "falcons": 13834, + "falk": 34648, + "falkirk": 44080, + "fall": 6489, + "fall": 2359, + "fallen": 8688, + "falling": 48709, + "falling": 7293, + "fallon": 39596, + "fallon": 21281, + "fallontonight": 44627, + "fallout": 49365, + "fallout": 16009, + "falls": 4778, + "falmouth": 38261, + "false": 38948, + "false": 9078, + "falsely": 42321, + "fam": 1058, + "fam": 5128, + "fame": 6573, + "famed": 23302, + "famer": 24554, + "famil": 3395, + "famili": 8488, + "familia": 25622, + "familiar": 10020, + "families": 4612, + "family": 8137, + "family": 1315, + "familyfun": 46308, + "familytime": 47236, + "familytravel": 38222, + "famine": 35847, + "famous": 44811, + "famous": 4096, + "famously": 44505, + "fan": 1675, + "fan": 2261, + "fanart": 41059, + "fanart": 7855, + "fanartfriday": 45346, + "fanatic": 36643, + "fanatics": 39610, + "fanbase": 36921, + "fanboy": 43369, + "fanc": 29017, + "fancafe": 45080, + "fanci": 35908, + "fanclub": 31530, + "fancy": 47622, + "fancy": 6733, + "fand": 19684, + "fandom": 47634, + "fandom": 11534, + "fanfest": 42916, + "fanfic": 47243, + "fang": 14269, + "fang": 27428, + "fangirl": 28813, + "fangirling": 39463, + "fanning": 37282, + "fanny": 30401, + "fans": 32454, + "fans": 1840, + "fansign": 25288, + "fant": 4467, + "fanta": 2703, + "fantaken": 39412, + "fantasia": 49306, + "fantastic": 31289, + "fantastic": 2935, + "fantasy": 15124, + "fantasy": 5267, + "fantasyfootball": 35713, + "fao": 31155, + "faq": 28533, + "far": 1578, + "far": 2384, + "fara": 48562, + "farage": 28340, + "farah": 31547, + "fare": 8620, + "fare": 6461, + "fares": 27525, + "farewell": 10734, + "fargo": 18870, + "fari": 26197, + "farley": 43761, + "farm": 9066, + "farm": 3985, + "farmer": 19735, + "farmer": 10474, + "farmers": 29752, + "farmers": 6402, + "farmersmarket": 41808, + "farmhouse": 26293, + "farming": 10399, + "farmington": 49305, + "farmland": 45258, + "farms": 11277, + "farn": 27527, + "faroo": 39147, + "farra": 33657, + "farrakhan": 46293, + "farrell": 24234, + "fart": 34664, + "farther": 42233, + "fas": 4830, + "fas": 42995, + "fasci": 17191, + "fascin": 7327, + "fascinated": 32964, + "fascinating": 8640, + "fascism": 28213, + "fascist": 23870, + "fascists": 43598, + "fash": 42682, + "fashi": 2099, + "fashion": 6976, + "fashion": 2444, + "fashionable": 24597, + "fashionblogger": 31726, + "fashioned": 21563, + "fashioni": 26062, + "fashionista": 30415, + "fashions": 37601, + "fashionshow": 45653, + "fashionweek": 28684, + "fass": 42398, + "fast": 8509, + "fast": 1953, + "fasten": 44990, + "faster": 8835, + "fastest": 9808, + "fasting": 24656, + "fat": 4751, + "fat": 5484, + "fatal": 12124, + "fatalities": 44168, + "fatally": 34069, + "fate": 26315, + "fate": 11734, + "father": 11607, + "father": 3224, + "fathers": 12780, + "fathersday": 16731, + "fati": 13430, + "fatigue": 23747, + "fatima": 28202, + "fats": 30151, + "fatt": 44131, + "fatty": 22953, + "fau": 5571, + "fau": 31381, + "faucet": 44273, + "faul": 16230, + "faulkner": 37840, + "fault": 13862, + "faults": 42752, + "faulty": 47103, + "fauna": 30808, + "faust": 44772, + "faux": 19429, + "fav": 1355, + "fav": 5426, + "fave": 7272, + "faves": 18003, + "favor": 1766, + "favor": 12160, + "favorable": 35392, + "favored": 46640, + "favorite": 35262, + "favorite": 1916, + "favorited": 36926, + "favorites": 10564, + "favors": 36085, + "favour": 3111, + "favour": 20469, + "favourite": 3342, + "favourites": 16585, + "favs": 18879, + "faw": 21800, + "fawad": 46425, + "fawn": 48624, + "fax": 32535, + "fax": 9337, + "fay": 8939, + "fay": 40074, + "faye": 30257, + "fayette": 32043, + "fayette": 19782, + "fayetteville": 37771, + "fayre": 34982, + "faz": 26238, + "faze": 44880, + "fb": 22637, + "fb": 3307, + "fball": 29663, + "fbf": 20004, + "fbi": 10293, + "fbloggers": 41389, + "fbs": 48454, + "fc": 4278, + "fc": 1399, + "fca": 24540, + "fcb": 26639, + "fcb": 25045, + "fcbarcelona": 32174, + "fcbayern": 35033, + "fcblive": 44608, + "fcc": 21240, + "fck": 40080, + "fck": 49263, + "fcofficial": 27805, + "fcs": 32095, + "fcu": 47898, + "fd": 16972, + "fd": 11525, + "fda": 17823, + "fdi": 45579, + "fdn": 18563, + "fdny": 41084, + "fdr": 42298, + "fe": 623, + "fe": 873, + "fear": 8744, + "fear": 5402, + "feared": 31154, + "fearless": 17470, + "fears": 13867, + "fearthe": 33449, + "feasi": 34977, + "feast": 37963, + "feast": 9564, + "feat": 1703, + "feat": 5611, + "feather": 24905, + "feather": 17871, + "feathers": 21138, + "featherweight": 44939, + "feature": 30413, + "feature": 4527, + "featured": 4743, + "features": 4643, + "featuring": 3706, + "feb": 4317, + "febru": 4202, + "february": 4248, + "fect": 31293, + "fed": 22518, + "fed": 7035, + "feder": 4737, + "federal": 6369, + "federation": 15530, + "federer": 18246, + "federico": 40539, + "fedex": 32603, + "fedora": 45111, + "feds": 30593, + "fee": 28242, + "fee": 9224, + "feed": 6662, + "feed": 5839, + "feedback": 8683, + "feeder": 24482, + "feeders": 44523, + "feeding": 9879, + "feeds": 21788, + "feel": 2408, + "feel": 2051, + "feelin": 19903, + "feeling": 33087, + "feeling": 3045, + "feelings": 9452, + "feels": 4808, + "feelthe": 22322, + "feelthebern": 27743, + "fees": 11765, + "feet": 4804, + "fei": 23441, + "fei": 34217, + "fein": 46707, + "feinstein": 41313, + "fel": 2081, + "fel": 20304, + "feld": 45913, + "feld": 14219, + "feldman": 41942, + "feli": 7498, + "felic": 25845, + "felici": 23379, + "felicia": 41139, + "felicidades": 41648, + "felicity": 35123, + "feline": 29471, + "felipe": 27681, + "felix": 33455, + "felix": 16514, + "feliz": 26104, + "feliz": 20221, + "fell": 33540, + "fell": 6266, + "fella": 17586, + "fellas": 18787, + "feller": 29226, + "fellow": 12099, + "fellow": 5242, + "fellows": 15766, + "fellowship": 13857, + "felony": 31068, + "felt": 5413, + "fem": 24574, + "fem": 36615, + "fema": 41721, + "female": 22062, + "female": 3970, + "females": 21028, + "femi": 38607, + "femin": 11423, + "femini": 11894, + "feminine": 24911, + "feminism": 18784, + "feminist": 14921, + "feminists": 38809, + "femme": 31331, + "fen": 5509, + "fen": 25024, + "fence": 12679, + "fences": 34312, + "fencing": 23489, + "fender": 17117, + "fener": 41208, + "fenerbah": 46652, + "feng": 33291, + "fennel": 28689, + "fent": 26395, + "fenton": 47265, + "fenway": 29206, + "fer": 1765, + "fer": 2897, + "fera": 37705, + "feral": 29972, + "ferdin": 25541, + "ferdinand": 27591, + "fere": 43144, + "feren": 35652, + "ference": 19984, + "ferg": 44938, + "fergie": 39119, + "fergu": 10988, + "fergus": 42041, + "ferguson": 11904, + "fermentation": 45817, + "fermented": 36886, + "fern": 10747, + "fern": 21685, + "fernandes": 44391, + "fernandez": 23436, + "fernando": 17140, + "ferns": 38277, + "feroci": 45652, + "ferr": 7256, + "ferra": 47911, + "ferrari": 9606, + "ferre": 29626, + "ferred": 10432, + "ferreira": 48686, + "ferrell": 41112, + "ferrer": 38904, + "ferri": 42008, + "ferries": 28489, + "ferris": 27532, + "ferry": 38936, + "ferry": 10278, + "fers": 12378, + "fert": 14925, + "fert": 43662, + "fertil": 41987, + "fertile": 44837, + "fertili": 23912, + "fertility": 23528, + "fertilizer": 36786, + "fery": 47448, + "fes": 32300, + "fest": 17383, + "fest": 2590, + "festa": 42124, + "festi": 1943, + "festiv": 19222, + "festival": 20946, + "festival": 2240, + "festivals": 17834, + "festive": 9533, + "festivities": 21020, + "fet": 21409, + "feta": 31705, + "fetal": 42031, + "fetch": 30271, + "fete": 34629, + "fett": 37979, + "fetus": 26768, + "feu": 24912, + "feu": 32990, + "feud": 27365, + "fever": 40896, + "fever": 9989, + "fevre": 43861, + "few": 1939, + "fewer": 19128, + "fex": 41584, + "fex": 26392, + "fey": 39069, + "fey": 23298, + "fez": 43081, + "ff": 1021, + "ff": 1304, + "ffa": 15355, + "ffame": 42873, + "ffc": 19832, + "ffe": 1138, + "ffe": 8631, + "ffect": 29151, + "ffed": 8448, + "ffee": 26377, + "ffel": 22656, + "ffen": 46537, + "ffer": 27369, + "ffer": 11636, + "ffers": 32163, + "fferty": 44771, + "ffes": 46441, + "ffey": 30138, + "fff": 28106, + "ffi": 19961, + "ffic": 4762, + "ffice": 26044, + "ffici": 3639, + "fficial": 39818, + "fficial": 6463, + "fficiency": 27800, + "fficient": 20424, + "ffin": 12779, + "ffin": 7367, + "ffing": 16592, + "ffins": 17898, + "ffl": 39490, + "ffle": 7749, + "ffler": 39819, + "ffles": 19344, + "ffman": 15823, + "ffo": 42264, + "ffs": 4424, + "ffxiv": 26569, + "ffxv": 46786, + "ffy": 26404, + "ffy": 7795, + "fg": 45977, + "fg": 6823, + "fgm": 32178, + "fgo": 46113, + "fh": 21649, + "fh": 21010, + "fhs": 45094, + "fi": 701, + "fi": 3589, + "fia": 8827, + "fiable": 34373, + "fianc": 27752, + "fiance": 44114, + "fiancé": 34039, + "fiasco": 40944, + "fiat": 16740, + "fiawec": 39485, + "fib": 40594, + "fiba": 34993, + "fiber": 35074, + "fiber": 12612, + "fibers": 44587, + "fibre": 21401, + "fibro": 21294, + "fibrosis": 36307, + "fic": 1788, + "fic": 2059, + "fica": 26952, + "fically": 14854, + "fication": 4523, + "fications": 12512, + "ficial": 48192, + "fics": 42505, + "fiction": 6218, + "fictional": 25570, + "fid": 34197, + "fid": 23966, + "fidd": 25218, + "fiddle": 35968, + "fide": 45375, + "fidel": 21740, + "fidel": 36837, + "fidelity": 30109, + "fidget": 48664, + "fie": 28487, + "fie": 10348, + "fied": 29642, + "fied": 2853, + "fiel": 1361, + "field": 7571, + "field": 1570, + "fielder": 11046, + "fieldhouse": 37969, + "fielding": 30465, + "fields": 6494, + "fieldwork": 33155, + "fiends": 37869, + "fier": 11167, + "fier": 10598, + "fierc": 48609, + "fierce": 13896, + "fiercely": 49039, + "fiers": 16113, + "fiery": 24557, + "fies": 9537, + "fiesta": 14580, + "fif": 5309, + "fifa": 21976, + "fifa": 8516, + "fifaworldcup": 38819, + "fifawwc": 41329, + "fife": 24374, + "fifteen": 29504, + "fifth": 25515, + "fifth": 8772, + "fifthharmony": 31075, + "fifty": 24456, + "fifty": 15978, + "fig": 4814, + "fig": 20719, + "figaro": 48044, + "figh": 23274, + "fight": 5262, + "fight": 2757, + "fighter": 35884, + "fighter": 6438, + "fighters": 7371, + "fightfor": 48909, + "fightfor": 35740, + "fighting": 38625, + "fighting": 4652, + "fighton": 45578, + "fights": 12132, + "figs": 38882, + "figu": 6390, + "figur": 16948, + "figurative": 44042, + "figure": 48820, + "figure": 5274, + "figured": 15630, + "figures": 8739, + "figurine": 33306, + "figuring": 31513, + "fiji": 48270, + "fiji": 18285, + "fik": 46589, + "fil": 1142, + "fil": 14915, + "fila": 30992, + "filament": 49252, + "file": 12545, + "file": 4512, + "filed": 13864, + "files": 7850, + "filet": 43155, + "fili": 9590, + "filing": 16576, + "filip": 14368, + "filipino": 19153, + "fill": 15904, + "fill": 6277, + "filled": 5589, + "filler": 32816, + "fillers": 45005, + "fillet": 39276, + "filling": 9736, + "fillion": 38048, + "fillmore": 43922, + "fills": 21750, + "filly": 27690, + "film": 5117, + "film": 1860, + "filmed": 15801, + "filmfare": 42224, + "filmfest": 24508, + "filmfestival": 28066, + "filming": 6866, + "filmmaker": 17202, + "filmmakers": 24896, + "filmmaking": 18226, + "films": 5370, + "fils": 40271, + "filter": 7541, + "filtered": 29926, + "filtering": 47770, + "filters": 18385, + "filth": 39713, + "filthy": 26899, + "filtr": 21408, + "filtration": 42036, + "fim": 47525, + "fin": 735, + "fin": 10663, + "fina": 34497, + "final": 11968, + "final": 1755, + "finale": 7844, + "finalfantasy": 44543, + "finalfour": 46999, + "finalist": 12620, + "finalists": 13422, + "finalized": 48930, + "finally": 1992, + "finals": 4536, + "finan": 4807, + "finance": 6117, + "finances": 28767, + "financi": 12846, + "financial": 19783, + "financial": 4930, + "financially": 28124, + "financing": 18375, + "finch": 18523, + "find": 18638, + "find": 1416, + "finder": 15045, + "finders": 43884, + "findia": 47064, + "finding": 37455, + "finding": 6002, + "findings": 16529, + "findlay": 48227, + "findom": 36463, + "finds": 6680, + "findyour": 25936, + "findyourpark": 38924, + "fine": 12042, + "fine": 3797, + "fineart": 7484, + "fineart": 16005, + "fineartamerica": 7724, + "fined": 20094, + "finely": 46120, + "finer": 36681, + "fines": 25053, + "finesse": 46047, + "finest": 7707, + "fing": 6485, + "fing": 17955, + "finger": 13480, + "finger": 8895, + "fingerprint": 39579, + "fingers": 9690, + "fini": 2405, + "finish": 42178, + "finish": 3958, + "finished": 3078, + "finisher": 38636, + "finishers": 48661, + "finishes": 13078, + "finishing": 7912, + "finite": 48312, + "finity": 41463, + "finity": 21273, + "fink": 40158, + "finland": 10775, + "finley": 41652, + "finn": 28479, + "finn": 16925, + "finna": 35180, + "finnish": 19616, + "fino": 30083, + "fins": 32810, + "fintech": 48929, + "fintech": 8899, + "fion": 27476, + "fiona": 20099, + "fior": 37086, + "fiore": 44997, + "fioren": 33188, + "fiorentina": 43713, + "fios": 42521, + "fir": 770, + "fir": 16233, + "fire": 2951, + "fire": 1769, + "firearm": 40311, + "firearms": 23960, + "fireball": 40543, + "firec": 42806, + "fired": 8846, + "firefighter": 20498, + "firefighters": 12600, + "firefly": 33997, + "firefox": 35372, + "fireman": 46085, + "firen": 34752, + "firenze": 38445, + "fireplace": 23050, + "fires": 8749, + "fireside": 36185, + "firework": 40750, + "fireworks": 10641, + "firing": 15105, + "firm": 16936, + "firm": 7705, + "firmly": 29156, + "firms": 13655, + "firmware": 42691, + "first": 6853, + "first": 874, + "firstdayof": 44297, + "firsth": 48512, + "firsts": 47884, + "firth": 26078, + "fis": 7846, + "fis": 47683, + "fiscal": 20825, + "fischer": 26532, + "fish": 6431, + "fish": 2759, + "fisher": 11175, + "fisher": 9176, + "fisheries": 24612, + "fisherman": 25055, + "fishermen": 28547, + "fishers": 42065, + "fishery": 49057, + "fishes": 35470, + "fishing": 31703, + "fishing": 4935, + "fishy": 35665, + "fist": 48340, + "fist": 17085, + "fit": 2366, + "fit": 2478, + "fitbit": 33768, + "fitch": 44614, + "fitfam": 20662, + "fitnes": 47285, + "fitness": 20044, + "fitness": 4838, + "fits": 6401, + "fitt": 32994, + "fitted": 14863, + "fitter": 42096, + "fitters": 32364, + "fitting": 11769, + "fittings": 45787, + "fitz": 11120, + "fitz": 25913, + "fitzgerald": 20606, + "fitzpatrick": 37141, + "fiu": 38374, + "five": 19508, + "five": 3127, + "fives": 44066, + "fix": 4596, + "fix": 6028, + "fixed": 9393, + "fixes": 25473, + "fixing": 17423, + "fixture": 17317, + "fixtures": 19904, + "fizz": 31242, + "fj": 43183, + "fj": 46447, + "fjor": 31260, + "fk": 12410, + "fl": 1082, + "fl": 2685, + "fla": 1577, + "fla": 20292, + "flag": 11536, + "flag": 4859, + "flagged": 45012, + "flags": 12221, + "flagship": 19779, + "flagstaff": 40406, + "flair": 24938, + "flake": 21221, + "flakes": 20934, + "flam": 10559, + "flame": 40351, + "flame": 13484, + "flamen": 28826, + "flamenco": 37362, + "flames": 13441, + "flamin": 42693, + "flaming": 34782, + "flamingo": 30323, + "flan": 14572, + "flanagan": 28641, + "flanders": 34837, + "flank": 44553, + "flann": 39510, + "flannel": 37807, + "flap": 35253, + "flappy": 40241, + "flare": 21185, + "flares": 46088, + "flash": 6089, + "flash": 5815, + "flashback": 14616, + "flashback": 11988, + "flashbackfriday": 15014, + "flashbacks": 47056, + "flashes": 31259, + "flashing": 31764, + "flashlight": 37256, + "flask": 36194, + "flat": 8986, + "flat": 6313, + "flats": 17228, + "flatt": 45498, + "flattering": 43267, + "flaun": 41421, + "flav": 7191, + "flavo": 28895, + "flavor": 31835, + "flavor": 11818, + "flavored": 29350, + "flavorful": 49135, + "flavors": 16930, + "flavour": 17026, + "flavoured": 42397, + "flavours": 21083, + "flaw": 14268, + "flaw": 34978, + "flawed": 35136, + "flawless": 15531, + "flaws": 30492, + "flax": 43443, + "fle": 2428, + "fle": 44964, + "flea": 24883, + "fleck": 28143, + "fled": 26731, + "flee": 19427, + "flee": 30167, + "fleece": 25038, + "fleeing": 30543, + "fleek": 43513, + "fleet": 35922, + "fleet": 9147, + "fleetwood": 28883, + "fleming": 25769, + "fler": 48789, + "flesh": 17495, + "flet": 16102, + "fletcher": 19810, + "fleur": 28593, + "flew": 13768, + "flex": 16426, + "flex": 12038, + "flexi": 10032, + "flexibility": 22547, + "flexible": 14502, + "flexing": 48483, + "fli": 2472, + "flick": 13746, + "flick": 23414, + "flickr": 17755, + "flies": 8070, + "flight": 24701, + "flight": 3795, + "flights": 10515, + "flin": 24730, + "flin": 43816, + "flinders": 44647, + "fling": 22768, + "flint": 28306, + "flint": 18324, + "flip": 20385, + "flip": 11035, + "flipk": 30829, + "flipkart": 33154, + "flipped": 28144, + "flipping": 25881, + "flips": 35089, + "flir": 24330, + "flirt": 38352, + "flirting": 35243, + "flix": 40663, + "flo": 1945, + "flo": 20711, + "float": 16123, + "floating": 12619, + "floats": 33272, + "flock": 36297, + "flock": 21822, + "flondon": 47366, + "floo": 4062, + "flood": 23793, + "flood": 7148, + "flooded": 19706, + "flooding": 10204, + "floods": 16369, + "floor": 23657, + "floor": 4125, + "flooring": 19227, + "floors": 15671, + "flop": 22994, + "floppy": 38267, + "flops": 29146, + "flor": 15784, + "flor": 41669, + "flora": 18906, + "floral": 10732, + "florals": 48331, + "floren": 37706, + "florence": 11617, + "flores": 21537, + "flori": 3482, + "florian": 41861, + "florida": 34264, + "florida": 3966, + "florist": 38403, + "floss": 36453, + "flotus": 35181, + "flour": 18592, + "flouri": 23239, + "flourish": 36038, + "flow": 2180, + "flow": 5608, + "flower": 12772, + "flower": 4055, + "flowering": 19953, + "flowers": 4023, + "flowing": 14922, + "flown": 25659, + "flows": 16715, + "floyd": 46369, + "floyd": 13656, + "flu": 3698, + "flu": 13528, + "fluctu": 40181, + "fluence": 38169, + "fluent": 30025, + "fluff": 31174, + "fluffy": 40346, + "fluffy": 17054, + "fluid": 43803, + "fluid": 16717, + "fluids": 41490, + "fluor": 45127, + "fluore": 26974, + "fluorescent": 35036, + "fluori": 45611, + "flur": 31591, + "flush": 25777, + "flushing": 43754, + "flute": 23746, + "flux": 25249, + "flwx": 30907, + "fly": 5666, + "fly": 3228, + "flye": 30873, + "flyeagles": 39927, + "flyeaglesfly": 39931, + "flyer": 11875, + "flyers": 14181, + "flyfishing": 31800, + "flying": 20782, + "flying": 4610, + "flyn": 40676, + "flynn": 15721, + "flyo": 33506, + "flyover": 38083, + "fm": 13715, + "fm": 3689, + "fman": 25152, + "fml": 26730, + "fmr": 32875, + "fn": 22773, + "fn": 21763, + "fnc": 46506, + "fo": 898, + "fo": 6157, + "foal": 40386, + "foam": 30039, + "foam": 14587, + "foamed": 26711, + "fob": 40315, + "focal": 30934, + "focu": 5827, + "focus": 4353, + "focused": 9319, + "focuses": 20093, + "focusing": 15551, + "fod": 31015, + "fod": 43299, + "fodils": 44411, + "foe": 22952, + "foes": 46279, + "fog": 9417, + "foggy": 19770, + "foil": 17302, + "fol": 1106, + "fol": 48616, + "fold": 35201, + "fold": 11021, + "foldable": 48307, + "folded": 25233, + "folder": 25717, + "folding": 15464, + "folds": 24266, + "foley": 22850, + "foli": 7713, + "folia": 48964, + "foliage": 26350, + "folio": 10772, + "folk": 10665, + "folk": 6032, + "folke": 47190, + "folkl": 27273, + "folklore": 22133, + "folklore": 28620, + "folklorethursday": 23270, + "folks": 5422, + "follo": 41417, + "follow": 1964, + "follow": 1979, + "followart": 40957, + "followback": 33863, + "followed": 6499, + "follower": 17039, + "followers": 4856, + "following": 3473, + "followme": 29668, + "followparty": 44757, + "follows": 11287, + "followthe": 30747, + "folly": 41408, + "folsom": 42108, + "fom": 34540, + "fon": 5017, + "fon": 38318, + "fond": 19964, + "fonda": 44609, + "fondue": 48321, + "fone": 40672, + "font": 37610, + "font": 16248, + "fontaine": 37864, + "fontana": 43643, + "fontein": 45062, + "fonts": 32801, + "foo": 1183, + "foo": 23435, + "food": 4586, + "food": 1559, + "foodand": 38317, + "foodbank": 31926, + "foodie": 30762, + "foodie": 9847, + "foodies": 22416, + "foodnetwork": 46793, + "foods": 7057, + "foodsecurity": 49329, + "foodtruck": 47682, + "fool": 23959, + "fool": 12212, + "fooled": 28761, + "fooling": 47964, + "foolish": 33824, + "fools": 15946, + "foot": 6702, + "foot": 4738, + "footage": 11130, + "footb": 33466, + "football": 9376, + "football": 1882, + "footballer": 20646, + "footballers": 30269, + "footed": 38040, + "footh": 25951, + "foothills": 37020, + "footpath": 48858, + "footprint": 23206, + "footprints": 39640, + "footsteps": 27289, + "footwear": 22772, + "footy": 39866, + "footy": 18922, + "for": 645, + "for": 556, + "forage": 46871, + "foraging": 39056, + "forall": 17824, + "forbe": 49098, + "forbes": 13925, + "forbi": 24754, + "forbidden": 25164, + "force": 12068, + "force": 2869, + "forced": 8201, + "forces": 5381, + "forchange": 35848, + "forcing": 21573, + "ford": 3751, + "ford": 1623, + "fordfc": 28581, + "fordham": 48792, + "fords": 29351, + "fordshire": 14645, + "fore": 1484, + "fore": 1332, + "forec": 34155, + "forecast": 7361, + "forecasting": 38133, + "forecasts": 27696, + "foreclo": 44916, + "forefront": 37679, + "foreground": 35186, + "forehead": 25394, + "foreig": 26497, + "foreign": 42255, + "foreign": 6046, + "foreigners": 38549, + "foreman": 36174, + "foremost": 42128, + "foren": 16526, + "forensic": 23158, + "forensics": 38763, + "forest": 18760, + "forest": 4167, + "forestation": 33939, + "forestry": 26281, + "forests": 14095, + "forever": 14748, + "forever": 3225, + "forevery": 40605, + "forex": 40200, + "forex": 17395, + "forfe": 44871, + "forge": 19232, + "forged": 28105, + "forget": 46153, + "forget": 2678, + "forgets": 35613, + "forgetting": 25452, + "forgi": 22080, + "forgive": 15332, + "forgiven": 44894, + "forgiveness": 23585, + "forgood": 39169, + "forgot": 6483, + "forgotten": 7994, + "fork": 24501, + "fork": 13700, + "forkids": 48571, + "forklift": 43202, + "forks": 28769, + "forlife": 17624, + "form": 1157, + "form": 1907, + "forma": 38829, + "formal": 12978, + "formally": 24867, + "format": 16252, + "format": 11874, + "formation": 2510, + "formations": 37715, + "formative": 48882, + "formats": 32085, + "forme": 42085, + "formed": 6528, + "former": 2276, + "formerly": 20866, + "formid": 38599, + "formidable": 39834, + "forming": 15443, + "formity": 42290, + "forms": 5161, + "formu": 8689, + "formul": 23923, + "formula": 24485, + "formula": 10776, + "formulae": 34586, + "formulated": 45066, + "forre": 38876, + "forrest": 25205, + "forrester": 45338, + "forsa": 48958, + "forsale": 13303, + "forster": 42923, + "forsy": 29629, + "forsyth": 40952, + "fort": 12300, + "fort": 2921, + "forte": 44350, + "forte": 27367, + "forth": 17068, + "forth": 11932, + "forthcoming": 19989, + "forthe": 12521, + "forti": 26984, + "fortified": 46486, + "fortn": 14428, + "fortnight": 39235, + "fortnite": 38734, + "fortnite": 17890, + "fortress": 19988, + "fortun": 6950, + "fortunate": 19898, + "fortunately": 34358, + "fortune": 40931, + "fortune": 11451, + "fortunes": 41989, + "forty": 24399, + "forum": 37851, + "forum": 4538, + "forums": 31518, + "forwar": 34364, + "forward": 47031, + "forward": 2342, + "forwards": 38974, + "foryou": 35150, + "forz": 46056, + "forza": 33293, + "forza": 28089, + "fos": 36925, + "fos": 22081, + "foss": 14240, + "foss": 37911, + "fossil": 20419, + "fossil": 15202, + "fossilfriday": 26079, + "fossils": 30652, + "foster": 26778, + "foster": 8139, + "fostering": 35996, + "fosters": 37644, + "foto": 15908, + "foto": 12823, + "fotogra": 23687, + "fotografia": 40256, + "fotos": 26124, + "fou": 14516, + "fought": 10844, + "foul": 19784, + "foun": 3154, + "found": 3454, + "found": 1546, + "foundation": 4058, + "foundations": 25219, + "founded": 12240, + "founder": 5145, + "founders": 14602, + "founding": 15317, + "foundry": 31426, + "fountain": 44863, + "fountain": 13405, + "fountains": 37411, + "four": 5113, + "four": 2721, + "foursquare": 34484, + "fourteen": 46255, + "fourth": 7516, + "fourthofjuly": 47805, + "fow": 17084, + "fowl": 31685, + "fowler": 20980, + "fox": 5007, + "fox": 3240, + "foxandfriends": 45841, + "foxes": 24145, + "foxnews": 18830, + "foxsports": 39267, + "foxtv": 49396, + "foxx": 32993, + "foxy": 27945, + "foy": 30284, + "foyer": 38011, + "foyle": 47902, + "fp": 28058, + "fp": 8941, + "fpl": 27970, + "fpp": 36464, + "fps": 25300, + "fpv": 43175, + "fr": 936, + "fr": 5512, + "fra": 3368, + "fra": 15644, + "frac": 15607, + "fracking": 21894, + "fractal": 46471, + "fraction": 26788, + "fractu": 25847, + "fracture": 28995, + "fractured": 37421, + "fractures": 46213, + "frag": 13093, + "fragile": 23579, + "fragment": 39209, + "fragments": 41424, + "fragr": 15403, + "fragrance": 17874, + "fragrances": 44567, + "fragrant": 37030, + "fram": 27987, + "frame": 11029, + "frame": 6481, + "framed": 13135, + "frames": 15479, + "framework": 13195, + "frameworks": 43136, + "framing": 24539, + "frampton": 41733, + "fran": 2118, + "fran": 18878, + "franc": 3872, + "franc": 42340, + "franca": 48952, + "france": 12045, + "france": 3552, + "frances": 20803, + "francesca": 32327, + "francesco": 25816, + "franch": 11756, + "franchi": 46438, + "franchise": 13664, + "franci": 46458, + "francis": 22187, + "francis": 7660, + "francisco": 6887, + "franco": 17934, + "franco": 17052, + "francois": 29317, + "frank": 5390, + "frank": 5229, + "franken": 20487, + "franken": 48252, + "frankenstein": 26410, + "frankfur": 17442, + "frankfurt": 18598, + "franki": 39227, + "frankie": 38373, + "frankie": 16215, + "franklin": 40935, + "franklin": 9999, + "frankly": 38015, + "franks": 42855, + "frans": 47892, + "franz": 25449, + "franç": 38381, + "fraser": 39082, + "fraser": 16754, + "frat": 15225, + "frat": 39292, + "fraternity": 24433, + "frau": 23063, + "fraud": 40647, + "fraud": 9961, + "fraudul": 42655, + "fraudulent": 47408, + "fray": 41154, + "frazier": 32841, + "frc": 41507, + "fre": 821, + "fre": 43165, + "freak": 20352, + "freak": 13701, + "freaked": 43511, + "freakin": 23900, + "freaking": 11992, + "freaks": 27009, + "freaky": 31583, + "freck": 33328, + "freckles": 48036, + "fred": 9486, + "fred": 6678, + "freddie": 41890, + "freddie": 17014, + "freddy": 24394, + "freder": 10745, + "frederic": 41165, + "frederick": 37103, + "frederick": 18570, + "fredo": 48241, + "free": 2065, + "free": 1139, + "freebie": 35865, + "freebies": 28630, + "freec": 46569, + "freed": 12585, + "freed": 23392, + "freedom": 17992, + "freedom": 4511, + "freedoms": 32500, + "freef": 48678, + "freel": 14174, + "freelance": 21942, + "freely": 24436, + "freeman": 16450, + "freep": 32499, + "freepalestine": 39242, + "freer": 44676, + "frees": 27455, + "freestyle": 15594, + "freeway": 24927, + "freeze": 14187, + "freezer": 25390, + "freezing": 12499, + "frei": 30183, + "freight": 17023, + "fremantle": 48012, + "fremont": 34578, + "fren": 2919, + "french": 13118, + "french": 3461, + "frenzy": 30084, + "frequ": 9211, + "frequencies": 45319, + "frequency": 18825, + "frequent": 19836, + "frequently": 22434, + "fresco": 31609, + "fresh": 4065, + "fresh": 2975, + "fresher": 49284, + "freshers": 35810, + "freshest": 46809, + "freshly": 16081, + "freshman": 9381, + "freshmen": 21292, + "freshness": 45872, + "freshwater": 24803, + "fresno": 40879, + "fresno": 20995, + "fret": 40510, + "freud": 40787, + "frey": 22136, + "frey": 9082, + "fri": 815, + "fri": 6882, + "friars": 30513, + "fric": 18981, + "frick": 46304, + "friction": 38563, + "frid": 46388, + "frida": 36001, + "friday": 6350, + "friday": 1461, + "fridayfeeling": 11952, + "fridaymotivation": 38544, + "fridaynight": 44858, + "fridayreads": 37736, + "fridays": 15589, + "fridaythe": 47642, + "fridge": 13491, + "fridges": 40734, + "frie": 36999, + "fried": 13743, + "fried": 7310, + "friedman": 29402, + "friedrich": 34171, + "friend": 3017, + "friend": 1625, + "friendly": 44612, + "friendly": 4681, + "friends": 38875, + "friends": 1574, + "friendship": 42674, + "friendship": 7679, + "friendships": 28840, + "fries": 11369, + "frifotos": 40493, + "friger": 20785, + "friggin": 48300, + "frigh": 34831, + "fright": 24277, + "fright": 40207, + "frightened": 47136, + "frightening": 39290, + "fringe": 10640, + "fris": 37252, + "frisbee": 45768, + "frisco": 35945, + "frit": 34614, + "fritz": 29860, + "friyay": 38887, + "frm": 12951, + "fro": 626, + "fro": 26603, + "frock": 45306, + "frog": 26494, + "frog": 11438, + "frogs": 20781, + "from": 8330, + "from": 633, + "frome": 48691, + "fromhome": 41477, + "fromthe": 18756, + "fron": 1847, + "fron": 18036, + "front": 10996, + "front": 2184, + "frontal": 35794, + "frontier": 18253, + "frontiers": 38396, + "frontline": 29589, + "frontman": 36775, + "fronts": 26846, + "froome": 48560, + "frosh": 47069, + "frost": 39420, + "frost": 11619, + "frosted": 35988, + "frosting": 33872, + "frosty": 22760, + "froze": 47788, + "frozen": 42464, + "frozen": 8507, + "frs": 26216, + "fru": 3248, + "fruit": 16771, + "fruit": 5190, + "fruitful": 31494, + "fruits": 13282, + "fruity": 22320, + "frustr": 16046, + "frustrated": 25111, + "frustrating": 31342, + "frustration": 30535, + "fry": 33914, + "fry": 13686, + "fryer": 49217, + "frying": 38516, + "fs": 23699, + "fs": 3854, + "fsa": 33373, + "fsu": 44185, + "fsu": 19317, + "ft": 3391, + "ft": 981, + "fta": 41975, + "ftc": 33752, + "fted": 5612, + "fter": 25063, + "fthe": 22886, + "ftheday": 9823, + "fting": 6174, + "fton": 26605, + "ftp": 42649, + "fts": 3767, + "ftse": 46717, + "ftw": 19298, + "fty": 17494, + "fu": 665, + "fu": 9098, + "fuch": 42617, + "fudge": 24270, + "fue": 43723, + "fuego": 41500, + "fuel": 21113, + "fuel": 5945, + "fueled": 28792, + "fueling": 38793, + "fuelled": 48357, + "fuels": 19365, + "fuentes": 44393, + "fuer": 29645, + "fug": 29227, + "fugitive": 39257, + "fuji": 15573, + "fuji": 21634, + "fujifilm": 24765, + "fuk": 31051, + "fuku": 20728, + "fukushima": 33929, + "ful": 1814, + "ful": 857, + "fulbright": 41834, + "fulfill": 43675, + "fulfill": 27467, + "fulfilled": 29919, + "fulfilling": 30621, + "fulfillment": 45573, + "fulham": 25574, + "full": 9407, + "full": 1476, + "fuller": 20225, + "fullerton": 42822, + "fullest": 35603, + "fully": 39142, + "fully": 2401, + "fulness": 10526, + "fuls": 41606, + "fulton": 26725, + "fum": 38393, + "fumble": 49373, + "fun": 1229, + "fun": 1499, + "func": 8679, + "function": 8093, + "functional": 12885, + "functionality": 33316, + "functioning": 25479, + "functions": 18001, + "fund": 19089, + "fund": 4877, + "fundam": 11670, + "fundament": 18852, + "fundamental": 17627, + "fundamentally": 45378, + "fundamentals": 27887, + "funday": 15439, + "funded": 10588, + "funding": 5588, + "fundra": 6201, + "fundraiser": 10049, + "fundraising": 10755, + "funds": 7066, + "funer": 40693, + "funeral": 10606, + "funfact": 31596, + "funfactfriday": 40710, + "fungal": 38838, + "fungi": 27837, + "fungus": 30677, + "funk": 37353, + "funk": 13372, + "funko": 49402, + "funko": 23697, + "funky": 16492, + "funnel": 27862, + "funnier": 42232, + "funniest": 15557, + "funny": 19124, + "funny": 3789, + "funrun": 34185, + "fur": 2395, + "fur": 9686, + "furi": 40816, + "furious": 17522, + "furman": 49238, + "furn": 21348, + "furnace": 31913, + "furnished": 37388, + "furnitu": 45696, + "furniture": 7993, + "furry": 33414, + "furry": 15351, + "fursuit": 25306, + "fursuit": 43083, + "fursuitfriday": 27917, + "further": 5583, + "fury": 14404, + "fus": 18419, + "fuse": 23386, + "fused": 38994, + "fusion": 44661, + "fusion": 9364, + "fuss": 26331, + "fut": 21460, + "fut": 34049, + "futbol": 33014, + "futsal": 20558, + "futu": 33454, + "futur": 38840, + "future": 7959, + "future": 1904, + "futureof": 22599, + "futureofwork": 33202, + "futures": 13488, + "futuri": 19068, + "futurism": 48435, + "futurist": 48086, + "futuristic": 30987, + "fuzz": 47128, + "fuzz": 40443, + "fuzzy": 25876, + "fv": 29795, + "fw": 23934, + "fw": 5277, + "fwd": 27052, + "fx": 17807, + "fx": 9025, + "fy": 8440, + "fy": 2702, + "fyi": 16014, + "fying": 5294, + "fz": 46400, + "fé": 34072, + "g": 70, + "g": 326, + "ga": 1275, + "ga": 1531, + "gaa": 10715, + "gaal": 40867, + "gaard": 24645, + "gab": 3927, + "gab": 37382, + "gabbana": 36272, + "gabby": 48115, + "gabby": 24567, + "gabe": 18916, + "gabi": 41931, + "gable": 33387, + "gables": 40928, + "gabri": 8311, + "gabriel": 31684, + "gabriel": 13244, + "gabrielle": 33572, + "gaby": 46420, + "gac": 32520, + "gad": 7786, + "gad": 44651, + "gadget": 25525, + "gadgets": 22840, + "gado": 29489, + "gae": 22003, + "gael": 35663, + "gaelic": 31173, + "gaf": 21354, + "gaf": 32670, + "gag": 14121, + "gag": 18844, + "gaga": 9782, + "gage": 21081, + "gah": 27750, + "gai": 24214, + "gai": 25153, + "gaia": 41269, + "gail": 41160, + "gail": 27676, + "gain": 21536, + "gain": 6202, + "gaine": 35747, + "gained": 14489, + "gaines": 49225, + "gainesville": 40427, + "gaining": 15260, + "gains": 42751, + "gains": 12107, + "gal": 2001, + "gal": 4488, + "gala": 7211, + "galac": 18864, + "galactic": 25514, + "galap": 41115, + "galapagos": 44057, + "galat": 39853, + "galatasar": 42413, + "galatasaray": 47787, + "galax": 5647, + "galaxies": 32435, + "galaxy": 32130, + "galaxy": 6545, + "gale": 37658, + "gale": 21380, + "galerie": 44539, + "gales": 48633, + "gali": 17546, + "gali": 30552, + "galicia": 47927, + "galileo": 39671, + "gall": 3011, + "gall": 33374, + "galla": 16847, + "gallagher": 19168, + "galleria": 40656, + "galleries": 22304, + "gallery": 36648, + "gallery": 3830, + "galley": 48917, + "galli": 22568, + "gallipoli": 47249, + "gallo": 37350, + "gallo": 33265, + "gallon": 24615, + "gallons": 29335, + "galloway": 27796, + "galore": 22286, + "gals": 20125, + "galvani": 46046, + "galve": 34328, + "galveston": 36003, + "galway": 38045, + "galway": 17112, + "gam": 1162, + "gam": 34195, + "gama": 35873, + "gambia": 32988, + "gamble": 26121, + "gambling": 20287, + "game": 2882, + "game": 1063, + "gameart": 31490, + "gameboy": 40951, + "gamecube": 44079, + "gameday": 9241, + "gamedev": 7544, + "gameinsight": 42626, + "gameof": 10987, + "gameofthrones": 11822, + "gameon": 47691, + "gameplay": 16794, + "gamer": 12595, + "gamer": 11598, + "gamergate": 25961, + "gamers": 16166, + "gamersunite": 26423, + "games": 18551, + "games": 1955, + "gamescom": 37003, + "gamestop": 39436, + "gametime": 45899, + "gami": 42025, + "gamification": 48908, + "gaming": 28803, + "gaming": 4017, + "gamma": 22180, + "gamo": 39325, + "gan": 1822, + "gan": 1670, + "gand": 8399, + "ganda": 27261, + "gander": 44508, + "gandhi": 12322, + "ganesh": 30362, + "ganesha": 45185, + "gang": 8066, + "gang": 5674, + "ganga": 36275, + "gangnam": 46777, + "gangs": 29844, + "gangsta": 37365, + "gangster": 26514, + "gani": 48324, + "gann": 45665, + "gannon": 45837, + "gano": 25304, + "gao": 26556, + "gaon": 19279, + "gap": 29906, + "gap": 7609, + "gaps": 25296, + "gar": 1099, + "gar": 5824, + "gara": 28710, + "garage": 8474, + "garbage": 13760, + "garci": 44658, + "garcia": 10529, + "gard": 7751, + "gard": 21003, + "garda": 31906, + "garde": 22649, + "garden": 4674, + "garden": 2756, + "gardenchat": 46292, + "gardener": 28554, + "gardeners": 38205, + "gardening": 10483, + "gardens": 6152, + "gardiner": 43121, + "gardner": 18710, + "gare": 5633, + "gare": 48402, + "gareth": 37140, + "gareth": 18175, + "garfield": 26728, + "garh": 16762, + "gari": 40898, + "gari": 43080, + "garis": 37839, + "garland": 23418, + "garlic": 9685, + "garment": 31418, + "garments": 43341, + "garmin": 39885, + "garner": 20340, + "garnet": 37669, + "garo": 30388, + "garrett": 15881, + "garri": 21764, + "garrison": 30108, + "garros": 40425, + "garry": 24398, + "gars": 12055, + "gart": 18380, + "gart": 18751, + "garten": 14684, + "garter": 48420, + "garth": 45398, + "garth": 24469, + "gartner": 43334, + "gartner": 29678, + "garty": 46383, + "garu": 31140, + "garvey": 39511, + "garwal": 38623, + "gary": 10535, + "gary": 4516, + "garza": 49393, + "gas": 5047, + "gas": 2474, + "gases": 36971, + "gasoline": 27691, + "gasp": 43762, + "gaston": 40669, + "gastri": 49197, + "gastro": 23740, + "gastron": 30699, + "gastronomy": 46987, + "gat": 5314, + "gat": 18941, + "gata": 44575, + "gate": 8071, + "gate": 3302, + "gated": 23997, + "gates": 9472, + "gateshead": 40051, + "gateway": 45221, + "gateway": 14943, + "gather": 36345, + "gather": 12602, + "gathered": 14646, + "gathering": 9197, + "gatherings": 48096, + "gathers": 39250, + "gating": 27561, + "gation": 11095, + "gations": 33906, + "gato": 44492, + "gator": 20216, + "gator": 16390, + "gatorade": 36354, + "gators": 17173, + "gatory": 24796, + "gatsby": 32586, + "gatwick": 37122, + "gau": 5919, + "gau": 43068, + "gauge": 18728, + "gaunt": 31862, + "gauntlet": 37163, + "gautam": 45853, + "gautam": 31356, + "gauteng": 40333, + "gav": 8966, + "gave": 3485, + "gavin": 32974, + "gavin": 16389, + "gaw": 15405, + "gawd": 43239, + "gawx": 43420, + "gay": 7460, + "gay": 5627, + "gaya": 39477, + "gaye": 41401, + "gayle": 29998, + "gayo": 36768, + "gays": 28001, + "gaz": 4837, + "gaz": 36475, + "gaza": 38391, + "gaza": 10112, + "gazaunderattack": 42458, + "gaze": 23212, + "gazette": 20443, + "gazing": 28373, + "gb": 8727, + "gb": 4619, + "gba": 18528, + "gbbo": 34474, + "gbc": 42993, + "gbp": 27391, + "gbr": 31984, + "gby": 40509, + "gc": 8577, + "gc": 6043, + "gcc": 26804, + "gcse": 28763, + "gcu": 34137, + "gd": 13264, + "gd": 14604, + "gdc": 32793, + "gden": 44928, + "gdp": 17100, + "gdpr": 22963, + "ge": 619, + "ge": 710, + "gea": 26790, + "gear": 15532, + "gear": 4802, + "gearbox": 42454, + "geared": 33903, + "gearing": 19027, + "gears": 21147, + "geaux": 36313, + "gecko": 38616, + "ged": 17252, + "ged": 3480, + "geddon": 31720, + "gedly": 13991, + "gee": 9806, + "gee": 9071, + "geek": 17920, + "geek": 7135, + "geeks": 20110, + "geeky": 47332, + "geel": 25906, + "geelong": 34555, + "gees": 38088, + "geese": 26413, + "geez": 42394, + "geh": 30320, + "geist": 38290, + "gel": 7343, + "gel": 5697, + "gelato": 29577, + "gels": 42552, + "gely": 14637, + "gem": 14261, + "gem": 7613, + "gement": 19495, + "gemini": 23086, + "gemma": 23952, + "gems": 14355, + "gemstone": 27747, + "gemstones": 43972, + "gen": 1024, + "gen": 3278, + "gence": 16088, + "gency": 5245, + "gend": 33247, + "gender": 22976, + "gender": 5906, + "gendere": 35824, + "genderequality": 43338, + "gene": 5822, + "gene": 7962, + "genealo": 24142, + "genealogy": 29381, + "gener": 1832, + "general": 20576, + "general": 3658, + "generally": 19256, + "generals": 30296, + "generate": 16896, + "generated": 19450, + "generates": 33938, + "generating": 23882, + "generation": 41211, + "generation": 4883, + "generational": 34506, + "generations": 12247, + "generative": 29472, + "generator": 19399, + "generators": 41917, + "generic": 26978, + "generosity": 23015, + "generous": 12570, + "generously": 35113, + "genes": 19683, + "genesis": 13518, + "genetic": 47746, + "genetic": 13578, + "genetically": 36745, + "genetics": 18276, + "geneva": 14799, + "genevie": 41633, + "genevieve": 46584, + "geni": 22334, + "genic": 15750, + "genie": 24221, + "genital": 32960, + "genius": 8235, + "geniuses": 41406, + "geno": 41544, + "geno": 46776, + "genoa": 43993, + "genoci": 14687, + "genocide": 15903, + "genome": 23991, + "genomic": 44371, + "genomics": 26227, + "genre": 14249, + "genres": 30340, + "gens": 17449, + "gent": 3685, + "gent": 7139, + "gente": 34325, + "gentle": 7262, + "gentle": 13577, + "gentleman": 13293, + "gentlemen": 11692, + "gently": 17187, + "gento": 28320, + "gentri": 41148, + "gentry": 47225, + "gents": 18862, + "genu": 9182, + "genuine": 12184, + "genuinely": 20006, + "genus": 38161, + "geny": 35323, + "geo": 5038, + "geo": 11604, + "geocaching": 47908, + "geof": 20629, + "geoff": 33697, + "geoff": 20386, + "geoffrey": 29520, + "geograph": 45920, + "geographic": 22635, + "geographical": 39380, + "geography": 17101, + "geological": 38380, + "geology": 21578, + "geom": 46135, + "geome": 12958, + "geometric": 22419, + "geometry": 21731, + "geon": 20844, + "geon": 7295, + "geons": 15914, + "geopol": 39758, + "geor": 2549, + "georg": 43126, + "george": 8377, + "george": 3296, + "georges": 25042, + "georgetown": 22970, + "georgie": 42115, + "georgina": 43892, + "geospatial": 46238, + "geothermal": 38413, + "geous": 3068, + "ger": 1291, + "ger": 1502, + "gera": 48867, + "gerald": 29901, + "gerald": 13269, + "gerard": 35979, + "gerard": 20826, + "gerber": 45058, + "gered": 40179, + "geri": 41664, + "geri": 46214, + "gering": 24077, + "germain": 38786, + "german": 14972, + "german": 4710, + "germans": 28400, + "germany": 4464, + "germin": 44721, + "germs": 47731, + "geronimo": 45171, + "gerrard": 26538, + "gerry": 29825, + "gerry": 23026, + "gers": 3314, + "gertrude": 46950, + "gervais": 36527, + "gery": 32845, + "ges": 3316, + "gest": 11843, + "gest": 2033, + "gesture": 21780, + "gestures": 43524, + "get": 5670, + "get": 779, + "geta": 13155, + "getaway": 16131, + "gether": 27224, + "getic": 20661, + "getin": 25822, + "getit": 44891, + "getit": 48315, + "getoutside": 35644, + "gets": 39448, + "gets": 2127, + "gett": 6647, + "gett": 27965, + "gettable": 15620, + "gette": 29800, + "gettin": 13428, + "getting": 30885, + "getting": 1500, + "getty": 31185, + "getty": 13965, + "gettys": 35189, + "gettysburg": 37062, + "getyour": 42159, + "gey": 29289, + "gf": 28953, + "gf": 10846, + "gfriend": 35245, + "gfs": 37553, + "gg": 1129, + "gg": 3286, + "gga": 26003, + "ggan": 25626, + "gge": 21521, + "gge": 31659, + "gged": 6095, + "gger": 12367, + "gger": 3493, + "ggers": 7480, + "ggg": 20143, + "gggg": 33513, + "ggi": 21662, + "ggin": 17160, + "gging": 4966, + "ggins": 12444, + "ggle": 34981, + "ggle": 11430, + "ggled": 46328, + "ggles": 14703, + "ggling": 16523, + "ggly": 39407, + "ggs": 4797, + "ggy": 24935, + "ggy": 6476, + "gh": 583, + "gh": 790, + "gha": 10010, + "gha": 25183, + "gham": 21456, + "ghan": 18945, + "ghan": 6624, + "ghana": 30330, + "ghana": 9731, + "ghanaian": 34223, + "ghani": 36699, + "ghar": 37334, + "ghar": 36973, + "ghat": 43989, + "ghaz": 37493, + "ghc": 42139, + "ghe": 10754, + "ghe": 28561, + "ghead": 40783, + "ghee": 34794, + "gher": 21542, + "gher": 14796, + "ghet": 18447, + "ghetti": 17485, + "ghetto": 22403, + "ghi": 22436, + "ghi": 22279, + "ghibli": 40555, + "ghj": 38439, + "ghlin": 24131, + "gho": 4307, + "ghorn": 38094, + "ghosh": 43279, + "ghoshal": 49134, + "ghost": 11417, + "ghost": 7108, + "ghostbusters": 25462, + "ghostly": 44901, + "ghosts": 16737, + "ghou": 35843, + "ghoul": 45302, + "ghouse": 38238, + "ghs": 14157, + "ght": 1413, + "ght": 630, + "ghted": 4963, + "ghter": 2427, + "ghters": 12994, + "ghtful": 8334, + "ghting": 3019, + "ghtly": 6993, + "ghtning": 39740, + "ghton": 16353, + "ghts": 1259, + "ghty": 20968, + "ghty": 5866, + "ghu": 25808, + "ghue": 45675, + "ghyun": 25010, + "ghz": 24325, + "gi": 707, + "gi": 4478, + "gia": 8864, + "giac": 35444, + "giam": 39623, + "gian": 17274, + "gian": 12866, + "gianni": 46752, + "giant": 23668, + "giant": 4687, + "giants": 7076, + "giar": 34241, + "gib": 9816, + "gibb": 18964, + "gibbons": 31974, + "gibbs": 26488, + "gibility": 33297, + "gible": 13159, + "gibr": 20206, + "gibraltar": 23988, + "gibson": 37420, + "gibson": 12178, + "gic": 27900, + "gic": 2570, + "gical": 32973, + "gically": 26320, + "gid": 36774, + "gid": 21413, + "giddy": 40894, + "gideon": 43867, + "gidi": 30603, + "gie": 11459, + "gie": 3991, + "gier": 28974, + "gies": 5505, + "gif": 11363, + "gif": 11677, + "gifford": 47850, + "gifs": 37643, + "gift": 20569, + "gift": 2733, + "gifted": 15110, + "giftide": 20152, + "giftideas": 23487, + "gifting": 39546, + "gifts": 5836, + "gig": 26981, + "gig": 7471, + "gigab": 34530, + "gigan": 24104, + "gigantic": 31507, + "giggle": 36426, + "giggles": 42731, + "giggs": 44692, + "gigi": 44106, + "gigi": 26171, + "gigs": 20316, + "gil": 3997, + "gil": 10088, + "gila": 46952, + "gilbert": 14154, + "gilded": 44341, + "giles": 24802, + "gill": 14280, + "gill": 12003, + "gille": 29610, + "gilles": 39590, + "gillespie": 36242, + "gillette": 38603, + "gilli": 13695, + "gillian": 28753, + "gills": 48851, + "gilmore": 27603, + "gilt": 44378, + "gim": 31284, + "gimm": 40692, + "gimme": 21525, + "gin": 3374, + "gin": 4941, + "gina": 15604, + "gine": 27482, + "ging": 10829, + "ging": 3905, + "ginger": 16287, + "ginger": 9718, + "gingerbread": 23692, + "gini": 35768, + "gino": 36521, + "gins": 18328, + "gio": 16329, + "gio": 8050, + "gion": 41226, + "gior": 14920, + "giorgio": 33271, + "giorno": 33310, + "gios": 41927, + "gious": 14419, + "giov": 21404, + "giovanni": 26574, + "gipp": 41351, + "gir": 1077, + "gir": 25481, + "gira": 16949, + "giraffe": 22826, + "giri": 31709, + "girl": 3914, + "girl": 1611, + "girlfriend": 8217, + "girlfriends": 30736, + "girlpower": 37433, + "girls": 15480, + "girls": 1917, + "girly": 29605, + "giro": 39664, + "giro": 26454, + "girona": 47842, + "giroud": 41177, + "gis": 16266, + "gis": 12773, + "gist": 21241, + "git": 16060, + "git": 20918, + "gita": 40838, + "github": 31196, + "giu": 17931, + "giuli": 29762, + "giuliani": 47739, + "giuse": 29385, + "giuseppe": 33563, + "give": 4120, + "give": 1781, + "giveaway": 5310, + "giveaways": 18974, + "giveback": 41385, + "given": 33323, + "given": 4302, + "givenchy": 38245, + "giver": 43339, + "gives": 3926, + "giveup": 35485, + "giving": 14673, + "giving": 2339, + "givingback": 49300, + "givingtuesday": 23556, + "giz": 29237, + "gk": 38953, + "gk": 18719, + "gl": 1849, + "gl": 14751, + "gla": 1523, + "gla": 36904, + "glaci": 14924, + "glacial": 40782, + "glacier": 19282, + "glaciers": 42528, + "glad": 20841, + "glad": 4761, + "glades": 37432, + "gladi": 21742, + "gladiator": 38477, + "gladiators": 41087, + "gladly": 41598, + "gladys": 43168, + "glam": 8738, + "glam": 16905, + "glamorous": 22896, + "glamour": 42876, + "glamour": 17499, + "glamping": 46167, + "glan": 40482, + "glan": 45844, + "glance": 26557, + "gland": 41441, + "glar": 48535, + "glar": 41702, + "glare": 46035, + "glas": 29935, + "glas": 43654, + "glasgo": 6757, + "glasgow": 29990, + "glasgow": 7363, + "glass": 16305, + "glass": 3313, + "glasses": 6116, + "glaston": 26848, + "glastonbury": 28233, + "glau": 39171, + "glaze": 28112, + "glazed": 24122, + "gle": 7166, + "gle": 2865, + "glee": 32379, + "glee": 21614, + "glen": 6158, + "glen": 11049, + "glend": 38332, + "glendale": 33043, + "glenn": 32004, + "glenn": 12861, + "gler": 34649, + "gley": 21998, + "gli": 5896, + "gli": 28791, + "glia": 22217, + "glide": 37321, + "glider": 41636, + "glimp": 12888, + "glimpse": 13817, + "glio": 29785, + "glit": 21079, + "glitch": 29563, + "glitter": 16528, + "glitz": 44542, + "glo": 1721, + "glo": 30474, + "glob": 13363, + "global": 6707, + "global": 2779, + "globalgoals": 33211, + "globalhealth": 46751, + "globalization": 47680, + "globally": 17775, + "globalwarming": 46017, + "globe": 19436, + "globe": 9368, + "globes": 38085, + "glock": 38818, + "glomer": 43689, + "gloom": 48594, + "gloomy": 32199, + "glori": 7270, + "gloria": 19244, + "glorious": 9171, + "glory": 36107, + "glory": 7285, + "glos": 40633, + "gloss": 38258, + "gloss": 22014, + "glossy": 29802, + "glou": 15989, + "gloucester": 28133, + "gloucester": 23835, + "gloucestershire": 33789, + "glove": 16078, + "glover": 21594, + "gloves": 12363, + "glow": 30472, + "glow": 10111, + "glowing": 18437, + "glows": 48107, + "glu": 5952, + "glu": 32281, + "glucose": 34642, + "glue": 22103, + "glued": 38135, + "gluten": 15482, + "gluten": 15524, + "glutenfree": 16138, + "gly": 13027, + "glycer": 48914, + "gm": 18743, + "gm": 5918, + "gma": 18155, + "gmail": 11119, + "gman": 41043, + "gman": 36936, + "gmb": 35934, + "gmb": 31799, + "gmbh": 46877, + "gmc": 27257, + "gmo": 23486, + "gms": 36987, + "gmt": 13803, + "gn": 2455, + "gn": 9831, + "gna": 23009, + "gnation": 45912, + "gne": 25407, + "gni": 5104, + "gnment": 25110, + "gno": 23376, + "gno": 43686, + "gnocchi": 48299, + "gnome": 33643, + "gnon": 20561, + "go": 650, + "go": 861, + "goa": 14399, + "goal": 9003, + "goal": 3321, + "goalie": 20723, + "goalkeeper": 16601, + "goals": 3295, + "goalscorer": 43547, + "goaltender": 44151, + "goat": 34082, + "goat": 9530, + "goats": 18393, + "gob": 29559, + "gobeavs": 48285, + "goblin": 26223, + "goblue": 25232, + "gobucks": 29175, + "gocougs": 34202, + "god": 4190, + "god": 1731, + "godawgs": 40436, + "godbless": 46616, + "godbless": 44007, + "godd": 16589, + "goddamn": 28495, + "goddard": 37827, + "goddess": 10808, + "godfather": 26222, + "godfrey": 40148, + "godis": 38521, + "godly": 42438, + "gods": 33620, + "gods": 10328, + "goducks": 35889, + "godzilla": 23369, + "goe": 22084, + "goers": 27784, + "goes": 43581, + "goes": 2635, + "gof": 17537, + "goff": 34399, + "goftheday": 39360, + "gofund": 34445, + "gofundme": 34686, + "gog": 42949, + "goggles": 31027, + "gogh": 19697, + "gogo": 22688, + "gogreen": 36279, + "gohawks": 34884, + "goi": 24917, + "goin": 13939, + "going": 25787, + "going": 1245, + "goku": 29550, + "gol": 1537, + "gol": 18257, + "gola": 41090, + "gold": 4999, + "gold": 2209, + "goldberg": 25161, + "goldcoast": 34634, + "golden": 10763, + "golden": 3878, + "goldeng": 20650, + "goldenglobes": 26842, + "goldfish": 40293, + "goldie": 42805, + "goldman": 27164, + "golds": 30526, + "golds": 40283, + "goldsmith": 40214, + "gole": 41297, + "golf": 9096, + "golf": 3096, + "golfclub": 45742, + "golfer": 24579, + "golfers": 28441, + "golfing": 31379, + "goli": 29265, + "goliath": 41602, + "gom": 7051, + "goma": 46198, + "gomes": 39128, + "gomez": 16433, + "gon": 1854, + "gon": 3379, + "gona": 34835, + "gone": 35135, + "gone": 3601, + "gong": 28486, + "gonna": 2562, + "gonz": 10587, + "gonzaga": 36241, + "gonzale": 17512, + "gonzales": 31265, + "gonzalez": 18198, + "goo": 1381, + "goo": 17882, + "good": 2185, + "good": 886, + "goodbye": 6968, + "goodday": 46284, + "goode": 42076, + "goodfood": 46844, + "goodfriday": 40360, + "goodie": 29213, + "goodies": 13308, + "goodluck": 19718, + "goodman": 24146, + "goodmorning": 14421, + "goodness": 10531, + "goodnight": 8540, + "goodreads": 31629, + "goods": 9340, + "goodtimes": 22570, + "goodvibes": 43146, + "goodwill": 24902, + "goodwin": 28080, + "goodwood": 30008, + "goody": 35937, + "goodyear": 42858, + "goofy": 26879, + "goog": 18581, + "google": 12195, + "google": 3460, + "googled": 40345, + "googleplay": 37309, + "goon": 15267, + "goons": 30440, + "goooo": 35876, + "goooo": 48957, + "goose": 21445, + "goose": 13822, + "goosebumps": 32254, + "gop": 18942, + "gop": 6250, + "gopack": 46995, + "gopackgo": 47719, + "gopal": 47268, + "gopdebate": 39806, + "gopher": 47750, + "gopher": 48905, + "gophers": 31957, + "gopro": 17511, + "gor": 1747, + "gor": 29827, + "gordo": 47707, + "gordon": 20485, + "gordon": 8244, + "gore": 30311, + "gore": 17872, + "gorg": 46815, + "gorge": 35548, + "gorge": 20038, + "gorgeous": 3241, + "gori": 12461, + "goria": 43359, + "gorilla": 37910, + "gorilla": 21994, + "gorman": 35741, + "goro": 44977, + "gory": 7160, + "gos": 20517, + "gos": 5693, + "gosh": 15395, + "gosling": 35320, + "gosp": 9617, + "gospel": 11313, + "goss": 39734, + "goss": 36924, + "gossi": 15684, + "gossip": 18963, + "got": 10125, + "got": 1005, + "gota": 36693, + "gotcha": 43275, + "gote": 49345, + "goth": 48465, + "goth": 20437, + "gotham": 46123, + "gotham": 18299, + "gothic": 15426, + "goti": 9497, + "goto": 39715, + "gots": 35215, + "gott": 5089, + "gott": 36466, + "gotta": 4633, + "gotten": 5889, + "gotti": 41881, + "gotv": 36089, + "gou": 10520, + "gou": 36555, + "gouache": 43314, + "goul": 33187, + "gould": 31087, + "gour": 13580, + "gourmet": 19111, + "gov": 4022, + "gov": 4564, + "gove": 36997, + "govegan": 38886, + "gover": 10471, + "gover": 16759, + "govern": 2351, + "govern": 32404, + "governance": 13386, + "governing": 30946, + "government": 3149, + "governmental": 42609, + "governments": 19582, + "governor": 17459, + "governor": 6630, + "governors": 26881, + "govin": 42451, + "govt": 5345, + "govuk": 28830, + "gow": 21885, + "gow": 33788, + "gowan": 31307, + "gower": 43448, + "gown": 13719, + "gowns": 38029, + "goyal": 35105, + "gp": 19329, + "gp": 5051, + "gpa": 24098, + "gps": 13639, + "gpu": 38561, + "gq": 40286, + "gq": 31324, + "gr": 709, + "gr": 6062, + "gra": 782, + "gra": 15276, + "grab": 4646, + "grabbed": 22856, + "grabbing": 26440, + "grabs": 17076, + "grac": 11323, + "grace": 13225, + "grace": 5142, + "graced": 31894, + "graceful": 25242, + "graces": 38629, + "graci": 11174, + "gracias": 16463, + "gracie": 23235, + "gracing": 37263, + "gracious": 29044, + "grad": 19869, + "grad": 7291, + "gradable": 41529, + "grade": 45435, + "grade": 3394, + "graded": 13823, + "grader": 23930, + "graders": 10930, + "grades": 10838, + "gradient": 36885, + "grading": 19016, + "grads": 17811, + "gradu": 3230, + "gradual": 45210, + "gradually": 32192, + "graduate": 6675, + "graduated": 15128, + "graduates": 12236, + "graduating": 14819, + "graduation": 8060, + "grady": 33980, + "graeme": 30192, + "graf": 46478, + "graf": 39765, + "graff": 10656, + "graffiti": 11676, + "graft": 32698, + "grafton": 47347, + "graham": 19805, + "graham": 7711, + "grail": 37184, + "grain": 44003, + "grain": 12109, + "grains": 25791, + "gral": 25631, + "gram": 2949, + "gram": 2338, + "grammar": 16077, + "grammy": 15388, + "grammys": 18121, + "grams": 6294, + "gran": 3892, + "gran": 14493, + "granada": 31172, + "grand": 3058, + "grand": 2991, + "grandad": 29148, + "grandchildren": 36856, + "granddaughter": 29460, + "grande": 37514, + "grande": 10757, + "grandes": 36382, + "grandfather": 15346, + "grandma": 10525, + "grandmother": 17469, + "grandpa": 14582, + "grandparents": 21311, + "grandprix": 39358, + "grandson": 20766, + "grandstand": 43172, + "grange": 45027, + "grange": 23850, + "granger": 42968, + "granite": 18813, + "grann": 45585, + "granny": 22710, + "granola": 34271, + "grant": 18682, + "grant": 5442, + "granted": 14156, + "granth": 41283, + "grants": 15123, + "grape": 19131, + "grape": 15959, + "grapefruit": 28347, + "grapes": 18580, + "grapevine": 47619, + "graph": 1349, + "graph": 4407, + "graphene": 38387, + "grapher": 14987, + "graphers": 32088, + "graphic": 15653, + "graphic": 4245, + "graphical": 20878, + "graphicdesign": 21907, + "graphics": 9492, + "graphies": 40164, + "graphite": 29447, + "graphs": 24670, + "graphy": 4897, + "grapp": 30843, + "gras": 31517, + "gras": 17584, + "grasp": 34975, + "grass": 11584, + "grass": 5922, + "grasses": 46807, + "grasshopper": 48894, + "grassi": 42294, + "grasso": 34808, + "grassroots": 21991, + "grassy": 44140, + "grat": 9221, + "grate": 32463, + "grateful": 45659, + "grateful": 5730, + "grati": 36402, + "gratis": 33638, + "gratitude": 12614, + "grav": 20663, + "grave": 16606, + "grave": 9981, + "gravel": 27054, + "graves": 17665, + "graveyard": 31176, + "gravit": 26150, + "gravitational": 45268, + "gravity": 47426, + "gravity": 15160, + "gravy": 21225, + "gray": 12703, + "gray": 7048, + "grays": 46848, + "grayson": 45831, + "grayson": 25471, + "grazi": 42427, + "grazie": 38698, + "grazing": 29889, + "grc": 44069, + "gre": 689, + "gre": 17878, + "grease": 24132, + "greasy": 44376, + "great": 3265, + "great": 830, + "greate": 31930, + "greater": 32725, + "greater": 7033, + "greatest": 39080, + "greatest": 4153, + "greatly": 13978, + "greatness": 14189, + "greats": 21855, + "greaves": 42350, + "greco": 39103, + "gree": 9987, + "gree": 30774, + "greece": 6965, + "greed": 26147, + "greedy": 33301, + "greek": 23844, + "greek": 6842, + "greeks": 35866, + "green": 2762, + "green": 1901, + "greenberg": 46662, + "greene": 16383, + "greener": 31169, + "greenery": 42493, + "greenfield": 39924, + "greeng": 42077, + "greenhouse": 20819, + "greening": 48673, + "greenland": 27345, + "greenpeace": 44755, + "greens": 10235, + "greensboro": 33436, + "greenville": 25156, + "greenway": 35205, + "greenwich": 18658, + "greenwood": 25782, + "greer": 34345, + "greet": 11042, + "greet": 11997, + "greeted": 24546, + "greeting": 17754, + "greetings": 11569, + "greets": 25464, + "greg": 6894, + "greg": 7943, + "gregation": 20131, + "gregg": 39422, + "gregg": 22929, + "gregor": 33856, + "gregor": 16177, + "gregory": 16253, + "gren": 13941, + "gren": 20119, + "grenade": 33679, + "grenfell": 42107, + "gres": 39670, + "gress": 2752, + "gret": 30041, + "greta": 33443, + "gretchen": 45516, + "grette": 38774, + "grew": 10451, + "grey": 9190, + "grey": 5046, + "greyhound": 27363, + "greyhounds": 45718, + "greys": 44311, + "greysanatomy": 36833, + "gri": 2169, + "gri": 18484, + "grid": 29067, + "grid": 9882, + "gridi": 41063, + "gridiron": 47786, + "grids": 46500, + "grief": 21058, + "grier": 22016, + "griev": 36400, + "grieving": 42383, + "griez": 47962, + "griezmann": 48396, + "griff": 17855, + "griff": 35551, + "griffi": 28676, + "griffin": 46612, + "griffin": 13161, + "griffith": 24375, + "griffiths": 34182, + "gril": 49091, + "grill": 44083, + "grill": 9519, + "grille": 34748, + "grilled": 10691, + "grilling": 28324, + "grills": 39464, + "grim": 20383, + "grim": 23635, + "grime": 37101, + "grimes": 25057, + "grimm": 27865, + "grims": 34861, + "grimsby": 41513, + "grin": 11033, + "grin": 28697, + "grinch": 40527, + "grind": 25730, + "grind": 11810, + "grinder": 31733, + "grinding": 21541, + "gring": 40135, + "grip": 15521, + "gripping": 34567, + "grips": 27819, + "gris": 29150, + "grit": 22037, + "grit": 22087, + "grits": 44307, + "gritty": 33704, + "grizz": 14877, + "grizz": 44088, + "grizzlies": 25594, + "grizzly": 29676, + "grl": 48005, + "gro": 1464, + "gro": 12691, + "grocer": 11633, + "groceries": 32409, + "grocery": 13826, + "grom": 45284, + "gron": 22345, + "groningen": 45639, + "groo": 9015, + "groom": 39883, + "groom": 22813, + "grooming": 25575, + "groot": 37708, + "groove": 39484, + "groove": 17680, + "grooves": 43954, + "groovy": 30143, + "gros": 26834, + "gros": 32639, + "gross": 31080, + "gross": 11541, + "grosven": 46911, + "grote": 47207, + "grotto": 45260, + "grou": 1582, + "groun": 45110, + "ground": 9558, + "ground": 2461, + "groundbreaking": 21006, + "grounded": 27799, + "grounds": 8454, + "groundwater": 39457, + "group": 19045, + "group": 1771, + "groupe": 47654, + "groups": 6776, + "grouse": 36327, + "grove": 31756, + "grove": 7463, + "grover": 31345, + "groves": 27306, + "grow": 3179, + "grow": 4559, + "grower": 44925, + "growers": 25689, + "growing": 28429, + "growing": 4425, + "growingup": 43433, + "growler": 47096, + "grown": 41762, + "grown": 7120, + "grows": 13352, + "growth": 17925, + "growth": 4026, + "growthhacking": 25963, + "grp": 27321, + "grt": 28557, + "gru": 5957, + "grub": 34019, + "grue": 42047, + "gruesome": 47111, + "grum": 45454, + "grump": 49015, + "grumpy": 23610, + "grun": 16203, + "grunge": 33745, + "gry": 16140, + "gry": 5364, + "gs": 25818, + "gs": 1345, + "gsa": 40433, + "gsc": 47751, + "gshore": 43392, + "gsm": 32181, + "gsp": 49173, + "gst": 22239, + "gt": 16151, + "gt": 4725, + "gta": 14826, + "gta": 15338, + "gtaonline": 27292, + "gtav": 27283, + "gti": 39954, + "gto": 39071, + "gtr": 33407, + "gts": 37338, + "gtx": 35230, + "gu": 700, + "gu": 12916, + "gua": 23751, + "guacam": 37477, + "guacamole": 40115, + "guad": 22966, + "guadal": 46097, + "guadalu": 36994, + "guadalupe": 38360, + "guam": 37325, + "guan": 44191, + "guan": 42406, + "guang": 27019, + "guangzhou": 37857, + "guar": 4119, + "guaran": 9242, + "guarantee": 17421, + "guaranteed": 14731, + "guarantees": 40154, + "guard": 30776, + "guard": 4901, + "guarded": 40602, + "guardi": 12008, + "guardia": 43628, + "guardian": 23713, + "guardian": 9498, + "guardians": 21479, + "guarding": 24966, + "guardiola": 32100, + "guards": 12810, + "guatem": 19423, + "guatemala": 21670, + "guay": 48591, + "guay": 24247, + "gubernat": 41400, + "gubernatorial": 41618, + "gucci": 16779, + "gud": 48061, + "gud": 22378, + "gue": 2030, + "gue": 2917, + "gued": 38893, + "guel": 23146, + "guelph": 27660, + "guer": 10391, + "guern": 29277, + "guernsey": 33982, + "guerra": 38215, + "guerrero": 31967, + "guerrilla": 36715, + "gues": 39971, + "gues": 12601, + "guess": 35506, + "guess": 3135, + "guessed": 28005, + "guesses": 30623, + "guessing": 21891, + "guest": 27349, + "guest": 3781, + "guests": 6212, + "guet": 36797, + "guetta": 45904, + "guez": 12313, + "gug": 31358, + "guggen": 35086, + "guggenheim": 37135, + "gui": 2587, + "gui": 25746, + "guid": 11437, + "guidance": 12508, + "guide": 21845, + "guide": 3555, + "guided": 13194, + "guidelines": 16591, + "guides": 14375, + "guiding": 22759, + "guido": 41818, + "guil": 5008, + "guild": 19755, + "guild": 16597, + "guildford": 34450, + "guildhall": 47224, + "guillau": 41123, + "guillaume": 45394, + "guiller": 33660, + "guillermo": 39524, + "guilt": 26354, + "guilty": 9761, + "guin": 13284, + "guin": 47863, + "guine": 13759, + "guinea": 18537, + "guinness": 16648, + "guire": 18209, + "guise": 42024, + "guit": 3759, + "guitar": 21746, + "guitar": 5084, + "guitarist": 13035, + "guitars": 15023, + "guj": 34935, + "gujar": 12698, + "gujarat": 14714, + "guk": 20280, + "gul": 5530, + "gul": 21350, + "gula": 27426, + "gular": 34969, + "gulf": 22101, + "gulf": 11279, + "gull": 48764, + "gull": 28778, + "gulls": 37501, + "gully": 46112, + "gum": 22041, + "gum": 11235, + "gumb": 40147, + "gumbo": 47126, + "gummy": 34276, + "gums": 46609, + "gun": 2748, + "gun": 3496, + "guna": 43333, + "gundam": 26087, + "gundy": 21162, + "gunman": 32743, + "gunmen": 44738, + "gunn": 27473, + "gunna": 24002, + "gunnar": 45301, + "gunner": 35285, + "gunners": 37788, + "guns": 7591, + "gunsense": 44781, + "gunshot": 49250, + "gunsn": 49028, + "gup": 38632, + "gup": 47335, + "gupta": 15905, + "gur": 3218, + "gur": 30224, + "gura": 46836, + "gurgaon": 33240, + "guri": 43888, + "gurl": 25445, + "gurmee": 35482, + "gurmeetramrahim": 36549, + "guru": 18629, + "guru": 10800, + "gurudev": 48647, + "gus": 8018, + "gust": 24629, + "gusta": 23024, + "gusta": 44196, + "gustav": 32062, + "gustav": 37921, + "gustave": 43170, + "gustavo": 45943, + "gusto": 37937, + "gusts": 20896, + "gusty": 27589, + "gut": 24780, + "gut": 13486, + "guter": 44963, + "guterres": 48738, + "guth": 31696, + "guthrie": 33164, + "gutier": 32773, + "gutierrez": 33739, + "guts": 25983, + "gutted": 26524, + "gutter": 40537, + "guwa": 43063, + "guwahati": 45045, + "guy": 10008, + "guy": 2149, + "guyana": 45215, + "guyen": 28031, + "guys": 43588, + "guys": 1791, + "guyz": 48170, + "guzman": 37960, + "gv": 15462, + "gv": 17336, + "gw": 7172, + "gw": 15717, + "gwen": 32165, + "gwen": 24182, + "gwin": 43005, + "gwy": 32226, + "gwyne": 36923, + "gx": 40227, + "gy": 2168, + "gy": 1164, + "gya": 43214, + "gyan": 43814, + "gye": 21728, + "gyllen": 49348, + "gym": 9902, + "gym": 5222, + "gymna": 13517, + "gymnasium": 42847, + "gymnast": 42658, + "gymnastics": 20116, + "gyn": 39603, + "gyne": 45836, + "gyp": 40053, + "gypsy": 22354, + "gypt": 41921, + "gz": 45937, + "gz": 35841, + "gö": 40778, + "gü": 31907, + "h": 71, + "h": 327, + "ha": 560, + "ha": 1429, + "haa": 26814, + "haal": 35869, + "haan": 36284, + "haar": 45247, + "haar": 35859, + "haas": 27443, + "haasan": 26601, + "hab": 20573, + "hab": 20002, + "haban": 46225, + "haber": 44737, + "habit": 8491, + "habit": 17215, + "habitat": 11747, + "habitats": 35344, + "habits": 14540, + "habs": 27489, + "hac": 20343, + "hace": 43623, + "haci": 40674, + "hack": 6610, + "hack": 11182, + "hackathon": 25182, + "hacked": 19575, + "hacker": 22376, + "hackers": 21498, + "hacking": 12939, + "hackney": 48811, + "hackney": 24928, + "hacks": 19965, + "had": 10660, + "had": 1100, + "hadi": 39058, + "hadid": 26415, + "hadith": 46907, + "hadley": 44995, + "hadn": 21480, + "hadoop": 43868, + "hae": 30723, + "hae": 27193, + "hafi": 39914, + "hag": 26855, + "hag": 43207, + "hagan": 47489, + "hagen": 14664, + "hager": 48773, + "hagg": 26324, + "hague": 28988, + "hah": 18108, + "hah": 13680, + "haha": 1913, + "haha": 3060, + "hahah": 27253, + "hahah": 15441, + "hahaha": 4722, + "hahahah": 37513, + "hahahah": 20096, + "hahahaha": 8058, + "hahahaha": 9501, + "hahahahah": 33334, + "hahahahaha": 16347, + "hahahahahaha": 26487, + "hahahahahahaha": 43653, + "hahahahahahahaha": 36126, + "hahahha": 49205, + "hahn": 35596, + "hai": 8734, + "hai": 5234, + "haider": 42200, + "haiku": 19542, + "hail": 15272, + "hail": 8634, + "hailed": 44604, + "hailey": 27703, + "hailing": 47288, + "hails": 32571, + "hailstate": 35063, + "hain": 23861, + "hair": 4658, + "hair": 2225, + "haircare": 43682, + "haircut": 14711, + "hairdresser": 47468, + "haired": 27202, + "hairs": 27951, + "hairstyle": 22324, + "hairstyles": 40627, + "hairy": 26513, + "haiti": 17368, + "haitian": 37577, + "haj": 27885, + "haj": 43191, + "haji": 41889, + "hajj": 35576, + "hak": 25142, + "hak": 40671, + "haka": 44011, + "hake": 41663, + "hal": 1296, + "hal": 8708, + "hala": 25918, + "halal": 34216, + "halam": 29061, + "halamadrid": 31132, + "halder": 32201, + "hale": 37038, + "hale": 14701, + "halen": 39204, + "halep": 49017, + "haley": 37330, + "haley": 16839, + "half": 7453, + "half": 2349, + "halftime": 13742, + "halfway": 16736, + "hali": 9860, + "hali": 43030, + "halibut": 49030, + "halifax": 13411, + "hall": 6850, + "hall": 2140, + "halla": 29569, + "halle": 27763, + "halle": 32239, + "hallelujah": 36993, + "halli": 32665, + "hallmark": 31040, + "hallmark": 32053, + "hallmarkchannel": 36840, + "hallo": 3463, + "halloffame": 48578, + "halloween": 28537, + "halloween": 3739, + "halls": 18052, + "hallucin": 35385, + "hallway": 26845, + "halo": 33331, + "halo": 11918, + "halsey": 34256, + "halt": 25640, + "halter": 47194, + "halton": 45445, + "ham": 1522, + "ham": 1714, + "hama": 17944, + "hamas": 14818, + "hamburg": 18409, + "hamburger": 33928, + "hamid": 32377, + "hamil": 6725, + "hamill": 45784, + "hamill": 48729, + "hamillhimself": 47324, + "hamilton": 22448, + "hamilton": 7684, + "hamlet": 27722, + "hamlin": 49326, + "hamm": 46110, + "hammer": 15331, + "hammer": 9401, + "hammered": 37251, + "hammers": 35649, + "hammersmith": 42127, + "hammock": 33682, + "hammond": 21761, + "hamont": 18518, + "hamp": 6665, + "hamper": 27692, + "hampshire": 16006, + "hampstead": 37340, + "hampton": 36582, + "hampton": 12285, + "hamptons": 42415, + "hamr": 47979, + "hamradio": 36712, + "hams": 25619, + "hamster": 33313, + "hamstring": 39990, + "hamza": 45762, + "han": 1545, + "han": 3565, + "hana": 16801, + "hand": 1722, + "hand": 2463, + "handbag": 22654, + "handbags": 35667, + "handball": 27988, + "handbook": 25147, + "handcrafted": 22185, + "handed": 10881, + "handedly": 48656, + "handel": 40072, + "handful": 23725, + "handheld": 26812, + "handic": 17812, + "handicap": 27063, + "handicapp": 42349, + "handing": 19196, + "handle": 43681, + "handle": 7245, + "handled": 26824, + "handler": 29097, + "handles": 22124, + "handling": 14071, + "handmade": 18054, + "handmade": 6737, + "handmadehour": 25724, + "handover": 46922, + "hands": 3500, + "handshake": 38418, + "handsome": 7438, + "handwriting": 29986, + "handwritten": 35192, + "handy": 13479, + "hane": 28411, + "hang": 3351, + "hang": 5592, + "hangar": 33439, + "hanged": 40807, + "hanger": 28905, + "hangin": 22670, + "hanging": 4850, + "hangout": 17572, + "hangover": 20755, + "hangs": 21785, + "hani": 39944, + "hani": 18374, + "hank": 35993, + "hank": 17655, + "hanks": 29943, + "hanley": 47284, + "hann": 5584, + "hanna": 10075, + "hannah": 18622, + "hannah": 9142, + "hannel": 43477, + "hanni": 19493, + "hannibal": 25149, + "hannity": 24569, + "hannover": 39976, + "hanoi": 36134, + "hanover": 33246, + "hans": 35172, + "hans": 16628, + "hansen": 19729, + "hanson": 24602, + "hant": 40641, + "hanuk": 32774, + "hanukkah": 34247, + "hanuman": 46975, + "hao": 27184, + "hap": 44981, + "hap": 47988, + "happ": 784, + "happen": 21486, + "happen": 4506, + "happened": 4402, + "happening": 4284, + "happeningnow": 43107, + "happenings": 41998, + "happens": 4988, + "happier": 14118, + "happiest": 13811, + "happily": 17316, + "happiness": 5096, + "happy": 2952, + "happy": 900, + "happybirthday": 9651, + "happybirthday": 12207, + "happydays": 25106, + "happye": 33922, + "happyeaster": 38745, + "happyfathersday": 43534, + "happyfriday": 33340, + "happyhalloween": 28750, + "happyholidays": 32186, + "happyhour": 32036, + "happymonday": 47364, + "happymothersday": 42425, + "happynewyear": 18655, + "happythanksgiving": 40593, + "happyvalentinesday": 42403, + "haps": 9114, + "haq": 32445, + "har": 915, + "har": 5888, + "hara": 10367, + "haram": 35732, + "haram": 22950, + "haran": 27921, + "harare": 43562, + "haras": 26644, + "harass": 16481, + "harassed": 43067, + "harassment": 16641, + "harat": 28984, + "harb": 5856, + "harbaugh": 45220, + "harbor": 40686, + "harbor": 10202, + "harbour": 35430, + "harbour": 10011, + "harcourt": 48093, + "hard": 3312, + "hard": 1626, + "hardcover": 31123, + "harden": 27350, + "harder": 12274, + "hardest": 15258, + "hardin": 43802, + "harding": 24382, + "hardly": 17363, + "hardro": 28126, + "hardrock": 48365, + "hardrock": 40739, + "hards": 44048, + "hardship": 45085, + "hardt": 17922, + "hardware": 11957, + "hardwell": 45572, + "hardwick": 46864, + "hardwood": 28167, + "hardwork": 42554, + "hardwork": 27404, + "hardworking": 28095, + "hardworkpaysoff": 49193, + "hardy": 48179, + "hardy": 14113, + "hare": 27903, + "hare": 18464, + "harga": 39738, + "hari": 25472, + "hari": 8981, + "harlan": 49133, + "harle": 29096, + "harlem": 17771, + "harley": 24702, + "harley": 13632, + "harleydavidson": 39183, + "harlow": 34113, + "harm": 16656, + "harm": 14452, + "harman": 42434, + "harmed": 39637, + "harmful": 21725, + "harmless": 44369, + "harmon": 10828, + "harmon": 28729, + "harmony": 10785, + "harms": 46703, + "harne": 43323, + "harness": 23205, + "harold": 16917, + "harp": 27339, + "harper": 31288, + "harper": 12634, + "harri": 6639, + "harrier": 37372, + "harriet": 27154, + "harrington": 34340, + "harris": 25356, + "harris": 6925, + "harrisburg": 40590, + "harrison": 34389, + "harrison": 10540, + "harro": 18939, + "harrogate": 30842, + "harrow": 38807, + "harry": 11094, + "harry": 3600, + "harrypotter": 23375, + "harsh": 30596, + "harsh": 16944, + "hart": 9335, + "hart": 7752, + "hartford": 23434, + "harth": 35619, + "hartle": 47482, + "hartley": 31268, + "hartman": 43294, + "haru": 35099, + "harvard": 28118, + "harvard": 12848, + "harve": 6405, + "harvest": 44495, + "harvest": 8971, + "harvested": 35899, + "harvesting": 26674, + "harvey": 33289, + "harvey": 9586, + "harvick": 46983, + "haryana": 27661, + "has": 13855, + "has": 791, + "hasan": 30049, + "hasbro": 37405, + "hash": 6338, + "hash": 19199, + "hashi": 41831, + "hashmi": 35852, + "hashtag": 34015, + "hashtag": 9238, + "hashtags": 23514, + "haskell": 48550, + "hasn": 9143, + "hass": 9298, + "hassan": 15829, + "hassee": 37117, + "hassel": 32204, + "hassle": 35762, + "hast": 18146, + "hasta": 36623, + "hastings": 22035, + "hat": 3447, + "hat": 3801, + "hatch": 24202, + "hatch": 17809, + "hatchback": 42348, + "hatched": 42158, + "hate": 23546, + "hate": 3753, + "hated": 21298, + "hateful": 36418, + "hater": 36917, + "haters": 14027, + "hates": 14957, + "hatfield": 38448, + "hath": 27894, + "hath": 34416, + "hathaway": 31801, + "hati": 26045, + "hating": 25668, + "hatred": 19046, + "hats": 9812, + "hatt": 8747, + "hatton": 44861, + "hau": 5152, + "hauer": 48751, + "haul": 23743, + "haul": 12332, + "hauled": 46620, + "hauling": 43132, + "haun": 9676, + "haunt": 31039, + "haunted": 14944, + "haunting": 24034, + "haunts": 48035, + "haus": 41755, + "haus": 16478, + "hausen": 33338, + "hauser": 46586, + "haute": 28854, + "hav": 13443, + "hav": 20447, + "havan": 36304, + "havana": 23357, + "havas": 46261, + "have": 18053, + "have": 720, + "haven": 33074, + "haven": 3871, + "havent": 29130, + "haver": 27876, + "haves": 49088, + "havin": 31937, + "having": 1977, + "havoc": 24447, + "haw": 2788, + "haw": 26954, + "hawa": 6067, + "hawa": 46278, + "hawai": 15800, + "hawaii": 32413, + "hawaii": 8265, + "hawaiian": 17734, + "hawan": 27765, + "hawk": 14704, + "hawk": 8218, + "hawke": 38178, + "hawker": 39051, + "hawkeye": 38666, + "hawkeyes": 34266, + "hawking": 33437, + "hawkins": 19740, + "hawks": 44806, + "hawks": 5841, + "hawthorn": 45372, + "hawthorne": 36730, + "hay": 4871, + "hay": 11367, + "haya": 41325, + "hayat": 49360, + "hayden": 19806, + "haydn": 48207, + "haye": 36583, + "hayes": 13555, + "hayley": 39986, + "hayley": 22204, + "haynes": 30496, + "hays": 41524, + "hayward": 29400, + "haz": 5040, + "haz": 39921, + "hazard": 26174, + "hazard": 15178, + "hazardous": 27102, + "hazards": 30639, + "haze": 22785, + "hazel": 19838, + "hazel": 21882, + "hazelnut": 35816, + "hazi": 22740, + "hazmat": 48887, + "hazrat": 45775, + "hazy": 32655, + "hb": 6854, + "hb": 12576, + "hbcu": 40008, + "hbd": 25277, + "hbd": 13594, + "hbo": 15252, + "hc": 15831, + "hc": 7821, + "hcs": 46850, + "hd": 11601, + "hd": 4414, + "hdd": 40508, + "hdmi": 33302, + "hdr": 28065, + "he": 651, + "he": 797, + "hea": 27150, + "hea": 32790, + "head": 1603, + "head": 1375, + "headache": 23849, + "headaches": 38025, + "headband": 28556, + "headed": 6153, + "header": 11077, + "heading": 4409, + "headless": 45219, + "headlights": 42422, + "headline": 10891, + "headliner": 38880, + "headlines": 14706, + "headlining": 26971, + "headphone": 37524, + "headphones": 14906, + "headquarters": 13041, + "heads": 5174, + "headset": 23883, + "headshot": 34890, + "heal": 1231, + "heal": 13833, + "healed": 31456, + "healer": 38328, + "healey": 38985, + "healing": 9295, + "heals": 32384, + "health": 2145, + "health": 1728, + "healthand": 43704, + "healthcare": 42500, + "healthcare": 6023, + "healthier": 18242, + "healthtech": 42694, + "healthy": 10330, + "healthy": 3782, + "healthye": 31532, + "healthyeating": 33761, + "healthyfood": 39996, + "healthylifestyle": 46254, + "healthyliving": 27293, + "healy": 34299, + "heap": 34781, + "heaps": 44446, + "hear": 2749, + "hear": 2584, + "heard": 4063, + "hearing": 46353, + "hearing": 5541, + "hearings": 33175, + "hearn": 36613, + "hears": 25395, + "heart": 4975, + "heart": 1936, + "heartbeat": 29154, + "heartbreak": 29281, + "heartbreaking": 21322, + "heartbroken": 35383, + "hearted": 21679, + "heartfelt": 22904, + "hearth": 31563, + "hearthstone": 34054, + "hearti": 29345, + "hearties": 44572, + "heartland": 31923, + "heartless": 47022, + "heartnews": 40426, + "hearts": 5516, + "heartw": 30002, + "heartwarming": 34080, + "hearty": 26994, + "heat": 12175, + "heat": 4403, + "heated": 17057, + "heater": 23246, + "heath": 12794, + "heath": 11719, + "heather": 20230, + "heather": 12470, + "heathrow": 24171, + "heating": 12478, + "heaton": 34557, + "heats": 36106, + "heatwave": 25726, + "heav": 2409, + "heaven": 15520, + "heaven": 5545, + "heavenly": 19117, + "heavens": 26026, + "heavier": 31253, + "heaviest": 33268, + "heavily": 14123, + "heavy": 12048, + "heavy": 4200, + "heavymetal": 39804, + "heavyweight": 17448, + "heb": 24700, + "heb": 34515, + "hebdo": 41817, + "hebrew": 27298, + "hebrides": 45121, + "hebron": 45725, + "hec": 18932, + "heck": 22985, + "heck": 14427, + "hectares": 44162, + "hectic": 37245, + "hector": 25852, + "hed": 18271, + "hedge": 16229, + "hedge": 20294, + "hedgehog": 21940, + "hedges": 41345, + "hee": 18364, + "hee": 15773, + "heechul": 42487, + "heed": 15118, + "heel": 33646, + "heel": 16861, + "heels": 10909, + "heem": 30061, + "heer": 40473, + "hef": 29473, + "heff": 48756, + "hefty": 48584, + "heg": 41995, + "heh": 25834, + "hehe": 48723, + "hehe": 10658, + "hehehe": 24138, + "hei": 6101, + "hei": 29051, + "heidel": 42927, + "heidelberg": 48445, + "heidi": 44860, + "heidi": 23867, + "heifer": 48219, + "heigh": 43883, + "height": 10788, + "heights": 8418, + "heim": 10931, + "heim": 9768, + "heimer": 39517, + "hein": 15487, + "hein": 43206, + "heine": 28742, + "heineken": 36874, + "heinrich": 47877, + "heinz": 32359, + "heir": 27083, + "heir": 34007, + "heirloom": 34232, + "heirs": 43834, + "heis": 21849, + "heisman": 34537, + "heist": 31035, + "heit": 37255, + "hel": 919, + "hel": 11579, + "hela": 48212, + "held": 4042, + "hele": 46129, + "helen": 17576, + "helen": 11291, + "helena": 23109, + "helene": 41591, + "helens": 45940, + "heli": 33874, + "heli": 40183, + "helicop": 10035, + "helicopter": 11956, + "helicopters": 26922, + "helium": 46505, + "helix": 35247, + "hell": 8410, + "hell": 4141, + "hella": 19800, + "hellboy": 48428, + "helle": 48600, + "helle": 46968, + "hellenic": 42544, + "heller": 44464, + "hello": 12887, + "hello": 3306, + "hells": 47989, + "helly": 48690, + "helm": 47970, + "helm": 19520, + "helmet": 11122, + "helmets": 21843, + "help": 8641, + "help": 1318, + "helped": 4845, + "helper": 29321, + "helpers": 36316, + "helpful": 12695, + "helping": 3875, + "helpless": 47638, + "helpline": 43101, + "helps": 5144, + "helsin": 17842, + "helsinki": 19626, + "hem": 20270, + "hem": 11148, + "hemi": 14256, + "hemi": 46856, + "heming": 30819, + "hemingway": 33470, + "hemisphere": 32767, + "hemmings": 34882, + "hemo": 43788, + "hemp": 28225, + "hemp": 18467, + "hems": 32451, + "hemsworth": 39428, + "hen": 2385, + "hen": 8047, + "hence": 23640, + "hend": 11560, + "hender": 49248, + "henderson": 14348, + "hendrick": 45296, + "hendricks": 37588, + "hendrix": 23605, + "henge": 33104, + "henley": 27853, + "henna": 39455, + "hennessy": 42667, + "henri": 19431, + "henri": 21610, + "henrik": 35772, + "henry": 16018, + "henry": 5508, + "hens": 31742, + "henson": 32935, + "hep": 17724, + "hep": 48791, + "hepat": 23767, + "hepatitis": 32169, + "hepburn": 26348, + "her": 1223, + "her": 899, + "hera": 38724, + "heral": 37809, + "herald": 27625, + "herald": 12851, + "herb": 26116, + "herb": 15302, + "herbal": 21868, + "herbali": 44087, + "herbalife": 48364, + "herbert": 19935, + "herbs": 17320, + "hercules": 26539, + "herd": 36142, + "herd": 18589, + "here": 9134, + "here": 763, + "hered": 47976, + "hereford": 35543, + "heres": 13566, + "hereto": 47673, + "heri": 31392, + "herit": 4720, + "heritag": 38273, + "heritage": 20962, + "heritage": 5455, + "herman": 31890, + "herman": 21568, + "hermann": 40942, + "hermes": 34563, + "hermi": 35265, + "hermione": 45502, + "hermit": 43953, + "hermitage": 47706, + "hermo": 40967, + "hermosa": 42531, + "hern": 30571, + "hern": 43576, + "hernandez": 17707, + "hero": 7338, + "hero": 3756, + "heroes": 38010, + "heroes": 5506, + "heroic": 24255, + "heroin": 23841, + "heroine": 27420, + "heron": 22593, + "heros": 37642, + "herr": 38537, + "herrera": 27755, + "herring": 30211, + "hers": 25359, + "herself": 9207, + "hersh": 20379, + "hershey": 29734, + "hert": 26744, + "hertfordshire": 41070, + "herts": 35784, + "herty": 23454, + "hertz": 49383, + "hes": 30553, + "hes": 12784, + "hesit": 23933, + "hesitate": 34967, + "hess": 41888, + "hester": 31105, + "het": 37527, + "het": 19678, + "hetero": 26405, + "heu": 20105, + "heughan": 32298, + "hew": 48141, + "hew": 43051, + "hewitt": 28871, + "hex": 16255, + "hex": 31241, + "hey": 10759, + "hey": 2189, + "hez": 34591, + "hezbollah": 37636, + "hf": 26606, + "hf": 20603, + "hfx": 47297, + "hg": 23986, + "hg": 26237, + "hgtv": 47657, + "hh": 3280, + "hh": 5180, + "hhh": 8281, + "hhhh": 19391, + "hhhh": 13121, + "hhhhh": 24246, + "hhhhhh": 37278, + "hhs": 27006, + "hi": 677, + "hi": 1883, + "hia": 20672, + "hiatus": 27823, + "hib": 15922, + "hiber": 38799, + "hibis": 36226, + "hibiscus": 36460, + "hibition": 24658, + "hibs": 42814, + "hic": 3549, + "hic": 38079, + "hick": 14813, + "hickman": 49148, + "hickory": 29905, + "hicks": 23429, + "hid": 15552, + "hid": 14451, + "hidalgo": 47464, + "hidden": 28305, + "hidden": 7029, + "hiddleston": 31444, + "hide": 17725, + "hide": 9379, + "hideous": 46588, + "hides": 30800, + "hiding": 11371, + "hie": 15763, + "hier": 23433, + "hier": 29913, + "hierarchy": 44442, + "hifi": 38168, + "hig": 38108, + "higgins": 21783, + "high": 1487, + "high": 1400, + "higher": 5321, + "highered": 27072, + "highest": 5317, + "highland": 32244, + "highland": 16062, + "highlander": 46251, + "highlanders": 40445, + "highlands": 16883, + "highlight": 8264, + "highlighted": 22252, + "highlighter": 45460, + "highlighting": 17344, + "highlights": 6173, + "highly": 5302, + "highness": 38694, + "highs": 15144, + "highschool": 23102, + "highway": 45344, + "highway": 7620, + "highways": 28007, + "higu": 39115, + "hihi": 36240, + "hii": 42315, + "hijab": 31407, + "hika": 41356, + "hikari": 44624, + "hike": 9404, + "hiked": 36471, + "hiker": 40947, + "hikers": 46090, + "hikes": 27076, + "hiking": 9118, + "hiko": 48708, + "hil": 3508, + "hil": 17927, + "hila": 38837, + "hilar": 37337, + "hilari": 7784, + "hilarious": 8358, + "hilariously": 43476, + "hilary": 45898, + "hilary": 25415, + "hilde": 45382, + "hill": 3671, + "hill": 2682, + "hillary": 13257, + "hillary": 7074, + "hillaryclinton": 15357, + "hilli": 32513, + "hills": 24178, + "hills": 5289, + "hillsborough": 32157, + "hillside": 37194, + "hilltop": 45858, + "hilly": 32483, + "hilton": 33621, + "hilton": 14012, + "him": 4128, + "him": 1269, + "himach": 29132, + "himachal": 35461, + "himalay": 17552, + "himalayan": 30318, + "himalayas": 32872, + "hime": 45892, + "himself": 4530, + "himss": 41730, + "hin": 1676, + "hin": 37930, + "hina": 40571, + "hinakhan": 45518, + "hinch": 49320, + "hind": 34460, + "hind": 23293, + "hindi": 14967, + "hinds": 47859, + "hindu": 17587, + "hindu": 12053, + "hinduism": 40592, + "hindus": 25701, + "hindustan": 46553, + "hines": 37462, + "hing": 37968, + "hini": 33564, + "hino": 45343, + "hint": 11868, + "hinton": 47165, + "hints": 20594, + "hio": 32897, + "hip": 11725, + "hip": 6584, + "hipho": 8819, + "hiphop": 26598, + "hiphop": 10914, + "hipp": 13607, + "hippie": 28637, + "hippo": 28398, + "hippo": 36729, + "hips": 30191, + "hipstamatic": 31002, + "hipster": 19987, + "hipsters": 48265, + "hir": 4959, + "hir": 14728, + "hira": 42577, + "hire": 32356, + "hire": 8243, + "hired": 17602, + "hires": 24133, + "hiring": 7835, + "hiro": 17396, + "hiro": 20588, + "hiroshima": 33867, + "hirsch": 46967, + "his": 15211, + "his": 787, + "hism": 23502, + "hispan": 16843, + "hispanic": 22676, + "hist": 21710, + "hist": 13779, + "histo": 33479, + "histor": 2993, + "historia": 46010, + "historian": 20697, + "historians": 35200, + "historic": 30195, + "historic": 5726, + "historical": 34154, + "historical": 8039, + "historically": 30445, + "histories": 34736, + "history": 11142, + "history": 1695, + "historymonth": 19356, + "historyof": 35905, + "hit": 5453, + "hit": 2341, + "hitch": 22937, + "hitch": 36203, + "hitler": 16518, + "hitman": 33290, + "hits": 4712, + "hitter": 23538, + "hitters": 39724, + "hitting": 7957, + "hiv": 44410, + "hiv": 11018, + "hive": 38162, + "hive": 18521, + "hiya": 42393, + "hk": 22648, + "hk": 12307, + "hl": 8297, + "hl": 5956, + "hle": 32389, + "hler": 35418, + "hm": 17913, + "hm": 7631, + "hmm": 13725, + "hmmm": 17032, + "hmmmm": 34598, + "hms": 14625, + "hmu": 21630, + "hmv": 49288, + "hn": 22905, + "hn": 7478, + "hns": 48412, + "ho": 606, + "ho": 2971, + "hoa": 37517, + "hoar": 31628, + "hoax": 33438, + "hob": 18212, + "hobart": 31646, + "hobb": 16175, + "hobbies": 36370, + "hobbit": 23207, + "hobbs": 34343, + "hobby": 41120, + "hobby": 17557, + "hobo": 34613, + "hobo": 41334, + "hoboken": 41568, + "hoc": 35880, + "hoch": 43772, + "hock": 34914, + "hock": 46574, + "hockey": 16499, + "hockey": 4111, + "hoco": 34771, + "hod": 31062, + "hodg": 23660, + "hodge": 40585, + "hodges": 35061, + "hodgson": 37044, + "hoe": 32502, + "hoe": 11262, + "hoek": 40073, + "hoes": 21164, + "hof": 20186, + "hof": 12789, + "hofer": 38654, + "hoff": 32860, + "hoff": 22751, + "hofficial": 41949, + "hoffman": 22026, + "hog": 12075, + "hog": 13255, + "hogan": 19757, + "hogg": 42005, + "hogs": 23242, + "hogwarts": 29168, + "hoh": 43947, + "hoi": 39295, + "hok": 26942, + "hok": 47167, + "hokies": 35168, + "hokkaido": 49145, + "hol": 1187, + "hol": 7349, + "hola": 28724, + "hold": 36496, + "hold": 3254, + "holden": 21869, + "holder": 7862, + "holders": 10074, + "holding": 5050, + "holdings": 24832, + "holds": 7286, + "hole": 47242, + "hole": 5341, + "holes": 11266, + "holi": 2093, + "holi": 21926, + "holic": 16348, + "holics": 29782, + "holiday": 13168, + "holiday": 2878, + "holidays": 5372, + "holiness": 37259, + "holistic": 26300, + "holl": 27699, + "holla": 26500, + "holland": 31608, + "holland": 9978, + "hollande": 47690, + "holler": 49047, + "holli": 24019, + "holliday": 41624, + "hollow": 41221, + "hollow": 16691, + "holloway": 29435, + "holly": 12731, + "holly": 11923, + "hollyo": 41525, + "hollyoaks": 43352, + "hollywood": 24655, + "hollywood": 5518, + "holm": 34758, + "holm": 12739, + "holme": 46149, + "holmes": 12756, + "holo": 10317, + "holocau": 14688, + "holocaust": 16476, + "hols": 33344, + "holt": 18868, + "holtz": 44743, + "holy": 13910, + "holy": 4874, + "hom": 906, + "hom": 47397, + "homa": 9557, + "homage": 17746, + "home": 2143, + "home": 1137, + "homebrew": 35046, + "homec": 33869, + "homecoming": 9008, + "homedecor": 15695, + "homedepot": 38707, + "homegrown": 32554, + "homeitems": 42972, + "homeland": 21633, + "homeless": 18403, + "homeless": 9661, + "homelessness": 19851, + "homemade": 7889, + "homeof": 48856, + "homeowner": 37267, + "homeowners": 29882, + "homepage": 29828, + "homer": 29307, + "homer": 16931, + "homers": 38333, + "homes": 19480, + "homes": 5416, + "homeschool": 40994, + "homestead": 32609, + "homeswee": 46298, + "hometown": 12238, + "homework": 12495, + "homicide": 21520, + "homie": 12540, + "homies": 18893, + "homme": 26193, + "homo": 18129, + "homo": 30504, + "homophobia": 37875, + "homophobic": 40975, + "homosexual": 44288, + "homosexuality": 46720, + "homs": 45413, + "hon": 1279, + "hon": 10296, + "honda": 8553, + "honduras": 29715, + "hone": 38640, + "honest": 7814, + "honest": 9602, + "honestly": 9155, + "honesty": 24939, + "honey": 9843, + "honey": 6406, + "honeycomb": 48583, + "honeymoon": 22527, + "hong": 12144, + "hong": 8598, + "hongkong": 16659, + "honi": 17918, + "honolulu": 28096, + "honor": 9206, + "honor": 3402, + "honorable": 19498, + "honorary": 15675, + "honore": 25868, + "honored": 5494, + "honoree": 38993, + "honorees": 43012, + "honoring": 10771, + "honors": 10248, + "honour": 8240, + "honourable": 29855, + "honoured": 11945, + "honouring": 37754, + "honours": 22558, + "hoo": 2300, + "hoo": 7920, + "hood": 18681, + "hood": 3222, + "hooded": 33631, + "hoodie": 13444, + "hoodies": 25974, + "hoods": 16664, + "hoof": 44555, + "hook": 30488, + "hook": 10395, + "hookah": 34214, + "hooked": 18138, + "hookem": 31465, + "hooker": 37891, + "hooking": 35240, + "hooks": 25068, + "hooligans": 48176, + "hoon": 21368, + "hooo": 44538, + "hoop": 31516, + "hoop": 19573, + "hooper": 35221, + "hoops": 9351, + "hoor": 22155, + "hooray": 24940, + "hoos": 46462, + "hoosier": 48886, + "hoosiers": 42780, + "hoot": 29164, + "hoover": 25691, + "hop": 10848, + "hop": 5833, + "hope": 5263, + "hope": 1683, + "hoped": 30628, + "hopeful": 21453, + "hopefully": 7602, + "hopeless": 35586, + "hopes": 10018, + "hoping": 7207, + "hopkins": 17821, + "hopp": 48839, + "hopped": 34220, + "hopper": 21748, + "hopping": 27606, + "hoppy": 38359, + "hops": 21137, + "hor": 1407, + "hor": 33847, + "hora": 26013, + "horace": 39282, + "horan": 26857, + "horde": 44947, + "hore": 15380, + "horiz": 8144, + "horizon": 17924, + "horizon": 11920, + "horizons": 29685, + "horizontal": 25775, + "hormon": 27096, + "hormone": 31283, + "hormones": 35162, + "horn": 15771, + "horn": 9607, + "horne": 38143, + "horned": 34526, + "hornet": 28739, + "hornets": 20124, + "horns": 22109, + "horny": 32622, + "horo": 21500, + "horoscope": 38453, + "horowitz": 44669, + "horri": 8656, + "horrible": 13726, + "horribly": 45484, + "horrific": 25314, + "horrifying": 38901, + "horror": 13787, + "horror": 5032, + "horrormovies": 46682, + "horrors": 33321, + "horse": 8562, + "horse": 4558, + "horseback": 43673, + "horseman": 48885, + "horsepower": 36882, + "horser": 23096, + "horseracing": 30693, + "horses": 8809, + "horseshoe": 29242, + "horst": 37182, + "hort": 19482, + "horticul": 27141, + "horticulture": 39998, + "horton": 25945, + "hortons": 38422, + "horus": 29794, + "hos": 44320, + "hos": 25008, + "hosa": 44618, + "hose": 19662, + "hoseok": 38817, + "hosp": 2847, + "hosp": 37853, + "hospice": 20533, + "hospit": 7180, + "hospital": 29399, + "hospital": 3851, + "hospitality": 11657, + "hospitalized": 36915, + "hospitals": 13816, + "host": 17403, + "host": 3953, + "hostage": 26119, + "hoste": 31700, + "hosted": 6017, + "hostel": 27225, + "hostess": 39692, + "hostile": 28074, + "hosting": 4857, + "hosts": 8718, + "hot": 2851, + "hot": 2069, + "hota": 43289, + "hotdog": 43758, + "hotel": 14591, + "hotel": 2738, + "hotels": 8654, + "hotline": 30516, + "hotmail": 46427, + "hotness": 39803, + "hotra": 27109, + "hotro": 47823, + "hotspot": 36606, + "hotspur": 35176, + "hotter": 23591, + "hottest": 8279, + "hottie": 22804, + "hotties": 46027, + "hou": 1011, + "hou": 10122, + "hough": 44529, + "houghton": 36133, + "houn": 39273, + "houn": 33607, + "hound": 33996, + "hound": 13561, + "hounds": 21178, + "hounews": 48373, + "hour": 14930, + "hour": 2232, + "hourly": 30918, + "hours": 2382, + "house": 4107, + "house": 1212, + "housed": 37518, + "household": 12412, + "households": 27167, + "housel": 48685, + "housemusic": 28468, + "houseof": 19928, + "houses": 7791, + "housewives": 38523, + "housing": 32924, + "housing": 5734, + "houston": 16564, + "houston": 5663, + "hov": 40291, + "hove": 29674, + "hoven": 35559, + "hover": 36252, + "hover": 49016, + "hovering": 43437, + "how": 7470, + "how": 829, + "howar": 37672, + "howard": 25447, + "howard": 7632, + "howdy": 42216, + "howe": 8179, + "howe": 24614, + "howell": 25297, + "hower": 32920, + "however": 8467, + "howi": 47883, + "howie": 42939, + "howl": 40332, + "howling": 41771, + "howto": 38191, + "howto": 44060, + "hoy": 39625, + "hoy": 13278, + "hoya": 40978, + "hp": 23753, + "hp": 6371, + "hpa": 30983, + "hpc": 39936, + "hpe": 33787, + "hpv": 45765, + "hq": 33571, + "hq": 4693, + "hr": 4810, + "hr": 4086, + "hra": 21320, + "hra": 17212, + "hrc": 18139, + "hrh": 29103, + "hri": 21068, + "hrithik": 45371, + "hrs": 7157, + "hru": 24127, + "hrw": 25064, + "hs": 9343, + "hs": 2466, + "hsbc": 31508, + "hsc": 43510, + "hse": 34057, + "hsfb": 29539, + "hsv": 47311, + "ht": 11123, + "ht": 7801, + "hta": 23452, + "hta": 49384, + "htafc": 42821, + "htc": 48942, + "htc": 17635, + "html": 18231, + "hts": 43710, + "htt": 10620, + "http": 15066, + "https": 30901, + "httr": 49372, + "httweets": 43198, + "hu": 845, + "hu": 5949, + "hua": 22138, + "huan": 41405, + "huang": 32013, + "huar": 46916, + "huawe": 17709, + "huawei": 21128, + "hub": 18775, + "hub": 7028, + "hubb": 23183, + "hubbard": 33288, + "hubble": 30421, + "hubby": 16947, + "hubert": 40699, + "hubs": 29327, + "huck": 22909, + "huckabee": 43666, + "hud": 7169, + "hud": 28563, + "hudder": 22629, + "huddersfield": 24220, + "huddle": 33435, + "hudson": 25873, + "hudson": 11260, + "hue": 48380, + "hue": 21465, + "hues": 38003, + "huey": 39663, + "huff": 18746, + "huff": 44999, + "huffpost": 45887, + "hug": 40790, + "hug": 10359, + "huge": 2699, + "hugely": 24648, + "hugged": 41333, + "hugging": 27058, + "hugh": 8723, + "hugh": 15385, + "hughes": 11418, + "hugo": 43935, + "hugo": 17132, + "hugs": 14248, + "huh": 13348, + "huhu": 32134, + "hui": 29978, + "hul": 7911, + "hula": 40145, + "hulk": 17637, + "hull": 25154, + "hull": 10375, + "hulu": 24666, + "hum": 5823, + "hum": 16283, + "human": 3175, + "human": 2751, + "humane": 20220, + "humanitarian": 14170, + "humanities": 24949, + "humanity": 9420, + "humanright": 44385, + "humanrights": 14148, + "humans": 8324, + "humb": 9988, + "humber": 30602, + "humber": 38063, + "humble": 38703, + "humble": 10889, + "humbled": 19682, + "humbling": 39757, + "humbold": 24739, + "humboldt": 31389, + "hume": 38197, + "humid": 14778, + "humid": 27447, + "humidi": 47666, + "humidity": 15469, + "humil": 27205, + "humili": 25332, + "humility": 28535, + "humming": 26515, + "hummingbird": 33072, + "hummus": 31785, + "humor": 29369, + "humor": 11186, + "humorous": 38173, + "humour": 19161, + "hump": 16673, + "hump": 24529, + "humpback": 47662, + "humpday": 27693, + "humph": 19767, + "humphrey": 31549, + "hun": 1616, + "hun": 10795, + "hundre": 8505, + "hundred": 11898, + "hundreds": 8879, + "hung": 13825, + "hungar": 19420, + "hungarian": 23325, + "hungary": 17232, + "hunger": 25565, + "hunger": 10184, + "hungergames": 47507, + "hungover": 41110, + "hungry": 44845, + "hungry": 8451, + "hunk": 33912, + "hunt": 16498, + "hunt": 5774, + "hunted": 37373, + "hunter": 16531, + "hunter": 6099, + "hunters": 16115, + "hunting": 27830, + "hunting": 7507, + "huntington": 23521, + "hunts": 34041, + "huntsville": 34544, + "hur": 2305, + "hur": 34523, + "hurd": 44915, + "hurdle": 27486, + "hurdles": 25440, + "huri": 42486, + "hurley": 30166, + "hurling": 24738, + "huron": 36147, + "hurrah": 40599, + "hurric": 6543, + "hurrican": 36105, + "hurricane": 24051, + "hurricane": 8782, + "hurricanes": 22357, + "hurry": 10921, + "hurst": 44742, + "hurst": 11760, + "hurt": 7413, + "hurting": 24017, + "hurts": 13059, + "hus": 5111, + "hus": 35853, + "husband": 6179, + "husbands": 33612, + "hush": 28728, + "husk": 19246, + "huskers": 26946, + "huskies": 20988, + "husky": 20421, + "huss": 13733, + "hussain": 17940, + "hussein": 31336, + "hust": 27279, + "hustle": 15709, + "huston": 46480, + "hut": 20924, + "hut": 16503, + "hutch": 31018, + "hutch": 33203, + "hutchinson": 35721, + "hutto": 27662, + "hutton": 38321, + "hv": 17209, + "hv": 18593, + "hvac": 27492, + "hw": 27491, + "hw": 18876, + "hwa": 32352, + "hwan": 44390, + "hwang": 46775, + "hwy": 13812, + "hy": 1441, + "hy": 17827, + "hya": 31600, + "hyacin": 47263, + "hyatt": 44856, + "hyatt": 25146, + "hybri": 9084, + "hybrid": 10156, + "hyd": 42382, + "hyde": 46484, + "hyde": 16343, + "hyder": 13960, + "hyderabad": 14801, + "hydr": 8031, + "hydra": 44414, + "hydra": 40420, + "hydrange": 43298, + "hydrate": 29628, + "hydrated": 23300, + "hydrating": 47653, + "hydration": 24174, + "hydrau": 26017, + "hydraulic": 26189, + "hydro": 8368, + "hydro": 22595, + "hydrogen": 20974, + "hye": 32724, + "hye": 25792, + "hygi": 16277, + "hygiene": 19591, + "hymn": 41350, + "hyo": 38960, + "hyo": 35078, + "hyp": 16964, + "hype": 30353, + "hype": 11111, + "hyped": 22507, + "hyper": 7997, + "hyper": 22146, + "hypertension": 40698, + "hypno": 23355, + "hypnosis": 48138, + "hypnoti": 40440, + "hypo": 10252, + "hypocr": 30711, + "hypocri": 25606, + "hypocrisy": 26296, + "hypocrite": 44125, + "hypothe": 46966, + "hypothesis": 44956, + "hyster": 24235, + "hysteria": 45965, + "hysterical": 48627, + "hyuk": 20452, + "hyun": 11831, + "hyun": 8589, + "hyundai": 17094, + "hyung": 46901, + "hyung": 16551, + "hz": 32533, + "i": 72, + "i": 328, + "ia": 12486, + "ia": 1073, + "iac": 32838, + "iac": 44063, + "iaf": 40789, + "iah": 35052, + "iain": 30103, + "ial": 11530, + "ial": 1974, + "ials": 20940, + "iam": 3579, + "iam": 11415, + "iambic": 43668, + "iambicpent": 43891, + "iamsrk": 15103, + "ian": 7723, + "ian": 1800, + "ians": 6451, + "iansomerhalder": 47077, + "iart": 18413, + "iartg": 18669, + "ias": 32303, + "ias": 14620, + "ib": 3962, + "ib": 13554, + "iba": 39763, + "ibadan": 44691, + "iban": 47145, + "ibc": 49014, + "ibd": 40732, + "iber": 23814, + "ibi": 12337, + "ibis": 47048, + "ibiza": 13853, + "ible": 37792, + "ibles": 44102, + "ibm": 23415, + "ibm": 13918, + "ibn": 25729, + "ibooks": 46887, + "ibra": 15476, + "ibrahi": 40350, + "ibrahim": 20816, + "ibrox": 46883, + "ibs": 41993, + "ibu": 43587, + "ibu": 46117, + "ic": 535, + "ic": 1029, + "ica": 2576, + "icago": 37492, + "ical": 6082, + "ical": 1110, + "ically": 3161, + "icals": 13999, + "ican": 17653, + "ican": 5246, + "icans": 20511, + "icar": 37211, + "ication": 21629, + "icc": 12945, + "ice": 2739, + "ice": 733, + "iceberg": 33662, + "icec": 13636, + "icecream": 21334, + "iced": 8049, + "icelan": 34114, + "iceland": 46716, + "iceland": 11935, + "icelandic": 34705, + "ices": 1931, + "ich": 5333, + "ich": 1232, + "icha": 31453, + "iche": 28972, + "iche": 21143, + "ichi": 21669, + "ichi": 14647, + "ichick": 45022, + "ichiro": 43787, + "ici": 948, + "ici": 22189, + "icia": 11774, + "icial": 17543, + "icial": 6397, + "ician": 40522, + "ician": 5374, + "icians": 6264, + "iciary": 21329, + "icic": 46006, + "icide": 6558, + "icides": 28253, + "icing": 7676, + "icio": 24207, + "icion": 45905, + "icious": 3325, + "icist": 21165, + "icists": 42171, + "icity": 7243, + "ick": 1168, + "ick": 1068, + "icked": 39799, + "icker": 40357, + "ickers": 30701, + "icki": 35468, + "icking": 6619, + "icks": 3727, + "icky": 11587, + "icn": 44516, + "ico": 13697, + "ico": 3040, + "icom": 17693, + "icom": 29796, + "icon": 13843, + "icon": 5646, + "iconic": 6959, + "icons": 15553, + "icop": 9389, + "icos": 32002, + "ics": 1324, + "ict": 6349, + "icted": 36515, + "iction": 40560, + "icton": 36548, + "icu": 45118, + "icu": 30443, + "icular": 40660, + "icus": 31459, + "icy": 28780, + "icy": 3495, + "icymi": 5315, + "icz": 46387, + "id": 1568, + "id": 1014, + "ida": 11032, + "ida": 11600, + "idad": 22462, + "idaho": 48817, + "idaho": 15165, + "idal": 39684, + "idan": 17929, + "idc": 22386, + "ide": 1909, + "ide": 14104, + "idea": 3612, + "ideal": 8789, + "ideally": 48247, + "ideals": 45096, + "ideas": 4452, + "ident": 7113, + "identi": 6009, + "identical": 25587, + "identification": 23337, + "identified": 15217, + "identifies": 35712, + "identify": 10949, + "identifying": 23589, + "identities": 34292, + "identity": 8892, + "ideology": 25840, + "iders": 8980, + "ides": 31791, + "idf": 28987, + "idge": 35567, + "idh": 44325, + "idi": 9611, + "idi": 14264, + "idio": 15994, + "idiot": 14087, + "idiots": 20856, + "idk": 8972, + "idle": 34754, + "idlib": 36199, + "ido": 6763, + "ido": 29641, + "idol": 24866, + "idol": 8884, + "idols": 21398, + "idr": 10106, + "idri": 46435, + "idris": 41312, + "ids": 6111, + "idu": 28655, + "idy": 33058, + "idyl": 44879, + "idyllic": 46632, + "ie": 6789, + "ie": 1718, + "iec": 44773, + "ied": 10059, + "ieee": 39860, + "iel": 27875, + "iel": 22729, + "ience": 1542, + "ient": 13115, + "ier": 33173, + "ier": 5912, + "iers": 45060, + "ies": 27912, + "ies": 963, + "iest": 10818, + "if": 8063, + "if": 878, + "ifa": 37574, + "ifc": 36524, + "ife": 41172, + "ife": 19590, + "iff": 35753, + "ification": 35755, + "ified": 41403, + "ift": 31143, + "iftar": 35153, + "ifu": 41523, + "ify": 32807, + "ig": 1089, + "ig": 3072, + "iga": 16493, + "igan": 27468, + "igans": 25419, + "igbo": 44591, + "ige": 10806, + "igen": 33070, + "iger": 30758, + "iger": 20685, + "igers": 40755, + "igers": 48928, + "iggy": 46219, + "iggy": 27604, + "igh": 2712, + "igh": 5451, + "ight": 14571, + "ight": 897, + "ighton": 35292, + "igi": 21901, + "igle": 29912, + "iglesias": 39432, + "ign": 7303, + "ign": 2326, + "ignati": 37573, + "ignatius": 48318, + "igne": 45843, + "ignite": 25210, + "ignition": 36115, + "igno": 15375, + "ignor": 7653, + "ignorance": 22735, + "ignorant": 26933, + "ignore": 12304, + "ignored": 20428, + "ignores": 40129, + "ignoring": 23969, + "igor": 33024, + "igs": 31344, + "igu": 21279, + "ih": 12162, + "ih": 34135, + "ihear": 13043, + "iheart": 30332, + "iheartawards": 18811, + "iheartradio": 25934, + "ihop": 45511, + "ihri": 39108, + "ihrithik": 39326, + "ii": 5103, + "ii": 2329, + "iii": 46236, + "iii": 6572, + "iiii": 20133, + "iiii": 45393, + "iiot": 30704, + "iit": 39330, + "iit": 33238, + "ij": 7337, + "ija": 42802, + "ik": 3903, + "ik": 10177, + "ika": 18188, + "ike": 12329, + "ike": 19696, + "ikea": 20528, + "iker": 38653, + "ikh": 44655, + "ikh": 12758, + "iklan": 32028, + "iklan": 29584, + "iko": 35659, + "iko": 39272, + "ikon": 38543, + "ikon": 19156, + "iku": 17780, + "il": 543, + "il": 958, + "ila": 4344, + "ilah": 32211, + "ilan": 13889, + "ilan": 28076, + "iland": 20957, + "ilation": 16180, + "ilay": 45093, + "ild": 22278, + "ild": 17164, + "ile": 18398, + "ile": 989, + "iled": 3358, + "iler": 22446, + "iler": 3615, + "ilers": 8975, + "iles": 42274, + "ili": 2076, + "ili": 19601, + "ilia": 14855, + "ilian": 10272, + "iliary": 32585, + "ilife": 42835, + "ilike": 44989, + "ilinan": 48497, + "iling": 3299, + "ilio": 47256, + "ilion": 12561, + "ilis": 43442, + "ilit": 11178, + "ilities": 5446, + "ility": 1787, + "ilive": 26478, + "ill": 828, + "ill": 660, + "illa": 8877, + "illa": 3043, + "illac": 17218, + "illage": 48922, + "illard": 21920, + "illary": 33667, + "illas": 23404, + "ille": 18213, + "ille": 5559, + "illed": 2527, + "illeg": 35808, + "illegal": 7983, + "illegally": 24466, + "illegals": 40490, + "iller": 23341, + "iller": 2956, + "illers": 30547, + "illery": 14514, + "illes": 20037, + "illi": 1086, + "illi": 25187, + "illia": 48776, + "illiams": 30301, + "illian": 48775, + "illian": 17355, + "illic": 37152, + "illicit": 40998, + "illie": 26083, + "illin": 35868, + "illing": 2803, + "illini": 28957, + "illino": 8920, + "illinois": 9414, + "illion": 35542, + "illion": 2035, + "illness": 11145, + "illnesses": 33861, + "illo": 34153, + "illo": 7588, + "illon": 20516, + "ills": 1900, + "illu": 3025, + "illumin": 11446, + "illuminate": 43261, + "illuminated": 28814, + "illuminati": 34551, + "illuminating": 46601, + "illumination": 43680, + "illus": 41386, + "illusion": 20318, + "illusions": 47429, + "illustr": 6268, + "illustrate": 37468, + "illustrated": 13151, + "illustrates": 38129, + "illustrating": 43322, + "illustration": 6052, + "illustrations": 17852, + "illustrator": 16649, + "illustri": 43116, + "illustrious": 44304, + "illy": 11707, + "illy": 9532, + "ilm": 36326, + "ilo": 4220, + "ilo": 14835, + "ilove": 7183, + "ilove": 32914, + "iloveart": 41114, + "ilovemy": 28863, + "iloveyou": 28829, + "ils": 1543, + "ilt": 25334, + "ilton": 28494, + "ilu": 27337, + "ilwx": 43777, + "ily": 4881, + "ily": 1026, + "ilya": 33377, + "ilysm": 29228, + "im": 732, + "im": 1496, + "ima": 2414, + "ima": 6432, + "imac": 40675, + "imacele": 47281, + "imag": 2316, + "image": 24101, + "image": 2867, + "imagery": 22828, + "images": 4952, + "imagin": 18178, + "imaginary": 30417, + "imagination": 13783, + "imaginative": 47233, + "imagine": 35752, + "imagine": 4826, + "imagined": 18478, + "imagines": 47379, + "imaging": 14231, + "imagining": 27384, + "imam": 37552, + "imam": 19024, + "iman": 45684, + "iman": 16247, + "imation": 44566, + "imax": 32066, + "imc": 45616, + "imdanielpadilla": 36357, + "imdb": 30407, + "ime": 44937, + "ime": 31151, + "imel": 31594, + "iment": 37157, + "imer": 21802, + "imes": 47744, + "imf": 28403, + "img": 24157, + "imi": 23559, + "imin": 23942, + "imit": 23462, + "imitation": 41630, + "imma": 19487, + "immac": 25085, + "immaculate": 29649, + "immature": 45531, + "immedi": 7366, + "immediate": 14440, + "immediately": 10108, + "immen": 17278, + "immense": 22722, + "immensely": 35013, + "immer": 13954, + "immerse": 46240, + "immersion": 31861, + "immersive": 27521, + "immigr": 5851, + "immigrant": 16474, + "immigrants": 14460, + "immigration": 9588, + "imminent": 27299, + "immort": 39244, + "immortal": 24717, + "immun": 8961, + "immune": 15606, + "immuni": 44571, + "immunity": 26254, + "immuno": 24361, + "immunology": 44483, + "immunotherapy": 39185, + "imo": 26349, + "imo": 13738, + "imp": 3335, + "imp": 31037, + "impac": 7573, + "impact": 33036, + "impact": 3844, + "impacted": 21424, + "impactful": 41631, + "impacting": 29359, + "impacts": 15069, + "impair": 36451, + "impaired": 28028, + "impairment": 44501, + "impala": 36641, + "impe": 23612, + "impeach": 16874, + "impeach": 43497, + "impeachment": 32979, + "impeachtrump": 38006, + "impecc": 34511, + "impeccable": 40111, + "impending": 34486, + "imper": 7727, + "imperative": 39833, + "imperfect": 46034, + "imperi": 30911, + "imperial": 32425, + "imperial": 12361, + "imperialism": 48855, + "imperson": 25551, + "implant": 33106, + "implants": 32202, + "imple": 7423, + "implement": 17966, + "implementation": 15102, + "implemented": 24315, + "implementing": 22862, + "implic": 15269, + "implications": 19229, + "implo": 40337, + "impo": 45704, + "import": 2336, + "import": 16294, + "importance": 6821, + "important": 2829, + "importantly": 21580, + "imported": 28798, + "imports": 25286, + "impose": 35879, + "imposed": 25871, + "imposing": 42289, + "impossible": 9815, + "impre": 3763, + "impress": 20015, + "impressed": 9689, + "impression": 14468, + "impressionism": 36114, + "impressionist": 44904, + "impressions": 22276, + "impressive": 6634, + "imprint": 43863, + "imprison": 22141, + "imprisoned": 32999, + "imprisonment": 39024, + "impro": 2531, + "impromp": 28100, + "impromptu": 28611, + "improv": 22868, + "improve": 4971, + "improved": 9446, + "improvement": 10790, + "improvements": 16320, + "improves": 18035, + "improving": 10381, + "improvis": 32343, + "improvised": 40886, + "impulse": 29683, + "impy": 42690, + "imran": 19647, + "imran": 19212, + "imrankhan": 25956, + "imrankhanpti": 26688, + "ims": 17800, + "imsa": 37262, + "imv": 35731, + "imvkohli": 37136, + "imwith": 26822, + "imwithher": 32651, + "in": 512, + "in": 530, + "ina": 18026, + "ina": 1366, + "inability": 47517, + "inaccurate": 49192, + "inaction": 41916, + "inactive": 49274, + "inadequate": 43403, + "inak": 46549, + "inal": 19178, + "inals": 26438, + "inan": 26204, + "inappropriate": 26722, + "inari": 48620, + "inary": 11337, + "inas": 36731, + "inas": 12362, + "inated": 38530, + "ination": 4706, + "inau": 10832, + "inaugu": 11309, + "inaugur": 11448, + "inaugural": 11340, + "inaugurated": 29011, + "inauguration": 16805, + "inbound": 24420, + "inbox": 18683, + "inc": 14570, + "inc": 4438, + "incan": 45964, + "incar": 18070, + "incarcer": 26334, + "incarcerated": 49178, + "incarceration": 39887, + "incase": 30463, + "ince": 44303, + "incen": 13259, + "incense": 35059, + "incentive": 29024, + "incentives": 29813, + "inception": 36653, + "inch": 6523, + "incheon": 30645, + "inches": 10809, + "inci": 5747, + "incidence": 43371, + "incident": 10103, + "incidents": 22120, + "incindia": 26161, + "inciner": 46434, + "incl": 27857, + "incl": 13338, + "inclined": 45470, + "inclu": 1738, + "include": 5942, + "included": 7414, + "includes": 6197, + "including": 2814, + "inclusion": 12079, + "inclusive": 13393, + "income": 8044, + "incoming": 15416, + "incomparable": 36027, + "incompetent": 45069, + "incomplete": 34040, + "incon": 42372, + "inconvenience": 40563, + "incorpor": 19335, + "incorporate": 34168, + "incorporated": 29494, + "incorporating": 40303, + "incorrect": 31872, + "incre": 1870, + "increase": 5230, + "increased": 9156, + "increases": 13797, + "increasing": 10270, + "increasingly": 16106, + "incredi": 2883, + "incredible": 22128, + "incredible": 3457, + "incredibleindia": 24680, + "incredibles": 48641, + "incredibly": 9513, + "incu": 38830, + "incub": 24587, + "incubator": 35736, + "incumb": 32246, + "incumbent": 38038, + "incur": 42356, + "ind": 5386, + "ind": 4655, + "inda": 15710, + "inde": 2645, + "indeed": 10031, + "indefin": 29501, + "indefinitely": 43750, + "independ": 4147, + "independence": 23117, + "independence": 7955, + "independenceday": 25971, + "independent": 33844, + "independent": 7088, + "independently": 39831, + "inder": 29225, + "index": 35209, + "index": 9458, + "indhoven": 44229, + "indi": 1098, + "indi": 46536, + "india": 27067, + "india": 1762, + "indian": 7685, + "indian": 3606, + "indiana": 8615, + "indianapolis": 17196, + "indianfootball": 45979, + "indians": 10271, + "indic": 7136, + "indicate": 26679, + "indicated": 39416, + "indicates": 29412, + "indication": 38539, + "indicator": 24776, + "indicators": 30054, + "indicted": 34992, + "indictment": 42278, + "indie": 5260, + "indie": 9383, + "indiedev": 10863, + "indiefilm": 22588, + "indiegame": 17969, + "indiegamedev": 40466, + "indiegames": 35864, + "indiegogo": 38057, + "indies": 23618, + "indiffe": 41372, + "indigen": 8348, + "indigenous": 9303, + "indigo": 21002, + "indira": 43887, + "indirec": 26398, + "indirect": 35416, + "indivi": 5649, + "individu": 9574, + "individual": 8512, + "individually": 33782, + "individuals": 11990, + "indo": 26303, + "indo": 18297, + "indom": 42926, + "indone": 6180, + "indonesia": 7229, + "indonesian": 19593, + "indoor": 44478, + "indoor": 9546, + "indoors": 22973, + "indore": 46143, + "indu": 2298, + "induc": 7973, + "induced": 24103, + "inducted": 20596, + "inductee": 39558, + "inductees": 44796, + "induction": 18338, + "indul": 19402, + "indulg": 28388, + "indulge": 24851, + "indulgence": 40856, + "indulgent": 49147, + "industri": 5082, + "industrial": 30853, + "industrial": 7520, + "industries": 11700, + "industry": 47407, + "industry": 3318, + "indv": 16942, + "indy": 9821, + "indy": 10098, + "indycar": 20484, + "indyref": 22569, + "ine": 855, + "ine": 715, + "ineau": 38122, + "inec": 45214, + "ined": 2038, + "inee": 43252, + "inee": 7986, + "inees": 13056, + "ineffe": 47202, + "inely": 18234, + "inem": 48876, + "inema": 29232, + "inen": 44365, + "inequalities": 45507, + "inequality": 17372, + "iner": 17438, + "iner": 5155, + "iners": 41863, + "ines": 2137, + "inese": 35966, + "iness": 1463, + "inet": 8121, + "inette": 38911, + "inev": 19527, + "inevit": 45871, + "inevitable": 25004, + "inews": 24300, + "inexpensive": 38614, + "iney": 30254, + "inez": 12700, + "inf": 1529, + "inf": 35241, + "infamous": 18688, + "infan": 17219, + "infant": 19192, + "infantry": 21655, + "infants": 34726, + "infe": 7164, + "infec": 26088, + "infected": 26136, + "infection": 14774, + "infections": 22227, + "infectious": 29157, + "infeld": 25035, + "infer": 16258, + "inferno": 31290, + "infertility": 40701, + "infield": 48933, + "infiltr": 28683, + "infin": 6246, + "infinite": 12748, + "infiniti": 34644, + "infinity": 34863, + "infinity": 12895, + "infl": 7627, + "inflam": 16080, + "inflammation": 24893, + "inflammatory": 26831, + "inflatable": 30135, + "inflation": 17497, + "inflicted": 48188, + "influ": 4835, + "influen": 13229, + "influence": 9199, + "influenced": 21183, + "influencer": 25013, + "influencers": 29891, + "influences": 24926, + "influencing": 45126, + "influential": 17553, + "influenza": 39897, + "info": 5680, + "info": 2222, + "infographic": 10076, + "infographics": 33172, + "infor": 31773, + "inform": 10241, + "inform": 19449, + "informal": 25705, + "informat": 29625, + "informatics": 35685, + "information": 3204, + "informative": 19364, + "informed": 13876, + "informing": 45388, + "informs": 48440, + "infosec": 17863, + "infr": 29718, + "infra": 7312, + "infra": 45877, + "infrared": 22867, + "infrastructure": 9034, + "infringe": 44882, + "infringement": 48712, + "infront": 37668, + "infu": 15048, + "infuri": 48461, + "infused": 21461, + "infusion": 43464, + "ing": 653, + "ing": 519, + "inga": 15233, + "ingco": 40444, + "ingday": 16561, + "ingdon": 38731, + "inge": 11790, + "inge": 7071, + "inged": 30046, + "ingen": 19088, + "ingeni": 36884, + "inger": 33883, + "inger": 3541, + "ingfor": 33430, + "ingh": 9170, + "ingh": 30495, + "ingham": 24497, + "ingham": 4291, + "inghamshire": 39289, + "inghour": 42728, + "inging": 4066, + "ingl": 45662, + "ingle": 22228, + "ingle": 17005, + "ingles": 24490, + "ingley": 44428, + "inglis": 46327, + "ingly": 4796, + "ingnow": 34766, + "ingo": 30175, + "ingo": 9012, + "ingra": 45165, + "ingrad": 44124, + "ingram": 26998, + "ingredi": 9272, + "ingredient": 19799, + "ingredients": 11788, + "ingrid": 33496, + "ings": 895, + "ingthe": 20170, + "ingtips": 39373, + "ington": 11846, + "ington": 2156, + "ingu": 8714, + "ingual": 22795, + "ingue": 36838, + "ingui": 12788, + "inguish": 36146, + "inha": 32612, + "inhabit": 36189, + "inhabitants": 44968, + "inhal": 30786, + "inhe": 32617, + "inher": 24611, + "inherent": 47327, + "inherit": 34322, + "inheritance": 39341, + "inherited": 39111, + "inhi": 25557, + "inhibit": 32196, + "inho": 12984, + "ini": 6154, + "ini": 3581, + "inian": 36638, + "inim": 38717, + "inindia": 34021, + "ining": 1389, + "inist": 30976, + "init": 42670, + "initi": 4580, + "initial": 13980, + "initially": 28123, + "initials": 48794, + "initiated": 27756, + "initiation": 41009, + "initiative": 8152, + "initiatives": 16549, + "inity": 22126, + "inj": 5112, + "injec": 13688, + "injection": 21438, + "inju": 5006, + "injured": 7505, + "injuries": 9481, + "injury": 6223, + "injustice": 20541, + "ink": 4547, + "ink": 967, + "inka": 40685, + "inked": 29356, + "inki": 46176, + "inkigayo": 47882, + "inking": 37586, + "inks": 20966, + "inktober": 9387, + "inland": 21943, + "inlet": 35161, + "inline": 45004, + "inlove": 28415, + "inmate": 32341, + "inmates": 28216, + "inmy": 42657, + "inn": 27260, + "inn": 5569, + "inna": 35088, + "inner": 24512, + "inner": 6955, + "inning": 4415, + "innings": 11580, + "innis": 44059, + "inno": 7961, + "innocence": 26383, + "innocent": 11241, + "innov": 2890, + "innovate": 24549, + "innovation": 33063, + "innovation": 4272, + "innovations": 18817, + "innovative": 8494, + "innovator": 34735, + "innovators": 27834, + "ino": 4211, + "ino": 2691, + "inoa": 25649, + "inos": 21828, + "inous": 47801, + "inox": 22698, + "input": 16952, + "inputs": 48763, + "inqu": 10628, + "inqui": 18527, + "inquirer": 45172, + "inquiries": 29469, + "inquiry": 15865, + "inquis": 31171, + "inr": 36325, + "ins": 12786, + "ins": 1041, + "insan": 7875, + "insane": 10260, + "insanely": 27846, + "insanity": 26645, + "inscribed": 49168, + "inscription": 41127, + "insec": 15744, + "insect": 21297, + "insects": 18714, + "insecure": 35112, + "insecurity": 36964, + "inser": 13830, + "insert": 18807, + "insi": 3453, + "inside": 19141, + "inside": 2912, + "insider": 13300, + "insiders": 32171, + "insig": 40503, + "insight": 8795, + "insightful": 20354, + "insights": 8729, + "insignia": 48864, + "insist": 35504, + "insisted": 40423, + "insists": 27255, + "inski": 32630, + "insky": 24607, + "insol": 42366, + "insom": 21755, + "insomni": 42040, + "insomnia": 30598, + "inson": 21007, + "insp": 1597, + "inspec": 7915, + "inspect": 40815, + "inspecting": 40565, + "inspection": 15142, + "inspections": 39513, + "inspector": 20514, + "inspir": 2573, + "inspiration": 4195, + "inspirational": 41936, + "inspirational": 9855, + "inspirations": 35093, + "inspire": 27901, + "inspire": 8583, + "inspired": 39849, + "inspired": 3516, + "inspires": 17245, + "inspiring": 41847, + "inspiring": 5705, + "inspo": 26897, + "inst": 1264, + "inst": 1581, + "insta": 22411, + "insta": 11694, + "instability": 41377, + "instac": 46678, + "instaf": 33800, + "instag": 14612, + "instagood": 23718, + "instagram": 27910, + "instagram": 2659, + "instal": 38805, + "install": 6940, + "install": 11168, + "installation": 9358, + "installations": 27909, + "installed": 8807, + "installing": 18301, + "installment": 25315, + "installs": 45568, + "instalment": 47766, + "instance": 34572, + "instant": 38810, + "instant": 10635, + "instantly": 17703, + "instap": 23758, + "instapic": 34378, + "instaweather": 43078, + "instaweatherpro": 43150, + "inste": 3571, + "instead": 4191, + "instein": 13421, + "instem": 27030, + "instin": 23382, + "instinct": 30544, + "institu": 4257, + "institute": 5861, + "institutes": 43674, + "institution": 18823, + "institutional": 27442, + "institutions": 15207, + "instore": 41679, + "instru": 4544, + "instruc": 19648, + "instruction": 19407, + "instructional": 31022, + "instructions": 17040, + "instructor": 16087, + "instructors": 31998, + "instrument": 42196, + "instrument": 15806, + "instrumental": 23041, + "instruments": 14793, + "instyle": 41321, + "insu": 8805, + "insul": 9615, + "insulated": 42051, + "insulation": 28194, + "insulin": 29311, + "insult": 26673, + "insulting": 39646, + "insults": 40451, + "insur": 5024, + "insurance": 5870, + "insured": 31321, + "insurers": 43142, + "insurtech": 28716, + "int": 1828, + "int": 1207, + "inta": 38314, + "intact": 26870, + "intake": 19539, + "intan": 47695, + "inte": 1598, + "inte": 41900, + "intech": 26504, + "inted": 6147, + "integr": 5151, + "integral": 27018, + "integrate": 25735, + "integrated": 12797, + "integrating": 31555, + "integration": 12583, + "integrity": 14791, + "intel": 11778, + "intel": 11426, + "intellec": 13281, + "intellect": 47828, + "intellectu": 31966, + "intellectual": 18069, + "intelli": 5324, + "intellig": 5632, + "intelligence": 6846, + "intelligent": 14063, + "inten": 2967, + "intend": 36674, + "intended": 16812, + "intense": 10258, + "intensi": 22928, + "intensity": 19956, + "intensive": 21049, + "intent": 18881, + "intention": 26786, + "intentional": 29536, + "intentionally": 31215, + "intentions": 26710, + "inter": 1006, + "inter": 10093, + "interact": 21736, + "interacting": 35045, + "interaction": 17650, + "interactions": 22162, + "interactive": 9456, + "intercep": 23676, + "interception": 48762, + "interceptions": 45313, + "interchange": 34222, + "intercontinental": 31983, + "interdisciplinary": 38132, + "intere": 2008, + "interest": 5095, + "interested": 4620, + "interesting": 3628, + "interests": 16425, + "interface": 18753, + "interfaith": 38399, + "interference": 29099, + "interim": 19509, + "interior": 10700, + "interior": 7305, + "interiordesign": 12902, + "interiors": 14836, + "intermedi": 20246, + "intermediate": 24304, + "intermission": 44805, + "intermitt": 44946, + "intern": 9976, + "intern": 14068, + "internal": 11285, + "internally": 41134, + "internation": 42534, + "international": 8566, + "international": 2436, + "internationaldayof": 41518, + "internationally": 24059, + "internationalwomensday": 17682, + "interne": 32713, + "internet": 30180, + "internet": 4757, + "internetof": 44449, + "internetofthings": 45925, + "interns": 19902, + "internship": 16661, + "internships": 39410, + "interoper": 45754, + "interpre": 11162, + "interpret": 49154, + "interpret": 40459, + "interpretation": 20652, + "interpreted": 42157, + "interpreting": 46525, + "interro": 29548, + "interrup": 21609, + "interrupt": 48449, + "interrupted": 30288, + "intersec": 45246, + "intersection": 19210, + "interstate": 21963, + "interstellar": 41506, + "interval": 36032, + "intervals": 44884, + "interven": 18245, + "intervention": 16804, + "interventions": 28848, + "interview": 2885, + "interviewed": 11688, + "interviewing": 16399, + "interviews": 9910, + "intestin": 37938, + "intestinal": 38896, + "inthe": 7486, + "inti": 14459, + "intim": 38832, + "intimacy": 46430, + "intimate": 16382, + "intimid": 24041, + "intimidating": 44405, + "intimidation": 49258, + "inting": 15571, + "intl": 38186, + "intl": 14224, + "intment": 9020, + "intments": 21420, + "into": 35235, + "into": 1095, + "intoler": 28534, + "intolerance": 37808, + "intothe": 38511, + "intra": 20922, + "intrac": 46195, + "intram": 40956, + "intre": 29397, + "intrepid": 39127, + "intri": 15421, + "intric": 23763, + "intricate": 29616, + "intrigu": 18856, + "intrigue": 45140, + "intrigued": 40034, + "intriguing": 24334, + "intrin": 45181, + "intro": 2999, + "intro": 13224, + "introduc": 3621, + "introduce": 9813, + "introduced": 10446, + "introduces": 12933, + "introducing": 6256, + "introduction": 11812, + "introductory": 38121, + "intru": 22949, + "ints": 2514, + "intu": 17225, + "intuition": 40897, + "intuitive": 35224, + "inu": 21131, + "inuit": 41250, + "inus": 45857, + "inv": 2279, + "inv": 43786, + "inva": 10084, + "invade": 34609, + "invaded": 32596, + "invaders": 35188, + "invading": 40101, + "invali": 31592, + "invalid": 46998, + "invaluable": 33976, + "invasi": 38100, + "invasion": 13378, + "invasive": 19554, + "inve": 2024, + "inven": 26233, + "invent": 11665, + "invent": 23558, + "invented": 14100, + "invention": 23607, + "inventions": 44914, + "inventor": 22836, + "inventory": 19444, + "inver": 12061, + "inverness": 33080, + "inverte": 46397, + "inverted": 40709, + "invest": 4180, + "invest": 9716, + "invested": 22536, + "investig": 4626, + "investigate": 15703, + "investigated": 29180, + "investigates": 29621, + "investigating": 13713, + "investigation": 8194, + "investigations": 24020, + "investigative": 30233, + "investigator": 30528, + "investigators": 24121, + "investin": 40195, + "investing": 10554, + "investment": 5605, + "investments": 14675, + "investor": 15490, + "investors": 10486, + "invests": 38378, + "invic": 25253, + "invigor": 48722, + "invin": 30252, + "invincible": 38052, + "invisible": 16093, + "invit": 12454, + "invitation": 15032, + "invitational": 14511, + "invitations": 40120, + "invite": 8109, + "invited": 7731, + "invites": 16034, + "inviting": 14349, + "invo": 29417, + "invol": 4000, + "involve": 26325, + "involved": 5320, + "involvement": 19502, + "involves": 22652, + "involving": 14786, + "inwx": 35674, + "iny": 23257, + "inyour": 47954, + "io": 3167, + "io": 3752, + "ioc": 43018, + "iom": 33000, + "iom": 31135, + "ion": 14871, + "ion": 3668, + "ions": 26289, + "ior": 7354, + "ior": 2498, + "iority": 46016, + "iors": 6427, + "ios": 6614, + "iot": 32694, + "iot": 6627, + "iota": 37294, + "ious": 6994, + "iously": 38233, + "iow": 7439, + "iowa": 38847, + "iowa": 8290, + "ip": 1719, + "ip": 8600, + "ipa": 11199, + "ipad": 39067, + "ipad": 7491, + "ipads": 35281, + "ipc": 41981, + "iphone": 26030, + "iphone": 4314, + "iphones": 37561, + "ipl": 13440, + "ipment": 37824, + "ipo": 40218, + "ipo": 24090, + "ipod": 17889, + "ipp": 31706, + "ips": 26910, + "ipsw": 22221, + "ipswich": 24494, + "iq": 15554, + "iq": 19996, + "iqbal": 33553, + "ir": 582, + "ir": 742, + "ira": 4923, + "ira": 5371, + "irah": 35724, + "iran": 19273, + "iran": 5075, + "irandeal": 46533, + "irani": 37984, + "iranian": 14158, + "iraq": 8543, + "iraqi": 18617, + "irc": 41527, + "ird": 2770, + "ire": 3013, + "ire": 1454, + "ired": 32728, + "ired": 2995, + "ireland": 32806, + "ireland": 4157, + "irene": 21600, + "ires": 12435, + "irez": 21581, + "irgc": 47942, + "iri": 2155, + "iri": 13880, + "irical": 33366, + "irie": 42979, + "irina": 46664, + "iring": 10169, + "iris": 16437, + "irish": 9386, + "irish": 4889, + "irl": 34494, + "irl": 8570, + "irling": 26493, + "irls": 24344, + "irma": 22406, + "irn": 42603, + "iro": 23209, + "iro": 7280, + "iron": 7699, + "iron": 5391, + "ironic": 24518, + "ironically": 36779, + "ironing": 46655, + "ironman": 20330, + "irons": 30032, + "irony": 20681, + "irport": 27769, + "irr": 24641, + "irrational": 47413, + "irregular": 38692, + "irrelevant": 34677, + "irresi": 31200, + "irresistible": 35252, + "irresponsible": 44714, + "irri": 21484, + "irrigation": 23761, + "irrit": 24218, + "irs": 6086, + "irst": 32701, + "iru": 48206, + "irvin": 47053, + "irvine": 24201, + "irving": 19738, + "irwin": 23750, + "iry": 7239, + "is": 595, + "is": 533, + "isa": 11034, + "isa": 6536, + "isaac": 37544, + "isaac": 13659, + "isab": 13357, + "isabel": 27466, + "isabella": 26192, + "isabelle": 31072, + "isable": 46631, + "isai": 15365, + "isaiah": 17952, + "isak": 40619, + "isance": 46893, + "isation": 7194, + "isback": 43811, + "isc": 39316, + "isch": 47888, + "isco": 5736, + "iscoming": 26458, + "isd": 46816, + "isd": 12002, + "ise": 7669, + "ise": 1479, + "ised": 2861, + "iselle": 48491, + "iser": 23080, + "iser": 5626, + "isers": 34879, + "ises": 5153, + "isf": 44036, + "isgreat": 34595, + "ish": 6844, + "ish": 1061, + "isha": 28050, + "ishable": 37949, + "ished": 35341, + "ishere": 46053, + "ishi": 26224, + "ishq": 27996, + "ishqba": 32503, + "ishqbaaaz": 36591, + "isi": 7233, + "isi": 17880, + "isil": 34636, + "isin": 37676, + "ising": 3426, + "isis": 7531, + "isk": 30171, + "isl": 31368, + "isla": 22807, + "islam": 6003, + "islam": 8770, + "islamabad": 19959, + "islamic": 31627, + "islamic": 9552, + "islamist": 38798, + "islamophobia": 43459, + "island": 13408, + "island": 2619, + "islander": 45651, + "islanders": 27804, + "islands": 7145, + "islay": 49279, + "isle": 19082, + "isle": 11849, + "isleof": 24718, + "isles": 21816, + "islife": 26433, + "islington": 34945, + "ism": 47730, + "ism": 1935, + "isma": 43937, + "ismail": 36140, + "isme": 43570, + "ismo": 41926, + "isms": 18700, + "isn": 2923, + "isner": 48246, + "isnow": 43694, + "isnt": 19416, + "iso": 2462, + "iso": 12263, + "isol": 11414, + "isolated": 19044, + "isolation": 26400, + "ison": 12949, + "ison": 4553, + "isons": 33318, + "isoo": 35857, + "isp": 31397, + "isp": 39041, + "isra": 3591, + "israel": 20837, + "israel": 4779, + "israeli": 8994, + "israelis": 45713, + "isreal": 47147, + "isro": 44841, + "iss": 11738, + "iss": 4950, + "issa": 38579, + "issa": 7560, + "issan": 49358, + "issance": 40828, + "issant": 38828, + "isse": 18986, + "ission": 37946, + "issu": 2049, + "issue": 3202, + "issued": 9246, + "issues": 4082, + "issuing": 37226, + "ist": 9751, + "ist": 2304, + "istanbul": 12258, + "istandwith": 33820, + "iste": 32563, + "ister": 14555, + "isthe": 46748, + "istic": 29556, + "ists": 8426, + "isu": 17030, + "isu": 23328, + "it": 529, + "it": 585, + "ita": 36920, + "ita": 2864, + "itable": 8915, + "ital": 2306, + "ital": 1660, + "itali": 11644, + "italia": 11025, + "italian": 20264, + "italian": 5175, + "italians": 44744, + "italk": 32894, + "italy": 4052, + "itan": 18383, + "itans": 40711, + "itar": 47161, + "itarian": 11599, + "itary": 17604, + "itas": 31634, + "itas": 13436, + "itate": 42457, + "itated": 36744, + "itation": 5070, + "itative": 22892, + "itc": 36449, + "itch": 2387, + "itch": 8147, + "itchen": 32664, + "itchy": 41980, + "ite": 2732, + "ite": 802, + "iteam": 37828, + "itec": 3099, + "itec": 43936, + "itech": 44215, + "itech": 23040, + "ited": 8603, + "ited": 1108, + "itel": 44638, + "itely": 4605, + "item": 8532, + "items": 6207, + "iter": 7938, + "iter": 19773, + "iteracy": 39634, + "iterate": 43106, + "iteration": 38790, + "ites": 2454, + "itez": 42131, + "itf": 35436, + "itfc": 36519, + "ith": 6133, + "ith": 1757, + "ithaca": 46257, + "iti": 760, + "iti": 6165, + "itia": 22634, + "itian": 23365, + "itic": 11950, + "itical": 48767, + "itics": 33967, + "ities": 41423, + "ities": 1480, + "itim": 15676, + "itiner": 32803, + "itinerary": 41564, + "iting": 1257, + "ition": 25263, + "ition": 1104, + "itions": 5540, + "itious": 13329, + "itis": 33539, + "itis": 8388, + "itive": 3067, + "itly": 42240, + "ito": 22167, + "ito": 4661, + "iton": 21119, + "itor": 47267, + "itor": 4584, + "itors": 22005, + "itos": 24560, + "its": 7140, + "its": 902, + "itsa": 45032, + "itself": 7290, + "itsme": 41125, + "itss": 47040, + "itt": 1031, + "itt": 11228, + "itta": 21233, + "itte": 31962, + "itted": 24429, + "itten": 30014, + "itten": 4343, + "itter": 11456, + "itters": 13082, + "itti": 28629, + "ittin": 25646, + "itting": 3147, + "ittle": 24208, + "ittle": 21366, + "ittles": 38989, + "itton": 25707, + "itty": 35096, + "itu": 1668, + "itu": 32128, + "itude": 43382, + "itude": 5012, + "itudes": 20459, + "itunes": 7007, + "itup": 35838, + "iture": 25547, + "itus": 24364, + "itutes": 32883, + "itv": 20159, + "itv": 12805, + "ity": 2480, + "ity": 696, + "itya": 32055, + "itz": 14544, + "itz": 7807, + "iu": 14292, + "iu": 15575, + "ium": 10762, + "ius": 6740, + "iv": 6775, + "iv": 9315, + "iva": 42463, + "ivan": 15544, + "ivan": 15689, + "ivanka": 37914, + "ive": 26885, + "ive": 8653, + "ived": 15654, + "iver": 36849, + "iver": 44254, + "ives": 27333, + "ivf": 39159, + "iving": 45136, + "ivory": 16776, + "ivote": 45835, + "ivy": 36939, + "ivy": 16045, + "iw": 13058, + "iw": 46604, + "iwant": 42747, + "iwd": 16815, + "iwm": 44237, + "ix": 13272, + "ix": 8756, + "iy": 13704, + "iya": 18595, + "iyaki": 48395, + "iz": 2845, + "iz": 8407, + "iza": 37704, + "ization": 10847, + "ize": 10885, + "ized": 7690, + "izen": 34776, + "izer": 23895, + "izes": 45434, + "izing": 17354, + "izo": 46910, + "izz": 31779, + "izz": 46128, + "izzy": 28861, + "j": 73, + "j": 329, + "ja": 1586, + "ja": 2641, + "jaan": 25052, + "jab": 8059, + "jab": 9439, + "jac": 2293, + "jac": 30198, + "jace": 43286, + "jack": 2679, + "jack": 3267, + "jacked": 27923, + "jacket": 6164, + "jackets": 14745, + "jacki": 47418, + "jackie": 28023, + "jackie": 11716, + "jacking": 40929, + "jackman": 35723, + "jackpot": 23926, + "jacks": 19649, + "jackson": 12321, + "jackson": 4363, + "jacksonville": 19263, + "jaco": 6840, + "jacob": 14385, + "jacob": 9222, + "jacobs": 17482, + "jacobson": 46826, + "jacqu": 14495, + "jacqueline": 22843, + "jacques": 17799, + "jad": 12976, + "jad": 38691, + "jada": 37416, + "jade": 25123, + "jade": 14513, + "jaden": 37174, + "jadine": 37445, + "jae": 16869, + "jae": 15765, + "jaejoong": 43610, + "jaf": 19362, + "jag": 7984, + "jag": 36236, + "jagan": 48530, + "jagger": 30835, + "jags": 31086, + "jagu": 10096, + "jaguar": 44777, + "jaguar": 14757, + "jaguars": 21854, + "jah": 20067, + "jah": 11084, + "jahan": 44404, + "jahan": 47827, + "jai": 10542, + "jai": 13819, + "jail": 18574, + "jail": 9332, + "jailbreak": 45990, + "jailed": 19456, + "jails": 47833, + "jaime": 24716, + "jain": 21999, + "jaipur": 23593, + "jais": 48607, + "jait": 28910, + "jaitley": 32776, + "jak": 9225, + "jak": 30589, + "jakarta": 15471, + "jake": 13140, + "jake": 7419, + "jakob": 47358, + "jal": 8380, + "jal": 26773, + "jalan": 27270, + "jalap": 49081, + "jalape": 34263, + "jalapeño": 43017, + "jalen": 33548, + "jam": 1434, + "jam": 5201, + "jama": 8977, + "jama": 35366, + "jamaica": 13019, + "jamaican": 25144, + "jamal": 26108, + "jambo": 35599, + "jamboree": 38506, + "jame": 12341, + "james": 6963, + "james": 2392, + "jamesbond": 44704, + "jamesc": 47004, + "jameson": 31731, + "jami": 15092, + "jamie": 16454, + "jamie": 8078, + "jamiedor": 34310, + "jamiedornan": 34896, + "jammed": 35590, + "jammin": 35223, + "jamming": 25862, + "jammu": 25926, + "jams": 20243, + "jan": 1891, + "jan": 3334, + "jana": 18182, + "jane": 12389, + "jane": 6736, + "janeiro": 31740, + "janet": 29665, + "janet": 15872, + "jang": 41526, + "jang": 22074, + "jani": 22606, + "janice": 36048, + "janine": 46896, + "janis": 44233, + "jann": 35377, + "jans": 22578, + "jansen": 45354, + "janu": 3623, + "january": 3697, + "jap": 2299, + "jap": 49062, + "japan": 4502, + "japan": 3400, + "japanese": 27211, + "japanese": 4925, + "japs": 42121, + "jar": 5120, + "jar": 10837, + "jard": 25778, + "jardin": 37371, + "jare": 17654, + "jared": 35597, + "jared": 12571, + "jaredle": 36739, + "jaredleto": 37106, + "jaro": 35505, + "jarpad": 44497, + "jarre": 23385, + "jarrett": 30531, + "jars": 27583, + "jarvis": 29286, + "jas": 4492, + "jas": 17559, + "jasmin": 42989, + "jasmin": 47700, + "jasmine": 17056, + "jason": 10009, + "jason": 5395, + "jasper": 19827, + "jat": 26106, + "jau": 26932, + "jauregui": 48175, + "jav": 6234, + "java": 12918, + "javascri": 16289, + "javascript": 16423, + "jave": 46218, + "javed": 42268, + "javelin": 41701, + "javi": 47627, + "javier": 23307, + "jaw": 14804, + "jaw": 17307, + "jawa": 44790, + "jaws": 25491, + "jax": 22348, + "jax": 12390, + "jay": 3427, + "jay": 4155, + "jaya": 21960, + "jayanti": 37732, + "jaye": 45703, + "jayne": 35228, + "jays": 12393, + "jaz": 3465, + "jaz": 32874, + "jazeera": 38260, + "jazz": 11488, + "jazz": 4528, + "jazzfest": 36683, + "jazzy": 28191, + "jb": 21915, + "jb": 13637, + "jc": 14991, + "jc": 11517, + "jd": 18289, + "jd": 14125, + "jdm": 42013, + "je": 1013, + "je": 8776, + "jeal": 9964, + "jealous": 11093, + "jealousy": 37654, + "jean": 13943, + "jean": 6473, + "jeanette": 48167, + "jeanne": 29201, + "jeans": 10157, + "jeb": 35101, + "jec": 1347, + "ject": 6070, + "jed": 12166, + "jed": 38748, + "jeddah": 40982, + "jedi": 16681, + "jee": 29250, + "jee": 14870, + "jeep": 16593, + "jeep": 11286, + "jeeplife": 43100, + "jeet": 45542, + "jeet": 30944, + "jef": 10276, + "jeff": 6245, + "jeff": 5550, + "jefferson": 44711, + "jefferson": 13976, + "jeffery": 41470, + "jeffree": 45994, + "jeffrey": 32886, + "jeffrey": 16027, + "jeho": 42437, + "jeky": 43893, + "jekyll": 49405, + "jel": 9794, + "jelena": 48218, + "jelly": 19110, + "jelly": 13762, + "jellyfish": 30988, + "jem": 46326, + "jem": 37530, + "jen": 2554, + "jen": 12997, + "jenkins": 16162, + "jenn": 33921, + "jenn": 29869, + "jenna": 17125, + "jenner": 14260, + "jenni": 6774, + "jennie": 28875, + "jennifer": 19786, + "jennifer": 8613, + "jennings": 21564, + "jenny": 20165, + "jenny": 13414, + "jens": 40806, + "jensen": 35558, + "jensen": 19004, + "jensenackles": 41011, + "jeon": 45200, + "jeon": 43337, + "jeong": 47146, + "jeong": 39264, + "jeopar": 22988, + "jeopardy": 29613, + "jer": 2310, + "jer": 35307, + "jere": 5614, + "jeremi": 22362, + "jeremiah": 27301, + "jeremy": 14656, + "jeremy": 8127, + "jeremycorbyn": 37484, + "jeric": 25084, + "jericho": 28892, + "jerk": 23917, + "jerky": 40079, + "jermaine": 40722, + "jerome": 19876, + "jerry": 18163, + "jerry": 9164, + "jersey": 21921, + "jersey": 4471, + "jerseys": 15518, + "jerus": 12257, + "jerusalem": 12557, + "jes": 7686, + "jes": 35826, + "jess": 5313, + "jess": 13758, + "jesse": 23112, + "jesse": 11770, + "jessi": 24373, + "jessic": 14881, + "jessica": 45421, + "jessica": 8178, + "jessie": 19424, + "jester": 44225, + "jesu": 19777, + "jesuit": 33234, + "jesus": 4070, + "jet": 11515, + "jet": 6565, + "jetblue": 45021, + "jeter": 38450, + "jets": 38584, + "jets": 10025, + "jett": 44541, + "jetty": 46382, + "jew": 27450, + "jewel": 4880, + "jewel": 17591, + "jewell": 9777, + "jewellers": 46265, + "jewellery": 11192, + "jewelry": 28018, + "jewelry": 6039, + "jewels": 20205, + "jewish": 29594, + "jewish": 9104, + "jews": 14200, + "jf": 31130, + "jf": 33718, + "jfc": 43652, + "jfk": 18486, + "jg": 41986, + "jg": 35138, + "jh": 24858, + "jh": 21485, + "jha": 47012, + "jha": 38092, + "jhal": 45695, + "jhar": 31546, + "jharkhand": 39001, + "jhb": 34631, + "ji": 3252, + "ji": 2697, + "jia": 32907, + "jian": 33427, + "jiang": 43309, + "jiang": 25762, + "jic": 48350, + "jic": 40215, + "jid": 24403, + "jie": 40005, + "jig": 15136, + "jig": 47430, + "jigsaw": 32987, + "jiha": 23194, + "jihad": 29637, + "jihoon": 44765, + "jil": 36225, + "jill": 24136, + "jill": 15254, + "jillian": 37820, + "jim": 3190, + "jim": 4550, + "jima": 20679, + "jimcantore": 43950, + "jimenez": 35947, + "jimi": 30565, + "jimin": 16286, + "jimmie": 45679, + "jimmy": 12215, + "jimmy": 6817, + "jimmyfallon": 45265, + "jin": 7927, + "jin": 8485, + "jind": 40609, + "jing": 34933, + "jing": 28607, + "jingle": 28699, + "jinnah": 43141, + "jinping": 39308, + "jinx": 42977, + "jinyoung": 38051, + "jio": 40501, + "jis": 25988, + "jis": 23515, + "jisoo": 43070, + "jit": 11947, + "jit": 20308, + "jitsu": 24530, + "jiu": 43351, + "jiu": 44123, + "jj": 12502, + "jj": 12790, + "jk": 20189, + "jk": 9702, + "jkt": 21494, + "jl": 25027, + "jl": 22911, + "jlo": 31017, + "jm": 24044, + "jm": 18657, + "jn": 24576, + "jn": 21717, + "jnr": 37145, + "jnu": 47142, + "jo": 683, + "jo": 3804, + "joachim": 48979, + "joan": 28064, + "joan": 12710, + "joann": 35484, + "joanna": 25357, + "joanne": 43736, + "joanne": 25092, + "joao": 45666, + "joaqu": 25140, + "joaquin": 30745, + "job": 13114, + "job": 2075, + "jobs": 3735, + "jobsearch": 45459, + "joburg": 39343, + "jocel": 36879, + "jocelyn": 47259, + "jock": 34485, + "jockey": 20126, + "jodh": 48689, + "jodi": 36812, + "jodi": 26888, + "jodie": 33100, + "jody": 32959, + "joe": 9309, + "joe": 3305, + "joel": 19819, + "joel": 11429, + "joes": 34756, + "joey": 16281, + "joey": 10455, + "jog": 37967, + "jog": 31691, + "jogging": 37922, + "joh": 1201, + "johan": 17416, + "johan": 27789, + "johann": 31180, + "johanna": 41494, + "johannes": 37779, + "johannesburg": 28377, + "johansson": 41512, + "johar": 34871, + "john": 2004, + "john": 1742, + "johncena": 46820, + "johnnie": 47947, + "johnny": 14464, + "johnny": 6904, + "johns": 14515, + "johnson": 26036, + "johnson": 4010, + "johnston": 19791, + "johnstone": 40766, + "johor": 34750, + "join": 14737, + "join": 1384, + "joined": 4954, + "joining": 5118, + "joins": 5681, + "joint": 6640, + "jointhe": 30422, + "jointly": 37471, + "joints": 27204, + "jojo": 41484, + "jojo": 22075, + "joke": 7198, + "joker": 18200, + "jokers": 44101, + "jokes": 11336, + "joking": 26112, + "joko": 44975, + "jol": 9174, + "jol": 36470, + "jolie": 31633, + "jolla": 46109, + "jolly": 21516, + "jom": 32152, + "jon": 3026, + "jon": 6139, + "jona": 6629, + "jonah": 47934, + "jonah": 27556, + "jonas": 42373, + "jonas": 13650, + "jonathan": 19026, + "jonathan": 7762, + "jone": 33934, + "jones": 19091, + "jones": 3538, + "jong": 20214, + "jong": 14726, + "jonghyun": 29023, + "jongin": 36957, + "joni": 43177, + "jonny": 28454, + "jonny": 21895, + "joo": 25807, + "joo": 27680, + "joom": 47543, + "joon": 18547, + "joong": 26544, + "jop": 30486, + "joplin": 42688, + "jor": 2482, + "jor": 31595, + "jordan": 14644, + "jordan": 4388, + "jordani": 46898, + "jordi": 44795, + "jorge": 48761, + "jorge": 18225, + "jos": 20560, + "jos": 19661, + "jose": 4647, + "jose": 7075, + "josef": 36584, + "josel": 47800, + "joseph": 14163, + "joseph": 6478, + "josephine": 34866, + "josh": 9998, + "josh": 5679, + "joshi": 24786, + "joshu": 9112, + "joshua": 11852, + "josi": 33583, + "josie": 33167, + "joss": 42834, + "josé": 27922, + "jou": 19921, + "jou": 32029, + "jour": 2078, + "jour": 17142, + "journ": 4563, + "journal": 6626, + "journalism": 10123, + "journalist": 9914, + "journalists": 12249, + "journals": 24391, + "journe": 48833, + "journey": 32156, + "journey": 3749, + "journeys": 23329, + "journo": 37034, + "journos": 46437, + "jovi": 33866, + "joy": 6308, + "joy": 4273, + "joyce": 43753, + "joyce": 15275, + "joye": 34052, + "joyeux": 41876, + "joyful": 24139, + "joyous": 32245, + "joyride": 46949, + "joys": 22996, + "jp": 18249, + "jp": 10557, + "jpg": 36950, + "jpn": 36212, + "jr": 13973, + "jr": 3605, + "js": 46243, + "js": 8006, + "jst": 26523, + "jt": 39480, + "jt": 18119, + "ju": 669, + "ju": 9970, + "jual": 38720, + "juan": 17148, + "juan": 9274, + "juana": 9081, + "jubi": 15485, + "jubil": 47743, + "jubilee": 16907, + "juco": 31570, + "jud": 8363, + "juda": 32478, + "judah": 41066, + "judaism": 42217, + "judas": 39532, + "judd": 29770, + "judg": 20012, + "judge": 16824, + "judge": 5656, + "judged": 33453, + "judgement": 25246, + "judges": 12575, + "judging": 16570, + "judgment": 24191, + "judi": 42546, + "judice": 28032, + "judicial": 19579, + "judiciary": 24545, + "judith": 24047, + "judo": 27011, + "judy": 34663, + "judy": 16510, + "jug": 27619, + "jugg": 38628, + "juic": 38761, + "juice": 37954, + "juice": 6916, + "juices": 36757, + "juicy": 17623, + "juju": 43020, + "juke": 32519, + "jukebox": 36411, + "jul": 34662, + "jul": 15975, + "jule": 40819, + "jules": 21996, + "juli": 3614, + "juli": 49160, + "julia": 10207, + "julian": 25459, + "julian": 12643, + "juliana": 46059, + "julie": 22534, + "julie": 10505, + "julien": 32595, + "juliet": 20641, + "juliette": 44804, + "julio": 24888, + "julius": 20870, + "july": 2272, + "jum": 20791, + "jumbo": 24678, + "jume": 45989, + "jump": 5519, + "jump": 6423, + "jumped": 16901, + "jumper": 16558, + "jumpers": 36485, + "jumping": 11476, + "jumpman": 48803, + "jumps": 18911, + "jumpsuit": 31044, + "jun": 1637, + "jun": 7719, + "junction": 11320, + "june": 23188, + "june": 2345, + "jung": 13086, + "jung": 13031, + "jungkook": 20040, + "jungle": 42421, + "jungle": 10865, + "juni": 4029, + "junior": 21167, + "junior": 5027, + "juniors": 16811, + "juniper": 33829, + "junk": 16000, + "junkie": 27613, + "junkies": 41207, + "juno": 28845, + "junto": 34282, + "jupit": 15270, + "jupiter": 16212, + "jur": 15896, + "jura": 14715, + "jurassic": 28844, + "jurassic": 21255, + "jurgen": 39263, + "juris": 37010, + "jurisdic": 37714, + "jury": 12931, + "jus": 14999, + "just": 1770, + "just": 761, + "justi": 14700, + "justic": 30399, + "justice": 16904, + "justice": 3604, + "justicefor": 25812, + "justiceleague": 41929, + "justices": 44356, + "justified": 34546, + "justify": 28192, + "justin": 7537, + "justin": 4394, + "justinbieber": 12501, + "justine": 34418, + "justintrudeau": 32184, + "justsaying": 42922, + "juve": 47717, + "juve": 23092, + "juven": 12944, + "juvenile": 19333, + "juvent": 13908, + "juventus": 47378, + "juventus": 16208, + "jux": 33552, + "juxta": 34964, + "jv": 37932, + "jv": 11805, + "jw": 30221, + "jw": 24215, + "jy": 20979, + "jyo": 27378, + "jyoti": 48696, + "jä": 45381, + "k": 74, + "k": 330, + "ka": 1595, + "ka": 1525, + "kaa": 34496, + "kab": 6554, + "kab": 45134, + "kabaddi": 41749, + "kabir": 38619, + "kabo": 47974, + "kabul": 26160, + "kac": 21693, + "kach": 14341, + "kad": 10901, + "kade": 41130, + "kaduna": 38053, + "kae": 22542, + "kaeper": 30070, + "kaepernick": 30713, + "kaf": 19870, + "kag": 13666, + "kag": 31003, + "kah": 16068, + "kah": 15463, + "kahn": 35397, + "kai": 12752, + "kai": 9601, + "kaido": 40255, + "kail": 23623, + "kaine": 39028, + "kair": 33027, + "kaiser": 43685, + "kaiser": 29960, + "kait": 19326, + "kaitlyn": 34948, + "kaj": 44788, + "kaj": 40381, + "kak": 10401, + "kak": 40128, + "kaka": 47689, + "kaku": 30900, + "kal": 4187, + "kal": 18712, + "kala": 45453, + "kala": 33105, + "kalam": 40142, + "kalamaz": 42328, + "kalamazoo": 46264, + "kalb": 34483, + "kale": 17162, + "kale": 16625, + "kaleido": 41144, + "kali": 17844, + "kali": 26964, + "kalin": 42776, + "kalyan": 23825, + "kam": 4104, + "kam": 26011, + "kamal": 31371, + "kamal": 28619, + "kamala": 45003, + "kame": 45235, + "kamen": 40738, + "kami": 28707, + "kamloops": 36602, + "kamp": 35179, + "kamp": 29522, + "kampala": 37134, + "kan": 2532, + "kan": 8101, + "kana": 35178, + "kand": 17478, + "kane": 32218, + "kane": 9765, + "kang": 12226, + "kang": 20789, + "kangar": 20622, + "kangaroo": 25513, + "kani": 40907, + "kani": 41948, + "kann": 18533, + "kannada": 30053, + "kano": 28201, + "kans": 34012, + "kansas": 25507, + "kansas": 6539, + "kansascity": 46134, + "kant": 39923, + "kant": 47132, + "kanth": 24427, + "kanu": 44565, + "kany": 13590, + "kanye": 29680, + "kanye": 14965, + "kanyewest": 31943, + "kap": 6804, + "kap": 45279, + "kapam": 48561, + "kapil": 32337, + "kapil": 42709, + "kapilshar": 48978, + "kaplan": 37401, + "kapoor": 9117, + "kapp": 36717, + "kappa": 20239, + "kapur": 42371, + "kar": 1813, + "kar": 5933, + "kara": 12552, + "karab": 40916, + "karachi": 13671, + "karak": 40372, + "karan": 20077, + "karan": 20931, + "karanjohar": 47621, + "karao": 16262, + "karaoke": 16640, + "karate": 21211, + "kardashi": 13619, + "kardashian": 14578, + "kare": 14310, + "kare": 38354, + "kareem": 38885, + "kareena": 41569, + "karen": 17719, + "karen": 10349, + "kari": 15339, + "kari": 15161, + "karim": 33477, + "karin": 43917, + "karina": 40250, + "karl": 20967, + "karl": 13134, + "karla": 42309, + "karma": 17658, + "karnat": 13994, + "karnataka": 15515, + "karo": 45305, + "kart": 47841, + "kart": 21310, + "karthik": 41397, + "karti": 23053, + "kartikeyan": 32584, + "karting": 41655, + "kas": 6119, + "kas": 14372, + "kasa": 46111, + "kash": 6954, + "kash": 21371, + "kashi": 47945, + "kashmir": 20251, + "kashmir": 10783, + "kashmiri": 35331, + "kasi": 45870, + "kasi": 32819, + "kasich": 39666, + "kat": 2844, + "kat": 9341, + "kata": 14558, + "kate": 11620, + "kate": 6699, + "katelyn": 45963, + "kath": 7386, + "kath": 19745, + "katharine": 41473, + "katherine": 17687, + "kathle": 18721, + "kathleen": 21709, + "kathmandu": 34456, + "kathniel": 36159, + "kathr": 14905, + "kathryn": 33142, + "kathryn": 19999, + "kathy": 34775, + "kathy": 18795, + "kati": 6515, + "kati": 29928, + "katic": 48058, + "katie": 24117, + "katie": 9076, + "katniss": 47916, + "kato": 27573, + "katrin": 31282, + "katrina": 21397, + "katrinakaif": 45845, + "kats": 44213, + "katsu": 49296, + "katsu": 43712, + "katy": 17609, + "katy": 14435, + "katyperry": 28309, + "katz": 30790, + "kau": 9299, + "kau": 36895, + "kauai": 44050, + "kaufman": 37188, + "kaur": 30518, + "kav": 10228, + "kavan": 18576, + "kavanaugh": 20252, + "kaw": 10842, + "kaw": 42719, + "kawa": 33244, + "kawaii": 26891, + "kawasaki": 28227, + "kawhi": 41220, + "kay": 4673, + "kay": 9862, + "kaya": 22752, + "kayak": 27043, + "kayaking": 28977, + "kaye": 33003, + "kayla": 17139, + "kaylee": 47215, + "kayo": 37021, + "kaz": 8812, + "kaz": 39622, + "kazakh": 25451, + "kazakhstan": 26720, + "kazan": 47641, + "kb": 27381, + "kb": 19960, + "kbs": 27418, + "kc": 10869, + "kc": 8638, + "kca": 14347, + "kcon": 39970, + "kcr": 46181, + "kd": 21826, + "kd": 15597, + "kday": 31074, + "kdrama": 48628, + "ke": 643, + "ke": 618, + "kea": 47926, + "kean": 43288, + "keane": 28635, + "keanu": 40608, + "kear": 21562, + "kearney": 36435, + "keating": 40045, + "keaton": 29975, + "kebab": 36497, + "ked": 11730, + "ked": 1243, + "kee": 9724, + "kee": 6760, + "keef": 42323, + "keefe": 46965, + "keegan": 31122, + "keel": 48376, + "keen": 17714, + "keen": 13218, + "keenan": 36276, + "keep": 2924, + "keep": 1726, + "keeper": 7650, + "keepers": 16130, + "keepin": 41712, + "keeping": 38371, + "keeping": 4873, + "keepit": 28044, + "keeps": 6333, + "keer": 27412, + "keerth": 47500, + "keerthyofficial": 48185, + "kees": 10791, + "keg": 32785, + "keh": 41272, + "keh": 36983, + "kei": 18735, + "kei": 24835, + "keith": 18762, + "keith": 8252, + "kej": 15674, + "kejri": 16617, + "kejriwal": 17334, + "keke": 39195, + "kel": 2825, + "kel": 7553, + "kele": 41765, + "kell": 16082, + "kell": 40103, + "keller": 21407, + "kelley": 23776, + "kelli": 45852, + "kelli": 46190, + "kellie": 49224, + "kellogg": 44218, + "kelly": 13417, + "kelly": 5220, + "kelown": 31708, + "kelowna": 32963, + "kelsey": 42295, + "kelsey": 23018, + "kelvin": 32859, + "kem": 31013, + "kem": 17349, + "kemp": 18302, + "kemp": 25325, + "ken": 1838, + "ken": 1702, + "kend": 7497, + "kendal": 44836, + "kendall": 34607, + "kendall": 16238, + "kendra": 36074, + "kendrick": 41787, + "kendrick": 21953, + "kendricklamar": 47020, + "kenne": 6209, + "kennedy": 38631, + "kennedy": 9004, + "kennel": 39595, + "kenneth": 46900, + "kenneth": 17839, + "kenney": 41373, + "kenny": 20185, + "kenny": 9595, + "kens": 29765, + "kensing": 21505, + "kensington": 24988, + "kent": 13875, + "kent": 8214, + "kentu": 9045, + "kentucky": 32230, + "kentucky": 10014, + "keny": 17374, + "kenya": 6181, + "kenyan": 22624, + "kenyans": 36263, + "kenyatta": 31012, + "kenzie": 38087, + "keo": 43062, + "kept": 7737, + "ker": 2352, + "ker": 1485, + "keral": 35122, + "kerala": 11881, + "kered": 26690, + "kerel": 32232, + "keri": 43447, + "kermit": 40908, + "kern": 40150, + "kernel": 40684, + "kerr": 20491, + "kerri": 41849, + "kerry": 24795, + "kerry": 13097, + "kers": 30347, + "kers": 2880, + "kershaw": 40785, + "kerson": 42810, + "kerswednesday": 48152, + "kert": 47279, + "kes": 38398, + "kes": 1115, + "kesh": 19751, + "kesha": 36526, + "kest": 15080, + "ket": 2715, + "ket": 1236, + "ketball": 38240, + "ketch": 22590, + "ketch": 35371, + "ketchup": 26724, + "kete": 25404, + "keted": 41396, + "keting": 15951, + "keto": 27485, + "keto": 28754, + "kets": 1632, + "kett": 23124, + "kett": 10312, + "kettering": 43779, + "kettle": 41992, + "kettle": 24303, + "kev": 22758, + "kev": 29419, + "kevin": 9419, + "kevin": 4685, + "kew": 38014, + "kew": 31409, + "kex": 30251, + "key": 2891, + "key": 1458, + "keyan": 27617, + "keyboard": 13017, + "keyboards": 49237, + "keychain": 31050, + "keye": 40516, + "keye": 20635, + "keyes": 18336, + "keynes": 32462, + "keynote": 7556, + "keys": 48912, + "keys": 6355, + "keystone": 30688, + "keyword": 42284, + "keywords": 48122, + "kf": 33308, + "kf": 42119, + "kfc": 22032, + "kg": 36772, + "kg": 7817, + "kgs": 46629, + "kh": 2166, + "kh": 7452, + "kha": 7333, + "kha": 18929, + "khair": 43742, + "khaki": 41646, + "khal": 13070, + "khaled": 29343, + "khali": 11324, + "khalid": 27166, + "khalifa": 21389, + "khalil": 36229, + "kham": 24892, + "khan": 13318, + "khan": 3873, + "khand": 43384, + "khand": 31110, + "khanna": 29931, + "khar": 18340, + "khar": 28578, + "khart": 37458, + "khat": 43290, + "khe": 26360, + "kher": 43843, + "khi": 39062, + "khi": 42925, + "khil": 34101, + "khloe": 45312, + "kho": 14022, + "kho": 28774, + "khou": 30656, + "khs": 21239, + "khtar": 45593, + "khu": 14041, + "khur": 32083, + "khy": 40917, + "khz": 45604, + "ki": 848, + "ki": 2608, + "kia": 8712, + "kian": 43961, + "kian": 25708, + "kians": 44010, + "kib": 43108, + "kiba": 37207, + "kic": 24003, + "kic": 27633, + "kicchasu": 44665, + "kicchasudeep": 45560, + "kick": 4102, + "kick": 4289, + "kickass": 39299, + "kickboxing": 36041, + "kicked": 12479, + "kicker": 26338, + "kickin": 34597, + "kicking": 7802, + "kickoff": 10245, + "kicks": 6989, + "kickstart": 40780, + "kickstarter": 13228, + "kid": 3948, + "kid": 3551, + "kidd": 24082, + "kidding": 14535, + "kiddo": 36360, + "kiddos": 29205, + "kidlit": 39064, + "kidlit": 33515, + "kidlitart": 41600, + "kidman": 44931, + "kidnap": 45100, + "kidnapp": 16183, + "kidnapped": 24737, + "kidnapping": 32361, + "kidney": 37835, + "kidney": 14610, + "kids": 15561, + "kids": 1911, + "kidz": 41938, + "kie": 8544, + "kie": 3094, + "kiefer": 48026, + "kiel": 40940, + "kiel": 25509, + "kien": 28782, + "kier": 20403, + "kier": 35575, + "kieran": 29231, + "kies": 36601, + "kies": 4993, + "kiest": 29755, + "kiev": 24585, + "kiewicz": 47574, + "kigali": 40278, + "kii": 39340, + "kik": 36176, + "kiki": 23962, + "kiko": 40861, + "kil": 4912, + "kil": 39337, + "kildare": 45541, + "kili": 24386, + "kilig": 49172, + "kilimanjaro": 43470, + "kilkenny": 33805, + "kill": 6163, + "kill": 4367, + "killa": 41355, + "killarney": 48813, + "killed": 3733, + "killer": 28230, + "killer": 6613, + "killers": 17614, + "killin": 25903, + "killing": 37977, + "killing": 5923, + "killings": 24918, + "kills": 9795, + "kiln": 44150, + "kilo": 39281, + "kilom": 26285, + "kilometers": 39192, + "kilometres": 43278, + "kilt": 49319, + "kim": 4639, + "kim": 4606, + "kimber": 16796, + "kimberley": 39859, + "kimberly": 27465, + "kimchi": 41027, + "kimi": 31536, + "kimkardashian": 35400, + "kimmel": 27820, + "kimono": 40024, + "kin": 1442, + "kin": 2667, + "kina": 28518, + "kind": 7204, + "kind": 3044, + "kinda": 6612, + "kinder": 12711, + "kinder": 24159, + "kindergarten": 16749, + "kindle": 24704, + "kindle": 10746, + "kindleunlimited": 32164, + "kindly": 13952, + "kindness": 45112, + "kindness": 10614, + "kinds": 14879, + "kine": 17607, + "kineni": 49080, + "kinetic": 37699, + "king": 2365, + "king": 674, + "kingdom": 21870, + "kingdom": 7364, + "kingdomhearts": 48570, + "kingdoms": 43890, + "kingfisher": 34330, + "kingjames": 33153, + "kingly": 33642, + "kingof": 27878, + "kings": 18590, + "kings": 4232, + "kingsley": 41807, + "kingston": 40736, + "kingston": 15393, + "kini": 41644, + "kinky": 37006, + "kinney": 37233, + "kino": 39000, + "kins": 31060, + "kins": 4386, + "kinson": 12095, + "kio": 28210, + "kio": 39401, + "kiosk": 39146, + "kip": 27636, + "kip": 15986, + "kipp": 43329, + "kir": 3476, + "kir": 32949, + "kira": 33038, + "kiran": 43234, + "kiran": 36603, + "kirby": 17065, + "kiri": 34170, + "kiri": 45826, + "kirk": 10639, + "kirk": 11508, + "kirkland": 43061, + "kiro": 39749, + "kirstel": 46483, + "kirsten": 31813, + "kirsty": 37787, + "kis": 3199, + "kis": 22796, + "kish": 25662, + "kiss": 43757, + "kiss": 5946, + "kissed": 22561, + "kisses": 47876, + "kisses": 11220, + "kissing": 18637, + "kistan": 29580, + "kit": 4566, + "kit": 4274, + "kita": 29961, + "kitch": 3850, + "kitchen": 18131, + "kitchen": 4485, + "kitchener": 34428, + "kitchens": 28301, + "kite": 47777, + "kite": 19867, + "kites": 45829, + "kits": 13730, + "kitt": 10840, + "kitten": 13063, + "kittens": 17216, + "kitties": 36013, + "kitty": 25067, + "kitty": 8417, + "kiwan": 38709, + "kiwanis": 46513, + "kiwi": 22440, + "kiwis": 48108, + "kiya": 41610, + "kj": 27385, + "kj": 28238, + "kja": 41048, + "kjv": 37387, + "kk": 4390, + "kk": 10849, + "kka": 19002, + "kke": 44239, + "kker": 32399, + "kki": 44672, + "kkk": 20073, + "kkkk": 15834, + "kkkk": 47160, + "kkkkkkkk": 31042, + "kko": 43965, + "kkr": 40855, + "kl": 8498, + "kl": 14134, + "kla": 11249, + "klan": 46935, + "klar": 41374, + "klaus": 31788, + "kle": 7612, + "kle": 7432, + "klein": 33475, + "klein": 17579, + "kley": 18594, + "kli": 31640, + "klin": 44809, + "klin": 41647, + "kline": 47580, + "kling": 40270, + "klm": 38859, + "klo": 15296, + "klopp": 26446, + "kltu": 25978, + "klu": 21852, + "kly": 45090, + "km": 29954, + "km": 4590, + "kman": 33312, + "kms": 24996, + "kn": 4825, + "kn": 23693, + "knapp": 33945, + "kne": 6358, + "knee": 9897, + "knees": 19115, + "kner": 31578, + "knew": 5009, + "kni": 6312, + "knick": 33286, + "knicks": 17657, + "knife": 44176, + "knife": 8960, + "knigh": 43099, + "knight": 17949, + "knight": 7355, + "knights": 10385, + "knit": 18745, + "knit": 14313, + "knitted": 28151, + "knitting": 18863, + "knives": 20910, + "kno": 1482, + "kno": 25362, + "knob": 29736, + "knobs": 47504, + "knock": 14195, + "knock": 11583, + "knocked": 15325, + "knocking": 20380, + "knockout": 22602, + "knocks": 24296, + "knoll": 43882, + "knot": 18412, + "knots": 32428, + "know": 4179, + "know": 1038, + "knowing": 9267, + "knowledge": 27864, + "knowledge": 5510, + "knowledgeable": 43391, + "knowles": 32631, + "known": 3102, + "knows": 4309, + "knowyour": 30773, + "knox": 18630, + "knox": 21833, + "knoxville": 23232, + "knu": 14812, + "knuck": 21333, + "knuckle": 42023, + "knuckles": 40127, + "knw": 40803, + "ko": 1313, + "ko": 2448, + "koala": 36654, + "kobe": 42644, + "kobe": 14470, + "kobo": 42390, + "koch": 25331, + "kochi": 36710, + "kodak": 30425, + "kodi": 46611, + "kof": 17528, + "koff": 47303, + "kofi": 40400, + "koh": 13379, + "koh": 31216, + "kohl": 48479, + "kohli": 17549, + "koi": 28150, + "kojima": 46419, + "kok": 32045, + "kok": 11225, + "koko": 42426, + "koko": 40003, + "kol": 7142, + "kol": 31023, + "kolkata": 18011, + "kom": 6686, + "kom": 24181, + "kombat": 29670, + "kombucha": 48615, + "komo": 31820, + "kon": 5743, + "kon": 29519, + "kona": 30203, + "kong": 31784, + "kong": 6506, + "konstant": 46583, + "koo": 12225, + "koo": 40472, + "kook": 16003, + "kool": 36755, + "kool": 26444, + "kop": 16623, + "kop": 38999, + "kor": 6428, + "kor": 24175, + "kore": 3919, + "korea": 5915, + "korean": 31949, + "korean": 8034, + "kori": 42842, + "korn": 45412, + "korn": 31492, + "kors": 34535, + "kos": 47438, + "kos": 22951, + "kosh": 45233, + "kosher": 36502, + "koso": 23892, + "kosovo": 28343, + "kot": 23323, + "kot": 20701, + "kota": 21735, + "koto": 40945, + "koto": 29977, + "kou": 18502, + "kou": 39614, + "kour": 34134, + "kov": 17733, + "kov": 15156, + "kova": 26185, + "koval": 47903, + "kovic": 16886, + "kovich": 44794, + "kovsky": 33384, + "kow": 29764, + "kow": 23919, + "kowski": 17649, + "koz": 29598, + "kp": 16174, + "kp": 16894, + "kpa": 38759, + "kph": 41138, + "kpk": 42094, + "kpmg": 38243, + "kpop": 29534, + "kpop": 15859, + "kprc": 47832, + "kprs": 46253, + "kr": 7309, + "kr": 14107, + "kra": 5762, + "kraft": 28057, + "kraja": 29016, + "kraken": 48408, + "krakow": 40033, + "kram": 19075, + "kramer": 27495, + "kran": 33243, + "kranti": 47969, + "krat": 30470, + "kre": 8362, + "kreme": 43140, + "kremlin": 33979, + "kri": 3679, + "kris": 35251, + "kris": 12261, + "krish": 11487, + "krishna": 15863, + "krishnan": 46535, + "krispy": 49292, + "krist": 16490, + "kristen": 28881, + "kristen": 16644, + "kristi": 26895, + "kristin": 35408, + "kristin": 26785, + "kristina": 33180, + "krit": 36265, + "kro": 16193, + "kroger": 36344, + "kron": 25999, + "kru": 10609, + "kruger": 32948, + "krun": 43084, + "kry": 13995, + "krystal": 36554, + "ks": 10470, + "ks": 662, + "ksa": 25439, + "ksh": 36594, + "kst": 17420, + "kstate": 48590, + "ksu": 43496, + "kswx": 36180, + "kt": 17238, + "kt": 7792, + "ktm": 33989, + "ktn": 42170, + "kton": 37848, + "kts": 48577, + "ktv": 36444, + "ku": 1836, + "ku": 4827, + "kuala": 30336, + "kubball": 48995, + "kuber": 41336, + "kubernetes": 45144, + "kubrick": 37032, + "kuch": 39394, + "kud": 40818, + "kudos": 14481, + "kul": 11325, + "kul": 31514, + "kum": 18086, + "kum": 28148, + "kuma": 43139, + "kuma": 33920, + "kumar": 22329, + "kumar": 7674, + "kumb": 31391, + "kun": 6849, + "kun": 21842, + "kung": 39656, + "kung": 22347, + "kunst": 37881, + "kup": 39023, + "kups": 27240, + "kur": 4862, + "kurdi": 23504, + "kurdish": 21644, + "kurdistan": 24459, + "kurds": 20888, + "kuri": 46375, + "kuro": 28239, + "kuro": 47826, + "kurt": 31903, + "kurt": 14527, + "kus": 27618, + "kus": 27505, + "kush": 22264, + "kush": 24594, + "kushner": 36716, + "kut": 17283, + "kut": 36965, + "kuwait": 19679, + "kuya": 34815, + "kuz": 33253, + "kv": 27594, + "kv": 34249, + "kw": 10072, + "kw": 18339, + "kwa": 32784, + "kwa": 48576, + "kwame": 46681, + "kwan": 37100, + "kwan": 39447, + "kwang": 40260, + "kwe": 26050, + "kwi": 35327, + "kwon": 36369, + "kx": 28190, + "kx": 46442, + "ky": 2018, + "ky": 2383, + "kya": 29142, + "kyc": 37758, + "kyiv": 36422, + "kyle": 15847, + "kyle": 7539, + "kylie": 28282, + "kylie": 17983, + "kyliejenner": 47232, + "kylo": 47704, + "kyo": 13150, + "kyo": 6281, + "kyoto": 23223, + "kyr": 26329, + "kyrgy": 40013, + "kyrgyz": 48346, + "kyrie": 21857, + "kyu": 28296, + "kyu": 25490, + "kyuhyun": 37229, + "kyung": 41058, + "kyungsoo": 30280, + "kywx": 39940, + "kz": 48743, + "kz": 36848, + "kzn": 38264, + "kö": 32437, + "l": 75, + "l": 331, + "la": 572, + "la": 1210, + "laa": 44642, + "lab": 3537, + "lab": 4352, + "labe": 25749, + "label": 12235, + "label": 9093, + "labeled": 32720, + "labeling": 36825, + "labelled": 45188, + "labels": 17413, + "lable": 31879, + "labor": 11201, + "labor": 7878, + "laboratories": 43421, + "laboratory": 17664, + "laborday": 39324, + "labou": 32700, + "labour": 19586, + "labour": 6019, + "labourdoorstep": 37008, + "labout": 35961, + "labra": 37067, + "labrador": 25409, + "labs": 12021, + "laby": 29131, + "labyrin": 31782, + "labyrinth": 35594, + "lac": 4477, + "lac": 16189, + "lace": 30012, + "lace": 5421, + "laced": 36800, + "laces": 23281, + "lacey": 31754, + "lach": 30558, + "lack": 24915, + "lack": 8069, + "lacking": 30080, + "lacks": 34388, + "laco": 45882, + "lacrosse": 12915, + "lacy": 38645, + "lad": 15991, + "lad": 10707, + "ladak": 42312, + "ladakh": 45295, + "ladder": 16637, + "ladders": 47125, + "lade": 26447, + "laden": 28634, + "ladi": 12934, + "ladies": 28932, + "ladies": 3431, + "lads": 9803, + "lady": 7275, + "lady": 2909, + "ladybird": 43389, + "ladybug": 40038, + "ladygaga": 21232, + "laf": 47555, + "lafayette": 22683, + "lag": 30932, + "lag": 20394, + "laga": 30161, + "lage": 24369, + "lager": 36811, + "lager": 22989, + "lagh": 37237, + "laghate": 47565, + "laghateparth": 48780, + "lagi": 39786, + "lago": 42698, + "lago": 31476, + "lagoon": 22753, + "lagos": 12728, + "lagun": 18500, + "laguna": 23609, + "lah": 27315, + "lah": 4299, + "lahat": 42164, + "lahore": 16733, + "lai": 23947, + "laid": 42560, + "laid": 11160, + "lain": 46958, + "lain": 17151, + "laine": 35860, + "lair": 31981, + "lais": 34923, + "lak": 12890, + "lak": 26793, + "lake": 6441, + "lake": 2553, + "lakedistrict": 26437, + "lakel": 26133, + "lakeland": 34306, + "laker": 45717, + "lakers": 13570, + "lakes": 9265, + "lakeshore": 42595, + "lakeside": 30915, + "lakewood": 36417, + "lakh": 21487, + "lakhs": 37985, + "lakings": 34289, + "lakota": 45510, + "laksh": 24937, + "lakshmi": 39682, + "lal": 12301, + "lal": 19430, + "lala": 33661, + "lali": 21726, + "laliga": 32383, + "lam": 2022, + "lam": 5704, + "lama": 26049, + "lamar": 28678, + "lamar": 17284, + "lamb": 19863, + "lamb": 10034, + "lambda": 36687, + "lambert": 14574, + "lambeth": 43410, + "lambo": 45464, + "lamborgh": 18709, + "lamborghini": 19462, + "lambs": 30361, + "lame": 23192, + "lamin": 22337, + "laminated": 49079, + "lamo": 41461, + "lamont": 46719, + "lamp": 26700, + "lamp": 10725, + "lampard": 39989, + "lamps": 23424, + "lan": 1193, + "lan": 4872, + "lana": 15406, + "lanapar": 47437, + "lanaparrilla": 47819, + "lanc": 11872, + "lanca": 15694, + "lancashire": 20939, + "lancaster": 16446, + "lance": 26025, + "lance": 11609, + "lancer": 38195, + "lancers": 46392, + "lancia": 48698, + "lancs": 47540, + "land": 1567, + "land": 973, + "lande": 36556, + "landed": 9873, + "lander": 37247, + "lander": 9666, + "landers": 20019, + "landfall": 38465, + "landfill": 34947, + "landia": 41384, + "landing": 8292, + "landings": 46104, + "landlord": 28938, + "landlords": 35283, + "landmark": 15208, + "landmarks": 30393, + "lando": 25463, + "lando": 7065, + "landon": 32748, + "landrover": 38125, + "landry": 36137, + "lands": 40223, + "lands": 2961, + "landsc": 4384, + "landscape": 21123, + "landscape": 5727, + "landscapephotography": 28125, + "landscapes": 15344, + "landscaping": 25642, + "landslide": 31954, + "lane": 25534, + "lane": 3980, + "lanes": 10345, + "laney": 38552, + "lang": 7969, + "lang": 8578, + "lange": 32021, + "langford": 45615, + "langley": 28595, + "langu": 4095, + "language": 46103, + "language": 4781, + "languages": 13527, + "lani": 22964, + "lanka": 16221, + "lankan": 40531, + "lannister": 49056, + "lans": 43550, + "lansing": 30805, + "lant": 44504, + "lanta": 44768, + "lantern": 17185, + "lanterns": 33676, + "lantic": 32601, + "lantic": 27678, + "lants": 38425, + "lanyard": 46808, + "lao": 32475, + "lao": 29521, + "laos": 34353, + "lap": 7213, + "lap": 8639, + "lapd": 32557, + "lapel": 47961, + "lapland": 43633, + "laps": 18711, + "lapse": 33365, + "laptop": 10464, + "laptops": 32189, + "laq": 45026, + "lar": 1592, + "lar": 1652, + "lara": 19435, + "lard": 40347, + "lare": 22415, + "laredo": 48427, + "large": 40234, + "large": 3638, + "largely": 21418, + "larger": 12567, + "largest": 4960, + "largo": 44161, + "lari": 34676, + "lark": 43164, + "lark": 23536, + "larkin": 34769, + "larry": 18642, + "larry": 8242, + "lars": 8669, + "larsen": 39721, + "larson": 27973, + "larvae": 44840, + "las": 8295, + "las": 2552, + "lasag": 31210, + "lasagna": 40683, + "lasalle": 43866, + "laser": 25607, + "laser": 9885, + "lasers": 37060, + "lash": 31995, + "lash": 18480, + "lashes": 21015, + "lass": 24203, + "lass": 18263, + "lassic": 39430, + "last": 10600, + "last": 952, + "lasted": 25711, + "lasting": 13434, + "lastnight": 30159, + "lasts": 20141, + "lasvegas": 17789, + "lat": 1591, + "lat": 28437, + "lata": 47114, + "latam": 40012, + "late": 13267, + "late": 2325, + "latel": 49035, + "lately": 11824, + "latepost": 48328, + "later": 24109, + "later": 2941, + "lateral": 26646, + "latest": 46805, + "latest": 2053, + "latex": 27520, + "lati": 16357, + "latimes": 43356, + "latin": 16695, + "latin": 9888, + "latina": 27936, + "latino": 45734, + "latino": 19470, + "latinos": 40233, + "lation": 6191, + "latitude": 37392, + "lative": 15719, + "lator": 9291, + "lators": 28278, + "latt": 33561, + "latte": 17697, + "latter": 26198, + "latvia": 30034, + "lau": 1853, + "lau": 23090, + "lauderdale": 24352, + "laugh": 4969, + "laugh": 6332, + "laughed": 16746, + "laughing": 8301, + "laughs": 14322, + "laughter": 10722, + "laun": 2944, + "launch": 31168, + "launch": 2904, + "launched": 6125, + "launcher": 35782, + "launches": 7023, + "launching": 8565, + "laundering": 34079, + "laundry": 14797, + "laur": 15256, + "laura": 17091, + "laura": 7763, + "laure": 16932, + "laureate": 25675, + "laurel": 43370, + "laurel": 19942, + "lauren": 10456, + "lauren": 7634, + "laurence": 29353, + "laurent": 23226, + "laurie": 20326, + "laus": 38895, + "laus": 28111, + "lause": 22269, + "laut": 47688, + "lav": 13767, + "lav": 26919, + "lava": 16765, + "laven": 15047, + "lavender": 16033, + "laver": 28188, + "lavish": 35443, + "law": 2874, + "law": 2606, + "lawful": 33845, + "lawler": 47862, + "lawless": 39468, + "lawmaker": 37169, + "lawmakers": 21190, + "lawn": 31675, + "lawn": 11024, + "lawrence": 32221, + "lawrence": 8820, + "laws": 7306, + "lawson": 22152, + "lawsuit": 14346, + "lawsuits": 44331, + "lawyer": 10552, + "lawyers": 14232, + "lax": 17750, + "lax": 10024, + "lay": 7205, + "lay": 6360, + "laye": 25995, + "layer": 12411, + "layered": 28520, + "layers": 15900, + "laying": 12333, + "layla": 45050, + "layne": 48721, + "layo": 21738, + "layoffs": 29019, + "layout": 17314, + "lays": 19546, + "layton": 38061, + "laz": 18806, + "lazar": 33075, + "lazarus": 49126, + "laze": 41559, + "lazer": 43735, + "lazio": 33010, + "lazy": 32614, + "lazy": 10753, + "lb": 21958, + "lb": 7422, + "lbc": 37694, + "lbj": 45683, + "lbloggers": 48695, + "lbs": 8912, + "lc": 9584, + "lc": 7225, + "lcd": 21356, + "lcfc": 25339, + "lcs": 32279, + "ld": 1431, + "ld": 730, + "lder": 6945, + "lders": 43221, + "ldn": 37050, + "ldn": 2517, + "ldnont": 25827, + "ldnt": 21690, + "ldr": 37279, + "lds": 31235, + "le": 534, + "le": 579, + "lea": 2246, + "lea": 13324, + "leach": 35527, + "lead": 1328, + "lead": 2784, + "leader": 14806, + "leader": 3236, + "leaderboard": 34519, + "leaders": 3546, + "leadership": 36876, + "leadership": 3652, + "leading": 3833, + "leads": 5335, + "leaf": 9377, + "leaf": 7232, + "leaflet": 38289, + "leaflets": 39014, + "leafs": 16688, + "leafy": 42616, + "leagu": 13317, + "league": 16635, + "league": 2313, + "leagueof": 26022, + "leagueoflegends": 31737, + "leagues": 19888, + "leah": 24350, + "leah": 19308, + "leak": 42900, + "leak": 15489, + "leaked": 14353, + "leaking": 34097, + "leaks": 15657, + "leam": 39606, + "lean": 12447, + "lean": 8208, + "leaning": 24411, + "leanne": 41448, + "leans": 9357, + "leap": 29129, + "leap": 15392, + "leaps": 48080, + "lear": 1146, + "lear": 27663, + "learn": 16959, + "learn": 1768, + "learned": 6048, + "learnenglish": 49040, + "learner": 33547, + "learners": 19572, + "learning": 22632, + "learning": 2378, + "learns": 17569, + "learnt": 18959, + "leary": 36051, + "lease": 49041, + "lease": 14394, + "leased": 48352, + "leash": 36192, + "leasing": 29160, + "least": 3651, + "leather": 21417, + "leather": 5862, + "leau": 26498, + "leav": 3198, + "leave": 37512, + "leave": 3258, + "leaves": 5579, + "leaving": 5216, + "leban": 9360, + "lebanese": 23819, + "lebanon": 11695, + "leblanc": 46381, + "lebo": 44184, + "lebron": 11971, + "lebu": 47030, + "lec": 944, + "lec": 35374, + "leche": 46197, + "lect": 45392, + "lection": 18252, + "lections": 30995, + "lecture": 6617, + "lecturer": 23795, + "lectures": 21118, + "led": 8767, + "led": 912, + "ledge": 23647, + "ledge": 4815, + "ledger": 26817, + "leds": 36763, + "lee": 6224, + "lee": 2592, + "leed": 16483, + "leed": 40206, + "leeds": 38900, + "leeds": 7420, + "leek": 34585, + "leeminho": 37831, + "leen": 35311, + "leen": 15940, + "leep": 48875, + "leep": 10191, + "lees": 29324, + "lees": 34056, + "lef": 9152, + "left": 33949, + "left": 1823, + "leftist": 35143, + "lefto": 17437, + "leftover": 26414, + "leftovers": 28481, + "lefty": 33935, + "leg": 1211, + "leg": 4924, + "lega": 38674, + "legacy": 44108, + "legacy": 6447, + "legal": 17743, + "legal": 3998, + "legalization": 40584, + "legalize": 42921, + "legally": 14152, + "legate": 46009, + "lege": 8065, + "legen": 6105, + "legend": 5480, + "legend": 3539, + "legendary": 6053, + "legendof": 47915, + "legends": 6396, + "leges": 15356, + "legg": 18474, + "legg": 32511, + "legged": 25830, + "leggings": 22895, + "leggo": 43441, + "legi": 11183, + "legion": 35503, + "legion": 14525, + "legis": 7200, + "legislat": 16486, + "legislation": 14143, + "legislative": 16755, + "legislators": 31572, + "legislature": 22309, + "legit": 12563, + "legitim": 17656, + "legitimate": 24491, + "lego": 28117, + "lego": 7849, + "legos": 45359, + "legs": 7072, + "leh": 19105, + "leh": 29298, + "lehead": 28090, + "lehigh": 34527, + "lehman": 46094, + "lei": 15828, + "lei": 21830, + "leia": 32723, + "leic": 35073, + "leica": 30206, + "leice": 10026, + "leicester": 28795, + "leicester": 11510, + "leicestershire": 45358, + "leigh": 14849, + "leigh": 9292, + "leighton": 30782, + "leila": 41342, + "lein": 20026, + "lein": 28551, + "leinster": 32242, + "leip": 36401, + "leipzig": 41860, + "leis": 13133, + "leisure": 15849, + "leit": 35446, + "leith": 34141, + "lek": 26626, + "lek": 36535, + "lel": 46623, + "lele": 26075, + "lem": 10213, + "lem": 8428, + "leman": 24478, + "lemans": 26694, + "lement": 9693, + "lements": 15833, + "lemme": 23318, + "lemon": 12272, + "lemon": 7184, + "lemonade": 18884, + "lemons": 29576, + "lemore": 41147, + "len": 3687, + "len": 2159, + "lena": 22038, + "lend": 45397, + "lend": 24987, + "lender": 44734, + "lenders": 42443, + "lending": 20209, + "lene": 17628, + "leness": 36551, + "leng": 7861, + "length": 10130, + "lengths": 31858, + "lengthy": 32624, + "lenin": 41760, + "lennon": 18360, + "lennox": 45748, + "lenny": 48448, + "lenny": 30124, + "leno": 45357, + "lenovo": 25886, + "lens": 8666, + "lenses": 21264, + "lent": 20943, + "lent": 22605, + "lentil": 41511, + "lentils": 44269, + "leo": 24008, + "leo": 8312, + "leon": 6581, + "leon": 9763, + "leonard": 43849, + "leonard": 13142, + "leonardo": 20282, + "leone": 22864, + "leop": 11234, + "leopard": 15931, + "leopards": 40996, + "leopold": 45501, + "lep": 48884, + "leppard": 41656, + "lepre": 45641, + "ler": 5587, + "ler": 1803, + "lero": 15067, + "lerosis": 35455, + "leroy": 32441, + "lers": 6247, + "lery": 38184, + "les": 4339, + "les": 840, + "lesbian": 17419, + "lesbians": 43182, + "lesh": 32282, + "lesley": 25506, + "lesli": 13649, + "leslie": 16244, + "lesn": 39568, + "lesnar": 42223, + "less": 3242, + "less": 1285, + "lesser": 20369, + "lessly": 13103, + "lessness": 24847, + "lesson": 7714, + "lessons": 7199, + "lest": 24372, + "lest": 6794, + "lester": 23157, + "lester": 24023, + "lestwe": 29726, + "lestweforget": 30273, + "let": 1898, + "let": 1094, + "leta": 34319, + "lete": 34078, + "letes": 6815, + "leth": 30022, + "leth": 42462, + "lethal": 21905, + "lethbridge": 48390, + "leti": 34176, + "letics": 14504, + "letit": 46423, + "leto": 32203, + "leton": 37674, + "leton": 7462, + "lets": 10448, + "lets": 3243, + "letsgo": 16967, + "letsgo": 29789, + "letstalk": 35591, + "lett": 22428, + "lett": 9778, + "lette": 41798, + "lette": 10301, + "letter": 15567, + "letter": 4861, + "lettering": 26382, + "letterman": 38447, + "letters": 9181, + "letting": 9510, + "letto": 35449, + "lettu": 17933, + "lettuce": 18573, + "leu": 15691, + "leuke": 31031, + "leukemia": 32097, + "leum": 21571, + "leur": 45806, + "lev": 17022, + "lev": 29950, + "levan": 42543, + "leve": 36271, + "level": 21682, + "level": 2931, + "leveled": 48453, + "levels": 6295, + "leven": 44792, + "leven": 34729, + "lever": 20178, + "lever": 23094, + "leverage": 24030, + "leveraging": 37948, + "levi": 25630, + "levi": 19113, + "leviathan": 41736, + "levin": 36949, + "levine": 26594, + "levit": 22715, + "levy": 17147, + "lew": 5063, + "lew": 25329, + "lewan": 48349, + "lewd": 45241, + "lewes": 40431, + "lewi": 19589, + "lewis": 22043, + "lewis": 6020, + "lewisham": 37385, + "lewisham": 47633, + "lewishamilton": 42960, + "lewood": 37951, + "lex": 6586, + "lex": 9658, + "lexa": 48259, + "lexi": 44231, + "lexi": 24679, + "lexington": 22308, + "lexus": 20694, + "ley": 2565, + "ley": 1066, + "leye": 37061, + "leys": 45609, + "leys": 14834, + "leyton": 46573, + "lez": 26442, + "lf": 33960, + "lf": 22078, + "lfc": 37826, + "lfc": 8267, + "lfw": 28514, + "lg": 4546, + "lg": 11368, + "lga": 39348, + "lgb": 25401, + "lgbt": 11743, + "lgbt": 9592, + "lgbti": 42730, + "lgbtq": 47625, + "lgbtq": 14939, + "lgm": 39389, + "lh": 27794, + "lh": 31159, + "lhp": 45092, + "lhs": 33170, + "li": 554, + "li": 4250, + "lia": 26118, + "lia": 6964, + "liability": 29139, + "liaison": 39294, + "liam": 5258, + "liam": 7167, + "lian": 18058, + "liance": 40864, + "liar": 16334, + "liars": 23863, + "lias": 46021, + "lib": 10249, + "lib": 13345, + "libby": 36832, + "libdems": 40869, + "liber": 3425, + "liberal": 48032, + "liberal": 9985, + "liberalism": 40018, + "liberals": 15981, + "liberated": 38690, + "liberation": 19507, + "liberia": 32208, + "libertarian": 35067, + "liberties": 48623, + "liberty": 23397, + "liberty": 8480, + "libr": 2856, + "libra": 43038, + "librarian": 25148, + "librarians": 37806, + "libraries": 14277, + "library": 25713, + "library": 3519, + "libre": 49210, + "libre": 31681, + "libs": 26401, + "liby": 36390, + "libya": 16417, + "libyan": 42319, + "lic": 2508, + "lic": 3376, + "lice": 45691, + "licen": 6706, + "licence": 20550, + "license": 10337, + "licensed": 18752, + "licenses": 36414, + "licensing": 24219, + "lich": 23979, + "lich": 25875, + "lick": 29197, + "lick": 17541, + "licking": 33013, + "licks": 42117, + "lics": 44552, + "lid": 39369, + "lid": 17678, + "lidge": 45558, + "lido": 35683, + "lids": 41609, + "lie": 6570, + "lie": 2538, + "lieb": 45387, + "liebe": 37749, + "lied": 6486, + "lief": 38428, + "lien": 45716, + "lier": 3626, + "liers": 19303, + "lies": 37236, + "lies": 3205, + "liest": 14020, + "liet": 41107, + "lieu": 20401, + "lieu": 35313, + "lieutenant": 22538, + "lif": 16456, + "life": 2666, + "life": 970, + "lifeat": 27801, + "lifeboat": 37404, + "lifecycle": 49171, + "lifein": 48447, + "lifeis": 24824, + "lifeisgood": 46433, + "lifel": 15025, + "lifeline": 38438, + "lifelong": 21358, + "lifeof": 36061, + "lifesaving": 48016, + "lifespan": 49257, + "lifestyle": 46512, + "lifestyle": 7037, + "lifestyles": 48521, + "lifetime": 48737, + "lifetime": 9107, + "liff": 34404, + "liffe": 38942, + "lift": 33146, + "lift": 6779, + "lifted": 16783, + "lifter": 38555, + "lifting": 10857, + "lifts": 18291, + "lig": 19915, + "lig": 38493, + "liga": 16802, + "ligam": 31077, + "ligament": 48705, + "ligan": 27962, + "ligans": 42133, + "ligh": 7510, + "light": 3885, + "light": 1395, + "lighted": 18404, + "lighten": 32717, + "lightening": 28170, + "lighter": 14102, + "lighthouse": 13717, + "lighting": 5799, + "lightly": 26878, + "lightning": 7756, + "lightroom": 41454, + "lights": 3073, + "lightweight": 16278, + "ligu": 42920, + "ligue": 29196, + "lik": 4831, + "lik": 18495, + "like": 9175, + "like": 789, + "liked": 7112, + "likefor": 48444, + "likeli": 40666, + "likelihood": 48158, + "likely": 5256, + "liken": 36084, + "likes": 4724, + "liking": 16810, + "lil": 6012, + "lil": 4461, + "lilac": 33647, + "lili": 26686, + "lili": 48411, + "lilies": 38110, + "lillard": 47016, + "lille": 38705, + "lilli": 40920, + "lillian": 41563, + "lilly": 47825, + "lilly": 21815, + "lily": 23803, + "lily": 10647, + "lim": 2377, + "lim": 17204, + "lima": 17589, + "limb": 27061, + "limb": 32363, + "limbo": 46179, + "limbs": 34886, + "lime": 17385, + "lime": 11193, + "limel": 48658, + "limer": 16915, + "limerick": 19501, + "limestone": 27272, + "limit": 18933, + "limit": 9973, + "limitations": 32730, + "limited": 49229, + "limited": 3472, + "limiting": 35812, + "limitless": 35833, + "limits": 11966, + "limo": 33166, + "limous": 47287, + "limpopo": 47175, + "lin": 1254, + "lin": 2424, + "lina": 26110, + "lincol": 6239, + "lincoln": 16957, + "lincoln": 7454, + "lincolnshire": 29014, + "lind": 6492, + "linda": 45410, + "linda": 10760, + "linden": 44076, + "linden": 34832, + "lindo": 38467, + "lindsay": 29846, + "lindsay": 16858, + "lindsey": 29475, + "lindsey": 18128, + "line": 3674, + "line": 1148, + "linear": 19816, + "linebacker": 29848, + "lined": 11842, + "lineman": 31501, + "linen": 20032, + "liner": 11618, + "liners": 24463, + "lines": 3418, + "liness": 28633, + "lineup": 7316, + "lineups": 33589, + "ling": 4851, + "ling": 1358, + "linger": 29593, + "lingerie": 18473, + "lingering": 46494, + "lings": 11390, + "lington": 27673, + "lington": 9002, + "lingu": 34449, + "lingui": 29942, + "linguistic": 46847, + "linguistics": 48651, + "lining": 11589, + "link": 18433, + "link": 2468, + "linke": 15088, + "linked": 11059, + "linkedin": 16302, + "linkin": 40287, + "linkin": 49291, + "linking": 23296, + "links": 8113, + "linn": 37431, + "lino": 41189, + "lino": 34995, + "lins": 6567, + "linson": 15401, + "linton": 36479, + "linus": 49303, + "linux": 14061, + "lio": 19395, + "lion": 8872, + "lion": 5567, + "lionel": 19441, + "lions": 7093, + "lip": 8630, + "lip": 8546, + "lipo": 38795, + "lipp": 38074, + "lips": 8847, + "lipse": 10351, + "lipstick": 15618, + "liqu": 6310, + "lique": 32680, + "liqueur": 43612, + "liqui": 33817, + "liquid": 18366, + "liquid": 10158, + "liquidity": 42812, + "liquor": 17828, + "lis": 7297, + "lis": 12749, + "lisa": 25236, + "lisa": 7424, + "lisam": 43072, + "lisboa": 40052, + "lisbon": 17708, + "lish": 12658, + "lish": 2354, + "lished": 22620, + "lisle": 21529, + "lism": 34390, + "liss": 45489, + "liss": 35433, + "lisse": 49309, + "list": 1734, + "list": 1998, + "lista": 37812, + "listed": 6457, + "listen": 17454, + "listen": 2672, + "listened": 15347, + "listener": 34819, + "listeners": 26901, + "listening": 3656, + "listens": 25912, + "lister": 45109, + "listing": 8145, + "listings": 21987, + "liston": 48041, + "lists": 12281, + "lit": 2213, + "lit": 4350, + "lita": 30100, + "lite": 29273, + "lite": 13694, + "litecoin": 39063, + "liter": 3085, + "liter": 34904, + "literacy": 12841, + "literal": 24269, + "literally": 4719, + "literary": 13586, + "literature": 11072, + "litfest": 40369, + "lith": 37005, + "lithium": 22794, + "litho": 31088, + "lithograph": 49022, + "lithu": 21045, + "lithuania": 27068, + "liti": 24292, + "litigation": 31769, + "lito": 47381, + "litre": 25786, + "litres": 39919, + "litt": 1216, + "litt": 47583, + "litter": 45431, + "litter": 17118, + "litters": 45300, + "little": 7024, + "little": 1274, + "littlemix": 29731, + "littlest": 48969, + "litur": 36830, + "litz": 30357, + "liu": 20466, + "liv": 13895, + "liv": 19901, + "livan": 12785, + "live": 3215, + "live": 1064, + "lived": 8867, + "livel": 17973, + "liveli": 26566, + "livelihood": 46497, + "livelihoods": 47716, + "lively": 19663, + "liveme": 35396, + "livemusic": 15688, + "liven": 41057, + "liveon": 22815, + "livepd": 38742, + "livepd": 31899, + "liver": 4755, + "liver": 12639, + "liverpool": 29778, + "liverpool": 5366, + "livery": 23248, + "lives": 3247, + "livesmatter": 20348, + "livestock": 22079, + "livestream": 16844, + "livetweet": 38546, + "livin": 28061, + "living": 10965, + "living": 2815, + "livingston": 30551, + "lix": 45068, + "liz": 8632, + "liz": 12242, + "liza": 28787, + "lizard": 17221, + "lizards": 41991, + "lizasober": 44487, + "lizasoberano": 45076, + "lizz": 34430, + "lizzie": 29530, + "lizzy": 32306, + "lj": 34211, + "lj": 32273, + "lju": 44562, + "lk": 39110, + "lk": 26596, + "lka": 21881, + "ll": 1657, + "ll": 865, + "lla": 15419, + "llama": 36679, + "llan": 17281, + "llan": 38728, + "lland": 31150, + "llc": 17161, + "lle": 26550, + "lle": 29732, + "llen": 41197, + "ller": 7722, + "llers": 26426, + "lli": 47015, + "lli": 13368, + "llis": 25518, + "lll": 27177, + "llll": 34874, + "llll": 43485, + "llo": 19293, + "lloy": 10092, + "lloyd": 33339, + "lloyd": 12400, + "llp": 28042, + "lls": 40535, + "lly": 26379, + "lm": 6981, + "lm": 15282, + "lma": 4493, + "lmao": 5121, + "lmaoo": 32623, + "lmaooo": 33362, + "lmaoooo": 45232, + "lmfa": 8928, + "lmfao": 11068, + "lmfaooo": 47658, + "lmp": 43575, + "lms": 30381, + "ln": 31644, + "ln": 18654, + "lng": 22339, + "lnp": 39679, + "lo": 549, + "lo": 2982, + "loa": 39678, + "load": 4515, + "load": 2834, + "loaded": 6756, + "loader": 28492, + "loading": 9975, + "loads": 8691, + "loaf": 26467, + "loaf": 18273, + "loan": 28431, + "loan": 8176, + "loans": 14206, + "lob": 11197, + "lob": 46606, + "lobal": 34574, + "lobb": 27698, + "lobby": 12449, + "lobbying": 36047, + "lobe": 46325, + "lobes": 24148, + "lobo": 39323, + "lobos": 36586, + "lobster": 13793, + "loc": 1378, + "loc": 25826, + "local": 9202, + "local": 2029, + "localized": 49399, + "locally": 15603, + "locals": 15041, + "locate": 20490, + "located": 5677, + "location": 4372, + "locations": 9580, + "loch": 20188, + "loch": 14101, + "lock": 7201, + "lock": 4381, + "lockdown": 35636, + "locke": 29698, + "locked": 8371, + "locker": 14053, + "lockhart": 48642, + "lockheed": 36637, + "locking": 19978, + "locks": 13212, + "lockscreen": 42439, + "loco": 25555, + "locom": 22798, + "locomo": 46147, + "locomotive": 30439, + "locu": 33635, + "locust": 46237, + "lod": 45650, + "lodge": 10504, + "loe": 30113, + "loe": 25484, + "loeb": 49334, + "lof": 15011, + "loff": 31008, + "loft": 35707, + "loft": 20049, + "loftus": 46689, + "log": 3239, + "log": 7383, + "logan": 20655, + "logan": 10569, + "logans": 40752, + "logg": 43002, + "logged": 31457, + "logger": 39089, + "logging": 24444, + "logi": 3177, + "logia": 48031, + "logic": 10670, + "logical": 4791, + "logically": 24782, + "logie": 33445, + "logies": 7378, + "login": 31121, + "logist": 7407, + "logistics": 14755, + "logists": 12233, + "logne": 19911, + "logo": 31480, + "logo": 5750, + "logos": 24879, + "logs": 22745, + "logue": 27785, + "logy": 22721, + "logy": 1659, + "loh": 49129, + "loh": 37983, + "loi": 35128, + "loid": 31408, + "loin": 21760, + "loire": 46040, + "lois": 27040, + "lok": 19908, + "lok": 23575, + "loki": 24435, + "lol": 10721, + "lol": 1824, + "lola": 19065, + "lolita": 42615, + "lolla": 45483, + "lolli": 27906, + "lollipop": 34605, + "lolly": 48264, + "lolo": 16895, + "lolo": 37481, + "lolol": 25280, + "lololol": 34738, + "lolz": 35260, + "lom": 9279, + "loma": 42889, + "lombar": 25493, + "lombard": 46461, + "lombardi": 44346, + "lomond": 48941, + "lon": 1235, + "lon": 6507, + "london": 6835, + "london": 1789, + "londonmarathon": 35018, + "lone": 22220, + "lone": 13576, + "lonel": 28872, + "loneliness": 30310, + "lonely": 34509, + "lonely": 12368, + "lonelyplanet": 44984, + "long": 4792, + "long": 1538, + "longe": 25793, + "longer": 5349, + "longest": 10731, + "longevity": 35354, + "longh": 20286, + "longhorn": 41047, + "longhorns": 38295, + "longing": 38482, + "longlive": 47840, + "longs": 43618, + "longtime": 19685, + "loo": 731, + "loo": 11804, + "look": 8874, + "look": 1012, + "lookalike": 38307, + "lookbook": 39184, + "looked": 4913, + "lookin": 11254, + "looking": 36898, + "looking": 1312, + "lookout": 18330, + "looks": 1606, + "lool": 33125, + "loom": 37440, + "loom": 17199, + "looming": 35384, + "looms": 30550, + "loon": 28222, + "loona": 48137, + "looney": 45315, + "looo": 20902, + "loool": 36016, + "looool": 47038, + "looooo": 31484, + "loop": 19606, + "loop": 10408, + "loops": 21625, + "loos": 45723, + "loose": 43815, + "loose": 9786, + "loot": 21518, + "lop": 36734, + "lop": 17066, + "lopes": 49269, + "lopez": 12982, + "lor": 2179, + "lor": 11335, + "lord": 18896, + "lord": 3486, + "lorde": 35483, + "lords": 14969, + "lore": 12880, + "lore": 27218, + "loren": 13602, + "loren": 33398, + "lorenzo": 21342, + "lores": 34510, + "loretta": 40863, + "lori": 20164, + "lori": 23095, + "lorna": 46316, + "lorraine": 27602, + "lorry": 31354, + "los": 32217, + "los": 3087, + "losange": 14037, + "losangeles": 14638, + "lose": 43318, + "lose": 5354, + "loser": 18168, + "losers": 23201, + "loses": 14263, + "losing": 7918, + "loss": 34761, + "loss": 4327, + "losses": 16909, + "lost": 14258, + "lost": 2624, + "lostdog": 48482, + "lot": 5132, + "lot": 1954, + "loth": 43625, + "lothian": 31360, + "lothing": 42058, + "lotion": 25260, + "lotr": 34165, + "lots": 2958, + "lott": 42854, + "lotta": 29125, + "lotte": 16535, + "lotte": 7274, + "lottery": 16975, + "lottie": 48517, + "lotto": 28265, + "lotus": 13824, + "lou": 2207, + "lou": 9745, + "loubout": 38369, + "loud": 22884, + "loud": 7464, + "louder": 25904, + "loudest": 49214, + "loudly": 39256, + "lough": 21927, + "lough": 28045, + "loughborough": 49153, + "loui": 42173, + "louie": 25790, + "louis": 8916, + "louis": 4459, + "louisa": 40011, + "louise": 32275, + "louise": 13076, + "louisi": 12187, + "louisiana": 12946, + "louisville": 13860, + "louisvuitton": 44911, + "loun": 6466, + "lounge": 7141, + "lounging": 45430, + "lour": 29383, + "lourdes": 45071, + "louvre": 36995, + "lov": 8923, + "lov": 21229, + "lova": 37394, + "lovable": 38565, + "lovato": 18960, + "love": 2618, + "love": 793, + "lovecraft": 42405, + "loved": 3249, + "lovefl": 38884, + "loveher": 38306, + "lovehim": 45733, + "loveis": 30931, + "loveisland": 30970, + "loveislove": 43603, + "loveit": 24764, + "lovel": 8999, + "lovelies": 31412, + "lovelondon": 46493, + "lovely": 33250, + "lovely": 2165, + "lovemy": 20041, + "lovemyjob": 40130, + "loven": 33754, + "lover": 28508, + "lover": 7168, + "lovers": 48416, + "lovers": 5973, + "loves": 37773, + "loves": 3925, + "lovethe": 33040, + "lovethem": 48298, + "lovett": 47095, + "lovewins": 47687, + "loveyou": 39226, + "loveyou": 25964, + "loveyour": 26462, + "lovin": 33442, + "lovin": 16354, + "loving": 29568, + "loving": 3721, + "lovingly": 44100, + "low": 1049, + "low": 1042, + "loway": 16104, + "lowe": 17910, + "lowed": 22733, + "lowell": 24458, + "lower": 32578, + "lower": 4909, + "lowered": 34968, + "lowering": 35261, + "lowers": 36398, + "lowes": 38515, + "lowest": 12098, + "lowing": 8283, + "lowkey": 29481, + "lowry": 27444, + "lows": 4406, + "lox": 41725, + "loy": 4519, + "loy": 23929, + "loyal": 13032, + "loyalty": 14686, + "loyd": 44212, + "loyed": 29279, + "loyment": 18307, + "loyola": 32569, + "lp": 22282, + "lp": 6392, + "lpc": 44092, + "lpg": 47905, + "lpga": 34295, + "lps": 32094, + "lr": 20572, + "lr": 7041, + "lrt": 32996, + "ls": 19051, + "ls": 1268, + "lsd": 43766, + "lse": 46127, + "lse": 43886, + "lsu": 35428, + "lsu": 15672, + "lt": 13642, + "lt": 3333, + "ltc": 27664, + "ltd": 6802, + "lte": 25202, + "lton": 14237, + "lu": 664, + "lu": 9657, + "lub": 22469, + "lub": 11836, + "lubbock": 37660, + "lubric": 40963, + "luc": 7013, + "luc": 28014, + "luca": 21053, + "lucas": 23425, + "lucas": 10225, + "lucci": 45849, + "luce": 46217, + "lucent": 41552, + "lucer": 36042, + "luch": 36646, + "lucha": 38449, + "luci": 8787, + "lucia": 22290, + "luciano": 46365, + "lucid": 44540, + "lucie": 39461, + "lucifer": 46224, + "lucifer": 27687, + "lucille": 47454, + "lucin": 27523, + "luck": 9647, + "luck": 2820, + "luckiest": 42469, + "luckily": 20100, + "lucknow": 29407, + "lucky": 20495, + "lucky": 4133, + "lucrative": 41485, + "lucy": 17262, + "lucy": 10120, + "lud": 14288, + "lude": 28755, + "ludo": 40141, + "ludwig": 30633, + "lue": 45199, + "luf": 25264, + "lufc": 17818, + "luffy": 39047, + "lufthan": 37769, + "lufthansa": 39145, + "lug": 45521, + "lugg": 19673, + "luggage": 20138, + "luhan": 20975, + "luigi": 28444, + "luis": 25231, + "luis": 11339, + "luiz": 39633, + "lujah": 31639, + "luk": 21652, + "luka": 34878, + "lukaku": 37177, + "lukas": 37941, + "luke": 11970, + "luke": 5652, + "lul": 20861, + "lulla": 37019, + "lullaby": 41676, + "lulu": 32052, + "lulu": 26935, + "lum": 18112, + "lum": 5997, + "lumb": 36231, + "lumber": 27421, + "lumber": 34692, + "lumi": 41437, + "lumia": 31912, + "lumin": 15867, + "luminous": 37913, + "lump": 38704, + "lumpur": 34411, + "lun": 3221, + "lun": 49390, + "luna": 14425, + "lunar": 16043, + "lunatic": 45874, + "lunch": 10954, + "lunch": 2772, + "luncheon": 15104, + "lunches": 29705, + "lunchtime": 14330, + "lund": 30975, + "lund": 20181, + "lunes": 35648, + "lung": 38479, + "lung": 16271, + "lungs": 27366, + "lup": 27413, + "lupita": 49352, + "lupus": 36017, + "lur": 14439, + "lure": 31376, + "lures": 46747, + "lurking": 29941, + "lus": 7158, + "lusci": 38004, + "luscious": 39935, + "lush": 40382, + "lush": 16263, + "lust": 42071, + "lust": 12662, + "lustre": 46673, + "luther": 21848, + "luther": 17208, + "lutheran": 27341, + "luton": 28288, + "luv": 24726, + "luv": 8502, + "lux": 3439, + "lux": 16704, + "luxe": 26373, + "luxemb": 21314, + "luxembour": 22712, + "luxembourg": 23949, + "luxu": 16112, + "luxurious": 17292, + "luxury": 12083, + "luxury": 5247, + "luxurytravel": 29010, + "luz": 41008, + "lv": 10862, + "lv": 11184, + "lvl": 31256, + "lw": 40515, + "lw": 35115, + "lx": 30789, + "ly": 1251, + "ly": 597, + "lydia": 24316, + "lyf": 43688, + "lyfe": 30787, + "lyft": 32944, + "lying": 7175, + "lyk": 46376, + "lyle": 36828, + "lym": 20087, + "lyme": 31167, + "lymph": 30073, + "lymphoma": 37648, + "lyn": 3957, + "lyn": 5054, + "lynch": 31586, + "lynch": 13560, + "lynd": 33416, + "lynda": 42959, + "lyndon": 48518, + "lynn": 25303, + "lynn": 10667, + "lynne": 26900, + "lynx": 28941, + "lyon": 17176, + "lyons": 29453, + "lyric": 24366, + "lyric": 21291, + "lyrical": 33358, + "lyricist": 49013, + "lyrics": 9551, + "lyrix": 46814, + "lys": 45054, + "lyte": 40059, + "lywood": 4012, + "lz": 30818, + "lé": 39641, + "m": 76, + "m": 332, + "ma": 577, + "ma": 1226, + "maa": 42774, + "maa": 21555, + "maan": 33668, + "maar": 48927, + "maas": 43332, + "mab": 35639, + "mabel": 47319, + "mable": 23001, + "mably": 40082, + "mabu": 44682, + "mac": 1961, + "mac": 4945, + "macar": 21558, + "macaroni": 41824, + "macarthur": 36785, + "macau": 43984, + "macau": 33370, + "macbeth": 36321, + "macbook": 20617, + "macdonald": 20315, + "mace": 44869, + "maced": 21102, + "macedonia": 27071, + "macfar": 45374, + "macfarlane": 48825, + "mach": 2637, + "mach": 35091, + "machado": 42318, + "mache": 43220, + "macher": 29330, + "machi": 41783, + "machin": 17972, + "machine": 11539, + "machine": 4169, + "machinelearning": 13621, + "machinery": 21858, + "machines": 11108, + "machining": 45562, + "macho": 43977, + "macht": 45225, + "macin": 36533, + "mack": 8590, + "mack": 12145, + "mackay": 32497, + "macken": 48057, + "mackenzie": 22351, + "mackerel": 35002, + "mackin": 26010, + "macklemore": 41758, + "macle": 33843, + "maclean": 47137, + "macleod": 43684, + "macmillan": 36364, + "macmillan": 35191, + "macon": 35818, + "macos": 45469, + "macqu": 38365, + "macquarie": 40858, + "macro": 20891, + "macro": 16626, + "macron": 24859, + "macs": 46548, + "macy": 17113, + "macys": 47652, + "mad": 2740, + "mad": 3843, + "mada": 37799, + "madagas": 24758, + "madagascar": 25744, + "madam": 33634, + "madam": 27538, + "madame": 23507, + "madd": 31717, + "madden": 19093, + "maddie": 39959, + "maddie": 18875, + "maddow": 32644, + "maddy": 31734, + "made": 5388, + "made": 1105, + "madein": 13670, + "madeira": 33810, + "madel": 34532, + "madele": 29831, + "madeleine": 33264, + "madeline": 33905, + "madewith": 28627, + "madewithunity": 43190, + "madhu": 23000, + "madhuri": 38346, + "madhuridixit": 43889, + "madhya": 48302, + "madi": 6527, + "madi": 27282, + "madison": 24798, + "madison": 8791, + "madmen": 45452, + "madness": 8755, + "madon": 44852, + "madonna": 14137, + "madra": 27416, + "madras": 42046, + "madre": 42130, + "madri": 5529, + "madrid": 5909, + "mads": 41201, + "madu": 34913, + "madurai": 49159, + "maduro": 32912, + "mae": 16898, + "mae": 17339, + "maer": 47088, + "maestro": 24140, + "mafi": 47164, + "mafia": 14890, + "mag": 1191, + "mag": 4508, + "maga": 8694, + "magaz": 2974, + "magazine": 3113, + "magazines": 22253, + "magdal": 29673, + "mage": 46568, + "mage": 10923, + "magee": 43872, + "magenta": 38091, + "magento": 42442, + "mages": 31059, + "maggi": 29611, + "maggie": 41443, + "maggie": 14524, + "maggio": 49087, + "magh": 45555, + "magi": 19270, + "magic": 13061, + "magic": 3778, + "magical": 36408, + "magical": 7823, + "magician": 26368, + "magin": 42678, + "maging": 41310, + "magn": 10290, + "magna": 34076, + "magne": 9921, + "magnesium": 36379, + "magnet": 18240, + "magnetic": 13838, + "magnets": 33030, + "magni": 24297, + "magnific": 9725, + "magnificent": 10724, + "magnitude": 22955, + "magno": 21184, + "magnolia": 27123, + "magnu": 45198, + "magnum": 23496, + "magnus": 26275, + "magpie": 45973, + "mags": 31021, + "maguire": 26470, + "mah": 7206, + "mah": 10801, + "maha": 12237, + "maha": 33983, + "mahal": 22301, + "mahan": 45191, + "mahar": 11635, + "maharaj": 38488, + "maharashtra": 19328, + "mahat": 32434, + "mahatma": 40530, + "mahe": 15756, + "maher": 29826, + "mahesh": 33448, + "mahesh": 22095, + "mahi": 32529, + "mahi": 38659, + "mahin": 24113, + "mahindra": 31285, + "mahmoud": 41361, + "mahog": 30804, + "mahogany": 33084, + "mahon": 45864, + "mahon": 20371, + "mahone": 26634, + "mai": 7138, + "mai": 14595, + "maia": 46585, + "maid": 23148, + "maid": 10226, + "maidan": 37346, + "maiden": 37011, + "maiden": 13809, + "maids": 27305, + "maidstone": 44395, + "mail": 10478, + "mail": 2614, + "mailbox": 31482, + "mailed": 42314, + "mailing": 26680, + "mailonline": 26021, + "mails": 45213, + "main": 3904, + "main": 2623, + "maine": 18639, + "maine": 7836, + "mained": 15609, + "mainedcm": 15845, + "mainland": 27629, + "mainly": 15280, + "mains": 33656, + "mainst": 42102, + "mainstream": 18034, + "maintain": 12954, + "maintained": 26665, + "maintaining": 21964, + "maintains": 38335, + "mainten": 9399, + "maintenance": 9610, + "mais": 28153, + "maisie": 47355, + "maison": 37065, + "maison": 27626, + "mait": 26387, + "maize": 35386, + "maj": 2948, + "maj": 28723, + "maja": 47498, + "maje": 9852, + "majestic": 15335, + "majesty": 21188, + "major": 8008, + "major": 3350, + "majority": 10508, + "majors": 23597, + "mak": 11271, + "mak": 19253, + "makar": 42242, + "makati": 39402, + "make": 3232, + "make": 1078, + "makeaw": 45859, + "makeinindia": 42739, + "makeit": 26308, + "maken": 47093, + "makeover": 17926, + "maker": 15196, + "maker": 4836, + "makers": 6577, + "makerspace": 42400, + "makes": 2088, + "makeshift": 43274, + "makeu": 41707, + "makeup": 26402, + "makeup": 5853, + "makeyourown": 34090, + "makeyourownlane": 34823, + "maki": 34514, + "makin": 43096, + "makin": 22407, + "making": 17976, + "making": 1665, + "makk": 39852, + "maknae": 44118, + "mako": 49061, + "mal": 1662, + "mal": 3796, + "mala": 28290, + "malade": 36928, + "malaga": 35395, + "malala": 41137, + "malam": 48956, + "malaria": 24929, + "malawi": 23405, + "malay": 5323, + "malay": 42430, + "malayalam": 34860, + "malaysi": 39668, + "malaysia": 8146, + "malaysian": 21136, + "malbec": 47741, + "malcol": 12645, + "malcolm": 14139, + "maldives": 16795, + "male": 11326, + "male": 2801, + "males": 14426, + "malhotra": 28866, + "mali": 6701, + "mali": 22669, + "malia": 46714, + "malibu": 21723, + "malicious": 42147, + "malign": 41122, + "malik": 11394, + "mall": 10984, + "mall": 6220, + "mallorca": 28082, + "mallory": 38968, + "malls": 36447, + "malm": 44071, + "malnutrition": 41153, + "malo": 43518, + "malone": 19852, + "maloney": 45897, + "mals": 25370, + "malt": 21688, + "malta": 16989, + "maltese": 39838, + "malvern": 39356, + "malware": 24153, + "mam": 4404, + "mam": 17778, + "mama": 7133, + "mamamoo": 36012, + "mamas": 42395, + "mamba": 44189, + "mament": 45690, + "mami": 43858, + "mamma": 34893, + "mammal": 33385, + "mammals": 31987, + "mammoth": 28022, + "man": 723, + "man": 786, + "mana": 29467, + "mana": 15837, + "manafort": 40108, + "manag": 1830, + "manage": 9770, + "managed": 7928, + "management": 3319, + "manager": 3898, + "managerial": 44261, + "managers": 12853, + "manages": 29699, + "managing": 10892, + "manas": 44188, + "manatee": 46558, + "mance": 2324, + "manchester": 24424, + "manchester": 4651, + "mancini": 47681, + "mancity": 31538, + "mancrush": 36945, + "mancrushmonday": 39307, + "mand": 4325, + "mand": 27244, + "mandala": 41106, + "mandarin": 26455, + "mandate": 26228, + "mandatory": 19934, + "mandel": 34960, + "mandela": 16280, + "mandi": 38961, + "mandir": 35815, + "mando": 34006, + "mands": 12340, + "mandu": 31440, + "mandy": 41505, + "mandy": 24302, + "mane": 44471, + "mane": 16044, + "maneu": 33216, + "mang": 25616, + "mang": 31096, + "manga": 11873, + "mangal": 43027, + "manger": 48251, + "mango": 43831, + "mango": 13962, + "mangrove": 47180, + "manhatt": 10152, + "manhattan": 10961, + "mani": 5654, + "mani": 10718, + "mania": 8435, + "maniac": 31814, + "maniacs": 41444, + "manian": 40077, + "manic": 23017, + "manic": 37825, + "manicure": 33637, + "manife": 14379, + "manifest": 34422, + "manifestation": 48348, + "manifesto": 20907, + "manil": 38827, + "manila": 10969, + "manipu": 40261, + "manipul": 19237, + "manipulation": 30277, + "manipur": 47757, + "manish": 41759, + "manish": 44720, + "manit": 15693, + "manitoba": 20342, + "manjaro": 41489, + "mankind": 24155, + "manly": 25194, + "mann": 19396, + "mann": 4783, + "manne": 30160, + "manned": 26139, + "mannequin": 43388, + "manner": 20700, + "manners": 31693, + "manning": 15996, + "manny": 37054, + "manny": 20933, + "mano": 15753, + "mano": 24016, + "manoj": 41146, + "manor": 41830, + "manor": 13614, + "mans": 28422, + "mans": 7746, + "mansfield": 25543, + "manship": 15460, + "mansion": 13404, + "manslaughter": 48632, + "manson": 26715, + "mant": 25122, + "mant": 27037, + "manta": 41431, + "mantis": 39946, + "mantle": 22159, + "mantra": 25162, + "manu": 3404, + "manu": 25799, + "manual": 12268, + "manuel": 29171, + "manuel": 9567, + "manufac": 5105, + "manufacture": 27741, + "manufactured": 24010, + "manufacturer": 15668, + "manufacturers": 18763, + "manufacturing": 8386, + "manure": 47907, + "manus": 28181, + "manuscript": 24365, + "manuscripts": 40765, + "manutd": 20994, + "many": 28484, + "many": 1346, + "manziel": 40637, + "mao": 47447, + "mao": 25605, + "maori": 43400, + "map": 25180, + "map": 3923, + "maple": 21980, + "maple": 10570, + "mapleleafs": 41257, + "mapoli": 28768, + "mapp": 36894, + "mapped": 41596, + "mapping": 15231, + "maps": 8765, + "mapu": 42082, + "mar": 675, + "mar": 3091, + "mara": 15655, + "marais": 47913, + "maran": 44732, + "marath": 16274, + "marathi": 34102, + "marathon": 40764, + "marathon": 5910, + "marau": 38475, + "marbella": 36182, + "marble": 45429, + "marble": 13071, + "marbles": 42931, + "marc": 14054, + "marc": 9075, + "marca": 38242, + "marcel": 17726, + "marcel": 24652, + "marcelo": 35939, + "march": 10638, + "march": 2227, + "marche": 36173, + "marched": 37976, + "marches": 38249, + "marchfor": 31721, + "marching": 15082, + "marchmadness": 28555, + "marci": 36698, + "marcia": 41075, + "marck": 47733, + "marco": 24719, + "marco": 10924, + "marcor": 39945, + "marcorubio": 41143, + "marcos": 21696, + "marcu": 20760, + "marcus": 48955, + "marcus": 9895, + "mardi": 39728, + "mardi": 29229, + "mardigras": 43343, + "mare": 26512, + "mare": 8870, + "mares": 19724, + "marg": 44014, + "margar": 16838, + "margare": 10232, + "margaret": 12185, + "margarita": 25958, + "margaritas": 42679, + "margate": 37428, + "margin": 19464, + "margin": 21357, + "marginal": 38320, + "margins": 33763, + "margot": 37144, + "mari": 2603, + "mari": 19322, + "maria": 41109, + "maria": 6595, + "mariachi": 44299, + "mariah": 31214, + "mariah": 24789, + "mariahcarey": 36538, + "marian": 41129, + "marian": 24677, + "mariana": 44224, + "marianne": 32214, + "mariano": 43988, + "marie": 20657, + "marie": 7864, + "marietta": 46634, + "marig": 41002, + "marijuana": 9864, + "maril": 14611, + "marilyn": 38959, + "marilyn": 18489, + "marin": 8910, + "marin": 23992, + "marina": 12060, + "marinated": 33406, + "marine": 20674, + "marine": 5746, + "mariner": 39972, + "mariners": 19086, + "marines": 15018, + "marino": 30878, + "mario": 39176, + "mario": 7600, + "marion": 37765, + "marion": 18397, + "maris": 21512, + "maris": 33093, + "marisa": 42938, + "mariska": 44703, + "marissa": 31219, + "marist": 48223, + "mariti": 13124, + "maritime": 14331, + "marj": 38639, + "mark": 3805, + "mark": 2110, + "marke": 2399, + "marked": 12360, + "marker": 18170, + "markers": 23664, + "market": 11614, + "market": 2196, + "marketer": 33482, + "marketers": 23682, + "marketing": 19535, + "marketing": 2905, + "marketplace": 18241, + "markets": 7292, + "markham": 39817, + "marking": 14705, + "markings": 41046, + "markle": 32672, + "marko": 38338, + "marks": 5466, + "markus": 33725, + "marl": 24922, + "marlborough": 43515, + "marlene": 45117, + "marley": 16504, + "marlin": 34275, + "marlins": 23309, + "marlon": 32995, + "marmalade": 39068, + "marnock": 48305, + "maro": 27029, + "maroon": 20501, + "marqu": 20704, + "marque": 13012, + "marquee": 27725, + "marquette": 37624, + "marquez": 27317, + "marquis": 33530, + "marr": 32871, + "marrake": 37125, + "marrakech": 39006, + "marri": 3839, + "marriage": 38047, + "marriage": 7040, + "marriages": 38190, + "married": 6791, + "marries": 46283, + "marriott": 19211, + "marrow": 31030, + "marry": 13288, + "marrying": 40507, + "mars": 41469, + "mars": 7496, + "marsden": 43344, + "marse": 26577, + "marseille": 30365, + "marsh": 9237, + "marsh": 13505, + "marsha": 21491, + "marshal": 26608, + "marshall": 30939, + "marshall": 9811, + "marshals": 44175, + "marshes": 43450, + "marshmal": 21069, + "marshmallow": 28530, + "marshmallows": 39471, + "mart": 2348, + "mart": 7772, + "marta": 32858, + "martens": 43211, + "marth": 34493, + "martha": 16427, + "marti": 20577, + "martial": 17088, + "martialarts": 35895, + "martian": 30214, + "martin": 6929, + "martin": 3690, + "martina": 34393, + "martinez": 13913, + "marting": 47570, + "martini": 22199, + "martino": 41675, + "martins": 30569, + "marty": 9926, + "marty": 17169, + "martyn": 44075, + "martyr": 36155, + "martyr": 26067, + "martyrdom": 43110, + "martyred": 39114, + "martyrs": 24707, + "maru": 37413, + "maru": 31838, + "marvel": 13835, + "marvel": 5996, + "marvelcomics": 46897, + "marvell": 26576, + "marvellous": 28402, + "marvelous": 25487, + "marvin": 19675, + "marx": 30559, + "marx": 26001, + "marxist": 45205, + "mary": 5146, + "mary": 2676, + "maryam": 33636, + "maryam": 36393, + "maryland": 11379, + "marys": 40905, + "marys": 40228, + "mas": 5226, + "mas": 1412, + "masa": 24995, + "masa": 41868, + "masala": 31483, + "masc": 23564, + "mascar": 46984, + "mascara": 31635, + "mascot": 13983, + "mascots": 43266, + "mascul": 25589, + "masculine": 48269, + "masculinity": 40465, + "mase": 49128, + "maser": 25798, + "maserati": 30442, + "mash": 12317, + "mash": 15680, + "mashable": 41026, + "mashed": 27395, + "mashup": 27079, + "masi": 35965, + "masjid": 31420, + "mask": 19262, + "mask": 8306, + "masked": 25757, + "masking": 47046, + "masks": 19055, + "maslow": 44359, + "mason": 17424, + "mason": 9699, + "masonic": 36491, + "masonry": 30764, + "masons": 37195, + "masqu": 26593, + "masquer": 29604, + "masquerade": 36944, + "mass": 4636, + "mass": 4854, + "massach": 14484, + "massachuse": 14577, + "massachusetts": 14756, + "massacre": 14696, + "massage": 13055, + "masse": 41735, + "masses": 22978, + "massey": 29868, + "massi": 17239, + "massimo": 45821, + "massive": 4818, + "massively": 34297, + "mast": 45916, + "mast": 27920, + "master": 4534, + "master": 3498, + "mastercard": 40542, + "masterchef": 34809, + "masterclass": 17529, + "mastered": 32616, + "masterful": 46823, + "mastering": 28326, + "mastermind": 34029, + "masterpiece": 12066, + "masterpieces": 37596, + "masters": 6913, + "mastery": 34800, + "mastiff": 42311, + "maswar": 47887, + "mat": 905, + "mat": 9063, + "mata": 17270, + "match": 7733, + "match": 2439, + "matcha": 32433, + "matchday": 15947, + "matched": 17792, + "matches": 8609, + "matching": 11840, + "matchup": 19355, + "matchups": 49162, + "mate": 6137, + "mate": 2936, + "mated": 33813, + "mateo": 34991, + "mater": 23724, + "materi": 7084, + "material": 7118, + "materials": 8161, + "maternal": 26131, + "maternity": 23894, + "mates": 5817, + "math": 13277, + "math": 6025, + "mathe": 8725, + "mathemat": 11901, + "mathematical": 25609, + "mathematician": 41036, + "mathematics": 20113, + "mathew": 36333, + "mathews": 37120, + "mathi": 23014, + "mathieu": 40417, + "maths": 14763, + "mati": 12716, + "mati": 32268, + "matic": 36859, + "matic": 7900, + "matically": 38282, + "matics": 23634, + "matil": 26751, + "matilda": 36308, + "matin": 44849, + "matinee": 38525, + "mating": 34346, + "mation": 11701, + "matisse": 43446, + "mato": 13127, + "matologist": 48842, + "matology": 27940, + "matory": 25519, + "matri": 27041, + "matrix": 18078, + "mats": 22259, + "matsu": 30242, + "matt": 7972, + "matt": 3972, + "mattb": 42791, + "matte": 31237, + "matte": 19771, + "mattel": 35365, + "matteo": 33120, + "matter": 30471, + "matter": 3828, + "matters": 5708, + "matth": 41846, + "matthe": 5116, + "matthew": 17588, + "matthew": 7008, + "matthews": 16739, + "matthi": 29853, + "matthias": 45104, + "matti": 39840, + "mattress": 23438, + "matty": 31233, + "matty": 29176, + "matu": 40616, + "matur": 22897, + "mature": 14417, + "maturity": 28047, + "mau": 8134, + "mau": 23033, + "maui": 20463, + "maul": 30725, + "maur": 10574, + "maure": 25191, + "maureen": 31723, + "maurice": 20200, + "mauricio": 39066, + "mauriti": 28406, + "mauritius": 29305, + "mauro": 41691, + "mav": 25697, + "maver": 16700, + "maverick": 27425, + "mavericks": 30092, + "mavs": 30665, + "maw": 39351, + "maw": 42271, + "mawards": 37682, + "max": 4898, + "max": 3902, + "maxi": 8554, + "maxi": 23266, + "maxim": 19892, + "maxim": 38574, + "maximize": 28673, + "maximum": 13162, + "maximus": 44312, + "maxine": 38468, + "maxwell": 19611, + "maxx": 37466, + "may": 1686, + "may": 1270, + "maya": 45783, + "maya": 12987, + "mayan": 37952, + "maybe": 3746, + "mayday": 29957, + "mayer": 21196, + "mayfair": 35171, + "mayfield": 33933, + "mayhem": 21502, + "maymay": 26600, + "maymay": 33853, + "maymayentrata": 30480, + "maynard": 32487, + "mayne": 35771, + "mayo": 22449, + "mayo": 11280, + "mayor": 15429, + "mayor": 4676, + "mayoral": 28983, + "mayorof": 43533, + "mayors": 28501, + "mays": 35445, + "maythe": 42281, + "mayward": 45751, + "mayward": 23519, + "mayweather": 22774, + "maz": 9177, + "maz": 36215, + "mazda": 18506, + "maze": 21988, + "mazz": 29439, + "mañ": 37059, + "mañana": 39354, + "mb": 758, + "mb": 3996, + "mba": 8329, + "mban": 46685, + "mbar": 44452, + "mbb": 10736, + "mbc": 20137, + "mbe": 38395, + "mbe": 27004, + "mber": 5467, + "mber": 1034, + "mberg": 26372, + "mbers": 5443, + "mbi": 45347, + "mble": 20310, + "mble": 4756, + "mbles": 28693, + "mbling": 28604, + "mbo": 25733, + "mbo": 11319, + "mbps": 44896, + "mbs": 10370, + "mbta": 38979, + "mbu": 42228, + "mbuhari": 36752, + "mc": 1278, + "mc": 4126, + "mca": 40570, + "mca": 14635, + "mcal": 28663, + "mcar": 43776, + "mcbride": 35080, + "mcc": 21192, + "mccabe": 37628, + "mccaf": 47385, + "mccain": 20397, + "mccall": 34844, + "mccann": 27140, + "mccar": 9570, + "mccarthy": 16974, + "mccartney": 19958, + "mccl": 24709, + "mccla": 43672, + "mccle": 40139, + "mcclure": 44945, + "mcco": 46152, + "mccon": 32638, + "mccor": 23057, + "mccormack": 45164, + "mccormick": 39088, + "mccoy": 20218, + "mccr": 41996, + "mccre": 25393, + "mccul": 38833, + "mccull": 41782, + "mcd": 28930, + "mcder": 27355, + "mcdermott": 34504, + "mcdon": 12171, + "mcdonald": 10741, + "mcdonalds": 17674, + "mcdonnell": 34360, + "mcdowell": 34119, + "mce": 26864, + "mcel": 28752, + "mcen": 47423, + "mcfad": 36976, + "mcfadden": 42105, + "mcfar": 29020, + "mcfarlane": 47174, + "mcfc": 16416, + "mcfly": 38211, + "mcg": 42507, + "mcg": 27995, + "mcgee": 29223, + "mcgill": 46524, + "mcgill": 35511, + "mcgin": 29596, + "mcgowan": 40462, + "mcgr": 25169, + "mcgra": 29367, + "mcgrath": 28759, + "mcgraw": 40950, + "mcgregor": 19642, + "mcgu": 34294, + "mcguinness": 45299, + "mcguire": 32635, + "mci": 46212, + "mci": 45491, + "mcil": 30481, + "mcin": 18770, + "mcintosh": 45353, + "mcintyre": 33369, + "mck": 6781, + "mckay": 33611, + "mcke": 27424, + "mckee": 43529, + "mcken": 42619, + "mckenna": 24924, + "mckenzie": 25502, + "mckin": 15437, + "mckinley": 39891, + "mckinney": 33554, + "mckinnon": 48736, + "mckinsey": 48143, + "mcl": 49021, + "mcla": 12565, + "mclaren": 37381, + "mclaren": 16789, + "mclau": 32285, + "mclaughlin": 35346, + "mcle": 25299, + "mclean": 28666, + "mcleod": 40259, + "mcm": 12251, + "mcmahon": 24026, + "mcmaster": 42703, + "mcmillan": 45603, + "mcn": 42919, + "mcnam": 32682, + "mcnamara": 37506, + "mcne": 42545, + "mco": 33723, + "mcqueen": 22544, + "mcr": 29884, + "mcr": 16966, + "mcs": 27020, + "mcu": 30403, + "md": 8637, + "md": 4732, + "mdc": 38773, + "mdc": 41761, + "mds": 48746, + "mdt": 40822, + "me": 613, + "me": 614, + "mea": 46045, + "mea": 17711, + "mead": 12134, + "mead": 21567, + "meade": 37218, + "meado": 16402, + "meadow": 25213, + "meadow": 17195, + "meadows": 17178, + "meal": 29662, + "meal": 5478, + "meals": 11229, + "mean": 4189, + "mean": 3450, + "meand": 48015, + "meaning": 14586, + "meaning": 8342, + "meaningful": 17480, + "meaningless": 48932, + "meanings": 45814, + "means": 3494, + "meant": 8674, + "meantime": 27499, + "meanwhile": 9650, + "meas": 5867, + "measles": 38230, + "measurable": 48010, + "measure": 15261, + "measure": 10579, + "measured": 23154, + "measurement": 20973, + "measurements": 29894, + "measures": 11936, + "measuring": 18064, + "meat": 10805, + "meat": 6480, + "meatball": 43642, + "meatballs": 29233, + "meath": 37920, + "meatless": 48085, + "meats": 29558, + "mec": 27432, + "mecca": 36095, + "mech": 38305, + "mechan": 6715, + "mechanic": 24582, + "mechanical": 14467, + "mechanics": 20536, + "mechanism": 22576, + "mechanisms": 28610, + "meck": 41908, + "med": 1948, + "med": 2177, + "meda": 33614, + "medal": 29714, + "medal": 6974, + "medalist": 21040, + "medalists": 43397, + "medalli": 31349, + "medallion": 43469, + "medallist": 41472, + "medals": 14710, + "mede": 48225, + "meded": 27627, + "medi": 1436, + "media": 22064, + "media": 1895, + "mediac": 37490, + "median": 30491, + "mediation": 42829, + "medic": 3602, + "medic": 35441, + "medicaid": 25421, + "medical": 18432, + "medical": 4116, + "medicare": 23710, + "medication": 23771, + "medications": 37181, + "medicinal": 28772, + "medicine": 5616, + "medicines": 26541, + "medics": 46688, + "medieval": 38956, + "medieval": 10789, + "medina": 27281, + "mediocre": 41170, + "medit": 19130, + "meditate": 38039, + "meditation": 10827, + "mediter": 14194, + "mediterran": 14358, + "mediterranean": 15327, + "medium": 8675, + "medley": 24793, + "meds": 25075, + "medtech": 42044, + "medusa": 44216, + "medway": 42286, + "mee": 1725, + "mee": 14075, + "meek": 28935, + "meen": 37940, + "meen": 46515, + "meer": 26714, + "meer": 27555, + "meet": 5714, + "meet": 1633, + "meeting": 48566, + "meeting": 2071, + "meetings": 9980, + "meets": 5972, + "meetthe": 27575, + "meetup": 15430, + "meg": 11500, + "meg": 16186, + "mega": 15979, + "mega": 9068, + "megab": 38103, + "megadeth": 46741, + "megal": 37650, + "megam": 26073, + "megan": 19127, + "megan": 11503, + "megap": 33624, + "megat": 35581, + "megh": 31192, + "meghan": 39939, + "meghan": 18261, + "meh": 10512, + "meh": 22211, + "mehta": 25031, + "mei": 22564, + "mei": 25198, + "meier": 29812, + "mein": 28857, + "mein": 21466, + "meister": 28407, + "mek": 44645, + "mel": 1902, + "mel": 6834, + "mela": 35032, + "melan": 22261, + "melanch": 44818, + "melancholy": 47821, + "melani": 34031, + "melania": 32796, + "melanie": 22153, + "melanoma": 40862, + "melb": 47007, + "melb": 28980, + "melbourne": 28387, + "melbourne": 6995, + "melee": 45108, + "meli": 28885, + "melinda": 46303, + "melis": 18913, + "melissa": 41866, + "melissa": 13030, + "mell": 22531, + "mell": 41583, + "mello": 47594, + "mellon": 45162, + "mellow": 32034, + "melo": 10354, + "melo": 22374, + "melodic": 41877, + "melodies": 38412, + "melody": 19119, + "melon": 12146, + "melrose": 36296, + "melt": 22209, + "melt": 15957, + "meltdown": 30613, + "melted": 23037, + "melting": 19247, + "melton": 46062, + "melts": 31446, + "melville": 46030, + "melvin": 31544, + "mely": 6373, + "mem": 4937, + "mem": 34944, + "memb": 2114, + "member": 29566, + "member": 1640, + "members": 2567, + "membership": 11562, + "membrane": 34088, + "meme": 35157, + "meme": 9169, + "memes": 12828, + "memo": 15967, + "memo": 19334, + "memoir": 20532, + "memoirs": 45311, + "memor": 1858, + "memorab": 26271, + "memorabilia": 27488, + "memorable": 13172, + "memorial": 16285, + "memorial": 4642, + "memorialday": 21598, + "memoriam": 48191, + "memories": 4304, + "memory": 44766, + "memory": 5137, + "memph": 10285, + "memphis": 38432, + "memphis": 11298, + "men": 1552, + "men": 1656, + "mena": 23052, + "menace": 29949, + "mend": 8151, + "mend": 46927, + "mendel": 49268, + "mendes": 18060, + "mendez": 48275, + "mendo": 19327, + "mendoza": 23680, + "meng": 37102, + "meng": 37450, + "mening": 46428, + "menon": 38255, + "menopau": 34974, + "menopause": 46026, + "mens": 16924, + "mens": 10495, + "mensfashion": 27578, + "menstru": 28345, + "menstrual": 40915, + "menswear": 18803, + "ment": 1585, + "ment": 777, + "mental": 8611, + "mental": 3448, + "mentalhealth": 20593, + "mentalhealth": 13022, + "mentality": 26647, + "mentally": 14307, + "mentary": 4468, + "mentation": 9512, + "mentday": 40397, + "mente": 40302, + "mente": 36396, + "mented": 9249, + "menting": 14471, + "mention": 43881, + "mention": 6762, + "mentioned": 11948, + "mentioning": 34290, + "mentions": 12334, + "mento": 30582, + "mentor": 45342, + "mentor": 11642, + "mentoring": 19610, + "mentors": 20945, + "mentorship": 33878, + "ments": 1827, + "menu": 6225, + "menus": 33534, + "meo": 30792, + "meow": 39965, + "meow": 17246, + "mep": 27095, + "mer": 1316, + "mer": 2452, + "mera": 20028, + "merc": 34357, + "merc": 44399, + "mercado": 45479, + "merce": 8409, + "mercede": 34959, + "mercedes": 26403, + "mercedes": 10685, + "mercedesam": 40107, + "mercedesbenz": 32347, + "mercen": 40301, + "mercer": 21632, + "merch": 11504, + "merchandi": 14954, + "merchandise": 16808, + "merchandising": 49196, + "merchant": 19563, + "merchants": 34427, + "merci": 23364, + "merci": 29378, + "mercur": 11471, + "mercury": 45203, + "mercury": 12653, + "mercy": 33249, + "mercy": 10815, + "mere": 29657, + "mere": 10342, + "mered": 24657, + "mered": 32297, + "meredith": 25103, + "merely": 28718, + "merge": 30406, + "merged": 46492, + "merger": 24744, + "merging": 49256, + "meri": 17993, + "meri": 36109, + "meria": 48433, + "meric": 27097, + "merica": 30561, + "meridi": 37901, + "meridian": 31195, + "mering": 41060, + "meringue": 41661, + "merino": 42648, + "merit": 20830, + "merkel": 24715, + "merle": 48586, + "merlin": 26517, + "merlot": 40424, + "mermaid": 16064, + "mermaids": 43617, + "mero": 19097, + "merr": 48288, + "merri": 21462, + "merrill": 47713, + "merritt": 36462, + "merry": 14167, + "merry": 5779, + "merrychristmas": 19672, + "mers": 4199, + "mersal": 36711, + "mersey": 25248, + "mersey": 46239, + "merseyside": 35382, + "mert": 48496, + "merton": 35315, + "mery": 40873, + "meryl": 35787, + "mes": 28432, + "mes": 3029, + "mesa": 18956, + "mese": 42018, + "mesh": 15030, + "mesm": 18695, + "mesmer": 38435, + "mesmeri": 25985, + "mesmerizing": 35637, + "meso": 25537, + "mesqu": 46819, + "mess": 2490, + "mess": 8188, + "message": 3918, + "messages": 9390, + "messaging": 23234, + "messe": 40391, + "messed": 23580, + "messenger": 17389, + "messi": 19394, + "messi": 11252, + "messiah": 28737, + "messing": 23144, + "messy": 15987, + "mest": 23780, + "mester": 47349, + "mesut": 49177, + "met": 5249, + "met": 2340, + "meta": 14803, + "meta": 22701, + "metab": 16150, + "metabol": 48389, + "metaboli": 25573, + "metabolic": 34311, + "metabolism": 27824, + "metal": 8935, + "metal": 4044, + "metall": 19084, + "metallic": 17257, + "metallica": 24079, + "metals": 21375, + "metam": 28862, + "metamor": 39030, + "metamorpho": 47601, + "metaph": 24189, + "metaphor": 34233, + "metast": 41973, + "mete": 11226, + "meteor": 26429, + "meteor": 26823, + "meteoro": 25948, + "meteorologist": 42849, + "meter": 10104, + "meters": 13247, + "metgala": 30089, + "meth": 21867, + "meth": 26177, + "methane": 37565, + "metho": 5770, + "method": 10284, + "methodist": 25165, + "methodo": 28488, + "methodology": 37316, + "methods": 12200, + "methyl": 48999, + "metmuseum": 28207, + "meto": 25679, + "metoo": 24722, + "metr": 15086, + "metre": 27889, + "metres": 19798, + "metric": 19950, + "metrical": 40704, + "metrics": 24396, + "metro": 7257, + "metro": 6784, + "metroid": 39957, + "metropolis": 40476, + "metropolitan": 19013, + "metry": 20039, + "mets": 9633, + "mett": 28081, + "metz": 40506, + "meu": 34520, + "mew": 40368, + "mex": 3213, + "mex": 18387, + "mexic": 31728, + "mexican": 37442, + "mexican": 8186, + "mexicans": 47729, + "mexico": 31834, + "mexico": 4604, + "mey": 28584, + "mey": 27777, + "meyer": 13963, + "meyers": 32326, + "mez": 30615, + "mez": 46833, + "mezz": 38771, + "mf": 18199, + "mf": 11067, + "mfa": 24107, + "mfc": 39474, + "mfg": 21912, + "mfw": 27309, + "mg": 10003, + "mg": 8014, + "mga": 23954, + "mgm": 27572, + "mgmt": 22288, + "mgr": 31500, + "mgs": 48073, + "mgt": 48663, + "mh": 9962, + "mh": 10834, + "mha": 41944, + "mhealth": 41225, + "mhs": 28815, + "mhz": 31550, + "mi": 714, + "mi": 2251, + "mia": 5852, + "miam": 31053, + "miami": 15106, + "miami": 4891, + "mian": 24792, + "miaw": 36046, + "mib": 48178, + "mic": 1213, + "mic": 3816, + "mica": 41551, + "micah": 33870, + "mice": 19030, + "mich": 25628, + "mich": 23029, + "micha": 2083, + "michael": 6051, + "michael": 2511, + "michaela": 41897, + "michaeljackson": 33532, + "michaels": 23868, + "michal": 47144, + "miche": 37966, + "micheal": 43709, + "michel": 5158, + "michel": 17153, + "michelangelo": 41245, + "michele": 20642, + "michelin": 26330, + "michelle": 19028, + "michelle": 8625, + "michi": 5658, + "michigan": 32344, + "michigan": 6296, + "mick": 15171, + "mick": 12592, + "mickey": 41813, + "mickey": 13053, + "micky": 43011, + "micro": 3160, + "micro": 11374, + "microbes": 44671, + "microbi": 19496, + "microbial": 30335, + "microbiology": 35348, + "microbiome": 35148, + "micron": 48742, + "microphone": 24643, + "micropoetry": 35997, + "microscope": 29114, + "microscopy": 38431, + "microsof": 42424, + "microsoft": 38650, + "microsoft": 7254, + "microwave": 24240, + "mics": 16554, + "mid": 2192, + "mid": 4734, + "midcentury": 48988, + "midd": 2983, + "midday": 23390, + "middle": 9849, + "middle": 3694, + "middleeast": 32783, + "middles": 29769, + "middlesbrough": 32436, + "middlesex": 39154, + "middleton": 23627, + "middleweight": 35829, + "midfield": 28116, + "midfielder": 13423, + "midget": 30734, + "midi": 39496, + "midi": 27326, + "midland": 24822, + "midlands": 18062, + "midnight": 35746, + "midnight": 6302, + "mids": 40821, + "midst": 24752, + "midsummer": 35234, + "midterm": 34365, + "midterms": 32015, + "midtown": 26069, + "midway": 26536, + "midweek": 29120, + "midwest": 16627, + "midwi": 44802, + "midwife": 37681, + "midwives": 42355, + "mie": 20865, + "mie": 10555, + "miento": 46482, + "mier": 36490, + "mies": 8840, + "miff": 49398, + "mig": 28743, + "might": 2727, + "mighty": 26632, + "mighty": 7815, + "mign": 41678, + "migos": 44640, + "migr": 3736, + "migra": 28186, + "migraine": 35360, + "migrant": 18902, + "migrants": 15814, + "migrate": 41804, + "migrating": 43604, + "migration": 11891, + "migu": 12279, + "miguel": 33672, + "miguel": 14436, + "miho": 46870, + "mii": 39896, + "mik": 15096, + "mik": 46203, + "mika": 28609, + "mika": 25185, + "mike": 5884, + "mike": 3178, + "mikel": 48865, + "mikequind": 33508, + "mikequindazzi": 33551, + "mikey": 34934, + "mikey": 23368, + "mikha": 30999, + "mikhail": 38327, + "miki": 48863, + "miko": 35413, + "miku": 37703, + "mil": 1469, + "mil": 12826, + "mila": 26183, + "milan": 30380, + "milan": 8552, + "milano": 18585, + "milb": 42248, + "mild": 16085, + "mildly": 49059, + "mile": 7833, + "mile": 6243, + "mileage": 30579, + "miler": 44680, + "miles": 3446, + "milestone": 13485, + "milestones": 34025, + "miley": 25336, + "miley": 14321, + "mileycyrus": 28528, + "milf": 45386, + "milford": 35840, + "mili": 16698, + "miliband": 41440, + "milit": 3715, + "militant": 33629, + "militants": 23974, + "military": 24498, + "military": 4323, + "militi": 46625, + "militia": 32114, + "milk": 13409, + "milk": 5205, + "milkshake": 29066, + "milky": 37320, + "milky": 21120, + "milkyway": 43246, + "mill": 4221, + "mill": 6637, + "milla": 49381, + "millan": 34930, + "millan": 22188, + "millar": 41851, + "mille": 34066, + "millen": 48501, + "millenni": 10406, + "millennial": 28357, + "millennials": 18804, + "millennium": 21116, + "miller": 21699, + "miller": 5733, + "milli": 5340, + "millie": 29283, + "milling": 39133, + "million": 13154, + "million": 2506, + "millionaire": 25179, + "millionaires": 47159, + "millions": 8492, + "mills": 10331, + "millwall": 35902, + "milly": 45794, + "milne": 44590, + "milner": 45230, + "milo": 24548, + "milton": 39004, + "milton": 17360, + "milwau": 13452, + "milwaukee": 14259, + "mim": 39379, + "mimi": 27086, + "mimic": 47116, + "mimic": 46519, + "mimo": 45551, + "min": 771, + "min": 3331, + "mina": 15281, + "minaj": 25136, + "minal": 40222, + "minat": 33275, + "mince": 32396, + "mind": 5890, + "mind": 2575, + "mindanao": 44228, + "minded": 21330, + "mindful": 28457, + "mindfulness": 15707, + "minding": 45337, + "minds": 9244, + "mindset": 14217, + "mindy": 46875, + "mindy": 38551, + "mine": 20149, + "mine": 3347, + "minecraft": 15678, + "mined": 48034, + "minent": 12533, + "miner": 14109, + "miner": 26572, + "mineral": 17692, + "minerals": 21169, + "miners": 22119, + "mines": 16211, + "ming": 10868, + "ming": 2107, + "mingham": 7590, + "mingle": 38437, + "mingly": 36909, + "mington": 49283, + "mington": 23119, + "minh": 48734, + "minho": 21318, + "mini": 1810, + "mini": 3954, + "miniature": 44298, + "miniature": 16377, + "miniatures": 38816, + "minic": 31522, + "minim": 10005, + "minimal": 18458, + "minimalism": 42594, + "minimalist": 26641, + "minimize": 38697, + "minimum": 12244, + "minindia": 28458, + "mining": 8473, + "minion": 28622, + "minions": 27035, + "minis": 33409, + "minis": 35976, + "minister": 25688, + "minister": 3569, + "ministerial": 33008, + "ministers": 16406, + "ministries": 27895, + "ministry": 8742, + "mink": 42017, + "minn": 45991, + "minn": 47318, + "minne": 7083, + "minneapolis": 16977, + "minneso": 9380, + "minnesota": 9968, + "minnie": 24493, + "mino": 22791, + "minogue": 44202, + "minor": 8522, + "minorities": 28119, + "minority": 16210, + "minors": 36789, + "mins": 6196, + "minsk": 46151, + "minster": 11189, + "mint": 48084, + "mint": 7506, + "minted": 49377, + "minton": 20050, + "minu": 29064, + "minus": 15358, + "minute": 28931, + "minute": 4497, + "minutes": 3056, + "mio": 26366, + "mir": 2750, + "mir": 6585, + "mira": 21665, + "mira": 22762, + "mirac": 13685, + "miracle": 49208, + "miracle": 11543, + "miracles": 23478, + "miraculous": 38671, + "mirage": 28679, + "mirai": 49060, + "mirand": 32367, + "miranda": 17590, + "mire": 38140, + "mire": 30140, + "miri": 22273, + "miriam": 30950, + "miro": 34851, + "miro": 48317, + "mirren": 47600, + "mirro": 48500, + "mirror": 29823, + "mirror": 7220, + "mirrors": 21823, + "mirza": 36440, + "mis": 866, + "mis": 11239, + "mischief": 33896, + "misconceptions": 48681, + "misconduct": 30601, + "mise": 46567, + "mise": 17267, + "miser": 33394, + "miserable": 26196, + "misery": 28360, + "mises": 24390, + "misfits": 42708, + "mish": 15494, + "mish": 20981, + "misha": 35434, + "mishra": 33042, + "misleading": 30862, + "mism": 15948, + "miso": 27657, + "miso": 33441, + "misogy": 31315, + "misogyny": 48415, + "miss": 6984, + "miss": 1526, + "missal": 38337, + "missed": 3955, + "misses": 15844, + "missi": 3008, + "missile": 14411, + "missiles": 27868, + "missin": 36209, + "missing": 23509, + "missing": 3423, + "mission": 12738, + "mission": 2406, + "missionaries": 40580, + "missionary": 27915, + "missions": 6990, + "mississ": 26483, + "mississauga": 28393, + "mississi": 11687, + "mississippi": 12232, + "missou": 30710, + "missoula": 48549, + "missouri": 11835, + "missuni": 26347, + "missuniverse": 28766, + "missy": 48105, + "missy": 31515, + "missyou": 45799, + "mist": 12610, + "mist": 11946, + "mistak": 20478, + "mistake": 11303, + "mistaken": 29182, + "mistakenly": 48494, + "mistakes": 12824, + "mister": 26949, + "mister": 18895, + "mistle": 46800, + "mistletoe": 48569, + "mistre": 42039, + "mistress": 24349, + "mists": 28636, + "misty": 18799, + "misunderstood": 41574, + "misuse": 40970, + "mit": 3303, + "mit": 4551, + "mita": 47514, + "mitage": 27964, + "mitch": 6969, + "mitch": 14150, + "mitchell": 39339, + "mitchell": 9007, + "mite": 26929, + "mith": 21752, + "mith": 17948, + "miti": 17857, + "mitigate": 42273, + "mitigation": 35514, + "mito": 38254, + "mitochondri": 42132, + "mitra": 47703, + "mits": 24086, + "mitsu": 17905, + "mitsubi": 21604, + "mitsubishi": 23030, + "mitt": 17321, + "mitt": 21341, + "mitted": 10307, + "mitting": 27938, + "mitz": 41827, + "mium": 35891, + "miwx": 43941, + "mix": 3210, + "mix": 3285, + "mixed": 29376, + "mixed": 6780, + "mixer": 17200, + "mixers": 39175, + "mixes": 19061, + "mixing": 15588, + "mixtape": 11044, + "mixture": 28286, + "miy": 25695, + "miya": 36257, + "miz": 20881, + "miz": 30795, + "mize": 19076, + "mized": 43418, + "mizing": 38715, + "mizz": 19985, + "mizzou": 26165, + "mj": 13117, + "mj": 14733, + "mk": 11581, + "mk": 8937, + "mke": 36642, + "mkt": 24814, + "ml": 3627, + "ml": 5780, + "mla": 16723, + "mlas": 48464, + "mlb": 21039, + "mlb": 7482, + "mley": 40329, + "mlg": 45801, + "mlin": 24556, + "mlk": 17941, + "mlkday": 39905, + "mlm": 37611, + "mln": 18971, + "mlp": 23620, + "mlpfi": 45475, + "mlpfim": 45640, + "mls": 13077, + "mm": 1028, + "mm": 2848, + "mma": 34140, + "mma": 6096, + "mmc": 44253, + "mme": 13105, + "mmed": 19570, + "mmer": 35717, + "mmer": 7508, + "mmers": 28128, + "mmes": 42862, + "mmi": 34147, + "mming": 21038, + "mming": 16507, + "mmings": 31357, + "mmit": 41050, + "mmj": 43015, + "mmm": 37908, + "mmm": 7641, + "mmmm": 36312, + "mmmm": 13180, + "mmmmm": 21808, + "mmmmmm": 43740, + "mmo": 30418, + "mmon": 41131, + "mmor": 36657, + "mmorpg": 39476, + "mms": 37803, + "mmva": 42666, + "mmy": 28837, + "mmy": 8722, + "mn": 5086, + "mn": 4057, + "mna": 34877, + "mnd": 44776, + "mnet": 34129, + "mnf": 41105, + "mnl": 32980, + "mnleg": 42653, + "mns": 39040, + "mnt": 21477, + "mntwins": 45448, + "mnwild": 39044, + "mnwx": 39592, + "mo": 617, + "mo": 2080, + "moa": 33174, + "moana": 43241, + "mob": 2818, + "mob": 12754, + "mobi": 9451, + "mobil": 26343, + "mobil": 29815, + "mobile": 12935, + "mobile": 3451, + "mobiles": 44302, + "mobili": 20770, + "mobility": 12546, + "mobilization": 48916, + "moby": 47219, + "moc": 41439, + "moc": 36992, + "mocha": 28425, + "mochi": 47973, + "mock": 15641, + "mock": 12759, + "mocked": 47400, + "mocking": 28692, + "mocking": 37870, + "mocks": 35142, + "mod": 6362, + "mod": 10893, + "moda": 25814, + "modal": 33157, + "mode": 20402, + "mode": 6493, + "model": 4591, + "model": 2863, + "modeled": 39527, + "modeling": 13706, + "modelling": 19946, + "models": 6176, + "moder": 2894, + "moderate": 16435, + "moderated": 27928, + "moderating": 34242, + "moderator": 32659, + "modern": 11706, + "modern": 4077, + "modernart": 34417, + "moderni": 24328, + "modernism": 39601, + "modernist": 36773, + "modernization": 47294, + "modes": 30454, + "modest": 25436, + "modi": 9047, + "modi": 7774, + "modification": 37630, + "modified": 17964, + "modo": 36820, + "mods": 23843, + "modu": 9036, + "modular": 22437, + "module": 16757, + "modules": 30575, + "moe": 38655, + "moe": 17938, + "mof": 30798, + "moff": 27160, + "mog": 42362, + "moga": 41732, + "mogadishu": 45133, + "mogul": 41320, + "moh": 18979, + "moh": 35388, + "moha": 46892, + "moham": 7923, + "mohamed": 18472, + "mohammad": 19926, + "mohammed": 16168, + "mohan": 26521, + "mohan": 23586, + "mohawk": 34942, + "mohd": 49094, + "mohsin": 48861, + "moi": 20691, + "moi": 21825, + "moil": 30349, + "moines": 32091, + "moist": 19831, + "moist": 33263, + "moisture": 20412, + "moisturi": 25942, + "moj": 34505, + "moja": 49055, + "mojito": 46830, + "mojo": 25204, + "mok": 49146, + "mol": 4246, + "mol": 31582, + "mold": 21846, + "molding": 46274, + "moldova": 47317, + "mole": 9927, + "mole": 23529, + "molecular": 19370, + "molecule": 39233, + "molecules": 35643, + "molina": 34201, + "mollie": 48203, + "molly": 24368, + "molly": 12573, + "molo": 41510, + "mology": 32255, + "molten": 46071, + "moly": 47083, + "mom": 1614, + "mom": 2543, + "moma": 33605, + "mombasa": 40340, + "moment": 12197, + "moment": 2495, + "momento": 30078, + "moments": 5251, + "momentum": 15722, + "momlife": 43825, + "momma": 14508, + "mommy": 12456, + "momo": 48490, + "momo": 25980, + "moms": 28446, + "moms": 10042, + "momsdemand": 33744, + "mon": 749, + "mon": 2173, + "mona": 19143, + "monaco": 14938, + "monaghan": 39797, + "monarch": 27235, + "monarch": 22619, + "monarchs": 36750, + "monarchy": 47503, + "monaster": 19422, + "monastery": 21850, + "monc": 34847, + "moncton": 44962, + "mond": 14522, + "mond": 4475, + "monday": 6205, + "monday": 2098, + "mondaymorning": 40089, + "mondaymotiv": 45488, + "mondaymotivation": 8198, + "mondaymotivaton": 47034, + "mondays": 13815, + "monde": 29339, + "mondo": 36207, + "monds": 20317, + "mone": 25990, + "monet": 24499, + "monetary": 26394, + "moneti": 38056, + "money": 12743, + "money": 2327, + "mong": 43566, + "monger": 38928, + "mongers": 27670, + "mongo": 20680, + "mongolia": 27144, + "mongolian": 46335, + "moni": 46851, + "monia": 31161, + "monic": 30893, + "monica": 13540, + "monit": 9014, + "monitor": 10198, + "monitored": 45828, + "monitoring": 11030, + "monitors": 30478, + "monk": 30557, + "monk": 16424, + "monkey": 29597, + "monkey": 9465, + "monkeys": 15781, + "monks": 29090, + "monmouth": 36929, + "mono": 8220, + "mono": 22537, + "monochrome": 25576, + "monogram": 39665, + "monologue": 47776, + "monopoly": 25241, + "monoxide": 49314, + "monro": 45750, + "monroe": 13625, + "mons": 19885, + "monsanto": 37592, + "monsi": 46677, + "monsieur": 48879, + "monsoon": 18872, + "monsta": 30718, + "monstax": 45631, + "monste": 47045, + "monster": 14454, + "monster": 6060, + "monsters": 11546, + "mont": 5186, + "mont": 5382, + "montag": 37202, + "montage": 32325, + "montal": 42126, + "montan": 28405, + "montana": 11436, + "monte": 8711, + "monte": 14667, + "montene": 28538, + "montenegro": 30378, + "monter": 36673, + "monterey": 23388, + "monterrey": 45254, + "montess": 43205, + "montessori": 45443, + "montgom": 13852, + "montgomery": 14951, + "month": 7680, + "month": 1924, + "monthly": 8764, + "months": 3109, + "monthsary": 42420, + "monton": 41961, + "montp": 39523, + "montre": 8434, + "montreal": 9262, + "montrose": 42347, + "monty": 43997, + "monty": 24038, + "monu": 9748, + "monument": 12019, + "monumental": 31297, + "monuments": 26916, + "mony": 4117, + "monza": 40380, + "moo": 4953, + "moo": 24626, + "mood": 42358, + "mood": 5394, + "moods": 43727, + "moody": 17170, + "moom": 36887, + "moon": 6334, + "moon": 3293, + "mooney": 37942, + "moonlight": 20001, + "moons": 29887, + "moonshine": 46706, + "moor": 14817, + "moor": 11877, + "moore": 28613, + "moore": 6708, + "moors": 32577, + "moose": 37562, + "moose": 17338, + "moot": 46895, + "mop": 33900, + "mopar": 41166, + "mor": 657, + "mor": 18614, + "mora": 29262, + "moral": 11246, + "morale": 39404, + "morales": 27117, + "morality": 34133, + "morally": 42519, + "morals": 46223, + "moran": 21557, + "moray": 44569, + "more": 5434, + "more": 750, + "morecam": 37305, + "morecambe": 43414, + "mored": 20195, + "moreland": 44135, + "moreno": 24826, + "morethan": 30889, + "morg": 34284, + "morgan": 15432, + "morgan": 6075, + "morgen": 35106, + "mori": 25710, + "mori": 29514, + "moris": 43131, + "moritz": 45594, + "morley": 40439, + "mormon": 27715, + "morn": 22393, + "mornin": 28327, + "morning": 10769, + "morning": 1119, + "mornings": 12106, + "moro": 31613, + "moroc": 11996, + "moroccan": 27546, + "morocco": 15228, + "moron": 31875, + "morons": 46477, + "morow": 40779, + "morph": 23915, + "morph": 41700, + "morphe": 38978, + "morpho": 38622, + "morrha": 43044, + "morri": 9876, + "morris": 22560, + "morris": 9090, + "morrison": 40961, + "morrison": 14094, + "morrisons": 40965, + "morrissey": 30040, + "morro": 48363, + "morrow": 21611, + "mors": 13064, + "morse": 25282, + "mort": 24257, + "mort": 30583, + "mortal": 31883, + "mortal": 14680, + "mortality": 20347, + "mortar": 27258, + "mortg": 12069, + "mortgage": 13988, + "mortgages": 45391, + "mortimer": 47836, + "morton": 20698, + "morty": 37391, + "mory": 22633, + "mos": 28658, + "mos": 9593, + "mosa": 14164, + "mosa": 23809, + "mosaic": 17506, + "mosch": 47003, + "mosco": 9840, + "moscow": 10371, + "moseley": 47080, + "moses": 18451, + "mosley": 46228, + "mosqu": 15215, + "mosque": 12694, + "mosques": 41214, + "mosquit": 39699, + "mosquito": 25083, + "mosquitoes": 41870, + "moss": 25107, + "moss": 12815, + "most": 7034, + "most": 1096, + "mostly": 8829, + "mosul": 29165, + "mot": 16352, + "mot": 15452, + "mota": 42499, + "motd": 46232, + "motel": 26191, + "moth": 33208, + "moth": 11736, + "mother": 7455, + "mother": 3050, + "motherhood": 32274, + "motherland": 46774, + "mothers": 10546, + "mothersday": 15583, + "motherwell": 48104, + "moths": 29086, + "moti": 38210, + "motif": 35373, + "motion": 32139, + "motion": 7860, + "motiv": 3183, + "motivate": 26771, + "motivated": 16521, + "motivates": 44684, + "motivating": 37720, + "motivation": 26117, + "motivation": 4193, + "motivational": 32832, + "motivational": 20472, + "motivationmonday": 28703, + "motive": 36669, + "motley": 42553, + "motm": 41192, + "moto": 10646, + "moto": 11431, + "motocross": 34562, + "motogp": 16615, + "motor": 3975, + "motor": 7659, + "motorbike": 33341, + "motorcycle": 10297, + "motorcycles": 24869, + "motoring": 44491, + "motorists": 32766, + "motorola": 33738, + "motors": 14989, + "motorsport": 18371, + "motorsports": 24264, + "motorway": 31808, + "motown": 32685, + "mott": 44570, + "mott": 21708, + "motto": 23338, + "mou": 2809, + "mou": 25289, + "moud": 37698, + "moul": 25725, + "mould": 36743, + "moulin": 47656, + "moun": 2023, + "mound": 21414, + "mount": 20553, + "mount": 5532, + "mountain": 14547, + "mountain": 3965, + "mountaine": 24841, + "mountaineer": 49255, + "mountains": 5873, + "mounted": 17897, + "mounting": 29910, + "mounts": 36767, + "mour": 9053, + "mour": 42446, + "moured": 29555, + "mourinho": 18536, + "mourn": 33592, + "mourning": 24169, + "mourns": 42811, + "mous": 24837, + "mous": 17425, + "mouse": 33032, + "mouse": 9301, + "mousse": 31869, + "moustache": 32795, + "mouth": 15152, + "mouth": 4932, + "mouths": 38518, + "mov": 23950, + "move": 16624, + "move": 2783, + "moved": 6997, + "movember": 23474, + "movement": 5208, + "movements": 19665, + "mover": 37673, + "movers": 33957, + "moves": 6880, + "movi": 1707, + "movic": 43838, + "movie": 11247, + "movie": 2016, + "movies": 4772, + "moving": 32160, + "moving": 3584, + "mow": 31006, + "mow": 36329, + "mower": 30895, + "mowing": 46424, + "mowx": 44263, + "moy": 27276, + "moy": 34205, + "moyes": 37119, + "moz": 14761, + "moz": 43738, + "mozam": 26648, + "mozambique": 28831, + "mozart": 22132, + "mozz": 26317, + "mozzarella": 27845, + "mp": 1037, + "mp": 1246, + "mpa": 30749, + "mpc": 38560, + "mpd": 33814, + "mped": 28134, + "mper": 22803, + "mpg": 39830, + "mpg": 37454, + "mpgvip": 42149, + "mph": 5306, + "mpi": 43263, + "mping": 27999, + "mple": 21139, + "mplo": 47071, + "mpls": 34298, + "mpo": 33674, + "mpp": 39570, + "mps": 5504, + "mption": 9717, + "mpton": 27448, + "mpu": 47156, + "mpus": 25864, + "mpy": 17192, + "mq": 19103, + "mqm": 24687, + "mr": 3139, + "mr": 1982, + "mra": 44568, + "mrc": 25897, + "mri": 24773, + "mrs": 25003, + "mrs": 4255, + "mrt": 30256, + "mru": 22370, + "mrw": 15303, + "ms": 3525, + "ms": 988, + "msa": 36306, + "msc": 31826, + "msc": 20529, + "msd": 25804, + "msd": 36407, + "msdhoni": 32850, + "msf": 36239, + "msg": 44430, + "msg": 10928, + "msh": 41751, + "msi": 43597, + "msi": 45278, + "msk": 38501, + "msl": 42736, + "msm": 22210, + "msn": 18824, + "msn": 41042, + "msnbc": 20245, + "mson": 27773, + "mson": 12298, + "msp": 41445, + "msp": 22318, + "mss": 42136, + "mss": 48610, + "mst": 26335, + "msu": 26763, + "msu": 17298, + "mswx": 42957, + "msy": 43919, + "mt": 4252, + "mt": 3284, + "mta": 28691, + "mtb": 48306, + "mtb": 18747, + "mtc": 42482, + "mtg": 49142, + "mtg": 13648, + "mth": 48151, + "mtl": 22135, + "mtn": 26041, + "mtn": 18953, + "mtr": 46650, + "mts": 38751, + "mtv": 8099, + "mtv": 12555, + "mtvbr": 47258, + "mtvhottest": 16751, + "mtvstars": 19948, + "mu": 670, + "mu": 6411, + "mua": 21395, + "muay": 44910, + "muaythai": 47763, + "mubarak": 17957, + "muc": 49115, + "much": 14300, + "much": 1238, + "mucha": 42191, + "muchas": 26278, + "mucho": 19864, + "muck": 44731, + "muck": 45330, + "mud": 17491, + "mud": 11673, + "mudder": 49104, + "muddy": 21524, + "mue": 44383, + "mue": 40717, + "mueller": 46863, + "mueller": 14719, + "muen": 48646, + "muer": 33840, + "muf": 33852, + "mufc": 9013, + "muffin": 22696, + "muffins": 25922, + "mufti": 44930, + "mug": 16339, + "mug": 9722, + "mugabe": 36441, + "mughal": 37508, + "mugs": 22852, + "mugshot": 40028, + "muh": 36335, + "muh": 46475, + "muham": 10043, + "muhammad": 12259, + "muir": 44650, + "muir": 24745, + "muj": 44635, + "muk": 17327, + "muk": 32600, + "mukher": 34575, + "mukherjee": 37862, + "mul": 1899, + "mul": 43193, + "mula": 40937, + "mulator": 17463, + "mulberry": 39221, + "mule": 28695, + "mull": 17313, + "mull": 35310, + "mulled": 44641, + "mullen": 30797, + "muller": 33956, + "mullet": 35010, + "mulligan": 44336, + "mullins": 41265, + "mult": 34219, + "multi": 3947, + "multi": 6400, + "multic": 21683, + "multicul": 28004, + "multicultural": 34667, + "multil": 27975, + "multimedia": 27977, + "multin": 38996, + "multinational": 46540, + "multip": 40314, + "multiplayer": 27460, + "multiple": 6470, + "multipurpose": 47665, + "multit": 27814, + "multitasking": 48684, + "mulus": 26180, + "mum": 15565, + "mum": 4030, + "mumb": 5850, + "mumbai": 24279, + "mumbai": 6971, + "mumford": 46184, + "mummy": 16301, + "mums": 17868, + "mun": 2617, + "mun": 21059, + "muna": 48424, + "munch": 23587, + "munch": 33299, + "munchies": 44324, + "munchkin": 41305, + "mund": 14244, + "mundo": 20990, + "muni": 27327, + "muni": 39795, + "munich": 13526, + "munici": 12159, + "municipal": 43667, + "municipal": 16600, + "municipality": 29987, + "munition": 32668, + "munro": 36501, + "munster": 27201, + "mup": 21966, + "muppet": 40598, + "muppets": 40187, + "mups": 42195, + "mur": 2144, + "mur": 18293, + "mura": 45176, + "mural": 12315, + "murals": 31499, + "murder": 28136, + "murder": 5787, + "murdered": 13158, + "murderer": 26956, + "murderers": 48472, + "murdering": 36055, + "murders": 22409, + "murdoch": 29037, + "murphy": 48976, + "murphy": 8914, + "murray": 31978, + "murray": 7513, + "murs": 38783, + "mus": 2198, + "mus": 8103, + "musa": 30540, + "musc": 5696, + "muscat": 33322, + "muscle": 27323, + "muscle": 9269, + "muscles": 16786, + "muscular": 30606, + "muse": 2369, + "muse": 15686, + "museo": 36457, + "muses": 48243, + "museu": 27087, + "museum": 15602, + "museum": 2786, + "museums": 15542, + "museumweek": 37996, + "mush": 7635, + "mushroom": 13011, + "mushrooms": 14730, + "musi": 15628, + "music": 4110, + "music": 1179, + "musica": 26668, + "musical": 36002, + "musical": 5173, + "musically": 48893, + "musicals": 36974, + "musichistory": 37890, + "musician": 11179, + "musicians": 12498, + "musicislife": 43311, + "musicmonday": 35887, + "musicvideo": 26764, + "musik": 32986, + "musings": 44961, + "musique": 42250, + "musk": 32143, + "musk": 19063, + "muskete": 32775, + "musketeers": 37993, + "musko": 34987, + "muskoka": 40832, + "musli": 4958, + "muslim": 43795, + "muslim": 7060, + "muslims": 10513, + "muss": 41493, + "mussels": 33393, + "must": 6783, + "must": 2048, + "mustache": 23451, + "mustaf": 23596, + "mustafa": 29000, + "mustang": 42361, + "mustang": 13309, + "mustangs": 22500, + "mustard": 15794, + "muster": 47361, + "mustread": 28978, + "mut": 12598, + "mut": 22839, + "mutant": 28384, + "mutation": 38626, + "mutations": 39651, + "mute": 31252, + "muted": 48028, + "muth": 34280, + "mutil": 39950, + "mutt": 45924, + "mutu": 17574, + "mutual": 15055, + "mutuals": 31158, + "muy": 44625, + "mv": 10580, + "mv": 8269, + "mvc": 40549, + "mvp": 8905, + "mw": 16725, + "mw": 11206, + "mwc": 24289, + "mwf": 48565, + "mx": 21947, + "mx": 9575, + "my": 1152, + "my": 607, + "mya": 31401, + "myal": 42735, + "myan": 13761, + "myanmar": 14764, + "myart": 38826, + "myco": 48362, + "mydayin": 41896, + "mydayinla": 42801, + "mydubai": 43475, + "mye": 27551, + "myel": 40084, + "myers": 15993, + "myjaps": 47939, + "myle": 43700, + "myles": 25511, + "mylife": 30537, + "mylittle": 37757, + "mylittlepony": 45107, + "myo": 16206, + "myr": 20272, + "myra": 35694, + "myri": 34972, + "myrt": 47785, + "myrtle": 27768, + "mys": 11724, + "myself": 3245, + "mysore": 44924, + "myspace": 41382, + "myster": 4669, + "mysteries": 20605, + "mysterious": 12650, + "mystery": 39828, + "mystery": 6711, + "mysti": 28711, + "mystic": 36264, + "mystic": 23722, + "mystical": 34122, + "myth": 20322, + "myth": 13878, + "mythical": 34377, + "mytho": 43857, + "mythology": 22496, + "myths": 18675, + "mz": 29509, + "mz": 33400, + "mzan": 36322, + "mzansi": 43301, + "má": 36842, + "mé": 21890, + "méxico": 46159, + "mü": 28142, + "mün": 41235, + "n": 77, + "n": 333, + "na": 1097, + "na": 1272, + "naa": 37738, + "naacp": 32176, + "nab": 6951, + "nab": 19440, + "nabe": 35111, + "naby": 24800, + "nac": 14557, + "nac": 18950, + "nach": 12168, + "nach": 43622, + "nacho": 35647, + "nachos": 32847, + "nacht": 37261, + "nacional": 38782, + "nad": 6204, + "nad": 43928, + "nada": 31683, + "nadal": 20814, + "nade": 24908, + "nadi": 30512, + "nadia": 27487, + "nadine": 23356, + "nadu": 20936, + "nae": 19374, + "naf": 16161, + "naf": 45956, + "nafta": 43123, + "nag": 6694, + "nag": 23902, + "naga": 45953, + "naga": 38997, + "nagar": 17490, + "nage": 41219, + "nago": 38349, + "nagoya": 43303, + "nagpur": 43328, + "nah": 26421, + "nah": 11129, + "nahi": 35244, + "nai": 6230, + "nai": 10692, + "naia": 31340, + "naidu": 42429, + "naija": 16326, + "naik": 34424, + "nail": 19459, + "nail": 9059, + "nailart": 43532, + "nailed": 19035, + "nails": 8469, + "nair": 27107, + "naira": 39450, + "naire": 48892, + "nairobi": 17756, + "nais": 46396, + "naissance": 44761, + "naive": 43362, + "naj": 30985, + "naji": 32589, + "nak": 9248, + "nak": 25550, + "naked": 46371, + "naked": 11478, + "naku": 39864, + "nal": 14132, + "nal": 3119, + "nale": 27198, + "nall": 32869, + "nally": 26158, + "nam": 1410, + "nam": 12344, + "nama": 39586, + "naman": 27635, + "namaste": 35549, + "name": 18160, + "name": 1981, + "named": 3194, + "nameis": 40831, + "nament": 3916, + "naments": 16540, + "names": 6130, + "namesake": 41298, + "nami": 20393, + "namibia": 23731, + "naming": 19367, + "namjoon": 31986, + "namm": 35524, + "namo": 46013, + "namo": 24854, + "nan": 4375, + "nan": 7750, + "nana": 18761, + "nanaimo": 40518, + "nancy": 21511, + "nancy": 11425, + "nand": 20435, + "nandez": 12764, + "nando": 46044, + "nang": 48148, + "nani": 27980, + "nanny": 31104, + "nano": 15835, + "nano": 22006, + "nanop": 34177, + "nanotechnology": 42235, + "nanow": 46734, + "nant": 22526, + "nantes": 47533, + "nantucket": 41573, + "nao": 39319, + "naom": 34955, + "naomi": 20173, + "nap": 6568, + "nap": 11012, + "napa": 20545, + "napier": 40875, + "napkin": 38930, + "naples": 23560, + "napo": 18715, + "napol": 20122, + "napoleon": 24969, + "napoli": 22445, + "napp": 11359, + "napping": 37657, + "naps": 31317, + "naq": 46453, + "nar": 2977, + "nar": 20145, + "nara": 33823, + "narcis": 25229, + "narcissi": 35442, + "narco": 38461, + "nard": 18216, + "nare": 34853, + "naren": 8468, + "narendr": 9807, + "narendra": 25848, + "narendramodi": 9853, + "narnia": 48693, + "narr": 11845, + "narrated": 43609, + "narrative": 15933, + "narratives": 35117, + "narrator": 46529, + "narrow": 24006, + "narrow": 16652, + "narrowly": 29747, + "naruto": 22732, + "nas": 3090, + "nas": 15250, + "nasa": 6841, + "nasal": 42853, + "nascar": 25723, + "nascar": 7868, + "nasdaq": 26629, + "nash": 6771, + "nash": 13620, + "nasheed": 49176, + "nashgrier": 33372, + "nashville": 45356, + "nashville": 8585, + "nasi": 47987, + "nasir": 47509, + "nassau": 34048, + "nasser": 43559, + "nasty": 32930, + "nasty": 8709, + "nat": 1276, + "nat": 11310, + "nata": 39392, + "natal": 28516, + "natali": 20296, + "natalia": 32978, + "natalie": 36634, + "natalie": 13595, + "natash": 48701, + "natasha": 23093, + "nate": 26643, + "nate": 7587, + "natgeo": 33009, + "natgeo": 25046, + "nath": 22203, + "nath": 19843, + "nathan": 13028, + "nathan": 9711, + "nathanfillion": 47422, + "nathaniel": 32667, + "nati": 1060, + "nati": 13384, + "natic": 44944, + "natin": 44358, + "nation": 2317, + "nation": 2670, + "national": 3126, + "national": 1362, + "nationalbestfriend": 42222, + "nationaldogday": 32227, + "nationalism": 29867, + "nationalist": 25058, + "nationality": 44451, + "nationally": 15130, + "nationalpark": 33060, + "nationalparks": 41204, + "nationals": 10784, + "nationaltrust": 34051, + "nations": 7654, + "nationwide": 13795, + "native": 20639, + "native": 4562, + "natives": 36060, + "nativity": 33988, + "natl": 39225, + "natl": 34465, + "nato": 13139, + "nats": 21106, + "natu": 2775, + "natur": 6800, + "natural": 13198, + "natural": 3288, + "naturally": 12995, + "naturals": 44686, + "nature": 9382, + "nature": 2625, + "naturelovers": 41514, + "naturephotography": 22533, + "natures": 15616, + "natureuk": 46193, + "nau": 5955, + "nau": 32878, + "naught": 41001, + "naughty": 47255, + "naughty": 15101, + "nautical": 31660, + "nav": 3413, + "nav": 25308, + "navajo": 35523, + "naval": 44725, + "naval": 13273, + "navar": 24848, + "navarro": 37104, + "nave": 42704, + "naveen": 43837, + "naver": 32534, + "navi": 16159, + "navi": 44848, + "navig": 12507, + "navigate": 24400, + "navigating": 33134, + "navigation": 20148, + "navigator": 38910, + "navis": 36377, + "navratri": 45428, + "navy": 28414, + "navy": 5598, + "naw": 16259, + "naw": 30500, + "nawaz": 49161, + "nawaz": 19523, + "nax": 38299, + "nay": 11704, + "nay": 16182, + "naya": 38917, + "nayanth": 38157, + "nayanthara": 45184, + "naz": 6363, + "naz": 35534, + "nazi": 12972, + "nazis": 21778, + "nb": 6459, + "nb": 6813, + "nba": 22524, + "nba": 5139, + "nbad": 43458, + "nbaf": 30127, + "nbafinals": 33803, + "nbap": 41956, + "nbaplayoffs": 43860, + "nbat": 46291, + "nbc": 9352, + "nbc": 8799, + "nbd": 24526, + "nbl": 42652, + "nc": 5021, + "nc": 4911, + "nca": 6921, + "ncaa": 9418, + "ncbd": 47221, + "ncc": 33195, + "ncc": 36686, + "ncds": 47573, + "ncfc": 31274, + "ncis": 33617, + "ncpol": 40562, + "ncr": 38474, + "ncs": 42689, + "nct": 27723, + "nct": 20319, + "ncwx": 36166, + "nd": 5625, + "nd": 1764, + "nda": 32862, + "ndc": 47564, + "ndi": 48229, + "ndp": 19257, + "nds": 31347, + "ndtv": 26261, + "ne": 557, + "ne": 1422, + "nea": 24068, + "neal": 33652, + "neal": 16730, + "near": 11296, + "near": 2252, + "nearby": 13314, + "nearest": 18985, + "nearing": 26571, + "nearly": 4816, + "nears": 37710, + "neat": 43201, + "neat": 15465, + "neath": 18315, + "neau": 31559, + "neb": 40209, + "nebra": 13371, + "nebraska": 14565, + "nebu": 49295, + "nebula": 22532, + "nec": 25109, + "nec": 22992, + "necess": 6961, + "necessarily": 25853, + "necessary": 8955, + "necessities": 43483, + "necessity": 33163, + "neck": 6066, + "neck": 6906, + "necklace": 7385, + "necklaces": 32276, + "necks": 29701, + "nectar": 33683, + "ned": 16030, + "ned": 1369, + "nederland": 49058, + "nee": 20494, + "nee": 10601, + "need": 3229, + "need": 1262, + "needed": 4049, + "needing": 22894, + "needle": 44490, + "needle": 19886, + "needles": 27250, + "needless": 39984, + "needs": 2536, + "needy": 30150, + "neel": 33092, + "neel": 46043, + "neer": 34245, + "nees": 47248, + "neet": 46362, + "neg": 5513, + "negan": 42623, + "negative": 8869, + "negatively": 40254, + "negativity": 34658, + "neglec": 18827, + "neglect": 33680, + "neglected": 31893, + "negli": 32594, + "negligence": 45658, + "negoti": 10216, + "negotiate": 32969, + "negotiating": 35510, + "negotiation": 36504, + "negotiations": 20433, + "negr": 42190, + "negro": 26554, + "neh": 40416, + "neh": 41697, + "neha": 44463, + "nehru": 30316, + "nei": 9366, + "neigh": 4061, + "neighb": 6534, + "neighbor": 7759, + "neighbor": 14485, + "neighborhood": 9471, + "neighborhoods": 26713, + "neighboring": 44754, + "neighbors": 13037, + "neighbour": 15858, + "neighbour": 23719, + "neighbourhood": 20312, + "neighbours": 17594, + "neil": 13591, + "neil": 8030, + "neilhimself": 45682, + "neill": 19324, + "neither": 14398, + "nek": 47727, + "neko": 47066, + "nel": 5476, + "nel": 2693, + "nell": 27081, + "nell": 8117, + "nelly": 21166, + "nels": 19296, + "nelson": 24774, + "nelson": 8586, + "nem": 45153, + "neman": 48553, + "neme": 30993, + "nemesis": 37811, + "nemo": 30441, + "nen": 17817, + "nen": 15451, + "nene": 44167, + "neo": 14562, + "neo": 11017, + "neon": 21043, + "neon": 13919, + "neonatal": 46464, + "neop": 49069, + "nep": 20739, + "nep": 41960, + "nepal": 25597, + "nepal": 10066, + "nepali": 47579, + "neph": 27926, + "nephe": 41810, + "nephew": 11689, + "nephews": 43747, + "nephro": 43054, + "neptune": 30566, + "ner": 2064, + "ner": 998, + "nerd": 24452, + "nerd": 12273, + "nerds": 22609, + "nerdy": 33124, + "nered": 17583, + "nerf": 42914, + "nering": 20226, + "nero": 29048, + "ners": 2129, + "nerve": 18571, + "nerves": 27813, + "nervous": 13928, + "nery": 48597, + "nes": 5457, + "nes": 4980, + "nesburg": 27159, + "nese": 32220, + "ness": 7187, + "ness": 1294, + "nesses": 20107, + "nessy": 32939, + "nest": 20302, + "nest": 8719, + "nesting": 28860, + "nestle": 43967, + "nestled": 38107, + "nests": 41133, + "net": 1851, + "net": 2315, + "netany": 23137, + "netanyahu": 23583, + "netball": 19761, + "netes": 44335, + "netfli": 6304, + "netflix": 35325, + "netflix": 6600, + "nether": 9946, + "netherlands": 11060, + "neti": 43980, + "netneutrality": 47794, + "nets": 8582, + "nett": 23403, + "nett": 6975, + "nette": 13271, + "network": 23285, + "network": 3304, + "networking": 9818, + "networks": 10004, + "neu": 3855, + "neu": 43342, + "neue": 45764, + "neur": 19001, + "neur": 31976, + "neural": 26388, + "neuro": 7401, + "neuro": 36000, + "neurological": 41718, + "neurology": 43197, + "neurons": 40442, + "neuroscience": 23381, + "neutr": 17207, + "neutral": 17011, + "neutrality": 26511, + "neutron": 44056, + "nev": 10236, + "nev": 43645, + "neva": 43304, + "nevada": 13499, + "neve": 44099, + "neve": 44023, + "never": 6746, + "never": 1426, + "neveragain": 45053, + "neverforget": 19242, + "nevergiveup": 42497, + "neverland": 41483, + "nevertheless": 48355, + "nevertrump": 47494, + "neville": 19269, + "nevis": 43670, + "new": 1218, + "new": 686, + "newark": 20240, + "newbie": 45427, + "newborn": 18320, + "newbury": 34169, + "newcastle": 41955, + "newcastle": 9302, + "newcomer": 30648, + "newcomers": 44037, + "newe": 40068, + "newell": 41436, + "newer": 33099, + "newest": 4990, + "newfound": 25250, + "newfoundland": 28079, + "newh": 18546, + "newin": 31911, + "newjersey": 32621, + "newly": 42186, + "newly": 7056, + "newman": 15815, + "newmarket": 38617, + "newmexico": 35238, + "newmusic": 32510, + "newmusic": 17201, + "newor": 25969, + "neworleans": 31205, + "newport": 42580, + "newport": 14846, + "newprofile": 14633, + "newprofilepic": 14754, + "newrelease": 34793, + "news": 6216, + "news": 1120, + "newsat": 43979, + "newsc": 28656, + "newscast": 45031, + "newsle": 10727, + "newsletter": 11069, + "newsnow": 48650, + "newsp": 7109, + "newspaper": 8786, + "newspapers": 22423, + "newsroom": 23200, + "newt": 37224, + "newton": 33122, + "newton": 12606, + "newtown": 31747, + "newyear": 22161, + "newyear": 12999, + "newyearseve": 37587, + "newyork": 18140, + "newyork": 10454, + "newyorkcity": 30460, + "newyorker": 39732, + "newzealand": 21117, + "nex": 6897, + "nex": 39720, + "next": 12434, + "next": 1131, + "nextgen": 41933, + "nexus": 19053, + "ney": 3857, + "ney": 1438, + "neymar": 21878, + "neys": 12616, + "nez": 27388, + "nf": 15195, + "nf": 25643, + "nfamily": 20098, + "nfc": 23695, + "nffc": 27893, + "nfl": 11219, + "nfl": 4691, + "nfldraft": 25002, + "ng": 10352, + "ng": 5215, + "nga": 35477, + "ngc": 29046, + "ngo": 38740, + "ngo": 24821, + "ngos": 34627, + "nguyen": 29947, + "nh": 3760, + "nh": 10803, + "nhc": 44817, + "nhl": 12290, + "nhl": 8167, + "nhlbruins": 39081, + "nhljets": 49357, + "nhm": 39483, + "nhpolitics": 36125, + "nhq": 42368, + "nhra": 30052, + "nhs": 23282, + "nhs": 7695, + "ni": 697, + "ni": 3256, + "nia": 3098, + "niag": 18071, + "niagar": 39298, + "niagara": 18965, + "niall": 41354, + "niall": 8327, + "niallo": 22855, + "niallofficial": 23084, + "niam": 39347, + "nian": 46003, + "nib": 31049, + "nic": 2109, + "nic": 6651, + "nica": 29040, + "nicar": 25119, + "nicaragua": 28423, + "nice": 28386, + "nice": 1805, + "nicely": 12303, + "nicer": 29488, + "nicest": 22967, + "niche": 25279, + "nichol": 7668, + "nicholas": 39814, + "nicholas": 13148, + "nicholls": 38846, + "nichols": 22730, + "nicholson": 28745, + "nick": 4209, + "nick": 4253, + "nickel": 22034, + "nickelo": 28668, + "nickelodeon": 33279, + "nicki": 17738, + "nickimin": 27390, + "nickiminaj": 27593, + "nickjonas": 43862, + "nickname": 24731, + "nicknamed": 45190, + "nicks": 15049, + "nicky": 28893, + "nicky": 22091, + "nico": 20850, + "nico": 17779, + "nicol": 9919, + "nicol": 48274, + "nicola": 21791, + "nicolas": 43813, + "nicolas": 18918, + "nicole": 21246, + "nicole": 10000, + "nicot": 45099, + "nicotine": 46697, + "nie": 9524, + "nie": 3501, + "niece": 12795, + "nieces": 44877, + "niel": 19109, + "niel": 26837, + "niels": 37154, + "nielsen": 28372, + "nier": 13014, + "nies": 10586, + "niest": 15007, + "nieu": 29781, + "nific": 4748, + "nifty": 25604, + "nig": 27933, + "nig": 28099, + "nigan": 48516, + "nigel": 33919, + "nigel": 15153, + "niger": 4524, + "niger": 29920, + "nigeri": 40913, + "nigeria": 6106, + "nigerian": 12167, + "nigerians": 25358, + "nigh": 13525, + "nigh": 48157, + "night": 3870, + "night": 930, + "nightclub": 20418, + "nighter": 41349, + "nighting": 36211, + "nightingale": 40696, + "nightlife": 28823, + "nightly": 28868, + "nightmare": 12867, + "nightmares": 24032, + "nightout": 44257, + "nights": 4296, + "nighttime": 38147, + "nightw": 39956, + "nih": 25783, + "nik": 5126, + "nik": 13705, + "nike": 16300, + "nike": 5783, + "nikeplus": 43154, + "niki": 36136, + "nikita": 37118, + "nikk": 38596, + "nikki": 23156, + "nikki": 16689, + "niko": 43771, + "nikol": 27430, + "nikola": 42146, + "nikon": 25488, + "nikon": 13849, + "nikov": 43960, + "nil": 16852, + "nil": 35030, + "nile": 24252, + "nim": 30402, + "nim": 42093, + "nima": 42586, + "nin": 5794, + "nin": 14145, + "nina": 13891, + "nine": 16213, + "nine": 7330, + "ninety": 48214, + "ning": 6050, + "ning": 762, + "ningham": 23395, + "ningly": 43537, + "nings": 4588, + "nington": 26214, + "ninj": 23225, + "ninja": 11969, + "ninjas": 42796, + "nino": 25633, + "ninten": 6184, + "nintendo": 13969, + "nintendo": 7886, + "nintendoswitch": 16404, + "ninth": 22770, + "nip": 33889, + "nip": 22333, + "nipp": 24634, + "nipple": 45987, + "nipples": 44774, + "nippon": 47960, + "nips": 49241, + "nir": 15503, + "nir": 40057, + "nireland": 45763, + "niro": 47373, + "nirvana": 28300, + "nis": 5609, + "nis": 3786, + "nish": 19834, + "nish": 13256, + "nished": 24141, + "nishi": 32386, + "nishings": 49247, + "nison": 45700, + "niss": 39043, + "nissan": 37635, + "nissan": 11082, + "nist": 17782, + "nister": 36640, + "nit": 4087, + "nit": 19011, + "nite": 8427, + "niti": 43964, + "niti": 45355, + "nitin": 37529, + "nitro": 30726, + "nitrogen": 30706, + "niture": 7840, + "nity": 12707, + "niu": 48187, + "niv": 47300, + "niversary": 29643, + "nix": 48552, + "nix": 32278, + "nixon": 20671, + "nj": 8343, + "nj": 6672, + "njcaa": 48992, + "njpw": 38992, + "nk": 22708, + "nk": 17456, + "nko": 36353, + "nl": 12057, + "nl": 7655, + "nli": 37502, + "nlp": 35680, + "nlwx": 49260, + "nm": 15956, + "nm": 11370, + "nmd": 43331, + "nme": 40454, + "nmwx": 47967, + "nn": 8947, + "nn": 12925, + "nnn": 26277, + "nnnn": 41420, + "no": 578, + "no": 871, + "noaa": 27557, + "noah": 28806, + "noah": 11519, + "nobel": 33742, + "nobel": 15605, + "nobelprize": 46074, + "noble": 29430, + "noble": 12051, + "nobody": 7009, + "noc": 16988, + "noc": 44420, + "nocchi": 46359, + "noch": 38672, + "noche": 29689, + "noches": 44166, + "nock": 16993, + "noctur": 26291, + "nocturnal": 41738, + "nod": 18648, + "nodapl": 39079, + "node": 31434, + "node": 24871, + "nodejs": 39262, + "nodes": 40534, + "noel": 38406, + "noel": 17496, + "nof": 29505, + "noff": 46979, + "nofilter": 16418, + "nog": 31157, + "noh": 40775, + "noi": 43115, + "noi": 39889, + "noida": 33404, + "noir": 39291, + "noir": 12953, + "nois": 22057, + "noise": 41018, + "noise": 9307, + "noises": 31575, + "noisse": 45686, + "noisy": 33495, + "nokia": 17731, + "nol": 8055, + "nola": 13289, + "nolan": 17323, + "nold": 40322, + "nole": 34654, + "noles": 40569, + "nollywood": 43145, + "nology": 42221, + "nom": 2981, + "nom": 12799, + "nomad": 27849, + "noman": 45592, + "nomin": 5643, + "nominate": 17122, + "nominated": 8710, + "nominating": 45747, + "nomination": 14136, + "nominations": 17124, + "nominee": 14122, + "nominees": 17873, + "nomnom": 26962, + "nomore": 35126, + "noms": 35706, + "non": 4282, + "non": 3353, + "none": 29644, + "none": 8906, + "nonetheless": 39675, + "nonfiction": 31654, + "nonprofit": 19315, + "nonprofits": 37935, + "nonsense": 19136, + "nonstop": 30300, + "nont": 25207, + "noo": 6759, + "noo": 46672, + "noodle": 19521, + "noodles": 15782, + "nook": 30088, + "noon": 37693, + "noon": 2347, + "noor": 46978, + "noor": 31323, + "nope": 15625, + "nor": 1062, + "nor": 6190, + "nora": 25890, + "norcal": 41970, + "nord": 19261, + "nord": 36067, + "nordic": 36439, + "nordic": 20734, + "nordstrom": 38562, + "norfolk": 30232, + "norfolk": 12202, + "norm": 10990, + "norm": 22457, + "norma": 35757, + "normal": 28748, + "normal": 5967, + "normali": 45157, + "normally": 15870, + "norman": 22027, + "norman": 11338, + "normandy": 23840, + "normani": 44596, + "norms": 33011, + "norris": 21814, + "norse": 36559, + "norte": 35638, + "north": 3468, + "north": 2188, + "northampton": 49246, + "northampton": 26175, + "northan": 37081, + "northbound": 24228, + "northcarolina": 43386, + "northe": 24675, + "northeast": 42673, + "northeast": 13009, + "northeastern": 28297, + "northeasthour": 42869, + "norther": 26908, + "northern": 17210, + "northern": 5049, + "northernlights": 48940, + "northkorea": 38495, + "northside": 45957, + "northumber": 22295, + "northumberland": 22922, + "northwales": 49371, + "northwest": 12894, + "northwestern": 23685, + "norton": 18032, + "norway": 8780, + "norwe": 14414, + "norwegian": 15971, + "norwich": 37629, + "norwich": 15812, + "norwood": 37889, + "nos": 13420, + "nose": 24192, + "nose": 8231, + "noses": 48163, + "nostal": 12076, + "nostalgia": 16622, + "nostalgic": 24468, + "not": 2534, + "not": 783, + "notable": 22023, + "notch": 19476, + "notdead": 42059, + "note": 10910, + "note": 3246, + "notebook": 16365, + "notebooks": 37623, + "noted": 22501, + "notes": 5795, + "nothin": 24291, + "nothing": 28412, + "nothing": 2586, + "noti": 10686, + "notic": 6915, + "notice": 6683, + "noticeable": 40857, + "noticed": 9324, + "notices": 33459, + "noticias": 47759, + "noticing": 37571, + "notification": 22512, + "notifications": 23169, + "notified": 39454, + "noting": 38649, + "notion": 37856, + "notjust": 33212, + "notjustlakes": 45803, + "notmy": 39301, + "noto": 29878, + "noton": 48258, + "notor": 21711, + "notori": 44065, + "notorious": 22489, + "notre": 24397, + "notre": 15306, + "notredame": 34077, + "notsorry": 34361, + "nott": 9333, + "nott": 34989, + "notte": 47308, + "nottingham": 12852, + "notts": 25598, + "nou": 8751, + "nou": 30953, + "noun": 33663, + "nouri": 23796, + "nourish": 46025, + "nourished": 48354, + "nous": 29485, + "nouveau": 29948, + "nouvel": 34215, + "nov": 2264, + "nov": 4293, + "nova": 11236, + "novak": 26465, + "novasco": 33785, + "novascotia": 34744, + "novation": 39753, + "nove": 30507, + "novel": 15044, + "novel": 6080, + "novelist": 27314, + "novella": 42770, + "novels": 16040, + "novelty": 37750, + "november": 3680, + "nover": 37465, + "novi": 47957, + "novice": 33743, + "novo": 27504, + "novo": 36581, + "now": 2040, + "now": 692, + "nowadays": 26155, + "nowhere": 14108, + "nowplaying": 3708, + "nowwatching": 30852, + "nox": 27406, + "noxi": 39304, + "noxious": 42833, + "noy": 32787, + "np": 18205, + "np": 6314, + "npa": 42378, + "npc": 33966, + "npr": 39941, + "npr": 24078, + "nps": 22025, + "npt": 47231, + "nr": 6574, + "nr": 9713, + "nra": 17286, + "nrc": 45786, + "nrf": 47982, + "nrg": 48662, + "nrl": 27142, + "nrl": 18127, + "ns": 12405, + "ns": 1373, + "nsa": 23004, + "nsc": 32792, + "nsd": 36659, + "nsf": 34180, + "nsfw": 19847, + "nsi": 47824, + "nsw": 21301, + "nsw": 11693, + "nswpol": 44434, + "nt": 10902, + "nt": 3207, + "ntr": 30845, + "nts": 43775, + "ntt": 22859, + "ntv": 24807, + "ntv": 45304, + "nu": 1156, + "nu": 9444, + "nucle": 25693, + "nuclear": 34136, + "nuclear": 7279, + "nude": 16630, + "nudes": 32122, + "nue": 22834, + "nuestra": 45649, + "nuestro": 38590, + "nuev": 47861, + "nueva": 48810, + "nuevo": 30265, + "nufc": 15720, + "nuff": 37324, + "nug": 13471, + "nugent": 47457, + "nugget": 25448, + "nuggets": 18970, + "nuh": 45950, + "nuit": 38815, + "nuk": 39228, + "nuke": 39399, + "nul": 29358, + "null": 47376, + "num": 17896, + "num": 30534, + "numb": 34639, + "numb": 39427, + "number": 44078, + "number": 2842, + "numbered": 25975, + "numbers": 6121, + "numer": 11442, + "numerous": 17082, + "numis": 39100, + "nun": 12511, + "nun": 28540, + "nunavut": 48626, + "nunes": 40697, + "nuns": 44061, + "nup": 46757, + "nur": 3920, + "nur": 33493, + "nure": 42480, + "nurse": 37547, + "nurse": 10058, + "nursery": 15540, + "nurses": 12938, + "nursing": 11126, + "nurture": 38865, + "nurturing": 45229, + "nus": 25157, + "nus": 18239, + "nut": 10358, + "nut": 6491, + "nutcracker": 36733, + "nutella": 27312, + "nutr": 6198, + "nutri": 15470, + "nutrient": 32900, + "nutrients": 24668, + "nutriti": 17978, + "nutrition": 41546, + "nutrition": 7989, + "nutritional": 26457, + "nutritious": 30387, + "nuts": 8644, + "nutshell": 26659, + "nutty": 39846, + "nv": 17217, + "nv": 16985, + "nvi": 22847, + "nvidia": 27325, + "nw": 7826, + "nw": 7030, + "nwa": 34237, + "nwo": 40976, + "nws": 23333, + "nws": 30998, + "nwsl": 48394, + "nwt": 25029, + "nx": 18810, + "nx": 16997, + "nxt": 35037, + "nxt": 17804, + "ny": 1383, + "ny": 1350, + "nya": 24165, + "nyc": 13304, + "nyc": 2832, + "nycc": 27187, + "nycfc": 47497, + "nye": 40723, + "nye": 13416, + "nyfw": 21089, + "nyk": 46841, + "nylon": 25915, + "nyo": 41534, + "nyo": 44586, + "nypd": 42293, + "nypd": 18279, + "nyr": 32538, + "nyrd": 47936, + "nys": 36375, + "nys": 23423, + "nyse": 32650, + "nyt": 46311, + "nyt": 12816, + "nytimes": 13772, + "nyu": 43143, + "nyu": 31355, + "nz": 10142, + "nz": 7082, + "o": 78, + "o": 334, + "oa": 11994, + "oahu": 37790, + "oak": 6010, + "oak": 7221, + "oakland": 42663, + "oakland": 12077, + "oakley": 27810, + "oaks": 16734, + "oakville": 38500, + "oasis": 18185, + "oat": 20095, + "oat": 34132, + "oates": 47094, + "oath": 20108, + "oatmeal": 26374, + "oats": 24150, + "oax": 43090, + "oaxaca": 47818, + "ob": 1411, + "ob": 14908, + "oba": 42902, + "oba": 15147, + "obam": 13174, + "obama": 4276, + "obamacare": 18005, + "obe": 11897, + "obe": 29117, + "obedience": 48921, + "ober": 15284, + "obese": 41757, + "obesity": 19499, + "obey": 26926, + "obi": 21454, + "obi": 18414, + "obile": 20513, + "obitu": 39218, + "obituary": 43580, + "objec": 7970, + "object": 14115, + "objective": 23663, + "objectives": 30238, + "objects": 13770, + "obl": 31452, + "oblast": 42672, + "obli": 11416, + "obligation": 34473, + "obligations": 38232, + "obligatory": 35020, + "oblivion": 45323, + "obo": 46001, + "obo": 26618, + "obrien": 31946, + "obs": 39162, + "obsc": 20392, + "obscure": 33337, + "obse": 8433, + "observ": 9050, + "observation": 20250, + "observations": 27409, + "observatory": 21236, + "observe": 23217, + "observed": 21267, + "observer": 22077, + "observers": 47544, + "observing": 28359, + "obsessed": 9744, + "obsession": 15718, + "obsi": 47323, + "obsole": 35561, + "obsolete": 40628, + "obst": 29398, + "obstac": 24075, + "obstacle": 29751, + "obstacles": 24480, + "obste": 49103, + "obstru": 44876, + "obstruc": 38762, + "obstruction": 40240, + "obtain": 26555, + "obtained": 29322, + "obvious": 13959, + "obviously": 10068, + "oc": 1566, + "oc": 6603, + "oca": 31120, + "ocal": 38148, + "occ": 43940, + "occa": 8530, + "occasion": 12280, + "occasional": 33059, + "occasionally": 32479, + "occasions": 26154, + "occer": 20804, + "occi": 42994, + "occu": 7863, + "occult": 42529, + "occup": 11152, + "occupation": 18624, + "occupational": 30644, + "occupied": 17271, + "occupy": 22453, + "occupy": 24210, + "occur": 11264, + "occur": 21813, + "occurred": 19850, + "occurrence": 40615, + "occurring": 31335, + "occurs": 26563, + "ocd": 35904, + "oce": 3509, + "ocean": 12941, + "ocean": 4918, + "oceans": 16792, + "och": 29334, + "och": 32011, + "oche": 33045, + "oci": 9891, + "ocity": 46039, + "ock": 33579, + "ock": 21313, + "ocks": 22410, + "oclock": 36274, + "oco": 32553, + "ocon": 33090, + "ocr": 45813, + "ocre": 40320, + "ocs": 27297, + "oct": 4565, + "octa": 23444, + "octag": 37768, + "octagon": 49167, + "octane": 43040, + "octavia": 47416, + "octo": 31032, + "october": 3481, + "octopus": 22327, + "ocu": 22709, + "oculus": 30082, + "od": 4886, + "od": 9719, + "oda": 24777, + "oday": 41954, + "odd": 15525, + "odd": 11387, + "oddly": 34213, + "odds": 11555, + "ode": 19125, + "ode": 19639, + "odell": 41556, + "odessa": 43574, + "odi": 12223, + "odi": 18853, + "odin": 35175, + "odisha": 15737, + "odo": 49188, + "odo": 40993, + "odor": 39509, + "odu": 35095, + "odu": 39904, + "odyssey": 19991, + "oe": 24251, + "oe": 11667, + "oec": 24288, + "oecd": 30816, + "oem": 29650, + "oes": 3643, + "of": 684, + "of": 539, + "ofa": 29774, + "ofc": 19877, + "ofe": 30000, + "ofer": 47322, + "off": 892, + "off": 1007, + "offe": 8261, + "offee": 34059, + "offen": 7231, + "offence": 34594, + "offences": 33972, + "offended": 30765, + "offender": 48294, + "offenders": 35878, + "offense": 15253, + "offensive": 11037, + "offer": 20607, + "offer": 3271, + "offered": 9395, + "offering": 6896, + "offerings": 24535, + "offers": 4679, + "offic": 3276, + "office": 18033, + "office": 2171, + "officeof": 38750, + "officeofrg": 47100, + "officer": 4683, + "officers": 6335, + "offices": 10933, + "offici": 1401, + "official": 5768, + "official": 1868, + "officially": 4226, + "officials": 7658, + "officiel": 26548, + "offl": 16851, + "offline": 22724, + "offro": 32198, + "offroad": 37173, + "offs": 23987, + "offseason": 25485, + "offset": 28843, + "offshore": 15496, + "offside": 49347, + "offspring": 38635, + "offthe": 38189, + "ofi": 36692, + "ofi": 49090, + "oficial": 18061, + "oft": 16693, + "oftball": 39768, + "often": 4864, + "ofthe": 7592, + "oftheday": 6988, + "oftheweek": 20654, + "oftheyear": 33975, + "og": 11542, + "og": 8555, + "oga": 47312, + "ogden": 42011, + "ogil": 39013, + "ography": 22399, + "ogue": 24761, + "ogun": 48970, + "oh": 5648, + "oh": 1779, + "ohana": 48330, + "ohh": 23076, + "ohhh": 27697, + "ohhhh": 40201, + "ohi": 5207, + "ohio": 18951, + "ohio": 6155, + "ohiostate": 41324, + "ohl": 45547, + "ohl": 41095, + "ohmy": 29758, + "ohn": 48043, + "ohs": 39542, + "ohwx": 47993, + "oi": 27357, + "oi": 13934, + "oic": 45554, + "oid": 14758, + "oids": 21847, + "oil": 11973, + "oil": 2870, + "oiland": 32316, + "oilandgas": 34130, + "oilers": 21627, + "oilpainting": 34279, + "oils": 17886, + "oily": 47550, + "oir": 48079, + "oir": 37113, + "ois": 23262, + "oit": 18453, + "oitnb": 34865, + "oj": 30986, + "oj": 34553, + "ok": 1944, + "ok": 2481, + "oka": 42258, + "oka": 19092, + "okan": 41263, + "okanagan": 43233, + "okay": 4917, + "okc": 42418, + "okc": 18357, + "oke": 26636, + "oke": 23598, + "oki": 20390, + "okin": 30687, + "okinawa": 35877, + "okla": 9431, + "oklahoma": 10170, + "oko": 26892, + "oko": 26095, + "okstate": 36356, + "oktoberfest": 32026, + "oku": 45010, + "oku": 43829, + "okwx": 27336, + "ol": 562, + "ol": 2985, + "ola": 20499, + "ola": 3373, + "olaf": 39709, + "olan": 48489, + "olan": 24227, + "oland": 26452, + "olas": 40800, + "old": 4931, + "old": 896, + "olde": 37731, + "older": 7700, + "oldest": 9285, + "oldham": 29929, + "oldie": 35280, + "oldies": 36278, + "oldman": 48614, + "olds": 8580, + "oldschool": 44384, + "oldschool": 25133, + "oldsmobile": 45396, + "ole": 9089, + "ole": 1947, + "oled": 46768, + "oler": 24069, + "oles": 16962, + "olf": 16346, + "olga": 34779, + "oli": 3811, + "oli": 8810, + "olic": 31341, + "oligar": 46185, + "olim": 47769, + "olin": 37823, + "olin": 18283, + "olina": 34711, + "oline": 17441, + "oling": 38033, + "olini": 36040, + "olis": 49397, + "olithic": 35574, + "olive": 22486, + "olive": 9898, + "oliver": 22882, + "oliver": 9261, + "olives": 27149, + "olivi": 20773, + "olivia": 11697, + "olivier": 23891, + "oll": 32270, + "oll": 15510, + "olla": 31908, + "ollie": 24434, + "olls": 42697, + "olly": 23998, + "olo": 14628, + "olo": 7606, + "ological": 12345, + "ologist": 23442, + "ologists": 30912, + "ology": 4627, + "olor": 29245, + "olph": 25077, + "ols": 2236, + "olsen": 26307, + "olson": 28046, + "olt": 46252, + "olu": 16502, + "olu": 46302, + "olulu": 27645, + "oly": 20323, + "oly": 24823, + "olym": 3594, + "olympi": 13597, + "olympia": 23965, + "olympiad": 47694, + "olympian": 25420, + "olympians": 44583, + "olympic": 26099, + "olympic": 6388, + "olympics": 7629, + "olympus": 30960, + "om": 547, + "om": 3932, + "oma": 44603, + "oma": 5358, + "omaha": 16509, + "oman": 22088, + "oman": 10871, + "omar": 19488, + "omar": 13367, + "omars": 37099, + "omas": 36023, + "omat": 40788, + "omb": 34447, + "ombe": 35967, + "omd": 49346, + "ome": 3693, + "ome": 5832, + "omed": 16835, + "omega": 13465, + "omelette": 38789, + "omen": 9969, + "omen": 25469, + "oment": 43683, + "omeo": 39844, + "omer": 24087, + "omer": 17902, + "omes": 25736, + "ometer": 20060, + "ometric": 38702, + "omez": 12541, + "omf": 47496, + "omfg": 12523, + "omg": 35233, + "omg": 3186, + "omi": 24097, + "omi": 10341, + "omic": 40536, + "omic": 12793, + "omics": 15138, + "omile": 46915, + "omin": 16457, + "omination": 42571, + "oming": 10796, + "ominous": 40914, + "omni": 18793, + "omni": 39489, + "omnibus": 44760, + "omnic": 48383, + "omo": 14478, + "omo": 11066, + "omon": 48758, + "omor": 29431, + "oms": 3770, + "omusic": 38965, + "omy": 40805, + "omy": 6884, + "on": 521, + "on": 525, + "ona": 2687, + "onair": 29511, + "onal": 918, + "onboard": 21689, + "once": 16331, + "once": 2654, + "onceupon": 28122, + "onceuponatime": 33505, + "onco": 46700, + "oncology": 24593, + "ond": 27918, + "ond": 2636, + "onda": 32643, + "onday": 29864, + "onde": 44532, + "ondo": 29529, + "ondon": 42043, + "ondon": 11851, + "one": 1980, + "one": 637, + "onec": 27746, + "oned": 28012, + "oned": 4698, + "onedirection": 16245, + "onee": 44433, + "oneill": 44808, + "onelove": 47417, + "onent": 12147, + "onents": 11709, + "oneof": 48478, + "onep": 20440, + "onepiece": 43153, + "oneplus": 25981, + "oner": 30055, + "oner": 6071, + "oners": 12324, + "ones": 20757, + "ones": 1575, + "oneself": 46874, + "onesie": 33237, + "oness": 25379, + "onet": 36058, + "oneteam": 41094, + "onetsy": 33392, + "onew": 43848, + "onews": 18696, + "onex": 49116, + "oney": 44498, + "oney": 9408, + "onf": 41790, + "onfox": 29874, + "ong": 2787, + "ong": 846, + "onga": 30259, + "ongchang": 35071, + "ongi": 21754, + "ongo": 31226, + "ongoing": 10393, + "ongs": 12143, + "oni": 4385, + "oni": 8048, + "onia": 8001, + "onial": 27599, + "onian": 21090, + "onic": 15838, + "onic": 3711, + "onica": 14631, + "onics": 9779, + "onie": 35249, + "onies": 22601, + "onimo": 41271, + "oning": 5197, + "onion": 10985, + "onions": 15255, + "onist": 10099, + "onists": 19659, + "onix": 27370, + "onized": 43657, + "onlin": 31103, + "online": 12940, + "online": 2027, + "onlinemarketing": 41820, + "onlineshopping": 38587, + "only": 11646, + "only": 1033, + "onlyin": 32947, + "onna": 25438, + "onna": 35458, + "onnaise": 48934, + "onne": 23466, + "onnell": 45613, + "ono": 28165, + "ono": 14388, + "onom": 48014, + "onomy": 36873, + "onpoli": 20708, + "ons": 26076, + "ons": 708, + "onsale": 36324, + "onset": 30527, + "onsite": 37336, + "onstage": 21821, + "onstorm": 49333, + "ont": 34303, + "ont": 11157, + "ontari": 6739, + "ontario": 42766, + "ontario": 7436, + "onte": 34723, + "onthe": 12241, + "onther": 46563, + "ontheroad": 47516, + "onthisday": 6862, + "onto": 11745, + "onto": 3141, + "ontology": 37364, + "ontour": 32155, + "onu": 44142, + "onward": 34827, + "onwards": 20682, + "ony": 9490, + "ony": 2926, + "onym": 11483, + "onymous": 13038, + "onyx": 31353, + "oo": 574, + "oo": 2822, + "ood": 16429, + "ood": 738, + "oodle": 45289, + "oods": 44660, + "oof": 42270, + "ooh": 16806, + "ook": 22326, + "ook": 8394, + "ooks": 31082, + "ool": 37702, + "ool": 929, + "oom": 22786, + "oom": 15002, + "oomf": 40607, + "oon": 35651, + "oon": 7100, + "ooo": 9571, + "oooh": 28927, + "oooo": 4002, + "oooo": 13643, + "ooooo": 12532, + "oooooo": 43590, + "oooooo": 20372, + "ooooooo": 30859, + "oooooooo": 15473, + "oooooooo": 43408, + "oooooooooooooooo": 48645, + "oop": 7326, + "ooper": 39906, + "oops": 9116, + "oor": 35239, + "oos": 9896, + "oosa": 30834, + "oose": 38941, + "oot": 17667, + "ootball": 28914, + "ootd": 16547, + "ooth": 12682, + "oott": 34316, + "ooza": 22809, + "op": 676, + "op": 3691, + "opa": 28949, + "opal": 28982, + "opar": 18167, + "opath": 33079, + "opathic": 37521, + "opathy": 28466, + "opau": 27239, + "opd": 38288, + "ope": 31694, + "ope": 11440, + "opec": 33138, + "opel": 36952, + "open": 3647, + "open": 1488, + "openaccess": 26591, + "opend": 28069, + "opendata": 35709, + "openday": 46991, + "opened": 5303, + "opener": 8998, + "openhouse": 36091, + "opening": 33728, + "opening": 2516, + "openingday": 36359, + "openings": 27643, + "openly": 23005, + "opens": 4801, + "opensource": 29930, + "oper": 2796, + "oper": 37533, + "opera": 8056, + "operate": 19306, + "operated": 23031, + "operates": 38675, + "operating": 12218, + "operation": 27173, + "operation": 7639, + "operational": 18237, + "operations": 8106, + "operative": 28380, + "operator": 15972, + "operators": 19267, + "opers": 48728, + "opes": 37258, + "oph": 6796, + "opha": 38634, + "ophel": 45017, + "ophelia": 49118, + "ophi": 44547, + "ophile": 35915, + "opho": 12900, + "ophobia": 21111, + "ophobic": 29934, + "ophon": 25120, + "ophone": 26345, + "ophthal": 33135, + "ophy": 28539, + "opi": 40056, + "opi": 48994, + "opin": 7636, + "opini": 14825, + "opinion": 7843, + "opinions": 16192, + "opio": 17371, + "opioid": 22833, + "opioids": 47578, + "opla": 36270, + "ople": 25663, + "opol": 15173, + "opoly": 23729, + "opor": 39650, + "opoulos": 42020, + "opp": 2020, + "opp": 21024, + "oppa": 23637, + "oppo": 7399, + "oppo": 41770, + "opponent": 17002, + "opponents": 19664, + "oppor": 2914, + "opportun": 2939, + "opportunities": 5978, + "opportunity": 4004, + "oppos": 10091, + "oppose": 23617, + "opposed": 22509, + "opposes": 47471, + "opposing": 24376, + "opposite": 12872, + "opposition": 11062, + "oppre": 17341, + "oppressed": 41492, + "oppression": 30650, + "opra": 28291, + "oprah": 22562, + "opry": 35340, + "ops": 3054, + "opt": 45103, + "opt": 27188, + "opted": 42035, + "opti": 6580, + "optic": 25190, + "optic": 24755, + "optical": 16822, + "optics": 27165, + "optim": 22331, + "optimal": 25235, + "optimi": 9737, + "optimis": 39459, + "optimism": 25226, + "optimist": 44581, + "optimistic": 23104, + "optimization": 25125, + "optimize": 30456, + "optimized": 43939, + "optimizing": 49157, + "optimum": 35974, + "optimus": 43453, + "option": 8464, + "optional": 25411, + "options": 7063, + "optome": 35533, + "opul": 39858, + "opus": 33295, + "opy": 21835, + "or": 523, + "or": 541, + "ora": 4301, + "orac": 24673, + "oracle": 37308, + "oracle": 15966, + "orah": 40820, + "orail": 45120, + "oral": 32490, + "oral": 6007, + "orama": 33619, + "oran": 32209, + "oran": 28395, + "orang": 22116, + "orange": 13957, + "orange": 4287, + "oranges": 32417, + "orangu": 36112, + "orb": 28894, + "orb": 36958, + "orbit": 19713, + "orbital": 40312, + "orc": 44305, + "orca": 18631, + "orcas": 47676, + "orch": 11893, + "orchar": 40226, + "orchard": 19530, + "orche": 8004, + "orchestr": 42937, + "orchestra": 9573, + "orchestral": 40285, + "orchi": 23696, + "orchid": 18678, + "orchids": 28376, + "ord": 26903, + "ord": 11502, + "orda": 33462, + "ordained": 38302, + "order": 24613, + "order": 2191, + "ordered": 8335, + "ordering": 19588, + "orderly": 43457, + "orders": 6187, + "ordin": 4378, + "ordinance": 38583, + "ordinary": 8012, + "ore": 3580, + "ore": 1423, + "orean": 36696, + "ored": 5133, + "oregon": 21759, + "oregon": 8035, + "oren": 21645, + "oreo": 21873, + "oreos": 41688, + "ores": 17328, + "org": 3401, + "org": 5593, + "organ": 3338, + "organ": 13213, + "organi": 3636, + "organic": 24080, + "organic": 5980, + "organics": 44199, + "organis": 13204, + "organisation": 15868, + "organisations": 20651, + "organise": 36073, + "organised": 13191, + "organiser": 49141, + "organisers": 35778, + "organising": 22787, + "organisms": 37041, + "organiz": 11107, + "organization": 8064, + "organizational": 29510, + "organizations": 13453, + "organize": 19973, + "organized": 10681, + "organizer": 23905, + "organizers": 27191, + "organizing": 15779, + "organs": 29872, + "orgs": 29500, + "ori": 1540, + "ori": 8693, + "oria": 11474, + "orial": 8648, + "orian": 21193, + "oric": 43810, + "orice": 41341, + "orie": 18815, + "orient": 13149, + "orient": 30770, + "oriental": 23056, + "orientation": 16873, + "oriente": 40390, + "oriented": 24596, + "orienteering": 42985, + "ories": 5934, + "orig": 2273, + "orig": 38463, + "origami": 31832, + "origin": 2555, + "origin": 12372, + "original": 18496, + "original": 3117, + "originally": 12849, + "originals": 16953, + "originated": 41823, + "origins": 16291, + "orin": 39863, + "oring": 3006, + "orio": 24308, + "orioles": 21430, + "orion": 21765, + "oris": 37064, + "orities": 7903, + "ority": 5556, + "orium": 12015, + "ork": 22202, + "ork": 37235, + "orkney": 34254, + "orl": 39465, + "orlando": 32247, + "orlando": 7827, + "orleans": 11127, + "orm": 38464, + "orn": 25412, + "orn": 8130, + "ornam": 36122, + "ornament": 23409, + "ornamental": 46270, + "ornaments": 28968, + "ornate": 46865, + "orni": 27713, + "ornithology": 38275, + "orns": 19340, + "oro": 9848, + "oro": 14573, + "orous": 19286, + "orph": 17318, + "orphan": 22718, + "orphan": 28994, + "orphanage": 45196, + "orphaned": 46792, + "orphans": 36588, + "orphe": 39186, + "orr": 32977, + "ors": 1127, + "orship": 20846, + "ort": 1019, + "ortega": 39727, + "orth": 22584, + "orth": 24461, + "ortho": 11366, + "orthodon": 37730, + "orthodox": 19008, + "orthop": 42123, + "orthopedic": 49341, + "ortiz": 23544, + "orton": 37238, + "oru": 44629, + "oru": 31281, + "orum": 42724, + "orwell": 41218, + "ory": 16983, + "ory": 1985, + "os": 2211, + "os": 1299, + "osa": 16340, + "osa": 17237, + "osaka": 21347, + "osborne": 22402, + "osbourne": 43376, + "osc": 5092, + "oscar": 21157, + "oscar": 8191, + "oscars": 11098, + "osce": 37303, + "oscill": 38272, + "ose": 46942, + "ose": 22541, + "osh": 30717, + "osh": 35011, + "osha": 33907, + "oshi": 34770, + "osi": 25247, + "osi": 17636, + "osis": 13903, + "osity": 12730, + "oslo": 20547, + "osm": 31626, + "osman": 46539, + "oso": 42793, + "oso": 21285, + "osp": 24387, + "ospre": 49001, + "osprey": 37893, + "oss": 29362, + "oss": 34640, + "ost": 23701, + "ost": 18749, + "oste": 20632, + "osteo": 43163, + "oster": 31781, + "ostr": 33673, + "ostrich": 47640, + "osu": 29480, + "osu": 19818, + "oswald": 38471, + "ot": 1863, + "ot": 2062, + "ota": 17509, + "ota": 8741, + "otago": 45919, + "otaku": 40743, + "otas": 47616, + "otc": 37934, + "otd": 5683, + "ote": 28511, + "ote": 19744, + "otes": 27280, + "oth": 33262, + "oth": 33519, + "other": 9758, + "other": 1010, + "others": 3326, + "otherwise": 12376, + "oti": 19567, + "oti": 45564, + "otic": 9671, + "otis": 28246, + "otive": 10877, + "oto": 23946, + "oto": 23399, + "otp": 29822, + "otr": 38685, + "ots": 5769, + "ott": 10167, + "ott": 7936, + "otta": 7623, + "otta": 20941, + "ottawa": 49027, + "ottawa": 9019, + "otte": 35214, + "otter": 34710, + "otter": 22456, + "otters": 38883, + "otti": 36721, + "ottnews": 33995, + "otto": 17730, + "ottoman": 27503, + "otw": 35259, + "otwol": 46868, + "ou": 520, + "ou": 6544, + "ouat": 32954, + "ouch": 13493, + "oud": 1359, + "oue": 48838, + "ouf": 34618, + "ough": 4204, + "ough": 991, + "ought": 2253, + "oughton": 36860, + "oui": 39421, + "ouk": 21796, + "oul": 20253, + "oul": 8081, + "ould": 859, + "oulos": 32808, + "oun": 636, + "oun": 20960, + "ounce": 15027, + "ounces": 30299, + "ound": 2013, + "ound": 853, + "oundation": 40132, + "ounded": 9634, + "ounding": 11944, + "ounds": 2753, + "oung": 35875, + "oung": 25341, + "ounge": 29427, + "ount": 43801, + "ount": 4172, + "ounts": 10963, + "oup": 32815, + "our": 727, + "our": 581, + "oura": 29806, + "oura": 36352, + "ourable": 24126, + "ourage": 34525, + "oural": 45840, + "oured": 6956, + "ouri": 12696, + "ouring": 12000, + "ourism": 25496, + "ourke": 26480, + "ourlives": 37541, + "ouro": 41224, + "ours": 1491, + "ourse": 15415, + "ourselves": 10124, + "ourt": 22960, + "oury": 29484, + "ous": 1987, + "ous": 879, + "ouse": 32048, + "ouse": 7603, + "ouses": 33666, + "ously": 2501, + "ousness": 10689, + "ousy": 28302, + "out": 1130, + "out": 620, + "outa": 35187, + "outage": 27320, + "outages": 40353, + "outback": 28532, + "outbound": 41256, + "outbreak": 20103, + "outcome": 16552, + "outcomes": 14016, + "outdated": 38313, + "outdoor": 19184, + "outdoor": 6368, + "outdoors": 10469, + "oute": 44180, + "outed": 34435, + "outer": 30499, + "outer": 14188, + "outes": 39600, + "outfield": 41826, + "outfit": 6525, + "outfits": 16366, + "outfitters": 37725, + "outfy": 34920, + "outgoing": 27302, + "outh": 16933, + "outh": 8111, + "outine": 35452, + "outing": 11251, + "outlander": 45820, + "outlander": 17095, + "outlaw": 37498, + "outlaw": 27340, + "outlaws": 30935, + "outlet": 16855, + "outlets": 20822, + "outline": 26894, + "outlines": 29159, + "outlining": 45960, + "outlook": 12983, + "outof": 43958, + "outpatient": 46603, + "outpost": 44622, + "output": 17255, + "outra": 14262, + "outrage": 23577, + "outraged": 43402, + "outrageous": 29342, + "outre": 14373, + "outreach": 15297, + "outright": 38200, + "outs": 5790, + "outsi": 22515, + "outside": 47693, + "outside": 2782, + "outsider": 41196, + "outsiders": 41742, + "outskirts": 42088, + "outsourcing": 34543, + "outstanding": 6387, + "outta": 15807, + "outtuesday": 48692, + "outw": 34650, + "oux": 40960, + "oux": 14228, + "ov": 6420, + "ov": 8479, + "ova": 12762, + "oval": 15039, + "ovarian": 42913, + "ovation": 24333, + "ove": 8649, + "ove": 15456, + "oven": 44620, + "oven": 12579, + "over": 1658, + "over": 962, + "overall": 6914, + "overboard": 42982, + "overcame": 47235, + "overcast": 36942, + "overcome": 14365, + "overcoming": 29348, + "overdose": 27017, + "overdrive": 40088, + "overdue": 30240, + "overflow": 32885, + "overflowing": 45370, + "overhaul": 31531, + "overhead": 20321, + "overland": 38808, + "overlay": 44827, + "overload": 24327, + "overlook": 35767, + "overlooked": 27632, + "overlooking": 17319, + "overly": 28820, + "overnight": 9913, + "overpass": 44310, + "overrated": 38214, + "overs": 45774, + "overs": 17329, + "overseas": 15100, + "oversight": 32494, + "oversized": 31557, + "overtime": 19347, + "overturned": 31048, + "overview": 14789, + "overwatch": 18124, + "overweight": 43465, + "overwhel": 12204, + "overwhelmed": 23459, + "overwhelming": 20306, + "overwhelmingly": 43549, + "ovi": 32508, + "ovic": 22417, + "ovich": 27623, + "ovie": 47677, + "ovo": 41920, + "ovo": 18065, + "ovski": 26167, + "ow": 2032, + "ow": 2250, + "owa": 32770, + "owe": 19073, + "owed": 37641, + "owen": 24838, + "owen": 12056, + "owens": 20664, + "owes": 35069, + "owing": 48582, + "owl": 34332, + "owl": 9899, + "owls": 18247, + "own": 3845, + "own": 1758, + "owned": 8536, + "owner": 5019, + "owners": 7712, + "ownership": 16583, + "owning": 24661, + "owns": 17533, + "owo": 46142, + "ows": 27423, + "owski": 22573, + "ox": 3282, + "ox": 12071, + "oxfam": 45466, + "oxford": 28588, + "oxford": 8824, + "oxfordshire": 37855, + "oxi": 33731, + "oxi": 48147, + "oxid": 17701, + "oxide": 28235, + "oxo": 37088, + "oxy": 12432, + "oxygen": 16214, + "oy": 6638, + "oy": 12437, + "oya": 38894, + "oye": 48677, + "oyster": 40545, + "oyster": 17253, + "oysters": 22672, + "oz": 10584, + "oz": 6044, + "ozar": 31848, + "ozil": 41365, + "ozone": 37052, + "ozzy": 39549, + "p": 79, + "p": 335, + "pa": 765, + "pa": 2217, + "paa": 32812, + "pab": 9354, + "pablo": 42172, + "pablo": 14473, + "pac": 2332, + "pac": 7608, + "pace": 40600, + "pace": 9450, + "paced": 32611, + "pacers": 23976, + "paces": 43001, + "paci": 5699, + "pacific": 19723, + "pacific": 6654, + "pacing": 45202, + "pack": 2711, + "pack": 3420, + "package": 7053, + "packaged": 29656, + "packages": 14305, + "packaging": 11658, + "packard": 46421, + "packed": 5883, + "packer": 28209, + "packers": 14294, + "packet": 25022, + "packets": 40448, + "packing": 9829, + "packs": 11086, + "paco": 41364, + "pacqui": 28456, + "pacquiao": 30485, + "pact": 27182, + "pad": 3798, + "pad": 7601, + "padded": 42253, + "paddington": 33162, + "paddle": 38276, + "paddle": 20811, + "paddling": 40645, + "paddock": 29590, + "paddy": 33103, + "paddy": 19855, + "padi": 47037, + "padilla": 22380, + "padma": 44595, + "padma": 46457, + "padre": 38343, + "padres": 22829, + "pads": 17353, + "paedi": 41488, + "paella": 46924, + "paf": 47185, + "pafc": 49259, + "pag": 4151, + "pag": 30525, + "pagan": 27854, + "page": 14996, + "page": 2504, + "pageant": 22139, + "pages": 8082, + "pagoda": 44309, + "pah": 41054, + "pah": 26884, + "pai": 20624, + "pai": 21198, + "paid": 5057, + "paige": 33659, + "paige": 16022, + "paign": 31796, + "pain": 2141, + "pain": 4495, + "paine": 38069, + "painful": 16361, + "pains": 25639, + "paint": 7948, + "paint": 5185, + "paintball": 39730, + "painted": 6433, + "painter": 10888, + "painters": 35703, + "painting": 49164, + "painting": 3086, + "paintings": 9956, + "paints": 21672, + "pair": 19848, + "pair": 4038, + "paired": 12433, + "pairing": 16313, + "pairings": 41152, + "pairs": 9950, + "pais": 16878, + "paisley": 22954, + "pajam": 24110, + "pajama": 40244, + "pajamas": 37231, + "pak": 13186, + "pak": 9094, + "paki": 3438, + "pakistan": 10713, + "pakistan": 3994, + "pakistani": 14050, + "pakistanis": 45707, + "pakv": 38196, + "pal": 1850, + "pal": 3611, + "pala": 17895, + "palace": 6381, + "palaces": 45625, + "palad": 28371, + "palae": 43379, + "palais": 35673, + "palate": 34666, + "palawan": 48202, + "palazzo": 36006, + "pale": 4768, + "pale": 12518, + "paleo": 36741, + "paleo": 22198, + "paler": 38028, + "palermo": 40635, + "palestin": 9449, + "palestine": 11682, + "palestinian": 11764, + "palestinians": 21874, + "palette": 13901, + "pali": 48063, + "palin": 40153, + "palis": 44256, + "pality": 27296, + "pall": 35817, + "palla": 21208, + "palladium": 37888, + "pallet": 39057, + "palli": 28954, + "palliative": 46014, + "pally": 46073, + "palm": 19651, + "palm": 8612, + "palma": 29888, + "palmer": 40112, + "palmer": 13633, + "palms": 27059, + "palo": 31562, + "palom": 47698, + "palooza": 25861, + "pals": 11043, + "palsy": 46651, + "pam": 8228, + "pam": 18513, + "pamela": 26991, + "pamp": 37653, + "pamper": 44345, + "pamph": 41332, + "pan": 1072, + "pan": 7437, + "panam": 24606, + "panama": 15522, + "panas": 26207, + "panasonic": 29750, + "pancake": 18723, + "pancakes": 15308, + "panch": 27251, + "pancra": 42472, + "pancre": 27708, + "pancreatic": 49337, + "pancy": 41625, + "pand": 5631, + "panda": 12952, + "pandas": 35119, + "pande": 38419, + "pandey": 34895, + "pandit": 41191, + "pandor": 30250, + "pandora": 17727, + "pandoramusic": 42344, + "pane": 27470, + "panel": 3724, + "paneli": 19410, + "panelist": 39719, + "panelists": 24619, + "panels": 12735, + "panera": 48471, + "pang": 16756, + "pang": 23672, + "panhandle": 40919, + "pani": 36092, + "panic": 46671, + "panic": 14124, + "panini": 30410, + "pann": 42302, + "panna": 49065, + "pano": 36165, + "panor": 12962, + "panorama": 19763, + "panoramic": 22563, + "pans": 35204, + "pant": 22550, + "panther": 22825, + "panther": 13262, + "panthers": 10494, + "panties": 32515, + "panto": 28776, + "pantry": 25608, + "pants": 5003, + "panty": 44217, + "pany": 45567, + "panzer": 41159, + "pao": 33790, + "paola": 44689, + "paolo": 48488, + "paolo": 21133, + "pap": 1884, + "pap": 30756, + "papa": 12211, + "papar": 32782, + "paparazzi": 37842, + "papaya": 44098, + "paper": 8680, + "paper": 2802, + "paperback": 17928, + "papers": 8204, + "paperwork": 35785, + "papi": 35177, + "papp": 26361, + "paprika": 44793, + "papua": 32629, + "par": 699, + "par": 9163, + "para": 18355, + "para": 8976, + "parach": 23147, + "parachute": 30122, + "parad": 37143, + "parade": 5809, + "parades": 46479, + "paradi": 6658, + "paradig": 27786, + "paradigm": 33485, + "paradise": 45869, + "paradise": 7247, + "paradox": 33109, + "parag": 11866, + "paragon": 48099, + "paragra": 24903, + "paragraph": 28499, + "paragu": 38021, + "paraguay": 43579, + "paral": 15143, + "paralle": 13184, + "parallel": 18201, + "paralleled": 42520, + "parallels": 46101, + "paraly": 30255, + "paralym": 18727, + "paralympic": 30806, + "paralympics": 37162, + "paralysis": 45702, + "param": 12250, + "parame": 27106, + "paramedic": 34630, + "paramedics": 35991, + "parameters": 44890, + "paramore": 34401, + "paramount": 26642, + "parano": 30283, + "paranoid": 43029, + "paranor": 16940, + "paranormal": 19047, + "parap": 41091, + "paras": 15198, + "parasite": 42460, + "parasites": 46175, + "parc": 30914, + "parcel": 30367, + "parcels": 45589, + "pard": 18773, + "pardon": 47606, + "pardon": 26565, + "pare": 18202, + "pared": 5498, + "paren": 3106, + "parent": 47848, + "parent": 10183, + "parental": 28339, + "parenthood": 23887, + "parenting": 14529, + "parents": 3731, + "pares": 12420, + "parfait": 46140, + "pari": 17961, + "pari": 27979, + "paris": 13982, + "paris": 3445, + "parisagreement": 47405, + "parish": 47328, + "parish": 13020, + "parisi": 45081, + "parisian": 38512, + "parity": 42734, + "park": 4985, + "park": 1452, + "parked": 16487, + "parker": 31119, + "parker": 8365, + "parkin": 34868, + "parking": 5984, + "parkinson": 28129, + "parkland": 31287, + "parkrun": 25747, + "parks": 6873, + "parkway": 19882, + "parl": 30373, + "parl": 29897, + "parliam": 5941, + "parliament": 41599, + "parliament": 7151, + "parliamentary": 17912, + "parlor": 38253, + "parlour": 37829, + "parma": 36077, + "parme": 26295, + "parmesan": 27274, + "paro": 17429, + "parody": 24318, + "parole": 32158, + "parr": 44113, + "parrish": 43043, + "parrot": 23565, + "parry": 40604, + "parsley": 30077, + "parsons": 22505, + "part": 1872, + "part": 1551, + "parte": 48508, + "parth": 34790, + "parti": 10509, + "partial": 18957, + "partially": 21269, + "partic": 2871, + "partici": 9540, + "particip": 4400, + "participant": 27674, + "participants": 10237, + "participate": 9433, + "participated": 14252, + "participates": 46414, + "participating": 11535, + "participation": 13529, + "particle": 27716, + "particles": 27012, + "particul": 11408, + "particular": 14098, + "particularly": 12170, + "parties": 9032, + "parting": 32844, + "partisan": 20772, + "partist": 44713, + "partition": 42219, + "partly": 21459, + "partner": 5210, + "partner": 4568, + "partnered": 21402, + "partnering": 21182, + "partners": 5568, + "partnership": 6123, + "partnerships": 17418, + "parton": 43245, + "partridge": 34872, + "parts": 5149, + "party": 12877, + "party": 1580, + "partying": 25702, + "pas": 1341, + "pas": 9525, + "pasadena": 25892, + "pascal": 28626, + "pasco": 49220, + "pascu": 42692, + "pash": 23936, + "pasha": 46986, + "paso": 18542, + "pasqu": 44941, + "pass": 5016, + "pass": 3511, + "passage": 16477, + "passages": 48937, + "passed": 4957, + "passenger": 12311, + "passengers": 12781, + "passer": 48544, + "passes": 7633, + "passi": 32471, + "passing": 6589, + "passion": 8822, + "passion": 5332, + "passionate": 10947, + "passionately": 44028, + "passions": 38441, + "passive": 23171, + "passover": 38426, + "passport": 14739, + "passports": 46368, + "password": 20258, + "passwords": 43095, + "past": 7315, + "past": 2729, + "pasta": 10441, + "paste": 34765, + "paste": 17038, + "pastel": 19457, + "pastels": 45699, + "pastor": 19792, + "pastor": 9664, + "pastoral": 37191, + "pastors": 30959, + "pastr": 45478, + "pastries": 39409, + "pastry": 18582, + "pasture": 34764, + "pastures": 47793, + "pat": 1300, + "pat": 7036, + "patag": 29862, + "patagonia": 32786, + "patch": 29284, + "patch": 8721, + "patches": 22104, + "patchwork": 44675, + "patchy": 47488, + "pate": 42122, + "pate": 42098, + "patel": 14168, + "patent": 14692, + "patented": 37277, + "patents": 33911, + "paterson": 36560, + "path": 7408, + "path": 5035, + "pathetic": 18222, + "pathfinder": 35415, + "pathi": 34976, + "pathi": 27347, + "pathic": 49025, + "patho": 18534, + "pathology": 23290, + "paths": 16333, + "pathway": 23488, + "pathways": 24690, + "pathy": 13330, + "pati": 2799, + "pati": 26708, + "patience": 13575, + "patient": 30139, + "patient": 6262, + "patiently": 22980, + "patients": 5543, + "patil": 49187, + "patio": 14304, + "pational": 30627, + "patna": 45025, + "patory": 41859, + "patreon": 17165, + "patri": 4771, + "patriarch": 49054, + "patriarchy": 48806, + "patric": 12569, + "patrice": 40731, + "patricia": 18143, + "patrick": 12078, + "patrick": 5286, + "patricks": 46783, + "patriot": 28896, + "patriot": 15692, + "patrioti": 35520, + "patriotic": 20217, + "patriotism": 35807, + "patriots": 8707, + "patro": 31650, + "patrol": 10073, + "patrolling": 39344, + "patrols": 35978, + "patron": 26658, + "patron": 17683, + "patrons": 28308, + "pats": 24874, + "patsy": 46093, + "patt": 12637, + "patter": 4982, + "pattern": 7447, + "patterned": 47212, + "patterns": 11637, + "patterson": 21384, + "patti": 44927, + "patti": 26123, + "pattinson": 32474, + "patton": 29026, + "patty": 48741, + "patty": 18321, + "pau": 1834, + "pau": 35970, + "paul": 6035, + "paul": 2597, + "paula": 37363, + "paula": 16777, + "pauline": 30438, + "paulo": 48002, + "paulo": 21628, + "pauls": 41413, + "pauls": 40010, + "paulson": 48201, + "pause": 19439, + "paused": 46782, + "pav": 6661, + "pave": 37107, + "paved": 27898, + "pavel": 43152, + "pavement": 27669, + "pavilion": 13374, + "paving": 28651, + "paw": 14009, + "paw": 16016, + "pawan": 29754, + "pawankalyan": 33702, + "pawn": 43195, + "paws": 16714, + "pax": 20007, + "pax": 19033, + "paxton": 38347, + "pay": 2642, + "pay": 3345, + "payback": 36413, + "paycheck": 45078, + "payday": 26957, + "payee": 46985, + "payer": 41503, + "paying": 8341, + "payment": 10596, + "payments": 11832, + "payne": 12775, + "paypal": 21442, + "payroll": 31610, + "pays": 10845, + "paysoff": 48174, + "paytm": 45352, + "payton": 27348, + "paz": 22267, + "pb": 20112, + "pb": 10981, + "pba": 28205, + "pbb": 48567, + "pbb": 40589, + "pbc": 49191, + "pbl": 35166, + "pbr": 32998, + "pbs": 17908, + "pc": 6782, + "pc": 3808, + "pca": 35705, + "pcb": 26235, + "pcc": 36059, + "pci": 38957, + "pcm": 47436, + "pcr": 35704, + "pcs": 11917, + "pcso": 31963, + "pct": 22168, + "pd": 4387, + "pd": 4675, + "pdates": 16842, + "pdc": 40498, + "pdf": 15181, + "pdp": 24601, + "pdt": 21743, + "pdx": 25470, + "pdx": 16153, + "pe": 661, + "pe": 956, + "pea": 13915, + "peabo": 34083, + "peabody": 41244, + "peac": 34615, + "peace": 6249, + "peace": 3021, + "peaceful": 9461, + "peacefully": 30530, + "peacekeeping": 43630, + "peach": 10522, + "peach": 11538, + "peaches": 27216, + "peak": 18572, + "peak": 6026, + "peakdistrict": 41289, + "peake": 24810, + "peaked": 36391, + "peaks": 14067, + "pean": 11563, + "peanu": 25843, + "peanut": 12491, + "peanuts": 26503, + "pear": 4910, + "pear": 18820, + "pearce": 25996, + "pearl": 21806, + "pearl": 8560, + "pearljam": 46739, + "pearls": 19581, + "pears": 39565, + "pearson": 20461, + "peas": 15937, + "peasant": 40621, + "peasants": 48788, + "peat": 26914, + "pebble": 28056, + "pebbles": 40155, + "pec": 32447, + "pec": 17611, + "pecan": 32177, + "peck": 25186, + "peck": 29234, + "pecker": 30169, + "peckham": 45863, + "pecu": 34200, + "peculiar": 42808, + "ped": 13197, + "ped": 2966, + "pedago": 34590, + "pedagogy": 48072, + "pedal": 32943, + "pedal": 19621, + "pedals": 38535, + "pede": 12862, + "pede": 19560, + "pedestri": 30027, + "pedestrian": 18256, + "pedestrians": 33895, + "pedi": 12967, + "pedia": 11733, + "pediatric": 48431, + "pediatric": 22071, + "pedic": 35319, + "pedic": 44528, + "pedro": 29963, + "pedro": 15114, + "peds": 45377, + "pee": 12988, + "pee": 11196, + "peed": 47369, + "peek": 46323, + "peek": 7569, + "peeking": 48771, + "peel": 34386, + "peel": 17158, + "peeled": 33533, + "peeling": 48649, + "peep": 25425, + "peep": 16857, + "peeps": 11681, + "peer": 32416, + "peer": 14432, + "peers": 21626, + "pees": 31830, + "peg": 32182, + "peg": 11207, + "pegas": 30018, + "pegasus": 37822, + "peggy": 24271, + "pei": 48166, + "pei": 12917, + "pel": 4286, + "pel": 7006, + "pele": 44105, + "pelican": 34131, + "pelicans": 29363, + "pell": 46981, + "pelle": 31267, + "pelled": 32506, + "pellegr": 38529, + "pellets": 48240, + "pelo": 40192, + "pelo": 40238, + "pelosi": 22169, + "pelvic": 45646, + "pemb": 19880, + "pembro": 24084, + "pembroke": 36702, + "pembroke": 40044, + "pembrokeshire": 40695, + "pen": 1501, + "pen": 5356, + "pena": 35788, + "penalties": 25417, + "penalty": 11491, + "penang": 29545, + "penc": 20065, + "pence": 18002, + "pencil": 41303, + "pencil": 11200, + "pencils": 21909, + "pend": 3052, + "pendant": 12415, + "pendants": 44117, + "pending": 12770, + "pendleton": 44272, + "pendu": 45336, + "penelope": 36703, + "penetr": 26058, + "peng": 42955, + "peng": 39200, + "pengu": 8854, + "penguin": 28249, + "penguin": 14952, + "penguins": 16557, + "peninsu": 13464, + "peninsula": 14070, + "penn": 7760, + "penn": 11128, + "pennant": 43971, + "penned": 45077, + "penney": 47856, + "pennies": 43094, + "pennsylvania": 13673, + "penny": 20400, + "penny": 11388, + "pens": 13307, + "pens": 13310, + "pensac": 30925, + "pensacola": 33573, + "pension": 32840, + "pension": 17764, + "pensions": 29773, + "penske": 47154, + "pent": 10699, + "pent": 22725, + "pentagon": 23133, + "pente": 33165, + "penthouse": 32673, + "penultimate": 36553, + "peop": 1030, + "people": 10573, + "people": 1047, + "peoples": 28241, + "peoples": 14627, + "peopleschoice": 32418, + "peoplesvote": 45830, + "peoria": 36985, + "pep": 12761, + "pep": 14898, + "pepe": 24778, + "pepp": 34425, + "pepper": 14861, + "pepper": 8253, + "peppermint": 30321, + "pepperoni": 47307, + "peppers": 14650, + "pepsi": 21307, + "per": 703, + "per": 1284, + "pera": 26294, + "perce": 24135, + "perceived": 38436, + "percent": 16328, + "percent": 9017, + "percentage": 19477, + "percep": 28017, + "perception": 20591, + "perceptions": 38138, + "perch": 34281, + "perched": 40071, + "percu": 41722, + "percussion": 23980, + "percy": 23940, + "pere": 8665, + "pere": 36300, + "pered": 24509, + "peregr": 37479, + "peregrine": 44546, + "pereira": 43927, + "peren": 24564, + "perenni": 26996, + "perennial": 34038, + "perez": 15107, + "perf": 22816, + "perfe": 1624, + "perfec": 6599, + "perfect": 17261, + "perfect": 1878, + "perfection": 9646, + "perfectly": 8037, + "perfecto": 42898, + "perfor": 2311, + "perform": 3866, + "perform": 5940, + "performan": 8973, + "performance": 2714, + "performances": 9553, + "performed": 9997, + "performer": 17061, + "performers": 18476, + "performing": 5170, + "performs": 13839, + "perfu": 14214, + "perfume": 17525, + "perhaps": 9297, + "peri": 12618, + "peri": 44068, + "perience": 19302, + "peril": 40119, + "peril": 48301, + "perimeter": 38499, + "pering": 29746, + "perio": 5101, + "period": 6131, + "periodic": 36476, + "periods": 24401, + "periph": 35308, + "peripheral": 43901, + "peris": 19461, + "periscope": 21668, + "perk": 33424, + "perkins": 20057, + "perks": 17660, + "perl": 44018, + "perm": 47847, + "perman": 9018, + "permanent": 11144, + "permanently": 25584, + "perme": 42456, + "permission": 15822, + "permit": 21950, + "permits": 33267, + "permitted": 44380, + "pero": 23551, + "perpe": 15749, + "perpetr": 33376, + "perpetu": 30132, + "perpetual": 32018, + "perrie": 32691, + "perry": 28478, + "perry": 7899, + "pers": 3688, + "pers": 10710, + "perse": 27498, + "persecu": 22878, + "persecution": 32009, + "perseverance": 29820, + "persi": 11509, + "persian": 19859, + "persist": 19412, + "persist": 40938, + "persistence": 34588, + "persistent": 29028, + "person": 3510, + "person": 2533, + "persona": 18401, + "personal": 10114, + "personal": 4121, + "personalised": 24186, + "personalities": 27888, + "personality": 10386, + "personalized": 17845, + "personally": 13885, + "personnel": 14546, + "persons": 14592, + "perspec": 17997, + "perspective": 8996, + "perspectives": 18777, + "persu": 20972, + "pert": 36970, + "pert": 16306, + "perth": 19067, + "perth": 11011, + "peru": 20612, + "peru": 12964, + "peruvian": 30822, + "pes": 38368, + "pes": 2598, + "pesa": 47409, + "pesc": 44044, + "pesh": 33184, + "peshaw": 28524, + "peshawar": 29230, + "pesky": 42512, + "pesos": 47872, + "pessi": 43902, + "pest": 20130, + "pest": 9425, + "pesticide": 48481, + "pesticides": 37868, + "pesto": 26186, + "pests": 41919, + "pet": 2167, + "pet": 3703, + "peta": 28785, + "petal": 38430, + "petal": 40469, + "petals": 26064, + "petday": 45314, + "pete": 14479, + "pete": 8571, + "peter": 5093, + "peter": 3696, + "peterborough": 26012, + "peters": 16336, + "petersburg": 21052, + "petersen": 39794, + "peterson": 16877, + "peth": 48920, + "petit": 36437, + "petit": 21276, + "petite": 27213, + "petition": 10975, + "petitions": 43536, + "petr": 29808, + "petra": 31300, + "petre": 47179, + "petri": 31831, + "petro": 8716, + "petrol": 18149, + "petroleum": 22063, + "petron": 42875, + "pets": 7663, + "pett": 27051, + "petti": 48001, + "petting": 44334, + "petty": 17324, + "peu": 21411, + "peuge": 22893, + "peugeot": 24129, + "pew": 21608, + "pew": 30783, + "pewdie": 41882, + "pewdiepie": 42563, + "pex": 43765, + "pey": 14966, + "pey": 30933, + "peyton": 49254, + "peyton": 20307, + "pez": 45798, + "pez": 10482, + "pf": 16680, + "pf": 12572, + "pfa": 47839, + "pfc": 35007, + "pff": 44121, + "pfi": 29810, + "pfw": 31229, + "pg": 12476, + "pg": 5211, + "pga": 13351, + "pgat": 36514, + "pgatour": 40094, + "pgh": 44862, + "pgh": 30031, + "pgs": 49204, + "ph": 745, + "ph": 2042, + "pha": 4443, + "pha": 26255, + "phal": 19962, + "phan": 8731, + "phan": 40126, + "phant": 36998, + "phantom": 37688, + "phantom": 14490, + "phar": 5570, + "phara": 35792, + "pharaoh": 40437, + "pharm": 45761, + "pharma": 17831, + "pharmac": 8193, + "pharmaceu": 19490, + "pharmaceutical": 25217, + "pharmaceuticals": 44623, + "pharmacist": 41024, + "pharmacists": 44337, + "pharmacy": 15293, + "pharo": 42308, + "pharoah": 49287, + "pharrell": 31316, + "phase": 8304, + "phases": 35337, + "phat": 42492, + "phc": 41102, + "phd": 20875, + "phd": 8472, + "phdchat": 39564, + "phdlife": 39638, + "phe": 4787, + "phe": 19853, + "pheasant": 41983, + "phee": 41292, + "phel": 23711, + "phelps": 27128, + "phen": 7718, + "pheno": 47336, + "phenom": 31673, + "phenom": 39618, + "phenomen": 11304, + "phenomena": 41538, + "phenomenal": 15035, + "phenomenon": 24464, + "pher": 9194, + "pher": 19828, + "phers": 29531, + "pherson": 36421, + "phew": 10295, + "phi": 2239, + "phi": 12220, + "phia": 9228, + "phic": 3977, + "phie": 30237, + "phies": 17062, + "phil": 2821, + "phil": 6199, + "phila": 47443, + "philadel": 9428, + "philadelphia": 9749, + "philanthro": 16587, + "philanthropist": 44153, + "philanthropy": 25047, + "philately": 33695, + "phile": 36543, + "philharmon": 25228, + "philharmonic": 31699, + "phili": 4277, + "philia": 46654, + "philip": 20748, + "philip": 11074, + "philipp": 5623, + "philipp": 47591, + "philippe": 20942, + "philippine": 17629, + "philippines": 8149, + "philips": 25175, + "phill": 42346, + "phill": 48272, + "philli": 6456, + "phillies": 18748, + "phillip": 48832, + "phillip": 19323, + "phillips": 11041, + "philly": 19545, + "philly": 7785, + "philos": 8395, + "philosop": 20349, + "philosoph": 10187, + "philosopher": 25220, + "philosophical": 32628, + "philosophy": 12213, + "phils": 38573, + "phin": 33816, + "phine": 40985, + "phins": 40210, + "phish": 36897, + "phishing": 36546, + "phl": 25603, + "pho": 816, + "pho": 22707, + "phobia": 28749, + "phoe": 22673, + "phoebe": 27582, + "phoeni": 6778, + "phoenix": 20615, + "phoenix": 7793, + "phol": 48140, + "phon": 19602, + "phon": 31115, + "phone": 15486, + "phone": 1951, + "phones": 6351, + "phony": 31925, + "phora": 31363, + "phosp": 22638, + "photo": 1153, + "photo": 1125, + "photobomb": 37075, + "photobook": 41894, + "photog": 28115, + "photogenic": 36108, + "photogra": 36754, + "photograph": 1688, + "photograph": 8853, + "photographed": 11573, + "photographer": 5748, + "photographers": 17141, + "photographic": 22053, + "photographing": 30074, + "photographs": 15759, + "photography": 33183, + "photography": 2108, + "photom": 32223, + "photoo": 11106, + "photooftheday": 11933, + "photos": 2479, + "photoshoot": 11121, + "photoshop": 12419, + "photoshopped": 35738, + "phouse": 27848, + "php": 17370, + "phra": 12777, + "phrase": 18809, + "phrases": 35264, + "phs": 16495, + "phu": 21274, + "phuket": 34028, + "phx": 35466, + "phx": 29507, + "phy": 6484, + "phy": 4292, + "phyl": 35600, + "phyllis": 37844, + "phys": 3734, + "phys": 37894, + "physi": 13782, + "physic": 46641, + "physical": 44127, + "physical": 6671, + "physically": 18105, + "physician": 21055, + "physicians": 26702, + "physicist": 29052, + "physics": 9369, + "physio": 29574, + "physio": 29177, + "physiology": 32349, + "physique": 42884, + "phyto": 42197, + "pi": 741, + "pi": 5357, + "pia": 8918, + "pian": 24637, + "pianist": 21048, + "piano": 49278, + "piano": 7894, + "pianos": 47904, + "piazza": 28496, + "pic": 901, + "pic": 1282, + "pical": 5482, + "picard": 48507, + "picasso": 21481, + "piccad": 33876, + "piccadilly": 37287, + "piccollage": 43621, + "pick": 6379, + "pick": 3142, + "picked": 6018, + "picker": 43105, + "pickering": 47605, + "picket": 33559, + "picking": 9545, + "pickle": 24570, + "pickled": 21705, + "pickles": 25001, + "picks": 8551, + "pickup": 15382, + "pickups": 33383, + "picnic": 12007, + "pico": 23363, + "picoftheday": 18319, + "pics": 2559, + "pict": 18778, + "pictorial": 40640, + "picture": 11663, + "picture": 1674, + "pictured": 7647, + "pictures": 3646, + "picturesque": 24894, + "pid": 5225, + "piday": 48056, + "pie": 12065, + "pie": 5319, + "piece": 39632, + "piece": 2754, + "pieces": 6194, + "pied": 24686, + "pied": 12713, + "piedmont": 39691, + "pier": 5641, + "pier": 11348, + "pierc": 49216, + "pierce": 48462, + "pierce": 16782, + "pierced": 32799, + "piercing": 22557, + "piero": 43125, + "pierre": 34670, + "pierre": 11985, + "piers": 29030, + "pies": 6898, + "pieter": 44801, + "pietro": 42169, + "piff": 40719, + "pig": 12009, + "pig": 9619, + "pigeon": 18008, + "pigeons": 32910, + "piggy": 28245, + "pigment": 40284, + "pigs": 16228, + "pik": 48539, + "pika": 47372, + "pikach": 27268, + "pikachu": 28107, + "pike": 33457, + "pike": 14011, + "pil": 2893, + "pil": 20645, + "pilates": 29518, + "pile": 44403, + "pile": 13930, + "piled": 26873, + "piles": 31968, + "pilgri": 13966, + "pilgrim": 32662, + "pilgrimage": 24335, + "pilgrims": 31370, + "piling": 43050, + "pilip": 27234, + "pilipinas": 32392, + "pill": 14830, + "pill": 19226, + "pillar": 17322, + "pillars": 22054, + "pillow": 42237, + "pillow": 12182, + "pillows": 26499, + "pills": 23964, + "pilo": 37526, + "pilot": 31619, + "pilot": 6687, + "pilots": 15586, + "pilsner": 47153, + "pim": 15285, + "pim": 35472, + "pimp": 35789, + "pin": 2629, + "pin": 5164, + "pinball": 31679, + "pinch": 26114, + "pine": 9398, + "pine": 7374, + "pineapple": 14831, + "pines": 20338, + "ping": 23720, + "ping": 2089, + "pinion": 40557, + "pink": 11151, + "pink": 3360, + "pinkfloyd": 48520, + "pinky": 29803, + "pinn": 31448, + "pinnacle": 32754, + "pinned": 12165, + "pinning": 44515, + "pino": 36633, + "pinot": 41399, + "pinot": 21146, + "pinoy": 43578, + "pinoy": 35258, + "pins": 14619, + "pinst": 41173, + "pint": 42537, + "pint": 13584, + "pinterest": 15379, + "pinto": 35992, + "pints": 27935, + "pinup": 37349, + "pio": 22108, + "pion": 36728, + "pion": 29190, + "pione": 7975, + "pioneer": 34892, + "pioneer": 12459, + "pioneering": 25933, + "pioneers": 22383, + "pious": 42441, + "pip": 30854, + "pipe": 29333, + "pipe": 10459, + "pipel": 12387, + "pipeline": 14151, + "pipelines": 39683, + "piper": 47052, + "piper": 16293, + "pipes": 16991, + "piping": 40744, + "pippa": 47672, + "pir": 4351, + "pir": 38899, + "piracy": 39452, + "piran": 49034, + "pirate": 38680, + "pirate": 13592, + "pirates": 10442, + "pire": 16613, + "pires": 14988, + "pis": 9230, + "pis": 44441, + "pisa": 43632, + "pisces": 45982, + "piss": 20818, + "pissed": 17989, + "pist": 15556, + "pist": 32826, + "pistachi": 29760, + "pistachio": 36320, + "pistol": 20480, + "piston": 48236, + "pistons": 27242, + "pistor": 48162, + "pit": 2946, + "pit": 7476, + "pita": 27070, + "pitbull": 25295, + "pitch": 8992, + "pitch": 5872, + "pitched": 28447, + "pitcher": 13445, + "pitchers": 27835, + "pitches": 21005, + "pitching": 16455, + "piti": 47568, + "pits": 24144, + "pitt": 7607, + "pitt": 15599, + "pitts": 9531, + "pittsburgh": 10453, + "pity": 24380, + "pius": 39988, + "pivo": 18009, + "pivot": 31805, + "pivotal": 31432, + "pix": 6185, + "pix": 13088, + "pixar": 27493, + "pixel": 14384, + "pixel": 13241, + "pixelart": 18516, + "pixels": 34099, + "pixie": 35573, + "piyu": 30772, + "piyush": 36191, + "piyushgoyal": 45318, + "pizz": 3897, + "pizza": 4474, + "pizzas": 30647, + "pizzeria": 44174, + "pj": 12524, + "pj": 17179, + "pjnet": 22011, + "pjs": 36009, + "pk": 10149, + "pk": 10991, + "pkg": 49011, + "pkk": 47480, + "pknot": 41779, + "pkwy": 36827, + "pl": 712, + "pl": 5678, + "pla": 841, + "pla": 19945, + "plac": 2331, + "place": 14884, + "place": 1445, + "placed": 9729, + "placement": 16724, + "placements": 43885, + "placer": 49170, + "places": 4448, + "placing": 18531, + "plague": 25360, + "plaid": 23291, + "plain": 22776, + "plain": 10709, + "plains": 16345, + "plan": 1740, + "plan": 2970, + "pland": 24801, + "plane": 22728, + "plane": 5363, + "planes": 12581, + "planet": 16833, + "planet": 5172, + "planetary": 28361, + "planets": 22315, + "plank": 30991, + "plankton": 48249, + "plann": 6409, + "planned": 8169, + "planner": 18083, + "planners": 33664, + "planning": 4446, + "plano": 34063, + "plans": 4181, + "plant": 8521, + "plant": 3912, + "plantation": 20014, + "plantbased": 33720, + "planted": 14286, + "planter": 34453, + "planters": 43661, + "planting": 13922, + "plants": 5829, + "plaque": 16097, + "plaques": 45610, + "plar": 26754, + "plas": 45673, + "plasma": 24999, + "plaster": 31980, + "plastic": 15645, + "plastic": 6102, + "plasticpollution": 47129, + "plastics": 20999, + "plasticsurgery": 48555, + "plat": 3172, + "plata": 46456, + "plate": 28744, + "plate": 5135, + "plateau": 29301, + "plated": 21161, + "plates": 11485, + "platform": 5549, + "platforms": 13551, + "platin": 10267, + "plating": 44564, + "platinum": 10979, + "plato": 41101, + "platoon": 41254, + "platt": 44459, + "platt": 40097, + "platte": 46785, + "platter": 29071, + "platz": 40878, + "plau": 39139, + "play": 1222, + "play": 1453, + "playa": 23756, + "playable": 33885, + "playback": 39194, + "playbook": 34856, + "playboy": 24383, + "played": 3432, + "player": 24503, + "player": 2477, + "players": 3030, + "playful": 23871, + "playground": 15861, + "playhouse": 23254, + "playin": 24674, + "playing": 47368, + "playing": 1629, + "playlist": 9180, + "playlists": 47183, + "playo": 5804, + "playoff": 9655, + "playoffs": 9548, + "plays": 5134, + "playstation": 11332, + "playtime": 43037, + "playwright": 32070, + "plaza": 8943, + "plc": 16827, + "ple": 926, + "ple": 1619, + "plea": 21956, + "plead": 47539, + "pleads": 31425, + "plear": 21362, + "pleas": 8481, + "pleas": 48740, + "pleasant": 12271, + "please": 41074, + "please": 1474, + "pleased": 6107, + "pleasing": 32893, + "pleasure": 5854, + "pleasures": 29513, + "pledge": 11507, + "pledged": 36799, + "pledges": 26746, + "pledis": 41202, + "plein": 43429, + "plenary": 19891, + "plenty": 7524, + "pler": 17677, + "ples": 6248, + "pless": 39821, + "pless": 17059, + "plets": 43230, + "plex": 23765, + "plex": 15241, + "pley": 19543, + "pli": 30001, + "pli": 45797, + "plic": 5806, + "plicity": 19823, + "plight": 40317, + "plin": 44531, + "plin": 32335, + "pline": 25376, + "pling": 12899, + "plings": 31184, + "pll": 47629, + "pll": 25266, + "pln": 48755, + "plo": 1778, + "plo": 43523, + "plor": 34695, + "plot": 9918, + "plots": 25672, + "plotting": 30751, + "plough": 33811, + "plow": 38363, + "pls": 5572, + "plu": 2052, + "plug": 12628, + "plugged": 23261, + "plugin": 31278, + "plugins": 48797, + "plugs": 28083, + "plum": 26267, + "plum": 16202, + "plumb": 21769, + "plumber": 43478, + "plumbing": 24647, + "plume": 39495, + "plun": 15122, + "plunge": 26506, + "plur": 44664, + "plus": 3097, + "plush": 18926, + "pluto": 26380, + "ply": 17249, + "ply": 28705, + "plying": 36071, + "plym": 11907, + "plymouth": 13786, + "plz": 10538, + "pm": 13699, + "pm": 990, + "pmi": 41206, + "pmln": 23208, + "pmo": 18782, + "pmoindia": 20374, + "pms": 44223, + "pn": 14431, + "pn": 13774, + "pnc": 37148, + "pne": 30966, + "pneu": 28714, + "pneumonia": 42906, + "png": 20992, + "pnp": 25972, + "pnpp": 42175, + "pnw": 31521, + "po": 628, + "po": 3057, + "poa": 43912, + "poached": 27665, + "poaching": 35140, + "poc": 13232, + "poc": 27780, + "pocaly": 37987, + "pocalypse": 42307, + "poche": 38336, + "poche": 39022, + "pocket": 29147, + "pocket": 8504, + "pockets": 19566, + "pocon": 41850, + "pod": 3583, + "pod": 7446, + "podcast": 39654, + "podcast": 4294, + "podcasting": 40106, + "podcasts": 19392, + "pode": 33368, + "poder": 24960, + "podernfamily": 26620, + "podi": 32853, + "podium": 14093, + "pods": 18776, + "poe": 4746, + "poe": 19254, + "poem": 9436, + "poems": 15577, + "poet": 41019, + "poet": 9872, + "poetic": 26365, + "poetry": 20192, + "poetry": 6038, + "poetryday": 39255, + "poets": 19804, + "pof": 40850, + "poff": 28236, + "pogba": 25998, + "poign": 29682, + "poignant": 32138, + "poin": 9074, + "point": 13280, + "point": 2301, + "pointe": 24631, + "pointed": 20703, + "pointer": 29883, + "pointers": 36760, + "pointing": 19233, + "pointless": 33586, + "points": 3396, + "pois": 17008, + "poise": 45087, + "poised": 27354, + "poison": 30722, + "poison": 17074, + "poisoned": 43624, + "poisoning": 25750, + "poisonous": 37131, + "pok": 15387, + "poke": 6892, + "poke": 23186, + "pokemon": 16239, + "pokemon": 9528, + "pokemongo": 23985, + "poker": 30735, + "poker": 11865, + "pokes": 40221, + "poking": 49169, + "poké": 20656, + "pokémon": 22066, + "pol": 977, + "pol": 7649, + "pola": 43876, + "poland": 9834, + "polar": 21432, + "polar": 12214, + "polari": 27919, + "polaris": 37965, + "polarized": 48437, + "polaro": 25237, + "polaroid": 30427, + "poldark": 41322, + "pole": 26682, + "pole": 8170, + "poles": 22585, + "poli": 9675, + "poli": 5414, + "polic": 16126, + "police": 15535, + "police": 2120, + "policeman": 37713, + "policemen": 47946, + "polici": 10819, + "policies": 10993, + "policing": 20969, + "policy": 30173, + "policy": 4660, + "polio": 30533, + "polis": 16133, + "polish": 46941, + "polish": 9632, + "polished": 21478, + "polishing": 43629, + "polit": 2247, + "politan": 15337, + "polite": 31497, + "politi": 40597, + "politic": 33333, + "political": 37744, + "political": 4197, + "politically": 24323, + "politician": 15960, + "politicians": 12914, + "politico": 39403, + "politics": 4929, + "polk": 33317, + "polka": 29476, + "poll": 7032, + "pollen": 27651, + "pollin": 19152, + "pollinators": 36599, + "polling": 18024, + "pollo": 42755, + "pollock": 37614, + "polls": 11813, + "pollu": 8370, + "polluted": 43346, + "pollution": 10384, + "polly": 31204, + "polo": 35928, + "polo": 10229, + "poly": 6833, + "poly": 18367, + "polye": 31730, + "polyester": 38514, + "polym": 23626, + "polymer": 29993, + "polyne": 38892, + "polyvore": 24771, + "pom": 7548, + "pom": 24280, + "pome": 27963, + "pomegran": 29326, + "pomegranate": 32415, + "pomer": 35156, + "pomona": 41690, + "pompe": 18352, + "pompeii": 47775, + "pompeo": 34351, + "pompey": 35079, + "pon": 3809, + "pon": 22391, + "ponce": 43637, + "pond": 10750, + "ponder": 36863, + "pondering": 47395, + "ponds": 31033, + "pone": 32183, + "pong": 40546, + "pong": 17710, + "ponies": 34157, + "pons": 41255, + "pont": 47563, + "pont": 22997, + "ponte": 40892, + "ponti": 15527, + "pontiac": 25373, + "pontifex": 33566, + "ponty": 45152, + "pony": 24438, + "pony": 12678, + "ponytail": 43265, + "poo": 6601, + "poo": 14389, + "pooch": 37037, + "poodle": 34961, + "pooh": 27103, + "pooja": 35676, + "pool": 12484, + "pool": 2831, + "poole": 26290, + "pools": 18736, + "poolside": 35509, + "poon": 33799, + "poon": 36178, + "poop": 23310, + "poor": 14528, + "poor": 3665, + "poorest": 40771, + "poorly": 21101, + "pop": 6530, + "pop": 2852, + "popart": 47425, + "popcorn": 15034, + "pope": 16994, + "pope": 9283, + "popefrancis": 37254, + "poplar": 38726, + "popo": 38835, + "popo": 35572, + "popp": 13156, + "popped": 14934, + "poppies": 30385, + "poppin": 28536, + "popping": 18152, + "poppins": 41216, + "poppy": 32194, + "poppy": 15447, + "pops": 11705, + "popsic": 38481, + "popu": 3785, + "popul": 6593, + "popular": 15854, + "popular": 4368, + "popularity": 19235, + "populated": 38420, + "population": 8423, + "populations": 23797, + "populism": 48998, + "populist": 49376, + "popup": 33053, + "por": 817, + "por": 7697, + "pora": 23537, + "porcel": 19409, + "porcelain": 20451, + "porch": 17154, + "pore": 28267, + "pork": 40379, + "pork": 7897, + "poro": 48110, + "porridge": 34924, + "porsch": 48009, + "porsche": 44049, + "porsche": 8783, + "port": 1641, + "port": 1418, + "porta": 45037, + "portable": 11949, + "portage": 32087, + "portal": 14982, + "porte": 28654, + "ported": 16879, + "porter": 28319, + "porter": 10318, + "porters": 15670, + "portfoli": 45766, + "portfolio": 11938, + "porth": 37425, + "porti": 45760, + "porting": 26052, + "portion": 13739, + "portions": 22914, + "portland": 38366, + "portland": 8880, + "portman": 34755, + "porto": 24853, + "porto": 18947, + "portobello": 48025, + "portra": 4175, + "portrait": 39312, + "portrait": 5352, + "portraits": 14203, + "portray": 46282, + "portrayal": 39238, + "portrayed": 36093, + "ports": 7734, + "portsm": 17063, + "portsmouth": 19074, + "portu": 7159, + "portugal": 9503, + "portugue": 17498, + "portuguese": 18019, + "pos": 1780, + "pos": 11839, + "pose": 25478, + "pose": 4230, + "posed": 5206, + "posei": 47270, + "poser": 46899, + "poses": 9773, + "posey": 34852, + "posh": 26748, + "posing": 10518, + "posit": 28793, + "positi": 7895, + "position": 4657, + "positioned": 34482, + "positioning": 30657, + "positions": 12188, + "positive": 21811, + "positive": 4844, + "positively": 24688, + "positivity": 19966, + "poss": 39745, + "posse": 17414, + "posse": 28413, + "possess": 36810, + "possessed": 36220, + "possession": 16154, + "possessions": 40588, + "possi": 2521, + "possibilities": 17932, + "possibility": 18517, + "possible": 3134, + "possibly": 8601, + "possum": 38575, + "post": 3489, + "post": 1549, + "postage": 27570, + "postal": 21687, + "postcard": 14785, + "postcards": 23922, + "postdoc": 41013, + "posted": 4752, + "poster": 22881, + "poster": 3574, + "posters": 9673, + "postgame": 34873, + "postgraduate": 31997, + "posthum": 42410, + "posting": 7559, + "postman": 38285, + "postpon": 23247, + "postponed": 25097, + "posts": 7824, + "postseason": 24521, + "posture": 29681, + "posure": 35539, + "pot": 3547, + "pot": 5168, + "potam": 45825, + "potassi": 36889, + "potassium": 37147, + "potat": 5975, + "potato": 8527, + "potatoes": 11567, + "potd": 28765, + "pote": 41869, + "poten": 4454, + "potent": 26082, + "potenti": 44104, + "potential": 5100, + "potentially": 16508, + "potholes": 47506, + "potion": 46055, + "potom": 38848, + "potomac": 43372, + "pots": 19234, + "pott": 28698, + "potted": 48581, + "potter": 24975, + "potter": 9026, + "pottery": 18396, + "potts": 39839, + "potty": 43569, + "potus": 8740, + "pou": 9423, + "pouch": 26811, + "poul": 22485, + "poultry": 31005, + "poun": 33719, + "pound": 33809, + "pound": 10674, + "pounding": 46544, + "pounds": 10752, + "pour": 33112, + "pour": 8180, + "poured": 26621, + "pouring": 16098, + "pours": 26005, + "pout": 39621, + "poutine": 43768, + "pov": 25731, + "pover": 8432, + "pover": 29464, + "poverty": 9095, + "pow": 1317, + "pow": 17745, + "powder": 32427, + "powder": 9674, + "powe": 36955, + "powell": 13305, + "power": 2789, + "power": 1807, + "powerball": 47803, + "powered": 45442, + "powered": 7332, + "powerful": 4875, + "powerhouse": 22858, + "powering": 16231, + "powerof": 31961, + "powerpoint": 38940, + "powerrangers": 40620, + "powers": 9422, + "pox": 43649, + "poy": 34737, + "poyn": 47655, + "poz": 39953, + "pp": 604, + "pp": 4186, + "ppa": 10416, + "ppard": 23391, + "ppc": 27778, + "ppe": 24573, + "ppe": 11867, + "pped": 1873, + "ppel": 46523, + "ppen": 30663, + "pper": 6719, + "pper": 2440, + "ppers": 5232, + "ppery": 27833, + "ppet": 20744, + "ppets": 25849, + "ppg": 27433, + "ppi": 9594, + "ppie": 33795, + "ppin": 8076, + "pping": 22214, + "pping": 1682, + "ppings": 35687, + "ppl": 6758, + "pple": 12302, + "ppm": 42053, + "ppo": 10215, + "ppor": 37613, + "ppp": 14017, + "pps": 10683, + "ppv": 38864, + "ppy": 30360, + "ppy": 3860, + "pr": 766, + "pr": 4150, + "pra": 1865, + "pra": 19285, + "prab": 17901, + "prabhas": 29959, + "prabhu": 31529, + "prac": 2243, + "practi": 29995, + "practic": 5495, + "practical": 10792, + "practically": 25588, + "practice": 3349, + "practiced": 36749, + "practices": 9040, + "practicing": 12750, + "practise": 38938, + "practising": 36478, + "practiti": 19909, + "practitioner": 32591, + "practitioners": 29045, + "prada": 29456, + "pradesh": 15384, + "prado": 44141, + "prag": 31025, + "prague": 14940, + "prairi": 12629, + "prairie": 14753, + "praise": 10013, + "praised": 27649, + "praises": 23049, + "praising": 36961, + "prakash": 43708, + "prakash": 25366, + "pram": 47774, + "pran": 20048, + "prank": 23654, + "pras": 41562, + "prasad": 29562, + "prat": 23069, + "prati": 45773, + "pratt": 37863, + "pratt": 23396, + "prawn": 33102, + "prawns": 34903, + "pray": 12671, + "pray": 6041, + "prayed": 34665, + "prayer": 41452, + "prayer": 6583, + "prayers": 8393, + "prayfor": 18443, + "praying": 11550, + "prays": 46602, + "prc": 28781, + "pre": 679, + "pre": 2900, + "preach": 22545, + "preacher": 29357, + "preaching": 23642, + "precau": 36532, + "precautions": 47845, + "prece": 15361, + "preci": 5470, + "precin": 27908, + "precinct": 32587, + "precious": 8226, + "precipit": 27463, + "precipitation": 33399, + "precise": 24457, + "precisely": 34954, + "precision": 44021, + "precision": 15621, + "pred": 40370, + "predat": 13364, + "predator": 20653, + "predators": 25569, + "prede": 38454, + "predecess": 38963, + "predic": 4876, + "predict": 16900, + "predictable": 25344, + "predicted": 18702, + "predicting": 30414, + "prediction": 16296, + "predictions": 15125, + "predictive": 29798, + "predicts": 25960, + "preds": 40125, + "pree": 47026, + "preet": 30131, + "prefe": 14542, + "prefecture": 32890, + "prefer": 33426, + "prefer": 11450, + "preference": 35057, + "preferences": 38118, + "preferred": 18772, + "prefers": 38528, + "pregame": 18575, + "pregn": 7190, + "pregnancy": 12769, + "pregnant": 11195, + "prehistoric": 32750, + "prejudice": 28337, + "preli": 15523, + "prelimin": 19990, + "preliminary": 20997, + "prelims": 43223, + "prelude": 42966, + "prem": 32090, + "prem": 21724, + "premature": 39253, + "premi": 2413, + "premier": 16996, + "premier": 5539, + "premiere": 5367, + "premiered": 27652, + "premieres": 19907, + "premiering": 32615, + "premierleague": 22608, + "premiers": 44883, + "premiership": 23665, + "premiosm": 38460, + "premiosmtvmiaw": 38630, + "premise": 45952, + "premises": 27266, + "premium": 8011, + "pren": 20801, + "preneur": 46288, + "preorder": 16703, + "preorders": 45985, + "prep": 6430, + "prep": 7277, + "prepa": 26270, + "prepaid": 42934, + "prepar": 4968, + "preparation": 11651, + "preparations": 19135, + "prepare": 7014, + "prepared": 7677, + "preparedness": 29492, + "prepares": 16375, + "preparing": 7365, + "prepped": 34379, + "prepping": 16459, + "preps": 14765, + "prequel": 40461, + "pres": 1385, + "pres": 8529, + "presale": 27135, + "presby": 30447, + "presbyter": 33959, + "presbyterian": 35370, + "preschool": 24354, + "prescott": 29392, + "prescri": 14851, + "prescribed": 36968, + "prescription": 23061, + "preseason": 13813, + "presen": 16742, + "presence": 8848, + "present": 2344, + "present": 2881, + "presentation": 4594, + "presentations": 16998, + "presented": 4587, + "presenter": 18587, + "presenters": 32759, + "presenting": 5339, + "presents": 4215, + "preserv": 17616, + "preservation": 21074, + "preserve": 15570, + "preserved": 23161, + "preserves": 44881, + "preserving": 32315, + "presi": 1697, + "presiden": 43374, + "presidency": 18077, + "president": 19900, + "president": 1940, + "presidente": 47363, + "presidenti": 48297, + "presidential": 8503, + "presidents": 16726, + "presiding": 45298, + "presley": 30013, + "press": 4124, + "press": 2124, + "pressed": 20080, + "presser": 27826, + "presses": 33748, + "pressing": 20893, + "pressure": 6083, + "pressures": 38487, + "prest": 41840, + "presti": 12245, + "prestige": 29328, + "prestigious": 15888, + "presto": 42211, + "preston": 37335, + "preston": 15179, + "presu": 21667, + "presumably": 42562, + "pret": 9652, + "preten": 15871, + "pretend": 18111, + "pretending": 21306, + "pretoria": 36080, + "prett": 46667, + "prettier": 31745, + "prettiest": 22866, + "pretty": 18286, + "pretty": 2111, + "pretz": 24890, + "pretzel": 36707, + "pretzels": 45468, + "prev": 20274, + "prevail": 31637, + "prevalence": 41729, + "prevalent": 46260, + "preven": 29382, + "prevent": 26436, + "prevent": 7968, + "preventable": 44250, + "prevented": 35356, + "preventing": 21756, + "prevention": 9500, + "preventive": 40949, + "prevents": 31746, + "preview": 4449, + "previews": 20279, + "previous": 9252, + "previously": 13359, + "prey": 17131, + "prez": 17956, + "pri": 955, + "pri": 23400, + "pric": 24275, + "price": 13254, + "price": 2827, + "priced": 16934, + "priceless": 15743, + "prices": 5954, + "pricing": 14800, + "prick": 43921, + "prick": 46516, + "pride": 15323, + "pride": 3436, + "pridemonth": 41410, + "prie": 22477, + "priest": 38756, + "priest": 14222, + "priests": 30005, + "prim": 22004, + "prima": 35611, + "prima": 33277, + "primal": 36604, + "primar": 21579, + "primaries": 46126, + "primarily": 29465, + "primark": 48329, + "primary": 35024, + "primary": 5814, + "primavera": 44899, + "prime": 14162, + "prime": 5183, + "primed": 45694, + "primer": 22388, + "primetime": 29763, + "primitive": 37467, + "primo": 43215, + "primrose": 45891, + "prin": 1588, + "prince": 9457, + "prince": 4735, + "princes": 45329, + "princes": 30136, + "princess": 24123, + "princess": 5079, + "princesses": 34161, + "princeton": 22433, + "princi": 5129, + "principal": 33599, + "principal": 8860, + "principals": 27524, + "principle": 19595, + "principles": 13755, + "print": 17851, + "print": 3557, + "printable": 29648, + "printed": 7978, + "printer": 14521, + "printers": 27881, + "printing": 7369, + "printmaking": 38669, + "prints": 7704, + "prior": 20328, + "prior": 10572, + "priorit": 47773, + "prioriti": 28822, + "priorities": 15232, + "prioritize": 46715, + "priority": 12451, + "priory": 38665, + "prisc": 32468, + "priscilla": 42396, + "prise": 23343, + "prism": 49311, + "prism": 34356, + "prison": 9281, + "prison": 6622, + "prisoner": 21427, + "prisoners": 17460, + "prisons": 26607, + "pristine": 30618, + "prit": 41668, + "prit": 37523, + "prith": 39173, + "prius": 43561, + "priv": 3270, + "privacy": 10437, + "private": 20362, + "private": 4439, + "privately": 32970, + "privati": 27379, + "privi": 8367, + "privileg": 18015, + "privilege": 11537, + "privileged": 18166, + "prix": 10875, + "priya": 31275, + "priyan": 16488, + "priyanka": 31959, + "priyankach": 30030, + "priyankachopra": 30264, + "prize": 48222, + "prize": 4521, + "prized": 38769, + "prizes": 9268, + "prk": 37094, + "pro": 644, + "pro": 2630, + "proactive": 33364, + "prob": 17706, + "prob": 24007, + "probab": 3907, + "probability": 32637, + "probable": 42444, + "probably": 4047, + "probation": 36531, + "probe": 14359, + "probes": 48564, + "probiotics": 49395, + "proble": 2719, + "problem": 4324, + "problematic": 33767, + "problems": 4671, + "probs": 16330, + "probz": 34243, + "proc": 38417, + "proce": 4076, + "procedu": 18204, + "procedural": 48177, + "procedure": 20163, + "procedures": 21109, + "proceed": 26664, + "proceed": 33894, + "proceedings": 26953, + "proceeds": 11882, + "process": 17291, + "process": 4078, + "processed": 23816, + "processes": 15169, + "processing": 11737, + "procession": 26288, + "processor": 22838, + "processors": 43634, + "proclaimed": 34489, + "proclamation": 32065, + "procra": 25361, + "procrastin": 25586, + "procrastination": 42825, + "procreate": 39336, + "proctor": 47204, + "procu": 21001, + "procurement": 23733, + "prod": 44349, + "prod": 11991, + "prodi": 27759, + "prodigy": 31973, + "produ": 27852, + "produc": 1471, + "produce": 7529, + "produced": 7479, + "producer": 7064, + "producers": 13883, + "produces": 19940, + "producing": 13579, + "product": 32602, + "product": 4306, + "production": 4146, + "productions": 14166, + "productive": 9697, + "productivity": 12800, + "products": 3964, + "prof": 15043, + "prof": 5488, + "profe": 2611, + "profess": 5486, + "professi": 3705, + "profession": 8104, + "profession": 19671, + "professional": 46007, + "professional": 4774, + "professionalism": 41252, + "professionally": 33892, + "professionals": 10165, + "professor": 47302, + "professor": 6092, + "professors": 27758, + "profici": 34685, + "profile": 14291, + "profile": 6444, + "profiles": 22070, + "profiling": 37123, + "profit": 16941, + "profit": 7909, + "profitable": 25465, + "profits": 13410, + "profound": 48245, + "profound": 22998, + "profs": 19260, + "prog": 22219, + "progno": 46070, + "program": 4162, + "program": 2737, + "programme": 6322, + "programmer": 37001, + "programmes": 20468, + "programming": 10831, + "programs": 7345, + "progre": 7069, + "progress": 4421, + "progressi": 23297, + "progressing": 32346, + "progression": 24772, + "progressive": 12208, + "progressives": 41709, + "prohi": 41124, + "prohib": 45040, + "prohibition": 34440, + "proj": 39156, + "proje": 48345, + "projec": 1610, + "project": 15911, + "project": 1965, + "projected": 22873, + "projection": 22384, + "projections": 34638, + "projector": 27816, + "projects": 5090, + "proli": 19710, + "prolife": 32126, + "prolifer": 39018, + "prolific": 27839, + "prolly": 45968, + "prolon": 35379, + "prolonged": 41972, + "prom": 40363, + "prom": 7944, + "prome": 34355, + "promen": 33578, + "promenade": 35522, + "promethe": 44183, + "promin": 35217, + "prominent": 19172, + "promis": 3963, + "promise": 6745, + "promised": 11516, + "promises": 12064, + "promising": 14183, + "promo": 3037, + "promo": 6755, + "promos": 35044, + "promote": 47384, + "promote": 8003, + "promoted": 16395, + "promoter": 33081, + "promotes": 20169, + "promoting": 9695, + "promotion": 9259, + "promotional": 17619, + "promotions": 19142, + "promp": 11671, + "prompt": 20198, + "prompted": 45746, + "prompts": 33490, + "proms": 37759, + "pron": 13285, + "prone": 30964, + "pronoun": 23022, + "pronounce": 40489, + "pronounced": 34109, + "pronto": 44296, + "proof": 17020, + "proof": 5248, + "proofing": 35679, + "proofs": 41023, + "prop": 19123, + "prop": 16254, + "propag": 12151, + "propaganda": 14718, + "propane": 45546, + "propel": 48439, + "propeller": 47404, + "proper": 3577, + "proper": 8205, + "properly": 12560, + "properties": 10922, + "property": 26486, + "property": 5043, + "prophe": 9662, + "prophecy": 32501, + "prophet": 15549, + "prophetic": 47476, + "prophets": 39441, + "propor": 35016, + "proportion": 35775, + "proportions": 39391, + "propos": 9455, + "proposal": 12139, + "proposals": 20568, + "propose": 28471, + "proposed": 10615, + "proposes": 27133, + "proposing": 42631, + "proposition": 44780, + "propri": 28243, + "props": 15249, + "propulsion": 49380, + "pros": 33925, + "pros": 14147, + "prosciutto": 46565, + "prose": 47063, + "prose": 28675, + "prosecco": 28839, + "prosecu": 12136, + "prosecution": 30902, + "prosecutor": 23736, + "prosecutors": 31656, + "prosp": 24242, + "prospec": 12693, + "prospect": 11211, + "prospective": 28034, + "prospects": 15372, + "prosper": 16121, + "prosper": 33526, + "prosperity": 17203, + "prosperous": 28252, + "prost": 47923, + "prostate": 28808, + "prostatec": 49064, + "prosthetic": 44602, + "prostitu": 37333, + "protag": 28950, + "protagonist": 38183, + "prote": 1845, + "protec": 5640, + "protect": 25563, + "protect": 4817, + "protected": 12266, + "protecting": 11710, + "protection": 6238, + "protections": 33772, + "protective": 17028, + "protector": 20441, + "protectors": 45039, + "protects": 21889, + "protein": 8088, + "proteins": 28661, + "protest": 6279, + "protestant": 46945, + "protested": 48089, + "protester": 42073, + "protesters": 12660, + "protesting": 18788, + "protestors": 27822, + "protests": 12450, + "proto": 8672, + "proto": 44958, + "protocol": 19938, + "protocols": 39631, + "proton": 40009, + "prototype": 16675, + "prototyping": 42081, + "prou": 5739, + "proud": 11080, + "proud": 1679, + "prouder": 39585, + "proudest": 46806, + "proudly": 11203, + "proudof": 48184, + "proudtobe": 35043, + "prov": 23772, + "prov": 35021, + "prove": 10107, + "proved": 16473, + "proven": 35405, + "proven": 14569, + "provence": 28067, + "prover": 18312, + "proverb": 34419, + "proverbs": 27016, + "proves": 16119, + "provi": 2289, + "provide": 4832, + "provided": 9046, + "providence": 19331, + "provider": 14409, + "providers": 17120, + "provides": 7161, + "providing": 7250, + "provin": 12074, + "province": 8978, + "provinces": 35050, + "provincial": 16002, + "proving": 18055, + "provision": 30148, + "provisional": 36008, + "provisions": 39269, + "provo": 15367, + "provoc": 31618, + "provocative": 43809, + "provoking": 25510, + "provost": 36627, + "prow": 38737, + "prowrestling": 39825, + "prox": 41616, + "proxim": 31436, + "proximity": 38298, + "proxy": 31680, + "prs": 23879, + "pru": 12961, + "pruitt": 39453, + "prun": 29029, + "pruning": 48133, + "pry": 31965, + "pryor": 43375, + "ps": 3982, + "ps": 814, + "psa": 14031, + "psal": 13859, + "psalm": 17995, + "psalms": 35003, + "psb": 37017, + "psc": 43118, + "psd": 28810, + "pse": 19737, + "pse": 5423, + "pseu": 24919, + "pseudo": 46618, + "psg": 17123, + "psi": 45848, + "psi": 24533, + "psic": 29299, + "psis": 33041, + "psl": 21373, + "psn": 36781, + "pso": 27045, + "pson": 7487, + "psori": 44688, + "psp": 32769, + "pss": 35718, + "pss": 42535, + "psst": 47814, + "pst": 12692, + "psu": 41286, + "psu": 28338, + "psv": 44530, + "psy": 3576, + "psy": 11056, + "psych": 31041, + "psych": 20509, + "psyched": 19932, + "psyched": 35199, + "psychedelic": 23292, + "psychi": 18147, + "psychiatric": 30578, + "psychiatry": 39706, + "psychic": 24916, + "psycho": 6472, + "psycho": 22154, + "psychological": 18153, + "psychologist": 32827, + "psychology": 12352, + "psychop": 30112, + "psychotic": 48774, + "pt": 11139, + "pt": 1459, + "pta": 11586, + "ptbo": 40481, + "ptc": 44646, + "pte": 47804, + "pter": 49323, + "pti": 29375, + "pti": 10491, + "ptic": 20670, + "ption": 3479, + "ptions": 24963, + "pto": 31372, + "pto": 34092, + "pton": 19780, + "pts": 5886, + "ptsd": 23973, + "ptv": 42402, + "pu": 755, + "pu": 11780, + "pub": 20720, + "pub": 6301, + "puberty": 44122, + "pubg": 31496, + "publ": 3434, + "publi": 1617, + "public": 3592, + "public": 2122, + "publica": 49007, + "publication": 13538, + "publications": 27334, + "publichealth": 35872, + "publicity": 20831, + "publicly": 18554, + "publish": 19032, + "published": 4311, + "publisher": 20455, + "publishers": 25222, + "publishes": 35633, + "publishing": 10994, + "publix": 47985, + "pubs": 21099, + "puc": 48779, + "puck": 17550, + "pud": 39234, + "pudding": 14025, + "puddle": 33545, + "pue": 20161, + "pueblo": 33076, + "puer": 8968, + "puerto": 12289, + "puertor": 22757, + "puertorico": 26356, + "puff": 44477, + "puff": 17184, + "puffin": 47632, + "puffs": 47453, + "puffy": 49245, + "pug": 20950, + "pug": 17739, + "pugchat": 42266, + "pugh": 41302, + "puglia": 38345, + "pugs": 39425, + "puj": 46163, + "puja": 33753, + "puk": 31811, + "pul": 2469, + "pul": 40512, + "pula": 45856, + "puli": 47293, + "pulit": 27745, + "pulitzer": 31419, + "pull": 20155, + "pull": 6857, + "pulled": 8525, + "pulling": 12897, + "pullman": 40203, + "pullover": 44020, + "pulls": 16041, + "pulmon": 32613, + "pulmonary": 39132, + "pulp": 25410, + "pulse": 40091, + "pulse": 12485, + "pulses": 42177, + "pulsion": 35398, + "pum": 37497, + "puma": 20858, + "pump": 5179, + "pump": 9173, + "pumped": 12796, + "pumping": 25150, + "pumpkin": 36386, + "pumpkin": 8842, + "pumpkins": 23787, + "pumps": 18540, + "pun": 2707, + "pun": 19929, + "punc": 43907, + "punch": 29332, + "punch": 10730, + "punched": 31689, + "punches": 35279, + "punching": 33468, + "punctu": 31565, + "punctuation": 47051, + "pundit": 41466, + "pune": 32593, + "pune": 14488, + "pung": 45420, + "puni": 11479, + "punish": 34569, + "punished": 31598, + "punisher": 38509, + "punishment": 19099, + "punjab": 19405, + "punjab": 12883, + "punjabi": 25430, + "punk": 28933, + "punk": 7246, + "punks": 47171, + "puns": 35231, + "punt": 32699, + "punta": 34112, + "punter": 47092, + "pup": 11926, + "pup": 11302, + "pupil": 27265, + "pupils": 13628, + "pupp": 7116, + "puppet": 18439, + "puppets": 28475, + "puppies": 14820, + "puppy": 25431, + "puppy": 6829, + "puppylove": 40849, + "pups": 20778, + "pur": 1727, + "pur": 6265, + "pura": 25596, + "puram": 46174, + "purcell": 46065, + "purch": 8384, + "purchase": 5481, + "purchased": 13399, + "purchases": 21887, + "purchasing": 20718, + "purdu": 40691, + "purdue": 22280, + "pure": 14202, + "pure": 5979, + "puree": 45474, + "purely": 32459, + "puremichigan": 39783, + "purest": 45497, + "purge": 33514, + "puri": 16910, + "puri": 21974, + "purification": 47724, + "purity": 29780, + "purple": 17837, + "purple": 5496, + "purpose": 33492, + "purpose": 7391, + "purposes": 22020, + "purr": 49262, + "purr": 46343, + "purse": 16480, + "pursue": 19463, + "pursuing": 26424, + "pursuit": 16469, + "purée": 40981, + "pus": 13841, + "pusa": 40825, + "push": 16028, + "push": 6831, + "pushaw": 35407, + "pushaward": 35448, + "pushawards": 47184, + "pushed": 16155, + "pushes": 23828, + "pushing": 11549, + "put": 29535, + "put": 1983, + "putin": 10693, + "putnam": 40235, + "puts": 7898, + "putt": 30279, + "putter": 44723, + "putting": 5154, + "puzz": 19760, + "puzzle": 12875, + "puzzles": 27986, + "pv": 14517, + "pv": 13495, + "pvc": 26959, + "pvp": 44172, + "pvt": 29898, + "pw": 19419, + "pw": 16067, + "pwc": 22965, + "px": 24790, + "px": 10262, + "pxrtg": 36262, + "py": 4005, + "py": 7504, + "pye": 31099, + "pyeongchang": 36066, + "pyg": 41450, + "pyram": 14405, + "pyramid": 18725, + "pyramids": 36877, + "pyrene": 36740, + "pyrenees": 39744, + "pyro": 39762, + "python": 13370, + "pz": 48361, + "pé": 43167, + "q": 80, + "q": 336, + "qa": 24944, + "qa": 16360, + "qad": 27844, + "qadri": 35672, + "qaeda": 31246, + "qanda": 48672, + "qanon": 19182, + "qant": 35404, + "qantas": 43250, + "qatar": 32804, + "qatar": 10872, + "qb": 8073, + "qbs": 38188, + "qc": 17406, + "qe": 30974, + "qf": 27215, + "qi": 25054, + "qi": 11256, + "qing": 46522, + "qing": 34339, + "ql": 28366, + "qld": 23039, + "qld": 13765, + "qldpol": 42296, + "qm": 42148, + "qotd": 24504, + "qpr": 24788, + "qq": 31960, + "qr": 18193, + "qs": 14364, + "qt": 15013, + "qtr": 44803, + "qu": 666, + "qu": 28646, + "qua": 20363, + "quack": 45575, + "quad": 11656, + "quad": 13419, + "quadcopter": 39792, + "quadru": 35831, + "quaid": 34265, + "quail": 34392, + "quaint": 45976, + "quake": 8421, + "quaker": 43395, + "quakes": 24572, + "qual": 9979, + "qual": 32405, + "qualcomm": 38683, + "quali": 4574, + "qualification": 21508, + "qualifications": 35225, + "qualified": 11927, + "qualifier": 18733, + "qualifiers": 21388, + "qualifies": 35820, + "qualify": 17019, + "qualifying": 11895, + "qualitative": 45847, + "qualities": 20488, + "quality": 28545, + "quality": 3027, + "quan": 11669, + "quan": 27490, + "quand": 28198, + "quant": 15050, + "quanti": 31540, + "quantitative": 40583, + "quantities": 33917, + "quantity": 26920, + "quantum": 15320, + "quar": 3856, + "quare": 42549, + "quarry": 27601, + "quart": 7851, + "quarter": 8816, + "quarter": 6632, + "quarterback": 16545, + "quarterfinal": 37992, + "quarterfinals": 28971, + "quarterly": 23350, + "quarters": 10146, + "quartet": 18056, + "quartz": 17752, + "quat": 25715, + "quattro": 40300, + "quay": 40276, + "quay": 17304, + "que": 1147, + "que": 2319, + "quebec": 15373, + "queen": 6407, + "queen": 2997, + "queenof": 44398, + "queens": 22943, + "queens": 9330, + "queensland": 15168, + "queer": 38874, + "queer": 18161, + "quel": 39774, + "quel": 21879, + "quen": 23876, + "quen": 38324, + "quent": 23808, + "quentin": 27530, + "quer": 17378, + "quer": 26859, + "quered": 23210, + "queries": 32958, + "querque": 30338, + "query": 27464, + "ques": 25328, + "ques": 7715, + "queso": 40110, + "quest": 31653, + "quest": 4846, + "questi": 2391, + "question": 18961, + "question": 4382, + "questionable": 30733, + "questioned": 31847, + "questioning": 24887, + "questions": 3883, + "quests": 44611, + "quet": 8513, + "quets": 39055, + "quetta": 38326, + "quette": 18993, + "queu": 32705, + "queue": 18549, + "queues": 40649, + "queuing": 44082, + "quez": 18677, + "quezon": 41117, + "qui": 1912, + "qui": 18046, + "quic": 26474, + "quiche": 47723, + "quick": 5969, + "quick": 3712, + "quicker": 29211, + "quickest": 37734, + "quickly": 7787, + "quid": 30732, + "quie": 43875, + "quien": 43482, + "quiere": 42723, + "quiero": 32567, + "quiet": 17853, + "quiet": 7557, + "quietly": 22208, + "quig": 44690, + "quil": 12305, + "quill": 48951, + "quilt": 23977, + "quilted": 46052, + "quin": 8607, + "quin": 17167, + "quincy": 27640, + "quind": 32339, + "quinn": 12306, + "quinoa": 26703, + "quins": 39701, + "quint": 26898, + "quinta": 47446, + "quinte": 22098, + "quintess": 37538, + "quintet": 35125, + "quipment": 42813, + "quir": 15943, + "quirky": 25044, + "quis": 15064, + "quist": 25128, + "quit": 19358, + "quit": 11140, + "quite": 4135, + "quito": 35828, + "quits": 32505, + "quitting": 33871, + "quity": 33133, + "quiz": 31197, + "quiz": 8344, + "quizz": 35041, + "quo": 3046, + "quo": 28127, + "quoi": 45549, + "quot": 5452, + "quot": 47587, + "quota": 42097, + "quotation": 49195, + "quote": 15446, + "quote": 4020, + "quoted": 27706, + "quoteoftheday": 19975, + "quotes": 5808, + "quoting": 31651, + "qur": 37782, + "quran": 19690, + "qureshi": 46307, + "qvist": 42322, + "qx": 45038, + "r": 81, + "r": 337, + "ra": 559, + "ra": 1735, + "raa": 44344, + "rab": 14816, + "rab": 33224, + "rabb": 6875, + "rabbi": 20959, + "rabbit": 10274, + "rabbits": 27028, + "rabhu": 25806, + "rable": 10182, + "rac": 1773, + "rac": 30462, + "raccoon": 29516, + "race": 10978, + "race": 2471, + "racec": 18814, + "racecourse": 25036, + "raced": 36021, + "racer": 16798, + "racers": 33603, + "races": 8605, + "raceway": 24650, + "rach": 6876, + "rach": 33429, + "racha": 21952, + "racha": 35022, + "rachael": 29095, + "rachel": 13511, + "rachel": 8029, + "raci": 33381, + "racial": 13801, + "racially": 43577, + "racing": 23306, + "racing": 3699, + "racism": 11276, + "racist": 9684, + "racists": 41777, + "rack": 24600, + "rack": 12034, + "racket": 37691, + "racks": 21191, + "rad": 4473, + "rad": 8238, + "rada": 30437, + "radar": 9672, + "radcliffe": 33096, + "rade": 44494, + "rade": 17911, + "rader": 45002, + "radford": 45800, + "radha": 43122, + "radi": 5772, + "radial": 42028, + "radiance": 45670, + "radiant": 25614, + "radiation": 18210, + "radiator": 39372, + "radic": 18082, + "radical": 13712, + "radicals": 45903, + "radio": 7176, + "radio": 2638, + "radioactive": 34704, + "radiodisney": 36483, + "radiohead": 39472, + "radiology": 29684, + "radios": 43669, + "radish": 37789, + "radius": 37570, + "rado": 29784, + "rae": 21646, + "rae": 15051, + "rael": 45390, + "raer": 44561, + "raf": 11495, + "raf": 11490, + "rafa": 14352, + "rafa": 24850, + "rafael": 38221, + "rafael": 19216, + "rafaelnadal": 49219, + "raff": 34900, + "raffic": 32928, + "raffle": 13752, + "raffles": 43489, + "rafi": 35304, + "raft": 9233, + "rafting": 36309, + "rag": 13958, + "rag": 20687, + "rage": 8593, + "rages": 34253, + "ragh": 35642, + "ragha": 40972, + "raging": 25015, + "ragn": 24125, + "ragnar": 34385, + "ragnarok": 41856, + "ragon": 34768, + "rags": 47838, + "rah": 12277, + "rah": 8766, + "raheem": 43317, + "rahim": 24152, + "rahman": 19680, + "rahu": 13129, + "rahul": 37239, + "rahul": 17440, + "rahulg": 27510, + "rahulgandhi": 28293, + "rai": 9165, + "rai": 9638, + "raid": 6877, + "raided": 43417, + "raider": 27368, + "raider": 21455, + "raidernation": 47901, + "raiders": 11817, + "raids": 26655, + "rail": 4573, + "rail": 6879, + "raila": 47273, + "railminindia": 35557, + "railroad": 17080, + "rails": 23427, + "railway": 27614, + "railway": 7856, + "railwayana": 46750, + "railways": 20765, + "raim": 45785, + "rain": 3128, + "rain": 2443, + "raina": 30564, + "rainbow": 24562, + "rainbow": 6286, + "rainbows": 30483, + "raine": 49038, + "raine": 6871, + "rained": 32310, + "rainf": 15024, + "rainfall": 15350, + "rainforest": 22823, + "rainier": 37850, + "raining": 13964, + "rains": 14272, + "rainy": 10222, + "rais": 14729, + "raise": 24249, + "raise": 5078, + "raised": 6027, + "raiser": 33555, + "raises": 13297, + "raisethe": 47109, + "raisin": 36864, + "raising": 6883, + "raj": 5958, + "raj": 10813, + "raja": 46069, + "raja": 19150, + "rajan": 46595, + "rajas": 16185, + "rajasthan": 18017, + "raje": 21899, + "rajesh": 43602, + "raji": 27569, + "rajini": 29600, + "rajini": 40622, + "rajinikanth": 32922, + "rajiv": 40197, + "rajkumar": 49304, + "rajput": 47572, + "raju": 47029, + "rak": 13523, + "rak": 26287, + "rake": 26825, + "rake": 32712, + "rakesh": 41083, + "ral": 8062, + "ral": 1406, + "rale": 14192, + "raleigh": 18207, + "rall": 23249, + "rallies": 25230, + "rally": 18882, + "rally": 5041, + "rallying": 36836, + "ralph": 25290, + "ralph": 12234, + "ram": 1976, + "ram": 2007, + "rama": 22112, + "ramad": 12736, + "ramadan": 15547, + "ramadhan": 47415, + "raman": 39816, + "ramapho": 43963, + "ramaphosa": 44993, + "ramatta": 49112, + "rambo": 41855, + "ramcharan": 45275, + "rame": 47745, + "ramen": 18892, + "ramesh": 48640, + "ramesh": 40186, + "rami": 43016, + "ramirez": 23877, + "ramon": 27958, + "ramone": 47201, + "ramos": 21046, + "ramp": 14271, + "rampage": 32077, + "rampant": 41985, + "ramps": 35257, + "rams": 10292, + "ramsay": 26259, + "ramsey": 19215, + "ran": 1433, + "ran": 4031, + "rana": 22143, + "ranbir": 40881, + "rance": 29034, + "ranch": 43955, + "ranch": 10659, + "rancho": 26258, + "rand": 5628, + "rand": 18718, + "randall": 23639, + "rande": 21469, + "randolph": 29899, + "random": 11396, + "random": 6160, + "randomly": 17272, + "rands": 39153, + "randy": 29479, + "randy": 13279, + "rane": 28852, + "rang": 4043, + "rang": 24377, + "range": 13627, + "range": 3818, + "ranger": 31472, + "ranger": 13593, + "rangers": 7664, + "ranges": 25685, + "ranging": 25946, + "rani": 29264, + "rani": 22631, + "rank": 11501, + "ranked": 8307, + "rankin": 37539, + "ranking": 12347, + "rankings": 12596, + "ranks": 14469, + "rano": 18608, + "rans": 46259, + "ransom": 28523, + "ransom": 34646, + "ransomware": 33815, + "rant": 46467, + "rant": 9819, + "rants": 34014, + "ranveer": 32402, + "ranveer": 41482, + "ranveerofficial": 42116, + "rao": 16913, + "rap": 7773, + "rap": 7348, + "rape": 46099, + "rape": 10070, + "raped": 23700, + "rapha": 22754, + "raphael": 30091, + "rapi": 8610, + "rapid": 47697, + "rapid": 12205, + "rapidly": 16710, + "rapids": 18848, + "raping": 44926, + "rapist": 33360, + "rapp": 19283, + "rapper": 11860, + "rappers": 30315, + "rapping": 42864, + "raps": 37887, + "raptor": 26762, + "raptors": 17035, + "raq": 39787, + "raq": 43312, + "raqqa": 47074, + "raquel": 44338, + "rar": 26819, + "rar": 24605, + "rard": 21012, + "rare": 18992, + "rare": 3865, + "rarely": 17315, + "rarest": 43237, + "rarity": 45862, + "ras": 23492, + "ras": 8224, + "rasc": 30085, + "rascal": 43481, + "rash": 14917, + "rash": 30608, + "rashad": 46527, + "rasheed": 41638, + "rashi": 19426, + "rashid": 26757, + "rasp": 10487, + "raspberries": 37742, + "raspberry": 40162, + "raspberry": 13615, + "raspberrypi": 43934, + "rass": 45654, + "rasta": 47002, + "rat": 3806, + "rat": 8985, + "rata": 28568, + "ratchet": 25078, + "rate": 5068, + "rated": 8183, + "rates": 6864, + "rath": 18268, + "rath": 39772, + "rather": 5252, + "rati": 11486, + "rating": 10567, + "ratings": 14176, + "ratio": 15893, + "ration": 27002, + "ration": 35662, + "rational": 33086, + "ratna": 49078, + "ratri": 32288, + "rats": 19043, + "ratt": 20737, + "ratt": 34785, + "rattle": 40824, + "rattle": 41839, + "rau": 27744, + "raul": 30218, + "raun": 41169, + "rav": 14367, + "rav": 23606, + "rave": 38784, + "rave": 17601, + "ravel": 27927, + "raven": 10269, + "raven": 16803, + "ravens": 17946, + "ravi": 22947, + "ravi": 19538, + "ravin": 39099, + "raving": 45807, + "raviol": 41104, + "ravioli": 43460, + "raw": 10166, + "raw": 6323, + "rawlings": 40662, + "rax": 38520, + "ray": 5312, + "ray": 3077, + "raya": 29991, + "raymond": 16683, + "rayn": 47852, + "rayon": 47900, + "rays": 11064, + "raz": 9700, + "raz": 19087, + "raza": 37724, + "razer": 33832, + "razor": 24934, + "razor": 21300, + "razz": 43769, + "rb": 12740, + "rb": 7477, + "rbc": 37500, + "rbi": 15687, + "rbs": 29102, + "rc": 7575, + "rc": 7457, + "rca": 33942, + "rcb": 45240, + "rcmp": 31489, + "rcn": 49370, + "rctid": 49223, + "rd": 13501, + "rd": 1973, + "rda": 45755, + "rdr": 44364, + "rds": 32378, + "re": 515, + "re": 810, + "rea": 11521, + "reach": 4483, + "reach": 4279, + "reached": 6878, + "reaches": 14462, + "reaching": 11358, + "react": 36566, + "react": 15065, + "reacted": 42515, + "reacting": 40595, + "reaction": 7189, + "reactions": 18438, + "reactive": 42072, + "reactjs": 46173, + "reactor": 32037, + "reacts": 23115, + "read": 933, + "read": 1199, + "reader": 9884, + "readers": 10335, + "readiness": 28131, + "reading": 17556, + "reading": 2337, + "readingfc": 47428, + "readings": 23361, + "reads": 6597, + "ready": 17351, + "ready": 1112, + "reagan": 17767, + "real": 2017, + "real": 1532, + "realdonaldtrump": 7025, + "reale": 5930, + "realest": 45855, + "realestate": 32937, + "realestate": 6569, + "reali": 4185, + "realis": 38114, + "realise": 14773, + "realised": 17945, + "realising": 39537, + "realism": 20024, + "realist": 30248, + "realistic": 16157, + "realities": 32443, + "reality": 46802, + "reality": 5004, + "realization": 40402, + "realize": 7538, + "realized": 10489, + "realizes": 42918, + "realizing": 23284, + "reall": 39686, + "really": 43249, + "really": 1414, + "realm": 23083, + "realmadrid": 27866, + "realms": 43033, + "realness": 46761, + "realtime": 44002, + "realtime": 38203, + "realtor": 18038, + "realtors": 31759, + "realty": 20471, + "ream": 37242, + "ream": 15219, + "rean": 48477, + "reap": 31334, + "reaper": 29922, + "rear": 39652, + "rear": 10223, + "reas": 9121, + "reason": 12882, + "reason": 3893, + "reasonable": 18558, + "reasonably": 38589, + "reasoning": 30341, + "reasons": 5686, + "reau": 32398, + "reb": 12370, + "reb": 18796, + "reba": 48543, + "rebate": 43817, + "rebe": 25227, + "rebec": 10774, + "rebecca": 12892, + "rebel": 8185, + "rebel": 12248, + "rebellion": 22170, + "rebels": 13623, + "rebirth": 33303, + "reboot": 22385, + "reborn": 30229, + "reboun": 43381, + "rebound": 31280, + "rebounds": 19190, + "rebs": 28164, + "rebu": 43162, + "rebuild": 20022, + "rebuilding": 30880, + "rebuilt": 33137, + "rec": 1020, + "rec": 11243, + "recall": 15151, + "recalled": 32142, + "recalling": 47855, + "recalls": 24740, + "recap": 29816, + "recap": 8337, + "recaps": 47997, + "recard": 35536, + "rece": 1890, + "recei": 2148, + "receip": 38503, + "receipt": 30479, + "receipts": 41181, + "receive": 4800, + "received": 4178, + "receiver": 17659, + "receivers": 45294, + "receives": 10027, + "receiving": 7252, + "recent": 3969, + "recently": 4482, + "recep": 17450, + "reception": 8364, + "receptions": 46881, + "receptor": 41835, + "recess": 38182, + "recession": 27176, + "recharge": 29396, + "rechargeable": 37516, + "reci": 2037, + "recipe": 28923, + "recipe": 4614, + "recipeoftheday": 38727, + "recipes": 9243, + "recipi": 10136, + "recipient": 13703, + "recipients": 18940, + "recipro": 41789, + "recital": 23457, + "recite": 48824, + "reck": 11715, + "reckless": 26284, + "reckon": 23854, + "recl": 42277, + "reclaim": 35969, + "reclaimed": 32648, + "reco": 2535, + "reco": 46038, + "recogn": 6343, + "recogni": 5329, + "recognise": 19824, + "recognised": 20986, + "recognising": 48423, + "recognition": 9415, + "recognizable": 47240, + "recognize": 10905, + "recognized": 9929, + "recognizes": 26909, + "recognizing": 19666, + "recomm": 4540, + "recommend": 11628, + "recommend": 8942, + "recommendation": 20118, + "recommendations": 16516, + "recommended": 11100, + "recommending": 44301, + "recommends": 22940, + "recon": 15371, + "recon": 28996, + "reconciliation": 26451, + "reconstruction": 24955, + "recor": 1723, + "record": 21328, + "record": 2717, + "recorded": 9392, + "recorder": 26747, + "recording": 48237, + "recording": 6942, + "recordings": 19715, + "records": 4529, + "recover": 16785, + "recovered": 16444, + "recovering": 19005, + "recovers": 47935, + "recovery": 6591, + "recre": 22148, + "recreate": 29775, + "recreated": 40888, + "recreating": 48224, + "recreation": 17331, + "recreational": 24329, + "recru": 4745, + "recruit": 9011, + "recruit": 15585, + "recruited": 36518, + "recruiter": 43120, + "recruiters": 46542, + "recruiting": 10533, + "recruitment": 10541, + "recruits": 22647, + "recs": 33069, + "rectan": 43041, + "rectangular": 43321, + "rector": 41585, + "recu": 26798, + "recur": 19983, + "recurring": 35912, + "recy": 6790, + "recycla": 40659, + "recyclable": 48907, + "recycle": 19366, + "recycled": 16829, + "recycling": 12566, + "red": 1893, + "red": 736, + "redbubble": 46137, + "redbull": 29483, + "redbull": 29219, + "redcarpet": 32259, + "redcross": 30659, + "redd": 22149, + "redd": 40618, + "redding": 41061, + "reddish": 43383, + "reddit": 15226, + "reddy": 23028, + "rede": 10913, + "redeem": 37449, + "redefining": 46352, + "redemption": 20233, + "redesign": 24188, + "redesigned": 33111, + "redevelopment": 30322, + "redhead": 36267, + "redi": 7976, + "redman": 44753, + "redmond": 39627, + "rednation": 28180, + "rednationrising": 28262, + "redneck": 39105, + "redness": 22626, + "redo": 42524, + "redon": 48506, + "redro": 37722, + "reds": 11221, + "redskins": 19023, + "redsox": 19144, + "reduc": 5015, + "reduce": 6604, + "reduced": 10821, + "reduces": 20539, + "reducing": 13836, + "reduction": 12219, + "reductions": 48263, + "redux": 43014, + "redvelvet": 41845, + "redwings": 31058, + "redwood": 31748, + "ree": 9282, + "ree": 5813, + "reebok": 26734, + "reece": 30457, + "reed": 26209, + "reed": 10435, + "reedus": 32865, + "reef": 46557, + "reef": 15624, + "reefs": 34459, + "reel": 34467, + "reel": 17166, + "reels": 48127, + "reem": 48891, + "reen": 21638, + "reen": 23679, + "rees": 18314, + "reese": 20929, + "reeves": 23060, + "ref": 4067, + "ref": 9591, + "refe": 5624, + "refer": 18425, + "refer": 22325, + "referee": 20398, + "referees": 45583, + "referen": 13535, + "reference": 10214, + "references": 24009, + "referendum": 16732, + "referr": 47784, + "referral": 30219, + "referred": 22969, + "referring": 29797, + "refers": 30069, + "refill": 37859, + "refin": 13455, + "refined": 26098, + "refinery": 31393, + "refining": 48406, + "reflec": 4608, + "reflect": 13373, + "reflected": 28732, + "reflecting": 19700, + "reflection": 11884, + "reflections": 16647, + "reflective": 27008, + "reflects": 15821, + "reflex": 45756, + "reflex": 36050, + "reform": 45678, + "reform": 8875, + "reformation": 45119, + "reformed": 40880, + "reforms": 19274, + "refr": 34850, + "refre": 11995, + "refresh": 17836, + "refresh": 23288, + "refreshed": 35925, + "refresher": 41481, + "refreshing": 14159, + "refreshments": 31127, + "refriger": 21076, + "refrigerator": 36662, + "refs": 35595, + "refu": 3545, + "refuge": 5638, + "refuge": 17432, + "refugee": 11556, + "refugees": 42687, + "refugees": 8316, + "refund": 28899, + "refur": 15519, + "refurbi": 18259, + "refurbished": 26190, + "refurbishment": 35803, + "refusal": 46547, + "refuse": 16412, + "refused": 17190, + "refuses": 20085, + "refusing": 26704, + "reg": 5472, + "reg": 12353, + "regain": 37510, + "regal": 31512, + "regal": 25028, + "regan": 34062, + "regar": 5881, + "regard": 21801, + "regarded": 32017, + "regarding": 8493, + "regardless": 17220, + "regards": 23079, + "regatta": 26316, + "regen": 46545, + "regency": 29341, + "regeneration": 29257, + "regent": 30455, + "regents": 46710, + "regg": 12757, + "reggae": 37821, + "reggae": 15214, + "reggie": 21872, + "regi": 1608, + "regime": 11378, + "regiment": 18603, + "regin": 23287, + "regina": 16841, + "region": 16542, + "region": 4341, + "regional": 5552, + "regionals": 26043, + "regions": 14530, + "regis": 28094, + "register": 3967, + "registered": 10254, + "registering": 33510, + "registr": 29193, + "registration": 7302, + "registrations": 38423, + "registry": 30020, + "rego": 47351, + "regram": 30329, + "regrann": 48802, + "regre": 8627, + "regression": 43733, + "regret": 14374, + "regrets": 23231, + "regu": 3411, + "regui": 46722, + "regul": 11847, + "regular": 14882, + "regular": 6307, + "regularly": 17263, + "regulat": 14575, + "regulate": 33494, + "regulated": 31384, + "regulating": 48156, + "regulation": 14267, + "regulations": 16654, + "regulator": 30364, + "regulators": 35837, + "regulatory": 17717, + "reh": 21492, + "reha": 10193, + "rehab": 16973, + "rehabil": 17930, + "rehabilitation": 21042, + "rehear": 7273, + "rehearsal": 11482, + "rehearsals": 17977, + "rehearsing": 23125, + "rehman": 39206, + "rei": 15343, + "rei": 26033, + "reic": 41230, + "reich": 48589, + "reich": 28929, + "reid": 45125, + "reid": 11744, + "reig": 13092, + "reign": 41419, + "reign": 14827, + "reigning": 28409, + "reigns": 21217, + "reiki": 46960, + "reilly": 28120, + "reim": 35421, + "reimagined": 46799, + "reimbur": 39857, + "rein": 9240, + "rein": 45009, + "reina": 43847, + "reinde": 23810, + "reindeer": 25072, + "reinfor": 48161, + "reinforced": 41909, + "reinst": 33969, + "reinvent": 38171, + "reissue": 34042, + "reiter": 35394, + "rejec": 9958, + "reject": 22435, + "rejected": 17505, + "rejection": 32264, + "rejects": 23155, + "rejo": 20150, + "rejoice": 24712, + "rejuven": 26332, + "rek": 47542, + "rek": 19201, + "rel": 1825, + "rel": 5233, + "rela": 4362, + "reland": 15220, + "relat": 27192, + "relatable": 31010, + "relate": 17520, + "related": 5880, + "relates": 36064, + "relating": 27373, + "relation": 4561, + "relation": 16207, + "relations": 10100, + "relationship": 47239, + "relationship": 5837, + "relationships": 10610, + "relative": 17265, + "relatively": 18351, + "relatives": 21981, + "relax": 6777, + "relax": 9035, + "relaxation": 22194, + "relaxed": 18999, + "relaxing": 10256, + "relay": 12403, + "relays": 28404, + "rele": 1602, + "release": 29100, + "release": 2706, + "released": 3410, + "releases": 7393, + "releasethe": 44008, + "releasing": 10321, + "releg": 23378, + "relegated": 45884, + "relegation": 35040, + "relent": 22213, + "relentless": 27207, + "relessly": 33927, + "relev": 9349, + "relevance": 31400, + "relevant": 10568, + "reli": 2674, + "reliability": 27220, + "reliable": 13714, + "reliance": 27727, + "relic": 27802, + "relics": 43208, + "relief": 7518, + "relies": 41579, + "relieve": 28623, + "relieved": 36597, + "religi": 4940, + "religion": 8803, + "religions": 31189, + "religious": 8289, + "relish": 35550, + "relive": 23939, + "reliving": 47558, + "rell": 28802, + "rell": 7127, + "rella": 9952, + "relle": 31390, + "reloaded": 38908, + "relocated": 46791, + "relocation": 39198, + "rels": 23320, + "relu": 32058, + "reluct": 32549, + "reluctant": 45552, + "rely": 4158, + "relying": 42168, + "rem": 15098, + "rem": 21637, + "rema": 4569, + "remain": 29144, + "remain": 6415, + "remainder": 41672, + "remained": 23714, + "remaining": 11392, + "remains": 6807, + "remake": 16234, + "remark": 11136, + "remarkable": 12404, + "remarkably": 39087, + "remarks": 15001, + "remastered": 24932, + "rematch": 26473, + "rembrandt": 45972, + "reme": 20071, + "remedi": 18442, + "remedies": 25581, + "remedy": 25794, + "remem": 7966, + "rememb": 7062, + "remember": 22045, + "remember": 2195, + "remembered": 11763, + "remembering": 8135, + "remembers": 12551, + "remembrance": 40321, + "remembrance": 15860, + "remembranceday": 48333, + "rement": 7173, + "rements": 12667, + "remi": 41693, + "remin": 3216, + "remind": 9868, + "reminded": 12309, + "reminder": 5565, + "reminders": 34121, + "reminding": 19976, + "reminds": 8303, + "remington": 43527, + "reminis": 17723, + "reminiscent": 41704, + "reminiscing": 32552, + "remix": 8519, + "remixes": 31011, + "remn": 29127, + "remnants": 39032, + "remo": 4064, + "remo": 33259, + "remodel": 34159, + "remodel": 37495, + "remodeling": 41432, + "remote": 47163, + "remote": 9687, + "remotely": 32375, + "removable": 44095, + "removal": 13679, + "remove": 9709, + "removed": 10289, + "remover": 44267, + "removes": 29018, + "removing": 18504, + "remy": 30434, + "ren": 737, + "ren": 2596, + "rena": 12591, + "renais": 15409, + "renaissance": 16007, + "renal": 36096, + "renamed": 31535, + "renault": 17600, + "rence": 19245, + "rence": 1553, + "rences": 8545, + "rend": 33932, + "rend": 22851, + "render": 39752, + "render": 13024, + "rendered": 23652, + "rendering": 21339, + "renders": 39419, + "rendez": 43293, + "rendezvous": 45644, + "rendition": 28891, + "rendon": 46272, + "rendous": 49403, + "rends": 38842, + "rene": 15438, + "rene": 12597, + "renee": 23480, + "reneg": 29909, + "renegade": 41229, + "renergy": 37151, + "renew": 6645, + "renew": 22015, + "renewable": 31269, + "renewable": 15941, + "renewableenergy": 33357, + "renewables": 21619, + "renewal": 21270, + "renewed": 20524, + "renfre": 45043, + "reng": 36795, + "reno": 11520, + "reno": 12831, + "renov": 9984, + "renovated": 23839, + "renovation": 17121, + "renovations": 31311, + "renowned": 14727, + "rens": 18183, + "renshaw": 44445, + "rent": 17377, + "rent": 1609, + "rental": 12193, + "rentals": 24105, + "rented": 35932, + "rential": 31692, + "renting": 37662, + "rently": 2615, + "rents": 31109, + "reo": 15963, + "reo": 26854, + "reon": 15761, + "reopen": 26883, + "reopened": 32868, + "reopening": 36663, + "reopens": 40644, + "rep": 4229, + "rep": 6487, + "repair": 8419, + "repaired": 32953, + "repairing": 38534, + "repairs": 16297, + "repar": 34065, + "repe": 5785, + "repeal": 42622, + "repeal": 23938, + "repeat": 10192, + "repeated": 27904, + "repeatedly": 26630, + "repeating": 33834, + "repeats": 39158, + "repell": 46235, + "repent": 47261, + "reper": 29085, + "repet": 38533, + "repl": 13047, + "replac": 6069, + "replace": 9466, + "replaceable": 47762, + "replaced": 13200, + "replacement": 10835, + "replaces": 27781, + "replacing": 18647, + "replay": 16875, + "repleni": 44839, + "replic": 21651, + "replica": 18125, + "replied": 24238, + "replies": 18808, + "reply": 8965, + "replying": 47599, + "repor": 2628, + "report": 2417, + "reported": 7598, + "reportedly": 10953, + "reporter": 11019, + "reporters": 18454, + "reporting": 9218, + "reports": 4908, + "reposit": 41276, + "repository": 46977, + "repost": 33147, + "repost": 7217, + "repostapp": 38388, + "reposting": 20223, + "reppin": 19163, + "repping": 22574, + "repre": 3397, + "represent": 8293, + "represent": 8406, + "representation": 13520, + "representative": 13175, + "representatives": 15591, + "represented": 12299, + "representing": 7561, + "represents": 14433, + "repri": 31854, + "reproduction": 35714, + "reproductive": 25522, + "reps": 14265, + "reptile": 36938, + "reptiles": 38679, + "republic": 6376, + "republic": 7185, + "republican": 9842, + "republicans": 12384, + "repur": 41852, + "req": 42411, + "requ": 10664, + "reque": 9539, + "request": 7813, + "requested": 16199, + "requesting": 33245, + "requests": 17087, + "requi": 4863, + "requiem": 40316, + "require": 14437, + "required": 8500, + "requirement": 27146, + "requirements": 12860, + "requires": 13396, + "requiring": 33425, + "requis": 42602, + "rer": 41295, + "rer": 3407, + "rera": 14301, + "rero": 21860, + "rers": 18869, + "res": 4466, + "res": 934, + "resc": 3956, + "rescheduled": 43553, + "rescu": 8618, + "rescue": 28567, + "rescue": 5718, + "rescued": 11919, + "rescues": 32439, + "rescuing": 43770, + "rese": 13000, + "resear": 6090, + "research": 25694, + "research": 2379, + "researched": 42733, + "researcher": 18334, + "researchers": 9522, + "researching": 24544, + "reseller": 35391, + "resemb": 16916, + "resemblance": 26856, + "resemble": 37230, + "resembles": 35417, + "reser": 16420, + "reserv": 11906, + "reservation": 20289, + "reservations": 19307, + "reserve": 6911, + "reserved": 19796, + "reserves": 19705, + "reservoir": 20574, + "reset": 26250, + "resh": 47432, + "reshi": 39435, + "resi": 2152, + "residen": 22311, + "residence": 11672, + "residences": 38855, + "residency": 18545, + "resident": 9016, + "residente": 44637, + "residentevil": 48393, + "residential": 11002, + "residents": 6008, + "resign": 23584, + "resignation": 24779, + "resigned": 31014, + "resigns": 29738, + "resil": 10932, + "resili": 39212, + "resilience": 15271, + "resilient": 24694, + "resin": 24156, + "resist": 37345, + "resist": 9587, + "resistance": 7392, + "resistant": 17542, + "resisting": 43679, + "resolution": 9977, + "resolutions": 26816, + "resolve": 20787, + "resolved": 28807, + "reson": 18092, + "resonance": 42310, + "resort": 6594, + "resorts": 18839, + "resource": 43729, + "resource": 9760, + "resources": 6723, + "respec": 7466, + "respect": 31411, + "respect": 4916, + "respected": 19126, + "respectful": 24379, + "respecting": 36172, + "respective": 25817, + "respectively": 28794, + "respects": 23553, + "respir": 20771, + "respiratory": 24483, + "respon": 2421, + "respond": 12355, + "responded": 21121, + "respondents": 49253, + "responders": 25155, + "responding": 18037, + "responds": 17436, + "response": 5399, + "responses": 19006, + "responsi": 5490, + "responsibilities": 30375, + "responsibility": 11272, + "responsible": 8936, + "responsibly": 33675, + "responsive": 21544, + "ress": 34651, + "ress": 13629, + "resso": 15133, + "rest": 10974, + "rest": 2539, + "restart": 37378, + "restaur": 3775, + "restaurant": 41930, + "restaurant": 4489, + "restaurants": 11714, + "rested": 46020, + "resting": 18044, + "restless": 36724, + "restling": 30076, + "resto": 11118, + "resto": 41666, + "restock": 34060, + "restocked": 36966, + "restor": 8984, + "restoration": 11989, + "restorative": 46509, + "restore": 14008, + "restored": 14238, + "restoring": 24406, + "restra": 25424, + "restric": 11036, + "restricted": 27197, + "restriction": 44282, + "restrictions": 19884, + "restroom": 43423, + "restructuring": 43260, + "rests": 33775, + "resu": 10095, + "resul": 2655, + "result": 5659, + "resulted": 26449, + "resulting": 24581, + "results": 3790, + "resume": 15077, + "resumes": 30268, + "resur": 14865, + "resurg": 45962, + "resurgence": 47692, + "resurrec": 18487, + "resurrection": 25811, + "resusc": 47523, + "ret": 20500, + "ret": 10048, + "reta": 20153, + "retail": 14910, + "retail": 6455, + "retailer": 22549, + "retailers": 19418, + "retain": 24430, + "retained": 42737, + "retaining": 35571, + "retains": 42583, + "retali": 33101, + "retar": 29964, + "retarded": 44111, + "retention": 26247, + "rethink": 29078, + "rethinking": 42951, + "reti": 4721, + "retin": 31270, + "retina": 36919, + "retire": 18846, + "retired": 11477, + "retirement": 9205, + "retires": 29060, + "retiring": 21200, + "retrac": 32735, + "retreat": 11210, + "retri": 16918, + "retriever": 28394, + "retro": 6535, + "retro": 7755, + "retrogamer": 47220, + "retrogaming": 11316, + "retrospective": 27105, + "rett": 41082, + "rett": 8425, + "rette": 33066, + "return": 43042, + "return": 3458, + "returned": 10476, + "returning": 9290, + "returns": 5020, + "retwee": 48190, + "retweet": 3195, + "retweeted": 12705, + "retweeting": 32345, + "retweets": 10160, + "rety": 41550, + "reu": 20255, + "reu": 40371, + "reuben": 40450, + "reunion": 10247, + "reunite": 26179, + "reunited": 13516, + "reusable": 30395, + "reuse": 26535, + "reut": 15210, + "reuters": 15569, + "rev": 8424, + "rev": 11789, + "revamp": 29819, + "revamped": 36420, + "revan": 45277, + "reve": 3115, + "reveal": 8052, + "revealed": 7171, + "revealing": 21321, + "reveals": 6621, + "revel": 14133, + "revelation": 24053, + "revelations": 36163, + "reven": 10171, + "revenge": 12717, + "revenue": 10637, + "revenues": 33348, + "rever": 14829, + "rever": 41913, + "revere": 44187, + "reverend": 34407, + "revers": 20726, + "reversal": 33367, + "reverse": 12812, + "reversed": 42485, + "reversi": 31601, + "reversible": 34212, + "revi": 8317, + "review": 2268, + "reviewed": 16678, + "reviewer": 36409, + "reviewers": 48195, + "reviewing": 20458, + "reviews": 7227, + "revise": 46801, + "revised": 22806, + "revising": 46882, + "revision": 20335, + "revisit": 26568, + "revisited": 34302, + "revisiting": 33144, + "revit": 26367, + "revitalization": 46923, + "revival": 14142, + "revive": 26450, + "revived": 42912, + "revo": 28660, + "revol": 13447, + "revolt": 31697, + "revolu": 4900, + "revolution": 17699, + "revolution": 6644, + "revolutionary": 14734, + "revolver": 38747, + "revolving": 47230, + "revs": 49286, + "revue": 43428, + "rew": 37564, + "rewar": 15857, + "reward": 11223, + "rewarded": 27163, + "rewarding": 23351, + "rewards": 15235, + "rewatch": 35610, + "rewatching": 41287, + "rewind": 26867, + "rewrite": 45218, + "rex": 13002, + "rex": 10904, + "rexperience": 33924, + "rey": 9681, + "rey": 4517, + "reyes": 18255, + "reykja": 47571, + "reyn": 11998, + "reynolds": 14309, + "reys": 48284, + "rez": 27597, + "rez": 15192, + "reza": 35888, + "rf": 35529, + "rf": 16368, + "rfc": 19003, + "rfid": 40204, + "rg": 33055, + "rg": 14897, + "rgb": 36128, + "rgv": 33685, + "rh": 8745, + "rh": 22404, + "rha": 19473, + "rhapso": 32532, + "rhapsody": 35774, + "rhe": 9186, + "rhea": 28612, + "rhetor": 24359, + "rhetoric": 29985, + "rhett": 42984, + "rheu": 42953, + "rhi": 21212, + "rhin": 12269, + "rhine": 22863, + "rhine": 44833, + "rhinestone": 30450, + "rhino": 41744, + "rhino": 20056, + "rhinos": 30671, + "rho": 7637, + "rhode": 39302, + "rhode": 27907, + "rhodes": 17785, + "rhon": 25882, + "rhonda": 46100, + "rhp": 27199, + "rhs": 24551, + "rhu": 23897, + "rhubarb": 30213, + "rhy": 7740, + "rhyme": 37356, + "rhymes": 33143, + "rhys": 28647, + "rhyth": 27069, + "rhythm": 16172, + "rhythmic": 46386, + "rhythms": 40872, + "ri": 553, + "ri": 2574, + "ria": 3650, + "rial": 15200, + "rian": 7788, + "rib": 44634, + "rib": 18298, + "riba": 44992, + "ribb": 10081, + "ribbon": 12114, + "ribbons": 35271, + "ribe": 46115, + "ribs": 17519, + "ric": 920, + "ric": 4798, + "rica": 14230, + "rical": 18109, + "rican": 30958, + "ricardo": 23140, + "ricci": 35783, + "ricciardo": 49282, + "rice": 36362, + "rice": 4741, + "rich": 5223, + "rich": 4021, + "richar": 9350, + "richard": 9080, + "richard": 4470, + "richards": 11372, + "richardson": 15984, + "riche": 23286, + "richer": 34138, + "riches": 37093, + "richest": 25572, + "richi": 38934, + "richie": 19797, + "richland": 43079, + "richmond": 34143, + "richmond": 11292, + "richter": 37591, + "rick": 6237, + "rick": 3064, + "ricket": 46161, + "ricket": 23671, + "ricks": 23111, + "ricky": 19188, + "ricky": 12814, + "rico": 37962, + "rico": 11362, + "ricotta": 38473, + "rics": 7353, + "ricul": 6980, + "rid": 18103, + "rid": 9874, + "ridd": 21990, + "ridden": 32025, + "riddle": 31839, + "ride": 15816, + "ride": 2994, + "rider": 31056, + "rider": 9707, + "riders": 10826, + "rides": 11308, + "ridg": 42646, + "ridge": 16580, + "ridge": 6352, + "ridic": 9624, + "ridiculous": 12659, + "ridiculously": 25661, + "ridin": 47869, + "riding": 6765, + "ridley": 27883, + "rie": 14824, + "rie": 5322, + "ried": 7552, + "riel": 26696, + "rien": 35237, + "rier": 40714, + "rier": 13336, + "ries": 28179, + "ries": 3059, + "riesling": 36372, + "rif": 7044, + "riff": 30359, + "rifle": 15354, + "rifles": 25678, + "rift": 26681, + "rig": 18462, + "rig": 13871, + "riga": 36626, + "rigged": 35897, + "rigging": 38160, + "riggs": 40328, + "righ": 15391, + "right": 13341, + "right": 1155, + "righte": 20762, + "righteous": 28169, + "righteousness": 42481, + "rightful": 42601, + "rightly": 42669, + "rights": 3336, + "rigid": 43138, + "rigor": 36788, + "rigorous": 41654, + "rigs": 42893, + "rihanna": 13744, + "rij": 41097, + "rik": 31136, + "rik": 27832, + "rika": 28580, + "ril": 12270, + "ril": 2388, + "riley": 35056, + "riley": 12260, + "rill": 23705, + "rilla": 43956, + "rilla": 18685, + "rim": 28147, + "rim": 12199, + "rime": 27064, + "rimin": 11527, + "rimo": 47817, + "rims": 34327, + "rin": 5859, + "rin": 11739, + "rina": 12869, + "rine": 24952, + "ring": 8318, + "ring": 2540, + "ringed": 44712, + "ringer": 35761, + "ringing": 26035, + "ringo": 38845, + "rings": 5751, + "rington": 12455, + "rink": 21497, + "rinka": 47316, + "rino": 47188, + "rinse": 48320, + "rio": 15681, + "rio": 5782, + "rion": 31623, + "rion": 34046, + "rios": 32814, + "riot": 32636, + "riot": 14218, + "riots": 24844, + "rious": 6340, + "rip": 10353, + "rip": 4243, + "ripe": 22832, + "ripley": 41589, + "ripp": 25276, + "ripped": 17815, + "ripper": 35347, + "ripping": 29126, + "ripple": 24825, + "rips": 30182, + "rir": 36792, + "ris": 6108, + "ris": 1999, + "rise": 13641, + "rise": 3151, + "risen": 23653, + "risers": 44983, + "rises": 13362, + "riseup": 35760, + "rish": 18378, + "rish": 18927, + "rishi": 48434, + "rising": 30452, + "rising": 5448, + "risis": 37998, + "risk": 27967, + "risk": 4213, + "risking": 48155, + "risks": 12474, + "risky": 27630, + "risotto": 31471, + "rist": 40610, + "rit": 5156, + "rit": 17333, + "rita": 16178, + "ritchie": 30997, + "rite": 39318, + "rite": 18429, + "rites": 36160, + "rith": 48169, + "rith": 48850, + "riti": 32904, + "rito": 19379, + "ritos": 33507, + "ritt": 26092, + "ritter": 34854, + "ritu": 13391, + "ritual": 19712, + "rituals": 31145, + "ritz": 39151, + "ritz": 25627, + "rium": 33884, + "riv": 25113, + "rival": 13412, + "rival": 15629, + "rivalry": 19511, + "rivals": 15135, + "rive": 27588, + "rive": 34917, + "river": 5239, + "river": 2473, + "rivera": 18275, + "riverdale": 28304, + "riverfront": 44439, + "rivers": 10723, + "riverside": 15809, + "riveting": 44024, + "riviera": 25851, + "rix": 43407, + "rix": 9483, + "riya": 36908, + "riyad": 31564, + "riyadh": 33577, + "riz": 18426, + "riz": 35411, + "rizal": 41555, + "rizio": 40191, + "rizz": 34826, + "rizzo": 49076, + "rj": 26016, + "rj": 20949, + "rk": 38725, + "rk": 21422, + "rl": 18041, + "rl": 14590, + "rlly": 43222, + "rly": 25954, + "rm": 20202, + "rm": 8431, + "rmb": 49097, + "rms": 40529, + "rn": 13206, + "rn": 7666, + "rna": 24566, + "rnb": 31556, + "rnc": 35309, + "rnli": 29748, + "ro": 532, + "ro": 2795, + "roa": 8313, + "roach": 31073, + "road": 4370, + "road": 1759, + "roadhouse": 47891, + "roadmap": 30111, + "roads": 6189, + "roadsafety": 39992, + "roadshow": 21168, + "roadside": 26928, + "roadster": 28920, + "roadto": 24681, + "roadtrip": 15094, + "roadway": 42744, + "roam": 34045, + "roaming": 29240, + "roano": 34184, + "roanoke": 36587, + "roar": 34193, + "roar": 18483, + "roaring": 26428, + "roast": 11404, + "roasted": 10479, + "roasting": 32228, + "rob": 2668, + "rob": 6442, + "robb": 14059, + "robb": 39673, + "robbed": 24163, + "robber": 35545, + "robbers": 40852, + "robbery": 16393, + "robbi": 44898, + "robbie": 37200, + "robbie": 15970, + "robbing": 47569, + "robbins": 23461, + "robby": 44128, + "robe": 23116, + "rober": 4532, + "robert": 8811, + "robert": 3929, + "roberta": 43373, + "roberto": 42645, + "roberto": 16227, + "roberts": 10366, + "robertson": 17643, + "robes": 29304, + "robi": 16743, + "robin": 6681, + "robin": 7988, + "robins": 35502, + "robinson": 8523, + "robles": 47646, + "roblo": 27481, + "roblox": 37798, + "robo": 4672, + "robo": 36057, + "robot": 46089, + "robot": 8797, + "robotic": 23975, + "robotics": 13546, + "robots": 13473, + "robson": 31113, + "robust": 22780, + "robyn": 34533, + "roc": 3268, + "roc": 13776, + "rocco": 30009, + "roch": 23788, + "rochdale": 41880, + "roche": 31776, + "rochelle": 40161, + "rochester": 18057, + "rock": 2640, + "rock": 2172, + "rockab": 39353, + "rockabilly": 45019, + "rocke": 19914, + "rocked": 16116, + "rockefeller": 35476, + "rocker": 29008, + "rockers": 32338, + "rocket": 25435, + "rocket": 8383, + "rockets": 13292, + "rockford": 41039, + "rockies": 20621, + "rockin": 12073, + "rocking": 7081, + "rockn": 24442, + "rocknroll": 27840, + "rocks": 6135, + "rockstar": 23603, + "rockstar": 18000, + "rockstargames": 27516, + "rockstars": 46639, + "rockthe": 49363, + "rockwell": 34747, + "rocky": 33481, + "rocky": 9648, + "rod": 9712, + "rod": 8291, + "roddy": 42332, + "rode": 18449, + "rodeo": 18250, + "rodgers": 17612, + "rodi": 49100, + "rodney": 21753, + "rodri": 11053, + "rodrigo": 33944, + "rodriguez": 14057, + "rods": 28618, + "roe": 27671, + "roe": 9996, + "rof": 33029, + "rofl": 48228, + "roft": 45212, + "rog": 34269, + "rog": 34017, + "rogen": 23380, + "roger": 13929, + "roger": 7735, + "rogerfederer": 40182, + "rogers": 10661, + "rogue": 32575, + "rogue": 15162, + "roh": 14933, + "roh": 29840, + "rohan": 39848, + "rohing": 23600, + "rohingya": 26146, + "rohit": 44649, + "rohit": 24299, + "roi": 21877, + "rok": 36807, + "rol": 3393, + "rol": 7818, + "roland": 33713, + "roland": 19569, + "role": 18485, + "role": 3414, + "roles": 11871, + "rolex": 21093, + "rolf": 48606, + "roll": 4711, + "roll": 3341, + "rolled": 11982, + "roller": 21034, + "roller": 12342, + "rollercoaster": 38248, + "rollers": 36941, + "rollin": 27545, + "rolling": 24250, + "rolling": 6347, + "rollingstones": 41309, + "rollins": 27724, + "rollout": 47710, + "rollover": 39214, + "rolls": 8614, + "rolltide": 28101, + "rom": 11377, + "rom": 19205, + "roma": 44134, + "roma": 11631, + "romain": 48897, + "roman": 4416, + "roman": 7370, + "romance": 7215, + "romania": 15884, + "romanian": 30866, + "romano": 38409, + "romans": 23066, + "romantic": 41457, + "romantic": 8821, + "rome": 9406, + "rome": 5243, + "romeo": 14429, + "romero": 23694, + "romney": 19287, + "romo": 32248, + "romper": 43699, + "ron": 2393, + "ron": 3372, + "rona": 42385, + "ronal": 46194, + "ronald": 15683, + "ronaldo": 13463, + "ronan": 34971, + "rond": 31935, + "ronda": 37436, + "rondo": 43756, + "rone": 48082, + "rone": 32763, + "roni": 47234, + "ronnie": 45257, + "ronnie": 16421, + "rons": 19536, + "ront": 48881, + "roo": 1249, + "roo": 31227, + "rood": 38007, + "roof": 9120, + "roof": 6449, + "roofing": 24415, + "roofs": 34635, + "rooftop": 16319, + "rook": 35918, + "rookie": 9771, + "rookies": 31917, + "room": 8845, + "room": 1530, + "roomie": 36851, + "roommate": 19825, + "roommates": 37323, + "rooms": 6328, + "rooney": 17712, + "roos": 32938, + "roosevel": 17644, + "roosevelt": 18488, + "rooster": 46263, + "rooster": 30926, + "roosters": 43693, + "root": 25930, + "root": 9728, + "rooted": 30428, + "rooting": 25523, + "roots": 8084, + "rop": 43401, + "rope": 9953, + "ropes": 30506, + "ror": 8668, + "ror": 2843, + "rors": 12072, + "rory": 42804, + "rory": 17813, + "ros": 5288, + "ros": 6930, + "rosa": 14393, + "rosal": 30397, + "rosario": 33640, + "rosary": 33098, + "rosberg": 46037, + "rose": 6146, + "rose": 3568, + "roseanne": 47528, + "rosel": 33616, + "rosemary": 19472, + "rosen": 13214, + "rosen": 36424, + "rosenberg": 43558, + "rosenthal": 46990, + "roses": 9061, + "rosetta": 43800, + "rosewood": 38686, + "rosie": 43049, + "rosie": 16888, + "ross": 8801, + "ross": 2158, + "rosse": 11602, + "rossi": 24817, + "rosso": 33023, + "roster": 12487, + "roswell": 45116, + "rosy": 46705, + "rosé": 28006, + "rot": 10055, + "rot": 9643, + "rotar": 45959, + "rotary": 14654, + "rotating": 32265, + "rotation": 18089, + "rotc": 32252, + "roth": 17741, + "roth": 19139, + "rother": 23174, + "rotherham": 37687, + "rothschild": 45089, + "roti": 46940, + "roto": 34698, + "rotor": 42991, + "rots": 16642, + "rott": 34806, + "rotten": 24324, + "rotter": 22614, + "rotterdam": 23422, + "rotun": 42970, + "rou": 2964, + "rou": 34783, + "roud": 28375, + "rouge": 16209, + "rough": 11699, + "rough": 8511, + "roughly": 21910, + "roughs": 37598, + "rouhani": 39912, + "roulette": 39930, + "roun": 5602, + "round": 9403, + "round": 2522, + "roundabout": 29953, + "rounded": 26973, + "rounder": 37024, + "rounding": 40208, + "rounds": 11242, + "roundtable": 19386, + "roundup": 17503, + "roup": 29220, + "rourke": 38753, + "rous": 33645, + "rous": 34531, + "rousey": 46267, + "rout": 7502, + "rout": 41778, + "route": 5261, + "router": 29962, + "routes": 14923, + "routine": 12319, + "routines": 44074, + "routing": 44086, + "roux": 43416, + "rov": 23971, + "rove": 30130, + "rover": 12776, + "rovers": 16373, + "row": 5275, + "row": 1044, + "rowan": 26240, + "rowdy": 32141, + "rowe": 28323, + "rowed": 22615, + "rower": 43345, + "rowers": 41806, + "rowing": 12807, + "rowland": 33037, + "rowley": 48793, + "rowling": 29371, + "rown": 22287, + "rown": 25060, + "rows": 9409, + "rox": 14111, + "rox": 41033, + "roxy": 28093, + "roy": 2128, + "roy": 6354, + "royal": 6691, + "royal": 3853, + "royale": 20630, + "royalnavy": 41545, + "royals": 13335, + "royalties": 48660, + "royalty": 18296, + "royalwedding": 27461, + "royce": 18444, + "royd": 41476, + "royo": 39357, + "roz": 28989, + "roz": 37250, + "rp": 17305, + "rp": 8174, + "rpa": 41872, + "rpg": 12445, + "rpm": 23715, + "rps": 49215, + "rr": 5311, + "rr": 9126, + "rrp": 36967, + "rrr": 18267, + "rrrr": 25561, + "rrrr": 34444, + "rs": 6978, + "rs": 1724, + "rsa": 29437, + "rsc": 48524, + "rsd": 34426, + "rsi": 39046, + "rsl": 44752, + "rsp": 16381, + "rspb": 38508, + "rspb": 36727, + "rspca": 45643, + "rss": 46466, + "rss": 22350, + "rstats": 38700, + "rsvp": 9774, + "rt": 8959, + "rt": 8991, + "rtc": 31648, + "rte": 33822, + "rte": 23322, + "rtg": 22028, + "rti": 47549, + "rtr": 43999, + "rts": 8496, + "rtw": 34673, + "ru": 681, + "ru": 13735, + "rub": 15862, + "rub": 22586, + "rubb": 19597, + "rubbed": 45239, + "rubber": 31131, + "rubber": 11331, + "rubbing": 41262, + "rubbish": 21108, + "rubble": 42230, + "ruben": 44058, + "ruben": 29722, + "rubi": 27856, + "rubin": 34128, + "rubio": 24244, + "rubs": 43422, + "ruby": 24552, + "ruby": 11493, + "ruck": 27449, + "rucker": 45402, + "rud": 35256, + "rudd": 31836, + "rude": 16548, + "rudi": 48360, + "rudol": 40927, + "rudolf": 46835, + "rudolph": 30119, + "rudy": 38226, + "rudy": 22131, + "rue": 38024, + "rue": 19276, + "rufc": 45084, + "ruff": 28177, + "ruff": 30304, + "rufus": 39322, + "rug": 4217, + "rug": 19220, + "rugby": 15091, + "rugby": 4964, + "rugbyleague": 44419, + "ruger": 48655, + "rugged": 25225, + "rugs": 29946, + "rui": 46974, + "ruin": 16256, + "ruined": 17231, + "ruining": 29952, + "ruins": 16094, + "ruiz": 27873, + "ruk": 46628, + "rukh": 43075, + "rukh": 27631, + "rule": 31643, + "rule": 6175, + "ruled": 16324, + "ruler": 26286, + "rulers": 45328, + "rules": 5272, + "ruling": 14690, + "rum": 9223, + "rum": 11233, + "rumb": 42432, + "rumble": 18900, + "rumi": 31428, + "rumor": 22254, + "rumored": 36694, + "rumors": 16160, + "rumour": 34296, + "rumours": 20716, + "rump": 29366, + "run": 1639, + "run": 1934, + "runaway": 28851, + "runchat": 25838, + "rundown": 41100, + "rune": 33882, + "rune": 49244, + "runner": 37370, + "runner": 7913, + "runners": 10571, + "runnin": 43130, + "running": 24451, + "running": 2761, + "runoff": 38564, + "runs": 5586, + "runway": 13927, + "rup": 7996, + "rup": 14980, + "rupaul": 44211, + "rupee": 43916, + "rupees": 44110, + "rupert": 25625, + "rupt": 23055, + "ruption": 35403, + "rural": 28801, + "rural": 8737, + "rus": 35811, + "rus": 5998, + "rush": 12148, + "rush": 6973, + "rushed": 28104, + "rusher": 48745, + "rushes": 47217, + "rushing": 20284, + "russ": 6285, + "russ": 20764, + "russell": 26122, + "russell": 8150, + "russi": 2600, + "russia": 4018, + "russian": 30731, + "russian": 4868, + "russians": 25413, + "russo": 30679, + "rust": 28682, + "rust": 14212, + "rustic": 19822, + "rusty": 43966, + "rusty": 22646, + "rut": 14973, + "rut": 39102, + "rutger": 49029, + "rutgers": 28934, + "ruth": 15798, + "ruth": 12029, + "ruther": 26676, + "rutherford": 31070, + "ruthless": 36063, + "rutland": 46024, + "ruto": 43702, + "ruz": 23275, + "rv": 17135, + "rv": 17951, + "rva": 24278, + "rw": 9085, + "rw": 22926, + "rwa": 47452, + "rwand": 31758, + "rwanda": 15427, + "rwby": 39698, + "rwc": 32321, + "rx": 41188, + "rx": 15945, + "ry": 1511, + "ry": 913, + "ryan": 8682, + "ryan": 4053, + "ryanair": 43526, + "ryder": 43564, + "ryder": 21805, + "rye": 24015, + "rye": 17409, + "rying": 7838, + "ryn": 37728, + "ryo": 24460, + "rys": 21654, + "ryu": 46656, + "ryu": 34604, + "ré": 29106, + "s": 82, + "s": 338, + "sa": 774, + "sa": 1344, + "saa": 13429, + "saab": 27158, + "saad": 36530, + "saas": 25761, + "saat": 33151, + "sab": 3233, + "sab": 23213, + "saba": 38344, + "sabah": 32854, + "saban": 41620, + "sabar": 47102, + "sabbath": 26008, + "sabc": 30010, + "sabcnews": 41093, + "saber": 46822, + "saber": 25624, + "sabha": 23431, + "sabi": 47073, + "sabine": 44062, + "sable": 19224, + "sabot": 30700, + "sabotage": 40496, + "sabre": 35110, + "sabres": 29620, + "sabrin": 37029, + "sabrina": 24994, + "sac": 3632, + "sac": 12905, + "sach": 30168, + "sacha": 49010, + "sachin": 47527, + "sachin": 30297, + "sachs": 31451, + "sack": 28964, + "sack": 14979, + "sacked": 27519, + "sacks": 26441, + "sacram": 13334, + "sacramento": 16065, + "sacred": 40612, + "sacred": 12477, + "sacri": 15283, + "sacrif": 12117, + "sacrific": 16919, + "sacrifice": 12556, + "sacrificed": 31116, + "sacrifices": 28858, + "sacrificing": 48146, + "sad": 2810, + "sad": 3719, + "saddened": 27720, + "saddest": 34925, + "saddle": 30469, + "saddle": 20283, + "sade": 27429, + "sadh": 40955, + "sadi": 22207, + "sadie": 30333, + "sadiq": 44107, + "sadler": 45600, + "sadly": 11603, + "sadness": 20399, + "sae": 38633, + "sae": 34883, + "saeed": 29745, + "saf": 2125, + "saf": 25760, + "safar": 23443, + "safari": 14091, + "safarilive": 34816, + "safc": 27998, + "safe": 2901, + "safe": 2996, + "safeguard": 42249, + "safeguarding": 47451, + "safely": 11513, + "safer": 40124, + "safer": 15504, + "safest": 38973, + "safety": 19050, + "safety": 3406, + "safetyfirst": 43608, + "saffron": 27529, + "sag": 6609, + "sag": 30048, + "saga": 15758, + "sagan": 37193, + "sagar": 42518, + "sage": 25800, + "sage": 7509, + "sages": 25979, + "sagin": 47097, + "sagitt": 44685, + "sagu": 44708, + "sah": 30943, + "sah": 26342, + "saha": 36062, + "sahara": 24599, + "saharan": 44255, + "sahi": 24608, + "sahib": 34150, + "sai": 16048, + "sai": 10886, + "said": 40319, + "said": 1946, + "saif": 44164, + "saig": 36328, + "saigon": 41081, + "sail": 7528, + "sail": 12156, + "sailed": 43047, + "sailing": 11003, + "sailor": 28002, + "sailor": 16076, + "sailormoon": 40673, + "sailors": 25355, + "sails": 27526, + "sain": 21226, + "sain": 40378, + "sains": 24860, + "sainsbury": 45879, + "sainsburys": 36934, + "saint": 11274, + "saint": 5599, + "saints": 8769, + "saintsfc": 31102, + "sair": 46600, + "sair": 30971, + "saire": 28087, + "saison": 33256, + "sait": 48008, + "saj": 33580, + "sak": 11511, + "sak": 35900, + "saka": 33609, + "sake": 12874, + "sakh": 43945, + "saki": 40514, + "saku": 37550, + "sakura": 24162, + "sal": 980, + "sal": 6126, + "sala": 17300, + "salaam": 46773, + "salad": 6188, + "salads": 30948, + "salah": 22516, + "salam": 19007, + "salam": 33963, + "salamat": 44696, + "salami": 46885, + "salaries": 33132, + "salary": 16312, + "salazar": 45988, + "sale": 17786, + "sale": 1690, + "saleh": 38353, + "salem": 48194, + "salem": 16884, + "sales": 13347, + "sales": 3765, + "salesforce": 22680, + "salesman": 37633, + "salford": 25629, + "sali": 15411, + "salim": 42760, + "salinas": 41990, + "saline": 46918, + "salis": 20667, + "salis": 39378, + "salisbury": 24763, + "sall": 27122, + "sall": 20883, + "salle": 23738, + "sally": 29542, + "sally": 13349, + "salman": 13754, + "salman": 16219, + "salmankhan": 15177, + "salmon": 37040, + "salmon": 9137, + "salom": 38268, + "salon": 33916, + "salon": 11105, + "saloon": 26038, + "sals": 16307, + "salsa": 16442, + "salt": 12763, + "salt": 6611, + "salted": 26313, + "saltlife": 47809, + "salts": 40559, + "saltwater": 43616, + "salty": 20678, + "salu": 31711, + "salud": 46867, + "salut": 44998, + "salute": 44908, + "salute": 9747, + "salutes": 32762, + "salv": 8299, + "salvador": 20874, + "salvage": 33131, + "salvation": 19534, + "salvatore": 38772, + "salz": 33594, + "salzburg": 43396, + "sam": 1644, + "sam": 3730, + "sama": 19272, + "samanth": 11465, + "samantha": 15466, + "samanthap": 38266, + "samanthaprabhu": 38643, + "samar": 21820, + "samaritan": 45495, + "samba": 37190, + "same": 23062, + "same": 2208, + "samheughan": 36255, + "sami": 48400, + "sami": 24322, + "sammy": 31091, + "sammy": 16758, + "samo": 30006, + "samoa": 34932, + "samp": 31225, + "sample": 9542, + "sampler": 40629, + "samples": 13387, + "sampling": 19522, + "sampson": 39983, + "sams": 44667, + "samson": 34659, + "samsun": 47875, + "samsung": 35369, + "samsung": 8115, + "samu": 7646, + "samuel": 30612, + "samuel": 12787, + "samurai": 21739, + "san": 1489, + "san": 2223, + "sana": 19434, + "sanantonio": 34714, + "sanat": 29091, + "sanatomy": 36052, + "sanc": 7398, + "sance": 15930, + "sanchez": 13971, + "sanctioned": 43032, + "sanctions": 17790, + "sanctu": 12712, + "sanctuary": 14044, + "sand": 2147, + "sand": 5094, + "sandal": 36445, + "sandal": 42185, + "sandals": 20731, + "sandalwood": 47502, + "sandeep": 46973, + "sander": 34111, + "sanders": 10429, + "sanderson": 36198, + "sandi": 44249, + "sandiego": 45997, + "sandiego": 15793, + "sandman": 45730, + "sando": 35921, + "sandoval": 44157, + "sandra": 33733, + "sandra": 13415, + "sandro": 42389, + "sands": 5936, + "sandstone": 36796, + "sandwich": 17050, + "sandwich": 8687, + "sandwiches": 19667, + "sandy": 29679, + "sandy": 10355, + "sane": 23419, + "sanford": 32330, + "sanfrancisco": 20254, + "sang": 13235, + "sang": 11684, + "sange": 12466, + "sangria": 42665, + "sani": 39137, + "sani": 34492, + "sanitary": 33842, + "sanitation": 25414, + "saniti": 43987, + "sanity": 30517, + "sanjay": 31712, + "sanjay": 25796, + "sanje": 40405, + "sanjose": 45971, + "sank": 43692, + "sano": 34053, + "sans": 16982, + "sansk": 39689, + "sanskrit": 48083, + "sant": 8356, + "sant": 23120, + "santa": 22175, + "santa": 4555, + "santac": 28876, + "santam": 45627, + "santana": 27033, + "santander": 46476, + "santi": 13856, + "santiago": 16568, + "santo": 29631, + "santo": 18400, + "santor": 28448, + "santorini": 39573, + "santos": 16582, + "sany": 47679, + "sao": 28026, + "sap": 8089, + "sap": 11591, + "sapi": 40016, + "sapp": 13427, + "sapp": 40729, + "sapphire": 22044, + "sar": 1808, + "sar": 9424, + "sara": 37196, + "sara": 10063, + "sarab": 40716, + "sarac": 35722, + "sarah": 9086, + "sarah": 5327, + "saraj": 42592, + "sarajevo": 48211, + "saras": 20373, + "sarasota": 31990, + "sarato": 24845, + "saratoga": 29496, + "sarawak": 47331, + "sarcasm": 37246, + "sarcastic": 48639, + "sardar": 41786, + "sarde": 43925, + "sardin": 27383, + "sardinia": 41025, + "sare": 13051, + "saree": 30860, + "sargent": 34864, + "sari": 42327, + "sari": 20261, + "saries": 47586, + "sarkar": 30673, + "sarko": 33658, + "sarkodie": 42848, + "sarmy": 20954, + "sart": 33006, + "sary": 15398, + "sas": 3960, + "sas": 5235, + "sash": 35656, + "sasha": 46078, + "sasha": 20894, + "sasia": 44751, + "sask": 47091, + "sask": 30416, + "saskat": 17102, + "saskatchewan": 23899, + "saskatoon": 31128, + "sass": 31351, + "sassy": 20827, + "sat": 1382, + "sat": 3279, + "sata": 41520, + "satan": 19446, + "satanic": 38224, + "satchel": 45908, + "sate": 35749, + "satell": 9031, + "satellite": 10316, + "satellites": 28483, + "sath": 29675, + "sathletics": 30154, + "sati": 7038, + "satin": 21803, + "sation": 23674, + "sations": 31232, + "satire": 29875, + "satis": 9906, + "satisf": 22941, + "satisfaction": 19925, + "satisfied": 18101, + "satisfy": 29444, + "satisfying": 23755, + "sato": 34376, + "satu": 45283, + "satur": 1634, + "saturated": 32466, + "saturday": 12537, + "saturday": 1748, + "saturdaymorning": 29053, + "saturdaymotivation": 40843, + "saturdays": 18930, + "saturn": 17312, + "saty": 39426, + "sau": 2096, + "sau": 19455, + "sauce": 5520, + "saucer": 42272, + "sauces": 40367, + "saucy": 46684, + "saudi": 24511, + "saudi": 8548, + "saudiarabia": 28680, + "sauer": 46333, + "saul": 47623, + "saul": 23252, + "sault": 40361, + "sauna": 35460, + "saunders": 23794, + "saur": 13227, + "saura": 46532, + "saurus": 22118, + "saus": 36121, + "sausage": 11855, + "sausages": 31593, + "sauté": 36290, + "sautéed": 38517, + "sauvi": 30116, + "sauvignon": 32745, + "sav": 2248, + "sav": 26533, + "sava": 40198, + "savag": 43039, + "savage": 11859, + "savannah": 18662, + "save": 5895, + "save": 2673, + "saved": 7137, + "saveour": 33390, + "saver": 20987, + "savers": 31416, + "saves": 12907, + "savethe": 18031, + "savi": 14721, + "saving": 28498, + "saving": 6979, + "savings": 10651, + "savior": 24762, + "saviour": 35800, + "savor": 48071, + "savory": 32992, + "savoury": 49071, + "savoy": 39552, + "savvy": 29278, + "saw": 12429, + "saw": 2425, + "sawa": 39613, + "sawards": 29012, + "sawyer": 27726, + "sax": 14169, + "sax": 23766, + "saxon": 31856, + "saxophon": 43760, + "saxophone": 32296, + "say": 3047, + "say": 1451, + "saya": 35170, + "sayang": 46322, + "sayers": 44116, + "sayin": 23662, + "saying": 4455, + "says": 1563, + "saz": 35577, + "sb": 5576, + "sb": 4977, + "sba": 44970, + "sback": 43840, + "sband": 27539, + "sbaseball": 46491, + "sbball": 39190, + "sbc": 31404, + "sberg": 20358, + "sbi": 41369, + "sbk": 39211, + "sboro": 18909, + "sbridge": 49228, + "sbs": 18883, + "sbu": 48075, + "sbu": 46281, + "sburg": 7390, + "sburgh": 48205, + "sbury": 14081, + "sby": 26519, + "sby": 10287, + "sc": 663, + "sc": 3219, + "sca": 11001, + "scab": 31716, + "scaf": 28981, + "scafe": 45574, + "scaffolding": 41687, + "scal": 10859, + "scala": 37997, + "scalable": 44084, + "scale": 37817, + "scale": 5879, + "scaled": 41923, + "scales": 22891, + "scaling": 29116, + "scallo": 19936, + "scallop": 39544, + "scallops": 31430, + "scalp": 38898, + "scam": 17620, + "scam": 13215, + "scamp": 28451, + "scams": 34395, + "scan": 10650, + "scan": 11261, + "scanada": 27121, + "scand": 8110, + "scandal": 35420, + "scandal": 11622, + "scandals": 45490, + "scandin": 32014, + "scandinavian": 35661, + "scanned": 43719, + "scanner": 24185, + "scanning": 24092, + "scans": 31251, + "scap": 35883, + "scape": 36005, + "scape": 12314, + "scapes": 31933, + "scar": 4171, + "scar": 18088, + "scarborough": 24254, + "scarce": 38572, + "scarcity": 45812, + "scare": 33536, + "scare": 15920, + "scarec": 38814, + "scarecrow": 46504, + "scared": 9870, + "scares": 34096, + "scarf": 13365, + "scari": 27050, + "scariest": 37213, + "scarlet": 20389, + "scarlett": 28325, + "scars": 20747, + "scarves": 29249, + "scary": 9250, + "scat": 13899, + "scattered": 22090, + "scavenger": 36778, + "scc": 19458, + "scd": 48422, + "scen": 2204, + "scenario": 20456, + "scenarios": 31346, + "scence": 33418, + "scene": 3562, + "scenery": 16025, + "scenes": 5415, + "scenic": 15394, + "scent": 36277, + "scent": 7683, + "scented": 27190, + "scenter": 23059, + "scentre": 39371, + "scents": 26336, + "scep": 24439, + "scfc": 38578, + "sch": 844, + "sch": 7542, + "scha": 42809, + "schaf": 45588, + "schaft": 41010, + "schal": 35568, + "schalke": 41029, + "schallenge": 43665, + "schan": 31328, + "schar": 15085, + "schat": 31842, + "schau": 35830, + "sche": 3038, + "sche": 7289, + "schedu": 4207, + "schedule": 5521, + "scheduled": 10986, + "schedules": 28986, + "scheduling": 32216, + "scheer": 26776, + "schel": 39881, + "schel": 38569, + "schem": 17720, + "scheme": 9024, + "schemes": 22958, + "schen": 22738, + "scher": 21925, + "scher": 21299, + "schi": 13731, + "schi": 24984, + "schicago": 46230, + "schiff": 39431, + "schild": 32148, + "schiz": 33230, + "schizoph": 40004, + "schizophre": 41163, + "schle": 32022, + "schmid": 17375, + "schmidt": 18463, + "schnau": 45745, + "schnei": 19941, + "schneider": 22972, + "schnit": 40903, + "scho": 2493, + "schoice": 23860, + "schol": 4498, + "scholar": 7192, + "scholar": 12830, + "scholarly": 41065, + "scholars": 13818, + "scholarship": 9070, + "scholarships": 17866, + "scholastic": 35743, + "schoo": 20721, + "school": 6063, + "school": 1228, + "schooled": 44722, + "schoolers": 31455, + "schooling": 28608, + "schools": 3513, + "schre": 47685, + "schri": 25453, + "schro": 32381, + "schu": 11318, + "schubert": 46939, + "schul": 14945, + "schultz": 30308, + "schulz": 39572, + "schumacher": 39208, + "schumer": 25313, + "schur": 42475, + "schwab": 47602, + "schwar": 13985, + "schwartz": 30617, + "schwarz": 27074, + "schwarzenegger": 33860, + "schwe": 25324, + "sci": 2267, + "sci": 8309, + "sciart": 31704, + "scicom": 28606, + "scicomm": 29573, + "scien": 39261, + "science": 10201, + "science": 2497, + "sciencefiction": 39170, + "sciences": 11481, + "scienti": 4338, + "scientific": 9750, + "scientist": 11083, + "scientists": 8045, + "sciento": 36193, + "scientology": 44694, + "scifi": 41862, + "scifi": 12230, + "scion": 47208, + "sciss": 25667, + "scissors": 30867, + "sciutto": 44392, + "sclerosis": 39446, + "sclub": 20017, + "sco": 1065, + "sco": 4763, + "scoe": 31164, + "scol": 13599, + "scoll": 44895, + "scollege": 39536, + "scom": 26407, + "scon": 17163, + "scon": 29272, + "scones": 36443, + "sconf": 39704, + "scoo": 14199, + "scooby": 34469, + "scoop": 13829, + "scoops": 41360, + "scope": 7979, + "scopes": 30328, + "scopic": 23869, + "scopy": 20018, + "scor": 8442, + "score": 12067, + "score": 4431, + "scoreboard": 30104, + "scorecard": 38128, + "scored": 6143, + "scoreless": 33469, + "scorer": 16572, + "scorers": 26699, + "scores": 7039, + "scoring": 9198, + "scorpi": 15445, + "scorpio": 34331, + "scorpion": 28461, + "scorpions": 45401, + "scorsese": 45975, + "scot": 2496, + "scot": 9271, + "scotch": 16687, + "scoti": 46446, + "scotia": 27859, + "scotland": 29174, + "scotland": 4203, + "scots": 17260, + "scotsman": 39612, + "scott": 7775, + "scott": 3664, + "scotti": 6227, + "scottish": 18039, + "scottish": 7442, + "scottsdale": 27817, + "scotty": 39697, + "scotty": 26836, + "scotus": 21720, + "scou": 44909, + "scoun": 16110, + "scouncil": 48787, + "scountry": 40432, + "scour": 46172, + "scout": 32213, + "scout": 10786, + "scouting": 19072, + "scouts": 14837, + "scow": 27929, + "scowboys": 31386, + "scp": 45030, + "scr": 36131, + "scra": 11187, + "scrabble": 39488, + "scram": 17289, + "scramble": 32688, + "scrambled": 39026, + "scran": 41774, + "scranton": 45274, + "scrap": 27950, + "scrap": 21695, + "scrapbook": 48733, + "scrapped": 43325, + "scraps": 40809, + "scrat": 9572, + "scratch": 13258, + "scratched": 48831, + "scratches": 46556, + "scratching": 44617, + "scre": 1795, + "scream": 31645, + "scream": 13239, + "screamed": 35427, + "screaming": 12891, + "screams": 23989, + "screen": 5351, + "screen": 3750, + "screened": 31450, + "screening": 6688, + "screenings": 27655, + "screenplay": 30058, + "screens": 12689, + "screenshot": 20637, + "screenshot": 12646, + "screenshots": 26783, + "screenshotsaturday": 21406, + "screenwriter": 37293, + "screenwriting": 35465, + "screw": 25529, + "screw": 14225, + "screwdriver": 48748, + "screwed": 30592, + "screws": 38292, + "scri": 2139, + "scrib": 34259, + "scribe": 36228, + "scribed": 38334, + "scricket": 45947, + "scrim": 21978, + "scrimmage": 25216, + "scrip": 11955, + "script": 8374, + "scripted": 40513, + "scription": 26604, + "scriptions": 39512, + "scripts": 20109, + "scripture": 27186, + "scro": 30768, + "scroll": 24160, + "scrolling": 28889, + "scrolls": 38113, + "scroo": 42263, + "scru": 7589, + "scrub": 23432, + "scrubs": 37919, + "scrum": 29047, + "scrump": 39791, + "scrumptious": 40987, + "scrutiny": 34305, + "scs": 26853, + "sct": 39284, + "scu": 8181, + "scu": 32135, + "scuba": 39053, + "scuba": 20559, + "scubadiving": 49046, + "scue": 25955, + "scul": 4948, + "scully": 36598, + "sculp": 6093, + "sculpt": 45044, + "sculpted": 41296, + "sculpting": 44389, + "sculptor": 29409, + "sculpture": 8757, + "sculptures": 20378, + "scum": 29655, + "scumb": 44525, + "scup": 21506, + "scur": 32742, + "scwx": 41966, + "scy": 27471, + "sd": 3080, + "sd": 4159, + "sda": 25548, + "sdale": 12327, + "sday": 5902, + "sday": 1376, + "sdays": 14491, + "sdc": 40992, + "sdcc": 13246, + "sden": 17241, + "sdf": 34681, + "sdg": 20177, + "sdgs": 16261, + "sdk": 40015, + "sdlive": 34561, + "sdn": 41925, + "sdsu": 41284, + "se": 567, + "se": 611, + "sea": 5970, + "sea": 2102, + "seab": 15728, + "seabir": 42558, + "seac": 35626, + "seaf": 9336, + "seafood": 12472, + "seag": 15730, + "seagu": 38076, + "seagull": 38858, + "seagulls": 42215, + "seahawks": 15341, + "seal": 21381, + "seal": 10159, + "sealed": 13358, + "sealing": 42992, + "seals": 18179, + "seam": 13710, + "seam": 44201, + "seaman": 47513, + "seamless": 29373, + "seamus": 40175, + "sean": 11406, + "sean": 6077, + "seanhannity": 43316, + "seap": 29983, + "seaport": 46418, + "sear": 1612, + "search": 23129, + "search": 1920, + "searched": 28961, + "searches": 26378, + "searching": 10626, + "seared": 29727, + "sears": 26693, + "seas": 7329, + "seas": 9556, + "seascape": 42593, + "seaside": 18867, + "season": 19288, + "season": 1367, + "seasonal": 14215, + "seasoned": 28399, + "seasoning": 43439, + "seasons": 8635, + "seat": 19670, + "seat": 4922, + "seated": 23953, + "seater": 37543, + "seating": 16240, + "seats": 6944, + "seattle": 24388, + "seattle": 6274, + "seau": 32263, + "seaw": 32658, + "seaweed": 30204, + "seaworld": 27422, + "seb": 35766, + "seb": 25171, + "sebasti": 10324, + "sebastian": 43792, + "sebastian": 13181, + "sebring": 41086, + "sec": 2875, + "sec": 5338, + "seca": 37847, + "secco": 27394, + "sece": 46297, + "seclu": 42392, + "secon": 1846, + "second": 9329, + "second": 2241, + "secondary": 13107, + "seconds": 6541, + "secre": 2460, + "secret": 20710, + "secret": 4145, + "secretari": 29515, + "secretariat": 31767, + "secretary": 6552, + "secretly": 21400, + "secrets": 9735, + "secs": 28665, + "sect": 15772, + "section": 34986, + "section": 4853, + "sectional": 21876, + "sections": 20061, + "sector": 6579, + "sectors": 22173, + "secu": 4894, + "secular": 47483, + "secular": 27560, + "secur": 2557, + "secure": 44763, + "secure": 7515, + "secured": 16848, + "secures": 31567, + "securing": 24759, + "securities": 25080, + "security": 31245, + "security": 2741, + "sed": 14034, + "sed": 1252, + "sedan": 24237, + "sedg": 46926, + "sedge": 45288, + "sedi": 29269, + "sedly": 31771, + "sedona": 46862, + "seduc": 19933, + "seductive": 43721, + "see": 1751, + "see": 862, + "seed": 14064, + "seed": 6488, + "seeded": 33688, + "seeding": 40050, + "seedlings": 47933, + "seeds": 9128, + "seeing": 3214, + "seek": 8839, + "seeker": 28011, + "seekers": 20732, + "seeking": 8592, + "seeks": 12594, + "seem": 20043, + "seem": 7523, + "seemed": 17240, + "seemingly": 25917, + "seems": 4453, + "seen": 36273, + "seen": 2041, + "seer": 32486, + "sees": 7594, + "seeyou": 41279, + "sef": 27453, + "seg": 10551, + "sega": 16122, + "segment": 15615, + "segments": 43053, + "segreg": 49117, + "segregation": 39086, + "segu": 33156, + "segun": 43087, + "seh": 27536, + "seh": 41430, + "sehun": 17705, + "sei": 13130, + "sei": 15907, + "sein": 24669, + "seine": 41378, + "seinfeld": 33706, + "seis": 25559, + "seismic": 38459, + "seiz": 22171, + "seize": 26624, + "seized": 15826, + "seizure": 36804, + "seizures": 47199, + "sek": 45515, + "sek": 25880, + "sel": 1000, + "sel": 4098, + "sela": 47006, + "selamat": 37692, + "selangor": 44402, + "selby": 43546, + "selca": 38606, + "selcaday": 35924, + "seldom": 48322, + "sele": 29137, + "selec": 3014, + "select": 8690, + "selected": 6881, + "selecting": 32696, + "selection": 6724, + "selections": 24099, + "selective": 28686, + "selects": 32902, + "selen": 19970, + "selena": 14677, + "selenagomez": 27653, + "seley": 30556, + "self": 10139, + "self": 1322, + "selfcare": 39560, + "selfi": 3007, + "selfie": 26735, + "selfie": 3666, + "selfies": 46058, + "selfies": 10050, + "selfish": 26907, + "selfless": 34236, + "sell": 10279, + "sell": 5119, + "seller": 11779, + "sellers": 16562, + "selling": 4396, + "sells": 14306, + "selma": 36652, + "sels": 42070, + "selves": 4505, + "sely": 8402, + "sem": 8645, + "sem": 17106, + "sema": 31816, + "seman": 29119, + "seman": 28378, + "semana": 41780, + "semb": 36054, + "seme": 10855, + "sement": 10714, + "sements": 31449, + "semester": 11905, + "semi": 11023, + "semi": 6684, + "semic": 26967, + "semicon": 34315, + "semiconduc": 35646, + "semiconductor": 43551, + "semifinal": 22935, + "semifinals": 21863, + "semin": 5595, + "seminar": 7269, + "seminars": 34870, + "seminary": 31655, + "seminole": 42956, + "semis": 24013, + "semit": 22628, + "semite": 23721, + "semitic": 34894, + "semitism": 25911, + "semper": 47391, + "sen": 1057, + "sen": 2249, + "sena": 21584, + "senate": 30703, + "senate": 6843, + "senator": 20871, + "senator": 8495, + "senators": 16889, + "send": 27684, + "send": 3625, + "sending": 6985, + "sends": 10817, + "sene": 25269, + "seneca": 33419, + "senegal": 28255, + "senew": 49313, + "seng": 43022, + "seng": 29971, + "senior": 19865, + "senior": 3415, + "seniors": 8138, + "senna": 36195, + "senpai": 46562, + "sens": 5218, + "sens": 22837, + "sensation": 19383, + "sensational": 23051, + "sense": 29162, + "sense": 4747, + "sensei": 36158, + "senses": 21809, + "sensi": 38802, + "sensible": 30635, + "sensing": 29236, + "sensiti": 20531, + "sensitive": 13734, + "sensitivity": 27788, + "sensor": 15330, + "sensors": 20356, + "sensory": 21831, + "sensu": 28157, + "sensual": 40860, + "sent": 6200, + "sent": 3676, + "sentence": 12737, + "sentenced": 17773, + "sentences": 25858, + "sentencing": 34394, + "senti": 19042, + "sentim": 25102, + "sentiment": 25949, + "sentimental": 40070, + "sentiments": 47450, + "sentin": 20042, + "sentinel": 23123, + "senting": 3924, + "seo": 24743, + "seo": 8622, + "seok": 34697, + "seok": 22482, + "seokjin": 45584, + "seoul": 13253, + "sep": 3212, + "sep": 10434, + "separ": 6859, + "separate": 13886, + "separated": 22163, + "separately": 41904, + "separates": 45365, + "separati": 39377, + "separating": 43480, + "separation": 22007, + "sephora": 38414, + "sepsis": 40205, + "sept": 5380, + "septe": 3672, + "september": 3707, + "septic": 34690, + "sepul": 47360, + "seq": 44379, + "sequ": 5491, + "seque": 44662, + "sequel": 15701, + "sequence": 18833, + "sequences": 47306, + "sequencing": 33484, + "sequo": 32781, + "sequoia": 42404, + "ser": 803, + "ser": 2771, + "sera": 28250, + "serbia": 19038, + "serbian": 33687, + "sere": 35770, + "seren": 7880, + "serena": 19519, + "serenawilliams": 48316, + "serendip": 45805, + "serendipity": 49386, + "serene": 28269, + "serenity": 24187, + "serge": 13477, + "serge": 35700, + "sergeant": 22049, + "sergei": 39870, + "sergey": 35390, + "sergi": 47675, + "sergio": 18359, + "seri": 2763, + "seri": 37509, + "serial": 14216, + "serie": 19752, + "seriea": 32660, + "series": 1857, + "serious": 47421, + "serious": 4770, + "seriously": 4885, + "sermon": 24884, + "sero": 48883, + "serpent": 37084, + "serpent": 35364, + "serra": 39851, + "serrano": 44236, + "sers": 13509, + "serum": 25385, + "serv": 1297, + "serv": 24571, + "servant": 20810, + "servants": 29652, + "serve": 39202, + "serve": 2838, + "served": 4740, + "server": 36458, + "server": 8398, + "serverless": 49243, + "servers": 22262, + "serves": 9915, + "servic": 27115, + "service": 21496, + "service": 2086, + "serviced": 44687, + "services": 3100, + "servicing": 41300, + "serving": 5722, + "sery": 14279, + "ses": 23708, + "ses": 1386, + "sesame": 21706, + "sese": 37128, + "sesh": 24274, + "session": 2550, + "sessions": 6327, + "set": 7965, + "set": 1167, + "setback": 43605, + "seth": 20005, + "seth": 11870, + "sethu": 38933, + "setlist": 33141, + "seton": 43799, + "sets": 4650, + "sett": 4984, + "sett": 17567, + "sette": 14613, + "setter": 23153, + "settes": 44145, + "setti": 45170, + "setting": 5264, + "settings": 18628, + "settle": 15075, + "settled": 18310, + "settlement": 16494, + "settlements": 36605, + "settlers": 35671, + "settles": 41498, + "settling": 22036, + "setup": 11092, + "seu": 31539, + "seul": 48975, + "seum": 18838, + "seun": 24209, + "seung": 32393, + "seung": 33711, + "seungri": 41627, + "seuss": 34441, + "sev": 26585, + "sev": 37600, + "seva": 42604, + "seve": 21458, + "seve": 22468, + "sevel": 17439, + "seven": 7874, + "seven": 5757, + "sevens": 29911, + "sevent": 43048, + "seventeen": 19337, + "seventh": 17568, + "seventy": 47170, + "sever": 3250, + "sever": 45557, + "several": 5560, + "severance": 26194, + "severe": 6215, + "severely": 24417, + "severn": 34626, + "severy": 34207, + "sevilla": 24947, + "seville": 34988, + "sew": 28640, + "sewage": 32777, + "sewer": 28294, + "sewing": 15974, + "sewn": 42118, + "sex": 3548, + "sex": 5937, + "sexi": 20562, + "sexiest": 25426, + "sexism": 32059, + "sexist": 33047, + "sexu": 14741, + "sexual": 6749, + "sexuality": 21244, + "sexually": 23032, + "sexy": 21019, + "sexy": 38127, + "sey": 6317, + "sey": 2258, + "seychel": 36809, + "seychelles": 38519, + "seye": 35604, + "seym": 22657, + "seymour": 25850, + "seys": 15081, + "sez": 42377, + "señ": 43368, + "sf": 4435, + "sf": 4915, + "sfa": 32675, + "sfam": 37649, + "sfb": 27930, + "sfc": 14129, + "sfest": 49024, + "sff": 42056, + "sfgiants": 20923, + "sfield": 11801, + "sfo": 39182, + "sfootball": 45259, + "sfor": 9115, + "sford": 28917, + "sforsale": 28888, + "sfw": 18073, + "sfx": 37995, + "sg": 9599, + "sg": 7611, + "sga": 33049, + "sgate": 27558, + "sgh": 47590, + "sgo": 5393, + "sgo": 21044, + "sgt": 13748, + "sh": 552, + "sh": 849, + "sha": 1514, + "sha": 3337, + "shaa": 44221, + "shab": 8323, + "shabbat": 38042, + "shabby": 28838, + "shack": 23866, + "shack": 18785, + "shad": 3182, + "shad": 23874, + "shade": 34554, + "shade": 10097, + "shaded": 43506, + "shades": 46608, + "shades": 9270, + "shadesof": 45180, + "shading": 37348, + "shado": 9325, + "shadow": 15243, + "shadow": 7068, + "shadowhun": 19931, + "shadowhunters": 24834, + "shadowing": 46092, + "shadows": 12971, + "shady": 22158, + "shaf": 12032, + "shaft": 21545, + "shag": 22439, + "shaggy": 42662, + "shah": 13203, + "shah": 8439, + "shahe": 23643, + "shaheed": 30060, + "shaheer": 43969, + "shahi": 46972, + "shahid": 25696, + "shahid": 27138, + "shahidkapoor": 29892, + "shahzad": 45915, + "shai": 47941, + "shaikh": 45712, + "shail": 37603, + "shair": 43135, + "shak": 8385, + "shake": 8206, + "shake": 8251, + "shaken": 38237, + "shaker": 26210, + "shakers": 38411, + "shakes": 19668, + "shakespe": 9890, + "shakespeare": 22499, + "shakespeare": 12488, + "shakespearesunday": 32320, + "shaking": 19101, + "shakira": 40795, + "shakti": 48593, + "shakti": 32458, + "shakur": 48915, + "shal": 15056, + "shal": 28175, + "shale": 32864, + "shall": 4742, + "shallow": 23730, + "shalom": 31339, + "sham": 6453, + "sham": 9005, + "shaman": 48727, + "shambles": 40799, + "shame": 14776, + "shame": 7593, + "shameful": 28283, + "shameless": 25380, + "shaming": 40553, + "shampoo": 23944, + "shamrock": 34199, + "shan": 5171, + "shan": 8834, + "shana": 44835, + "shand": 29101, + "shane": 26863, + "shane": 11572, + "shang": 11141, + "shanghai": 12742, + "shani": 46665, + "shank": 24685, + "shankar": 24108, + "shann": 9932, + "shannon": 22842, + "shannon": 13581, + "shant": 36610, + "shap": 5581, + "shape": 26925, + "shape": 6448, + "shaped": 10127, + "shapes": 15377, + "shaping": 18632, + "shapiro": 32110, + "shaq": 46402, + "shaq": 26843, + "shar": 1669, + "shar": 36542, + "shara": 48849, + "sharapo": 36489, + "sharapova": 36671, + "shard": 42207, + "share": 7585, + "share": 1978, + "shared": 5368, + "shareholder": 38241, + "shareholders": 34778, + "sharepoint": 39213, + "shares": 4974, + "sharethe": 49277, + "shareyour": 45890, + "shari": 27738, + "shari": 47390, + "sharia": 37244, + "sharif": 15501, + "sharing": 3567, + "sharjah": 33420, + "shark": 15836, + "shark": 7980, + "sharks": 10047, + "sharkweek": 39571, + "sharma": 10105, + "sharon": 28722, + "sharon": 14138, + "sharp": 17126, + "sharp": 8157, + "sharpe": 34374, + "sharpen": 41465, + "sharpie": 46858, + "sharply": 37185, + "shasta": 46727, + "shat": 12169, + "shat": 44388, + "shatter": 45008, + "shattered": 26820, + "shau": 13750, + "shaun": 23446, + "shaun": 16669, + "shav": 11410, + "shave": 17735, + "shaved": 25571, + "shaving": 24261, + "shaw": 6122, + "shaw": 6805, + "shawa": 46413, + "shawl": 35132, + "shawn": 16677, + "shawn": 10970, + "shawnee": 48060, + "shawnmendes": 27277, + "shawty": 38026, + "shay": 10778, + "shay": 18361, + "shaykh": 47223, + "shaz": 18618, + "shazam": 29063, + "shc": 43419, + "shd": 37729, + "she": 1729, + "she": 1043, + "shea": 20407, + "shead": 44287, + "shead": 20434, + "shealth": 41743, + "shealth": 22197, + "shear": 27974, + "shear": 32108, + "shearer": 40505, + "sheath": 45637, + "shed": 16586, + "shed": 1492, + "shedding": 33608, + "sheds": 25921, + "shee": 23450, + "shee": 34321, + "sheed": 26105, + "sheehan": 41809, + "sheen": 25025, + "sheep": 23604, + "sheep": 9629, + "sheer": 17577, + "sheeran": 18561, + "sheet": 7298, + "sheets": 12744, + "shef": 8237, + "sheff": 38844, + "sheff": 43821, + "sheffiel": 26940, + "sheffield": 41763, + "sheffield": 10420, + "sheffieldissuper": 33628, + "sheh": 31667, + "sheikh": 15031, + "sheil": 42765, + "sheila": 25734, + "shek": 33285, + "shel": 3159, + "shelby": 36906, + "shelby": 16885, + "sheldon": 25079, + "shelf": 10955, + "shell": 23374, + "shell": 6648, + "shelley": 22497, + "shelling": 43166, + "shells": 19265, + "shelly": 37461, + "shelter": 8599, + "sheltered": 48070, + "shelters": 24312, + "shelton": 24471, + "shelves": 16225, + "shem": 40299, + "shen": 10154, + "shen": 31098, + "shenan": 20965, + "shenando": 44666, + "shenanigans": 26590, + "shenko": 39751, + "shenmue": 48279, + "shenzhen": 38970, + "shep": 33757, + "shep": 44857, + "shepard": 26810, + "shepher": 11008, + "shepherd": 13242, + "shepherds": 42792, + "sheppard": 37304, + "sher": 3570, + "sher": 4510, + "sheraton": 39400, + "shere": 21507, + "sheri": 9235, + "sheridan": 27085, + "sheriff": 10309, + "sherlock": 17294, + "sherman": 17822, + "sherry": 44348, + "sherry": 24689, + "shers": 14141, + "sherwood": 24527, + "sheryl": 39773, + "shes": 45514, + "shes": 2502, + "shet": 15850, + "shetland": 29595, + "shetty": 25533, + "shev": 45182, + "sheva": 45132, + "shh": 35025, + "shhh": 36932, + "shi": 823, + "shi": 3533, + "shia": 23791, + "shibu": 36177, + "shibuya": 41623, + "shie": 26638, + "shiel": 33413, + "shield": 8670, + "shields": 19085, + "shies": 35312, + "shif": 35317, + "shift": 43767, + "shift": 6905, + "shifted": 34429, + "shifter": 48944, + "shifting": 21992, + "shifts": 23957, + "shik": 36980, + "shil": 14370, + "shill": 32121, + "shill": 30090, + "shilpa": 47062, + "shilpa": 40690, + "shim": 11986, + "shim": 32780, + "shima": 14382, + "shimano": 48904, + "shimi": 40517, + "shimmer": 38792, + "shin": 5664, + "shin": 11784, + "shinde": 41516, + "shine": 17582, + "shine": 3780, + "shinee": 19660, + "shines": 16015, + "shing": 38641, + "shing": 1743, + "shining": 10485, + "shino": 43074, + "shiny": 12190, + "ship": 7645, + "ship": 1158, + "shipment": 28553, + "shipp": 34709, + "shipped": 15279, + "shippers": 44789, + "shipping": 5721, + "ships": 3262, + "shipwreck": 48878, + "shipy": 26828, + "shipyard": 31273, + "shir": 1956, + "shiraz": 35618, + "shire": 11975, + "shire": 2968, + "shirehour": 32456, + "shirley": 18189, + "shiro": 26048, + "shirt": 27576, + "shirt": 2523, + "shirtless": 28959, + "shirts": 5803, + "shistory": 34979, + "shiv": 18042, + "shiv": 37121, + "shiva": 33881, + "shiva": 21174, + "shka": 38944, + "shld": 49359, + "shma": 48074, + "shment": 8802, + "shments": 18822, + "sho": 719, + "sho": 13756, + "shock": 19617, + "shock": 8736, + "shocked": 15787, + "shocker": 37971, + "shockey": 22258, + "shocking": 13394, + "shocks": 31886, + "shoe": 16308, + "shoe": 7342, + "shoes": 49391, + "shoes": 4079, + "shol": 21472, + "sholm": 44139, + "shome": 42701, + "shon": 19526, + "shon": 37621, + "shone": 47173, + "shoo": 1975, + "shook": 20730, + "shoops": 29956, + "shoot": 12531, + "shoot": 3704, + "shooter": 13645, + "shooters": 31902, + "shooting": 3992, + "shootings": 26753, + "shootout": 20666, + "shoots": 14144, + "shop": 5738, + "shop": 1557, + "shopify": 47949, + "shoplocal": 21775, + "shopp": 38486, + "shoppe": 38236, + "shopped": 28088, + "shopper": 24346, + "shoppers": 22316, + "shopping": 42101, + "shopping": 4266, + "shops": 6467, + "shopsmall": 35942, + "shor": 3209, + "shore": 14717, + "shore": 5928, + "shored": 33140, + "shoreditch": 35042, + "shoreline": 34807, + "shores": 18102, + "short": 6803, + "short": 3005, + "shortage": 19910, + "shortages": 38730, + "shortcuts": 45793, + "shorten": 41711, + "shorter": 20350, + "shortest": 33717, + "shortfilm": 37204, + "shorth": 37397, + "shortlist": 28163, + "shortlisted": 20631, + "shortly": 11967, + "shorts": 9680, + "shorty": 33502, + "shot": 9805, + "shot": 2000, + "shotel": 42365, + "shotgun": 21643, + "shots": 5342, + "shou": 3890, + "shoul": 29847, + "should": 14947, + "should": 1535, + "shoulder": 8476, + "shoulders": 18738, + "shouldn": 9416, + "shour": 20025, + "shouse": 28671, + "shout": 7335, + "shout": 5214, + "shouted": 44397, + "shouting": 26464, + "shoutout": 8274, + "shouts": 26709, + "shovel": 31778, + "show": 2133, + "show": 1080, + "showbiz": 34156, + "showcas": 14290, + "showcase": 7265, + "showcased": 35786, + "showcases": 26266, + "showcasing": 17036, + "showdown": 15576, + "showed": 7150, + "shower": 7777, + "showers": 9893, + "showing": 3649, + "shown": 8506, + "showroom": 16821, + "shows": 2665, + "showtime": 40576, + "showtime": 15442, + "showyour": 46733, + "shp": 38341, + "shq": 21145, + "shr": 10118, + "shra": 21360, + "shradd": 28172, + "shraddha": 35208, + "shraddhakapoor": 40385, + "shre": 12101, + "shred": 19756, + "shred": 33017, + "shredded": 31772, + "shredding": 45534, + "shree": 37410, + "shrek": 35009, + "shrews": 26411, + "shrewsbury": 30921, + "shri": 8838, + "shri": 11424, + "shrimp": 12727, + "shrin": 24865, + "shrine": 16156, + "shrink": 34957, + "shrinking": 41243, + "shrm": 44163, + "shro": 15259, + "shroff": 32081, + "shrop": 22630, + "shropshire": 26344, + "shru": 14911, + "shrub": 41464, + "shrubs": 47975, + "shrun": 46767, + "shs": 16184, + "sht": 44210, + "shti": 38927, + "shu": 2872, + "shu": 17651, + "shua": 33771, + "shub": 40552, + "shud": 45782, + "shuff": 42641, + "shuffle": 21681, + "shui": 45473, + "shuk": 29927, + "shukla": 46829, + "shul": 30721, + "shum": 37383, + "shun": 24479, + "shun": 39594, + "shur": 41032, + "shut": 8702, + "shut": 8282, + "shutdown": 16051, + "shutout": 24385, + "shuts": 28313, + "shutt": 31866, + "shutter": 36235, + "shutter": 33902, + "shutters": 46894, + "shutting": 31383, + "shuttle": 15842, + "shwar": 41640, + "shy": 22678, + "shy": 9682, + "si": 564, + "si": 2990, + "sia": 2357, + "siam": 29686, + "siam": 48248, + "siamese": 43161, + "sian": 28510, + "sian": 6221, + "sians": 26583, + "sias": 28645, + "siber": 22206, + "siberia": 39969, + "siberian": 34058, + "sibl": 14338, + "sible": 14507, + "sibling": 43060, + "sibling": 23779, + "siblings": 17156, + "sic": 8278, + "sic": 1118, + "sica": 34125, + "sical": 33875, + "sichuan": 48950, + "sicilian": 45292, + "sicily": 23179, + "sick": 11143, + "sick": 5359, + "sickest": 47972, + "sickle": 41459, + "sickness": 28898, + "sics": 26297, + "sid": 10117, + "sid": 15119, + "sidd": 19842, + "siddi": 35227, + "side": 5869, + "side": 1145, + "sided": 21061, + "sidekick": 44683, + "sidel": 43557, + "sideline": 32056, + "sidelines": 31046, + "sider": 30581, + "siders": 41249, + "sides": 7578, + "sideshow": 46789, + "sidewalk": 23278, + "sidewalks": 43583, + "sideways": 35593, + "siding": 38758, + "sidney": 22598, + "sie": 8533, + "sie": 5685, + "sieg": 49203, + "siege": 18460, + "siegel": 48559, + "siem": 18434, + "siemens": 30147, + "siempre": 44030, + "siena": 33336, + "sienna": 40373, + "sier": 10028, + "sier": 7444, + "sierra": 13552, + "siers": 35923, + "sies": 16367, + "siest": 18323, + "sif": 29300, + "sig": 872, + "sig": 19145, + "sigh": 36303, + "sigh": 15505, + "sighs": 44579, + "sight": 16897, + "sight": 6329, + "sighted": 33034, + "sighting": 17507, + "sightings": 30004, + "sights": 17364, + "sightseeing": 34210, + "sigma": 45075, + "sigma": 15697, + "sign": 5538, + "sign": 2292, + "signage": 21156, + "signal": 10781, + "signaling": 38492, + "signalling": 48426, + "signals": 17150, + "signation": 24347, + "signature": 9189, + "signatures": 21865, + "signed": 3163, + "signee": 39778, + "signi": 34023, + "signific": 6374, + "significance": 23769, + "significant": 8735, + "significantly": 16187, + "signing": 4401, + "signingday": 40282, + "signings": 27731, + "signs": 4659, + "signup": 40791, + "sigue": 49401, + "sii": 36672, + "sik": 19974, + "sik": 22413, + "sika": 31144, + "sikh": 21829, + "sikhs": 45426, + "sil": 1556, + "sil": 8315, + "sila": 41754, + "sile": 37620, + "silen": 39048, + "silence": 8462, + "silenced": 45415, + "silent": 30352, + "silent": 8487, + "silently": 42640, + "silhou": 20589, + "silhouette": 26149, + "silic": 23830, + "silicon": 32412, + "silicon": 17888, + "silicone": 28221, + "silk": 25891, + "silk": 9743, + "silky": 29554, + "sill": 42468, + "sill": 48024, + "silly": 11883, + "silon": 31841, + "sils": 39708, + "silva": 16489, + "silve": 37697, + "silver": 7525, + "silver": 3467, + "silverado": 46160, + "silverstone": 29666, + "silvia": 37289, + "sim": 5026, + "sim": 10740, + "sima": 35871, + "simba": 39492, + "simcoe": 47148, + "sime": 28329, + "simi": 38073, + "simil": 7202, + "similar": 8547, + "similarities": 34716, + "simm": 13001, + "simmons": 14699, + "simo": 37171, + "simon": 8796, + "simon": 6668, + "simona": 46277, + "simone": 19062, + "simons": 33097, + "simp": 2542, + "simple": 19018, + "simple": 4129, + "simpler": 35489, + "simplest": 39588, + "simpli": 16868, + "simplicity": 21262, + "simplified": 36647, + "simplify": 35479, + "simply": 25637, + "simply": 6151, + "simpson": 41805, + "simpson": 11750, + "simpsons": 21092, + "sims": 14021, + "simul": 9845, + "simulated": 46395, + "simulation": 18610, + "simulator": 20821, + "simultaneous": 48816, + "simultaneously": 28575, + "sin": 1303, + "sin": 3421, + "sina": 19541, + "sinai": 33226, + "sinatra": 27262, + "sinc": 30464, + "since": 1855, + "sincere": 24513, + "sincere": 24886, + "sincerely": 25673, + "sinclair": 23100, + "sind": 39598, + "sind": 30877, + "sindh": 20754, + "sindia": 48038, + "sine": 22741, + "sine": 33793, + "sinfo": 47178, + "sing": 1387, + "sing": 1197, + "singapo": 27861, + "singapore": 28879, + "singapore": 6754, + "singer": 33880, + "singer": 5108, + "singers": 15613, + "singersongwriter": 44585, + "singh": 19445, + "singh": 5715, + "singing": 5864, + "single": 19524, + "single": 2688, + "singles": 12025, + "singleton": 46247, + "singly": 16619, + "sings": 13635, + "singul": 34003, + "singular": 44009, + "singularity": 48410, + "sinha": 29416, + "sini": 41781, + "sini": 26319, + "sinister": 31313, + "sink": 37232, + "sink": 14551, + "sinking": 27949, + "sinks": 32710, + "sinn": 36315, + "sinner": 45380, + "sinners": 43436, + "sino": 29759, + "sins": 9345, + "sinthe": 30737, + "sinu": 37351, + "sinus": 47535, + "sio": 10807, + "siob": 40954, + "siology": 46315, + "sion": 5676, + "sion": 1015, + "sional": 14533, + "sionally": 30754, + "sions": 4060, + "sioux": 44695, + "sioux": 24954, + "sip": 16096, + "sipping": 28527, + "sir": 10708, + "sir": 3846, + "sire": 28450, + "siren": 33026, + "sirens": 35907, + "siri": 13986, + "siri": 18394, + "sirius": 23574, + "sirius": 34999, + "siriusxm": 29833, + "sirloin": 46828, + "sis": 18132, + "sis": 2580, + "sisd": 27132, + "sisi": 37892, + "siss": 42929, + "sissy": 27564, + "sist": 20520, + "sista": 37448, + "sister": 17417, + "sister": 3677, + "sisterhood": 37313, + "sisters": 6404, + "sit": 7387, + "sit": 4037, + "sitcom": 30426, + "site": 26792, + "site": 1988, + "sites": 7236, + "sith": 41499, + "sito": 42613, + "sits": 12726, + "sitt": 42988, + "sitter": 40777, + "sittin": 40887, + "sitting": 4919, + "situ": 5562, + "situ": 42536, + "situated": 22030, + "situation": 7144, + "situations": 19096, + "sity": 38177, + "sity": 5477, + "siu": 40174, + "sium": 8090, + "sius": 27595, + "siva": 20991, + "sivan": 36931, + "sive": 23572, + "sive": 1875, + "sively": 10343, + "siveness": 39667, + "sives": 23896, + "sivity": 42738, + "siwon": 29055, + "six": 5968, + "six": 4093, + "sixers": 25941, + "sixteen": 28677, + "sixth": 12909, + "sixties": 44948, + "sixty": 32588, + "siya": 44440, + "size": 38377, + "size": 3235, + "sized": 9832, + "sizes": 10253, + "sizing": 28330, + "sizz": 23778, + "sizzle": 47890, + "sizzling": 35799, + "sj": 7536, + "sj": 16010, + "sjo": 42012, + "sk": 909, + "sk": 2058, + "ska": 7495, + "skag": 31948, + "skan": 46772, + "skar": 27587, + "skar": 26835, + "skate": 13740, + "skate": 12745, + "skateboard": 31777, + "skateboarding": 31352, + "skater": 30337, + "skaters": 39824, + "skates": 31479, + "skc": 44551, + "ske": 6261, + "ske": 25516, + "skel": 36564, + "skelet": 27075, + "skeletal": 37369, + "skeleton": 20062, + "skeletons": 48874, + "skell": 40801, + "skep": 27772, + "skeptical": 44934, + "sker": 37640, + "sker": 33600, + "sket": 3744, + "sketch": 11767, + "sketch": 5269, + "sketchbook": 18899, + "sketched": 38581, + "sketches": 17622, + "sketching": 23228, + "sketchy": 41582, + "skey": 37453, + "ski": 3327, + "ski": 3428, + "skid": 36574, + "skid": 32099, + "skier": 42585, + "skies": 7244, + "skiing": 14400, + "skil": 24543, + "skill": 15598, + "skill": 10604, + "skilled": 17535, + "skillet": 40568, + "skills": 4113, + "skim": 33191, + "skin": 5821, + "skin": 3575, + "skincare": 12648, + "skine": 37300, + "sking": 46215, + "skinned": 42199, + "skinner": 30261, + "skinny": 42729, + "skinny": 15457, + "skins": 11594, + "skip": 39793, + "skip": 14296, + "skipped": 40639, + "skipper": 22226, + "skipping": 34867, + "skir": 8919, + "skirt": 12386, + "skirts": 24840, + "skis": 32843, + "skit": 43573, + "skitchen": 42820, + "skittles": 43213, + "sko": 15141, + "sko": 23493, + "skoda": 38668, + "skool": 26743, + "skril": 43149, + "skrillex": 43651, + "sks": 48136, + "sku": 10836, + "skul": 17561, + "skull": 34068, + "skull": 12092, + "skulls": 31804, + "skunk": 42194, + "sky": 3075, + "sky": 2390, + "skybet": 45540, + "skye": 21475, + "skyl": 43554, + "skylar": 45411, + "skyline": 14606, + "skymap": 41734, + "skynews": 40977, + "skype": 17069, + "skyrim": 33693, + "skysports": 39845, + "skysports": 46725, + "skywalker": 32936, + "sl": 2621, + "sl": 7489, + "sla": 2725, + "sla": 26707, + "slab": 24241, + "slabs": 42818, + "slack": 37108, + "slack": 30142, + "slade": 33546, + "slain": 35972, + "slalom": 43540, + "slam": 14891, + "slam": 10131, + "slammed": 29772, + "slams": 18907, + "slan": 44663, + "slan": 47193, + "sland": 11294, + "slang": 33655, + "slap": 48830, + "slap": 21751, + "slapped": 38861, + "slaps": 46796, + "slash": 19749, + "slat": 38966, + "slate": 17919, + "slated": 36094, + "slater": 25968, + "slaugh": 26782, + "slaughter": 19815, + "slaughtered": 46615, + "slav": 47292, + "slava": 41797, + "slave": 14029, + "slavery": 15754, + "slaves": 23833, + "slaw": 28178, + "slay": 48319, + "slay": 19380, + "slayed": 44870, + "slayer": 21605, + "slaying": 27812, + "slays": 45648, + "slc": 21972, + "sle": 1709, + "sleague": 23336, + "sled": 28438, + "sledge": 48750, + "slee": 17642, + "slee": 38977, + "sleek": 23187, + "sleep": 4656, + "sleep": 3840, + "sleeper": 28709, + "sleeping": 6982, + "sleepless": 39779, + "sleepover": 39415, + "sleeps": 16610, + "sleepy": 32572, + "sleepy": 14497, + "sleet": 36948, + "sleeve": 35270, + "sleeve": 10536, + "sleeveless": 38049, + "sleeves": 19691, + "sleg": 47650, + "sleigh": 30865, + "slender": 40331, + "slept": 20388, + "sler": 14066, + "sley": 17198, + "sley": 6496, + "sli": 1811, + "sli": 44824, + "slic": 19692, + "slice": 13431, + "sliced": 28121, + "slices": 28424, + "slick": 18341, + "slide": 27828, + "slide": 8837, + "slider": 37861, + "sliders": 40700, + "slides": 15939, + "slideshow": 42817, + "sliding": 21468, + "slife": 15448, + "sliga": 21080, + "slight": 14297, + "slightly": 8456, + "sligo": 30424, + "slike": 38744, + "slim": 35226, + "slim": 12364, + "slime": 29107, + "sling": 28021, + "sling": 32607, + "slinger": 47269, + "slions": 43363, + "slip": 39785, + "slip": 12105, + "slipknot": 41816, + "slipped": 30344, + "slipper": 39644, + "slippers": 26509, + "slippery": 30814, + "slipping": 36301, + "slips": 30632, + "slist": 33749, + "slit": 47011, + "slive": 31652, + "slo": 4303, + "slo": 36083, + "sloan": 29110, + "sloane": 41553, + "slogan": 23398, + "slogans": 42795, + "slope": 22769, + "slopes": 24066, + "sloppy": 36154, + "slot": 14500, + "sloth": 30007, + "slots": 19238, + "slou": 48493, + "slovak": 23315, + "slovakia": 25994, + "sloven": 17018, + "slovenia": 21037, + "slow": 6674, + "slow": 5444, + "slowdown": 38421, + "slowed": 43793, + "slower": 29181, + "slowing": 29839, + "slowly": 9568, + "slows": 46855, + "slp": 45599, + "slr": 21325, + "sls": 33651, + "slt": 39283, + "sltd": 36388, + "slu": 7224, + "slu": 47456, + "slug": 34190, + "slugger": 48671, + "slum": 46754, + "slumber": 44295, + "slump": 35588, + "slur": 30476, + "slush": 39815, + "slv": 45526, + "sly": 28145, + "sly": 21062, + "sm": 978, + "sm": 2764, + "sma": 4357, + "sma": 11854, + "smack": 21280, + "smack": 30026, + "smackdown": 26138, + "smafia": 47686, + "smag": 32212, + "smal": 48379, + "small": 5244, + "small": 2442, + "smallbiz": 41724, + "smallbiz": 18987, + "smallbusiness": 21316, + "smalle": 18490, + "smaller": 12431, + "smallest": 18686, + "smalls": 41696, + "sman": 9612, + "smar": 3201, + "smart": 5383, + "smart": 4115, + "smartcities": 34822, + "smartcity": 33973, + "smarter": 18990, + "smartest": 37092, + "smarthome": 47726, + "smartphone": 11290, + "smartphones": 22212, + "smartwatch": 35798, + "smash": 17258, + "smash": 10332, + "smashbros": 44897, + "smashed": 18410, + "smashes": 45657, + "smashing": 19632, + "smatter": 16537, + "smb": 30446, + "smc": 31375, + "smc": 28312, + "smd": 34582, + "sme": 11758, + "sme": 15650, + "smear": 37546, + "smel": 28476, + "smell": 9688, + "smelling": 32493, + "smells": 14668, + "smelly": 46145, + "smen": 15961, + "smer": 48526, + "smere": 39629, + "smes": 26141, + "smg": 46876, + "smh": 9623, + "smi": 5655, + "smi": 40049, + "smil": 33937, + "smile": 27641, + "smile": 3490, + "smiled": 34362, + "smiles": 8726, + "smiley": 22925, + "smiling": 9200, + "smir": 24667, + "smith": 10527, + "smith": 2915, + "smiths": 27872, + "smithson": 25372, + "smithsonian": 31209, + "smm": 19510, + "smma": 42370, + "smo": 2513, + "smo": 13437, + "smobile": 38923, + "smog": 44425, + "smoke": 20381, + "smoke": 6664, + "smoked": 11161, + "smoker": 32348, + "smokers": 29571, + "smokes": 40336, + "smokey": 23670, + "smokin": 32825, + "smoking": 9038, + "smoky": 25549, + "smol": 29939, + "smol": 40403, + "smoo": 5430, + "smooth": 10958, + "smooth": 8990, + "smoother": 44271, + "smoothie": 16668, + "smoothies": 34458, + "smoothly": 32380, + "smore": 48323, + "smp": 32260, + "smriti": 49227, + "sms": 10409, + "smt": 26672, + "smtown": 26072, + "smu": 10878, + "smu": 30458, + "smug": 41021, + "smugg": 28130, + "smuggling": 34146, + "smur": 24708, + "smusic": 19191, + "smw": 44929, + "smx": 46699, + "smy": 14381, + "smyth": 44822, + "sn": 1672, + "sn": 5844, + "sna": 4032, + "snack": 47548, + "snack": 10039, + "snacking": 46474, + "snacks": 12349, + "snag": 34789, + "snag": 28043, + "snagged": 48534, + "snail": 23132, + "snails": 34928, + "snake": 30133, + "snake": 8798, + "snakes": 19605, + "snap": 4578, + "snap": 7404, + "snapback": 31234, + "snapchat": 7799, + "snapmatic": 45907, + "snapp": 10185, + "snapped": 15543, + "snapper": 31677, + "snapping": 31581, + "snaps": 16890, + "snapshot": 18243, + "snar": 30810, + "snare": 40651, + "snat": 18457, + "snatch": 35302, + "snatched": 44821, + "snation": 14362, + "snazzy": 48963, + "snc": 39918, + "sne": 3791, + "sne": 46503, + "sneak": 27871, + "sneak": 6917, + "sneaker": 31698, + "sneaker": 24781, + "sneakers": 17397, + "sneaking": 34633, + "sneakpeek": 47831, + "sneaks": 40926, + "sneaky": 21293, + "snee": 42095, + "snell": 46410, + "sner": 31424, + "snes": 26667, + "snews": 18623, + "snf": 47651, + "sng": 41549, + "snhl": 43093, + "sni": 7186, + "sni": 35570, + "snickers": 49127, + "sniff": 37841, + "snip": 42954, + "sniper": 22157, + "snippet": 37531, + "snippets": 44001, + "snl": 16011, + "sno": 8567, + "sno": 17802, + "snoo": 11352, + "snooker": 25657, + "snoop": 44503, + "snoop": 27754, + "snoopdogg": 48388, + "snoopy": 41967, + "snooze": 40718, + "snor": 16590, + "snoring": 44560, + "snorkel": 44285, + "snorkeling": 48103, + "snow": 3880, + "snow": 2583, + "snowball": 39254, + "snowboard": 33403, + "snowboarding": 32397, + "snowday": 37982, + "snowden": 32154, + "snowdon": 47107, + "snowdonia": 36088, + "snowed": 45073, + "snowfall": 21714, + "snowflake": 33447, + "snowflakes": 38618, + "snowing": 21443, + "snowman": 22668, + "snowstorm": 38777, + "snowy": 14191, + "snp": 15301, + "sns": 36343, + "snsd": 27961, + "snt": 34834, + "snu": 9694, + "snuck": 36522, + "snug": 45169, + "snuggle": 31327, + "snuggles": 48165, + "sny": 17526, + "snyder": 22106, + "snz": 37678, + "so": 759, + "so": 706, + "soa": 39584, + "soak": 24839, + "soaked": 26592, + "soaking": 26750, + "soap": 26086, + "soap": 11088, + "soaps": 40958, + "soar": 48997, + "soar": 22241, + "soaring": 27968, + "soars": 41348, + "sob": 24900, + "sob": 35507, + "sobbing": 36691, + "sober": 30969, + "sober": 24487, + "sobre": 42768, + "sobri": 49308, + "sobs": 43636, + "soc": 3253, + "soc": 7741, + "soca": 49239, + "socal": 46470, + "socal": 20450, + "soccer": 16268, + "soccer": 4233, + "socceroos": 41997, + "socent": 30831, + "sochi": 21014, + "soci": 1720, + "social": 4803, + "social": 2346, + "socialism": 23372, + "socialist": 18450, + "socialists": 43839, + "socially": 24555, + "socialmedi": 23813, + "socialmedia": 9600, + "socialmediamarketing": 31790, + "societal": 40058, + "societies": 25855, + "society": 3757, + "socio": 44319, + "socio": 42790, + "sociology": 32373, + "sock": 29801, + "sock": 18277, + "socket": 28657, + "socks": 8774, + "socorro": 46409, + "socute": 45086, + "sod": 31435, + "soda": 13533, + "sodium": 29070, + "soe": 44136, + "soe": 25498, + "soever": 34024, + "sof": 1571, + "sof": 41187, + "sofa": 15723, + "soff": 35290, + "soff": 30684, + "sofficial": 20563, + "sofi": 41537, + "sofia": 18914, + "sofinstagram": 17301, + "soft": 12778, + "soft": 3773, + "softball": 8369, + "softer": 44462, + "softhe": 23127, + "softly": 34958, + "software": 35941, + "software": 5847, + "softwitter": 11311, + "sog": 44775, + "soggy": 41168, + "sohn": 49267, + "soho": 47749, + "soho": 17592, + "soi": 40495, + "soil": 33417, + "soil": 9216, + "soils": 34891, + "soir": 43427, + "sok": 43456, + "sol": 1175, + "sol": 9941, + "sola": 40086, + "solace": 42567, + "solar": 16990, + "solar": 5199, + "solareclipse": 44727, + "sold": 33116, + "sold": 3939, + "soldi": 5098, + "soldier": 9355, + "soldiers": 7547, + "sole": 10519, + "sole": 8576, + "soleil": 33148, + "solely": 27913, + "solent": 47783, + "soles": 22682, + "soli": 3911, + "solic": 19369, + "solicitor": 45647, + "solicitors": 46000, + "solid": 30626, + "solid": 6148, + "solidar": 10415, + "solidarity": 10983, + "solidi": 46136, + "solids": 49070, + "solihull": 45293, + "solit": 37039, + "solitaire": 47257, + "solitary": 33094, + "solitude": 33199, + "solo": 17626, + "solo": 5797, + "soloist": 46391, + "solom": 15768, + "solomon": 19785, + "solos": 44868, + "solst": 20298, + "solstice": 21359, + "solu": 2487, + "solution": 4575, + "solutions": 5140, + "solve": 8917, + "solved": 13451, + "solves": 42740, + "solving": 15581, + "som": 734, + "som": 10672, + "soma": 36170, + "somal": 40281, + "somali": 26231, + "somalia": 17051, + "somaliland": 43315, + "some": 1132, + "some": 836, + "somebody": 8305, + "someday": 17127, + "somehow": 11735, + "someone": 2100, + "somer": 9656, + "somerhalder": 33990, + "somerset": 14926, + "somerville": 41409, + "somes": 38124, + "somethin": 33541, + "something": 28316, + "something": 2006, + "sometime": 21464, + "sometimes": 4237, + "somewhat": 17864, + "somewhere": 8119, + "somm": 42726, + "somme": 30625, + "sommer": 44954, + "somos": 24951, + "son": 1176, + "son": 825, + "sona": 21249, + "sonam": 40096, + "sonar": 48235, + "sonata": 37009, + "sone": 29599, + "song": 6868, + "song": 2295, + "songs": 4641, + "songwriter": 13034, + "songwriters": 39583, + "songwriting": 33567, + "songz": 49302, + "soni": 34899, + "soni": 35911, + "sonia": 20409, + "sonic": 23785, + "sonic": 9132, + "sonics": 48511, + "sonja": 46102, + "sonline": 23412, + "sonny": 43000, + "sonny": 20880, + "sono": 44109, + "sonom": 48596, + "sonoma": 26269, + "sons": 5502, + "sonsof": 46676, + "sont": 31063, + "sonthe": 40923, + "sony": 16042, + "sony": 8748, + "sonya": 39172, + "soo": 5517, + "soo": 8602, + "soom": 39771, + "soon": 27559, + "soon": 1745, + "sooner": 18968, + "sooners": 30449, + "sooo": 11526, + "soooo": 13658, + "sooooo": 21199, + "soooooo": 34859, + "soor": 46698, + "soothe": 44424, + "soothing": 27730, + "sop": 3974, + "sop": 19194, + "soph": 34963, + "sophi": 6192, + "sophia": 16790, + "sophie": 38648, + "sophie": 12357, + "sophistic": 17646, + "sophisticated": 20833, + "sophom": 13696, + "sophomore": 15242, + "sophomores": 47645, + "soprano": 28880, + "soproud": 44479, + "sor": 1852, + "sor": 16872, + "sora": 38719, + "sorbet": 39994, + "sore": 43330, + "sore": 15454, + "sored": 6731, + "soren": 38907, + "sorg": 28152, + "sori": 38588, + "sorority": 30059, + "soros": 33248, + "sorren": 44012, + "sorrow": 28020, + "sorrows": 47924, + "sorry": 25745, + "sorry": 3675, + "sorrynotsorry": 37105, + "sort": 8450, + "sorta": 34700, + "sorted": 13221, + "sorting": 19198, + "sorts": 12577, + "sory": 16257, + "sos": 25145, + "sos": 5792, + "sosa": 45433, + "sosfam": 47709, + "sot": 41542, + "sot": 34116, + "sothe": 32145, + "sotho": 45496, + "soto": 27947, + "sotto": 26047, + "sotu": 32286, + "sou": 1101, + "sou": 24293, + "sought": 18874, + "soul": 8701, + "soul": 3755, + "soulful": 30196, + "soulmate": 38130, + "souls": 10951, + "soun": 19474, + "sound": 5236, + "sound": 3608, + "soundcheck": 31394, + "soundcloud": 15190, + "sounded": 28287, + "sounders": 44933, + "sounding": 21351, + "sounds": 5694, + "soundtrack": 11389, + "soup": 7077, + "soups": 45052, + "sour": 2235, + "sour": 12049, + "source": 23698, + "source": 3634, + "sourced": 23340, + "sources": 5124, + "sourcing": 19574, + "sourdough": 29921, + "souri": 11674, + "sous": 32093, + "sousa": 46296, + "sout": 38156, + "sout": 32732, + "south": 2938, + "south": 2045, + "southafrica": 15184, + "southampton": 15767, + "southbank": 44173, + "southbound": 22932, + "southeast": 13942, + "southeastern": 26813, + "southend": 25583, + "souther": 33330, + "southern": 17704, + "southern": 5036, + "southgate": 47262, + "southkorea": 43552, + "southport": 37446, + "southside": 36436, + "southsudan": 30419, + "southwark": 39098, + "southwe": 46443, + "southwest": 13320, + "southwestern": 30157, + "souven": 20210, + "souvenir": 24811, + "souvenirs": 48460, + "souza": 29424, + "sov": 29737, + "sover": 31876, + "sovere": 17736, + "sovereign": 29418, + "sovereign": 26337, + "sovereignty": 31701, + "soviet": 14274, + "sow": 33089, + "sowe": 36130, + "soweto": 47070, + "sown": 49369, + "sox": 39556, + "sox": 8657, + "soy": 16524, + "soy": 15010, + "soybean": 34606, + "soybeans": 40840, + "soyu": 39578, + "soyuz": 43842, + "sp": 588, + "sp": 4393, + "spa": 7852, + "spa": 6692, + "spac": 10336, + "space": 7857, + "space": 2138, + "spacecraft": 25940, + "spaces": 9006, + "spaceship": 34317, + "spacex": 22511, + "spacey": 48770, + "spacious": 24769, + "spad": 45362, + "spade": 32562, + "spades": 48368, + "spaghetti": 18440, + "spain": 5083, + "spal": 26018, + "spam": 29712, + "spam": 14624, + "span": 4270, + "span": 14537, + "spandex": 41686, + "spani": 16721, + "spaniel": 35435, + "spanish": 29966, + "spanish": 6013, + "spann": 25323, + "spanning": 38638, + "spans": 45407, + "spaper": 34548, + "spar": 3378, + "spar": 34576, + "spare": 12615, + "spares": 39505, + "spark": 9555, + "spark": 11047, + "sparked": 32647, + "sparkle": 18287, + "sparkles": 36410, + "sparkling": 17893, + "sparkly": 30542, + "sparks": 15046, + "sparky": 47198, + "sparring": 42161, + "sparrow": 22888, + "spart": 10143, + "sparta": 38401, + "spartan": 26582, + "spartan": 24225, + "spartans": 20457, + "sparty": 36477, + "spas": 31714, + "spati": 19200, + "spatial": 22022, + "spaw": 31605, + "spawn": 29166, + "spay": 40634, + "spc": 20492, + "spca": 37018, + "spd": 37717, + "spd": 28307, + "spdwy": 45981, + "spe": 876, + "spe": 36676, + "speak": 20599, + "speak": 4208, + "speake": 46077, + "speaker": 25764, + "speaker": 4914, + "speakers": 7675, + "speaking": 3714, + "speaks": 5661, + "spear": 23277, + "spear": 30420, + "speare": 43859, + "spears": 20242, + "spec": 1711, + "spec": 18596, + "speci": 1969, + "special": 11422, + "special": 1689, + "specialist": 10630, + "specialists": 21719, + "speciality": 46904, + "specialized": 23265, + "specializes": 48533, + "specially": 4513, + "specials": 11983, + "specialty": 18262, + "species": 6330, + "specific": 10528, + "specifically": 17174, + "specification": 46394, + "specifications": 39705, + "specified": 48114, + "specimen": 30263, + "specimens": 42715, + "specs": 24093, + "spect": 3416, + "spectac": 7242, + "spectacle": 34342, + "spectacular": 8404, + "spectator": 32372, + "spectators": 39306, + "spective": 6633, + "spector": 48676, + "spectral": 45441, + "spectre": 35998, + "spectro": 27646, + "spectrum": 13532, + "specul": 19209, + "speculation": 30898, + "sped": 38813, + "spee": 4050, + "speech": 19556, + "speech": 4902, + "speeches": 25208, + "speechless": 23152, + "speed": 6860, + "speed": 4163, + "speeding": 27264, + "speeds": 22017, + "speedway": 11480, + "speedy": 21603, + "spel": 41887, + "spell": 22784, + "spell": 11230, + "spelled": 24339, + "spelling": 15614, + "spells": 25335, + "spelt": 38316, + "spen": 5087, + "spence": 33324, + "spencer": 27509, + "spencer": 10678, + "spend": 4664, + "spending": 5961, + "spends": 22508, + "spent": 4429, + "speople": 33035, + "sper": 8213, + "sper": 15313, + "sperm": 35781, + "sperson": 22687, + "spf": 34973, + "spg": 34623, + "sph": 28909, + "sph": 24684, + "sphe": 33691, + "spher": 18349, + "sphere": 6987, + "spheres": 37478, + "spheric": 21744, + "sphin": 39237, + "sphinx": 46487, + "spho": 20442, + "sphoto": 38594, + "sphy": 43808, + "spi": 3174, + "spi": 37080, + "spic": 17264, + "spice": 29761, + "spice": 10141, + "spiced": 24267, + "spicer": 37627, + "spices": 21194, + "spicy": 10915, + "spide": 36801, + "spider": 11963, + "spider": 7622, + "spiderman": 39808, + "spiderman": 18427, + "spiders": 23141, + "spidey": 41706, + "spie": 28573, + "spie": 28746, + "spied": 43998, + "spiegel": 45351, + "spiel": 28435, + "spiel": 37690, + "spielberg": 37569, + "spies": 25374, + "spieth": 43254, + "spike": 35306, + "spike": 15310, + "spiked": 47014, + "spikes": 29582, + "spil": 47765, + "spill": 43933, + "spill": 18006, + "spilled": 33206, + "spilling": 49006, + "spills": 35796, + "spin": 6288, + "spin": 9226, + "spinach": 14747, + "spinal": 23925, + "spine": 48221, + "spine": 19646, + "sping": 47113, + "spinner": 29924, + "spinning": 13987, + "spino": 40848, + "spinoff": 42513, + "spinrilla": 46064, + "spins": 27243, + "spion": 39604, + "spionage": 41838, + "spir": 3745, + "spiral": 19873, + "spiration": 38126, + "spire": 27439, + "spired": 40650, + "spires": 46938, + "spiri": 4024, + "spirit": 18224, + "spirit": 4071, + "spirited": 34701, + "spirits": 13192, + "spiritu": 7237, + "spiritual": 46076, + "spiritual": 9473, + "spirituality": 22165, + "spiro": 40085, + "spit": 18115, + "spit": 23177, + "spite": 26060, + "spitfire": 31126, + "spitting": 40721, + "spl": 2470, + "spl": 33052, + "spla": 4809, + "splac": 16059, + "splace": 38743, + "splash": 43641, + "splash": 11879, + "splat": 15733, + "splatoon": 22565, + "splay": 3169, + "splen": 18552, + "splend": 29861, + "splendid": 21016, + "splendor": 46262, + "splin": 38090, + "split": 25443, + "split": 9109, + "splits": 34897, + "splitting": 37210, + "splus": 40866, + "spn": 35467, + "spn": 19414, + "spnfamily": 38566, + "spo": 1261, + "spo": 21085, + "spock": 43918, + "spoil": 25600, + "spoiled": 21399, + "spoiler": 16512, + "spoilers": 18326, + "spoils": 42436, + "spoilt": 35358, + "spokane": 24528, + "spoke": 13890, + "spoke": 6518, + "spoken": 12979, + "spokesman": 31632, + "spokesperson": 26234, + "spol": 22476, + "spol": 8132, + "spoli": 34301, + "spolice": 37406, + "spon": 1715, + "spon": 48216, + "sponge": 22861, + "sponge": 24345, + "spongebob": 25089, + "spons": 5597, + "sponsor": 10424, + "sponsor": 7574, + "sponsored": 7197, + "sponsoring": 16181, + "sponsors": 11005, + "sponsorship": 17632, + "spontaneous": 32465, + "spoo": 11248, + "spooky": 15369, + "spool": 49152, + "spoon": 27001, + "spoon": 14024, + "spoons": 29661, + "spor": 1475, + "spor": 33746, + "sport": 4379, + "sport": 2364, + "sporting": 32620, + "sporting": 8944, + "sports": 6436, + "sports": 2054, + "sportsc": 40114, + "sportscar": 46931, + "sportscenter": 39157, + "sportsman": 39020, + "sportsmanship": 34858, + "sportsnet": 34144, + "sportswear": 39747, + "sporty": 33346, + "spot": 3223, + "spot": 3049, + "spotify": 7193, + "spotlight": 7901, + "spots": 7670, + "spotted": 4533, + "spotter": 30742, + "spotting": 15885, + "spouse": 24724, + "spout": 48993, + "spp": 47567, + "spr": 1536, + "spr": 19417, + "spra": 12966, + "spraw": 46590, + "spray": 37885, + "spray": 10449, + "sprayed": 40022, + "spraying": 39224, + "spre": 18740, + "spread": 20620, + "spread": 5284, + "spreading": 11821, + "spreads": 27579, + "spree": 21851, + "spri": 35498, + "spride": 26685, + "spring": 5166, + "spring": 2420, + "springbreak": 37753, + "springer": 30117, + "springfield": 16599, + "springs": 7308, + "springst": 32132, + "springsteen": 28367, + "springtime": 28285, + "springtraining": 49364, + "springwatch": 29239, + "sprink": 15817, + "sprinkle": 42897, + "sprinkler": 48754, + "sprinkles": 37326, + "sprint": 29248, + "sprint": 10751, + "sprinter": 36947, + "sprints": 36404, + "sprite": 32544, + "spro": 13902, + "spro": 37403, + "sproject": 37802, + "sproud": 37686, + "sprout": 35863, + "sprouts": 25756, + "spru": 17041, + "spruce": 23812, + "sprung": 32968, + "sps": 13869, + "spu": 23566, + "spun": 47922, + "spun": 32852, + "spur": 15206, + "spur": 20361, + "spurs": 10916, + "spursofficial": 45290, + "sput": 47521, + "spx": 20584, + "spy": 13861, + "spy": 6656, + "spyder": 39952, + "spying": 36227, + "sq": 9370, + "sq": 11590, + "sqft": 41912, + "sql": 42759, + "sql": 18938, + "sqm": 47978, + "sqn": 41209, + "squ": 1653, + "squad": 13892, + "squad": 4234, + "squadron": 18579, + "squads": 36590, + "square": 19314, + "square": 3999, + "squared": 32967, + "squares": 26972, + "squash": 13312, + "squat": 44628, + "squat": 30680, + "squats": 40213, + "sque": 9721, + "sque": 8097, + "squee": 14420, + "squeeze": 21684, + "squeezed": 40413, + "squid": 42057, + "squid": 22553, + "squir": 9683, + "squire": 48090, + "squirrel": 14004, + "squirrels": 26623, + "squish": 42607, + "squishy": 47001, + "sr": 3437, + "sr": 5428, + "srbachchan": 32353, + "src": 23445, + "sre": 17748, + "sri": 11051, + "sri": 9276, + "sridevi": 46301, + "srilan": 15559, + "srilanka": 16922, + "srin": 26818, + "srinagar": 33671, + "srini": 41899, + "sriracha": 42743, + "sris": 27851, + "srisri": 32966, + "srk": 44982, + "srk": 11216, + "srl": 33808, + "srp": 43004, + "srs": 41764, + "srsly": 44179, + "srt": 28139, + "sru": 44152, + "srugby": 40526, + "ss": 690, + "ss": 632, + "ssa": 6088, + "ssal": 31330, + "ssal": 35936, + "ssb": 37511, + "ssc": 21692, + "ssc": 20364, + "ssd": 23107, + "sse": 9030, + "sse": 8938, + "ssed": 38755, + "ssed": 1804, + "ssel": 17402, + "ssel": 19373, + "sseldorf": 47792, + "ssell": 42388, + "ssels": 8355, + "ssen": 39408, + "ssen": 22645, + "sser": 20445, + "sses": 1802, + "ssett": 44103, + "ssf": 33239, + "ssg": 40707, + "ssh": 48866, + "ssi": 834, + "ssi": 14953, + "ssia": 22238, + "ssian": 31218, + "ssible": 47099, + "ssic": 27774, + "ssic": 17077, + "ssie": 7572, + "ssier": 26422, + "ssil": 15026, + "ssin": 42660, + "ssing": 2112, + "ssion": 16050, + "ssion": 1627, + "ssional": 13727, + "ssionism": 24787, + "ssionist": 27682, + "ssions": 4137, + "ssive": 2734, + "ssively": 28060, + "ssl": 32195, + "ssler": 30287, + "ssly": 24904, + "ssn": 39116, + "ssnhq": 47998, + "sso": 25900, + "sso": 7914, + "ssoccer": 32546, + "sson": 36124, + "sson": 7271, + "ssor": 35152, + "ssp": 31101, + "ssr": 39880, + "sss": 11176, + "ssss": 30676, + "ssss": 15880, + "sssss": 24298, + "sst": 40396, + "ssu": 35351, + "ssummit": 49301, + "ssus": 31286, + "ssw": 36937, + "ssy": 22519, + "ssy": 8661, + "st": 522, + "st": 545, + "sta": 1363, + "sta": 2745, + "stab": 7726, + "stab": 29974, + "stabbed": 24534, + "stabbing": 25474, + "stabil": 42576, + "stabili": 23903, + "stability": 16716, + "stable": 44427, + "stable": 10492, + "stables": 34218, + "stac": 10175, + "stacey": 41653, + "stacey": 24262, + "stache": 23616, + "stack": 24723, + "stack": 11257, + "stacked": 24990, + "stacking": 39836, + "stacks": 24734, + "stacy": 26628, + "stad": 15832, + "stad": 16485, + "stade": 38198, + "stadi": 26587, + "stadion": 48815, + "stadium": 3390, + "stadiums": 38852, + "stadt": 22713, + "staf": 2367, + "staff": 31188, + "staff": 2813, + "staffer": 38494, + "staffers": 44994, + "staffing": 32932, + "stafford": 25006, + "staffordshire": 29198, + "staffs": 36098, + "stag": 12088, + "stag": 20277, + "stage": 23182, + "stage": 2170, + "staged": 19906, + "stages": 12297, + "staggering": 37315, + "staging": 27026, + "stagram": 19503, + "stags": 45936, + "stain": 3933, + "stain": 14603, + "stained": 13751, + "staining": 32523, + "stainless": 12320, + "stains": 32008, + "stair": 7240, + "stair": 17662, + "staircase": 22777, + "stairs": 9577, + "stairway": 45559, + "stak": 39144, + "stake": 15955, + "stake": 7937, + "stakeholder": 39122, + "stakeholders": 22968, + "stakes": 7519, + "staking": 47082, + "stal": 3861, + "stal": 5535, + "stale": 42471, + "stalert": 25450, + "stalin": 28346, + "stalk": 40826, + "stalk": 14878, + "stalker": 26777, + "stalking": 24721, + "stalks": 45886, + "stall": 24636, + "stall": 12058, + "stalled": 40362, + "stallion": 28273, + "stallions": 44787, + "stallone": 40969, + "stalls": 25427, + "stam": 4663, + "stamatic": 30904, + "stamford": 27843, + "stamina": 48753, + "stamp": 28694, + "stamp": 12771, + "stampcollecting": 42852, + "stamped": 38356, + "stampede": 25384, + "stamps": 13827, + "stan": 2203, + "stan": 2434, + "stana": 33311, + "stanbul": 11231, + "stance": 48900, + "stance": 3542, + "stances": 15054, + "stand": 1819, + "stand": 2087, + "standalone": 44887, + "standard": 35780, + "standard": 5807, + "standardi": 30247, + "standards": 9022, + "standby": 36184, + "standing": 39934, + "standing": 2862, + "standings": 19835, + "standoff": 31821, + "standout": 23131, + "standre": 48309, + "stands": 6446, + "standup": 35108, + "standup": 24964, + "standwith": 19540, + "stanford": 36219, + "stanford": 15087, + "stang": 12536, + "stani": 38228, + "stanis": 37711, + "stanley": 19048, + "stanley": 10079, + "stanleycup": 28662, + "stans": 26564, + "stant": 41576, + "stant": 4906, + "stanton": 25400, + "stap": 10438, + "staple": 22695, + "staples": 23646, + "stapleton": 45228, + "star": 993, + "star": 1565, + "starbuck": 48519, + "starbucks": 9499, + "starch": 47837, + "starcraft": 48871, + "stardom": 44616, + "stardust": 34337, + "stare": 18094, + "stared": 47772, + "stares": 37916, + "starfish": 44283, + "stargate": 41099, + "stargazing": 49328, + "staring": 13800, + "stark": 40446, + "stark": 15353, + "starlight": 32197, + "starling": 46205, + "starmagic": 48023, + "starplus": 37815, + "starr": 19186, + "starred": 24180, + "starrer": 41311, + "starring": 6660, + "starry": 30963, + "stars": 2895, + "starship": 37166, + "start": 17466, + "start": 1572, + "started": 2760, + "starter": 7800, + "starters": 22222, + "starting": 2530, + "startrek": 30642, + "startrek": 15349, + "starts": 3105, + "startu": 6996, + "startup": 18049, + "startup": 5882, + "startups": 9056, + "starve": 46957, + "starving": 30473, + "starwar": 17287, + "starwars": 26239, + "starwars": 7887, + "starz": 25928, + "stas": 19866, + "stash": 27711, + "stasy": 45942, + "stat": 3004, + "stat": 15216, + "state": 3492, + "state": 1295, + "statec": 33931, + "stated": 19629, + "statedept": 41458, + "statefair": 40305, + "statement": 5401, + "statements": 19513, + "staten": 38263, + "stateof": 35195, + "states": 22125, + "states": 4218, + "statesman": 35301, + "stateu": 44248, + "statewide": 29561, + "stati": 9622, + "static": 16363, + "stating": 35147, + "station": 13498, + "station": 2631, + "stationary": 29493, + "stationed": 47618, + "stationery": 33851, + "stations": 10051, + "statistical": 29349, + "statistics": 14165, + "stats": 7294, + "statu": 32481, + "statue": 8222, + "statues": 24363, + "status": 6414, + "stau": 28550, + "staur": 3709, + "stav": 20285, + "stax": 32235, + "stay": 4714, + "stay": 2277, + "stayed": 13805, + "staying": 8993, + "stays": 13311, + "staytuned": 39285, + "stc": 29859, + "std": 30477, + "ste": 795, + "ste": 2686, + "stea": 46614, + "stead": 16101, + "stead": 11031, + "steadily": 35049, + "steady": 12937, + "steak": 26955, + "steak": 8913, + "steakhouse": 35031, + "steaks": 30655, + "steal": 37070, + "steal": 10181, + "stealing": 14242, + "steals": 20224, + "stealth": 25327, + "steam": 10962, + "steam": 6972, + "steamboat": 41121, + "steamed": 29007, + "steamer": 49075, + "steaming": 43746, + "steampunk": 24130, + "steamy": 43104, + "stec": 46713, + "stech": 48949, + "stech": 32455, + "sted": 20426, + "sted": 1356, + "stee": 31793, + "steed": 48293, + "steel": 6938, + "steel": 4726, + "steele": 19460, + "steelers": 14430, + "steen": 42851, + "steen": 18625, + "steep": 28648, + "steep": 20714, + "steer": 27612, + "steering": 19833, + "stef": 29158, + "stefan": 15004, + "stefan": 18829, + "stefani": 38319, + "stefano": 30719, + "steff": 30075, + "stein": 13653, + "stein": 5818, + "steiner": 36314, + "stel": 9102, + "stel": 10798, + "stell": 22355, + "stella": 46178, + "stella": 17869, + "stellar": 13810, + "stellen": 42754, + "stem": 24342, + "stem": 6761, + "stemc": 40486, + "stems": 31503, + "sten": 7652, + "sten": 7877, + "stencil": 47854, + "stennis": 45636, + "step": 15572, + "step": 3348, + "steph": 3522, + "steph": 16251, + "stephan": 37312, + "stephani": 48121, + "stephanie": 14361, + "stephen": 10421, + "stephen": 6078, + "stephenking": 46361, + "stephens": 22256, + "stephenson": 37280, + "stepped": 18384, + "stepping": 15906, + "steps": 5408, + "ster": 1022, + "ster": 881, + "stere": 9229, + "stered": 6935, + "stereo": 15992, + "stereo": 17400, + "stereotypes": 27890, + "steria": 38804, + "stering": 14175, + "sterling": 45790, + "sterling": 9378, + "stern": 36254, + "stern": 2945, + "steroids": 37670, + "sterone": 39418, + "sters": 2132, + "stery": 24232, + "stest": 8556, + "stev": 11640, + "steve": 7412, + "steve": 3803, + "steven": 10973, + "steven": 8016, + "stevens": 13877, + "stevenson": 25091, + "stevie": 42104, + "stevie": 18969, + "stew": 17906, + "stewar": 28453, + "steward": 34980, + "steward": 43355, + "stewards": 49294, + "stewardship": 36720, + "stewart": 8120, + "stfu": 47000, + "stg": 48387, + "stgeorge": 43698, + "sth": 13456, + "sth": 34004, + "sthe": 16491, + "sthel": 42863, + "sti": 860, + "sti": 12439, + "stia": 26492, + "stible": 25835, + "stic": 5868, + "stic": 1561, + "stical": 16660, + "stically": 19041, + "stick": 5483, + "stick": 4987, + "sticker": 11270, + "stickers": 11613, + "sticking": 21021, + "sticks": 10016, + "sticky": 18887, + "stics": 5449, + "stie": 38164, + "stie": 11000, + "stier": 42069, + "sties": 16428, + "stiff": 43471, + "stiff": 21441, + "stig": 4088, + "stig": 42551, + "stigate": 15390, + "stigma": 20619, + "stik": 42247, + "stil": 21790, + "stil": 37519, + "stiles": 33028, + "still": 13209, + "still": 1170, + "stills": 20259, + "stim": 18269, + "stime": 24711, + "stimul": 16434, + "stimulate": 42380, + "stimulating": 41237, + "stimulation": 39530, + "stimulus": 47283, + "stin": 2588, + "stin": 4025, + "stina": 22359, + "stine": 7098, + "sting": 19868, + "sting": 1271, + "stingly": 49332, + "stingray": 43229, + "stink": 38213, + "stinky": 44957, + "stino": 40658, + "stint": 33531, + "stion": 10812, + "stip": 39869, + "stips": 44756, + "stique": 43305, + "stir": 12416, + "stir": 19564, + "stirling": 23128, + "stirring": 39205, + "stis": 45224, + "stit": 14110, + "stitch": 30003, + "stitch": 14771, + "stitched": 36540, + "stitcher": 48204, + "stitches": 32360, + "stitching": 45208, + "stitu": 14585, + "stitutes": 40479, + "stive": 22426, + "stix": 48829, + "stjohn": 36153, + "stl": 14179, + "stl": 12527, + "stlblues": 44138, + "stlcards": 28644, + "stle": 7698, + "stles": 48638, + "stlouis": 40358, + "stlouis": 39516, + "stm": 28333, + "stn": 27175, + "sto": 928, + "sto": 5723, + "stock": 5899, + "stock": 3206, + "stocked": 23552, + "stockholm": 16024, + "stocki": 42944, + "stocking": 17335, + "stockings": 28040, + "stockmarket": 40359, + "stockport": 35569, + "stocks": 9321, + "stockton": 26130, + "stoday": 22392, + "stok": 43782, + "stoke": 31338, + "stoke": 13550, + "stoked": 13160, + "stokes": 27512, + "stol": 11401, + "stol": 6700, + "stole": 10995, + "stolen": 8704, + "stolic": 45020, + "stom": 2343, + "stom": 38068, + "stoma": 43545, + "stomach": 14722, + "stomp": 40165, + "stomping": 46144, + "ston": 4101, + "ston": 1839, + "stone": 7694, + "stone": 2441, + "stoned": 36248, + "stonehenge": 42417, + "stoner": 35131, + "stoner": 29115, + "stones": 42659, + "stones": 6885, + "stonewall": 39688, + "stoney": 44198, + "stony": 41717, + "stony": 35691, + "stoo": 24505, + "stood": 9151, + "stool": 34413, + "stool": 22314, + "stop": 6005, + "stop": 1691, + "stopbrexit": 48680, + "stopp": 15738, + "stopped": 6015, + "stopper": 32147, + "stoppers": 34457, + "stopping": 10735, + "stops": 9822, + "stopthe": 26463, + "stor": 809, + "stor": 17740, + "storage": 6824, + "store": 17769, + "store": 2183, + "stored": 28257, + "stores": 6370, + "storey": 24025, + "storians": 34628, + "stories": 3784, + "storing": 40087, + "stork": 46452, + "storm": 7434, + "storm": 2819, + "stormed": 45939, + "stormhour": 12161, + "storming": 24842, + "storms": 6464, + "stormtrooper": 49218, + "stormy": 20075, + "stors": 7178, + "story": 6512, + "story": 1134, + "storyline": 37079, + "storymonth": 23717, + "storyteller": 35882, + "storytelling": 14457, + "storytime": 44197, + "stos": 19281, + "stou": 37168, + "stour": 37361, + "stour": 21928, + "stout": 16550, + "stove": 21423, + "stow": 44284, + "stow": 17046, + "stowe": 34196, + "stown": 28071, + "stown": 7939, + "stp": 30576, + "stpatrick": 21343, + "stpatricksday": 22747, + "str": 807, + "str": 15913, + "stra": 1894, + "stra": 6253, + "strack": 46861, + "strada": 31134, + "strade": 48968, + "straigh": 31016, + "straight": 22114, + "straight": 4241, + "strain": 16887, + "strains": 38067, + "strait": 22946, + "straits": 41984, + "stral": 23289, + "stralia": 42510, + "stran": 18411, + "strand": 18214, + "strand": 17826, + "stranded": 22975, + "strang": 11138, + "strange": 33380, + "strange": 7288, + "strangely": 37566, + "stranger": 35541, + "stranger": 14149, + "strangers": 20684, + "strangerthings": 43271, + "strangest": 46740, + "strap": 13946, + "strapped": 40922, + "straps": 31213, + "stras": 36814, + "stras": 42125, + "strasbourg": 39576, + "strat": 11345, + "strat": 32925, + "strata": 47278, + "strate": 3532, + "strate": 28758, + "strategi": 49102, + "strategic": 10246, + "strategically": 45706, + "strategies": 9942, + "strategist": 37180, + "strategy": 5637, + "strates": 45724, + "stratford": 23955, + "strath": 21997, + "stration": 3156, + "strato": 28878, + "strauss": 32033, + "strava": 34625, + "stravel": 43494, + "straw": 7430, + "straw": 16438, + "strawberries": 17796, + "strawberry": 10233, + "straws": 33048, + "stray": 30784, + "stray": 15712, + "stre": 1079, + "stre": 19652, + "stread": 27797, + "streak": 11749, + "streaks": 42092, + "stream": 8659, + "stream": 3322, + "streamed": 26280, + "streamer": 25178, + "streamers": 19937, + "streaming": 6278, + "streamline": 44917, + "streams": 13545, + "stree": 35082, + "stree": 32438, + "streep": 38701, + "street": 4839, + "street": 2012, + "streetart": 12948, + "streetcar": 34268, + "streetfood": 44486, + "streetphotography": 20786, + "streets": 6058, + "streetstyle": 39118, + "streetwear": 37298, + "strel": 39685, + "stren": 4349, + "streng": 4472, + "strength": 15475, + "strength": 5959, + "strengthen": 16318, + "strengthened": 47131, + "strengthening": 23475, + "strengthens": 40280, + "strengths": 29268, + "stress": 17297, + "stress": 5843, + "stressed": 16497, + "stresses": 32112, + "stressful": 24268, + "stressing": 35917, + "stret": 12265, + "stretch": 10064, + "stretched": 29393, + "stretches": 32231, + "stretching": 24423, + "stri": 1493, + "stri": 27795, + "stria": 39620, + "strial": 30217, + "strian": 12924, + "stric": 2607, + "strick": 25181, + "strickland": 48939, + "strict": 21585, + "strictly": 16475, + "stride": 36024, + "strides": 37355, + "stries": 18171, + "strife": 46473, + "strike": 20774, + "strike": 5767, + "striker": 12448, + "strikers": 33465, + "strikes": 9280, + "striking": 13392, + "string": 25512, + "string": 9696, + "strings": 15699, + "strip": 9317, + "stripe": 19368, + "striped": 22192, + "stripes": 14239, + "stripped": 26602, + "stripper": 45759, + "stripping": 48588, + "strips": 19000, + "strive": 22140, + "striving": 37671, + "stro": 3121, + "stro": 6186, + "stroke": 44621, + "stroke": 10403, + "strokes": 26595, + "strol": 30123, + "stroll": 15924, + "stroller": 47076, + "strolling": 40911, + "strom": 14707, + "stron": 4165, + "strong": 10436, + "strong": 2389, + "stronger": 27760, + "stronger": 9245, + "strongertogether": 38532, + "strongest": 16171, + "strongh": 38678, + "strongly": 15507, + "strophy": 47912, + "strou": 48425, + "stroud": 39895, + "strous": 23752, + "stru": 1666, + "struc": 3311, + "struck": 10861, + "struction": 12497, + "structural": 16899, + "structure": 5285, + "structured": 27147, + "structures": 14171, + "structuring": 37496, + "strugg": 5176, + "struggle": 8443, + "struggled": 32921, + "struggles": 17446, + "struggling": 12135, + "struly": 34118, + "strum": 37632, + "strung": 46033, + "strust": 23920, + "strut": 48375, + "stry": 17325, + "stry": 2245, + "sts": 1088, + "stu": 858, + "stu": 23531, + "stuart": 32054, + "stuart": 11723, + "stub": 27066, + "stubborn": 38955, + "stuck": 6596, + "stud": 22368, + "stud": 13319, + "studded": 29153, + "studen": 44156, + "student": 14681, + "student": 2556, + "students": 1712, + "studi": 5691, + "studied": 21369, + "studies": 6426, + "studio": 17798, + "studio": 3155, + "studios": 6231, + "studs": 27571, + "study": 21051, + "study": 3123, + "studyabroad": 45425, + "studying": 8826, + "stuff": 46072, + "stuff": 3487, + "stuffed": 11781, + "stuffing": 31612, + "stuffs": 43455, + "stuk": 32424, + "stumb": 16784, + "stumble": 39045, + "stumbled": 21776, + "stump": 32064, + "stun": 3088, + "stun": 37959, + "stunned": 34034, + "stunner": 29965, + "stunning": 3769, + "stunningly": 47515, + "stuns": 43796, + "stunt": 19905, + "stunts": 40118, + "stupi": 18975, + "stupid": 42600, + "stupid": 8085, + "stupidity": 33766, + "stur": 10676, + "sturdy": 43780, + "stures": 27223, + "sturgeon": 31580, + "sturi": 21747, + "sturridge": 45331, + "stutt": 30444, + "stuttgart": 32219, + "stv": 27060, + "stv": 9708, + "stweet": 46832, + "stweets": 39174, + "stx": 42548, + "sty": 1421, + "sty": 2920, + "style": 12356, + "style": 1844, + "styled": 17974, + "styles": 6948, + "styli": 38577, + "styling": 14597, + "stylish": 10378, + "stylist": 15928, + "styn": 41394, + "su": 605, + "su": 2937, + "sua": 42448, + "suarez": 21437, + "suave": 47305, + "sub": 1783, + "sub": 7765, + "subaru": 21319, + "subjec": 16090, + "subject": 10300, + "subjects": 22099, + "subli": 16350, + "sublime": 22367, + "submarine": 19968, + "submer": 27156, + "submerged": 43171, + "submission": 16571, + "submissions": 21566, + "submit": 10423, + "submitted": 15189, + "submitting": 38788, + "subram": 49207, + "subs": 16398, + "subscri": 5838, + "subscribe": 9839, + "subscribed": 44867, + "subscriber": 36292, + "subscribers": 17337, + "subscription": 17979, + "subscriptions": 47162, + "subsequ": 33598, + "subsequent": 44323, + "subsi": 14856, + "subsidi": 45029, + "subsidiary": 45506, + "subsidies": 37685, + "subsidy": 47462, + "substan": 17487, + "substance": 19309, + "substances": 36834, + "substantial": 27171, + "substantially": 47577, + "substitu": 18529, + "substitute": 25340, + "subtitles": 39479, + "subtle": 16536, + "subur": 12517, + "suburb": 37664, + "suburban": 23570, + "suburbs": 25317, + "subway": 12196, + "suc": 1869, + "succe": 7981, + "succeed": 13556, + "succeeded": 41077, + "succes": 39019, + "success": 3695, + "success": 3034, + "successes": 29436, + "successful": 4670, + "successfully": 9934, + "succession": 38491, + "successive": 41319, + "successor": 34774, + "succu": 45253, + "succul": 25671, + "succulent": 35236, + "such": 2046, + "suction": 42786, + "sud": 8067, + "sud": 33714, + "sudan": 31149, + "sudan": 13474, + "sudanese": 42837, + "sudbury": 32488, + "sudden": 10833, + "sudden": 15433, + "suddenly": 11076, + "sue": 14045, + "sue": 6641, + "sued": 22225, + "suede": 21036, + "sues": 17105, + "suf": 21204, + "suf": 22579, + "sufc": 37091, + "suff": 4866, + "suffe": 13510, + "suffer": 13557, + "suffered": 14766, + "suffering": 10140, + "suffers": 22389, + "sufficient": 28410, + "suffol": 13775, + "suffolk": 46408, + "suffolk": 15685, + "suffra": 34596, + "suffrage": 39567, + "sufi": 39756, + "sug": 3189, + "suga": 28757, + "sugar": 12418, + "sugar": 5574, + "sugge": 6345, + "suggest": 13356, + "suggested": 18790, + "suggesti": 15033, + "suggesting": 29792, + "suggestion": 23741, + "suggestions": 16052, + "suggests": 13333, + "suho": 32744, + "sui": 24972, + "suici": 16372, + "suicidal": 37165, + "suicide": 31310, + "suicide": 8247, + "suing": 18309, + "suisse": 35964, + "suit": 11887, + "suit": 3940, + "suitable": 17476, + "suitcase": 27792, + "suite": 9346, + "suited": 25919, + "suites": 21523, + "suits": 9949, + "suk": 24820, + "suk": 6886, + "suka": 44017, + "suke": 25590, + "sukh": 46961, + "suki": 32704, + "sul": 1767, + "sul": 19879, + "sula": 34713, + "sula": 26143, + "sullivan": 14477, + "sully": 37752, + "sulph": 37234, + "sulphur": 47659, + "sultan": 35650, + "sultan": 17049, + "sum": 7054, + "sum": 8257, + "suma": 47938, + "sumat": 32640, + "sumatra": 47346, + "sume": 45457, + "sumi": 41248, + "summ": 1309, + "summar": 34657, + "summari": 31993, + "summary": 13435, + "summed": 34912, + "summer": 5500, + "summer": 1673, + "summers": 18254, + "summerslam": 40264, + "summertime": 19025, + "summit": 30011, + "summit": 3768, + "summon": 27622, + "summon": 39782, + "sumner": 46813, + "sumo": 33734, + "sump": 34252, + "sumptuous": 47354, + "sums": 13325, + "sun": 968, + "sun": 2176, + "sunbathing": 46994, + "sunburn": 45767, + "sund": 40735, + "sundae": 38078, + "sundance": 24128, + "sundar": 44936, + "sunday": 6649, + "sunday": 1706, + "sundayfunday": 21565, + "sundaymorning": 24809, + "sundaymotivation": 46227, + "sundays": 15827, + "sundaywith": 26469, + "sundaywithmarsha": 26662, + "sunder": 15097, + "sunderland": 45727, + "sunderland": 18851, + "sundown": 44438, + "sune": 41096, + "sunflower": 21559, + "sunflowers": 39809, + "sung": 16903, + "sung": 6047, + "sunglasses": 12906, + "suni": 17663, + "suni": 47010, + "sunil": 32861, + "sunite": 21382, + "sunited": 35276, + "sunk": 37534, + "sunken": 43473, + "sunlight": 17996, + "sunni": 44315, + "sunny": 15632, + "sunny": 5438, + "sunrise": 5610, + "suns": 18322, + "sunscreen": 29355, + "sunset": 37880, + "sunset": 3424, + "sunsets": 17721, + "sunshine": 32761, + "sunshine": 5385, + "suny": 41308, + "sup": 19078, + "sup": 8249, + "supdates": 24177, + "super": 1642, + "super": 1994, + "superb": 8930, + "superbike": 45709, + "superbowl": 47461, + "superbowl": 16467, + "supercar": 27021, + "supercars": 32185, + "supercell": 43227, + "supercharged": 47479, + "supere": 46831, + "superfood": 41715, + "supergirl": 25771, + "superhero": 14049, + "superheroes": 23334, + "superint": 17615, + "superintendent": 19020, + "superior": 13205, + "superjunior": 40475, + "superleague": 45539, + "superman": 11237, + "supermarket": 19897, + "supermarkets": 45106, + "supermodel": 41963, + "supermoon": 36571, + "supernatural": 15484, + "supernova": 39843, + "superrugby": 48717, + "supersonic": 42019, + "supersport": 46319, + "superst": 38202, + "superstar": 32551, + "superstar": 10472, + "superstars": 25797, + "supervis": 12709, + "supervised": 41316, + "supervision": 36234, + "supervisor": 20366, + "supervisors": 37958, + "superyacht": 42714, + "supp": 1023, + "supper": 15727, + "supple": 31431, + "supplement": 19924, + "supplements": 21265, + "supplied": 24106, + "supplier": 18043, + "suppliers": 24196, + "supplies": 9384, + "supply": 25074, + "supply": 6389, + "supplychain": 31224, + "supplying": 32739, + "suppo": 6941, + "suppor": 2104, + "support": 12062, + "support": 1425, + "supported": 8038, + "supporter": 12992, + "supporters": 7403, + "supportindiefilm": 43976, + "supporting": 3976, + "supportive": 18313, + "supportlocal": 43852, + "supports": 8336, + "supportsmall": 30941, + "supportsmallstreamers": 36097, + "suppose": 18924, + "supposed": 9119, + "supposedly": 32302, + "suppre": 20542, + "suppression": 36508, + "supra": 48485, + "supre": 5875, + "supremac": 28643, + "supremacist": 39005, + "supremacy": 28913, + "supreme": 35222, + "supreme": 7468, + "supt": 23625, + "sur": 1090, + "sur": 7123, + "sura": 33412, + "sura": 49125, + "surabaya": 45227, + "surance": 22184, + "surat": 30201, + "sure": 14320, + "sure": 1650, + "sured": 36869, + "surely": 11409, + "sures": 12725, + "suresh": 32118, + "suresh": 31464, + "sureshpp": 41924, + "sureshpprabhu": 42050, + "surf": 10176, + "surf": 10322, + "surface": 7744, + "surfaces": 20746, + "surfer": 24925, + "surfers": 34842, + "surfing": 15762, + "surg": 13045, + "surge": 17457, + "surgeon": 16039, + "surgeons": 26000, + "surger": 5122, + "surgeries": 34940, + "surgery": 5344, + "surgical": 16386, + "suri": 14130, + "suri": 33952, + "suring": 16817, + "suriya": 17832, + "surpass": 45494, + "surpassed": 25648, + "surplus": 29413, + "surpri": 3244, + "surprise": 5099, + "surprised": 8949, + "surprises": 16920, + "surprising": 14964, + "surprisingly": 17367, + "surreal": 18408, + "surrealism": 41773, + "surrender": 20964, + "surrendered": 44601, + "surrey": 26489, + "surrey": 14315, + "surro": 47499, + "surroun": 8250, + "surround": 26543, + "surround": 22999, + "surrounded": 13589, + "surrounding": 12544, + "surroundings": 26915, + "surrounds": 39012, + "suru": 49240, + "surve": 8952, + "surveill": 15408, + "surveillance": 15578, + "survey": 45914, + "survey": 6809, + "surveying": 33085, + "surveys": 25096, + "survi": 3440, + "surviv": 12922, + "survival": 10172, + "survive": 10431, + "survived": 13483, + "survives": 30927, + "surviving": 18609, + "survivor": 31934, + "survivor": 10944, + "survivors": 13711, + "surya": 37767, + "sus": 8091, + "sus": 3036, + "susa": 20546, + "susan": 19922, + "susan": 10168, + "suscep": 44270, + "sush": 22298, + "sushi": 11729, + "sushmaswar": 48200, + "susie": 32284, + "susp": 7971, + "suspec": 10298, + "suspect": 9065, + "suspected": 15579, + "suspects": 18265, + "suspen": 10578, + "suspend": 41007, + "suspended": 13126, + "suspends": 39535, + "suspense": 21556, + "suspension": 15417, + "suspici": 25714, + "suspicion": 34910, + "suspicious": 19862, + "sussex": 31244, + "sussex": 13266, + "sustain": 4644, + "sustain": 28156, + "sustainability": 9635, + "sustainable": 23645, + "sustainable": 7078, + "sustained": 22699, + "sustaining": 44418, + "sut": 23984, + "sut": 28956, + "sutherland": 27592, + "sutton": 39359, + "sutton": 18564, + "suv": 15985, + "suz": 9957, + "suzanne": 24617, + "suzu": 36289, + "suzuki": 16892, + "suzy": 26552, + "sv": 6508, + "sv": 17083, + "svc": 45065, + "sve": 47637, + "sven": 37786, + "sven": 45183, + "sver": 45923, + "sville": 44580, + "sville": 6741, + "svp": 28465, + "svt": 42014, + "svu": 32123, + "sw": 1220, + "sw": 4457, + "swa": 4707, + "swa": 31916, + "swach": 20862, + "swachhb": 31898, + "swachhbharat": 36927, + "swag": 8852, + "swag": 8177, + "swagg": 47702, + "swagger": 35797, + "swain": 43226, + "swal": 13433, + "swallow": 28979, + "swallowed": 46956, + "swallows": 45124, + "swam": 42539, + "swami": 25021, + "swamp": 41953, + "swamp": 16595, + "swamy": 28445, + "swan": 8215, + "swan": 12530, + "swana": 24699, + "swans": 19516, + "swansea": 16567, + "swanson": 34797, + "swap": 15234, + "swapped": 39077, + "swapping": 44702, + "swaps": 49242, + "swar": 11680, + "swarm": 31577, + "swarovski": 28515, + "swat": 32547, + "swat": 26482, + "swatch": 48053, + "sway": 26443, + "sway": 26617, + "swc": 42231, + "swe": 2350, + "swe": 38070, + "swear": 7406, + "swearing": 32627, + "sweat": 10282, + "sweat": 12663, + "sweater": 11455, + "sweaters": 31303, + "sweating": 33215, + "sweats": 39321, + "sweatshirt": 22442, + "sweaty": 28419, + "sweden": 8760, + "swedish": 11585, + "swee": 1812, + "sweek": 30017, + "sweeney": 27286, + "sweep": 23220, + "sweep": 13669, + "sweeping": 25719, + "sweeps": 26887, + "sweepstakes": 25992, + "sweet": 10957, + "sweet": 2418, + "sweetened": 45577, + "sweeter": 32873, + "sweetest": 15180, + "sweethe": 16316, + "sweetheart": 18079, + "sweetie": 24450, + "sweetness": 29713, + "sweets": 18045, + "swel": 48470, + "swell": 35538, + "swell": 21490, + "swelling": 46578, + "swept": 23311, + "swer": 30514, + "swfc": 30227, + "swfl": 46607, + "swi": 3881, + "swi": 45223, + "swick": 17159, + "swif": 28548, + "swift": 34843, + "swift": 8229, + "swild": 33909, + "swild": 38696, + "swildlife": 46818, + "swim": 4928, + "swim": 7681, + "swimmer": 25475, + "swimmers": 27776, + "swimming": 7411, + "swims": 46798, + "swimsuit": 25504, + "swimwear": 31889, + "swin": 14554, + "swin": 40798, + "swindon": 29540, + "swine": 31166, + "swing": 25292, + "swing": 7429, + "swinging": 26760, + "swings": 29141, + "swipe": 31828, + "swire": 42753, + "swirl": 35795, + "swis": 23611, + "swish": 38571, + "swiss": 37917, + "swiss": 9287, + "swit": 3726, + "switch": 22480, + "switch": 5893, + "switched": 22869, + "switches": 33569, + "switching": 21155, + "swith": 17299, + "switzer": 9835, + "switzerland": 9912, + "swivel": 48256, + "swo": 38673, + "swol": 29575, + "swollen": 36129, + "swoo": 29744, + "swood": 24158, + "swoon": 37028, + "swoop": 45661, + "sword": 33294, + "sword": 11356, + "swords": 27181, + "swork": 42722, + "sworld": 33305, + "sworn": 21130, + "sworth": 13322, + "swt": 38878, + "swx": 20597, + "sx": 9402, + "sx": 17806, + "sxsw": 13369, + "sy": 974, + "sy": 2126, + "sya": 35017, + "sycam": 34911, + "sycamore": 43086, + "syd": 4525, + "syd": 22504, + "sydney": 15878, + "sydney": 5278, + "syed": 27624, + "syfy": 32047, + "sykes": 27287, + "syl": 6452, + "sylla": 41708, + "sylvania": 12011, + "sylve": 28369, + "sylvester": 37214, + "sylvia": 25670, + "sym": 3645, + "sym": 40327, + "symb": 22987, + "symbol": 13085, + "symboli": 22019, + "symbolic": 33177, + "symbolism": 44679, + "symbols": 25476, + "symmetry": 31427, + "symp": 11468, + "sympathi": 47493, + "sympathy": 32477, + "symph": 9544, + "symphonic": 42639, + "symphony": 11180, + "sympo": 9730, + "symposium": 9971, + "symptom": 47799, + "symptoms": 12956, + "syn": 3758, + "syn": 36090, + "synago": 30945, + "synagogue": 33518, + "sync": 20081, + "synchron": 23943, + "syndic": 21098, + "syndicate": 28779, + "syndrome": 10927, + "syner": 22283, + "synergy": 32012, + "syno": 31533, + "synod": 47712, + "synopsis": 47018, + "synth": 33841, + "synth": 24462, + "synthe": 22604, + "synthesi": 33565, + "synthesis": 21602, + "synthesizer": 44077, + "synthetic": 19917, + "syou": 26742, + "syour": 21718, + "syrac": 17279, + "syracuse": 19640, + "syrah": 45364, + "syri": 18917, + "syria": 5563, + "syrian": 47562, + "syrian": 10041, + "syrians": 41392, + "syrup": 16611, + "sys": 26726, + "syste": 1933, + "system": 47813, + "system": 2422, + "systematic": 28586, + "systemic": 33807, + "systems": 4828, + "sz": 13438, + "sz": 15879, + "sze": 44507, + "szn": 48092, + "são": 45911, + "sé": 37879, + "t": 83, + "t": 339, + "ta": 648, + "ta": 1397, + "taa": 43874, + "tab": 2648, + "tab": 14724, + "tabby": 36145, + "tabern": 48991, + "tability": 15770, + "table": 12108, + "table": 2175, + "tableau": 39723, + "tables": 7822, + "tablet": 12494, + "tabletop": 46843, + "tabletop": 25773, + "tablets": 20436, + "tably": 24440, + "taboo": 38400, + "tabs": 29163, + "tac": 3145, + "tac": 22653, + "tache": 39239, + "tack": 6339, + "tack": 34446, + "tackle": 10294, + "tackled": 47218, + "tackles": 18021, + "tackling": 19628, + "taco": 31924, + "taco": 12436, + "tacoma": 25397, + "tacos": 14090, + "tactic": 40377, + "tactical": 17137, + "tactics": 16410, + "tacular": 48985, + "tad": 15890, + "tad": 19860, + "tado": 40846, + "tae": 15257, + "tae": 15580, + "taehyung": 24642, + "taek": 30753, + "taekwondo": 39963, + "taemin": 30600, + "taeyang": 45802, + "taeyeon": 27389, + "taf": 29660, + "taft": 42141, + "tag": 3456, + "tag": 3640, + "tage": 2669, + "tages": 39902, + "tagged": 12969, + "tagging": 25138, + "tagne": 47467, + "tags": 11606, + "tah": 14822, + "tah": 7090, + "tahit": 45385, + "tahoe": 26140, + "tai": 6511, + "tai": 13040, + "taiji": 30185, + "tail": 7156, + "tail": 4132, + "tailed": 20626, + "tailgate": 23168, + "tailgating": 42625, + "tailo": 27230, + "tailor": 29870, + "tailored": 28275, + "tailoring": 46357, + "tails": 16066, + "tain": 2841, + "tain": 1908, + "taine": 21214, + "taine": 32299, + "tained": 10212, + "taining": 7565, + "tainment": 30063, + "tains": 3952, + "tainted": 47211, + "taipei": 24356, + "tair": 29143, + "tairp": 43707, + "tait": 45325, + "taiwan": 36319, + "taiwan": 12626, + "taiwanese": 41416, + "taj": 28937, + "taj": 24805, + "taji": 46358, + "tak": 15070, + "tak": 14458, + "taka": 24070, + "taka": 40968, + "take": 5052, + "take": 1172, + "takeaway": 25737, + "takeaways": 32080, + "takeme": 41748, + "taken": 2807, + "takeoff": 32789, + "takeover": 11863, + "taker": 17939, + "takers": 30775, + "takes": 2633, + "takin": 30890, + "taking": 2019, + "taku": 48168, + "tal": 976, + "tal": 2066, + "tala": 29845, + "talaga": 35349, + "talbot": 30585, + "tale": 33971, + "tale": 7798, + "talent": 30435, + "talent": 5114, + "talented": 5331, + "talents": 16136, + "tales": 9469, + "tali": 12122, + "tali": 45406, + "taliban": 20788, + "talis": 36480, + "tality": 15631, + "talk": 12462, + "talk": 1841, + "talked": 10153, + "talkin": 26040, + "talking": 31463, + "talking": 2578, + "talks": 3237, + "tall": 11664, + "tall": 7771, + "talla": 21528, + "tallade": 44220, + "tallahassee": 37832, + "taller": 23470, + "tallest": 19774, + "tallinn": 45079, + "tally": 16323, + "talon": 47897, + "tam": 2661, + "tam": 12246, + "tama": 45424, + "tamanna": 48055, + "tamar": 22901, + "tamara": 35697, + "tame": 38557, + "tame": 32778, + "tamed": 40575, + "tami": 39429, + "tamil": 23046, + "tamil": 14033, + "tamilnadu": 32371, + "tamine": 42566, + "tammy": 28396, + "tampa": 10906, + "tampab": 37852, + "tamu": 34105, + "tan": 2123, + "tan": 5039, + "tana": 21396, + "tand": 20244, + "tandem": 33756, + "tane": 13344, + "tane": 24923, + "taneous": 22275, + "taneously": 24422, + "tang": 10425, + "tang": 20794, + "tanger": 31844, + "tangerine": 42045, + "tangible": 44823, + "tangle": 36568, + "tangled": 33587, + "tango": 24089, + "tani": 31374, + "tani": 32985, + "tania": 45369, + "tank": 29858, + "tank": 6172, + "tanker": 25020, + "tanks": 14223, + "tann": 19174, + "tanner": 22001, + "tanning": 27985, + "tans": 27332, + "tant": 41383, + "tant": 41695, + "tante": 48262, + "tanto": 45685, + "tany": 34410, + "tanya": 26800, + "tanz": 47399, + "tanzania": 15711, + "tao": 29084, + "tao": 18923, + "tap": 17923, + "tap": 7888, + "tapas": 27361, + "tape": 18332, + "tape": 5749, + "taped": 33219, + "tapes": 17903, + "tapestry": 33525, + "taping": 24355, + "tapp": 27644, + "tapp": 27764, + "tapped": 26649, + "tapping": 27882, + "tapro": 34415, + "taproom": 40266, + "taps": 23267, + "tar": 2002, + "tar": 6977, + "tara": 15264, + "tarak": 37813, + "taran": 32370, + "tarantino": 41180, + "tarde": 48670, + "tardis": 35410, + "tares": 34587, + "targe": 9620, + "target": 38556, + "target": 5400, + "targeted": 14968, + "targeting": 15818, + "targets": 12468, + "tari": 4238, + "tari": 38012, + "tarian": 11762, + "tarians": 42789, + "taries": 47291, + "tariff": 40220, + "tariffs": 28335, + "tariq": 42526, + "tarmac": 44294, + "taro": 26264, + "tarot": 23702, + "tart": 16707, + "tart": 14120, + "tartan": 35064, + "tarts": 29799, + "tary": 31729, + "tary": 5065, + "tarzan": 45463, + "tas": 6538, + "tas": 10163, + "tash": 35272, + "tasha": 44967, + "task": 39189, + "task": 10549, + "tasks": 19453, + "tasmania": 22429, + "tasmanian": 45102, + "tassel": 49276, + "tast": 10839, + "taste": 14314, + "taste": 5219, + "tasted": 22827, + "tasteof": 38097, + "taster": 29743, + "tastes": 13736, + "tastic": 21337, + "tasting": 7656, + "tastings": 49273, + "tasty": 43390, + "tasty": 8568, + "tat": 2652, + "tat": 21592, + "tata": 19300, + "tate": 44476, + "tate": 13295, + "tath": 27566, + "tati": 31433, + "tatiana": 48837, + "tation": 5280, + "tations": 32324, + "tator": 18791, + "tators": 37206, + "tats": 44557, + "tatt": 9232, + "tatted": 41605, + "tattoo": 15980, + "tattoo": 6325, + "tattooed": 28541, + "tattoos": 14900, + "tatum": 26103, + "tau": 6620, + "tau": 20510, + "taught": 9306, + "taun": 23910, + "taunton": 40681, + "taurus": 32881, + "taver": 37776, + "tavern": 18644, + "taw": 33868, + "taw": 40289, + "tawa": 29035, + "tawards": 14351, + "tax": 4581, + "tax": 3879, + "taxation": 36847, + "taxes": 11462, + "taxi": 25160, + "taxi": 11380, + "taxider": 47420, + "taxis": 34009, + "taxpay": 17986, + "taxpayer": 30978, + "taxpayers": 25503, + "tay": 6542, + "tay": 15073, + "taya": 38484, + "tayl": 3913, + "taylor": 9044, + "taylor": 3961, + "taylorswift": 18936, + "tayo": 33941, + "taz": 41475, + "taz": 31870, + "tb": 1990, + "tb": 7490, + "tba": 34363, + "tball": 8390, + "tball": 1467, + "tbc": 31807, + "tbd": 45548, + "tbh": 13238, + "tbi": 45868, + "tbl": 42962, + "tbli": 43664, + "tblightning": 44178, + "tbo": 34255, + "tbr": 46643, + "tbs": 37368, + "tbt": 2950, + "tc": 6820, + "tc": 5454, + "tca": 35116, + "tch": 10744, + "tch": 4048, + "tches": 42001, + "tcm": 21501, + "tcm": 26588, + "tcmparty": 24338, + "tcot": 8995, + "tcs": 39107, + "tcu": 26791, + "td": 20578, + "td": 3192, + "tdf": 21844, + "tdi": 45621, + "tdp": 47009, + "tds": 20238, + "tdsb": 29836, + "te": 600, + "te": 756, + "tea": 41053, + "tea": 3274, + "teach": 2043, + "teach": 6865, + "teacher": 18051, + "teacher": 4008, + "teachers": 5069, + "teaches": 17110, + "teaching": 5141, + "teachings": 32119, + "teal": 22821, + "team": 2085, + "team": 1027, + "teamcanada": 46636, + "teamed": 20590, + "teamgb": 40971, + "teaming": 24392, + "teammate": 17900, + "teammates": 13921, + "teams": 3891, + "teamsisd": 34703, + "teamusa": 28625, + "teamwork": 14657, + "teaparty": 33065, + "teapo": 35745, + "teapot": 40749, + "tear": 15802, + "tear": 11862, + "tearful": 46873, + "tearing": 24785, + "tears": 7688, + "teas": 23003, + "teas": 29314, + "tease": 25163, + "teased": 49122, + "teaser": 8982, + "teasers": 48990, + "teases": 28509, + "teasing": 36507, + "teat": 26376, + "teatime": 48948, + "teatro": 35756, + "teau": 24931, + "tebow": 37797, + "tec": 17381, + "tec": 11612, + "tech": 1782, + "tech": 2061, + "techcrunch": 42110, + "techn": 6252, + "technews": 31787, + "technic": 16639, + "technic": 37666, + "technical": 49231, + "technical": 7582, + "technically": 23180, + "technician": 22540, + "technicians": 35513, + "techno": 2599, + "techno": 17564, + "technological": 23068, + "technologies": 10040, + "technology": 3089, + "techs": 41353, + "ted": 4841, + "ted": 775, + "tedcruz": 27517, + "teddy": 25758, + "teddy": 11798, + "tedly": 8539, + "tedu": 42517, + "tedx": 17950, + "tedx": 41504, + "tee": 12676, + "tee": 3385, + "teed": 13692, + "teen": 5398, + "teen": 4697, + "teenage": 14069, + "teenager": 19338, + "teenagers": 25989, + "teenchoice": 28203, + "teens": 12375, + "teenth": 20249, + "teenwolf": 40067, + "teeny": 41622, + "teer": 48648, + "tees": 9641, + "teessi": 43295, + "teeth": 8225, + "tega": 29508, + "tegr": 39801, + "teh": 18720, + "teh": 29601, + "tehran": 26399, + "tein": 33223, + "tej": 46724, + "tek": 17489, + "tek": 18294, + "tekken": 29843, + "tel": 4978, + "tel": 2226, + "telang": 23469, + "telangana": 26386, + "tele": 3103, + "tele": 32851, + "telecom": 21057, + "telecommunications": 39900, + "telegram": 26780, + "telegraph": 14713, + "telephone": 17243, + "telescope": 19037, + "telethon": 49266, + "televised": 39470, + "television": 8608, + "telford": 38323, + "tell": 16069, + "tell": 2330, + "teller": 20415, + "tellers": 42707, + "telling": 5507, + "tells": 5217, + "tellu": 42511, + "telly": 31475, + "tels": 43607, + "telugu": 22927, + "tely": 5630, + "tem": 2404, + "tem": 17536, + "tema": 45881, + "teme": 43378, + "temp": 2684, + "temp": 11097, + "tempe": 36723, + "temper": 5981, + "temper": 35521, + "temperature": 9543, + "temperatures": 11575, + "tempered": 40521, + "tempest": 36053, + "templ": 16679, + "template": 18591, + "templates": 30498, + "temple": 21841, + "temple": 5620, + "temples": 24024, + "tempo": 19625, + "tempor": 4858, + "temporal": 43656, + "temporarily": 23189, + "temporary": 6513, + "temps": 11668, + "tempt": 28460, + "temptation": 30118, + "tempted": 26226, + "tempting": 34876, + "ten": 1149, + "ten": 2581, + "tenant": 16954, + "tenants": 26023, + "tenay": 45384, + "tenberg": 31329, + "tend": 17630, + "tend": 21252, + "tendency": 47277, + "tender": 23020, + "tender": 9838, + "tenderloin": 42750, + "tenders": 44741, + "tending": 35084, + "tendon": 48459, + "tends": 39962, + "tene": 24868, + "tened": 13682, + "tener": 29054, + "teneri": 28000, + "tenerife": 29401, + "teners": 41307, + "teness": 18018, + "teng": 34016, + "teng": 28474, + "tennant": 29310, + "tennes": 9514, + "tennessee": 10053, + "tennis": 31504, + "tennis": 5298, + "tenor": 30521, + "tens": 14062, + "tense": 23518, + "tension": 15221, + "tensions": 24224, + "tenstein": 49139, + "tent": 18505, + "tent": 10782, + "tentative": 48238, + "tenth": 27483, + "tention": 12191, + "tents": 30730, + "tenure": 30739, + "teo": 18665, + "tep": 31806, + "tequ": 17502, + "tequila": 18510, + "ter": 704, + "ter": 652, + "tera": 15155, + "teras": 44830, + "tere": 11329, + "tered": 49272, + "tered": 4389, + "terence": 33806, + "teresa": 19081, + "teri": 30917, + "teria": 22685, + "terie": 42276, + "tering": 7929, + "term": 40991, + "term": 4780, + "termin": 4766, + "terminal": 11816, + "terminals": 44091, + "terminator": 29609, + "terminology": 48896, + "terms": 8663, + "tern": 41572, + "tern": 12959, + "terns": 25251, + "tero": 20727, + "tero": 24697, + "terps": 41471, + "terr": 3921, + "terra": 22366, + "terra": 18816, + "terrac": 28549, + "terrace": 13820, + "terraces": 47508, + "terracotta": 45123, + "terrain": 20184, + "terran": 43726, + "terre": 33888, + "terre": 27537, + "terrell": 39494, + "terrence": 38746, + "terrestrial": 46299, + "terri": 4504, + "terri": 36722, + "terrible": 9741, + "terribly": 34558, + "terrier": 14455, + "terriers": 47047, + "terrific": 13837, + "terrified": 28204, + "terrifying": 18526, + "territ": 10720, + "territorial": 39163, + "territories": 32846, + "territory": 13936, + "terror": 9596, + "terror": 9327, + "terrori": 6836, + "terrorism": 10583, + "terrorist": 10575, + "terrorists": 12835, + "terry": 19378, + "terry": 8561, + "ters": 24102, + "ters": 1737, + "terti": 48386, + "tery": 4184, + "tes": 8019, + "tes": 3609, + "tesco": 15434, + "tese": 33320, + "tesla": 12254, + "tess": 21807, + "tess": 20840, + "tessa": 32063, + "test": 7738, + "test": 1628, + "testam": 23477, + "testament": 24609, + "tested": 10576, + "tester": 32707, + "testi": 18373, + "testic": 42364, + "testify": 33088, + "testifying": 46347, + "testim": 12553, + "testimonial": 28834, + "testimony": 18672, + "testing": 4967, + "testo": 42428, + "testosterone": 45168, + "tests": 8715, + "tet": 40468, + "tet": 13275, + "tetra": 40902, + "tetris": 45934, + "teu": 47152, + "teuk": 39979, + "teur": 27120, + "tex": 2056, + "tex": 11728, + "texan": 35287, + "texan": 38386, + "texans": 17580, + "texanscheer": 43717, + "texas": 15713, + "texas": 3403, + "texaste": 46469, + "text": 18169, + "text": 4160, + "textbook": 25952, + "textbooks": 44041, + "texted": 29004, + "textile": 19789, + "textiles": 24326, + "texting": 18600, + "texts": 12767, + "texture": 16505, + "textured": 32168, + "textures": 28063, + "tey": 32395, + "tez": 22664, + "tf": 18828, + "tf": 5001, + "tfc": 30186, + "tfl": 29918, + "tford": 22493, + "tful": 17108, + "tfw": 16741, + "tg": 7665, + "tg": 11981, + "tgif": 14483, + "th": 513, + "th": 640, + "tha": 18470, + "tha": 4715, + "thab": 38219, + "thad": 48339, + "thai": 28054, + "thai": 8825, + "thail": 7258, + "thailand": 7469, + "thak": 22801, + "thakur": 38427, + "thal": 7967, + "thal": 12323, + "thala": 17784, + "thalai": 25206, + "thalaivar": 44918, + "thalap": 39789, + "thalapathy": 45405, + "thalapathy": 23324, + "thall": 36007, + "tham": 11761, + "tham": 8896, + "thames": 43472, + "thames": 15321, + "than": 792, + "than": 1126, + "thand": 44465, + "thane": 21463, + "thang": 24870, + "thani": 31322, + "thank": 2790, + "thank": 1144, + "thanked": 32079, + "thankful": 38839, + "thankful": 6217, + "thankfully": 22089, + "thanking": 21989, + "thanks": 5672, + "thanks": 1085, + "thanksgiving": 45732, + "thanksgiving": 6167, + "thanku": 45710, + "thankyou": 18050, + "thankyou": 9911, + "thanniversary": 35564, + "thanos": 36709, + "thanx": 25095, + "thar": 14396, + "thar": 38843, + "thard": 43474, + "that": 6303, + "that": 682, + "thatcher": 32496, + "thats": 44636, + "thats": 9254, + "thaw": 26081, + "thaw": 47229, + "thbewithyou": 41067, + "thc": 20091, + "thcentury": 49111, + "thd": 28219, + "thday": 37801, + "the": 599, + "the": 518, + "thea": 15935, + "thea": 25429, + "thead": 25259, + "theal": 45728, + "thealth": 31398, + "thear": 43283, + "theart": 44678, + "theast": 8378, + "theastern": 17877, + "theat": 2263, + "theater": 39438, + "theater": 6128, + "theaters": 14689, + "theatre": 19857, + "theatre": 3292, + "theatres": 21680, + "theatrical": 26833, + "theband": 27695, + "thebeatles": 35645, + "thebest": 40883, + "thebest": 25856, + "thebig": 24732, + "theblack": 47718, + "thec": 48659, + "thed": 31405, + "thedaily": 33550, + "theday": 4408, + "thedream": 39417, + "thee": 44475, + "thee": 15108, + "theeconomist": 44518, + "theellenshow": 35342, + "thefilm": 31665, + "theflash": 25434, + "theforce": 40002, + "theforceawakens": 48033, + "theft": 13286, + "thefuture": 34287, + "thegame": 24428, + "thegood": 28594, + "thegreat": 28721, + "thei": 44522, + "their": 911, + "theirs": 29297, + "thel": 5403, + "thelast": 23495, + "thelastjedi": 47992, + "theless": 27712, + "theli": 15277, + "thelittle": 46872, + "thelo": 47036, + "thelove": 40668, + "thelove": 43200, + "them": 5435, + "them": 1180, + "themasters": 48378, + "theme": 38524, + "theme": 5849, + "themed": 10126, + "themes": 17849, + "themet": 48183, + "themovie": 27062, + "themselves": 6503, + "then": 5929, + "then": 1594, + "thenburg": 45209, + "thene": 17012, + "thenew": 24212, + "thenext": 47881, + "thenight": 43336, + "theno": 37172, + "thenorth": 34338, + "theo": 17043, + "theo": 18084, + "theod": 26653, + "theodore": 30743, + "theological": 41162, + "theology": 24095, + "theon": 34653, + "theone": 46231, + "theopen": 41438, + "theore": 22690, + "theoretical": 35585, + "theori": 34804, + "theories": 23937, + "theory": 7143, + "thepeople": 33597, + "thepersonal": 29981, + "thepersonalnetwork": 30016, + "thephoto": 18303, + "thephotohour": 18607, + "ther": 1160, + "ther": 743, + "therap": 4499, + "therapeu": 19332, + "therapeutic": 23240, + "therapeutics": 49101, + "therapies": 30179, + "therapist": 20608, + "therapists": 34763, + "therapper": 49340, + "therapy": 5257, + "there": 5283, + "there": 997, + "thereal": 8074, + "thereal": 41140, + "thereby": 43308, + "thered": 10208, + "therefore": 16865, + "theres": 18494, + "theresa": 14126, + "therese": 47996, + "theresistance": 22845, + "theri": 28967, + "theri": 45297, + "therine": 26807, + "therine": 9239, + "thering": 7891, + "therland": 25351, + "thermal": 13689, + "thermo": 22303, + "thermom": 31138, + "thermometer": 38172, + "thermost": 42391, + "thern": 10919, + "thern": 3137, + "thero": 13165, + "theroad": 29807, + "therock": 30036, + "theroy": 38146, + "thers": 1959, + "thes": 40556, + "thes": 6460, + "thescript": 47061, + "these": 40366, + "these": 1071, + "theses": 39388, + "thesimpsons": 45513, + "thesims": 34192, + "thesis": 10673, + "thessal": 41491, + "thessaloni": 41753, + "thest": 35343, + "thesun": 45617, + "theta": 27694, + "thetic": 7954, + "thetimes": 36039, + "thevamp": 33701, + "thevoice": 47206, + "thevoice": 30258, + "thewalkingdead": 18087, + "thewanted": 43008, + "theworld": 44988, + "theworld": 17475, + "thex": 35990, + "they": 15174, + "they": 889, + "theyre": 28266, + "thfc": 17729, + "thi": 2362, + "thi": 9111, + "thia": 17943, + "thiago": 44537, + "thian": 23214, + "thians": 28187, + "thibau": 48351, + "thic": 26107, + "thic": 11794, + "thick": 18417, + "thick": 11006, + "thicker": 43302, + "thickness": 40754, + "thief": 18508, + "thier": 25595, + "thierry": 32929, + "thieves": 17899, + "thigh": 47124, + "thigh": 22877, + "thighs": 30847, + "thik": 20512, + "thika": 44619, + "thill": 31266, + "thim": 42331, + "thin": 2178, + "thin": 7847, + "thine": 47192, + "thing": 7499, + "thing": 946, + "things": 30670, + "things": 1739, + "thingsto": 43924, + "thingy": 36888, + "think": 9820, + "think": 1331, + "thinkbig": 26015, + "thinkbigsundaywithmarsha": 26666, + "thinker": 34577, + "thinkers": 32779, + "thinkin": 34443, + "thinking": 3291, + "thinks": 6109, + "thinner": 47247, + "thir": 6030, + "third": 32102, + "third": 3981, + "thirds": 42582, + "thirst": 23563, + "thirsty": 39731, + "thirsty": 17521, + "thirteen": 34209, + "thirty": 20813, + "thiru": 43292, + "this": 4340, + "this": 589, + "thisday": 6532, + "thisdayin": 33641, + "thisdayinhistory": 46913, + "thisi": 7299, + "thisis": 14887, + "thismorning": 36245, + "thistle": 29039, + "thistory": 28904, + "thium": 21804, + "thletics": 17765, + "thm": 10407, + "thman": 30079, + "thms": 19874, + "thn": 44155, + "thn": 45587, + "thnx": 25480, + "tho": 1325, + "tho": 5025, + "thof": 18943, + "thofjuly": 21613, + "thol": 29319, + "thole": 31029, + "tholes": 42465, + "thology": 9881, + "thom": 2585, + "thom": 24094, + "thomas": 12574, + "thomas": 3888, + "thome": 21289, + "thomp": 37274, + "thompson": 42181, + "thompson": 8535, + "thomson": 24151, + "thon": 38776, + "thon": 8924, + "thong": 37058, + "thood": 15623, + "thor": 4130, + "thor": 13691, + "thora": 46866, + "thorn": 12957, + "thorn": 18466, + "thorne": 18025, + "thorns": 33650, + "thornton": 23592, + "thorough": 15294, + "thorough": 34788, + "thoroughbred": 43248, + "thoroughly": 19750, + "thorpe": 18099, + "thos": 41965, + "those": 1753, + "thot": 33736, + "thou": 1513, + "thou": 17781, + "though": 2846, + "thought": 23948, + "thought": 2449, + "thoughtful": 19592, + "thoughts": 3618, + "thour": 27125, + "thousand": 9344, + "thousands": 7089, + "thouse": 40318, + "thouse": 7819, + "thoven": 23078, + "thr": 1111, + "thr": 19138, + "thra": 17761, + "thra": 32797, + "thrash": 38262, + "thre": 1607, + "thread": 31108, + "thread": 8815, + "threads": 24957, + "threat": 7527, + "threat": 7212, + "threaten": 26097, + "threatened": 16391, + "threatening": 16400, + "threatens": 20555, + "threats": 12766, + "three": 21615, + "three": 2097, + "thren": 41776, + "thresh": 29779, + "threshold": 33791, + "threw": 12746, + "thri": 8713, + "thrift": 27779, + "thrill": 21023, + "thrilled": 7879, + "thriller": 9653, + "thrilling": 20101, + "thrills": 39829, + "thrive": 17669, + "thriving": 22677, + "thro": 2101, + "thro": 28624, + "throat": 16371, + "thrombo": 47585, + "throne": 15999, + "thrones": 8072, + "throp": 34939, + "throttle": 37139, + "through": 6091, + "through": 1417, + "throughout": 6721, + "throughs": 48278, + "throw": 3315, + "throw": 6293, + "throwback": 6001, + "throwback": 5058, + "throwbackthursday": 6326, + "thrower": 40199, + "throwing": 9734, + "thrown": 15079, + "throws": 14723, + "thru": 23856, + "thru": 6162, + "thrush": 46133, + "thrust": 40202, + "ths": 2079, + "tht": 23554, + "thu": 3837, + "thu": 14153, + "thub": 25660, + "thug": 37212, + "thug": 18137, + "thugs": 27686, + "thul": 28368, + "thulhu": 37560, + "thum": 14679, + "thumb": 19514, + "thumb": 18674, + "thumbnail": 32365, + "thumbs": 17599, + "thun": 32267, + "thunder": 6161, + "thunder": 8951, + "thunderbird": 45131, + "thunderbirds": 44286, + "thunderbolt": 43596, + "thunderstorm": 12005, + "thunderstorms": 19525, + "thunt": 46763, + "thur": 1837, + "thur": 21704, + "thurman": 41291, + "thurs": 9908, + "thursday": 11218, + "thursday": 2221, + "thursdaymotivation": 39375, + "thursdays": 21444, + "thursdaythoughts": 14866, + "thurst": 33970, + "thus": 12457, + "thusi": 9488, + "thwaite": 48469, + "thweeksary": 30871, + "thx": 5913, + "thy": 7804, + "thy": 3362, + "thyme": 29805, + "thyro": 25174, + "thyroid": 32558, + "ti": 555, + "ti": 2605, + "tia": 6709, + "tial": 2826, + "tially": 14503, + "tian": 23011, + "tian": 8125, + "tians": 35182, + "tiara": 38322, + "tib": 47868, + "tibet": 19927, + "tibet": 22234, + "tibetan": 24057, + "tible": 11453, + "tic": 890, + "tic": 1550, + "tica": 9669, + "tical": 34191, + "tical": 4342, + "tically": 13375, + "ticals": 30861, + "tice": 3122, + "tich": 48769, + "tician": 43358, + "ticism": 26491, + "tick": 24640, + "tick": 15617, + "ticket": 25740, + "ticket": 4500, + "ticketing": 44432, + "tickets": 2015, + "ticking": 35842, + "tickle": 42999, + "ticks": 40269, + "tico": 17670, + "ticon": 45996, + "tics": 2419, + "ticul": 15538, + "ticus": 44277, + "tid": 26002, + "tid": 23727, + "tidal": 21949, + "tide": 15698, + "tide": 9105, + "tides": 25524, + "tidy": 23858, + "tie": 14072, + "tie": 3422, + "tied": 9889, + "tiem": 34762, + "tien": 47538, + "tiene": 43438, + "tier": 14390, + "tier": 6598, + "tierney": 45693, + "tiers": 24604, + "ties": 25556, + "ties": 2499, + "tiest": 18300, + "tiesto": 46367, + "tif": 23216, + "tiff": 11112, + "tiff": 20699, + "tiffany": 30467, + "tiffany": 14446, + "tification": 43923, + "tified": 40854, + "tiful": 29123, + "tify": 6677, + "tig": 31999, + "tiger": 11954, + "tiger": 6531, + "tigers": 6934, + "tigh": 31365, + "tight": 25763, + "tight": 9123, + "tighten": 46653, + "tighter": 48193, + "tightly": 37568, + "tights": 29581, + "tijuana": 45273, + "tik": 24986, + "tik": 32403, + "tiki": 30107, + "til": 6124, + "til": 1763, + "tile": 26217, + "tile": 8227, + "tiles": 10607, + "tility": 38180, + "till": 17462, + "till": 4267, + "tilla": 26063, + "tillerson": 47738, + "tilly": 41199, + "tilt": 23601, + "tim": 1292, + "tim": 3863, + "timate": 4754, + "timb": 26627, + "timber": 14441, + "timber": 16246, + "timberlake": 28274, + "timbers": 39911, + "timberwolves": 41190, + "time": 3764, + "time": 788, + "timed": 32727, + "timehop": 19944, + "timel": 23549, + "timelapse": 48154, + "timeless": 15558, + "timeline": 11492, + "timely": 19250, + "timeout": 41536, + "timer": 19725, + "timers": 44574, + "times": 26445, + "times": 1661, + "timesnow": 45487, + "timesof": 32522, + "timesofindia": 44182, + "timetable": 31971, + "timeto": 29187, + "timing": 13624, + "timm": 22444, + "timmy": 33252, + "timo": 13390, + "timo": 33777, + "timothy": 42087, + "timothy": 18560, + "timp": 42166, + "tin": 1310, + "tin": 5420, + "tina": 9257, + "tinder": 24287, + "tine": 22341, + "ting": 7451, + "ting": 694, + "tinged": 44829, + "tings": 35332, + "tini": 26839, + "tink": 39278, + "tinker": 45272, + "tinker": 40910, + "tino": 20538, + "tins": 37359, + "tint": 40497, + "tinted": 42618, + "tiny": 21716, + "tiny": 5591, + "tio": 27562, + "tion": 2274, + "tion": 740, + "tional": 22460, + "tional": 2986, + "tionality": 24514, + "tionally": 12409, + "tionary": 8381, + "tione": 44318, + "tioned": 9083, + "tioning": 15528, + "tionist": 25732, + "tions": 1371, + "tious": 14255, + "tip": 15383, + "tip": 4623, + "tipoff": 44521, + "tipp": 32294, + "tipped": 31878, + "tipper": 38095, + "tipperary": 45612, + "tipping": 27827, + "tips": 3173, + "tipton": 48809, + "tiptuesday": 42112, + "tique": 37772, + "tir": 25467, + "tir": 38462, + "tire": 29128, + "tire": 9362, + "tired": 6533, + "tireless": 39835, + "tirelessly": 41548, + "tires": 15533, + "tiring": 42630, + "tiru": 36033, + "tis": 7839, + "tis": 7394, + "tise": 13745, + "tisgarh": 40538, + "tish": 45148, + "tish": 28784, + "tism": 27113, + "tiss": 28155, + "tissue": 15368, + "tissues": 32172, + "tist": 7902, + "tista": 25580, + "tists": 25944, + "tit": 1991, + "tit": 13202, + "tita": 40936, + "titan": 13496, + "titan": 15516, + "titanic": 20729, + "titanium": 24409, + "titans": 13066, + "titi": 17434, + "titi": 48504, + "title": 28033, + "title": 3644, + "titled": 9939, + "titles": 9780, + "tito": 26838, + "titus": 36102, + "tium": 21975, + "tiv": 1835, + "tiva": 41886, + "tive": 14640, + "tive": 1420, + "tively": 9883, + "tiveness": 20955, + "tives": 7570, + "tivity": 9859, + "tivo": 32162, + "tix": 5835, + "tiz": 19376, + "tj": 18890, + "tj": 18988, + "tk": 22344, + "tk": 20676, + "tko": 37347, + "tks": 38739, + "tl": 14325, + "tl": 8190, + "tland": 30697, + "tlap": 41976, + "tlc": 22047, + "tle": 39141, + "tle": 5825, + "tles": 39363, + "tless": 17427, + "tlot": 41080, + "tls": 47367, + "tly": 37483, + "tly": 1646, + "tm": 9430, + "tm": 7789, + "tman": 20796, + "tmc": 35263, + "tment": 26485, + "tml": 39445, + "tmltalk": 42260, + "tmnt": 32444, + "tmobile": 34901, + "tmr": 35906, + "tmrw": 16496, + "tms": 44496, + "tmund": 23801, + "tmw": 45827, + "tmz": 37248, + "tn": 3827, + "tn": 7248, + "tna": 21150, + "tnam": 8079, + "tner": 34922, + "tness": 35212, + "tney": 9523, + "tng": 35898, + "tnt": 20659, + "tnx": 38220, + "to": 580, + "to": 531, + "toa": 17916, + "toad": 26096, + "toast": 24654, + "toast": 10920, + "toasted": 23533, + "toaster": 39061, + "toasty": 44726, + "tob": 24260, + "tobac": 12611, + "tobacco": 13905, + "tobago": 39482, + "tobe": 17534, + "tobe": 28740, + "tober": 18162, + "tober": 2925, + "toberfest": 26249, + "tobi": 40335, + "tobi": 48374, + "tobias": 32464, + "tobin": 42466, + "toby": 29659, + "toby": 18333, + "toc": 41907, + "toc": 30643, + "tock": 25274, + "tod": 38239, + "tod": 33568, + "toda": 47141, + "todas": 36150, + "today": 11800, + "today": 721, + "todayin": 32957, + "todays": 13513, + "todayshow": 29739, + "todd": 10398, + "todd": 9951, + "toddler": 17772, + "toddlers": 36719, + "toddy": 38926, + "todo": 48857, + "todo": 23087, + "todos": 33355, + "toe": 47756, + "toe": 11344, + "toes": 16511, + "tof": 6659, + "toff": 27319, + "toffee": 34880, + "tofficial": 47953, + "tofthe": 23678, + "toftheday": 20566, + "tofu": 24692, + "tog": 45715, + "toge": 1903, + "together": 17858, + "together": 1952, + "togo": 26729, + "tography": 33968, + "toh": 26851, + "toi": 7472, + "toi": 26941, + "toid": 49124, + "toile": 43148, + "toilet": 11071, + "toilets": 24027, + "toire": 39534, + "tok": 16690, + "tok": 27010, + "token": 32634, + "token": 17134, + "tokens": 23562, + "tokyo": 35038, + "tokyo": 6667, + "tol": 4678, + "tol": 32962, + "told": 3527, + "tole": 15677, + "toledo": 19812, + "toler": 12150, + "tolerance": 20377, + "tolerant": 38536, + "tolerate": 35556, + "tolkien": 32989, + "toll": 44090, + "toll": 14155, + "tollywood": 42016, + "tology": 34799, + "tom": 999, + "tom": 2435, + "toma": 42360, + "toma": 44710, + "tomas": 35944, + "tomas": 27178, + "tomat": 12041, + "tomato": 9867, + "tomatoes": 13004, + "tomb": 37187, + "tomb": 15582, + "tombs": 48613, + "tombstone": 45729, + "tome": 24137, + "tome": 24283, + "tomi": 46290, + "tomlin": 46649, + "tomlinson": 17484, + "tommorow": 42871, + "tommy": 16573, + "tommy": 8876, + "tomo": 31223, + "tomo": 34434, + "tomor": 1277, + "tomorrow": 19728, + "tomorrow": 1293, + "tomorrowland": 34951, + "tomorrows": 32258, + "tomorrowspaper": 35005, + "tomorrowspaperstoday": 35190, + "tomp": 43544, + "tompkins": 49068, + "toms": 10545, + "tomy": 18730, + "ton": 838, + "ton": 917, + "tona": 13459, + "tone": 32366, + "tone": 8408, + "toned": 29426, + "toner": 40614, + "tones": 14744, + "tong": 21510, + "tonga": 37882, + "tongue": 44820, + "tongue": 13626, + "tongues": 39837, + "toni": 17766, + "toni": 17171, + "tonic": 17808, + "tonics": 34647, + "tonight": 1009, + "tonights": 23312, + "tonite": 13449, + "tonka": 42781, + "tonline": 45867, + "tonne": 42450, + "tonnes": 24813, + "tons": 7555, + "tony": 9150, + "tony": 4767, + "tonyawards": 46068, + "too": 1843, + "too": 1256, + "took": 2280, + "tool": 13718, + "tool": 5999, + "toolbox": 46599, + "toolkit": 29849, + "tools": 5771, + "toom": 27550, + "toon": 24664, + "toon": 19701, + "toonami": 48336, + "toons": 35345, + "toor": 42590, + "tooth": 15316, + "tooth": 12030, + "toothbrush": 36841, + "toothpaste": 37322, + "tooting": 42969, + "top": 5534, + "top": 1253, + "topaz": 46125, + "tope": 32149, + "tope": 42239, + "topeka": 46884, + "topia": 29618, + "topic": 8720, + "topical": 37464, + "topics": 11916, + "topless": 37415, + "topo": 23008, + "topoli": 30152, + "topp": 19529, + "topped": 12588, + "topper": 31780, + "toppers": 41651, + "topping": 21071, + "toppings": 47554, + "topps": 20201, + "tops": 8154, + "topshop": 40953, + "topus": 21495, + "tor": 937, + "tor": 1208, + "tora": 45147, + "torah": 37945, + "toral": 45282, + "torch": 31921, + "torch": 15820, + "tore": 38066, + "tore": 19385, + "tored": 38046, + "torg": 33214, + "tori": 17689, + "tori": 17539, + "toria": 23732, + "torial": 28029, + "torian": 48399, + "tories": 14193, + "torino": 29178, + "torio": 34235, + "torn": 8572, + "torn": 18023, + "tornad": 24676, + "tornado": 9062, + "tornadoes": 28254, + "toro": 17892, + "toron": 37407, + "toronto": 16866, + "toronto": 4514, + "torpe": 34093, + "torpedo": 46582, + "torquay": 45738, + "torque": 31940, + "torre": 39563, + "torre": 38009, + "torrent": 42317, + "torrential": 41158, + "torres": 16049, + "tors": 2546, + "tortilla": 32683, + "torto": 24170, + "tortoise": 30178, + "torture": 16013, + "tortured": 29900, + "tory": 29390, + "tory": 4214, + "tos": 6094, + "tosc": 37719, + "tose": 38154, + "tosh": 17109, + "toshi": 31744, + "toss": 19656, + "tossed": 31296, + "tot": 4618, + "tot": 23659, + "total": 13507, + "total": 4445, + "totally": 5440, + "totals": 25772, + "tote": 48145, + "tote": 19031, + "totem": 45376, + "totes": 37199, + "tothe": 12222, + "toto": 39823, + "tots": 24978, + "totten": 14360, + "tottenham": 14889, + "tou": 1879, + "tou": 29261, + "touch": 9480, + "touch": 4526, + "touchdown": 18664, + "touchdowns": 37905, + "touched": 13190, + "touches": 14832, + "touching": 14088, + "touchscreen": 39095, + "tough": 12063, + "tough": 5499, + "tougher": 33722, + "toughest": 23773, + "toughness": 45522, + "toulou": 27145, + "toulouse": 30267, + "tour": 2710, + "tour": 1760, + "tourde": 39247, + "toured": 27654, + "touri": 4224, + "touring": 11853, + "tourism": 23661, + "tourism": 6556, + "tourist": 12123, + "tourists": 15546, + "tournament": 4097, + "tournaments": 23058, + "tourney": 12603, + "tours": 8948, + "tous": 37424, + "tout": 22300, + "touts": 41274, + "tov": 28970, + "tow": 11557, + "tow": 18653, + "toward": 8508, + "towards": 4447, + "towed": 45419, + "towel": 15953, + "towels": 26578, + "tower": 26669, + "tower": 4730, + "towering": 39444, + "towers": 12701, + "towie": 44613, + "towin": 45819, + "towing": 36963, + "town": 4068, + "town": 1605, + "townfc": 33981, + "townhall": 33408, + "townhouse": 40178, + "towns": 14173, + "townsend": 26826, + "township": 14622, + "townsville": 47330, + "towork": 48233, + "tox": 7742, + "tox": 16145, + "toxic": 27436, + "toxic": 12348, + "toxicity": 41234, + "toxin": 48899, + "toxins": 36618, + "toy": 14387, + "toy": 5988, + "toya": 37602, + "toyo": 7644, + "toyota": 8908, + "toys": 39508, + "toys": 7162, + "tp": 23760, + "tp": 15188, + "tpp": 29411, + "tps": 35246, + "tq": 43066, + "tr": 635, + "tr": 6337, + "tra": 752, + "tra": 2483, + "trac": 2266, + "trace": 48611, + "trace": 14767, + "traced": 47956, + "traces": 30913, + "tracey": 25558, + "tracing": 27897, + "track": 10887, + "track": 2700, + "tracked": 27049, + "tracker": 18123, + "tracking": 10428, + "tracklist": 39777, + "tracks": 7579, + "tract": 4690, + "traction": 10644, + "tractor": 14607, + "tractors": 37854, + "tracy": 32984, + "tracy": 15508, + "trad": 48716, + "trad": 38037, + "trade": 10457, + "trade": 3629, + "traded": 18860, + "trademark": 25011, + "trader": 17700, + "traders": 19112, + "trades": 18519, + "trading": 40083, + "trading": 6520, + "tradio": 20689, + "tradition": 20838, + "tradition": 8784, + "traditional": 41113, + "traditional": 5604, + "traditionally": 35532, + "traditions": 18016, + "traf": 3227, + "trafal": 32461, + "trafalgar": 36969, + "traff": 31571, + "traffic": 12080, + "traffic": 3399, + "trafficking": 15983, + "trafford": 22912, + "trage": 12430, + "tragedy": 14082, + "tragic": 14828, + "tragically": 39599, + "trail": 11523, + "trail": 4921, + "trailblazer": 41015, + "trailblazers": 35954, + "trailer": 4700, + "trailers": 24862, + "trailing": 37427, + "trails": 10633, + "train": 9122, + "train": 3231, + "trained": 10874, + "trainee": 25795, + "trainees": 30382, + "trainer": 9767, + "trainers": 18871, + "training": 34508, + "training": 2199, + "trains": 9541, + "trait": 35160, + "traitor": 31760, + "traitors": 42633, + "traits": 25748, + "trajec": 42042, + "trak": 24065, + "tral": 14609, + "tram": 9800, + "tram": 17500, + "tramp": 46289, + "trampol": 32905, + "trampoline": 42800, + "tramrahim": 35220, + "tran": 1357, + "tran": 22031, + "trance": 30584, + "trance": 18671, + "trancefamily": 39630, + "trane": 35779, + "tranqu": 18912, + "tranquil": 35764, + "tranquility": 36688, + "trans": 1826, + "trans": 8126, + "transaction": 24881, + "transactions": 21653, + "transat": 37872, + "transatlantic": 40703, + "transc": 21073, + "transcend": 47087, + "transcript": 39008, + "transcription": 48765, + "transfer": 22659, + "transfer": 7134, + "transferred": 29700, + "transferring": 40924, + "transfers": 21621, + "transform": 8142, + "transform": 12288, + "transformation": 34204, + "transformation": 7832, + "transformational": 47135, + "transformationtuesday": 36511, + "transformative": 38106, + "transformed": 17453, + "transformer": 38235, + "transformers": 17843, + "transforming": 44470, + "transforming": 19251, + "transforms": 30312, + "transgender": 17732, + "transi": 32236, + "transit": 10174, + "transiti": 22939, + "transition": 11391, + "transitional": 41519, + "transitioning": 43586, + "transitions": 39374, + "transl": 12243, + "translate": 22655, + "translated": 20752, + "translates": 36334, + "translating": 42156, + "translation": 12153, + "translations": 41367, + "translator": 36230, + "translucent": 49052, + "transm": 18861, + "transmission": 16103, + "transmitted": 48605, + "transmitter": 40457, + "transp": 11726, + "transpa": 18524, + "transparen": 16108, + "transparency": 16828, + "transparent": 19017, + "transpl": 16038, + "transplant": 41871, + "transplant": 18771, + "transplantation": 45207, + "transpor": 19406, + "transport": 10231, + "transport": 7362, + "transportation": 10911, + "transported": 29089, + "transporter": 43568, + "transporting": 42259, + "trap": 36224, + "trap": 9677, + "trape": 42435, + "trapped": 15592, + "traps": 28517, + "tras": 30638, + "trash": 39215, + "trash": 9798, + "traum": 22263, + "trauma": 13846, + "traumati": 46613, + "traumatic": 29958, + "trav": 7586, + "trav": 46955, + "trave": 35357, + "travel": 2824, + "travel": 1949, + "travelblog": 35957, + "travelblogger": 25494, + "travelchat": 46455, + "traveled": 20384, + "traveler": 17794, + "travelers": 20644, + "travelgram": 40069, + "traveling": 9365, + "travelled": 23428, + "traveller": 22546, + "travellers": 29583, + "travelling": 11190, + "travelphotography": 22808, + "travelpics": 32293, + "travels": 11472, + "traveltips": 36260, + "traveltuesday": 16713, + "traverse": 35058, + "travi": 46971, + "travis": 27441, + "travis": 12287, + "traw": 42288, + "trax": 34421, + "tray": 38470, + "tray": 14621, + "trays": 39798, + "trc": 41803, + "tre": 975, + "tre": 6033, + "treach": 46005, + "tread": 26182, + "tread": 35658, + "treadmill": 37780, + "treas": 8591, + "treason": 28103, + "treasure": 9922, + "treasured": 48068, + "treasurer": 26985, + "treasures": 16500, + "treasury": 20956, + "treat": 3968, + "treat": 3901, + "treated": 9772, + "treating": 13842, + "treatment": 4869, + "treatments": 15839, + "treats": 8878, + "treaty": 19967, + "treble": 33194, + "trecht": 33812, + "tree": 13354, + "tree": 2677, + "treehouse": 42387, + "trees": 4682, + "trek": 13236, + "trek": 8136, + "trekking": 25293, + "trell": 35159, + "tremb": 44043, + "tremend": 14659, + "tremendous": 15988, + "tren": 2579, + "trench": 23846, + "trenches": 38723, + "trend": 19986, + "trend": 6643, + "trending": 6087, + "trends": 7015, + "trendsetter": 46666, + "trendy": 23072, + "trent": 45885, + "trent": 15548, + "trenton": 37470, + "tres": 23569, + "tress": 4733, + "tresses": 24273, + "trevor": 23437, + "trevor": 13219, + "trex": 42114, + "trey": 36670, + "trey": 16939, + "tri": 924, + "tri": 9618, + "triad": 45602, + "trial": 5991, + "trials": 10992, + "triangle": 14615, + "triathlon": 18080, + "trib": 45151, + "tribal": 16629, + "tribe": 19943, + "tribe": 11365, + "tribeca": 35184, + "tribes": 26546, + "tribu": 3028, + "tribun": 14311, + "tribunal": 32911, + "tribune": 18556, + "tribute": 5493, + "tributes": 15537, + "tric": 9511, + "tric": 4081, + "trich": 39519, + "trick": 17177, + "trick": 8172, + "tricks": 13177, + "tricky": 22319, + "trics": 31437, + "trident": 35491, + "tridge": 18722, + "tried": 4554, + "tries": 4315, + "trife": 48962, + "trigge": 30509, + "trigger": 16158, + "triggered": 30924, + "triggers": 37319, + "tright": 29915, + "tril": 40626, + "trill": 39297, + "trilli": 39350, + "trillion": 20160, + "trilo": 15183, + "trilogy": 16862, + "trim": 14182, + "trimmed": 40657, + "trin": 6628, + "trinidad": 26244, + "trinity": 30744, + "trinity": 12267, + "trio": 10263, + "trip": 23421, + "trip": 2529, + "tripad": 37189, + "tripadvisor": 38708, + "triple": 16519, + "triple": 7673, + "triplets": 48601, + "tripod": 36141, + "tripoli": 40095, + "trippin": 43073, + "tripping": 35229, + "trippy": 35137, + "trips": 12292, + "tris": 29690, + "trish": 40511, + "trish": 37179, + "trisha": 39152, + "tristan": 25497, + "trit": 37087, + "triton": 45437, + "triu": 14782, + "trium": 21065, + "triumph": 26507, + "triumph": 15307, + "triumphant": 41918, + "trivi": 21228, + "trivia": 10642, + "triviatuesday": 45499, + "trix": 41017, + "tro": 1046, + "tro": 3332, + "trock": 44368, + "trojan": 30653, + "trojans": 25310, + "trol": 10306, + "troll": 39737, + "troll": 17103, + "trolley": 25124, + "trolling": 28552, + "trolls": 20890, + "tromb": 32390, + "trombone": 44423, + "tron": 19057, + "tron": 10684, + "tronic": 34258, + "tronics": 34397, + "troom": 23691, + "troop": 12492, + "troop": 24054, + "trooper": 18327, + "troopers": 23576, + "troops": 10109, + "trop": 31585, + "trope": 41150, + "trophies": 20998, + "trophy": 42676, + "trophy": 6502, + "tropic": 21794, + "tropic": 36736, + "tropical": 41699, + "tropical": 8686, + "tropics": 36940, + "tros": 40456, + "trose": 36022, + "trot": 30453, + "trotter": 38287, + "trou": 5181, + "troubad": 49037, + "trouble": 25669, + "trouble": 7848, + "troubled": 25568, + "troubles": 27254, + "trough": 39761, + "troupe": 34803, + "trous": 19727, + "trousers": 23172, + "trout": 14853, + "trove": 45350, + "trow": 46914, + "troy": 26283, + "troy": 12819, + "trs": 24770, + "tru": 931, + "tru": 25326, + "truck": 14781, + "truck": 4629, + "trucker": 45918, + "truckers": 43404, + "trucking": 26208, + "trucks": 9569, + "trude": 39017, + "trudeau": 15752, + "true": 13096, + "true": 2328, + "truec": 37583, + "truelove": 45711, + "truffle": 23064, + "truffles": 37057, + "truly": 4545, + "trum": 11766, + "trum": 11399, + "truman": 29414, + "trump": 9124, + "trump": 1797, + "trumpet": 23681, + "trumpp": 45550, + "trumprussia": 39135, + "trumps": 29793, + "trumptrain": 43595, + "trun": 16163, + "trun": 46661, + "trunk": 18347, + "trunks": 38531, + "truro": 43507, + "truss": 46080, + "trust": 17691, + "trust": 3876, + "truste": 17356, + "trusted": 16538, + "trustee": 30803, + "trustees": 28853, + "trusting": 33221, + "trusts": 27507, + "trustworthy": 46840, + "trusty": 37955, + "truth": 21335, + "truth": 4319, + "truths": 27179, + "trx": 31620, + "try": 4487, + "try": 1209, + "tryin": 31085, + "trying": 2551, + "tryna": 15702, + "tryout": 43832, + "tryouts": 28053, + "ts": 2290, + "ts": 590, + "tsa": 25977, + "tsal": 20438, + "tsb": 45015, + "tsc": 37437, + "tsch": 38778, + "tsd": 20611, + "tse": 49144, + "tsfor": 42654, + "tsford": 32823, + "tsh": 42872, + "tshirt": 14907, + "tshirts": 29377, + "tsi": 40048, + "tsi": 37867, + "tsk": 43600, + "tsla": 35681, + "tsm": 43452, + "tsman": 20046, + "tsn": 44921, + "tsn": 26896, + "tson": 42353, + "tson": 47140, + "tsp": 34230, + "tsu": 13950, + "tsu": 20175, + "tsun": 19155, + "tsunami": 24286, + "tsville": 29080, + "tt": 971, + "tt": 1402, + "tta": 2646, + "ttc": 27668, + "tte": 23105, + "tte": 3070, + "tted": 15163, + "tten": 11351, + "tten": 17479, + "tter": 18691, + "tter": 5165, + "tters": 6318, + "ttes": 9293, + "tti": 5237, + "ttin": 36589, + "tting": 1188, + "ttino": 47389, + "ttip": 46993, + "ttle": 9253, + "ttm": 46838, + "tto": 8759, + "tto": 8105, + "tton": 10562, + "ttot": 12480, + "ttp": 30828, + "ttr": 47589, + "tts": 11570, + "ttt": 17256, + "tttt": 33119, + "ttu": 44006, + "ttv": 24281, + "tty": 11457, + "tty": 1856, + "tu": 764, + "tu": 5760, + "tua": 41344, + "tual": 4799, + "tuan": 37297, + "tub": 34907, + "tub": 15450, + "tube": 38229, + "tube": 3308, + "tuber": 30371, + "tuberculo": 42606, + "tuberculosis": 43129, + "tubes": 22870, + "tubing": 40794, + "tubs": 41705, + "tubular": 48786, + "tuc": 14456, + "tuc": 43871, + "tuck": 22398, + "tucked": 26923, + "tucker": 39703, + "tucker": 15726, + "tucket": 32677, + "tucson": 17250, + "tudor": 24547, + "tue": 17515, + "tues": 2283, + "tues": 12113, + "tuesday": 10209, + "tuesday": 2519, + "tuesdaymotivation": 25432, + "tuesdays": 23195, + "tuesdaythoughts": 17988, + "tuf": 44510, + "tuff": 38868, + "tug": 47032, + "tug": 27902, + "tuition": 21129, + "tuk": 39271, + "tuk": 14993, + "tul": 9069, + "tul": 40837, + "tula": 36332, + "tulane": 44893, + "tulip": 28389, + "tulips": 30886, + "tulsa": 18850, + "tum": 12932, + "tum": 8843, + "tumb": 8831, + "tumble": 38284, + "tumbler": 48790, + "tumbling": 46226, + "tumblr": 11841, + "tummy": 26053, + "tumor": 22616, + "tumors": 39894, + "tumour": 45129, + "tun": 1415, + "tun": 21349, + "tuna": 15037, + "tundra": 39899, + "tune": 11427, + "tune": 3300, + "tuned": 5898, + "tunein": 16809, + "tuner": 42905, + "tunes": 31688, + "tunes": 10810, + "tunesapp": 32550, + "tung": 47940, + "tung": 31092, + "tuni": 16270, + "tunic": 43495, + "tuning": 19585, + "tunisia": 23346, + "tunnel": 11096, + "tunnels": 29814, + "tuous": 28738, + "tup": 37956, + "tup": 4507, + "tupac": 31506, + "tups": 44855, + "tur": 985, + "tur": 17182, + "tura": 16127, + "tural": 45143, + "tural": 4261, + "turb": 18973, + "turban": 48515, + "turbine": 26880, + "turbines": 38863, + "turbo": 23578, + "turbo": 13668, + "turbul": 31100, + "turbulent": 47871, + "ture": 4321, + "ture": 941, + "tured": 3987, + "turer": 11993, + "turers": 16956, + "tures": 2400, + "turf": 36762, + "turf": 12510, + "turi": 11896, + "turin": 36251, + "turing": 5812, + "turismo": 30202, + "turk": 8254, + "turk": 32507, + "turkey": 35977, + "turkey": 4790, + "turkeys": 37991, + "turkish": 48199, + "turkish": 9278, + "turks": 34344, + "turmeric": 34044, + "turmoil": 37751, + "turn": 5522, + "turn": 2105, + "turnaround": 32719, + "turnbull": 27863, + "turned": 3771, + "turner": 42867, + "turner": 8777, + "turning": 4976, + "turno": 21377, + "turnout": 11654, + "turnover": 30794, + "turnpike": 38301, + "turns": 3185, + "turnt": 28887, + "turntable": 37953, + "turnup": 30591, + "turo": 29224, + "turquo": 19390, + "turquoise": 19899, + "turt": 13716, + "turtle": 35943, + "turtle": 10912, + "turtles": 17862, + "tus": 24828, + "tus": 7079, + "tusc": 17909, + "tuscal": 42638, + "tuscaloosa": 44375, + "tuscan": 42865, + "tuscany": 20885, + "tuss": 31741, + "tut": 35121, + "tutor": 10054, + "tutor": 27858, + "tutorial": 12857, + "tutorials": 30973, + "tutoring": 37532, + "tutti": 46880, + "tutu": 35845, + "tux": 28720, + "tux": 49186, + "tuxedo": 40173, + "tv": 3197, + "tv": 1583, + "tvc": 49190, + "tvd": 25889, + "tvmiaw": 38554, + "tvn": 44232, + "tvs": 27114, + "tvtime": 19947, + "tvxq": 43968, + "tw": 966, + "tw": 12842, + "twa": 46954, + "twain": 30689, + "twal": 48126, + "tware": 5707, + "twc": 41217, + "twd": 29440, + "twd": 19343, + "twdfamily": 38218, + "twe": 18365, + "tweak": 48870, + "tweaks": 42661, + "twee": 1330, + "tweed": 26904, + "tweeps": 14928, + "tweet": 11826, + "tweet": 1842, + "tweeta": 32024, + "tweetapicture": 40596, + "tweeted": 7841, + "tweeter": 32876, + "tweeters": 31713, + "tweeting": 8901, + "tweets": 3560, + "tweetyour": 45033, + "twel": 14476, + "twelf": 39443, + "twelfth": 44072, + "twell": 38722, + "twell": 30162, + "twelve": 19694, + "twent": 27027, + "twenti": 35167, + "twenty": 13016, + "twentyon": 39609, + "twentyonepilots": 40007, + "twer": 13923, + "twerk": 28506, + "twi": 5537, + "twice": 6970, + "twick": 34326, + "twickenham": 39619, + "twil": 12804, + "twili": 35754, + "twilight": 46366, + "twilight": 14512, + "twill": 43703, + "twin": 9342, + "twin": 6769, + "twine": 42775, + "twinkle": 36545, + "twinning": 30156, + "twinpeaks": 32042, + "twins": 8040, + "twist": 10589, + "twisted": 18233, + "twister": 45933, + "twists": 34149, + "twit": 1643, + "twit": 18704, + "twitart": 27709, + "twitch": 13251, + "twitch": 9153, + "twitter": 7546, + "twitter": 1989, + "twitterkurds": 32722, + "twitterstorians": 35389, + "two": 17211, + "two": 1237, + "twol": 31964, + "twood": 40404, + "twood": 13245, + "twp": 33283, + "twright": 46778, + "twt": 6825, + "twx": 26830, + "twy": 45861, + "tx": 6636, + "tx": 5200, + "txhsfb": 34757, + "txlege": 26995, + "txst": 40761, + "txt": 24595, + "txwx": 22995, + "ty": 1260, + "ty": 744, + "tya": 41273, + "tycoon": 36803, + "tye": 43097, + "tyfree": 41215, + "tyga": 41952, + "tying": 22559, + "tyl": 47537, + "tyler": 14787, + "tyler": 7058, + "tym": 45772, + "tyne": 27000, + "tyne": 29729, + "tyour": 16823, + "type": 15673, + "type": 3877, + "typed": 40753, + "typeface": 44969, + "types": 7543, + "typewriter": 42180, + "typho": 17486, + "typhoon": 21110, + "typic": 21648, + "typical": 9854, + "typically": 23175, + "typing": 20102, + "typo": 18831, + "typo": 29076, + "typography": 24332, + "tyr": 15590, + "tyran": 46921, + "tyranny": 35402, + "tyre": 38330, + "tyre": 16864, + "tyres": 21376, + "tyrone": 30226, + "tyson": 16616, + "tz": 7710, + "tz": 4983, + "tzer": 45267, + "tzky": 47127, + "tzman": 46032, + "tzu": 34354, + "té": 27208, + "té": 39694, + "u": 84, + "u": 340, + "ua": 34075, + "ua": 8441, + "uaap": 46753, + "uaap": 43774, + "uab": 35587, + "uae": 9752, + "ual": 1921, + "ually": 10767, + "uan": 33062, + "uas": 38339, + "uav": 30303, + "ub": 18430, + "ub": 13494, + "uba": 29768, + "ubc": 42479, + "ubc": 29455, + "ube": 30892, + "uber": 25896, + "uber": 10668, + "ubi": 26758, + "ubio": 32867, + "ubiquit": 48129, + "ubis": 28248, + "ubisoft": 32051, + "ubs": 43851, + "ubun": 28184, + "ubuntu": 30791, + "uc": 4903, + "uc": 12438, + "uca": 30942, + "ucc": 44844, + "ucc": 29138, + "ucci": 30746, + "uccino": 30409, + "ucd": 44746, + "ucd": 43514, + "ucf": 24414, + "uch": 19465, + "uch": 22394, + "uchi": 37473, + "uci": 46354, + "uci": 28925, + "uck": 34189, + "ucl": 12013, + "ucl": 13647, + "ucla": 37667, + "ucla": 17259, + "ucn": 49036, + "uconn": 30549, + "ud": 6560, + "ud": 5765, + "uda": 22800, + "udaipur": 49385, + "uddin": 43035, + "ude": 37016, + "ude": 35194, + "ue": 16696, + "ue": 1190, + "uefa": 19189, + "uel": 24231, + "uer": 45951, + "ues": 2526, + "uf": 17777, + "uf": 19230, + "ufc": 20396, + "ufc": 6490, + "uff": 45701, + "ufo": 19443, + "ufos": 48234, + "ug": 3754, + "ug": 16061, + "uga": 16056, + "ugand": 25965, + "uganda": 11125, + "ugandan": 44206, + "ugby": 30658, + "ugh": 39736, + "ugh": 12755, + "ugliest": 43543, + "ugly": 36070, + "ugly": 8159, + "ugu": 18144, + "uh": 17661, + "uh": 9219, + "uhc": 44974, + "uhh": 35938, + "uhhh": 45270, + "uhm": 35614, + "uhur": 29434, + "uhuru": 35690, + "ui": 17326, + "ui": 11458, + "uil": 29395, + "uit": 30696, + "uit": 47584, + "uj": 33266, + "uji": 39672, + "uk": 2294, + "uk": 1432, + "uka": 23294, + "uke": 48836, + "uke": 28577, + "uked": 48987, + "uki": 37435, + "uki": 9009, + "ukin": 34996, + "ukip": 20360, + "uklabour": 36902, + "ukmfg": 38764, + "uko": 33562, + "ukone": 24682, + "ukrain": 15468, + "ukraine": 7768, + "ukrainian": 16927, + "ukrunchat": 34481, + "uku": 29541, + "uku": 36082, + "ukulele": 39094, + "ul": 914, + "ul": 6625, + "ula": 34104, + "ula": 9506, + "ular": 4927, + "ulary": 21701, + "ulate": 20467, + "ulation": 32896, + "ule": 35616, + "ules": 26274, + "ulf": 49331, + "uli": 41841, + "uli": 22174, + "ull": 33254, + "ulla": 30577, + "ullah": 45310, + "ullivan": 45252, + "ulls": 37418, + "ulo": 46084, + "ulo": 36738, + "ulous": 42490, + "ulous": 4281, + "ulously": 20167, + "ulster": 29709, + "ulster": 24639, + "ult": 4380, + "ulti": 11925, + "ulties": 21884, + "ultimat": 16522, + "ultimate": 34684, + "ultimate": 5377, + "ultimatefan": 48372, + "ultimatefanlive": 48644, + "ultimately": 23023, + "ultr": 25636, + "ultra": 11398, + "ultra": 8118, + "ultram": 44519, + "ultrasound": 29717, + "ulture": 22272, + "ulty": 8036, + "ulu": 41815, + "ulu": 15659, + "ulum": 17235, + "uly": 33220, + "ulysses": 46114, + "um": 1622, + "um": 1008, + "uma": 29982, + "uma": 9256, + "uman": 27112, + "umar": 25656, + "umass": 39390, + "umatic": 45006, + "umb": 7493, + "umber": 19195, + "umbrel": 34773, + "umbrella": 17143, + "umbrellas": 42782, + "umbria": 39287, + "umc": 39491, + "umd": 42067, + "ume": 38480, + "umen": 42832, + "uments": 25924, + "umer": 23539, + "umes": 21403, + "umi": 48772, + "umi": 15458, + "umich": 41294, + "umin": 31542, + "umm": 26129, + "umm": 21215, + "ummer": 47628, + "ummm": 33665, + "umni": 31739, + "ump": 22224, + "umpire": 36214, + "ums": 8643, + "umu": 39788, + "un": 569, + "un": 2271, + "una": 6385, + "unable": 17793, + "unacceptable": 25234, + "unanim": 20800, + "unanimous": 33520, + "unanimously": 31798, + "unanswered": 43611, + "unarmed": 41541, + "unas": 41366, + "unavailable": 48430, + "unaware": 33347, + "unbeat": 37056, + "unbeatable": 40267, + "unbeaten": 19228, + "unbeliev": 11383, + "unbelievable": 13306, + "unbelievably": 33781, + "unborn": 37257, + "unboxing": 32866, + "unbreakable": 32956, + "unbroken": 49271, + "unc": 24921, + "unc": 15322, + "uncanny": 32556, + "uncertain": 30384, + "uncertainty": 23956, + "unch": 1527, + "unchanged": 34272, + "uncharted": 34560, + "unci": 25521, + "unciation": 34117, + "uncle": 31537, + "uncle": 8002, + "unclear": 32955, + "uncles": 45335, + "uncomfortable": 22470, + "uncommon": 34888, + "uncondition": 46561, + "unconditional": 31112, + "unconscious": 34791, + "unconstitutional": 43585, + "unconventional": 39440, + "uncover": 33031, + "uncovered": 28234, + "uncture": 38736, + "uncut": 41056, + "und": 9762, + "und": 9732, + "unda": 39932, + "undant": 25377, + "unday": 29338, + "unde": 45226, + "undead": 40105, + "undecided": 49368, + "undefeated": 15326, + "undeni": 38424, + "under": 1473, + "under": 1798, + "underage": 45669, + "underattack": 35075, + "undercover": 21595, + "underdog": 44266, + "undere": 21675, + "underestim": 23348, + "underestimate": 31794, + "undergo": 31545, + "undergoing": 26419, + "undergrad": 38331, + "undergraduate": 24320, + "underground": 9396, + "undering": 30826, + "underlying": 31812, + "undermine": 42839, + "underneath": 20857, + "underrated": 19494, + "unders": 20376, + "understand": 47582, + "understand": 4600, + "understanding": 7522, + "understands": 21607, + "understatement": 38296, + "understood": 17303, + "undertaker": 40144, + "undertaking": 49067, + "undertale": 48283, + "underthe": 41161, + "underwater": 14760, + "underway": 6273, + "underwear": 21154, + "underwood": 21474, + "underworld": 34760, + "undi": 23845, + "undisclosed": 39334, + "undo": 35454, + "undocumented": 35414, + "undoub": 38836, + "undoubtedly": 42204, + "undp": 26691, + "une": 4522, + "une": 10966, + "unearth": 32716, + "unearthed": 36632, + "unemp": 15139, + "unemployed": 32721, + "unemployment": 19350, + "unes": 6394, + "unesco": 16216, + "uneven": 43204, + "unex": 9484, + "unexpe": 10802, + "unexpec": 31829, + "unexpected": 12293, + "unexpectedly": 35622, + "unf": 29285, + "unfair": 22193, + "unfinished": 26526, + "unfit": 45367, + "unfold": 38681, + "unfollow": 38797, + "unfor": 14010, + "unforgettable": 16173, + "unfortun": 10194, + "unfortunate": 22361, + "unfortunately": 12863, + "unfpa": 45048, + "ung": 10439, + "ung": 4334, + "unga": 19151, + "ungsoo": 25582, + "unh": 25365, + "unhappy": 26528, + "unhcr": 43451, + "unhealthy": 30994, + "uni": 1107, + "uni": 5926, + "unic": 7648, + "unicef": 38286, + "unicef": 19259, + "unicorn": 15660, + "unicorns": 35183, + "unidenti": 33707, + "unidentified": 35563, + "unification": 45036, + "unified": 20876, + "uniform": 11075, + "uniforms": 17838, + "unil": 32388, + "unilever": 48654, + "uniof": 21218, + "union": 14210, + "union": 3503, + "unions": 18353, + "unis": 30482, + "unis": 39266, + "unisex": 27609, + "unison": 46694, + "unit": 28522, + "unit": 5695, + "unite": 15078, + "unite": 11305, + "uniteblue": 20935, + "united": 10898, + "united": 2690, + "unitedstates": 39636, + "unitedway": 47486, + "unites": 32061, + "uniting": 31318, + "units": 10394, + "unity": 38300, + "unity": 8581, + "univ": 36680, + "univ": 14896, + "univer": 15574, + "univers": 5855, + "universal": 19148, + "universal": 8754, + "universe": 6104, + "universi": 41692, + "universit": 26019, + "universities": 16408, + "university": 40728, + "university": 2182, + "universityof": 46158, + "unk": 5542, + "unknown": 8685, + "unl": 43807, + "unlawful": 42305, + "unle": 19677, + "unlea": 23893, + "unleash": 26706, + "unleashed": 27955, + "unless": 10602, + "unlike": 16694, + "unlikely": 18904, + "unlimited": 11015, + "unlock": 18649, + "unlocked": 16770, + "unlocking": 40810, + "unlucky": 35029, + "unlv": 42283, + "unmanned": 36751, + "unmatched": 46054, + "unn": 38364, + "unnamed": 44985, + "unnecessary": 24100, + "unner": 31481, + "unning": 43282, + "unnoticed": 42807, + "uno": 32446, + "uno": 17078, + "unofficial": 22506, + "unpacking": 43589, + "unpaid": 32811, + "unparalleled": 44396, + "unplugged": 31724, + "unpopular": 40232, + "unprece": 23054, + "unprecedented": 23344, + "unpredictable": 38684, + "unra": 45150, + "unreal": 46980, + "unreal": 15636, + "unrelated": 38644, + "unreleased": 29654, + "unrest": 36452, + "uns": 25908, + "unsafe": 32071, + "unsc": 36395, + "unseen": 19069, + "unsigned": 39346, + "unsolved": 40836, + "unsplash": 46196, + "unstable": 34730, + "unstopp": 22105, + "unstoppable": 23484, + "unsuccessful": 47478, + "unsung": 33015, + "unsure": 26396, + "unt": 19654, + "unt": 6537, + "until": 1942, + "untitled": 21309, + "unto": 19801, + "untold": 32206, + "untouch": 44509, + "untouched": 42764, + "unused": 29636, + "unusual": 12613, + "unusually": 36465, + "unve": 6685, + "unveil": 20483, + "unveiled": 13572, + "unveiling": 20327, + "unveils": 15057, + "unwanted": 25285, + "unwind": 34064, + "unya": 37142, + "uo": 30874, + "uo": 36162, + "uof": 11155, + "uoft": 37329, + "uon": 48144, + "uous": 40185, + "up": 1083, + "up": 705, + "upa": 31727, + "upbeat": 39201, + "upcoming": 4196, + "upcycled": 46552, + "upd": 3226, + "update": 2491, + "updated": 5974, + "updates": 4904, + "updating": 22792, + "uper": 38082, + "uper": 33056, + "upfront": 42064, + "upgrade": 10365, + "upgraded": 18577, + "upgrades": 21253, + "upgrading": 34368, + "uph": 14128, + "uphill": 42767, + "uphol": 26195, + "uphold": 43897, + "upholstery": 44556, + "upl": 41939, + "uplift": 45389, + "uplifting": 29546, + "upload": 13968, + "uploaded": 16793, + "uploading": 30145, + "upon": 23524, + "upon": 5067, + "upp": 19549, + "upp": 45946, + "upper": 22465, + "upper": 7067, + "upri": 15982, + "upright": 29818, + "uprising": 26006, + "upro": 28922, + "ups": 6926, + "upscale": 47501, + "upset": 11214, + "upsets": 42637, + "upside": 15362, + "upstairs": 21387, + "upstate": 33335, + "upstream": 45517, + "upthe": 31510, + "upto": 26575, + "upton": 31910, + "uptown": 23807, + "upward": 32526, + "upwards": 34915, + "uq": 39591, + "ur": 565, + "ur": 1775, + "ura": 29337, + "ura": 3544, + "urable": 40194, + "ural": 23547, + "ural": 33948, + "uran": 16197, + "uranium": 29850, + "urban": 7931, + "urban": 5800, + "urbanart": 40834, + "urd": 47880, + "urday": 19742, + "urdu": 29976, + "ure": 5514, + "ure": 726, + "ured": 4210, + "urer": 20864, + "ures": 2288, + "urg": 35995, + "urge": 14852, + "urged": 23790, + "urgency": 47612, + "urgent": 13693, + "urgently": 34534, + "urges": 16692, + "urging": 27748, + "uri": 11052, + "uri": 8699, + "urie": 46429, + "urin": 45245, + "urine": 28864, + "uring": 1351, + "url": 23464, + "urn": 38075, + "uro": 17343, + "uro": 5925, + "urology": 48585, + "urope": 14918, + "urs": 4794, + "urself": 31942, + "urst": 19181, + "urstruly": 34751, + "urstrulymahesh": 35314, + "ursula": 38390, + "urt": 24309, + "uru": 16322, + "uru": 11768, + "uruguay": 27931, + "urus": 14246, + "urve": 24583, + "ury": 8642, + "ury": 2106, + "us": 904, + "us": 718, + "usa": 9491, + "usa": 2547, + "usability": 46736, + "usable": 22890, + "usaf": 25017, + "usage": 19137, + "usaid": 34507, + "usair": 36742, + "usairforce": 42179, + "usarmy": 19132, + "usatoday": 40263, + "usav": 36056, + "usb": 10281, + "usc": 13346, + "usc": 14995, + "uscg": 43932, + "usd": 7485, + "usda": 25829, + "use": 4419, + "use": 1483, + "used": 32289, + "used": 2026, + "useful": 9784, + "useless": 20154, + "usemb": 39700, + "user": 21248, + "user": 7031, + "username": 28162, + "users": 7433, + "uses": 5282, + "useum": 45189, + "usf": 32385, + "usf": 28942, + "usgs": 35103, + "ush": 12001, + "ush": 18335, + "usher": 27411, + "ushi": 47734, + "usi": 25540, + "usic": 34909, + "usic": 16753, + "using": 1996, + "usky": 45778, + "usl": 42113, + "usm": 40041, + "usmc": 21678, + "usmnt": 30662, + "usn": 40579, + "usnavy": 24500, + "usnews": 43752, + "uso": 21539, + "usopen": 21782, + "usp": 26651, + "usps": 39980, + "usrc": 33274, + "uss": 11545, + "uss": 9260, + "ussia": 29553, + "ussoccer": 42828, + "ussr": 32697, + "ust": 35501, + "ust": 24725, + "usu": 4254, + "usu": 40434, + "usual": 6129, + "usually": 8296, + "usur": 45582, + "uswnt": 35255, + "ut": 1419, + "ut": 3641, + "uta": 42706, + "uta": 25925, + "utah": 27474, + "utah": 9312, + "utc": 18196, + "utd": 10493, + "ute": 16856, + "ute": 3130, + "uten": 32089, + "uter": 39197, + "utes": 2850, + "uth": 48819, + "uth": 44750, + "uti": 24568, + "util": 28824, + "utili": 17015, + "utilities": 27210, + "utility": 14941, + "utilize": 36861, + "utilized": 47604, + "utilizing": 40212, + "utm": 47853, + "utmost": 42352, + "uto": 18866, + "uto": 13683, + "utopia": 34433, + "utpol": 42605, + "utr": 48726, + "utrecht": 37216, + "uts": 11740, + "utsa": 37528, + "utt": 17096, + "uttar": 40168, + "uttarak": 33755, + "uttarakhand": 35655, + "utter": 18769, + "utter": 24558, + "utterly": 21353, + "utto": 42183, + "utv": 36351, + "utz": 45320, + "uu": 5702, + "uu": 14553, + "uuu": 44355, + "uuu": 27656, + "uuuu": 16720, + "uuuu": 40797, + "uv": 23777, + "uv": 15977, + "uva": 23908, + "uw": 13933, + "uw": 19166, + "uwe": 48785, + "uwu": 35544, + "ux": 9251, + "ux": 6213, + "uy": 31929, + "uy": 48113, + "uz": 19398, + "uz": 36991, + "uzbe": 43007, + "uzbekistan": 45024, + "uzzi": 48210, + "v": 85, + "v": 341, + "va": 4648, + "va": 1892, + "vaa": 37488, + "vable": 23088, + "vac": 3125, + "vac": 34085, + "vaca": 48215, + "vacancies": 26333, + "vacancy": 21247, + "vacant": 25262, + "vacation": 28336, + "vacation": 6561, + "vacations": 29002, + "vacay": 44716, + "vacc": 13342, + "vaccin": 19164, + "vaccinated": 48134, + "vaccination": 32518, + "vaccine": 47780, + "vaccine": 17493, + "vaccines": 25860, + "vach": 46211, + "vacu": 16058, + "vacuum": 18420, + "vad": 11880, + "vada": 46759, + "vader": 21908, + "vae": 39384, + "vag": 13015, + "vague": 42154, + "vah": 26921, + "vai": 26893, + "vai": 36802, + "vail": 21189, + "vain": 25538, + "vais": 28719, + "vaj": 34206, + "vak": 16288, + "vak": 41597, + "val": 1214, + "val": 1560, + "vala": 48525, + "valdez": 40617, + "vale": 35554, + "vale": 10820, + "valedic": 43525, + "valen": 12630, + "valence": 30225, + "valenci": 34183, + "valencia": 16559, + "valent": 3655, + "valent": 15300, + "valentin": 48631, + "valentina": 43741, + "valentine": 11208, + "valentine": 5876, + "valentines": 10259, + "valentinesday": 12369, + "valentino": 29624, + "valeri": 31951, + "valerie": 25592, + "valet": 45749, + "vali": 8230, + "valiant": 33804, + "valid": 15126, + "validation": 32536, + "valkyrie": 42326, + "vall": 23523, + "vall": 35295, + "vallarta": 47874, + "valle": 24857, + "valle": 29105, + "valley": 18354, + "valley": 3136, + "valleys": 28649, + "valor": 30930, + "vals": 7431, + "valu": 6291, + "valuable": 10056, + "valuation": 25894, + "value": 41358, + "value": 4602, + "valued": 17801, + "values": 8857, + "valve": 17001, + "valves": 33517, + "vam": 9983, + "vamo": 46718, + "vamos": 30346, + "vamp": 10680, + "vampi": 47017, + "vampire": 47576, + "vampire": 13220, + "vampires": 30868, + "vamps": 44810, + "van": 2446, + "van": 2451, + "vana": 20543, + "vanc": 6320, + "vance": 31447, + "vancou": 6750, + "vancouver": 31904, + "vancouver": 7208, + "vand": 11691, + "vandalism": 45664, + "vander": 16264, + "vanderbilt": 33524, + "vandy": 39268, + "vane": 43828, + "vaness": 13328, + "vanessa": 16836, + "vangogh": 47849, + "vanguard": 27916, + "vani": 15396, + "vani": 26459, + "vania": 10998, + "vanilla": 11974, + "vanished": 43783, + "vanishing": 48296, + "vanity": 48353, + "vanity": 22938, + "vans": 11711, + "vant": 26298, + "vantage": 31749, + "vanu": 42892, + "vanuatu": 48766, + "vap": 10462, + "vape": 25423, + "vape": 20219, + "vaping": 29403, + "vapor": 37167, + "vapor": 30729, + "vapori": 46183, + "var": 3187, + "var": 12998, + "vara": 47492, + "varan": 36585, + "varanasi": 39364, + "vard": 21866, + "vard": 8773, + "vardy": 47371, + "vare": 38159, + "vares": 42895, + "vargas": 32752, + "vari": 3354, + "variable": 26416, + "varian": 34334, + "variant": 20293, + "variants": 38312, + "variation": 26420, + "variations": 29025, + "varied": 32334, + "varies": 32543, + "varieties": 23805, + "variety": 8396, + "various": 7395, + "varsity": 43716, + "varsity": 8574, + "varun": 48120, + "varun": 22069, + "vary": 18855, + "varying": 36456, + "vas": 5669, + "vas": 5995, + "vasc": 40995, + "vascular": 19218, + "vase": 20431, + "vasi": 49092, + "vast": 24413, + "vast": 16414, + "vastly": 48257, + "vat": 11588, + "vat": 18363, + "vatican": 21030, + "vation": 37884, + "vau": 6391, + "vaugh": 25158, + "vaughan": 21392, + "vaughn": 29013, + "vaul": 27469, + "vault": 15240, + "vaus": 40217, + "vaux": 27403, + "vauxhall": 29173, + "vaw": 47952, + "vay": 48000, + "vaz": 38142, + "vb": 29365, + "vb": 8778, + "vball": 38329, + "vc": 28670, + "vc": 7952, + "vcs": 43528, + "vcu": 40102, + "vd": 9515, + "vday": 42055, + "ve": 673, + "ve": 563, + "vea": 43798, + "veal": 36616, + "veau": 24419, + "vec": 19912, + "vector": 40453, + "vector": 21533, + "ved": 19515, + "ved": 1102, + "veda": 44401, + "vedere": 45660, + "vedi": 47971, + "vee": 35708, + "vee": 17073, + "veen": 22432, + "veer": 21243, + "veer": 22058, + "veg": 9048, + "veg": 16460, + "vega": 22930, + "vegan": 15705, + "vegan": 5615, + "vegans": 48514, + "vegas": 20288, + "vegas": 4413, + "vege": 6219, + "vegetable": 15725, + "vegetables": 14119, + "vegetarian": 14600, + "vegetation": 33947, + "veggie": 19401, + "veggies": 16767, + "vehic": 3973, + "vehicle": 5299, + "vehicles": 8361, + "veil": 23516, + "vein": 29169, + "veins": 28867, + "veit": 30620, + "vel": 942, + "vel": 1287, + "vela": 34898, + "veld": 34011, + "veled": 15370, + "veli": 49166, + "veling": 37970, + "vell": 21173, + "vell": 32997, + "velo": 14357, + "velo": 33850, + "velocity": 23811, + "vels": 5109, + "velve": 37849, + "velvet": 11063, + "vely": 1708, + "vember": 3477, + "vement": 3129, + "vements": 11104, + "ven": 1240, + "ven": 1638, + "vena": 47442, + "vend": 10851, + "vending": 29202, + "vendor": 21261, + "vendors": 20353, + "vene": 5365, + "veness": 10516, + "venetian": 34336, + "venezia": 34139, + "venezu": 10939, + "venezuela": 12839, + "venezuelan": 34699, + "veng": 31526, + "venge": 27757, + "vengeance": 32057, + "veni": 31142, + "venice": 11010, + "vening": 47532, + "venison": 40037, + "venom": 42491, + "venom": 21588, + "vens": 20884, + "vent": 4373, + "vent": 5687, + "ventil": 39522, + "ventilation": 35066, + "venting": 15731, + "vention": 4122, + "vents": 12833, + "ventu": 48217, + "ventura": 20921, + "venture": 37046, + "venture": 12543, + "ventures": 20829, + "venue": 5097, + "venues": 18120, + "venus": 14691, + "ver": 624, + "ver": 667, + "vera": 13350, + "verage": 3725, + "verb": 34952, + "verbal": 26522, + "verbally": 39985, + "verbs": 45687, + "verde": 16935, + "verdi": 42306, + "verdict": 18030, + "vere": 11135, + "vere": 34707, + "vered": 2868, + "verge": 23913, + "veri": 11638, + "verification": 33521, + "verified": 22555, + "verify": 34722, + "vering": 4630, + "veriz": 19707, + "verizon": 21532, + "verma": 41261, + "vermont": 19241, + "vern": 2214, + "vern": 12586, + "verne": 45553, + "vernon": 18348, + "vero": 45217, + "vero": 38208, + "verona": 31819, + "veronic": 39551, + "veronica": 24039, + "vers": 1219, + "vers": 2094, + "versa": 35765, + "versace": 25422, + "versail": 29857, + "versailles": 32129, + "versary": 2940, + "versatile": 18110, + "versatility": 41340, + "verse": 39466, + "verse": 3131, + "verses": 30769, + "versi": 8934, + "version": 3273, + "versions": 16190, + "versity": 1906, + "verst": 42484, + "verstappen": 45064, + "versus": 14548, + "versy": 18522, + "vert": 11742, + "verte": 35158, + "verted": 48173, + "verti": 30459, + "vertical": 14293, + "vertigo": 42477, + "verton": 40632, + "verts": 37265, + "very": 11698, + "very": 1070, + "veryday": 37944, + "verything": 45174, + "ves": 9616, + "ves": 1003, + "vesmatter": 47636, + "vespa": 46029, + "vessel": 16387, + "vessels": 22822, + "vest": 31657, + "vest": 12473, + "vesti": 40349, + "vests": 41906, + "vet": 12294, + "vet": 5951, + "veter": 4330, + "veteran": 20797, + "veteran": 8814, + "veterans": 7092, + "veteransday": 26409, + "veterin": 43959, + "veterinary": 25458, + "veto": 36570, + "vets": 13113, + "vette": 17045, + "vettel": 28700, + "vevo": 35141, + "vex": 36187, + "vex": 43978, + "vey": 34792, + "vey": 3884, + "vez": 35987, + "vez": 17226, + "vf": 25966, + "vfl": 33726, + "vfx": 30149, + "vg": 40591, + "vg": 22346, + "vh": 46953, + "vh": 23847, + "vhs": 21932, + "vi": 603, + "vi": 4259, + "via": 1048, + "viable": 25752, + "viadu": 37012, + "viaduct": 39113, + "vial": 39951, + "vian": 40487, + "vian": 16124, + "vibe": 37974, + "vibe": 12813, + "vibes": 7764, + "vibr": 9527, + "vibrant": 14270, + "vibration": 37456, + "vibrations": 43660, + "vic": 1555, + "vic": 4412, + "vica": 46168, + "vicar": 43899, + "vice": 43572, + "vice": 6931, + "vicente": 39411, + "vices": 8332, + "vich": 24143, + "vici": 46670, + "vicious": 25177, + "vick": 15116, + "vick": 29704, + "vickers": 48452, + "vicki": 34927, + "vicky": 37176, + "vicky": 25788, + "victi": 6861, + "victim": 9133, + "victims": 7131, + "victor": 2423, + "victor": 10690, + "victori": 17555, + "victoria": 39286, + "victoria": 6127, + "victorian": 12350, + "victorias": 47791, + "victories": 24577, + "victorious": 24033, + "victory": 36668, + "victory": 4127, + "vid": 17233, + "vid": 9284, + "vida": 19015, + "vidal": 36678, + "vide": 1334, + "vide": 45244, + "video": 9478, + "video": 1455, + "videogame": 35097, + "videogames": 21149, + "videos": 6081, + "vids": 23035, + "vidy": 29639, + "vidya": 45264, + "vie": 922, + "vie": 8538, + "vien": 36493, + "vienna": 12670, + "vier": 15352, + "vier": 11987, + "viera": 21114, + "viernes": 33826, + "vies": 22458, + "viest": 31979, + "viet": 17558, + "viet": 13128, + "vietnam": 19558, + "vietnam": 8623, + "vietnamese": 22382, + "view": 12004, + "view": 1093, + "viewed": 7226, + "viewer": 15061, + "viewers": 14275, + "viewing": 7124, + "viewpoint": 41604, + "views": 2758, + "vig": 8549, + "vig": 45083, + "vigil": 21538, + "vigil": 19896, + "vigilant": 43026, + "vigne": 40447, + "vigne": 34581, + "vigo": 44097, + "vigor": 26781, + "vii": 17759, + "viii": 20414, + "vijay": 12014, + "vijay": 10823, + "vijaysethu": 47966, + "vik": 10764, + "vik": 17181, + "vika": 39562, + "vikas": 37116, + "viking": 26663, + "viking": 15897, + "vikings": 11713, + "vikram": 41136, + "vikram": 24314, + "viktor": 36101, + "vil": 1338, + "vil": 3000, + "vila": 37505, + "vile": 27247, + "vill": 10481, + "vill": 45698, + "villa": 3203, + "villa": 7754, + "village": 34584, + "village": 4331, + "villagers": 34283, + "villages": 17621, + "villain": 15425, + "villains": 25271, + "villanova": 44025, + "villar": 35164, + "villas": 28907, + "ville": 11110, + "ville": 1930, + "villen": 46177, + "villi": 36907, + "vimeo": 48720, + "vin": 1379, + "vin": 2558, + "vina": 35682, + "vinai": 37396, + "vinaigrette": 39876, + "vinay": 43952, + "vince": 32429, + "vince": 6236, + "vincen": 33402, + "vincent": 29069, + "vincent": 10357, + "vinci": 30199, + "vind": 20275, + "vindic": 39582, + "vine": 8471, + "vine": 7721, + "vinegar": 23834, + "vines": 21268, + "vineyard": 16527, + "vineyards": 23082, + "ving": 5375, + "ving": 903, + "vingne": 42579, + "vings": 22510, + "vini": 48119, + "vinnie": 40885, + "vinny": 36794, + "vino": 14509, + "vinod": 43348, + "vins": 34820, + "vinson": 45945, + "vintag": 10936, + "vintage": 13654, + "vintage": 3266, + "viny": 40990, + "vinyl": 22835, + "vinyl": 5754, + "vio": 11913, + "vio": 20324, + "viol": 3164, + "viola": 27438, + "violate": 44875, + "violated": 38192, + "violating": 37554, + "violation": 22919, + "violations": 21969, + "violence": 5450, + "violent": 11565, + "violently": 47758, + "violet": 16118, + "violets": 42861, + "violin": 17058, + "violinist": 36299, + "vion": 35496, + "vious": 6418, + "viously": 7149, + "vip": 45714, + "vip": 7111, + "viper": 27401, + "vips": 41149, + "vir": 1790, + "vir": 25319, + "vira": 35910, + "viral": 11653, + "virat": 32473, + "virgil": 39076, + "virgin": 5651, + "virgin": 12103, + "virgini": 43426, + "virginia": 6728, + "virgo": 39978, + "viro": 32301, + "viron": 38309, + "virtu": 7977, + "virtual": 18059, + "virtual": 7790, + "virtually": 22475, + "virtualreality": 32608, + "virtue": 26860, + "virtues": 42167, + "virtuoso": 47027, + "virus": 11808, + "viruses": 34830, + "vis": 1301, + "vis": 5337, + "visa": 12802, + "visas": 41228, + "vise": 24977, + "vised": 14810, + "vish": 12024, + "vish": 29124, + "vishal": 33648, + "vishnu": 37816, + "visi": 1409, + "visibility": 15921, + "visible": 36658, + "visible": 8626, + "vising": 37439, + "vision": 11147, + "vision": 2515, + "visional": 24627, + "visionary": 22959, + "visions": 13804, + "visit": 3388, + "visit": 1600, + "visitation": 44370, + "visited": 5580, + "visiting": 4680, + "visitor": 13881, + "visitors": 9160, + "visits": 8489, + "visitscotland": 28760, + "visitspain": 48860, + "vism": 15514, + "viso": 46732, + "visor": 24217, + "vist": 21436, + "vista": 13865, + "visu": 7739, + "visual": 17004, + "visual": 7195, + "visualization": 28500, + "visualize": 45057, + "visually": 25743, + "visuals": 21315, + "viswas": 36513, + "viswasam": 47664, + "vit": 4056, + "vit": 35580, + "vita": 15700, + "vital": 32525, + "vital": 10585, + "vitality": 36385, + "vitam": 9856, + "vitamin": 13675, + "vitamins": 22582, + "vito": 36725, + "vity": 4893, + "vitz": 26188, + "vius": 41571, + "viv": 21827, + "viv": 35363, + "viva": 17399, + "vival": 35920, + "vive": 18980, + "vive": 24004, + "vivek": 36243, + "vivi": 11625, + "vivian": 30129, + "vivid": 22984, + "vivo": 28091, + "vivo": 25888, + "vix": 28976, + "vix": 34811, + "vixen": 38757, + "vixx": 32106, + "viz": 28251, + "viz": 31786, + "vj": 45439, + "vj": 30827, + "vk": 41893, + "vl": 37580, + "vl": 36442, + "vla": 23686, + "vlad": 41089, + "vladi": 19320, + "vladimir": 21702, + "vlive": 46797, + "vlog": 18894, + "vm": 16204, + "vm": 20269, + "vma": 35666, + "vmas": 30236, + "vmware": 29615, + "vn": 47098, + "vn": 25076, + "vo": 947, + "vo": 3951, + "voc": 4105, + "voc": 20855, + "vocab": 21346, + "vocabulary": 23804, + "vocal": 34037, + "vocal": 13147, + "vocali": 19134, + "vocalist": 22102, + "vocals": 17666, + "vocation": 20521, + "vocational": 33751, + "vod": 11820, + "vod": 35854, + "vodaf": 28436, + "vodafone": 38695, + "vodka": 13646, + "vogel": 44960, + "vogue": 24418, + "vogue": 13178, + "voic": 29185, + "voice": 13179, + "voice": 3386, + "voiced": 34352, + "voiceof": 44966, + "voiceover": 41979, + "voices": 9144, + "void": 21561, + "voip": 42762, + "voir": 16036, + "vol": 1343, + "vol": 7945, + "volatile": 41022, + "volatility": 32355, + "volcan": 9916, + "volcanic": 24072, + "volcano": 14581, + "volcanoes": 38055, + "voli": 40138, + "volk": 13432, + "volkswag": 14407, + "volkswagen": 15342, + "volley": 7130, + "volley": 34656, + "volleyball": 7458, + "volo": 44791, + "vols": 20404, + "volt": 26430, + "volta": 29879, + "volta": 33480, + "voltage": 23118, + "voltron": 39314, + "volu": 3563, + "volume": 8284, + "volumes": 22651, + "volun": 3356, + "voluntar": 48823, + "voluntary": 23815, + "volunte": 3556, + "volunteer": 32331, + "volunteer": 7114, + "volunteered": 34000, + "volunteering": 14902, + "volunteers": 5939, + "volution": 24043, + "volved": 42888, + "volvo": 39991, + "volvo": 16906, + "vom": 24198, + "vomit": 46485, + "von": 11269, + "von": 8497, + "voo": 19497, + "voodoo": 26869, + "voor": 34291, + "voor": 34464, + "vor": 8338, + "vor": 5308, + "vore": 18215, + "vortex": 30071, + "vos": 16863, + "vot": 48558, + "vote": 6830, + "vote": 2187, + "voted": 6454, + "votel": 41379, + "voter": 44474, + "voter": 14065, + "voters": 8925, + "votes": 6693, + "voting": 5756, + "vou": 11045, + "voucher": 18190, + "vouchers": 23384, + "vous": 10636, + "vow": 34787, + "vows": 21677, + "vox": 29215, + "vox": 22692, + "voy": 10622, + "voy": 15021, + "voyage": 16299, + "voyager": 29669, + "vp": 32758, + "vp": 3896, + "vpn": 38212, + "vr": 16840, + "vr": 5921, + "vre": 44500, + "vre": 17501, + "vs": 11385, + "vs": 1547, + "vsco": 26752, + "vsco": 32822, + "vscocam": 34694, + "vsky": 37791, + "vss": 31919, + "vt": 31732, + "vt": 10291, + "vu": 8664, + "vu": 13230, + "vue": 43915, + "vue": 19313, + "vuel": 31312, + "vuelta": 43856, + "vuitton": 26705, + "vul": 6856, + "vulcan": 34767, + "vulner": 11213, + "vulnerability": 28797, + "vulnerable": 14332, + "vulture": 34593, + "vultures": 47197, + "vv": 19264, + "vv": 35686, + "vw": 28650, + "vw": 13250, + "vx": 47644, + "vy": 11566, + "vy": 5157, + "w": 86, + "w": 342, + "wa": 869, + "wa": 2663, + "waa": 35874, + "wab": 19893, + "wab": 36852, + "wac": 27445, + "wac": 37947, + "wack": 22880, + "wack": 38270, + "wacky": 34318, + "waco": 36035, + "wad": 11133, + "wad": 30451, + "wada": 40006, + "wade": 40237, + "wade": 14180, + "wadi": 37253, + "waf": 17638, + "wafc": 49086, + "waff": 13940, + "waffle": 20375, + "waffles": 24205, + "wag": 5764, + "wag": 19177, + "wage": 10716, + "wager": 43430, + "wages": 19114, + "wagner": 18081, + "wagon": 13260, + "wagons": 47944, + "wags": 48580, + "wah": 24812, + "wah": 18014, + "wahl": 27500, + "wahlberg": 35151, + "wahoo": 47995, + "wai": 11469, + "wai": 21569, + "waifu": 46551, + "waikiki": 44907, + "wain": 28358, + "wain": 20120, + "wainwright": 45878, + "waist": 36946, + "waist": 18459, + "wait": 10021, + "wait": 1885, + "waite": 24272, + "waited": 18492, + "waiter": 32946, + "waitin": 44482, + "waiting": 2680, + "waitress": 39760, + "waitrose": 37164, + "waits": 21361, + "waiver": 42866, + "waj": 49367, + "wak": 11172, + "wak": 36015, + "waka": 42696, + "wake": 10501, + "wake": 5731, + "wakefield": 26358, + "wakes": 29108, + "wakeup": 26328, + "wakeup": 35380, + "wakeupamerica": 37474, + "waking": 13025, + "wal": 1056, + "wal": 6903, + "wala": 16468, + "walang": 49180, + "walcott": 45744, + "wald": 46930, + "wald": 15724, + "walden": 39311, + "waldo": 32440, + "waldorf": 38227, + "wale": 41247, + "wale": 20336, + "wales": 25383, + "wales": 5110, + "walgreens": 38490, + "wali": 37576, + "wali": 14768, + "walia": 44455, + "walk": 8588, + "walk": 2374, + "walkaway": 48255, + "walked": 8667, + "walker": 24735, + "walker": 6150, + "walkers": 23366, + "walkin": 45792, + "walking": 12644, + "walking": 3941, + "walkingdead": 14948, + "walkout": 47470, + "walks": 8192, + "walkway": 36614, + "wall": 4316, + "wall": 2569, + "walla": 26007, + "walla": 39982, + "wallabies": 48926, + "wallace": 12535, + "wallart": 36223, + "walled": 36567, + "waller": 45340, + "wallet": 12154, + "wallets": 38550, + "walleye": 49099, + "wallis": 42206, + "wallpaper": 10560, + "wallpapers": 29841, + "walls": 8258, + "wallstreet": 45341, + "wally": 26024, + "walmart": 11972, + "walnut": 16310, + "walnuts": 38294, + "walsall": 42935, + "walsh": 12856, + "walt": 23535, + "walt": 14312, + "waltdisneyworld": 36505, + "walter": 31156, + "walter": 10645, + "walters": 25532, + "waltham": 42742, + "waltham": 45581, + "walton": 19485, + "waltz": 35982, + "wam": 20503, + "wamy": 46970, + "wan": 2060, + "wan": 4557, + "wana": 30830, + "wand": 14636, + "wand": 28559, + "wanda": 25070, + "wander": 12985, + "wander": 24473, + "wandered": 46593, + "wanderers": 27540, + "wandering": 22597, + "wanderlust": 16129, + "wane": 27459, + "wang": 19731, + "wang": 11900, + "wani": 21674, + "wankers": 42189, + "wann": 23622, + "wanna": 35940, + "wanna": 3836, + "wannabe": 40730, + "wannaone": 44832, + "want": 18356, + "want": 1280, + "wanted": 3146, + "wanting": 12801, + "wants": 3107, + "wap": 27393, + "wap": 30368, + "waq": 47512, + "war": 984, + "war": 2238, + "wara": 21631, + "warbler": 33891, + "warcraft": 13660, + "ward": 7728, + "ward": 1460, + "warden": 27798, + "wardly": 30780, + "wardro": 14247, + "wardrobe": 15020, + "wards": 2593, + "ware": 7416, + "ware": 4476, + "wareagle": 35716, + "warehouse": 13054, + "wareness": 41601, + "wareness": 35870, + "wares": 30692, + "warfare": 15739, + "warhammer": 26832, + "warhol": 27554, + "wari": 20977, + "wark": 46346, + "wark": 15164, + "warlock": 42455, + "warm": 14725, + "warm": 3616, + "warmed": 36695, + "warmer": 14328, + "warmest": 30910, + "warming": 8606, + "warmly": 45322, + "warmongers": 33205, + "warms": 32917, + "warmth": 19636, + "warmup": 29904, + "warmups": 44094, + "warn": 19360, + "warned": 16409, + "warner": 28564, + "warner": 13402, + "warning": 4994, + "warnings": 18098, + "warns": 14086, + "waron": 38947, + "warp": 32411, + "warped": 32125, + "warran": 17392, + "warrant": 22554, + "warrants": 45677, + "warranty": 23999, + "warren": 23143, + "warren": 9234, + "warri": 4109, + "warrington": 31203, + "warrior": 18998, + "warrior": 8148, + "warriors": 6421, + "wars": 3931, + "warsaw": 21072, + "warship": 47846, + "wart": 43535, + "wart": 7346, + "wartime": 42998, + "warts": 21781, + "warwick": 23081, + "warwick": 22215, + "warwickshire": 36766, + "wary": 36213, + "was": 3398, + "was": 739, + "wasabi": 47334, + "wash": 3363, + "wash": 7810, + "washed": 14092, + "washer": 24085, + "washes": 38950, + "washing": 13029, + "washington": 16774, + "washington": 4365, + "washingtondc": 40225, + "washingtonpost": 28426, + "wasn": 5044, + "wasnt": 29607, + "wasp": 24889, + "wasps": 35300, + "wassup": 45708, + "wast": 28886, + "waste": 18157, + "waste": 6065, + "wasted": 18278, + "wasteland": 44035, + "wastewater": 34463, + "wasting": 25577, + "wat": 800, + "wat": 10621, + "wata": 42509, + "watch": 7046, + "watch": 1239, + "watchdog": 35303, + "watched": 5775, + "watcher": 35971, + "watchers": 28443, + "watches": 9521, + "watchin": 32432, + "watching": 2113, + "water": 2505, + "water": 1573, + "watercolor": 14211, + "watercolour": 18377, + "waterfall": 16403, + "waterfalls": 26692, + "waterford": 24448, + "waterfront": 16605, + "waterhouse": 45072, + "watering": 19871, + "waterloo": 17465, + "watermelon": 19889, + "waterproof": 17613, + "waters": 7753, + "watershed": 33204, + "waterstones": 45014, + "waterways": 37395, + "watford": 23162, + "watfordfc": 37328, + "wati": 27966, + "watkins": 22539, + "watson": 35490, + "watson": 9294, + "watt": 22899, + "watt": 15805, + "wattpad": 32351, + "watts": 14750, + "wau": 9479, + "wav": 6054, + "wave": 17530, + "wave": 4535, + "waved": 44657, + "waver": 25997, + "waves": 7882, + "waving": 26545, + "wavy": 31941, + "waw": 22039, + "wawrinka": 48414, + "wawx": 47387, + "wax": 18789, + "wax": 11910, + "waxing": 38781, + "way": 3079, + "way": 923, + "wayback": 47822, + "wayne": 23632, + "wayne": 7003, + "ways": 1248, + "waz": 20889, + "waz": 48835, + "wb": 10726, + "wb": 12377, + "wba": 22675, + "wbb": 14482, + "wbc": 26745, + "wbo": 49053, + "wbz": 35471, + "wc": 4842, + "wc": 5755, + "wcc": 47166, + "wcc": 34926, + "wcpo": 46624, + "wcs": 39916, + "wcvb": 32709, + "wcw": 9041, + "wd": 15998, + "wd": 7494, + "wdw": 40334, + "we": 598, + "we": 649, + "wea": 37146, + "wea": 47301, + "weak": 12128, + "weak": 10128, + "weaker": 39735, + "weakness": 21448, + "weaknesses": 43487, + "weal": 14759, + "wealth": 33150, + "wealth": 7904, + "wealthy": 22617, + "weap": 6156, + "weapon": 42612, + "weapon": 10537, + "weapons": 10007, + "wear": 12206, + "wear": 2839, + "wearab": 22983, + "wearable": 44943, + "wearable": 24973, + "wearables": 30319, + "weare": 4264, + "weare": 27867, + "weareall": 45980, + "wearec": 43620, + "wearen": 45635, + "weareone": 16149, + "weareoneexo": 16448, + "wearethe": 40242, + "wearing": 3309, + "wears": 11869, + "weary": 38766, + "weasel": 44308, + "weather": 8808, + "weather": 2237, + "weathercee": 44980, + "weatherchannel": 42138, + "weav": 22260, + "weave": 22450, + "weaver": 20297, + "weaving": 27131, + "web": 2055, + "web": 4601, + "webb": 15708, + "webber": 34248, + "webcam": 24211, + "webcam": 22589, + "webcamtoy": 27719, + "webcast": 28256, + "webcomic": 34286, + "webcomics": 39811, + "webdesign": 20470, + "webdev": 37000, + "webdevelopment": 47553, + "weber": 20179, + "webin": 8460, + "webinar": 8921, + "webinars": 47755, + "webpage": 46964, + "webs": 32829, + "webseries": 44819, + "website": 3364, + "websites": 19278, + "webster": 19471, + "websummit": 48069, + "wec": 33152, + "wechat": 46124, + "wed": 1687, + "wed": 3478, + "wedd": 7576, + "wedding": 11204, + "wedding": 3101, + "weddings": 15964, + "wedge": 21446, + "wedges": 33179, + "wedne": 2380, + "wednesday": 9311, + "wednesday": 2689, + "wednesdaymotivation": 37860, + "wednesdays": 24943, + "wednesdaywisdom": 11445, + "wedo": 43432, + "weds": 19107, + "wee": 716, + "wee": 8288, + "weed": 36935, + "weed": 8015, + "weeds": 26326, + "week": 1286, + "week": 994, + "weekday": 29244, + "weekdays": 44330, + "weekend": 17205, + "weekend": 1456, + "weekender": 36547, + "weekends": 14564, + "weekly": 34652, + "weekly": 5885, + "weeknd": 29925, + "weeks": 2898, + "weeksary": 24628, + "ween": 17517, + "ween": 1599, + "weep": 39270, + "weeping": 36629, + "weer": 32491, + "weet": 17742, + "weets": 13454, + "wef": 23313, + "weg": 47867, + "weg": 47561, + "wego": 44784, + "wego": 28220, + "weh": 48458, + "weh": 40313, + "weho": 47798, + "wei": 6958, + "wei": 20952, + "weibo": 20613, + "weigh": 10565, + "weigh": 17346, + "weighed": 33210, + "weighing": 24455, + "weighs": 20481, + "weight": 12723, + "weight": 3868, + "weighted": 43179, + "weightlifting": 36164, + "weightloss": 20359, + "weights": 21374, + "weil": 43720, + "weiler": 42203, + "wein": 29134, + "wein": 37684, + "weiner": 38822, + "weinstein": 34367, + "weir": 11299, + "weir": 25517, + "weird": 27981, + "weird": 5613, + "weirdest": 29482, + "weirdo": 32476, + "weis": 26251, + "weiser": 34833, + "weiss": 24794, + "wel": 1267, + "wel": 8042, + "welch": 25820, + "welcom": 11578, + "welcome": 18318, + "welcome": 1881, + "welcomed": 12590, + "welcomes": 9304, + "welcometo": 47511, + "welcoming": 8775, + "weld": 39776, + "welding": 24956, + "welfare": 12129, + "well": 3277, + "well": 1123, + "wellbeing": 14273, + "weller": 40921, + "welling": 49165, + "wellington": 15389, + "wellness": 40574, + "wellness": 9904, + "wells": 42705, + "wells": 9804, + "welove": 13573, + "welp": 28391, + "wels": 20852, + "welsh": 19173, + "welsh": 10977, + "welt": 38595, + "welter": 37115, + "welterweight": 39617, + "wemb": 15213, + "wembley": 16579, + "wen": 6590, + "wen": 11278, + "wend": 15166, + "wendell": 42091, + "wendy": 31616, + "wendy": 14074, + "wenger": 21105, + "went": 18633, + "went": 2437, + "wentworth": 36423, + "wentz": 39179, + "wer": 6316, + "wer": 2980, + "were": 15461, + "were": 1365, + "wered": 6605, + "weren": 13611, + "werewolf": 32001, + "werk": 30176, + "werner": 29917, + "wers": 7110, + "wes": 18620, + "wes": 14738, + "wesle": 29606, + "wesley": 17332, + "wesleyan": 32509, + "wesome": 33292, + "wess": 44431, + "west": 2973, + "west": 1593, + "westbound": 29208, + "westbrook": 26948, + "westchester": 36675, + "westcoast": 44610, + "westend": 44815, + "wester": 9846, + "western": 17079, + "western": 4463, + "westfield": 32309, + "westh": 36798, + "westin": 43232, + "westlake": 41535, + "westminster": 15158, + "weston": 22771, + "westside": 33762, + "westwood": 26371, + "westworld": 42287, + "wet": 12406, + "wet": 6682, + "weta": 40946, + "wethenorth": 45281, + "wethepeople": 48030, + "wether": 33794, + "wether": 48405, + "wetland": 37357, + "wetlands": 26547, + "wett": 41971, + "wetter": 43957, + "wewant": 39280, + "wewill": 37241, + "wex": 17234, + "wexford": 29876, + "wexmondays": 49042, + "wey": 30376, + "wey": 19781, + "weymouth": 41433, + "wf": 14576, + "wf": 22313, + "wfa": 44606, + "wfc": 36431, + "wfp": 35193, + "wftv": 47075, + "wg": 21091, + "wg": 25857, + "wga": 32354, + "wgn": 48828, + "wh": 573, + "wh": 13844, + "wha": 18994, + "wha": 25884, + "whal": 38967, + "whale": 37083, + "whale": 11650, + "whales": 17722, + "wham": 42506, + "whar": 15517, + "wharf": 22452, + "wharton": 43320, + "what": 4268, + "what": 768, + "whatcha": 37160, + "whate": 6695, + "whatever": 6743, + "whati": 23500, + "whats": 9263, + "whats": 13084, + "whatsapp": 10119, + "whatsoever": 39928, + "whatson": 35632, + "whatyou": 30508, + "whe": 2009, + "whead": 34583, + "wheat": 20505, + "wheat": 10303, + "wheaton": 46933, + "wheel": 7360, + "wheel": 6744, + "wheelchair": 17713, + "wheeler": 18405, + "wheeling": 34839, + "wheels": 8025, + "whel": 9792, + "whelan": 40715, + "when": 8753, + "when": 827, + "whenever": 10500, + "where": 7052, + "where": 1234, + "whereabouts": 47808, + "whereas": 42234, + "wheres": 46345, + "wherever": 14103, + "whereyou": 46837, + "whether": 5903, + "whew": 39016, + "whey": 34556, + "whi": 4295, + "whi": 33129, + "which": 1448, + "whiche": 48719, + "whichever": 49138, + "whil": 8499, + "while": 1519, + "whilst": 8596, + "whim": 27766, + "whimsical": 42282, + "whip": 14412, + "whipped": 22323, + "whipping": 41567, + "whir": 20873, + "whirl": 30962, + "whirlwind": 47771, + "whis": 6024, + "whiskey": 41381, + "whiskey": 11610, + "whisky": 37567, + "whisky": 12599, + "whisp": 21986, + "whispe": 30356, + "whisper": 27616, + "whisperer": 41368, + "whispering": 42599, + "whispers": 29133, + "whist": 13640, + "whistle": 23972, + "whistle": 19746, + "whistleblower": 40410, + "whistler": 29633, + "whit": 4398, + "whit": 31498, + "whitaker": 35851, + "whitby": 30858, + "white": 4699, + "white": 1579, + "whiteboard": 40839, + "whitec": 24575, + "whitehall": 42827, + "whitehead": 43560, + "whitehouse": 20776, + "whitening": 35540, + "whitepaper": 42713, + "whites": 35886, + "whites": 18835, + "whitesox": 28816, + "whitewater": 49350, + "whitfield": 48404, + "whitley": 40564, + "whitman": 32394, + "whitney": 43021, + "whitney": 18048, + "whitt": 33784, + "whittaker": 47595, + "whl": 25801, + "who": 2969, + "who": 822, + "whoa": 16943, + "whoever": 11137, + "whois": 41884, + "whole": 10360, + "whole": 2954, + "wholefoods": 42840, + "wholesale": 18306, + "wholesome": 35959, + "whom": 38158, + "whom": 12873, + "whoo": 20003, + "whoo": 49290, + "whoop": 22060, + "whoops": 28433, + "whopping": 34384, + "whore": 31690, + "whos": 41460, + "whos": 27130, + "whose": 6933, + "whouse": 45927, + "whs": 26292, + "wht": 32470, + "whufc": 31695, + "whun": 18272, + "why": 11040, + "why": 1182, + "whyte": 42386, + "wi": 820, + "wi": 5585, + "wib": 45303, + "wic": 7834, + "wich": 9759, + "wich": 5238, + "wichita": 22566, + "wick": 6798, + "wick": 6479, + "wicked": 32579, + "wicked": 12825, + "wicker": 38096, + "wicket": 19180, + "wickets": 22110, + "wicklow": 39039, + "wicz": 30121, + "wid": 11886, + "wid": 20886, + "wide": 19341, + "wide": 3184, + "widely": 16195, + "widening": 46598, + "wider": 21263, + "widesp": 20598, + "widespread": 21258, + "widget": 43906, + "wido": 28068, + "widow": 19949, + "widows": 42129, + "width": 23571, + "wie": 21378, + "wie": 9131, + "wielding": 47272, + "wien": 38131, + "wiener": 40567, + "wies": 42788, + "wif": 37572, + "wife": 3607, + "wifey": 35282, + "wifi": 11026, + "wig": 23690, + "wig": 12216, + "wigan": 23130, + "wiggins": 32329, + "wiggle": 47812, + "wight": 41278, + "wight": 15545, + "wigs": 31207, + "wii": 8005, + "wiiu": 40980, + "wiki": 10373, + "wiki": 24265, + "wikileaks": 28731, + "wikipedia": 15176, + "wil": 1352, + "wil": 20581, + "wilbur": 43069, + "wilcox": 43231, + "wild": 2780, + "wild": 3220, + "wildatlantic": 35500, + "wildatlanticway": 35776, + "wildcard": 37360, + "wildcat": 49077, + "wildcat": 25870, + "wildcats": 15909, + "wilde": 23498, + "wilder": 14343, + "wilder": 23499, + "wilderness": 16506, + "wildest": 43028, + "wildfire": 22788, + "wildfires": 29184, + "wildflower": 27628, + "wildflower": 33181, + "wildflowerhour": 31302, + "wildflowers": 29136, + "wildlife": 13298, + "wildlife": 5250, + "wildlifephotography": 32307, + "wildlifewednesday": 48537, + "wildly": 35981, + "wildoz": 40113, + "wiley": 32747, + "wilhelm": 39696, + "wilkes": 39548, + "wilkins": 36986, + "wilkinson": 26797, + "will": 5062, + "will": 751, + "willam": 43276, + "willard": 44920, + "wille": 48739, + "willem": 38044, + "willi": 2256, + "william": 8420, + "william": 4705, + "williams": 38452, + "williams": 4075, + "williamsburg": 30683, + "williamson": 20793, + "willie": 13907, + "willing": 34160, + "willing": 11718, + "willingness": 40573, + "willis": 18491, + "willow": 33887, + "willow": 15665, + "wills": 26913, + "willy": 34502, + "willy": 19599, + "wilmington": 28052, + "wilms": 47879, + "wilshere": 48359, + "wilson": 23629, + "wilson": 5622, + "wilt": 23394, + "wilt": 47357, + "wilton": 46638, + "wiltshire": 28025, + "wim": 8662, + "wim": 27580, + "wimble": 11752, + "wimbledon": 12229, + "win": 831, + "win": 1225, + "winchester": 20647, + "wind": 6812, + "wind": 3630, + "winder": 44454, + "winder": 46245, + "winding": 22390, + "windmill": 34084, + "windo": 3110, + "window": 26675, + "window": 4879, + "windows": 5437, + "winds": 12668, + "winds": 7012, + "windshield": 33002, + "windsor": 44322, + "windsor": 12884, + "windy": 13446, + "wine": 7375, + "wine": 2604, + "winelover": 26357, + "winemaker": 41588, + "wineoclock": 43846, + "wineries": 49349, + "winery": 15500, + "wines": 8263, + "winetasting": 41288, + "winewednesday": 35447, + "wing": 8141, + "wing": 1340, + "winged": 24993, + "winger": 22727, + "winget": 44578, + "wings": 5178, + "wink": 34455, + "wink": 25859, + "winkle": 36430, + "winn": 38104, + "winne": 46273, + "winner": 32961, + "winner": 2520, + "winners": 4320, + "winni": 13018, + "winnie": 29022, + "winning": 42099, + "winning": 2577, + "winnings": 46490, + "winnipeg": 14369, + "winona": 49202, + "wins": 46839, + "wins": 2718, + "winslow": 39658, + "winston": 14848, + "winter": 7340, + "winter": 2541, + "winters": 21587, + "wintry": 39504, + "wip": 10447, + "wipe": 26761, + "wiped": 31822, + "wipes": 33463, + "wir": 16849, + "wir": 44838, + "wire": 7558, + "wire": 7794, + "wired": 18935, + "wireless": 9103, + "wires": 24311, + "wiring": 36434, + "wirral": 34675, + "wis": 3392, + "wis": 20405, + "wiscon": 9857, + "wisconsin": 10265, + "wisdom": 42474, + "wisdom": 5425, + "wise": 19116, + "wise": 5558, + "wisely": 26173, + "wiser": 44859, + "wish": 11328, + "wish": 2412, + "wished": 25883, + "wishes": 6045, + "wishing": 5307, + "wishlist": 31969, + "wit": 584, + "wit": 8531, + "witch": 20139, + "witch": 10083, + "witchcraft": 35065, + "witcher": 33684, + "witches": 21673, + "with": 1435, + "with": 593, + "withdra": 24696, + "withdraw": 31670, + "withdrawal": 25765, + "withdrawn": 46687, + "withdraws": 48637, + "wither": 39655, + "witherspoon": 45409, + "within": 4154, + "withme": 44670, + "without": 32836, + "without": 2193, + "withstand": 42236, + "withthe": 36872, + "withus": 30572, + "withyou": 30351, + "witne": 12096, + "witness": 8793, + "witnessed": 20187, + "witnesses": 22778, + "witnessing": 33618, + "wits": 30938, + "witt": 38194, + "witt": 17168, + "witter": 31597, + "witty": 29970, + "witz": 44186, + "witz": 13265, + "wiv": 48925, + "wives": 14378, + "wiwx": 44461, + "wiz": 7730, + "wiz": 23178, + "wizar": 49121, + "wizard": 30490, + "wizard": 14295, + "wizards": 19140, + "wizkid": 40146, + "wj": 19739, + "wj": 35453, + "wk": 11512, + "wk": 11528, + "wkend": 42336, + "wknd": 20851, + "wks": 25508, + "wku": 43377, + "wl": 13299, + "wl": 9613, + "wm": 20268, + "wm": 15790, + "wn": 1186, + "wn": 757, + "wnba": 32358, + "wned": 8628, + "wns": 12950, + "wnt": 22484, + "wny": 24833, + "wo": 1613, + "wo": 11132, + "woah": 17751, + "wob": 35984, + "woc": 39011, + "wod": 41522, + "woes": 27860, + "wof": 45671, + "woj": 48931, + "wok": 28912, + "woke": 9331, + "woken": 43697, + "woking": 43931, + "wol": 2798, + "wol": 48622, + "wold": 42399, + "wolf": 9453, + "wolf": 5916, + "wolfe": 24989, + "wolff": 34369, + "wolfgang": 34061, + "wolfpack": 30887, + "wolve": 45101, + "wolver": 14334, + "wolverhampton": 34518, + "wolverine": 23353, + "wolverines": 42003, + "wolves": 9372, + "wom": 1087, + "womack": 48980, + "woman": 15716, + "woman": 2308, + "womanc": 35630, + "womancrush": 37721, + "womancrushwednesday": 39714, + "womanin": 30562, + "womaninbiz": 36482, + "womb": 37023, + "women": 3648, + "women": 1507, + "womenin": 13062, + "womeninscience": 41343, + "womeninstem": 29380, + "womenintech": 31470, + "womenof": 48421, + "womens": 12822, + "womens": 14408, + "womensart": 38548, + "womensday": 13956, + "womenshi": 22887, + "womenshistorymonth": 24982, + "womensmarch": 30102, + "won": 1528, + "won": 1749, + "wonder": 2070, + "wonder": 3936, + "wondercon": 46944, + "wondered": 15550, + "wonderful": 2582, + "wonderfully": 23245, + "wondering": 8360, + "wonderland": 13874, + "wonders": 14048, + "wonderwoman": 31000, + "wondo": 38402, + "wondr": 46771, + "wong": 17876, + "wonka": 43463, + "wont": 43174, + "wont": 15952, + "woo": 1867, + "woo": 9322, + "wood": 3269, + "wood": 1704, + "woodbridge": 49074, + "wooden": 48226, + "wooden": 9057, + "woodland": 44314, + "woodland": 17447, + "woodlands": 32430, + "woodley": 40566, + "woodpecker": 32684, + "woods": 6267, + "woodson": 48967, + "woodstock": 29486, + "woodward": 27419, + "woodwork": 47386, + "woodworking": 29267, + "woody": 38627, + "woody": 17144, + "woof": 34234, + "woof": 24028, + "woohoo": 20172, + "wook": 29192, + "wool": 9967, + "wool": 13283, + "woolf": 43728, + "woolly": 47722, + "woon": 33126, + "wooo": 43217, + "woop": 31884, + "woot": 22466, + "wor": 641, + "worcester": 22172, + "worcester": 19580, + "worcestershire": 38440, + "worcestershirehour": 43644, + "word": 8272, + "word": 2653, + "wordof": 33500, + "wordoftheday": 43594, + "wordpress": 15193, + "words": 31007, + "words": 2709, + "wore": 8953, + "work": 1636, + "work": 951, + "workday": 29735, + "worked": 5410, + "worker": 8098, + "workers": 4795, + "workflow": 28502, + "workforce": 14672, + "workin": 31825, + "workin": 26323, + "working": 20806, + "working": 1699, + "workinprogress": 46086, + "workout": 6773, + "workouts": 22779, + "workplace": 11959, + "workplaces": 47383, + "works": 2322, + "workshop": 3832, + "workshops": 12262, + "workspace": 34470, + "worl": 5221, + "world": 2334, + "world": 1002, + "worlda": 46627, + "worldbank": 36759, + "worldbookday": 31191, + "worldcup": 42525, + "worldcup": 8650, + "worlden": 44668, + "worldenviron": 47115, + "worldenvironmentday": 47522, + "worldly": 36268, + "worldo": 41698, + "worldof": 22636, + "worldre": 33951, + "worlds": 7691, + "worldseries": 26695, + "worldtour": 23202, + "worldwater": 41176, + "worldwaterday": 44520, + "worldwide": 6214, + "worm": 33709, + "worm": 10945, + "worms": 20231, + "worn": 9037, + "worried": 11911, + "worries": 17684, + "worry": 7534, + "worrying": 24058, + "worse": 8236, + "worsen": 46344, + "worshi": 31840, + "worship": 46399, + "worship": 9023, + "worst": 5719, + "wort": 30209, + "worth": 10671, + "worth": 2450, + "worthing": 39929, + "worthit": 40830, + "worthless": 44736, + "worths": 44633, + "worthwhile": 36295, + "worthy": 8881, + "worx": 44973, + "wot": 24863, + "wou": 5279, + "would": 39873, + "would": 1311, + "wouldn": 5878, + "wouldnt": 41595, + "wound": 19231, + "wounded": 14859, + "wounds": 21290, + "woven": 19830, + "wow": 22191, + "wow": 2781, + "woz": 44558, + "wozni": 47782, + "wp": 15378, + "wp": 13302, + "wpg": 35048, + "wps": 33386, + "wq": 45195, + "wr": 1189, + "wr": 8028, + "wra": 3852, + "wra": 46004, + "wral": 49050, + "wrangler": 30923, + "wrap": 7094, + "wrapped": 9875, + "wrapping": 15223, + "wraps": 18236, + "wrath": 29783, + "wray": 48943, + "wrc": 16004, + "wre": 3168, + "wreath": 23091, + "wrec": 20879, + "wreck": 28775, + "wreck": 15017, + "wrecked": 32695, + "wreckem": 45676, + "wrecking": 36956, + "wrecks": 45545, + "wren": 20191, + "wren": 31970, + "wrench": 30980, + "wrest": 4177, + "wrestle": 17097, + "wrestle": 28086, + "wrestlemania": 18849, + "wrestler": 19790, + "wrestlers": 25902, + "wrestling": 31292, + "wrestling": 5904, + "wrexham": 34479, + "wri": 7667, + "wri": 42007, + "wright": 28616, + "wright": 6991, + "wrights": 43711, + "wrigley": 33538, + "wrink": 22201, + "wrinkle": 46642, + "wrinkles": 35525, + "wrist": 19243, + "wrist": 16139, + "wristband": 36890, + "wristbands": 44864, + "writ": 2902, + "write": 28874, + "write": 4946, + "writer": 27886, + "writer": 4422, + "writers": 18742, + "writers": 7307, + "writerslife": 25007, + "writes": 8023, + "writing": 16053, + "writing": 2979, + "writingcommunity": 39178, + "writings": 36259, + "written": 5231, + "wro": 5447, + "wrong": 18381, + "wrong": 3669, + "wrongly": 45642, + "wrote": 5796, + "wrought": 48125, + "wrs": 45280, + "ws": 6300, + "ws": 799, + "wsb": 30681, + "wsbtv": 38394, + "wsj": 19764, + "wski": 12548, + "wsl": 43706, + "wsoc": 40253, + "wson": 33954, + "wsop": 41231, + "wsu": 44674, + "wsu": 32913, + "wsw": 43285, + "wt": 15873, + "wt": 12255, + "wta": 25984, + "wtc": 39718, + "wtf": 6891, + "wth": 23021, + "wthr": 45269, + "wti": 47345, + "wto": 36406, + "wts": 32159, + "wu": 9710, + "wu": 9837, + "wud": 43870, + "wul": 35154, + "wunder": 36661, + "wur": 24040, + "wurst": 44409, + "wusa": 40021, + "wut": 28590, + "wv": 18920, + "wv": 14743, + "wvu": 44878, + "wvu": 25879, + "ww": 3181, + "ww": 4491, + "wwc": 26505, + "wwdc": 47441, + "wwe": 12112, + "wwe": 5290, + "wwen": 23308, + "wwenetwork": 37228, + "wwenxt": 39898, + "wwer": 32038, + "wwf": 23332, + "wwfc": 42681, + "wwg": 35322, + "wwi": 20194, + "wwii": 10261, + "www": 26074, + "www": 9667, + "wwwbigbaldhead": 30761, + "wwww": 34224, + "wwww": 25200, + "wwwww": 48268, + "wwx": 47431, + "wx": 18192, + "wx": 3561, + "wy": 4665, + "wy": 7625, + "wyatt": 21660, + "wyd": 33113, + "wye": 48436, + "wye": 43751, + "wylie": 49330, + "wyn": 11802, + "wyn": 17504, + "wynn": 36117, + "wynne": 35951, + "wynonna": 41456, + "wynonnaearp": 43755, + "wyoming": 18693, + "x": 87, + "x": 343, + "xa": 24831, + "xan": 45530, + "xander": 45601, + "xavi": 36342, + "xavier": 41044, + "xavier": 18567, + "xb": 33678, + "xbox": 18063, + "xbox": 7748, + "xboxone": 27410, + "xc": 12515, + "xchange": 49132, + "xd": 6380, + "xe": 42886, + "xe": 19183, + "xen": 15568, + "xer": 49005, + "xf": 35274, + "xfactor": 25211, + "xfinity": 35107, + "xford": 34732, + "xh": 45771, + "xham": 25284, + "xi": 2467, + "xi": 7376, + "xia": 19854, + "xia": 20724, + "xian": 42570, + "xiao": 49318, + "xiaomi": 27477, + "xico": 38469, + "xide": 17398, + "xie": 40122, + "xie": 15976, + "xii": 36525, + "xiii": 28199, + "xim": 11217, + "xin": 27053, + "xin": 41517, + "xing": 14383, + "xion": 24164, + "xis": 35793, + "xit": 5316, + "xiumin": 36563, + "xiv": 16125, + "xj": 42453, + "xl": 36529, + "xl": 8833, + "xley": 38223, + "xm": 18626, + "xma": 48805, + "xmas": 48848, + "xmas": 6425, + "xmen": 28708, + "xn": 25388, + "xo": 26936, + "xo": 9000, + "xon": 29186, + "xon": 8482, + "xox": 11531, + "xox": 34050, + "xoxo": 13313, + "xp": 15651, + "xper": 32200, + "xperia": 37615, + "xpo": 44377, + "xpress": 31809, + "xq": 40606, + "xr": 26276, + "xrp": 26965, + "xs": 16397, + "xt": 1052, + "xtina": 45520, + "xton": 32666, + "xton": 10597, + "xtra": 26969, + "xtre": 27025, + "xtreme": 33483, + "xu": 42063, + "xu": 37198, + "xv": 17768, + "xvi": 44031, + "xx": 5675, + "xx": 3553, + "xxl": 29777, + "xxx": 33923, + "xxx": 8352, + "xxxx": 32035, + "xxxx": 22819, + "xxxxx": 44195, + "xy": 20023, + "xy": 11443, + "y": 88, + "y": 344, + "ya": 5018, + "ya": 1430, + "yaa": 48847, + "yaa": 34498, + "yaan": 34680, + "yab": 27737, + "yach": 9039, + "yacht": 43806, + "yacht": 12859, + "yachts": 29260, + "yad": 13276, + "yad": 40047, + "yadav": 26650, + "yaf": 38019, + "yag": 35081, + "yah": 16170, + "yah": 12381, + "yaho": 37929, + "yahoo": 38152, + "yahoo": 16846, + "yak": 11014, + "yak": 29074, + "yaki": 44677, + "yaku": 29572, + "yakuza": 42628, + "yal": 16198, + "yal": 13418, + "yale": 39926, + "yale": 17157, + "yall": 9210, + "yam": 6666, + "yam": 19318, + "yama": 23512, + "yamaha": 18854, + "yan": 3949, + "yan": 4788, + "yana": 18698, + "yand": 38609, + "yang": 23818, + "yang": 12605, + "yani": 26439, + "yankee": 21554, + "yankees": 11889, + "yann": 40246, + "yann": 38657, + "yao": 45231, + "yap": 48700, + "yap": 34468, + "yar": 6786, + "yar": 23071, + "yard": 20234, + "yard": 4313, + "yards": 7550, + "yarmouth": 45941, + "yarn": 19702, + "yarra": 46824, + "yas": 8168, + "yas": 20570, + "yash": 30216, + "yash": 37836, + "yasi": 37700, + "yasss": 23873, + "yat": 29443, + "yat": 34965, + "yates": 27677, + "yatra": 38932, + "yav": 41275, + "yaw": 31989, + "yawn": 48643, + "yay": 20614, + "yay": 6712, + "yaya": 37608, + "yaz": 19348, + "yaz": 42252, + "yb": 41785, + "yb": 27615, + "yc": 11931, + "ycle": 38089, + "yd": 29896, + "yd": 9534, + "yday": 15899, + "yds": 24819, + "ye": 693, + "ye": 4582, + "yea": 13687, + "yeah": 29405, + "yeah": 3908, + "year": 5163, + "year": 935, + "yearbook": 21636, + "yearling": 48392, + "yearly": 24541, + "yearof": 31944, + "yearofthe": 47899, + "years": 30864, + "years": 1151, + "yearsof": 14932, + "yearswith": 45249, + "yeast": 25819, + "yeats": 44903, + "yed": 28137, + "yed": 3301, + "yee": 18114, + "yee": 23108, + "yeezy": 24901, + "yeg": 16854, + "yeg": 11976, + "yegfood": 48711, + "yeh": 21331, + "yel": 3323, + "yel": 48164, + "yell": 30824, + "yelled": 39199, + "yelling": 26581, + "yellow": 12059, + "yellow": 4481, + "yellowstone": 29241, + "yelp": 31674, + "yemen": 29276, + "yemen": 12513, + "yemeni": 44656, + "yemi": 42267, + "yen": 29602, + "yen": 17960, + "yeo": 32292, + "yeo": 43830, + "yeol": 15808, + "yeon": 16602, + "yep": 10964, + "yer": 15491, + "yer": 2371, + "yers": 3722, + "yes": 21620, + "yes": 1958, + "yess": 42778, + "yess": 40189, + "yesss": 36210, + "yessss": 45620, + "yester": 1905, + "yesterday": 1926, + "yesterdays": 36238, + "yesung": 38527, + "yet": 2296, + "yeti": 34228, + "yev": 39855, + "yew": 34660, + "yey": 45447, + "yg": 16396, + "ygk": 44758, + "ygo": 46166, + "yh": 41978, + "yi": 5826, + "yi": 14762, + "yield": 16825, + "yields": 24856, + "yikes": 25094, + "yin": 26476, + "yin": 23543, + "ying": 42933, + "ying": 910, + "yixing": 32120, + "yk": 30965, + "yl": 2656, + "yl": 4045, + "ylan": 41875, + "ylde": 42850, + "yle": 32305, + "yle": 10770, + "ylene": 34239, + "yler": 48081, + "yles": 42860, + "ylon": 22375, + "ylor": 48468, + "ym": 1786, + "ym": 19587, + "yman": 29077, + "ymc": 47101, + "ymca": 22369, + "yment": 8199, + "ymes": 39968, + "ymi": 5271, + "ymm": 37133, + "ymoun": 41426, + "ymouth": 36429, + "yn": 2823, + "yn": 4100, + "yne": 18238, + "ynes": 18020, + "ynn": 10499, + "ynna": 48292, + "ynwa": 27372, + "yo": 586, + "yo": 3497, + "yoda": 31922, + "yof": 5966, + "yofficial": 21818, + "yofthe": 43983, + "yog": 34985, + "yog": 36539, + "yoga": 25872, + "yoga": 5523, + "yogh": 32626, + "yoghurt": 33491, + "yogi": 22766, + "yogur": 16137, + "yogurt": 16819, + "yoh": 48880, + "yoke": 41969, + "yoko": 25929, + "yoko": 32256, + "yokohama": 42409, + "yol": 19387, + "yol": 35218, + "yolanda": 43845, + "yolo": 20905, + "yom": 34718, + "yom": 44527, + "yon": 10147, + "yon": 7604, + "yong": 27960, + "yong": 20887, + "yonge": 48592, + "yoo": 25842, + "yoo": 20775, + "yoon": 30863, + "yoon": 22113, + "yoona": 32736, + "yoongi": 24037, + "yor": 2028, + "yor": 21132, + "york": 5318, + "york": 2705, + "yorker": 23865, + "yorkers": 41041, + "yorks": 39093, + "yorkshi": 43367, + "yorkshire": 27007, + "yorkshire": 8633, + "yoruba": 46083, + "yos": 35607, + "yosemite": 25893, + "yoshi": 22920, + "yoshi": 25354, + "yot": 22875, + "yotes": 46157, + "yotpo": 26113, + "you": 1562, + "you": 592, + "youare": 33879, + "youcan": 32498, + "youknow": 47919, + "youknow": 41088, + "youn": 1596, + "young": 6939, + "young": 1888, + "younger": 10414, + "youngest": 12316, + "youngjae": 46426, + "youngster": 35881, + "youngsters": 28098, + "younow": 33831, + "your": 2130, + "your": 695, + "youre": 28344, + "youre": 19695, + "yourown": 28583, + "yours": 3834, + "yourself": 3053, + "yourselves": 19747, + "youth": 10743, + "youth": 3281, + "youthful": 37480, + "youths": 23614, + "youts": 22737, + "youtu": 13868, + "youtube": 31258, + "youtube": 3895, + "youtuber": 24720, + "youtubers": 36822, + "youu": 35055, + "youuu": 35324, + "youuuu": 47123, + "yoy": 41865, + "yp": 38370, + "yp": 34734, + "ypg": 37386, + "yql": 46122, + "yqr": 36881, + "yr": 18395, + "yr": 4333, + "yrs": 4822, + "ys": 1971, + "ys": 961, + "yser": 33121, + "ysis": 4843, + "ysl": 45681, + "ysm": 23842, + "yst": 40528, + "yt": 36777, + "yt": 14779, + "ytd": 47524, + "yte": 48172, + "yu": 3371, + "yu": 8887, + "yuan": 26236, + "yuck": 48282, + "yugo": 48231, + "yuh": 42547, + "yui": 47932, + "yuk": 17037, + "yuk": 24063, + "yuki": 34010, + "yukon": 27094, + "yul": 39832, + "yum": 6869, + "yum": 7259, + "yuma": 47566, + "yummy": 7687, + "yun": 14976, + "yun": 18288, + "yung": 44545, + "yung": 17676, + "yunho": 39748, + "yup": 13231, + "yur": 42533, + "yuri": 23823, + "yusuf": 33222, + "yuv": 36784, + "yves": 33698, + "yvon": 23327, + "yvonne": 32583, + "yvr": 29058, + "yw": 33741, + "yx": 35624, + "yxe": 34240, + "yy": 3433, + "yy": 8321, + "yya": 37444, + "yyc": 27542, + "yyc": 11741, + "yyj": 26203, + "yyy": 11514, + "yyyy": 38749, + "yyyy": 16955, + "yyyyy": 26089, + "yyyyyy": 47055, + "yz": 37579, + "yz": 46451, + "yü": 48232, + "z": 89, + "z": 345, + "za": 3710, + "za": 2186, + "zab": 22982, + "zable": 37002, + "zac": 25501, + "zac": 19159, + "zach": 13401, + "zach": 11815, + "zachary": 32401, + "zack": 30567, + "zack": 19120, + "zad": 47314, + "zad": 27838, + "zada": 34889, + "zaf": 21837, + "zafar": 46668, + "zag": 26091, + "zag": 29346, + "zagre": 34107, + "zagreb": 35355, + "zah": 23258, + "zah": 43297, + "zaha": 44408, + "zai": 44329, + "zai": 27065, + "zain": 34400, + "zain": 45366, + "zak": 13050, + "zak": 20738, + "zaki": 48091, + "zal": 20552, + "zal": 33298, + "zam": 7218, + "zam": 41578, + "zambia": 21671, + "zan": 7284, + "zan": 17835, + "zana": 39643, + "zand": 37712, + "zane": 34786, + "zani": 45373, + "zania": 15059, + "zano": 27637, + "zanzi": 47835, + "zap": 24134, + "zapp": 33504, + "zappa": 46592, + "zar": 5458, + "zar": 16392, + "zara": 24454, + "zardari": 20174, + "zas": 48261, + "zation": 3683, + "zawa": 49281, + "zay": 7102, + "zayed": 36726, + "zayn": 22292, + "zayn": 10308, + "zaynmalik": 25278, + "zazzle": 47857, + "ze": 2254, + "ze": 1298, + "zeal": 44951, + "zealand": 7618, + "zeb": 46518, + "zebra": 47394, + "zebra": 22548, + "zed": 21047, + "zed": 1993, + "zedd": 45608, + "zee": 25468, + "zee": 14080, + "zeiss": 47460, + "zeit": 37898, + "zeit": 37906, + "zek": 40829, + "zeke": 47065, + "zel": 10389, + "zel": 12027, + "zelda": 17138, + "zell": 39526, + "zen": 8518, + "zen": 3928, + "zend": 33478, + "zendaya": 35956, + "zenith": 44740, + "zens": 15298, + "zeph": 40726, + "zepp": 22977, + "zeppelin": 25408, + "zer": 6118, + "zer": 3716, + "zero": 14867, + "zero": 5848, + "zers": 9547, + "zes": 4073, + "zest": 37709, + "zet": 34098, + "zeta": 30954, + "zetta": 45993, + "zeus": 32800, + "zey": 46647, + "zh": 33389, + "zh": 41621, + "zhang": 21127, + "zhen": 37374, + "zhen": 33236, + "zhou": 17384, + "zhu": 42049, + "zi": 2651, + "zi": 5819, + "zia": 13764, + "zid": 30235, + "zidane": 34643, + "zie": 29316, + "zie": 8956, + "zieg": 40157, + "ziegler": 46812, + "ziel": 32151, + "zier": 15399, + "zies": 38001, + "ziest": 28159, + "zig": 15950, + "zig": 21345, + "ziggy": 39274, + "zik": 30125, + "zika": 28783, + "zil": 25039, + "zil": 33190, + "zilla": 17879, + "zim": 8112, + "zim": 22577, + "zimbab": 12373, + "zimbabwe": 45668, + "zimbabwe": 13583, + "zimmer": 27452, + "zimmer": 35211, + "zimmerman": 38231, + "zin": 14085, + "zin": 21278, + "zinc": 27458, + "zind": 26206, + "zindabad": 42208, + "zine": 16100, + "zing": 25062, + "zing": 3152, + "zinger": 42027, + "zio": 13906, + "zion": 31763, + "zion": 20963, + "zione": 36161, + "zionist": 33078, + "zip": 26479, + "zip": 16083, + "zipper": 33670, + "zir": 31892, + "zl": 39168, + "zlat": 32489, + "zlatan": 37877, + "zm": 43691, + "zman": 24248, + "zn": 18004, + "zo": 4397, + "zo": 5056, + "zodi": 22660, + "zodiac": 27753, + "zoe": 43114, + "zoe": 16662, + "zoey": 39871, + "zog": 40680, + "zol": 25939, + "zola": 46105, + "zom": 6623, + "zombi": 29452, + "zombie": 11819, + "zombies": 46702, + "zombies": 16517, + "zon": 15109, + "zon": 14618, + "zona": 42134, + "zone": 37197, + "zone": 4442, + "zones": 17247, + "zoning": 36790, + "zoo": 8182, + "zoo": 7147, + "zoom": 32671, + "zoom": 13909, + "zor": 17605, + "zou": 38072, + "zr": 39275, + "zs": 35248, + "zshq": 41442, + "zt": 42629, + "zu": 4091, + "zu": 14184, + "zucchini": 29873, + "zucker": 26890, + "zuckerberg": 30066, + "zul": 31146, + "zulu": 32821, + "zum": 35094, + "zuma": 23326, + "zumba": 32976, + "zun": 42440, + "zur": 17128, + "zurich": 21288, + "zw": 42188, + "zx": 31604, + "zy": 6615, + "zy": 2303, + "zyk": 39112, + "zyme": 36472, + "zyn": 45287, + "zz": 1544, + "zz": 4943, + "zza": 14642, + "zzi": 13974, + "zzie": 18635, + "zzle": 7873, + "zzled": 39075, + "zzo": 14036, + "zzy": 21275, + "zzy": 8353, + "zzz": 20055, + "zzzz": 35742, + "zzzz": 43103, + "{": 90, + "{": 346, + "{}": 39025, + "|": 91, + "|#": 31183, + "|": 347, + "|@": 41677, + "||": 7566, + "}": 92, + "}": 348, + "~": 93, + "~!": 31181, + "~\"": 48442, + "~": 349, + "~>": 43291, + "~@": 44247, + "~~": 11461, + "~~": 16671, + "~~~": 32472, + "~~~~": 28295, + "¡": 94, + "¡": 350, + "¡ï¸ı": 15113, + "¡ï¸ı": 4174, + "¡ľ": 43991, + "¢": 95, + "¢": 351, + "£": 96, + "£": 352, + "£ï¸ı": 18446, + "¤": 97, + "¤": 353, + "¥": 98, + "¥": 354, + "¦": 99, + "¦": 355, + "¦Ī": 47615, + "§": 100, + "§": 356, + "¨": 101, + "¨": 357, + "©": 102, + "©": 358, + "ª": 103, + "ª": 359, + "«": 104, + "«": 360, + "¬": 105, + "¬": 361, + "¬ë": 31736, + "®": 106, + "®": 362, + "¯": 107, + "¯": 363, + "°": 108, + "°:": 21787, + "°": 364, + "°ï¸ı": 34777, + "±": 109, + "±": 365, + "±ï¸ı": 41020, + "²": 110, + "²": 366, + "³": 111, + "³": 367, + "³ï¸ı": 22195, + "³ï¸ı": 24706, + "´": 112, + "´": 368, + "µ": 113, + "µ": 369, + "µï¸ı": 27605, + "¶": 114, + "¶": 370, + "·": 115, + "·": 371, + "¸": 116, + "¸": 372, + "¸ë": 19693, + "¹": 117, + "¹": 373, + "º": 118, + "º": 374, + "»": 119, + "»": 375, + "¼": 120, + "¼": 376, + "½": 121, + "½": 377, + "½ï¸ı": 31333, + "¾": 122, + "¾": 378, + "¿": 123, + "¿": 379, + "À": 124, + "À": 380, + "Á": 125, + "Á": 381, + "Â": 126, + "Â": 382, + "¡": 26868, + "¡": 10830, + "¡¡": 45505, + "¢": 41359, + "£": 31117, + "£": 1950, + "Â¥": 20199, + "¨": 19957, + "¨¨": 23089, + "¨¨¨¨": 41223, + "©": 31148, + "©": 5811, + "«": 14434, + "®": 30857, + "®": 8436, + "¯": 38682, + "¯": 43593, + "¯\\": 44096, + "¯\\_(": 45115, + "°": 21305, + "°": 6858, + "²": 41175, + "´": 30560, + "´": 12559, + "·": 14844, + "º": 28059, + "»": 31642, + "»": 7599, + "½": 33613, + "¿": 44559, + "¿": 17133, + "ÂŃ": 22618, + "Ã": 127, + "Ã": 383, + "á": 7261, + "á": 22229, + "án": 38340, + "án": 21385, + "â": 26170, + "ã": 19339, + "ão": 21141, + "ä": 10896, + "ä": 47276, + "än": 42787, + "Ã¥": 23176, + "æ": 42495, + "ç": 10067, + "ça": 22711, + "è": 12138, + "è": 37761, + "ère": 30272, + "ès": 41210, + "é": 3459, + "é": 4166, + "éal": 45251, + "ée": 13489, + "és": 20507, + "ê": 27515, + "ë": 29526, + "ë": 40520, + "î": 48704, + "ï": 35689, + "ñ": 6445, + "ña": 17753, + "ño": 16574, + "ños": 40104, + "ó": 8891, + "ó": 27733, + "ón": 13926, + "ô": 26815, + "ö": 7255, + "ö": 37423, + "ör": 31762, + "ø": 17483, + "ø": 45598, + "ú": 17963, + "ú": 36019, + "ü": 6522, + "ü": 47177, + "ür": 26132, + "ÃĹ": 16165, + "Ãł": 36149, + "Ãł": 21259, + "ÃŃ": 8366, + "ÃŃ": 23928, + "ÃŃa": 16609, + "ÃŃn": 33623, + "Ä": 128, + "Ä": 384, + "ı": 18562, + "ı": 41901, + "Äģ": 23134, + "Äĩ": 31719, + "Äį": 45414, + "ÄŁ": 26540, + "Å": 129, + "Å": 385, + "Å¡": 35621, + "ÅĤ": 40419, + "Åį": 41267, + "ÅŁ": 21254, + "ÅŁ": 40706, + "Æ": 130, + "Æ": 386, + "Ç": 131, + "Ç": 387, + "È": 132, + "È": 388, + "É": 133, + "É": 389, + "Ê": 134, + "Ê": 390, + "Ë": 135, + "Ë": 391, + "Ì": 136, + "Ì": 392, + "Ìĩ": 16384, + "Í": 137, + "Í": 393, + "Î": 138, + "Î": 394, + "Ï": 139, + "Ï": 395, + "Ïī": 38065, + "Ð": 140, + "Ð": 396, + "а": 16912, + "а": 27080, + "аÐ": 31090, + "в": 39813, + "е": 22176, + "и": 16701, + "иÐ": 29503, + "к": 27152, + "л": 47611, + "м": 38018, + "н": 22705, + "о": 13506, + "о": 29386, + "оÐ": 20978, + "од": 38416, + "оÑĤ": 28599, + "п": 26302, + "пÑĢи": 46321, + "пÑĢиÑĢода": 48150, + "Ñ": 141, + "Ñ": 397, + "ÑĢ": 16370, + "ÑĢи": 41092, + "ÑĢод": 47039, + "ÑĢода": 47929, + "Ñģ": 23669, + "ÑĤ": 17875, + "Ñĥ": 39729, + "ÑĦ": 27993, + "ÑĦоÑĤ": 35155, + "ÑĦоÑĤо": 38981, + "Ñĭ": 45001, + "Ò": 142, + "Ò": 398, + "Ó": 143, + "Ó": 399, + "Ô": 144, + "Ô": 400, + "Õ": 145, + "Õ": 401, + "Ö": 146, + "Ö": 402, + "×": 147, + "×": 403, + "Ø": 148, + "Ø": 404, + "ا": 6042, + "ا": 22625, + "اØ": 13189, + "ار": 40137, + "اÙ": 8453, + "اÙĦ": 12973, + "اÙħ": 47626, + "اÙĨ": 42773, + "اÙĨ": 33200, + "ب": 16378, + "ب": 35330, + "Ø©": 20915, + "ت": 18197, + "ت": 44333, + "ج": 26375, + "Ø®": 41495, + "د": 19872, + "د": 35566, + "ر": 10948, + "ر": 24933, + "رÙĬ": 43273, + "ز": 36169, + "س": 17856, + "Ø´": 28770, + "ص": 27271, + "Ø·": 32050, + "ع": 18843, + "غ": 48510, + "ØŃ": 25722, + "Ù": 149, + "Ù": 405, + "Ùģ": 24112, + "ÙĤ": 27585, + "Ùĥ": 33499, + "ÙĦ": 14251, + "ÙĦ": 37899, + "Ùħ": 12986, + "Ùħ": 29945, + "ÙĨ": 16655, + "ÙĨ": 25386, + "Ùĩ": 34274, + "Ùĩ": 31343, + "ÙĪ": 12203, + "ÙĪ": 38310, + "ÙĪر": 48242, + "ÙĬ": 12046, + "ÙĬ": 23853, + "Ú": 150, + "Ú": 406, + "Ú©": 26475, + "Û": 151, + "Û": 407, + "Ûģ": 40480, + "ÛĮ": 21452, + "ÛĮ": 32703, + "Ü": 152, + "Ü": 408, + "Ý": 153, + "Ý": 409, + "Þ": 154, + "Þ": 410, + "ß": 155, + "ß": 411, + "à": 156, + "à": 412, + "à¤": 3124, + "त": 27263, + "द": 29552, + "न": 26090, + "प": 44149, + "ब": 43599, + "म": 48254, + "म": 26774, + "य": 37299, + "र": 39136, + "र": 19052, + "ल": 30881, + "व": 39545, + "श": 43181, + "स": 28505, + "ह": 29446, + "ा": 37973, + "ा": 13343, + "ि": 26721, + "à¤Ĥ": 30833, + "à¤ķ": 22067, + "à¤Ĺ": 42598, + "à¤ľ": 39561, + "à¥": 7410, + "à¥Ģ": 45791, + "à¥Ģ": 25751, + "à¥ģ": 39653, + "à¥ĩ": 48612, + "à¥ĩ": 25130, + "à¥ĭ": 34452, + "à¥į": 19389, + "à¦": 11322, + "া": 41532, + "à§": 26339, + "à¨": 15741, + "à©": 32086, + "àª": 22990, + "à«": 48347, + "à¬": 32791, + "à®": 6022, + "த": 34691, + "ன": 43394, + "ப": 47388, + "à®®": 35463, + "à®°": 43270, + "ல": 47705, + "ா": 32831, + "ி": 27126, + "à®ķ": 36168, + "à®Ł": 45263, + "à¯": 11259, + "à¯ģ": 33115, + "à¯į": 16631, + "à°": 12100, + "à±": 23550, + "à±į": 46098, + "à²": 9992, + "ಿ": 47797, + "à³": 20745, + "à³į": 36148, + "à´": 15418, + "àµ": 27392, + "àµį": 45266, + "à¶": 29881, + "à·": 30766, + "à¸": 1777, + "ม": 26137, + "ม": 29570, + "ย": 27241, + "ย": 33091, + "ร": 32225, + "ร": 27331, + "ล": 34696, + "ล": 32746, + "ว": 26990, + "ว": 30245, + "ส": 37883, + "ส": 35737, + "ห": 33064, + "ะ": 43920, + "ะ": 49234, + "ั": 14978, + "า": 11529, + "า": 38476, + "าà¸": 12330, + "ิ": 17092, + "ี": 22421, + "ี": 20278, + "ีà¹Ī": 31511, + "ื": 47991, + "ุ": 30524, + "ู": 35273, + "à¸ģ": 30767, + "à¸ģà¸": 31474, + "à¸Ħ": 31757, + "à¸Ħà¸": 39628, + "à¸ĩ": 24603, + "à¸ĩ": 33382, + "à¸Ī": 47608, + "à¸Ĭ": 46324, + "à¸Ķ": 31107, + "à¸Ķ": 38825, + "à¸ķ": 40273, + "à¸ķ": 41108, + "à¸Ĺ": 36171, + "à¸Ļ": 17474, + "à¸Ļ": 17639, + "à¸Ļà¸": 23121, + "à¸ļ": 33859, + "à¸ļ": 39616, + "à¸ŀ": 48171, + "à¸Ń": 13398, + "à¸Ń": 32818, + "à¸Ńà¸": 14649, + "à¸Ńà¸ĩ": 46622, + "à¹": 4484, + "à¹Ģ": 13729, + "à¹Ģà¸": 14076, + "à¹ģà¸": 23916, + "à¹Ĥ": 33118, + "à¹ĥ": 40962, + "à¹Ħà¸": 31718, + "à¹ĩ": 38699, + "à¹Ī": 11722, + "à¹ī": 13123, + "à¹Į": 28353, + "à¼": 46186, + "à½": 39219, + "á": 157, + "á": 413, + "á´": 19036, + "áµ": 17330, + "áĢ": 45932, + "áĥ": 24829, + "áĥ¦": 32193, + "â": 158, + "â": 414, + "â¤": 25087, + "⤵ï¸ı": 36026, + "â¬": 7930, + "â¬ħï¸ı": 42111, + "â¬Ĩ": 27718, + "â¬Ĩï¸ı": 32798, + "â¬ĩ": 10917, + "â¬ĩ": 39370, + "â¬ĩï¸ı": 25621, + "â¬ĩï¸ı": 13984, + "â¬ĩï¸ıâ¬ĩï¸ı": 40159, + "âĢ": 728, + "âĢ¢": 9485, + "âĢ¢": 2701, + "âĢ¢âĢ¢": 15006, + "âĢ¢âĢ¢": 47575, + "âĢ¢âĢ¢âĢ¢âĢ¢": 27502, + "âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢âĢ¢": 48630, + "âĢ¦": 7095, + "âĢ¦\"": 20215, + "âĢ¦..": 47779, + "âĢ¦.": 18615, + "âĢ¦/": 29842, + "âĢ¦": 959, + "âĢ¦âĢ¦": 40066, + "âĢ²": 32633, + "âĢ³": 25061, + "âĢ¼": 6578, + "âĢ¼ï¸ı": 15622, + "âĢ¼ï¸ı": 8310, + "âĢ¼ï¸ıâĢ¼ï¸ı": 33218, + "âĢĭ": 17086, + "âĢĭ": 9844, + "âĢį": 4244, + "âĢįâĻ": 5177, + "âĢįâĻĢï¸ı": 18897, + "âĢįâĻĢï¸ı": 9605, + "âĢįâĻĤ": 8832, + "âĢįâĻĤï¸ı": 21779, + "âĢįâĻĤï¸ı": 10613, + "âĢİ": 31001, + "âĢIJ": 34512, + "âĢĵ": 21070, + "âĢĵ": 1224, + "âĢĶ": 6718, + "âĢĶ": 2005, + "âĢĶ>": 26341, + "âĢĶ@": 28470, + "âĢĶâĢĶ": 10037, + "âĢĶâĢĶ": 44800, + "âĢĶâĢĶâĢĶâĢĶ": 17797, + "âĢĶâĢĶâĢĶâĢĶâĢĶâĢĶâĢĶâĢĶ": 34432, + "âĢķ": 14236, + "âģ": 1667, + "âģ£": 31089, + "âģ£": 16845, + "âģ¦": 2773, + "âģ¦": 34855, + "âģ¦@": 2859, + "âģ¦âģ¦@": 27783, + "âģ©": 20097, + "âģ©,": 48749, + "âģ©.": 35777, + "âģ©": 2918, + "âģīï¸ı": 46534, + "âģł": 23881, + "âģł": 13503, + "âģłâģł": 33488, + "âĤ": 5227, + "âĤ¬": 34919, + "âĤ¬": 6309, + "âĤ¹": 21777, + "âĥ": 2805, + "âĥ£": 11250, + "âĥ£": 3076, + "âĥ£@": 48291, + "âĦ": 8604, + "âĦ¢": 29438, + "âĦ¢": 11675, + "âĦ¹": 45462, + "âĨ": 6059, + "âĨĴ": 7481, + "âĨĵ": 41603, + "âĩ": 27228, + "âĪ": 17788, + "âī": 22684, + "âīĪ": 45451, + "âĮ": 17848, + "âĮļ": 31301, + "âĮļï¸ı": 35931, + "âı": 7960, + "âı©": 40847, + "âı°": 12714, + "âı±": 33149, + "âı³": 47617, + "âĵ": 27400, + "âĶ": 13389, + "âĶĢ": 45139, + "âĶģ": 42022, + "âķ": 17027, + "âķIJ": 48039, + "âĸ": 4168, + "âĸª": 21203, + "âĸª": 36628, + "âĸªï¸ı": 24974, + "âĸ«": 39478, + "âĸ¬": 33798, + "âĸ¬âĸ¬": 36975, + "âĸ¶": 12509, + "âĸ¶": 21126, + "âĸ¶ï¸ı": 14442, + "âĸº": 46061, + "âĸº": 12086, + "âĸ½": 45634, + "âĸł": 36791, + "âĹ": 9323, + "âĹĨ": 48961, + "âĹı": 26999, + "âĺ": 1741, + "âĺ®": 45851, + "âĺ¹": 28811, + "âĺ¹ï¸ı": 39605, + "âĺº": 5010, + "âĺº": 8703, + "âĺºâĺº": 46051, + "âĺºï¸ı": 11506, + "âĺºï¸ı": 7779, + "âĺºï¸ıâĺºï¸ı": 41315, + "âĺ¼": 38877, + "âĺĢ": 32146, + "âĺĢ": 22242, + "âĺĢï¸ı": 12817, + "âĺĢï¸ı": 8219, + "âĺĢï¸ıâĺĢï¸ı": 44550, + "âĺģ": 25195, + "âĺģï¸ı": 35197, + "âĺĥ": 38972, + "âĺħ": 9339, + "âĺħ": 10643, + "âĺħâĺħ": 12681, + "âĺħâĺħ": 36644, + "âĺħâĺħâĺħâĺħ": 34431, + "âĺħâĺħâĺħâĺħ": 44034, + "âĺħâĺħâĺħâĺħâĺħ": 45984, + "âĺĨ": 23941, + "âĺĨ": 13439, + "âĺİ": 24045, + "âĺİ": 45493, + "âĺİï¸ı": 27219, + "âĺij": 20983, + "âĺij": 42300, + "âĺijï¸ı": 22291, + "âĺĶï¸ı": 31238, + "âĺķ": 11454, + "âĺķ": 26561, + "âĺķï¸ı": 25839, + "âĺķï¸ı": 15499, + "âĺĺ": 23483, + "âĺĺï¸ı": 31454, + "âĺĿ": 21982, + "âĺĿï¸ı": 38891, + "âĺŀ": 31255, + "âĺłï¸ı": 34672, + "âĻ": 1548, + "âĻ¡": 11091, + "âĻ¡": 6251, + "âĻ¡âĻ¡": 22360, + "âĻ¡âĻ¡": 34267, + "âĻ¡âĻ¡âĻ¡": 36611, + "âĻ¤": 47435, + "âĻ¥": 4622, + "âĻ¥": 3405, + "âĻ¥âĻ¥": 12975, + "âĻ¥âĻ¥": 19604, + "âĻ¥âĻ¥âĻ¥": 23255, + "âĻ¥âĻ¥âĻ¥âĻ¥": 49020, + "âĻ¥ï¸ı": 17774, + "âĻ¥ï¸ı": 10561, + "âĻ¥ï¸ıâĻ¥ï¸ı": 40309, + "âĻ¦": 32376, + "âĻ¦": 47547, + "âĻ©": 30339, + "âĻ©âĻ«": 31636, + "âĻª": 27364, + "âĻª": 12382, + "âĻ«": 39217, + "âĻ«": 10814, + "âĻ¬": 24753, + "âĻ»": 39611, + "âĻ»ï¸ı": 46075, + "âļ": 2234, + "âļ¡": 40098, + "âļ¡": 20712, + "âļ¡ï¸ı": 19500, + "âļ¡ï¸ı": 11605, + "âļ¡ï¸ıâļ¡ï¸ı": 45922, + "âļª": 11922, + "âļª": 36373, + "âļªï¸ı": 22251, + "âļªï¸ı": 17885, + "âļ«": 15374, + "âļ«ï¸ı": 26529, + "âļ«ï¸ı": 24649, + "âļ½": 4867, + "âļ½": 13173, + "âļ½âļ½": 43259, + "âļ½ï¸ı": 11342, + "âļ½ï¸ı": 6768, + "âļ½ï¸ıâļ½ï¸ı": 30358, + "âļ½ï¸ıâļ½ï¸ı": 44148, + "âļ¾": 11314, + "âļ¾": 34717, + "âļ¾ï¸ı": 24727, + "âļ¾ï¸ı": 14858, + "âļĵ": 23522, + "âļĵï¸ı": 35299, + "âļĶï¸ı": 29361, + "âļľ": 47491, + "âļł": 39203, + "âļłï¸ı": 40966, + "âļłï¸ı": 15596, + "âĽ": 7956, + "âĽ³ï¸ı": 29204, + "âĽĦ": 30668, + "âĽĦï¸ı": 45465, + "âľ": 1508, + "⾨": 7181, + "⾨": 3531, + "⾨⾨": 35174, + "⾨⾨": 21985, + "⾨⾨⾨": 39424, + "âľĤ": 38602, + "âľħ": 29544, + "âľħ": 5564, + "âľĪ": 10682, + "âľĪ": 30712, + "âľĪï¸ı": 26176, + "âľĪï¸ı": 13413, + "âľĬ": 12392, + "âľĬ": 17819, + "âľĬðŁı½": 48547, + "âľĬðŁı¾": 41185, + "âľĭ": 39383, + "âľĭ": 30239, + "âľĮ": 6419, + "âľĮ": 12656, + "âľĮï¸ı": 21906, + "âľĮï¸ı": 12239, + "âľĮðŁı»": 30538, + "âľĮðŁı¼": 30588, + "âľį": 20872, + "âľįï¸ı": 30888, + "âľı": 32574, + "âľıï¸ı": 40724, + "âľĵ": 36700, + "âľĶ": 47200, + "âľĶ": 13749, + "âľĶï¸ı": 40544, + "âľĶï¸ı": 9191, + "âľĸï¸ı": 44133, + "âľĿ": 42220, + "âĿ": 1045, + "âĿ£": 37007, + "âĿ£": 25623, + "âĿ£ï¸ı": 25240, + "âĿ¤": 1266, + "âĿ¤": 2720, + "âĿ¤âĿ¤": 9033, + "âĿ¤âĿ¤": 14058, + "âĿ¤âĿ¤âĿ¤": 16708, + "âĿ¤âĿ¤âĿ¤âĿ¤": 37918, + "âĿ¤âĿ¤âĿ¤âĿ¤": 43970, + "âĿ¤ï¸ı": 2626, + "âĿ¤ï¸ı#": 30281, + "âĿ¤ï¸ı.": 45326, + "âĿ¤ï¸ı": 1752, + "âĿ¤ï¸ı@": 31187, + "âĿ¤ï¸ıâĿ¤ï¸ı": 6713, + "âĿ¤ï¸ıâĿ¤ï¸ı": 10363, + "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 12282, + "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 39167, + "âĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ıâĿ¤ï¸ı": 29880, + "âĿ¤ï¸ıðŁĴĻ": 37380, + "âĿ¤ï¸ıðŁĺį": 37272, + "âĿ¤ï¸ıðŁĺĺ": 41800, + "âĿ¤ðŁĺį": 49120, + "âĿ¥": 36914, + "âĿĦ": 8501, + "âĿĦ": 30494, + "âĿĦï¸ı": 16834, + "âĿĦï¸ı": 12402, + "âĿĦï¸ıâĿĦï¸ı": 41626, + "âĿĮ": 44485, + "âĿĮ": 17975, + "âĿĵ": 29791, + "âĿĹ": 12868, + "âĿĹ": 29079, + "âĿĹï¸ı": 28642, + "âĿĹï¸ı": 17391, + "âĿĿ": 46951, + "âŀ": 3257, + "âŀ¡": 12854, + "âŀ¡ï¸ı": 31860, + "âŀ¡ï¸ı": 4956, + "âŀ¤": 18651, + "âŀķ": 46526, + "âŀĸ": 21327, + "âŀĸ": 34902, + "âŀĸâŀĸ": 23316, + "âŀĸâŀĸâŀĸâŀĸ": 40401, + "âŀľ": 23775, + "âł": 5689, + "âłĢ": 9691, + "âłĢ": 8621, + "âłĢâłĢ": 11466, + "âłĢâłĢ": 39092, + "âłĢâłĢâłĢâłĢ": 20976, + "âłĢâłĢâłĢâłĢâłĢâłĢâłĢâłĢ": 46063, + "âŃ": 5527, + "âŃIJ": 6410, + "âŃIJ": 19012, + "âŃIJâŃIJ": 32663, + "âŃIJï¸ı": 12427, + "âŃIJï¸ı": 10251, + "âŃIJï¸ıâŃIJï¸ı": 18640, + "âŃIJï¸ıâŃIJï¸ıâŃIJï¸ı": 40746, + "ã": 159, + "ã": 415, + "ãĢ": 4092, + "ãĢģ": 45262, + "ãĢĤ": 38060, + "ãĢĤ": 38000, + "ãĢĬ": 39920, + "ãĢĭ": 32898, + "ãĢĮ": 18116, + "ãĢį": 19149, + "ãĢİ": 26947, + "ãĢı": 30293, + "ãĢIJ": 12534, + "ãĢij": 12990, + "ãĢľ": 39581, + "ãģ": 4813, + "ãģ¦": 48029, + "ãģ¨": 34671, + "ãģ¨ç¹ĭãģ": 47310, + "ãģ¨ç¹ĭãģĮãĤĬãģŁãģĦ": 48290, + "ãģª": 29104, + "ãģ®": 21575, + "ãģ·": 44130, + "ãģĦ": 33523, + "ãģĦ": 38850, + "ãģĨ": 44235, + "ãģį": 42184, + "ãĤ": 3909, + "ãĤ¢": 26560, + "ãĤ¤": 19319, + "ãĤ¤ãĥ": 36294, + "ãĤ«": 37367, + "ãĤ¯": 31574, + "ãĤ·": 37665, + "ãĤ¸": 32234, + "ãĤ¸ãĥ": 43491, + "ãĤ¹": 22694, + "ãĤ¹": 39220, + "ãĤ¹ãĥ": 32421, + "ãĤ¿": 34941, + "ãĤĬãģ": 40500, + "ãĤĮ": 45211, + "ãĤŃ": 47121, + "ãĥ": 2429, + "ãĥ©": 23007, + "ãĥª": 32115, + "ãĥ«": 33257, + "ãĥ¬": 32965, + "ãĥ³": 17671, + "ãĥ³": 26875, + "ãĥ³ãĤ": 45105, + "ãĥ³ãĥ": 25914, + "ãĥ»": 8415, + "ãĥ»": 11158, + "ãĥ»ãĥ»": 13949, + "ãĥ»ãĥ»ãĥ»": 14234, + "ãĥ¼": 13457, + "ãĥ¼": 30391, + "ãĥ¼ãĥ": 18584, + "ãĥĥ": 28902, + "ãĥĦ": 32173, + "ãĥĪ": 42384, + "ãĥİ": 39967, + "ãĥķãĤ": 33371, + "ãĥŀ": 48924, + "ãĥŃ": 35827, + "ãħ": 5947, + "ãħ¤": 21096, + "ãħ¤ãħ¤": 22583, + "ãħ¤ãħ¤ãħ¤ãħ¤": 39329, + "ãħĭ": 13052, + "ãħĭ": 25108, + "ãħĭãħĭ": 16604, + "ãħĭãħĭ": 42581, + "ãħĭãħĭãħĭ": 46407, + "ãħĭãħĭãħĭãħĭ": 39362, + "ãħł": 16089, + "ãħł": 25781, + "ãħłãħł": 22021, + "ãħłãħł": 34398, + "ãħłãħłãħłãħł": 47028, + "ä": 160, + "ä": 416, + "ä¸": 19759, + "ä¹": 41854, + "äº": 21078, + "人": 36839, + "ä»": 37743, + "ä½": 47466, + "å": 161, + "å": 417, + "å¤": 23170, + "å¥": 29290, + "å®": 27047, + "å°": 34720, + "å±": 46096, + "å¸": 42021, + "å¹": 38780, + "åħ": 34314, + "åĨ": 27972, + "åĨĻ": 44653, + "åĪ": 42748, + "åĭ": 47505, + "åı": 34517, + "åIJ": 41673, + "åĽ": 39027, + "åľ": 37746, + "åŃ": 35751, + "æ": 162, + "æ": 418, + "æĸ": 29032, + "æĹ": 22265, + "æĹ¥": 39121, + "æĹ¥": 37156, + "æĺ": 42891, + "æĻ": 48132, + "æľ": 19277, + "æľ¬": 44353, + "æĿ": 27667, + "æĿ±": 48338, + "ç": 163, + "ç": 419, + "ç¥": 26369, + "ç¥Ń": 42557, + "çµ": 37810, + "ç¹": 43431, + "ç¹ĭãģ": 45930, + "çĶ": 20211, + "çĶŁ": 33375, + "çľ": 33440, + "羣": 41570, + "è": 164, + "è": 420, + "èª": 34002, + "èªķ": 41293, + "é": 165, + "é": 421, + "éģ": 44854, + "éĩ": 38283, + "ê": 166, + "ê": 422, + "ê°": 21122, + "ê°ĵ": 41076, + "ê°ĵìĦ¸ë¸IJ": 41689, + "ê°ķ": 45758, + "ê²": 35555, + "ê³": 36216, + "êµ": 31871, + "ê·": 42680, + "ê¸": 32495, + "ê¹": 24531, + "ê¹Ģ": 25203, + "ë": 167, + "ë": 423, + "ë¦": 24621, + "리": 47649, + "ë§": 28024, + "ë§Ī": 40027, + "ëª": 36311, + "ë¯": 19528, + "민": 34442, + "민": 44632, + "ë°": 15810, + "ë°©": 23273, + "ë°©íĥ": 25081, + "ë°©íĥĦ": 25641, + "ë°©íĥĦìĨĮëħĦëĭ": 26068, + "ë°©íĥĦìĨĮëħĦëĭ¨": 27129, + "ë°ķ": 40988, + "ë²": 48267, + "ë³": 44693, + "ë¹": 24193, + "ëĤ": 27252, + "ëĤĺ": 48484, + "ëĭ": 13094, + "ëĭ¤": 46680, + "ëĭĪ": 33708, + "ëį": 45543, + "ëı": 31972, + "ëĵ": 30850, + "ëĿ": 44317, + "ì": 168, + "ì": 424, + "ì£": 39856, + "주": 45161, + "ì¤": 31153, + "ì§": 16279, + "ì§Ģ": 28836, + "ì§Ħ": 38890, + "ì°": 40742, + "ì¶": 42476, + "ì¶ķ": 46403, + "ì¶ķíķĺ": 47866, + "ì¹": 45088, + "ìĤ": 31061, + "ìĥ": 30587, + "ìĥĿ": 47858, + "ìĦ": 15074, + "ìĦ¸ë": 29254, + "ìĦ¸ë¸": 29658, + "ìĦ¸ë¸IJ": 41415, + "ìĨ": 15115, + "ìĨĮë": 20515, + "ìĨĮëħ": 21391, + "ìĨĮëħĦëĭ": 25887, + "ìĪ": 32757, + "ìĬ": 12125, + "ìĬ¤": 20305, + "ìĬ¤": 23829, + "ìĭ": 23924, + "ìķ": 16071, + "ìķĦ": 23233, + "ìĸ": 31625, + "ìĹ": 13252, + "ìĹIJ": 37622, + "ìĹij": 31036, + "ìĹijìĨ": 42763, + "ìĹijìĨĮ": 45606, + "ìĺ": 21144, + "ìĻ": 39405, + "ìļ": 18541, + "ìļ°": 38415, + "ìļ°": 49344, + "ìĽ": 22543, + "ìĽIJ": 36495, + "ìľ": 20909, + "ìľł": 42890, + "ìĿ": 8276, + "ìĿ´": 12286, + "ìĿ´": 34746, + "ìĿ´ì": 37590, + "ìĿ¼": 43406, + "ìŀ": 20849, + "ìł": 20580, + "ìłķ": 34725, + "í": 169, + "í": 425, + "íģ": 35641, + "íģ¬": 45832, + "íĤ": 43565, + "íĥ": 15012, + "íĥĢ": 41126, + "íĥľ": 37663, + "íĬ": 23215, + "íĬ¸": 48974, + "íĬ¸": 39820, + "íĭ": 34350, + "íĶ": 29450, + "íķ": 15197, + "íķ´": 35286, + "íķĺ": 33992, + "íĺ": 15962, + "íĺ¸": 39657, + "íĺĦ": 34645, + "íĻ": 31882, + "î": 170, + "î": 426, + "îĢ": 36288, + "îĦ": 35368, + "îĮ": 41006, + "îIJ": 16929, + "îIJĴ": 40100, + "ï": 171, + "ï": 427, + "ï¸": 842, + "ï¸İ": 24029, + "ï¸ı": 1392, + "ï¸ı#": 46997, + "ï¸ı:": 32604, + "ï¸ı": 1001, + "ï¸ı@": 34600, + "ï¸ıâĥ£": 17394, + "ï¸ıâĥ£-": 40376, + "ï¸ıâĥ£": 4603, + "ï¿": 27850, + "�": 47356, + "�": 39802, + "ð": 172, + "ð": 428, + "ðĿ": 6874, + "ðĿIJ": 15889, + "ðĿij": 43794, + "ðĿĴ": 43387, + "ðĿĵ": 47110, + "ðĿĹ": 18865, + "ðĿĺ": 26109, + "ðĿĻ": 29415, + "ðŁ": 558, + "ðŁ¤": 1793, + "ðŁ¤£": 9665, + "ðŁ¤£": 9909, + "ðŁ¤£ðŁ¤£": 16430, + "ðŁ¤£ðŁ¤£": 31009, + "ðŁ¤£ðŁ¤£ðŁ¤£": 32262, + "ðŁ¤¤": 39550, + "ðŁ¤¤": 26759, + "ðŁ¤¦": 17186, + "ðŁ¤§": 40983, + "ðŁ¤©": 27351, + "ðŁ¤©": 16074, + "ðŁ¤ª": 44230, + "ðŁ¤ª": 24920, + "ðŁ¤«": 47671, + "ðŁ¤¯": 37595, + "ðŁ¤·": 13185, + "ðŁ¤·ðŁı»âĢįâĻĢï¸ı": 46770, + "ðŁ¤ij": 34801, + "ðŁ¤ĵ": 36580, + "ðŁ¤ĵ": 18928, + "ðŁ¤Ķ": 12706, + "ðŁ¤Ķ": 6497, + "ðŁ¤ĶðŁ¤Ķ": 28490, + "ðŁ¤ĶðŁ¤ĶðŁ¤Ķ": 43361, + "ðŁ¤ĸ": 46146, + "ðŁ¤Ĺ": 16646, + "ðŁ¤Ĺ": 10465, + "ðŁ¤ĹðŁ¤Ĺ": 44321, + "ðŁ¤ĺ": 10623, + "ðŁ¤ĺ": 17288, + "ðŁ¤ĺðŁı»": 46449, + "ðŁ¤ĺðŁı»": 30891, + "ðŁ¤ĺðŁı¼": 31458, + "ðŁ¤ĺðŁı½": 49362, + "ðŁ¤Ļ": 23800, + "ðŁ¤Ļ": 39101, + "ðŁ¤Ŀ": 35242, + "ðŁ¤ŀ": 29463, + "ðŁ¤ŀ": 38597, + "ðŁ¤Ł": 48509, + "ðŁ¤ł": 36737, + "ðŁ¤Ń": 47289, + "ðŁ¥": 4156, + "ðŁ¥°": 29246, + "ðŁ¥°": 17597, + "ðŁ¥³": 45823, + "ðŁ¥³": 28055, + "ðŁ¥º": 43380, + "ðŁ¥º": 36858, + "ðŁ¥Ĥ": 43805, + "ðŁ¥Ĥ": 25212, + "ðŁ¥ĥ": 47790, + "ðŁ¥ĩ": 34372, + "ðŁ¥ĩ": 20069, + "ðŁ¥Ī": 35858, + "ðŁ¥ī": 36782, + "ðŁ¥Ĭ": 29275, + "ðŁ¦": 6040, + "ðŁ¦ģ": 36367, + "ðŁ¦ģ": 26056, + "ðŁ¦ĥ": 40184, + "ðŁ¦Ħ": 37659, + "ðŁ¦ħ": 28800, + "ðŁ¦Ī": 48984, + "ðŁ¦ĭ": 49325, + "ðŁ¦ĭ": 28985, + "ðŁ§": 8792, + "ðŁ§¡": 30996, + "ðŁ§¡": 24578, + "ðŁ§IJ": 33549, + "ðŁħ": 22010, + "ðŁĨ": 9536, + "ðŁĨķ": 34956, + "ðŁĨĺ": 39868, + "ðŁĨļ": 16325, + "ðŁĩ": 1173, + "ðŁĩ¦": 12469, + "ðŁĩ¦": 28565, + "ðŁĩ¦ðŁĩ": 33196, + "ðŁĩ¦ðŁĩ·": 41629, + "ðŁĩ¦ðŁĩº": 25192, + "ðŁĩ§": 14660, + "ðŁĩ§ðŁĩ": 37342, + "ðŁĩ§ðŁĩª": 38794, + "ðŁĩ§ðŁĩ·": 28182, + "ðŁĩ¨": 8889, + "ðŁĩ¨ðŁĩ": 8989, + "ðŁĩ¨ðŁĩ¦": 34324, + "ðŁĩ¨ðŁĩ¦": 16364, + "ðŁĩ¨ðŁĩ³": 36819, + "ðŁĩ¨ðŁĩŃ": 41119, + "ðŁĩ©": 15222, + "ðŁĩ©ðŁĩ": 36350, + "ðŁĩ©ðŁĩª": 21531, + "ðŁĩª": 11428, + "ðŁĩª": 12331, + "ðŁĩªðŁĩ": 13917, + "ðŁĩªðŁĩ¸": 22177, + "ðŁĩªðŁĩº": 34655, + "ðŁĩ«": 12977, + "ðŁĩ«ðŁĩ·": 39109, + "ðŁĩ«ðŁĩ·": 16223, + "ðŁĩ¬": 8129, + "ðŁĩ¬ðŁĩ": 8354, + "ðŁĩ¬ðŁĩ§": 23762, + "ðŁĩ¬ðŁĩ§": 11559, + "ðŁĩ®": 8268, + "ðŁĩ®ðŁĩ": 8347, + "ðŁĩ®ðŁĩª": 34148, + "ðŁĩ®ðŁĩ³": 47299, + "ðŁĩ®ðŁĩ³": 23602, + "ðŁĩ®ðŁĩ¹": 42034, + "ðŁĩ®ðŁĩ¹": 17070, + "ðŁĩ¯": 20090, + "ðŁĩ¯ðŁĩ": 22924, + "ðŁĩ¯ðŁĩµ": 26527, + "ðŁĩ°": 28232, + "ðŁĩ±": 29533, + "ðŁĩ±ðŁĩ": 40941, + "ðŁĩ²": 16411, + "ðŁĩ²ðŁĩ": 17562, + "ðŁĩ²ðŁĩ½": 32073, + "ðŁĩ³": 16645, + "ðŁĩ³ðŁĩ": 17747, + "ðŁĩ³ðŁĩ±": 36747, + "ðŁĩµ": 12127, + "ðŁĩµðŁĩ": 13608, + "ðŁĩµðŁĩ°": 37764, + "ðŁĩµðŁĩ¹": 42621, + "ðŁĩµðŁĩŃ": 42777, + "ðŁĩ·": 16026, + "ðŁĩ·": 9869, + "ðŁĩ·ðŁĩº": 37902, + "ðŁĩ¸": 19447, + "ðŁĩ¸ðŁĩ": 33325, + "ðŁĩ¸ðŁĩª": 39260, + "ðŁĩ¹": 21810, + "ðŁĩ¹ðŁĩ": 36250, + "ðŁĩº": 4054, + "ðŁĩº": 17467, + "ðŁĩºðŁĩ": 4131, + "ðŁĩºðŁĩ¸": 8907, + "ðŁĩºðŁĩ¸": 5688, + "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 18739, + "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 41411, + "ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸ðŁĩºðŁĩ¸": 43357, + "ðŁĩ¿": 25520, + "ðŁĩ¿ðŁĩ¦": 36982, + "ðŁĩŃ": 30370, + "ðŁĮ": 1576, + "ðŁĮ±": 35318, + "ðŁĮ±": 20665, + "ðŁĮ²": 34071, + "ðŁĮ²": 28154, + "ðŁĮ³": 44265, + "ðŁĮ³": 28543, + "ðŁĮ´": 20643, + "ðŁĮ´": 15968, + "ðŁĮµ": 40871, + "ðŁĮ·": 32328, + "ðŁĮ·": 24259, + "ðŁĮ¸": 16314, + "ðŁĮ¸": 10980, + "ðŁĮ¸ðŁĮ¸": 46210, + "ðŁĮ¹": 14990, + "ðŁĮ¹": 10662, + "ðŁĮ¹ðŁĮ¹": 37933, + "ðŁĮº": 27608, + "ðŁĮº": 19829, + "ðŁĮ»": 27196, + "ðŁĮ»": 19772, + "ðŁĮ¼": 36484, + "ðŁĮ¼": 26312, + "ðŁĮ¾": 39796, + "ðŁĮ¿": 27736, + "ðŁĮ¿": 18588, + "ðŁĮĢ": 34348, + "ðŁĮħ": 27547, + "ðŁĮĪ": 23038, + "ðŁĮĪ": 13042, + "ðŁĮĬ": 20465, + "ðŁĮĬ": 14302, + "ðŁĮĮ": 43393, + "ðŁĮį": 34931, + "ðŁĮį": 18641, + "ðŁĮİ": 31125, + "ðŁĮİ": 16969, + "ðŁĮı": 31527, + "ðŁĮIJ": 33071, + "ðŁĮĻ": 42330, + "ðŁĮĻ": 23283, + "ðŁĮļ": 49004, + "ðŁĮļ": 27877, + "ðŁĮŀ": 21152, + "ðŁĮŀ": 12980, + "ðŁĮŁ": 13196, + "ðŁĮŁ": 8542, + "ðŁĮŁðŁĮŁ": 26014, + "ðŁį": 2011, + "ðŁį¦": 47375, + "ðŁį¦": 32032, + "ðŁį©": 38379, + "ðŁįª": 38958, + "ðŁį«": 47994, + "ðŁį«": 33401, + "ðŁį°": 43732, + "ðŁį°": 30051, + "ðŁį³": 37441, + "ðŁį´": 41531, + "ðŁį´": 25338, + "ðŁį·": 24445, + "ðŁį·": 18072, + "ðŁį¸": 43058, + "ðŁį¸": 31217, + "ðŁį¹": 35598, + "ðŁįº": 31081, + "ðŁįº": 21590, + "ðŁį»": 22793, + "ðŁį»": 13167, + "ðŁį¾": 27294, + "ðŁį¾": 21656, + "ðŁįĢ": 22865, + "ðŁįĢ": 15764, + "ðŁįģ": 29837, + "ðŁįģ": 23075, + "ðŁįĤ": 35015, + "ðŁįĤ": 25721, + "ðŁįĥ": 27157, + "ðŁįĥ": 20147, + "ðŁįĩ": 48697, + "ðŁįĬ": 35001, + "ðŁįĬ": 28036, + "ðŁįĭ": 39543, + "ðŁįĮ": 44987, + "ðŁįį": 48946, + "ðŁįİ": 32069, + "ðŁįij": 32889, + "ðŁįĴ": 33160, + "ðŁįĵ": 44739, + "ðŁįĵ": 33456, + "ðŁįĶ": 46415, + "ðŁįĶ": 36031, + "ðŁįķ": 31469, + "ðŁįķ": 23904, + "ðŁįŃ": 42100, + "ðŁİ": 1165, + "ðŁİ£": 43158, + "ðŁİ¤": 23490, + "ðŁİ¤": 15690, + "ðŁİ¥": 22186, + "ðŁİ¥:": 43640, + "ðŁİ¥": 13233, + "ðŁİ§": 31254, + "ðŁİ§": 14266, + "ðŁİ¨": 31953, + "ðŁİ¨": 13461, + "ðŁİ©": 37701, + "ðŁİ«": 30331, + "ðŁİ¬": 36020, + "ðŁİ¬": 18150, + "ðŁİ®": 29312, + "ðŁİ¯": 23114, + "ðŁİµ": 27435, + "ðŁİµ": 14946, + "ðŁİ¶": 11755, + "ðŁİ¶": 6011, + "ðŁİ¶ðŁİ¶": 36283, + "ðŁİ¸": 29135, + "ðŁİ¸": 22122, + "ðŁİ¹": 43493, + "ðŁİ¼": 34949, + "ðŁİ¼": 23757, + "ðŁİ¾": 41982, + "ðŁİ¾": 24222, + "ðŁİĢ": 34347, + "ðŁİĢ": 20151, + "ðŁİģ": 18368, + "ðŁİģ": 13462, + "ðŁİĤ": 13026, + "ðŁİĤ": 10392, + "ðŁİĤðŁİĤ": 39338, + "ðŁİĥ": 22622, + "ðŁİĥ": 16780, + "ðŁİĦ": 12942, + "ðŁİĦ": 11267, + "ðŁİħ": 17685, + "ðŁİħ": 24276, + "ðŁİĨ": 39222, + "ðŁİĪ": 16142, + "ðŁİĪ": 14448, + "ðŁİĪðŁİī": 48049, + "ðŁİī": 4310, + "ðŁİī:": 17310, + "ðŁİī": 3986, + "ðŁİīðŁİ": 11473, + "ðŁİīðŁİĪ": 40499, + "ðŁİīðŁİĪ": 34008, + "ðŁİīðŁİī": 25159, + "ðŁİīðŁİī": 13450, + "ðŁİīðŁİīðŁİī": 20828, + "ðŁİīðŁİĬ": 31662, + "ðŁİīðŁİĬ": 30781, + "ðŁİĬ": 22763, + "ðŁİĬ": 22425, + "ðŁİĬðŁİī": 48801, + "ðŁİĵ": 28916, + "ðŁİĵ": 18744, + "ðŁİĻ": 29001, + "ðŁİĻ": 29753, + "ðŁİĻï¸ı": 44205, + "ðŁİŁ": 19248, + "ðŁİŁ": 21107, + "ðŁİŁï¸ı": 30243, + "ðŁİŃ": 28856, + "ðŁı": 1109, + "ðŁı¡": 27318, + "ðŁı³ï¸ı": 26844, + "ðŁı³ï¸ıâĢį": 27093, + "ðŁı³ï¸ıâĢįðŁĮĪ": 32610, + "ðŁı´": 39690, + "ðŁı´": 19704, + "ðŁı»": 5042, + "ðŁı»": 3702, + "ðŁı»âĢį": 46250, + "ðŁı»âĢįâĻĢï¸ı": 48391, + "ðŁı»âĢįâĻĢï¸ı": 23595, + "ðŁı»âĢįâĻĤï¸ı": 30984, + "ðŁı¼": 6193, + "ðŁı¼": 4027, + "ðŁı¼âĢįâĻĢï¸ı": 28955, + "ðŁı½": 8514, + "ðŁı½": 6114, + "ðŁı½âĢįâĻĢï¸ı": 37036, + "ðŁı½âĢįâĻĤï¸ı": 43157, + "ðŁı¾": 10230, + "ðŁı¾": 7778, + "ðŁı¾âĢįâĻĤï¸ı": 47189, + "ðŁı¿": 29854, + "ðŁı¿": 21094, + "ðŁıĢ": 13708, + "ðŁıĢ": 8813, + "ðŁıĢðŁıĢ": 43169, + "ðŁıģ": 29423, + "ðŁıģ": 17473, + "ðŁıĥ": 16820, + "ðŁıĥ": 32751, + "ðŁıħ": 25500, + "ðŁıĨ": 9585, + "ðŁıĨ": 5596, + "ðŁıĨðŁıĨ": 18946, + "ðŁıĨðŁıĨ": 38269, + "ðŁıĨðŁıĨðŁıĨ": 44484, + "ðŁıĩ": 45789, + "ðŁıĩ": 40288, + "ðŁıĪ": 16144, + "ðŁıĪ": 10477, + "ðŁıī": 26020, + "ðŁıĬ": 33061, + "ðŁıĬ": 47830, + "ðŁıĮ": 41116, + "ðŁıı": 32460, + "ðŁıIJ": 46334, + "ðŁıIJ": 29433, + "ðŁıĴ": 37756, + "ðŁıŁ": 35914, + "ðŁıŁ": 26472, + "ðŁıŁï¸ı": 42627, + "ðŁıł": 33727, + "ðŁIJ": 2074, + "ðŁIJ¢": 37049, + "ðŁIJ£": 39597, + "ðŁIJ¥": 42981, + "ðŁIJ¦": 37260, + "ðŁIJ¬": 44238, + "ðŁIJ¯": 34825, + "ðŁIJ¯": 26111, + "ðŁIJ°": 35378, + "ðŁIJ°": 25050, + "ðŁIJ±": 35710, + "ðŁIJ±": 22979, + "ðŁIJ´": 33509, + "ðŁIJ¶": 14466, + "ðŁIJ¶": 10631, + "ðŁIJ·": 38408, + "ðŁIJ¸": 45597, + "ðŁIJ¸": 40298, + "ðŁIJº": 44281, + "ðŁIJº": 31445, + "ðŁIJ»": 30750, + "ðŁIJ»": 25322, + "ðŁIJ¼": 46234, + "ðŁIJ¾": 16057, + "ðŁIJ¾": 11317, + "ðŁIJ¾ðŁIJ¾": 42202, + "ðŁIJī": 46908, + "ðŁIJĬ": 43974, + "ðŁIJį": 48903, + "ðŁIJį": 30177, + "ðŁIJİ": 48281, + "ðŁIJİ": 32726, + "ðŁIJIJ": 47735, + "ðŁIJIJ": 27954, + "ðŁIJij": 49389, + "ðŁIJķ": 41069, + "ðŁIJĺ": 38733, + "ðŁIJĿ": 30619, + "ðŁIJĿ": 20111, + "ðŁIJŁ": 42084, + "ðŁIJŁ": 29989, + "ðŁIJł": 42725, + "ðŁij": 964, + "ðŁij£": 39755, + "ðŁij§": 48938, + "ðŁij¨": 18966, + "ðŁij¨âĢį": 25023, + "ðŁij©": 18800, + "ðŁij©âĢį": 26304, + "ðŁij«": 47106, + "ðŁij«": 35457, + "ðŁij®": 42686, + "ðŁij¯": 25910, + "ðŁij¯": 20582, + "ðŁij¶": 26187, + "ðŁij¶": 33189, + "ðŁij¸": 26268, + "ðŁij¸": 36645, + "ðŁij¹": 46766, + "ðŁij»": 24625, + "ðŁij»": 16243, + "ðŁij¼": 25270, + "ðŁij¼": 31083, + "ðŁij½": 42677, + "ðŁij½": 26257, + "ðŁijĢ": 11524, + "ðŁijĢ": 5908, + "ðŁijĢðŁijĢ": 31561, + "ðŁijģ": 47796, + "ðŁijģ": 45705, + "ðŁijĦ": 47445, + "ðŁijħ": 31833, + "ðŁijħ": 24672, + "ðŁijĨ": 42975, + "ðŁijĨ": 45194, + "ðŁijĩ": 7662, + "ðŁijĩ": 7475, + "ðŁijĩðŁı»": 45811, + "ðŁijĩðŁı»": 32813, + "ðŁijĩðŁı¼": 37504, + "ðŁijĩðŁijĩ": 17915, + "ðŁijĩðŁijĩ": 31891, + "ðŁijĩðŁijĩðŁijĩ": 35627, + "ðŁijĪ": 32794, + "ðŁijĪ": 20832, + "ðŁijī": 9477, + "ðŁijī": 3988, + "ðŁijīðŁı»": 23481, + "ðŁijīðŁı¼": 27534, + "ðŁijīðŁı½": 38059, + "ðŁijīðŁijī": 41480, + "ðŁijĬ": 8897, + "ðŁijĬ": 9704, + "ðŁijĬðŁı»": 47393, + "ðŁijĬðŁı»": 29152, + "ðŁijĬðŁı¼": 49000, + "ðŁijĬðŁı¼": 30115, + "ðŁijĬðŁijĬ": 46521, + "ðŁijĭ": 19351, + "ðŁijĭ": 17686, + "ðŁijĮ": 4890, + "ðŁijĮ": 4494, + "ðŁijĮðŁı»": 31818, + "ðŁijĮðŁı»": 18606, + "ðŁijĮðŁı¼": 37655, + "ðŁijĮðŁı¼": 20031, + "ðŁijĮðŁı½": 35834, + "ðŁijĮðŁijĮ": 36139, + "ðŁijĮðŁijĮ": 21435, + "ðŁijĮðŁijĮðŁijĮ": 40876, + "ðŁijį": 4686, + "ðŁijį": 4201, + "ðŁijįðŁı»": 25803, + "ðŁijįðŁı»": 15129, + "ðŁijįðŁı¼": 37285, + "ðŁijįðŁı¼": 19689, + "ðŁijįðŁı½": 43722, + "ðŁijįðŁijį": 33012, + "ðŁijįðŁijį": 18997, + "ðŁijįðŁijįðŁijį": 37284, + "ðŁijİ": 39702, + "ðŁijİ": 32568, + "ðŁijı": 3802, + "ðŁijı": 4829, + "ðŁijıðŁı»": 19236, + "ðŁijıðŁı»": 17029, + "ðŁijıðŁı»ðŁijıðŁı»": 35254, + "ðŁijıðŁı¼": 24496, + "ðŁijıðŁı¼": 19979, + "ðŁijıðŁı¼ðŁijıðŁı¼": 46712, + "ðŁijıðŁı½": 40796, + "ðŁijıðŁı½": 33978, + "ðŁijıðŁı¾": 45450, + "ðŁijıðŁijı": 10356, + "ðŁijıðŁijı": 16706, + "ðŁijıðŁijıðŁijı": 17254, + "ðŁijIJ": 40877, + "ðŁijij": 14955, + "ðŁijij": 8717, + "ðŁijijðŁijij": 48532, + "ðŁijķ": 47865, + "ðŁijŁ": 41183, + "ðŁijł": 41264, + "ðŁijŃ": 34175, + "ðŁijŃ": 27943, + "ðŁĴ": 837, + "ðŁĴ¡": 24081, + "ðŁĴ£": 36862, + "ðŁĴ£": 29006, + "ðŁĴ¤": 34706, + "ðŁĴ¤": 25632, + "ðŁĴ¥": 12209, + "ðŁĴ¥": 7347, + "ðŁĴ¥ðŁĴ¥": 27396, + "ðŁĴ¥ðŁĴ¥": 39246, + "ðŁĴ¥ðŁĴ¥ðŁĴ¥": 48890, + "ðŁĴ¦": 21180, + "ðŁĴ¦": 14060, + "ðŁĴ¦ðŁĴ¦": 44469, + "ðŁĴ§": 34095, + "ðŁĴ¨": 27408, + "ðŁĴ¨": 17891, + "ðŁĴ©": 48621, + "ðŁĴ©": 28847, + "ðŁĴª": 5475, + "ðŁĴª": 6440, + "ðŁĴªðŁı»": 31669, + "ðŁĴªðŁı»": 21903, + "ðŁĴªðŁı¼": 32041, + "ðŁĴªðŁı¼": 20759, + "ðŁĴªðŁı½": 46380, + "ðŁĴªðŁı½": 31111, + "ðŁĴªðŁı¾": 39398, + "ðŁĴªðŁĴª": 24747, + "ðŁĴªðŁĴªðŁĴª": 39913, + "ðŁĴ«": 25770, + "ðŁĴ«": 12526, + "ðŁĴ¬": 30947, + "ðŁĴ¯": 10611, + "ðŁĴ¯": 7018, + "ðŁĴ¯ðŁĴ¯": 30234, + "ðŁĴ¯ðŁĴ¯": 44070, + "ðŁĴ°": 20454, + "ðŁĴ°": 14078, + "ðŁĴ°ðŁĴ°": 41747, + "ðŁĴµ": 47412, + "ðŁĴµ": 38041, + "ðŁĴ¸": 37696, + "ðŁĴ¸": 25957, + "ðŁĴ»": 33433, + "ðŁĴ»": 18135, + "ðŁĴ¿": 39541, + "ðŁĴĢ": 14888, + "ðŁĴĢ": 12158, + "ðŁĴĢðŁĴĢ": 30884, + "ðŁĴģ": 13997, + "ðŁĴģ": 14392, + "ðŁĴĥ": 9947, + "ðŁĴĥ": 14333, + "ðŁĴĥðŁı»": 38624, + "ðŁĴĥðŁĴĥ": 28041, + "ðŁĴĦ": 46116, + "ðŁĴĦ": 34571, + "ðŁĴħ": 27457, + "ðŁĴħ": 32414, + "ðŁĴī": 44316, + "ðŁĴī": 30503, + "ðŁĴĭ": 12217, + "ðŁĴĭ": 7417, + "ðŁĴĭðŁĴĭ": 29214, + "ðŁĴĮ": 40817, + "ðŁĴį": 35850, + "ðŁĴį": 24898, + "ðŁĴİ": 25938, + "ðŁĴİ": 15874, + "ðŁĴIJ": 27375, + "ðŁĴIJ": 20554, + "ðŁĴij": 49404, + "ðŁĴĵ": 20628, + "ðŁĴĵ": 12568, + "ðŁĴĵðŁĴĵ": 43505, + "ðŁĴĶ": 18880, + "ðŁĴĶ": 10704, + "ðŁĴĶðŁĴĶ": 44673, + "ðŁĴķ": 5412, + "ðŁĴķ": 3082, + "ðŁĴķðŁĴķ": 23106, + "ðŁĴķðŁĴķ": 14117, + "ðŁĴķðŁĴķðŁĴķ": 26772, + "ðŁĴĸ": 8466, + "ðŁĴĸ": 5582, + "ðŁĴĸðŁĴĸ": 19562, + "ðŁĴĸðŁĴĸ": 30595, + "ðŁĴĸðŁĴĸðŁĴĸ": 33915, + "ðŁĴĹ": 10148, + "ðŁĴĹ": 6690, + "ðŁĴĹðŁĴĹ": 47158, + "ðŁĴĹðŁĴĹ": 24064, + "ðŁĴĹðŁĴĹðŁĴĹ": 36990, + "ðŁĴĺ": 18223, + "ðŁĴĺ": 10816, + "ðŁĴĺðŁĴĺ": 40464, + "ðŁĴĻ": 5305, + "ðŁĴĻ": 4074, + "ðŁĴĻðŁĴĻ": 17833, + "ðŁĴĻðŁĴĻ": 27101, + "ðŁĴĻðŁĴĻðŁĴĻ": 30698, + "ðŁĴĻðŁĴĽ": 46804, + "ðŁĴĻðŁĴĽ": 26230, + "ðŁĴĻðŁĴľ": 47931, + "ðŁĴĻðŁĴľ": 42541, + "ðŁĴļ": 8102, + "ðŁĴļ": 6521, + "ðŁĴļðŁĴļ": 27497, + "ðŁĴļðŁĴļ": 46209, + "ðŁĴļðŁĴļðŁĴļ": 46182, + "ðŁĴļðŁĴĽ": 41232, + "ðŁĴĽ": 8221, + "ðŁĴĽ": 6233, + "ðŁĴĽðŁĴĻ": 36337, + "ðŁĴĽðŁĴļ": 37994, + "ðŁĴĽðŁĴĽ": 32420, + "ðŁĴľ": 6832, + "ðŁĴľ": 4882, + "ðŁĴľðŁĴľ": 17280, + "ðŁĴľðŁĴľ": 28211, + "ðŁĴľðŁĴľðŁĴľ": 31004, + "ðŁĴĿ": 36761, + "ðŁĴĿ": 22002, + "ðŁĴŀ": 14862, + "ðŁĴŀ": 8988, + "ðŁĴŀðŁĴŀ": 36448, + "ðŁĴŁ": 49394, + "ðŁĴŁ": 28828, + "ðŁĴŃ": 33848, + "ðŁĵ": 1497, + "ðŁĵ¢": 46560, + "ðŁĵ¢": 20901, + "ðŁĵ£": 48841, + "ðŁĵ£": 21282, + "ðŁĵ°:": 28952, + "ðŁĵ°": 14985, + "ðŁĵ±": 36104, + "ðŁĵ±": 20824, + "ðŁĵ²": 19363, + "ðŁĵ·": 6966, + "ðŁĵ·:": 8294, + "ðŁĵ·": 5551, + "ðŁĵ·@": 40032, + "ðŁĵ¸": 8401, + "ðŁĵ¸:": 10379, + "ðŁĵ¸": 6074, + "ðŁĵ¸@": 39660, + "ðŁĵ¹": 49251, + "ðŁĵº": 21792, + "ðŁĵº:": 29728, + "ðŁĵº": 10450, + "ðŁĵ»": 32711, + "ðŁĵ»": 15882, + "ðŁĵ½": 45361, + "ðŁĵħ": 21277, + "ðŁĵĨ": 23471, + "ðŁĵĪ": 23359, + "ðŁĵĬ": 22244, + "ðŁĵĭ": 46351, + "ðŁĵĮ": 22289, + "ðŁĵį": 25043, + "ðŁĵį:": 36845, + "ðŁĵį": 8903, + "ðŁĵĸ": 49003, + "ðŁĵĸ": 23043, + "ðŁĵļ": 25433, + "ðŁĵļ": 15566, + "ðŁĵĿ": 31888, + "ðŁĵĿ:": 48398, + "ðŁĵĿ": 15853, + "ðŁĵŀ": 24022, + "ðŁĶ": 1428, + "ðŁĶ¥": 3191, + "ðŁĶ¥#": 44354, + "ðŁĶ¥": 3016, + "ðŁĶ¥ðŁĶ¥": 5692, + "ðŁĶ¥ðŁĶ¥": 11771, + "ðŁĶ¥ðŁĶ¥ðŁĶ¥": 11004, + "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 23408, + "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 30989, + "ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥ðŁĶ¥": 48401, + "ðŁĶ¥ðŁĶĹ": 35130, + "ðŁĶª": 47078, + "ðŁĶª": 34545, + "ðŁĶ«": 38116, + "ðŁĶ«": 20583, + "ðŁĶ¬": 44227, + "ðŁĶ®": 38077, + "ðŁĶ´": 12408, + "ðŁĶ´": 10854, + "ðŁĶ´âļªï¸ı": 46879, + "ðŁĶ´âļªï¸ı": 40055, + "ðŁĶµ": 17531, + "ðŁĶµ": 17193, + "ðŁĶµâļªï¸ı": 42412, + "ðŁĶ¶": 42880, + "ðŁĶ¶": 36222, + "ðŁĶ·": 37740, + "ðŁĶ¸": 24200, + "ðŁĶ¹": 19995, + "ðŁĶº": 45561, + "ðŁĶģ": 41299, + "ðŁĶĬ": 32580, + "ðŁĶĬ": 20502, + "ðŁĶİ": 44935, + "ðŁĶij": 35127, + "ðŁĶĴ": 44972, + "ðŁĶĶ": 45753, + "ðŁĶĹ": 47475, + "ðŁĶĹ": 14561, + "ðŁĶĺ": 38995, + "ðŁĶľ": 36011, + "ðŁĶĿ": 44387, + "ðŁĶĿ": 29506, + "ðŁķ": 7692, + "ðŁķº": 33958, + "ðŁķĬ": 42624, + "ðŁķĬ": 37760, + "ðŁĸ": 6269, + "ðŁĸ¤": 17603, + "ðŁĸ¤": 10860, + "ðŁĸ¥": 47990, + "ðŁĹ": 7045, + "ðŁĹ£": 33232, + "ðŁĹ£": 18583, + "ðŁĹ£ï¸ı": 37476, + "ðŁĹĵ": 34335, + "ðŁĹĵ": 28773, + "ðŁĹĵï¸ı": 39847, + "ðŁĺ": 668, + "ðŁĺ¡": 21968, + "ðŁĺ¡": 17452, + "ðŁĺ¡ðŁĺ¡": 37223, + "ðŁĺ¢": 14308, + "ðŁĺ¢": 9925, + "ðŁĺ¢ðŁĺ¢": 32923, + "ðŁĺ¢ðŁĺ¢": 47921, + "ðŁĺ£": 32718, + "ðŁĺ¤": 26872, + "ðŁĺ¤": 20740, + "ðŁĺ¥": 38383, + "ðŁĺ¥": 23951, + "ðŁĺ¨": 38080, + "ðŁĺ©": 9051, + "ðŁĺ©": 9494, + "ðŁĺ©ðŁĺ©": 22820, + "ðŁĺ©ðŁĺ©": 38031, + "ðŁĺ©ðŁĺ©ðŁĺ©": 49063, + "ðŁĺª": 38181, + "ðŁĺª": 22243, + "ðŁĺ«": 25141, + "ðŁĺ«": 22340, + "ðŁĺ¬": 23704, + "ðŁĺ¬": 14549, + "ðŁĺ®": 40163, + "ðŁĺ®": 21616, + "ðŁĺ¯": 37858, + "ðŁĺ°": 34728, + "ðŁĺ±": 10938, + "ðŁĺ±": 9055, + "ðŁĺ±ðŁĺ±": 22061, + "ðŁĺ±ðŁĺ±": 40767, + "ðŁĺ±ðŁĺ±ðŁĺ±": 40909, + "ðŁĺ²": 40460, + "ðŁĺ²": 24620, + "ðŁĺ³": 12047, + "ðŁĺ³": 8223, + "ðŁĺ³ðŁĺ³": 32592, + "ðŁĺ´": 23527, + "ðŁĺ´": 16415, + "ðŁĺ´ðŁĺ´": 49307, + "ðŁĺµ": 39368, + "ðŁĺ¶": 35207, + "ðŁĺ·": 37943, + "ðŁĺ·": 25759, + "ðŁĺ¸": 36912, + "ðŁĺ¹": 26477, + "ðŁĺ¹": 26573, + "ðŁĺ¹ðŁĺ¹": 46287, + "ðŁĺº": 40613, + "ðŁĺ»": 15453, + "ðŁĺ»": 12911, + "ðŁĺ»ðŁĺ»": 34414, + "ðŁĺ¼": 44245, + "ðŁĺ½": 45156, + "ðŁĺĢ": 12832, + "ðŁĺĢ": 7334, + "ðŁĺĢðŁĺĢ": 34503, + "ðŁĺģ": 6967, + "ðŁĺģ": 4821, + "ðŁĺģðŁĺģ": 37900, + "ðŁĺģðŁĺģ": 19213, + "ðŁĺģðŁĺģðŁĺģ": 29083, + "ðŁĺĤ": 1424, + "ðŁĺĤ)": 42643, + "ðŁĺĤ.": 42550, + "ðŁĺĤ": 1558, + "ðŁĺĤâĿ¤ï¸ı": 36412, + "ðŁĺĤðŁijĮ": 42000, + "ðŁĺĤðŁĺĤ": 2286, + "ðŁĺĤðŁĺĤ": 4112, + "ðŁĺĤðŁĺĤðŁĺĤ": 22233, + "ðŁĺĤðŁĺĤðŁĺĤ": 4887, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 9936, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 11522, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 19295, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 33415, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 48973, + "ðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤðŁĺĤ": 28504, + "ðŁĺĤðŁĺį": 43128, + "ðŁĺĤðŁĺŃ": 28965, + "ðŁĺĤðŁĺŃ": 25802, + "ðŁĺĥ": 14079, + "ðŁĺĥ": 8520, + "ðŁĺĥðŁĺĥ": 38358, + "ðŁĺĦ": 12141, + "ðŁĺĦ": 7624, + "ðŁĺĦðŁĺĦ": 32312, + "ðŁĺħ": 15245, + "ðŁĺħ": 9188, + "ðŁĺħðŁĺħ": 39078, + "ðŁĺĨ": 16541, + "ðŁĺĨ": 10943, + "ðŁĺĨðŁĺĨ": 39503, + "ðŁĺĩ": 21694, + "ðŁĺĩ": 13091, + "ðŁĺĪ": 14377, + "ðŁĺĪ": 9756, + "ðŁĺĪðŁĺĪ": 44473, + "ðŁĺī": 9740, + "ðŁĺī": 4955, + "ðŁĺīðŁĺī": 40430, + "ðŁĺĬ": 4692, + "ðŁĺĬ": 3020, + "ðŁĺĬâĿ¤ï¸ı": 43606, + "ðŁĺĬðŁĺĬ": 12838, + "ðŁĺĬðŁĺĬ": 20842, + "ðŁĺĬðŁĺĬðŁĺĬ": 28685, + "ðŁĺĬðŁĺĬðŁĺĬðŁĺĬ": 35519, + "ðŁĺĭ": 12391, + "ðŁĺĭ": 7203, + "ðŁĺĭðŁĺĭ": 33304, + "ðŁĺĮ": 19221, + "ðŁĺĮ": 12163, + "ðŁĺį": 1796, + "ðŁĺį#": 42357, + "ðŁĺį.": 48579, + "ðŁĺį": 1754, + "ðŁĺįâĿ¤": 29122, + "ðŁĺįâĿ¤ï¸ı": 21945, + "ðŁĺįðŁijĮ": 41005, + "ðŁĺįðŁĴķ": 35946, + "ðŁĺįðŁĶ¥": 46648, + "ðŁĺįðŁĺĤ": 48715, + "ðŁĺįðŁĺį": 3663, + "ðŁĺįðŁĺį": 6471, + "ðŁĺįðŁĺįðŁĺį": 30614, + "ðŁĺįðŁĺįðŁĺį": 7703, + "ðŁĺįðŁĺįðŁĺįðŁĺį": 16603, + "ðŁĺįðŁĺįðŁĺįðŁĺį": 18925, + "ðŁĺįðŁĺįðŁĺįðŁĺįðŁĺį": 32078, + "ðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺįðŁĺį": 48683, + "ðŁĺįðŁĺĺ": 29646, + "ðŁĺįðŁĺĺ": 19849, + "ðŁĺįðŁĺŃ": 39555, + "ðŁĺİ": 7426, + "ðŁĺİ": 4345, + "ðŁĺİðŁĺİ": 24048, + "ðŁĺİðŁĺİðŁĺİ": 39742, + "ðŁĺı": 11624, + "ðŁĺı": 6909, + "ðŁĺıðŁĺı": 38151, + "ðŁĺIJ": 38586, + "ðŁĺIJ": 19618, + "ðŁĺij": 32469, + "ðŁĺij": 18937, + "ðŁĺĴ": 20792, + "ðŁĺĴ": 11702, + "ðŁĺĵ": 28733, + "ðŁĺĶ": 19532, + "ðŁĺĶ": 11432, + "ðŁĺķ": 45741, + "ðŁĺķ": 20602, + "ðŁĺĸ": 35006, + "ðŁĺĺ": 4240, + "ðŁĺĺ": 3352, + "ðŁĺĺâĿ¤": 48409, + "ðŁĺĺâĿ¤ï¸ı": 39150, + "ðŁĺĺðŁĺį": 38176, + "ðŁĺĺðŁĺĺ": 15663, + "ðŁĺĺðŁĺĺ": 10507, + "ðŁĺĺðŁĺĺðŁĺĺ": 20208, + "ðŁĺĺðŁĺĺðŁĺĺðŁĺĺ": 44892, + "ðŁĺĻ": 36201, + "ðŁĺĻ": 29209, + "ðŁĺļ": 24897, + "ðŁĺļ": 19102, + "ðŁĺĽ": 24550, + "ðŁĺĽ": 15745, + "ðŁĺľ": 13226, + "ðŁĺľ": 7830, + "ðŁĺľðŁĺľ": 43065, + "ðŁĺĿ": 20064, + "ðŁĺĿ": 12970, + "ðŁĺŀ": 40458, + "ðŁĺŀ": 21103, + "ðŁĺŁ": 46947, + "ðŁĺł": 34094, + "ðŁĺŃ": 2962, + "ðŁĺŃ": 3915, + "ðŁĺŃâĿ¤ï¸ı": 29567, + "ðŁĺŃðŁĴķ": 46306, + "ðŁĺŃðŁĺĤ": 38505, + "ðŁĺŃðŁĺį": 36893, + "ðŁĺŃðŁĺŃ": 5300, + "ðŁĺŃðŁĺŃ": 11834, + "ðŁĺŃðŁĺŃðŁĺŃ": 44089, + "ðŁĺŃðŁĺŃðŁĺŃ": 13116, + "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 19793, + "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 27322, + "ðŁĺŃðŁĺŃðŁĺŃðŁĺŃðŁĺŃ": 43366, + "ðŁĻ": 1478, + "ðŁĻĢ": 43092, + "ðŁĻĤ": 32006, + "ðŁĻĤ": 14860, + "ðŁĻĥ": 27222, + "ðŁĻĥ": 15652, + "ðŁĻĦ": 20648, + "ðŁĻĦ": 13049, + "ðŁĻħ": 42702, + "ðŁĻĨ": 30050, + "ðŁĻĨ": 35730, + "ðŁĻĪ": 12661, + "ðŁĻĪ": 9516, + "ðŁĻĪðŁĻĪ": 41796, + "ðŁĻĬ": 23684, + "ðŁĻĬ": 16636, + "ðŁĻĭ": 19193, + "ðŁĻĭ": 30274, + "ðŁĻĮ": 4366, + "ðŁĻĮ": 4855, + "ðŁĻĮðŁı»": 26756, + "ðŁĻĮðŁı»": 15799, + "ðŁĻĮðŁı¼": 26584, + "ðŁĻĮðŁı¼": 15364, + "ðŁĻĮðŁı½": 36660, + "ðŁĻĮðŁı½": 22962, + "ðŁĻĮðŁı¾": 38023, + "ðŁĻĮðŁı¾": 26466, + "ðŁĻĮðŁĻĮ": 21202, + "ðŁĻĮðŁĻĮ": 30430, + "ðŁĻĮðŁĻĮðŁĻĮ": 37127, + "ðŁĻı": 4260, + "ðŁĻı": 5503, + "ðŁĻıðŁı»": 25100, + "ðŁĻıðŁı»": 16650, + "ðŁĻıðŁı¼": 31163, + "ðŁĻıðŁı¼": 18952, + "ðŁĻıðŁı½": 34103, + "ðŁĻıðŁı½": 21540, + "ðŁĻıðŁı¾": 34277, + "ðŁĻıðŁı¾": 21979, + "ðŁĻıðŁĻı": 18227, + "ðŁĻıðŁĻı": 26510, + "ðŁĻıðŁĻıðŁĻı": 31702, + "ðŁļ": 2730, + "ðŁļ¨": 12198, + "ðŁļ¨": 6056, + "ðŁļ¨ðŁļ¨": 36487, + "ðŁļ¨ðŁļ¨": 21440, + "ðŁļ¨ðŁļ¨ðŁļ¨": 41515, + "ðŁļ©": 44514, + "ðŁļ«": 35291, + "ðŁļ²": 37085, + "ðŁļ´": 30825, + "ðŁļ¶": 46060, + "ðŁļĢ": 22400, + "ðŁļĢ": 13542, + "ðŁļĢðŁļĢ": 49033, + "ðŁļĤ": 38949, + "ðŁļĮ": 46891, + "ðŁļĹ": 33054, + "ðŁļĹ": 22783, + "ðŁļĺ": 35825, + "ðŁļĻ": 48487, + "ðŁĽ": 11306, + "ñ": 173, + "ñ": 429, + "ò": 174, + "ò": 430, + "ó": 175, + "ó": 431, + "ô": 176, + "ô": 432, + "õ": 177, + "õ": 433, + "ö": 178, + "ö": 434, + "÷": 179, + "÷": 435, + "ø": 180, + "ø": 436, + "ù": 181, + "ù": 437, + "ú": 182, + "ú": 438, + "û": 183, + "û": 439, + "ü": 184, + "ü": 440, + "ý": 185, + "ý": 441, + "þ": 186, + "þ": 442, + "ÿ": 187, + "ÿ": 443, + "Ā": 188, + "Ā": 444, + "ā": 189, + "ā": 445, + "Ă": 190, + "Ă": 446, + "ă": 191, + "ă": 447, + "Ą": 192, + "Ą": 448, + "ą": 193, + "ą": 449, + "Ć": 194, + "Ć": 450, + "ć": 195, + "ć": 451, + "Ĉ": 196, + "Ĉ": 452, + "ĉ": 197, + "ĉ": 453, + "Ċ": 198, + "Ċ": 454, + "ċ": 199, + "ċ": 455, + "Č": 200, + "Č": 456, + "č": 201, + "č": 457, + "Ď": 202, + "Ď": 458, + "ď": 203, + "ď": 459, + "Đ": 204, + "Đ": 460, + "đ": 205, + "đ": 461, + "Ē": 206, + "Ē": 462, + "ē": 207, + "ē": 463, + "Ĕ": 208, + "Ĕ": 464, + "ĕ": 209, + "ĕ": 465, + "Ė": 210, + "Ė": 466, + "ė": 211, + "ė": 467, + "Ę": 212, + "Ę": 468, + "ę": 213, + "ę": 469, + "Ě": 214, + "Ě": 470, + "ě": 215, + "ě": 471, + "Ĝ": 216, + "Ĝ": 472, + "ĝ": 217, + "ĝ": 473, + "Ğ": 218, + "Ğ": 474, + "ğ": 219, + "ğ": 475, + "Ġ": 220, + "Ġ": 476, + "ġ": 221, + "ġ": 477, + "Ģ": 222, + "Ģ": 478, + "Ģï¸ı": 9668, + "Ģï¸ı": 5511, + "ģ": 223, + "ģ": 479, + "ģà¸": 15016, + "Ĥ": 224, + "Ĥ": 480, + "Ĥâĸ": 29036, + "ĤâĸĤâĸ": 30832, + "ĥ": 225, + "ĥ": 481, + "Ħ": 226, + "Ħ": 482, + "Ħà¸": 20537, + "Ħë": 34462, + "Ħëĭ": 25170, + "ħ": 227, + "ħ": 483, + "ħï¸ı": 33950, + "Ĩ": 228, + "Ĩ": 484, + "ĩ": 229, + "ĩ": 485, + "Ī": 230, + "Ī": 486, + "ī": 231, + "ī": 487, + "īï¸ı": 37463, + "Ĭ": 232, + "Ĭ": 488, + "Ĭãģ": 30294, + "ĭ": 233, + "ĭ": 489, + "ĭãģ": 36218, + "ĭãĤ": 45737, + "Į": 234, + "Į": 490, + "ĮãĤĬãģ": 45969, + "ĮãĤĬãģŁãģĦ": 47021, + "Įë": 17003, + "į": 235, + "į": 491, + "İ": 236, + "İ": 492, + "ı": 237, + "ı": 493, + "IJ": 238, + "IJ": 494, + "ij": 239, + "ij": 495, + "Ĵ": 240, + "Ĵ": 496, + "ĵ": 241, + "ĵ": 497, + "Ķ": 242, + "Ķ": 498, + "Ķë": 37978, + "Ķï¸ı": 24395, + "Ķï¸ı": 7443, + "ķ": 243, + "ķ": 499, + "ķãĤ": 26609, + "ķï¸ı": 44853, + "ĸ": 244, + "ĸ": 500, + "ĸï¸ı": 28877, + "Ĺ": 245, + "Ĺ": 501, + "ĺ": 246, + "ĺ": 502, + "Ļ": 247, + "Ļ": 503, + "ļ": 248, + "ļ": 504, + "Ľ": 249, + "Ľ": 505, + "ľ": 250, + "ľ": 506, + "ľë": 39810, + "Ŀ": 251, + "Ŀ": 507, + "ŀ": 252, + "ŀ": 508, + "Ł": 253, + "Ł": 509, + "ŁãģĦ": 46023, + "ł": 254, + "ł": 510, + "łï¸ı": 27899, + "łï¸ı": 12715, + "łĪ": 43364, + "Ń": 255, + "Ń": 511 +} diff --git a/comfy/sd2_clip.py b/comfy/sd2_clip.py new file mode 100644 index 0000000000000000000000000000000000000000..9c878d54ab66fbf95db1f6e094262f85410db96d --- /dev/null +++ b/comfy/sd2_clip.py @@ -0,0 +1,24 @@ +from comfy import sd1_clip +import torch +import os + +class SD2ClipHModel(sd1_clip.SDClipModel): + def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None): + if layer == "penultimate": + layer="hidden" + layer_idx=-2 + + textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json") + super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}) + +class SD2ClipHTokenizer(sd1_clip.SDTokenizer): + def __init__(self, tokenizer_path=None, embedding_directory=None): + super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024) + +class SD2Tokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None): + super().__init__(embedding_directory=embedding_directory, clip_name="h", tokenizer=SD2ClipHTokenizer) + +class SD2ClipModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, **kwargs): + super().__init__(device=device, dtype=dtype, clip_name="h", clip_model=SD2ClipHModel, **kwargs) diff --git a/comfy/sd2_clip_config.json b/comfy/sd2_clip_config.json new file mode 100644 index 0000000000000000000000000000000000000000..85cec832be9a1d0957245a8d125af398829f247e --- /dev/null +++ b/comfy/sd2_clip_config.json @@ -0,0 +1,23 @@ +{ + "architectures": [ + "CLIPTextModel" + ], + "attention_dropout": 0.0, + "bos_token_id": 0, + "dropout": 0.0, + "eos_token_id": 2, + "hidden_act": "gelu", + "hidden_size": 1024, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 4096, + "layer_norm_eps": 1e-05, + "max_position_embeddings": 77, + "model_type": "clip_text_model", + "num_attention_heads": 16, + "num_hidden_layers": 24, + "pad_token_id": 1, + "projection_dim": 1024, + "torch_dtype": "float32", + "vocab_size": 49408 +} diff --git a/comfy/sdxl_clip.py b/comfy/sdxl_clip.py new file mode 100644 index 0000000000000000000000000000000000000000..b35056bb9d688775b634f27c523d42949537720c --- /dev/null +++ b/comfy/sdxl_clip.py @@ -0,0 +1,66 @@ +from comfy import sd1_clip +import torch +import os + +class SDXLClipG(sd1_clip.SDClipModel): + def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, dtype=None): + if layer == "penultimate": + layer="hidden" + layer_idx=-2 + + textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") + super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, + special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False) + + def load_sd(self, sd): + return super().load_sd(sd) + +class SDXLClipGTokenizer(sd1_clip.SDTokenizer): + def __init__(self, tokenizer_path=None, embedding_directory=None): + super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g') + + +class SDXLTokenizer: + def __init__(self, embedding_directory=None): + self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory) + self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory) + + def tokenize_with_weights(self, text:str, return_word_ids=False): + out = {} + out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) + return out + + def untokenize(self, token_weight_pair): + return self.clip_g.untokenize(token_weight_pair) + +class SDXLClipModel(torch.nn.Module): + def __init__(self, device="cpu", dtype=None): + super().__init__() + self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False) + self.clip_g = SDXLClipG(device=device, dtype=dtype) + + def clip_layer(self, layer_idx): + self.clip_l.clip_layer(layer_idx) + self.clip_g.clip_layer(layer_idx) + + def reset_clip_layer(self): + self.clip_g.reset_clip_layer() + self.clip_l.reset_clip_layer() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs_g = token_weight_pairs["g"] + token_weight_pairs_l = token_weight_pairs["l"] + g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) + l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) + return torch.cat([l_out, g_out], dim=-1), g_pooled + + def load_sd(self, sd): + if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: + return self.clip_g.load_sd(sd) + else: + return self.clip_l.load_sd(sd) + +class SDXLRefinerClipModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None): + super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG) diff --git a/comfy/supported_models.py b/comfy/supported_models.py new file mode 100644 index 0000000000000000000000000000000000000000..1d442d4dd9ca2c56b7bc92a0f142b7dabd600c5a --- /dev/null +++ b/comfy/supported_models.py @@ -0,0 +1,310 @@ +import torch +from . import model_base +from . import utils + +from . import sd1_clip +from . import sd2_clip +from . import sdxl_clip + +from . import supported_models_base +from . import latent_formats + +from . import diffusers_convert + +class SD15(supported_models_base.BASE): + unet_config = { + "context_dim": 768, + "model_channels": 320, + "use_linear_in_transformer": False, + "adm_in_channels": None, + "use_temporal_attention": False, + } + + unet_extra_config = { + "num_heads": 8, + "num_head_channels": -1, + } + + latent_format = latent_formats.SD15 + + def process_clip_state_dict(self, state_dict): + k = list(state_dict.keys()) + for x in k: + if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): + y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") + state_dict[y] = state_dict.pop(x) + + if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict: + ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] + if ids.dtype == torch.float32: + state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() + + replace_prefix = {} + replace_prefix["cond_stage_model."] = "cond_stage_model.clip_l." + state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) + return state_dict + + def process_clip_state_dict_for_saving(self, state_dict): + replace_prefix = {"clip_l.": "cond_stage_model."} + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + + def clip_target(self): + return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel) + +class SD20(supported_models_base.BASE): + unet_config = { + "context_dim": 1024, + "model_channels": 320, + "use_linear_in_transformer": True, + "adm_in_channels": None, + "use_temporal_attention": False, + } + + latent_format = latent_formats.SD15 + + def model_type(self, state_dict, prefix=""): + if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction + k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix) + out = state_dict[k] + if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. + return model_base.ModelType.V_PREDICTION + return model_base.ModelType.EPS + + def process_clip_state_dict(self, state_dict): + replace_prefix = {} + replace_prefix["conditioner.embedders.0.model."] = "cond_stage_model.model." #SD2 in sgm format + state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) + + state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.clip_h.transformer.text_model.", 24) + return state_dict + + def process_clip_state_dict_for_saving(self, state_dict): + replace_prefix = {} + replace_prefix["clip_h"] = "cond_stage_model.model" + state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) + state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict) + return state_dict + + def clip_target(self): + return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel) + +class SD21UnclipL(SD20): + unet_config = { + "context_dim": 1024, + "model_channels": 320, + "use_linear_in_transformer": True, + "adm_in_channels": 1536, + "use_temporal_attention": False, + } + + clip_vision_prefix = "embedder.model.visual." + noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768} + + +class SD21UnclipH(SD20): + unet_config = { + "context_dim": 1024, + "model_channels": 320, + "use_linear_in_transformer": True, + "adm_in_channels": 2048, + "use_temporal_attention": False, + } + + clip_vision_prefix = "embedder.model.visual." + noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024} + +class SDXLRefiner(supported_models_base.BASE): + unet_config = { + "model_channels": 384, + "use_linear_in_transformer": True, + "context_dim": 1280, + "adm_in_channels": 2560, + "transformer_depth": [0, 0, 4, 4, 4, 4, 0, 0], + "use_temporal_attention": False, + } + + latent_format = latent_formats.SDXL + + def get_model(self, state_dict, prefix="", device=None): + return model_base.SDXLRefiner(self, device=device) + + def process_clip_state_dict(self, state_dict): + keys_to_replace = {} + replace_prefix = {} + + state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.0.model.", "cond_stage_model.clip_g.transformer.text_model.", 32) + keys_to_replace["conditioner.embedders.0.model.text_projection"] = "cond_stage_model.clip_g.text_projection" + keys_to_replace["conditioner.embedders.0.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale" + + state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace) + return state_dict + + def process_clip_state_dict_for_saving(self, state_dict): + replace_prefix = {} + state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") + if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g: + state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids") + replace_prefix["clip_g"] = "conditioner.embedders.0.model" + state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix) + return state_dict_g + + def clip_target(self): + return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel) + +class SDXL(supported_models_base.BASE): + unet_config = { + "model_channels": 320, + "use_linear_in_transformer": True, + "transformer_depth": [0, 0, 2, 2, 10, 10], + "context_dim": 2048, + "adm_in_channels": 2816, + "use_temporal_attention": False, + } + + latent_format = latent_formats.SDXL + + def model_type(self, state_dict, prefix=""): + if "v_pred" in state_dict: + return model_base.ModelType.V_PREDICTION + else: + return model_base.ModelType.EPS + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.SDXL(self, model_type=self.model_type(state_dict, prefix), device=device) + if self.inpaint_model(): + out.set_inpaint() + return out + + def process_clip_state_dict(self, state_dict): + keys_to_replace = {} + replace_prefix = {} + + replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model" + state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32) + keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection" + keys_to_replace["conditioner.embedders.1.model.text_projection.weight"] = "cond_stage_model.clip_g.text_projection" + keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale" + + state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix) + state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace) + return state_dict + + def process_clip_state_dict_for_saving(self, state_dict): + replace_prefix = {} + keys_to_replace = {} + state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g") + if "clip_g.transformer.text_model.embeddings.position_ids" in state_dict_g: + state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids") + for k in state_dict: + if k.startswith("clip_l"): + state_dict_g[k] = state_dict[k] + + replace_prefix["clip_g"] = "conditioner.embedders.1.model" + replace_prefix["clip_l"] = "conditioner.embedders.0" + state_dict_g = utils.state_dict_prefix_replace(state_dict_g, replace_prefix) + return state_dict_g + + def clip_target(self): + return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel) + +class SSD1B(SDXL): + unet_config = { + "model_channels": 320, + "use_linear_in_transformer": True, + "transformer_depth": [0, 0, 2, 2, 4, 4], + "context_dim": 2048, + "adm_in_channels": 2816, + "use_temporal_attention": False, + } + +class Segmind_Vega(SDXL): + unet_config = { + "model_channels": 320, + "use_linear_in_transformer": True, + "transformer_depth": [0, 0, 1, 1, 2, 2], + "context_dim": 2048, + "adm_in_channels": 2816, + "use_temporal_attention": False, + } + +class SVD_img2vid(supported_models_base.BASE): + unet_config = { + "model_channels": 320, + "in_channels": 8, + "use_linear_in_transformer": True, + "transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0], + "context_dim": 1024, + "adm_in_channels": 768, + "use_temporal_attention": True, + "use_temporal_resblock": True + } + + clip_vision_prefix = "conditioner.embedders.0.open_clip.model.visual." + + latent_format = latent_formats.SD15 + + sampling_settings = {"sigma_max": 700.0, "sigma_min": 0.002} + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.SVD_img2vid(self, device=device) + return out + + def clip_target(self): + return None + +class Stable_Zero123(supported_models_base.BASE): + unet_config = { + "context_dim": 768, + "model_channels": 320, + "use_linear_in_transformer": False, + "adm_in_channels": None, + "use_temporal_attention": False, + "in_channels": 8, + } + + unet_extra_config = { + "num_heads": 8, + "num_head_channels": -1, + } + + clip_vision_prefix = "cond_stage_model.model.visual." + + latent_format = latent_formats.SD15 + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"]) + return out + + def clip_target(self): + return None + +class SD_X4Upscaler(SD20): + unet_config = { + "context_dim": 1024, + "model_channels": 256, + 'in_channels': 7, + "use_linear_in_transformer": True, + "adm_in_channels": None, + "use_temporal_attention": False, + } + + unet_extra_config = { + "disable_self_attentions": [True, True, True, False], + "num_classes": 1000, + "num_heads": 8, + "num_head_channels": -1, + } + + latent_format = latent_formats.SD_X4 + + sampling_settings = { + "linear_start": 0.0001, + "linear_end": 0.02, + } + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.SD_X4Upscaler(self, device=device) + return out + +models = [Stable_Zero123, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B, Segmind_Vega, SD_X4Upscaler] +models += [SVD_img2vid] diff --git a/comfy/supported_models_base.py b/comfy/supported_models_base.py new file mode 100644 index 0000000000000000000000000000000000000000..58535a9fbf8d1e68d4c50ee5b123ad6026d578b9 --- /dev/null +++ b/comfy/supported_models_base.py @@ -0,0 +1,84 @@ +import torch +from . import model_base +from . import utils +from . import latent_formats + +class ClipTarget: + def __init__(self, tokenizer, clip): + self.clip = clip + self.tokenizer = tokenizer + self.params = {} + +class BASE: + unet_config = {} + unet_extra_config = { + "num_heads": -1, + "num_head_channels": 64, + } + + clip_prefix = [] + clip_vision_prefix = None + noise_aug_config = None + sampling_settings = {} + latent_format = latent_formats.LatentFormat + vae_key_prefix = ["first_stage_model."] + + manual_cast_dtype = None + + @classmethod + def matches(s, unet_config): + for k in s.unet_config: + if s.unet_config[k] != unet_config[k]: + return False + return True + + def model_type(self, state_dict, prefix=""): + return model_base.ModelType.EPS + + def inpaint_model(self): + return self.unet_config["in_channels"] > 4 + + def __init__(self, unet_config): + self.unet_config = unet_config + self.latent_format = self.latent_format() + for x in self.unet_extra_config: + self.unet_config[x] = self.unet_extra_config[x] + + def get_model(self, state_dict, prefix="", device=None): + if self.noise_aug_config is not None: + out = model_base.SD21UNCLIP(self, self.noise_aug_config, model_type=self.model_type(state_dict, prefix), device=device) + else: + out = model_base.BaseModel(self, model_type=self.model_type(state_dict, prefix), device=device) + if self.inpaint_model(): + out.set_inpaint() + return out + + def process_clip_state_dict(self, state_dict): + return state_dict + + def process_unet_state_dict(self, state_dict): + return state_dict + + def process_vae_state_dict(self, state_dict): + return state_dict + + def process_clip_state_dict_for_saving(self, state_dict): + replace_prefix = {"": "cond_stage_model."} + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + + def process_clip_vision_state_dict_for_saving(self, state_dict): + replace_prefix = {} + if self.clip_vision_prefix is not None: + replace_prefix[""] = self.clip_vision_prefix + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + + def process_unet_state_dict_for_saving(self, state_dict): + replace_prefix = {"": "model.diffusion_model."} + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + + def process_vae_state_dict_for_saving(self, state_dict): + replace_prefix = {"": "first_stage_model."} + return utils.state_dict_prefix_replace(state_dict, replace_prefix) + + def set_manual_cast(self, manual_cast_dtype): + self.manual_cast_dtype = manual_cast_dtype diff --git a/comfy/t2i_adapter/adapter.py b/comfy/t2i_adapter/adapter.py new file mode 100644 index 0000000000000000000000000000000000000000..e9a606b1cd67fd9a955a0ea0a86d1bd5498d85e5 --- /dev/null +++ b/comfy/t2i_adapter/adapter.py @@ -0,0 +1,293 @@ +#taken from https://github.com/TencentARC/T2I-Adapter +import torch +import torch.nn as nn +from collections import OrderedDict + + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = conv_nd( + dims, self.channels, self.out_channels, 3, stride=stride, padding=padding + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + if not self.use_conv: + padding = [x.shape[2] % 2, x.shape[3] % 2] + self.op.padding = padding + + x = self.op(x) + return x + + +class ResnetBlock(nn.Module): + def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): + super().__init__() + ps = ksize // 2 + if in_c != out_c or sk == False: + self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) + else: + # print('n_in') + self.in_conv = None + self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) + self.act = nn.ReLU() + self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) + if sk == False: + self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) + else: + self.skep = None + + self.down = down + if self.down == True: + self.down_opt = Downsample(in_c, use_conv=use_conv) + + def forward(self, x): + if self.down == True: + x = self.down_opt(x) + if self.in_conv is not None: # edit + x = self.in_conv(x) + + h = self.block1(x) + h = self.act(h) + h = self.block2(h) + if self.skep is not None: + return h + self.skep(x) + else: + return h + x + + +class Adapter(nn.Module): + def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, xl=True): + super(Adapter, self).__init__() + self.unshuffle_amount = 8 + resblock_no_downsample = [] + resblock_downsample = [3, 2, 1] + self.xl = xl + if self.xl: + self.unshuffle_amount = 16 + resblock_no_downsample = [1] + resblock_downsample = [2] + + self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount) + self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount) + self.channels = channels + self.nums_rb = nums_rb + self.body = [] + for i in range(len(channels)): + for j in range(nums_rb): + if (i in resblock_downsample) and (j == 0): + self.body.append( + ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv)) + elif (i in resblock_no_downsample) and (j == 0): + self.body.append( + ResnetBlock(channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) + else: + self.body.append( + ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) + self.body = nn.ModuleList(self.body) + self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1) + + def forward(self, x): + # unshuffle + x = self.unshuffle(x) + # extract features + features = [] + x = self.conv_in(x) + for i in range(len(self.channels)): + for j in range(self.nums_rb): + idx = i * self.nums_rb + j + x = self.body[idx](x) + if self.xl: + features.append(None) + if i == 0: + features.append(None) + features.append(None) + if i == 2: + features.append(None) + else: + features.append(None) + features.append(None) + features.append(x) + + return features + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16.""" + + def forward(self, x: torch.Tensor): + orig_type = x.dtype + ret = super().forward(x.type(torch.float32)) + return ret.type(orig_type) + + +class QuickGELU(nn.Module): + + def forward(self, x: torch.Tensor): + return x * torch.sigmoid(1.702 * x) + + +class ResidualAttentionBlock(nn.Module): + + def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): + super().__init__() + + self.attn = nn.MultiheadAttention(d_model, n_head) + self.ln_1 = LayerNorm(d_model) + self.mlp = nn.Sequential( + OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), + ("c_proj", nn.Linear(d_model * 4, d_model))])) + self.ln_2 = LayerNorm(d_model) + self.attn_mask = attn_mask + + def attention(self, x: torch.Tensor): + self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None + return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] + + def forward(self, x: torch.Tensor): + x = x + self.attention(self.ln_1(x)) + x = x + self.mlp(self.ln_2(x)) + return x + + +class StyleAdapter(nn.Module): + + def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4): + super().__init__() + + scale = width ** -0.5 + self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)]) + self.num_token = num_token + self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale) + self.ln_post = LayerNorm(width) + self.ln_pre = LayerNorm(width) + self.proj = nn.Parameter(scale * torch.randn(width, context_dim)) + + def forward(self, x): + # x shape [N, HW+1, C] + style_embedding = self.style_embedding + torch.zeros( + (x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device) + x = torch.cat([x, style_embedding], dim=1) + x = self.ln_pre(x) + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer_layes(x) + x = x.permute(1, 0, 2) # LND -> NLD + + x = self.ln_post(x[:, -self.num_token:, :]) + x = x @ self.proj + + return x + + +class ResnetBlock_light(nn.Module): + def __init__(self, in_c): + super().__init__() + self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1) + self.act = nn.ReLU() + self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1) + + def forward(self, x): + h = self.block1(x) + h = self.act(h) + h = self.block2(h) + + return h + x + + +class extractor(nn.Module): + def __init__(self, in_c, inter_c, out_c, nums_rb, down=False): + super().__init__() + self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0) + self.body = [] + for _ in range(nums_rb): + self.body.append(ResnetBlock_light(inter_c)) + self.body = nn.Sequential(*self.body) + self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0) + self.down = down + if self.down == True: + self.down_opt = Downsample(in_c, use_conv=False) + + def forward(self, x): + if self.down == True: + x = self.down_opt(x) + x = self.in_conv(x) + x = self.body(x) + x = self.out_conv(x) + + return x + + +class Adapter_light(nn.Module): + def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64): + super(Adapter_light, self).__init__() + self.unshuffle_amount = 8 + self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount) + self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount) + self.channels = channels + self.nums_rb = nums_rb + self.body = [] + self.xl = False + + for i in range(len(channels)): + if i == 0: + self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False)) + else: + self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True)) + self.body = nn.ModuleList(self.body) + + def forward(self, x): + # unshuffle + x = self.unshuffle(x) + # extract features + features = [] + for i in range(len(self.channels)): + x = self.body[i](x) + features.append(None) + features.append(None) + features.append(x) + + return features diff --git a/comfy/taesd/taesd.py b/comfy/taesd/taesd.py new file mode 100644 index 0000000000000000000000000000000000000000..8f96c54e56ad6e76aa9c39d3189c7790b2f351f2 --- /dev/null +++ b/comfy/taesd/taesd.py @@ -0,0 +1,77 @@ +#!/usr/bin/env python3 +""" +Tiny AutoEncoder for Stable Diffusion +(DNN for encoding / decoding SD's latent space) +""" +import torch +import torch.nn as nn + +import comfy.utils +import comfy.ops + +def conv(n_in, n_out, **kwargs): + return comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 3, padding=1, **kwargs) + +class Clamp(nn.Module): + def forward(self, x): + return torch.tanh(x / 3) * 3 + +class Block(nn.Module): + def __init__(self, n_in, n_out): + super().__init__() + self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out)) + self.skip = comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() + self.fuse = nn.ReLU() + def forward(self, x): + return self.fuse(self.conv(x) + self.skip(x)) + +def Encoder(): + return nn.Sequential( + conv(3, 64), Block(64, 64), + conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), + conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), + conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), + conv(64, 4), + ) + +def Decoder(): + return nn.Sequential( + Clamp(), conv(4, 64), nn.ReLU(), + Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), + Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), + Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), + Block(64, 64), conv(64, 3), + ) + +class TAESD(nn.Module): + latent_magnitude = 3 + latent_shift = 0.5 + + def __init__(self, encoder_path=None, decoder_path=None): + """Initialize pretrained TAESD on the given device from the given checkpoints.""" + super().__init__() + self.taesd_encoder = Encoder() + self.taesd_decoder = Decoder() + self.vae_scale = torch.nn.Parameter(torch.tensor(1.0)) + if encoder_path is not None: + self.taesd_encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True)) + if decoder_path is not None: + self.taesd_decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True)) + + @staticmethod + def scale_latents(x): + """raw latents -> [0, 1]""" + return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1) + + @staticmethod + def unscale_latents(x): + """[0, 1] -> raw latents""" + return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) + + def decode(self, x): + x_sample = self.taesd_decoder(x * self.vae_scale) + x_sample = x_sample.sub(0.5).mul(2) + return x_sample + + def encode(self, x): + return self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale diff --git a/comfy/utils.py b/comfy/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..1113bf0f52f3691c6fc807c8cd9d6d1829c4d641 --- /dev/null +++ b/comfy/utils.py @@ -0,0 +1,463 @@ +import torch +import math +import struct +import comfy.checkpoint_pickle +import safetensors.torch +import numpy as np +from PIL import Image + +def load_torch_file(ckpt, safe_load=False, device=None): + if device is None: + device = torch.device("cpu") + if ckpt.lower().endswith(".safetensors"): + sd = safetensors.torch.load_file(ckpt, device=device.type) + else: + if safe_load: + if not 'weights_only' in torch.load.__code__.co_varnames: + print("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.") + safe_load = False + if safe_load: + pl_sd = torch.load(ckpt, map_location=device, weights_only=True) + else: + pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle) + if "global_step" in pl_sd: + print(f"Global Step: {pl_sd['global_step']}") + if "state_dict" in pl_sd: + sd = pl_sd["state_dict"] + else: + sd = pl_sd + return sd + +def save_torch_file(sd, ckpt, metadata=None): + if metadata is not None: + safetensors.torch.save_file(sd, ckpt, metadata=metadata) + else: + safetensors.torch.save_file(sd, ckpt) + +def calculate_parameters(sd, prefix=""): + params = 0 + for k in sd.keys(): + if k.startswith(prefix): + params += sd[k].nelement() + return params + +def state_dict_key_replace(state_dict, keys_to_replace): + for x in keys_to_replace: + if x in state_dict: + state_dict[keys_to_replace[x]] = state_dict.pop(x) + return state_dict + +def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False): + if filter_keys: + out = {} + else: + out = state_dict + for rp in replace_prefix: + replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys()))) + for x in replace: + w = state_dict.pop(x[0]) + out[x[1]] = w + return out + + +def transformers_convert(sd, prefix_from, prefix_to, number): + keys_to_replace = { + "{}positional_embedding": "{}embeddings.position_embedding.weight", + "{}token_embedding.weight": "{}embeddings.token_embedding.weight", + "{}ln_final.weight": "{}final_layer_norm.weight", + "{}ln_final.bias": "{}final_layer_norm.bias", + } + + for k in keys_to_replace: + x = k.format(prefix_from) + if x in sd: + sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x) + + resblock_to_replace = { + "ln_1": "layer_norm1", + "ln_2": "layer_norm2", + "mlp.c_fc": "mlp.fc1", + "mlp.c_proj": "mlp.fc2", + "attn.out_proj": "self_attn.out_proj", + } + + for resblock in range(number): + for x in resblock_to_replace: + for y in ["weight", "bias"]: + k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y) + k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y) + if k in sd: + sd[k_to] = sd.pop(k) + + for y in ["weight", "bias"]: + k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y) + if k_from in sd: + weights = sd.pop(k_from) + shape_from = weights.shape[0] // 3 + for x in range(3): + p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"] + k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y) + sd[k_to] = weights[shape_from*x:shape_from*(x + 1)] + return sd + +UNET_MAP_ATTENTIONS = { + "proj_in.weight", + "proj_in.bias", + "proj_out.weight", + "proj_out.bias", + "norm.weight", + "norm.bias", +} + +TRANSFORMER_BLOCKS = { + "norm1.weight", + "norm1.bias", + "norm2.weight", + "norm2.bias", + "norm3.weight", + "norm3.bias", + "attn1.to_q.weight", + "attn1.to_k.weight", + "attn1.to_v.weight", + "attn1.to_out.0.weight", + "attn1.to_out.0.bias", + "attn2.to_q.weight", + "attn2.to_k.weight", + "attn2.to_v.weight", + "attn2.to_out.0.weight", + "attn2.to_out.0.bias", + "ff.net.0.proj.weight", + "ff.net.0.proj.bias", + "ff.net.2.weight", + "ff.net.2.bias", +} + +UNET_MAP_RESNET = { + "in_layers.2.weight": "conv1.weight", + "in_layers.2.bias": "conv1.bias", + "emb_layers.1.weight": "time_emb_proj.weight", + "emb_layers.1.bias": "time_emb_proj.bias", + "out_layers.3.weight": "conv2.weight", + "out_layers.3.bias": "conv2.bias", + "skip_connection.weight": "conv_shortcut.weight", + "skip_connection.bias": "conv_shortcut.bias", + "in_layers.0.weight": "norm1.weight", + "in_layers.0.bias": "norm1.bias", + "out_layers.0.weight": "norm2.weight", + "out_layers.0.bias": "norm2.bias", +} + +UNET_MAP_BASIC = { + ("label_emb.0.0.weight", "class_embedding.linear_1.weight"), + ("label_emb.0.0.bias", "class_embedding.linear_1.bias"), + ("label_emb.0.2.weight", "class_embedding.linear_2.weight"), + ("label_emb.0.2.bias", "class_embedding.linear_2.bias"), + ("label_emb.0.0.weight", "add_embedding.linear_1.weight"), + ("label_emb.0.0.bias", "add_embedding.linear_1.bias"), + ("label_emb.0.2.weight", "add_embedding.linear_2.weight"), + ("label_emb.0.2.bias", "add_embedding.linear_2.bias"), + ("input_blocks.0.0.weight", "conv_in.weight"), + ("input_blocks.0.0.bias", "conv_in.bias"), + ("out.0.weight", "conv_norm_out.weight"), + ("out.0.bias", "conv_norm_out.bias"), + ("out.2.weight", "conv_out.weight"), + ("out.2.bias", "conv_out.bias"), + ("time_embed.0.weight", "time_embedding.linear_1.weight"), + ("time_embed.0.bias", "time_embedding.linear_1.bias"), + ("time_embed.2.weight", "time_embedding.linear_2.weight"), + ("time_embed.2.bias", "time_embedding.linear_2.bias") +} + +def unet_to_diffusers(unet_config): + num_res_blocks = unet_config["num_res_blocks"] + channel_mult = unet_config["channel_mult"] + transformer_depth = unet_config["transformer_depth"][:] + transformer_depth_output = unet_config["transformer_depth_output"][:] + num_blocks = len(channel_mult) + + transformers_mid = unet_config.get("transformer_depth_middle", None) + + diffusers_unet_map = {} + for x in range(num_blocks): + n = 1 + (num_res_blocks[x] + 1) * x + for i in range(num_res_blocks[x]): + for b in UNET_MAP_RESNET: + diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b) + num_transformers = transformer_depth.pop(0) + if num_transformers > 0: + for b in UNET_MAP_ATTENTIONS: + diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b) + for t in range(num_transformers): + for b in TRANSFORMER_BLOCKS: + diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) + n += 1 + for k in ["weight", "bias"]: + diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k) + + i = 0 + for b in UNET_MAP_ATTENTIONS: + diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b) + for t in range(transformers_mid): + for b in TRANSFORMER_BLOCKS: + diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b) + + for i, n in enumerate([0, 2]): + for b in UNET_MAP_RESNET: + diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b) + + num_res_blocks = list(reversed(num_res_blocks)) + for x in range(num_blocks): + n = (num_res_blocks[x] + 1) * x + l = num_res_blocks[x] + 1 + for i in range(l): + c = 0 + for b in UNET_MAP_RESNET: + diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b) + c += 1 + num_transformers = transformer_depth_output.pop() + if num_transformers > 0: + c += 1 + for b in UNET_MAP_ATTENTIONS: + diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b) + for t in range(num_transformers): + for b in TRANSFORMER_BLOCKS: + diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b) + if i == l - 1: + for k in ["weight", "bias"]: + diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k) + n += 1 + + for k in UNET_MAP_BASIC: + diffusers_unet_map[k[1]] = k[0] + + return diffusers_unet_map + +def repeat_to_batch_size(tensor, batch_size): + if tensor.shape[0] > batch_size: + return tensor[:batch_size] + elif tensor.shape[0] < batch_size: + return tensor.repeat([math.ceil(batch_size / tensor.shape[0])] + [1] * (len(tensor.shape) - 1))[:batch_size] + return tensor + +def resize_to_batch_size(tensor, batch_size): + in_batch_size = tensor.shape[0] + if in_batch_size == batch_size: + return tensor + + if batch_size <= 1: + return tensor[:batch_size] + + output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device) + if batch_size < in_batch_size: + scale = (in_batch_size - 1) / (batch_size - 1) + for i in range(batch_size): + output[i] = tensor[min(round(i * scale), in_batch_size - 1)] + else: + scale = in_batch_size / batch_size + for i in range(batch_size): + output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)] + + return output + +def convert_sd_to(state_dict, dtype): + keys = list(state_dict.keys()) + for k in keys: + state_dict[k] = state_dict[k].to(dtype) + return state_dict + +def safetensors_header(safetensors_path, max_size=100*1024*1024): + with open(safetensors_path, "rb") as f: + header = f.read(8) + length_of_header = struct.unpack(' max_size: + return None + return f.read(length_of_header) + +def set_attr(obj, attr, value): + attrs = attr.split(".") + for name in attrs[:-1]: + obj = getattr(obj, name) + prev = getattr(obj, attrs[-1]) + setattr(obj, attrs[-1], torch.nn.Parameter(value, requires_grad=False)) + del prev + +def copy_to_param(obj, attr, value): + # inplace update tensor instead of replacing it + attrs = attr.split(".") + for name in attrs[:-1]: + obj = getattr(obj, name) + prev = getattr(obj, attrs[-1]) + prev.data.copy_(value) + +def get_attr(obj, attr): + attrs = attr.split(".") + for name in attrs: + obj = getattr(obj, name) + return obj + +def bislerp(samples, width, height): + def slerp(b1, b2, r): + '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC''' + + c = b1.shape[-1] + + #norms + b1_norms = torch.norm(b1, dim=-1, keepdim=True) + b2_norms = torch.norm(b2, dim=-1, keepdim=True) + + #normalize + b1_normalized = b1 / b1_norms + b2_normalized = b2 / b2_norms + + #zero when norms are zero + b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0 + b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0 + + #slerp + dot = (b1_normalized*b2_normalized).sum(1) + omega = torch.acos(dot) + so = torch.sin(omega) + + #technically not mathematically correct, but more pleasing? + res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized + res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c) + + #edge cases for same or polar opposites + res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] + res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1] + return res + + def generate_bilinear_data(length_old, length_new, device): + coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear") + ratios = coords_1 - coords_1.floor() + coords_1 = coords_1.to(torch.int64) + + coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1 + coords_2[:,:,:,-1] -= 1 + coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear") + coords_2 = coords_2.to(torch.int64) + return ratios, coords_1, coords_2 + + orig_dtype = samples.dtype + samples = samples.float() + n,c,h,w = samples.shape + h_new, w_new = (height, width) + + #linear w + ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device) + coords_1 = coords_1.expand((n, c, h, -1)) + coords_2 = coords_2.expand((n, c, h, -1)) + ratios = ratios.expand((n, 1, h, -1)) + + pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c)) + pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c)) + ratios = ratios.movedim(1, -1).reshape((-1,1)) + + result = slerp(pass_1, pass_2, ratios) + result = result.reshape(n, h, w_new, c).movedim(-1, 1) + + #linear h + ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device) + coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) + coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new)) + ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new)) + + pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c)) + pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c)) + ratios = ratios.movedim(1, -1).reshape((-1,1)) + + result = slerp(pass_1, pass_2, ratios) + result = result.reshape(n, h_new, w_new, c).movedim(-1, 1) + return result.to(orig_dtype) + +def lanczos(samples, width, height): + images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] + images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] + images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] + result = torch.stack(images) + return result.to(samples.device, samples.dtype) + +def common_upscale(samples, width, height, upscale_method, crop): + if crop == "center": + old_width = samples.shape[3] + old_height = samples.shape[2] + old_aspect = old_width / old_height + new_aspect = width / height + x = 0 + y = 0 + if old_aspect > new_aspect: + x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) + elif old_aspect < new_aspect: + y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) + s = samples[:,:,y:old_height-y,x:old_width-x] + else: + s = samples + + if upscale_method == "bislerp": + return bislerp(s, width, height) + elif upscale_method == "lanczos": + return lanczos(s, width, height) + else: + return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) + +def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap): + return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap))) + +@torch.inference_mode() +def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None): + output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device=output_device) + for b in range(samples.shape[0]): + s = samples[b:b+1] + out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device) + out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device) + for y in range(0, s.shape[2], tile_y - overlap): + for x in range(0, s.shape[3], tile_x - overlap): + x = max(0, min(s.shape[-1] - overlap, x)) + y = max(0, min(s.shape[-2] - overlap, y)) + s_in = s[:,:,y:y+tile_y,x:x+tile_x] + + ps = function(s_in).to(output_device) + mask = torch.ones_like(ps) + feather = round(overlap * upscale_amount) + for t in range(feather): + mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1)) + mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1)) + mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1)) + mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1)) + out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask + out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask + if pbar is not None: + pbar.update(1) + + output[b:b+1] = out/out_div + return output + +PROGRESS_BAR_ENABLED = True +def set_progress_bar_enabled(enabled): + global PROGRESS_BAR_ENABLED + PROGRESS_BAR_ENABLED = enabled + +PROGRESS_BAR_HOOK = None +def set_progress_bar_global_hook(function): + global PROGRESS_BAR_HOOK + PROGRESS_BAR_HOOK = function + +class ProgressBar: + def __init__(self, total): + global PROGRESS_BAR_HOOK + self.total = total + self.current = 0 + self.hook = PROGRESS_BAR_HOOK + + def update_absolute(self, value, total=None, preview=None): + if total is not None: + self.total = total + if value > self.total: + value = self.total + self.current = value + if self.hook is not None: + self.hook(self.current, self.total, preview) + + def update(self, value): + self.update_absolute(self.current + value) diff --git a/comfy_extras/chainner_models/__init__.py b/comfy_extras/chainner_models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/comfy_extras/chainner_models/architecture/DAT.py b/comfy_extras/chainner_models/architecture/DAT.py new file mode 100644 index 0000000000000000000000000000000000000000..0bcc26ef422b73cef41744e2203901a3d290c2f0 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/DAT.py @@ -0,0 +1,1182 @@ +# pylint: skip-file +import math +import re + +import numpy as np +import torch +import torch.nn as nn +import torch.utils.checkpoint as checkpoint +from einops import rearrange +from einops.layers.torch import Rearrange +from torch import Tensor +from torch.nn import functional as F + +from .timm.drop import DropPath +from .timm.weight_init import trunc_normal_ + + +def img2windows(img, H_sp, W_sp): + """ + Input: Image (B, C, H, W) + Output: Window Partition (B', N, C) + """ + B, C, H, W = img.shape + img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp) + img_perm = ( + img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C) + ) + return img_perm + + +def windows2img(img_splits_hw, H_sp, W_sp, H, W): + """ + Input: Window Partition (B', N, C) + Output: Image (B, H, W, C) + """ + B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp)) + + img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1) + img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return img + + +class SpatialGate(nn.Module): + """Spatial-Gate. + Args: + dim (int): Half of input channels. + """ + + def __init__(self, dim): + super().__init__() + self.norm = nn.LayerNorm(dim) + self.conv = nn.Conv2d( + dim, dim, kernel_size=3, stride=1, padding=1, groups=dim + ) # DW Conv + + def forward(self, x, H, W): + # Split + x1, x2 = x.chunk(2, dim=-1) + B, N, C = x.shape + x2 = ( + self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C // 2, H, W)) + .flatten(2) + .transpose(-1, -2) + .contiguous() + ) + + return x1 * x2 + + +class SGFN(nn.Module): + """Spatial-Gate Feed-Forward Network. + Args: + in_features (int): Number of input channels. + hidden_features (int | None): Number of hidden channels. Default: None + out_features (int | None): Number of output channels. Default: None + act_layer (nn.Module): Activation layer. Default: nn.GELU + drop (float): Dropout rate. Default: 0.0 + """ + + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + drop=0.0, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.sg = SpatialGate(hidden_features // 2) + self.fc2 = nn.Linear(hidden_features // 2, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x, H, W): + """ + Input: x: (B, H*W, C), H, W + Output: x: (B, H*W, C) + """ + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + + x = self.sg(x, H, W) + x = self.drop(x) + + x = self.fc2(x) + x = self.drop(x) + return x + + +class DynamicPosBias(nn.Module): + # The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py + """Dynamic Relative Position Bias. + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + residual (bool): If True, use residual strage to connect conv. + """ + + def __init__(self, dim, num_heads, residual): + super().__init__() + self.residual = residual + self.num_heads = num_heads + self.pos_dim = dim // 4 + self.pos_proj = nn.Linear(2, self.pos_dim) + self.pos1 = nn.Sequential( + nn.LayerNorm(self.pos_dim), + nn.ReLU(inplace=True), + nn.Linear(self.pos_dim, self.pos_dim), + ) + self.pos2 = nn.Sequential( + nn.LayerNorm(self.pos_dim), + nn.ReLU(inplace=True), + nn.Linear(self.pos_dim, self.pos_dim), + ) + self.pos3 = nn.Sequential( + nn.LayerNorm(self.pos_dim), + nn.ReLU(inplace=True), + nn.Linear(self.pos_dim, self.num_heads), + ) + + def forward(self, biases): + if self.residual: + pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads + pos = pos + self.pos1(pos) + pos = pos + self.pos2(pos) + pos = self.pos3(pos) + else: + pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases)))) + return pos + + +class Spatial_Attention(nn.Module): + """Spatial Window Self-Attention. + It supports rectangle window (containing square window). + Args: + dim (int): Number of input channels. + idx (int): The indentix of window. (0/1) + split_size (tuple(int)): Height and Width of spatial window. + dim_out (int | None): The dimension of the attention output. Default: None + num_heads (int): Number of attention heads. Default: 6 + attn_drop (float): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float): Dropout ratio of output. Default: 0.0 + qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set + position_bias (bool): The dynamic relative position bias. Default: True + """ + + def __init__( + self, + dim, + idx, + split_size=[8, 8], + dim_out=None, + num_heads=6, + attn_drop=0.0, + proj_drop=0.0, + qk_scale=None, + position_bias=True, + ): + super().__init__() + self.dim = dim + self.dim_out = dim_out or dim + self.split_size = split_size + self.num_heads = num_heads + self.idx = idx + self.position_bias = position_bias + + head_dim = dim // num_heads + self.scale = qk_scale or head_dim**-0.5 + + if idx == 0: + H_sp, W_sp = self.split_size[0], self.split_size[1] + elif idx == 1: + W_sp, H_sp = self.split_size[0], self.split_size[1] + else: + print("ERROR MODE", idx) + exit(0) + self.H_sp = H_sp + self.W_sp = W_sp + + if self.position_bias: + self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False) + # generate mother-set + position_bias_h = torch.arange(1 - self.H_sp, self.H_sp) + position_bias_w = torch.arange(1 - self.W_sp, self.W_sp) + biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w])) + biases = biases.flatten(1).transpose(0, 1).contiguous().float() + self.register_buffer("rpe_biases", biases) + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.H_sp) + coords_w = torch.arange(self.W_sp) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) + coords_flatten = torch.flatten(coords, 1) + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] + relative_coords = relative_coords.permute(1, 2, 0).contiguous() + relative_coords[:, :, 0] += self.H_sp - 1 + relative_coords[:, :, 1] += self.W_sp - 1 + relative_coords[:, :, 0] *= 2 * self.W_sp - 1 + relative_position_index = relative_coords.sum(-1) + self.register_buffer("relative_position_index", relative_position_index) + + self.attn_drop = nn.Dropout(attn_drop) + + def im2win(self, x, H, W): + B, N, C = x.shape + x = x.transpose(-2, -1).contiguous().view(B, C, H, W) + x = img2windows(x, self.H_sp, self.W_sp) + x = ( + x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads) + .permute(0, 2, 1, 3) + .contiguous() + ) + return x + + def forward(self, qkv, H, W, mask=None): + """ + Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size + Output: x (B, H, W, C) + """ + q, k, v = qkv[0], qkv[1], qkv[2] + + B, L, C = q.shape + assert L == H * W, "flatten img_tokens has wrong size" + + # partition the q,k,v, image to window + q = self.im2win(q, H, W) + k = self.im2win(k, H, W) + v = self.im2win(v, H, W) + + q = q * self.scale + attn = q @ k.transpose(-2, -1) # B head N C @ B head C N --> B head N N + + # calculate drpe + if self.position_bias: + pos = self.pos(self.rpe_biases) + # select position bias + relative_position_bias = pos[self.relative_position_index.view(-1)].view( + self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1 + ) + relative_position_bias = relative_position_bias.permute( + 2, 0, 1 + ).contiguous() + attn = attn + relative_position_bias.unsqueeze(0) + + N = attn.shape[3] + + # use mask for shift window + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze( + 0 + ) + attn = attn.view(-1, self.num_heads, N, N) + + attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype) + attn = self.attn_drop(attn) + + x = attn @ v + x = x.transpose(1, 2).reshape( + -1, self.H_sp * self.W_sp, C + ) # B head N N @ B head N C + + # merge the window, window to image + x = windows2img(x, self.H_sp, self.W_sp, H, W) # B H' W' C + + return x + + +class Adaptive_Spatial_Attention(nn.Module): + # The implementation builds on CAT code https://github.com/Zhengchen1999/CAT + """Adaptive Spatial Self-Attention + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. Default: 6 + split_size (tuple(int)): Height and Width of spatial window. + shift_size (tuple(int)): Shift size for spatial window. + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. + drop (float): Dropout rate. Default: 0.0 + attn_drop (float): Attention dropout rate. Default: 0.0 + rg_idx (int): The indentix of Residual Group (RG) + b_idx (int): The indentix of Block in each RG + """ + + def __init__( + self, + dim, + num_heads, + reso=64, + split_size=[8, 8], + shift_size=[1, 2], + qkv_bias=False, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + rg_idx=0, + b_idx=0, + ): + super().__init__() + self.dim = dim + self.num_heads = num_heads + self.split_size = split_size + self.shift_size = shift_size + self.b_idx = b_idx + self.rg_idx = rg_idx + self.patches_resolution = reso + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + + assert ( + 0 <= self.shift_size[0] < self.split_size[0] + ), "shift_size must in 0-split_size0" + assert ( + 0 <= self.shift_size[1] < self.split_size[1] + ), "shift_size must in 0-split_size1" + + self.branch_num = 2 + + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(drop) + + self.attns = nn.ModuleList( + [ + Spatial_Attention( + dim // 2, + idx=i, + split_size=split_size, + num_heads=num_heads // 2, + dim_out=dim // 2, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop, + position_bias=True, + ) + for i in range(self.branch_num) + ] + ) + + if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or ( + self.rg_idx % 2 != 0 and self.b_idx % 4 == 0 + ): + attn_mask = self.calculate_mask( + self.patches_resolution, self.patches_resolution + ) + self.register_buffer("attn_mask_0", attn_mask[0]) + self.register_buffer("attn_mask_1", attn_mask[1]) + else: + attn_mask = None + self.register_buffer("attn_mask_0", None) + self.register_buffer("attn_mask_1", None) + + self.dwconv = nn.Sequential( + nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim), + nn.BatchNorm2d(dim), + nn.GELU(), + ) + self.channel_interaction = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(dim, dim // 8, kernel_size=1), + nn.BatchNorm2d(dim // 8), + nn.GELU(), + nn.Conv2d(dim // 8, dim, kernel_size=1), + ) + self.spatial_interaction = nn.Sequential( + nn.Conv2d(dim, dim // 16, kernel_size=1), + nn.BatchNorm2d(dim // 16), + nn.GELU(), + nn.Conv2d(dim // 16, 1, kernel_size=1), + ) + + def calculate_mask(self, H, W): + # The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py + # calculate attention mask for shift window + img_mask_0 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=0 + img_mask_1 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=1 + h_slices_0 = ( + slice(0, -self.split_size[0]), + slice(-self.split_size[0], -self.shift_size[0]), + slice(-self.shift_size[0], None), + ) + w_slices_0 = ( + slice(0, -self.split_size[1]), + slice(-self.split_size[1], -self.shift_size[1]), + slice(-self.shift_size[1], None), + ) + + h_slices_1 = ( + slice(0, -self.split_size[1]), + slice(-self.split_size[1], -self.shift_size[1]), + slice(-self.shift_size[1], None), + ) + w_slices_1 = ( + slice(0, -self.split_size[0]), + slice(-self.split_size[0], -self.shift_size[0]), + slice(-self.shift_size[0], None), + ) + cnt = 0 + for h in h_slices_0: + for w in w_slices_0: + img_mask_0[:, h, w, :] = cnt + cnt += 1 + cnt = 0 + for h in h_slices_1: + for w in w_slices_1: + img_mask_1[:, h, w, :] = cnt + cnt += 1 + + # calculate mask for window-0 + img_mask_0 = img_mask_0.view( + 1, + H // self.split_size[0], + self.split_size[0], + W // self.split_size[1], + self.split_size[1], + 1, + ) + img_mask_0 = ( + img_mask_0.permute(0, 1, 3, 2, 4, 5) + .contiguous() + .view(-1, self.split_size[0], self.split_size[1], 1) + ) # nW, sw[0], sw[1], 1 + mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1]) + attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2) + attn_mask_0 = attn_mask_0.masked_fill( + attn_mask_0 != 0, float(-100.0) + ).masked_fill(attn_mask_0 == 0, float(0.0)) + + # calculate mask for window-1 + img_mask_1 = img_mask_1.view( + 1, + H // self.split_size[1], + self.split_size[1], + W // self.split_size[0], + self.split_size[0], + 1, + ) + img_mask_1 = ( + img_mask_1.permute(0, 1, 3, 2, 4, 5) + .contiguous() + .view(-1, self.split_size[1], self.split_size[0], 1) + ) # nW, sw[1], sw[0], 1 + mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0]) + attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2) + attn_mask_1 = attn_mask_1.masked_fill( + attn_mask_1 != 0, float(-100.0) + ).masked_fill(attn_mask_1 == 0, float(0.0)) + + return attn_mask_0, attn_mask_1 + + def forward(self, x, H, W): + """ + Input: x: (B, H*W, C), H, W + Output: x: (B, H*W, C) + """ + B, L, C = x.shape + assert L == H * W, "flatten img_tokens has wrong size" + + qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3) # 3, B, HW, C + # V without partition + v = qkv[2].transpose(-2, -1).contiguous().view(B, C, H, W) + + # image padding + max_split_size = max(self.split_size[0], self.split_size[1]) + pad_l = pad_t = 0 + pad_r = (max_split_size - W % max_split_size) % max_split_size + pad_b = (max_split_size - H % max_split_size) % max_split_size + + qkv = qkv.reshape(3 * B, H, W, C).permute(0, 3, 1, 2) # 3B C H W + qkv = ( + F.pad(qkv, (pad_l, pad_r, pad_t, pad_b)) + .reshape(3, B, C, -1) + .transpose(-2, -1) + ) # l r t b + _H = pad_b + H + _W = pad_r + W + _L = _H * _W + + # window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged + # shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ... + if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or ( + self.rg_idx % 2 != 0 and self.b_idx % 4 == 0 + ): + qkv = qkv.view(3, B, _H, _W, C) + qkv_0 = torch.roll( + qkv[:, :, :, :, : C // 2], + shifts=(-self.shift_size[0], -self.shift_size[1]), + dims=(2, 3), + ) + qkv_0 = qkv_0.view(3, B, _L, C // 2) + qkv_1 = torch.roll( + qkv[:, :, :, :, C // 2 :], + shifts=(-self.shift_size[1], -self.shift_size[0]), + dims=(2, 3), + ) + qkv_1 = qkv_1.view(3, B, _L, C // 2) + + if self.patches_resolution != _H or self.patches_resolution != _W: + mask_tmp = self.calculate_mask(_H, _W) + x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device)) + x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device)) + else: + x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0) + x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1) + + x1 = torch.roll( + x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2) + ) + x2 = torch.roll( + x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2) + ) + x1 = x1[:, :H, :W, :].reshape(B, L, C // 2) + x2 = x2[:, :H, :W, :].reshape(B, L, C // 2) + # attention output + attened_x = torch.cat([x1, x2], dim=2) + + else: + x1 = self.attns[0](qkv[:, :, :, : C // 2], _H, _W)[:, :H, :W, :].reshape( + B, L, C // 2 + ) + x2 = self.attns[1](qkv[:, :, :, C // 2 :], _H, _W)[:, :H, :W, :].reshape( + B, L, C // 2 + ) + # attention output + attened_x = torch.cat([x1, x2], dim=2) + + # convolution output + conv_x = self.dwconv(v) + + # Adaptive Interaction Module (AIM) + # C-Map (before sigmoid) + channel_map = ( + self.channel_interaction(conv_x) + .permute(0, 2, 3, 1) + .contiguous() + .view(B, 1, C) + ) + # S-Map (before sigmoid) + attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W) + spatial_map = self.spatial_interaction(attention_reshape) + + # C-I + attened_x = attened_x * torch.sigmoid(channel_map) + # S-I + conv_x = torch.sigmoid(spatial_map) * conv_x + conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C) + + x = attened_x + conv_x + + x = self.proj(x) + x = self.proj_drop(x) + + return x + + +class Adaptive_Channel_Attention(nn.Module): + # The implementation builds on XCiT code https://github.com/facebookresearch/xcit + """Adaptive Channel Self-Attention + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. Default: 6 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. + attn_drop (float): Attention dropout rate. Default: 0.0 + drop_path (float): Stochastic depth rate. Default: 0.0 + """ + + def __init__( + self, + dim, + num_heads=8, + qkv_bias=False, + qk_scale=None, + attn_drop=0.0, + proj_drop=0.0, + ): + super().__init__() + self.num_heads = num_heads + self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + self.dwconv = nn.Sequential( + nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim), + nn.BatchNorm2d(dim), + nn.GELU(), + ) + self.channel_interaction = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(dim, dim // 8, kernel_size=1), + nn.BatchNorm2d(dim // 8), + nn.GELU(), + nn.Conv2d(dim // 8, dim, kernel_size=1), + ) + self.spatial_interaction = nn.Sequential( + nn.Conv2d(dim, dim // 16, kernel_size=1), + nn.BatchNorm2d(dim // 16), + nn.GELU(), + nn.Conv2d(dim // 16, 1, kernel_size=1), + ) + + def forward(self, x, H, W): + """ + Input: x: (B, H*W, C), H, W + Output: x: (B, H*W, C) + """ + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) + qkv = qkv.permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] + + q = q.transpose(-2, -1) + k = k.transpose(-2, -1) + v = v.transpose(-2, -1) + + v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W) + + q = torch.nn.functional.normalize(q, dim=-1) + k = torch.nn.functional.normalize(k, dim=-1) + + attn = (q @ k.transpose(-2, -1)) * self.temperature + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + # attention output + attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C) + + # convolution output + conv_x = self.dwconv(v_) + + # Adaptive Interaction Module (AIM) + # C-Map (before sigmoid) + attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W) + channel_map = self.channel_interaction(attention_reshape) + # S-Map (before sigmoid) + spatial_map = ( + self.spatial_interaction(conv_x) + .permute(0, 2, 3, 1) + .contiguous() + .view(B, N, 1) + ) + + # S-I + attened_x = attened_x * torch.sigmoid(spatial_map) + # C-I + conv_x = conv_x * torch.sigmoid(channel_map) + conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C) + + x = attened_x + conv_x + + x = self.proj(x) + x = self.proj_drop(x) + + return x + + +class DATB(nn.Module): + def __init__( + self, + dim, + num_heads, + reso=64, + split_size=[2, 4], + shift_size=[1, 2], + expansion_factor=4.0, + qkv_bias=False, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + rg_idx=0, + b_idx=0, + ): + super().__init__() + + self.norm1 = norm_layer(dim) + + if b_idx % 2 == 0: + # DSTB + self.attn = Adaptive_Spatial_Attention( + dim, + num_heads=num_heads, + reso=reso, + split_size=split_size, + shift_size=shift_size, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop, + attn_drop=attn_drop, + rg_idx=rg_idx, + b_idx=b_idx, + ) + else: + # DCTB + self.attn = Adaptive_Channel_Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + ffn_hidden_dim = int(dim * expansion_factor) + self.ffn = SGFN( + in_features=dim, + hidden_features=ffn_hidden_dim, + out_features=dim, + act_layer=act_layer, + ) + self.norm2 = norm_layer(dim) + + def forward(self, x, x_size): + """ + Input: x: (B, H*W, C), x_size: (H, W) + Output: x: (B, H*W, C) + """ + H, W = x_size + x = x + self.drop_path(self.attn(self.norm1(x), H, W)) + x = x + self.drop_path(self.ffn(self.norm2(x), H, W)) + + return x + + +class ResidualGroup(nn.Module): + """ResidualGroup + Args: + dim (int): Number of input channels. + reso (int): Input resolution. + num_heads (int): Number of attention heads. + split_size (tuple(int)): Height and Width of spatial window. + expansion_factor (float): Ratio of ffn hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop (float): Dropout rate. Default: 0 + attn_drop(float): Attention dropout rate. Default: 0 + drop_paths (float | None): Stochastic depth rate. + act_layer (nn.Module): Activation layer. Default: nn.GELU + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm + depth (int): Number of dual aggregation Transformer blocks in residual group. + use_chk (bool): Whether to use checkpointing to save memory. + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__( + self, + dim, + reso, + num_heads, + split_size=[2, 4], + expansion_factor=4.0, + qkv_bias=False, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_paths=None, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + depth=2, + use_chk=False, + resi_connection="1conv", + rg_idx=0, + ): + super().__init__() + self.use_chk = use_chk + self.reso = reso + + self.blocks = nn.ModuleList( + [ + DATB( + dim=dim, + num_heads=num_heads, + reso=reso, + split_size=split_size, + shift_size=[split_size[0] // 2, split_size[1] // 2], + expansion_factor=expansion_factor, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop, + attn_drop=attn_drop, + drop_path=drop_paths[i], + act_layer=act_layer, + norm_layer=norm_layer, + rg_idx=rg_idx, + b_idx=i, + ) + for i in range(depth) + ] + ) + + if resi_connection == "1conv": + self.conv = nn.Conv2d(dim, dim, 3, 1, 1) + elif resi_connection == "3conv": + self.conv = nn.Sequential( + nn.Conv2d(dim, dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim, 3, 1, 1), + ) + + def forward(self, x, x_size): + """ + Input: x: (B, H*W, C), x_size: (H, W) + Output: x: (B, H*W, C) + """ + H, W = x_size + res = x + for blk in self.blocks: + if self.use_chk: + x = checkpoint.checkpoint(blk, x, x_size) + else: + x = blk(x, x_size) + x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W) + x = self.conv(x) + x = rearrange(x, "b c h w -> b (h w) c") + x = res + x + + return x + + +class Upsample(nn.Sequential): + """Upsample module. + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError( + f"scale {scale} is not supported. " "Supported scales: 2^n and 3." + ) + super(Upsample, self).__init__(*m) + + +class UpsampleOneStep(nn.Sequential): + """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) + Used in lightweight SR to save parameters. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + + """ + + def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): + self.num_feat = num_feat + self.input_resolution = input_resolution + m = [] + m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) + m.append(nn.PixelShuffle(scale)) + super(UpsampleOneStep, self).__init__(*m) + + def flops(self): + h, w = self.input_resolution + flops = h * w * self.num_feat * 3 * 9 + return flops + + +class DAT(nn.Module): + """Dual Aggregation Transformer + Args: + img_size (int): Input image size. Default: 64 + in_chans (int): Number of input image channels. Default: 3 + embed_dim (int): Patch embedding dimension. Default: 180 + depths (tuple(int)): Depth of each residual group (number of DATB in each RG). + split_size (tuple(int)): Height and Width of spatial window. + num_heads (tuple(int)): Number of attention heads in different residual groups. + expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + act_layer (nn.Module): Activation layer. Default: nn.GELU + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm + use_chk (bool): Whether to use checkpointing to save memory. + upscale: Upscale factor. 2/3/4 for image SR + img_range: Image range. 1. or 255. + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__(self, state_dict): + super().__init__() + + # defaults + img_size = 64 + in_chans = 3 + embed_dim = 180 + split_size = [2, 4] + depth = [2, 2, 2, 2] + num_heads = [2, 2, 2, 2] + expansion_factor = 4.0 + qkv_bias = True + qk_scale = None + drop_rate = 0.0 + attn_drop_rate = 0.0 + drop_path_rate = 0.1 + act_layer = nn.GELU + norm_layer = nn.LayerNorm + use_chk = False + upscale = 2 + img_range = 1.0 + resi_connection = "1conv" + upsampler = "pixelshuffle" + + self.model_arch = "DAT" + self.sub_type = "SR" + self.state = state_dict + + state_keys = state_dict.keys() + if "conv_before_upsample.0.weight" in state_keys: + if "conv_up1.weight" in state_keys: + upsampler = "nearest+conv" + else: + upsampler = "pixelshuffle" + supports_fp16 = False + elif "upsample.0.weight" in state_keys: + upsampler = "pixelshuffledirect" + else: + upsampler = "" + + num_feat = ( + state_dict.get("conv_before_upsample.0.weight", None).shape[1] + if state_dict.get("conv_before_upsample.weight", None) + else 64 + ) + + num_in_ch = state_dict["conv_first.weight"].shape[1] + in_chans = num_in_ch + if "conv_last.weight" in state_keys: + num_out_ch = state_dict["conv_last.weight"].shape[0] + else: + num_out_ch = num_in_ch + + upscale = 1 + if upsampler == "nearest+conv": + upsample_keys = [ + x for x in state_keys if "conv_up" in x and "bias" not in x + ] + + for upsample_key in upsample_keys: + upscale *= 2 + elif upsampler == "pixelshuffle": + upsample_keys = [ + x + for x in state_keys + if "upsample" in x and "conv" not in x and "bias" not in x + ] + for upsample_key in upsample_keys: + shape = state_dict[upsample_key].shape[0] + upscale *= math.sqrt(shape // num_feat) + upscale = int(upscale) + elif upsampler == "pixelshuffledirect": + upscale = int( + math.sqrt(state_dict["upsample.0.bias"].shape[0] // num_out_ch) + ) + + max_layer_num = 0 + max_block_num = 0 + for key in state_keys: + result = re.match(r"layers.(\d*).blocks.(\d*).norm1.weight", key) + if result: + layer_num, block_num = result.groups() + max_layer_num = max(max_layer_num, int(layer_num)) + max_block_num = max(max_block_num, int(block_num)) + + depth = [max_block_num + 1 for _ in range(max_layer_num + 1)] + + if "layers.0.blocks.1.attn.temperature" in state_keys: + num_heads_num = state_dict["layers.0.blocks.1.attn.temperature"].shape[0] + num_heads = [num_heads_num for _ in range(max_layer_num + 1)] + else: + num_heads = depth + + embed_dim = state_dict["conv_first.weight"].shape[0] + expansion_factor = float( + state_dict["layers.0.blocks.0.ffn.fc1.weight"].shape[0] / embed_dim + ) + + # TODO: could actually count the layers, but this should do + if "layers.0.conv.4.weight" in state_keys: + resi_connection = "3conv" + else: + resi_connection = "1conv" + + if "layers.0.blocks.2.attn.attn_mask_0" in state_keys: + attn_mask_0_x, attn_mask_0_y, attn_mask_0_z = state_dict[ + "layers.0.blocks.2.attn.attn_mask_0" + ].shape + + img_size = int(math.sqrt(attn_mask_0_x * attn_mask_0_y)) + + if "layers.0.blocks.0.attn.attns.0.rpe_biases" in state_keys: + split_sizes = ( + state_dict["layers.0.blocks.0.attn.attns.0.rpe_biases"][-1] + 1 + ) + split_size = [int(x) for x in split_sizes] + + self.in_nc = num_in_ch + self.out_nc = num_out_ch + self.num_feat = num_feat + self.embed_dim = embed_dim + self.num_heads = num_heads + self.depth = depth + self.scale = upscale + self.upsampler = upsampler + self.img_size = img_size + self.img_range = img_range + self.expansion_factor = expansion_factor + self.resi_connection = resi_connection + self.split_size = split_size + + self.supports_fp16 = False # Too much weirdness to support this at the moment + self.supports_bfp16 = True + self.min_size_restriction = 16 + + num_in_ch = in_chans + num_out_ch = in_chans + num_feat = 64 + self.img_range = img_range + if in_chans == 3: + rgb_mean = (0.4488, 0.4371, 0.4040) + self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) + else: + self.mean = torch.zeros(1, 1, 1, 1) + self.upscale = upscale + self.upsampler = upsampler + + # ------------------------- 1, Shallow Feature Extraction ------------------------- # + self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) + + # ------------------------- 2, Deep Feature Extraction ------------------------- # + self.num_layers = len(depth) + self.use_chk = use_chk + self.num_features = ( + self.embed_dim + ) = embed_dim # num_features for consistency with other models + heads = num_heads + + self.before_RG = nn.Sequential( + Rearrange("b c h w -> b (h w) c"), nn.LayerNorm(embed_dim) + ) + + curr_dim = embed_dim + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth)) + ] # stochastic depth decay rule + + self.layers = nn.ModuleList() + for i in range(self.num_layers): + layer = ResidualGroup( + dim=embed_dim, + num_heads=heads[i], + reso=img_size, + split_size=split_size, + expansion_factor=expansion_factor, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + attn_drop=attn_drop_rate, + drop_paths=dpr[sum(depth[:i]) : sum(depth[: i + 1])], + act_layer=act_layer, + norm_layer=norm_layer, + depth=depth[i], + use_chk=use_chk, + resi_connection=resi_connection, + rg_idx=i, + ) + self.layers.append(layer) + + self.norm = norm_layer(curr_dim) + # build the last conv layer in deep feature extraction + if resi_connection == "1conv": + self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + elif resi_connection == "3conv": + # to save parameters and memory + self.conv_after_body = nn.Sequential( + nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1), + ) + + # ------------------------- 3, Reconstruction ------------------------- # + if self.upsampler == "pixelshuffle": + # for classical SR + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + elif self.upsampler == "pixelshuffledirect": + # for lightweight SR (to save parameters) + self.upsample = UpsampleOneStep( + upscale, embed_dim, num_out_ch, (img_size, img_size) + ) + + self.apply(self._init_weights) + self.load_state_dict(state_dict, strict=True) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance( + m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d) + ): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def forward_features(self, x): + _, _, H, W = x.shape + x_size = [H, W] + x = self.before_RG(x) + for layer in self.layers: + x = layer(x, x_size) + x = self.norm(x) + x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W) + + return x + + def forward(self, x): + """ + Input: x: (B, C, H, W) + """ + self.mean = self.mean.type_as(x) + x = (x - self.mean) * self.img_range + + if self.upsampler == "pixelshuffle": + # for image SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.conv_last(self.upsample(x)) + elif self.upsampler == "pixelshuffledirect": + # for lightweight SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.upsample(x) + + x = x / self.img_range + self.mean + return x diff --git a/comfy_extras/chainner_models/architecture/HAT.py b/comfy_extras/chainner_models/architecture/HAT.py new file mode 100644 index 0000000000000000000000000000000000000000..6694742199bcbdb34ca197b941804dc68af353e7 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/HAT.py @@ -0,0 +1,1277 @@ +# pylint: skip-file +# HAT from https://github.com/XPixelGroup/HAT/blob/main/hat/archs/hat_arch.py +import math +import re + +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange + +from .timm.helpers import to_2tuple +from .timm.weight_init import trunc_normal_ + + +def drop_path(x, drop_prob: float = 0.0, training: bool = False): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py + """ + if drop_prob == 0.0 or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * ( + x.ndim - 1 + ) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) + random_tensor.floor_() # binarize + output = x.div(keep_prob) * random_tensor + return output + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py + """ + + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training) # type: ignore + + +class ChannelAttention(nn.Module): + """Channel attention used in RCAN. + Args: + num_feat (int): Channel number of intermediate features. + squeeze_factor (int): Channel squeeze factor. Default: 16. + """ + + def __init__(self, num_feat, squeeze_factor=16): + super(ChannelAttention, self).__init__() + self.attention = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), + nn.ReLU(inplace=True), + nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), + nn.Sigmoid(), + ) + + def forward(self, x): + y = self.attention(x) + return x * y + + +class CAB(nn.Module): + def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30): + super(CAB, self).__init__() + + self.cab = nn.Sequential( + nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1), + nn.GELU(), + nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1), + ChannelAttention(num_feat, squeeze_factor), + ) + + def forward(self, x): + return self.cab(x) + + +class Mlp(nn.Module): + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + drop=0.0, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def window_partition(x, window_size): + """ + Args: + x: (b, h, w, c) + window_size (int): window size + Returns: + windows: (num_windows*b, window_size, window_size, c) + """ + b, h, w, c = x.shape + x = x.view(b, h // window_size, window_size, w // window_size, window_size, c) + windows = ( + x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c) + ) + return windows + + +def window_reverse(windows, window_size, h, w): + """ + Args: + windows: (num_windows*b, window_size, window_size, c) + window_size (int): Window size + h (int): Height of image + w (int): Width of image + Returns: + x: (b, h, w, c) + """ + b = int(windows.shape[0] / (h * w / window_size / window_size)) + x = windows.view( + b, h // window_size, w // window_size, window_size, window_size, -1 + ) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1) + return x + + +class WindowAttention(nn.Module): + r"""Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + """ + + def __init__( + self, + dim, + window_size, + num_heads, + qkv_bias=True, + qk_scale=None, + attn_drop=0.0, + proj_drop=0.0, + ): + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim**-0.5 + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( # type: ignore + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) + ) # 2*Wh-1 * 2*Ww-1, nH + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + + self.proj_drop = nn.Dropout(proj_drop) + + trunc_normal_(self.relative_position_bias_table, std=0.02) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, rpi, mask=None): + """ + Args: + x: input features with shape of (num_windows*b, n, c) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + b_, n, c = x.shape + qkv = ( + self.qkv(x) + .reshape(b_, n, 3, self.num_heads, c // self.num_heads) + .permute(2, 0, 3, 1, 4) + ) + q, k, v = ( + qkv[0], + qkv[1], + qkv[2], + ) # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = q @ k.transpose(-2, -1) + + relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view( + self.window_size[0] * self.window_size[1], + self.window_size[0] * self.window_size[1], + -1, + ) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute( + 2, 0, 1 + ).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nw = mask.shape[0] + attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze( + 1 + ).unsqueeze(0) + attn = attn.view(-1, self.num_heads, n, n) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(b_, n, c) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class HAB(nn.Module): + r"""Hybrid Attention Block. + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__( + self, + dim, + input_resolution, + num_heads, + window_size=7, + shift_size=0, + compress_ratio=3, + squeeze_factor=30, + conv_scale=0.01, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + if min(self.input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(self.input_resolution) + assert ( + 0 <= self.shift_size < self.window_size + ), "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, + window_size=to_2tuple(self.window_size), + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop, + ) + + self.conv_scale = conv_scale + self.conv_block = CAB( + num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor + ) + + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=drop, + ) + + def forward(self, x, x_size, rpi_sa, attn_mask): + h, w = x_size + b, _, c = x.shape + # assert seq_len == h * w, "input feature has wrong size" + + shortcut = x + x = self.norm1(x) + x = x.view(b, h, w, c) + + # Conv_X + conv_x = self.conv_block(x.permute(0, 3, 1, 2)) + conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c) + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll( + x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) + ) + attn_mask = attn_mask + else: + shifted_x = x + attn_mask = None + + # partition windows + x_windows = window_partition( + shifted_x, self.window_size + ) # nw*b, window_size, window_size, c + x_windows = x_windows.view( + -1, self.window_size * self.window_size, c + ) # nw*b, window_size*window_size, c + + # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size + attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c) + shifted_x = window_reverse(attn_windows, self.window_size, h, w) # b h' w' c + + # reverse cyclic shift + if self.shift_size > 0: + attn_x = torch.roll( + shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) + ) + else: + attn_x = shifted_x + attn_x = attn_x.view(b, h * w, c) + + # FFN + x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale + x = x + self.drop_path(self.mlp(self.norm2(x))) + + return x + + +class PatchMerging(nn.Module): + r"""Patch Merging Layer. + Args: + input_resolution (tuple[int]): Resolution of input feature. + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def forward(self, x): + """ + x: b, h*w, c + """ + h, w = self.input_resolution + b, seq_len, c = x.shape + assert seq_len == h * w, "input feature has wrong size" + assert h % 2 == 0 and w % 2 == 0, f"x size ({h}*{w}) are not even." + + x = x.view(b, h, w, c) + + x0 = x[:, 0::2, 0::2, :] # b h/2 w/2 c + x1 = x[:, 1::2, 0::2, :] # b h/2 w/2 c + x2 = x[:, 0::2, 1::2, :] # b h/2 w/2 c + x3 = x[:, 1::2, 1::2, :] # b h/2 w/2 c + x = torch.cat([x0, x1, x2, x3], -1) # b h/2 w/2 4*c + x = x.view(b, -1, 4 * c) # b h/2*w/2 4*c + + x = self.norm(x) + x = self.reduction(x) + + return x + + +class OCAB(nn.Module): + # overlapping cross-attention block + + def __init__( + self, + dim, + input_resolution, + window_size, + overlap_ratio, + num_heads, + qkv_bias=True, + qk_scale=None, + mlp_ratio=2, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.window_size = window_size + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim**-0.5 + self.overlap_win_size = int(window_size * overlap_ratio) + window_size + + self.norm1 = norm_layer(dim) + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.unfold = nn.Unfold( + kernel_size=(self.overlap_win_size, self.overlap_win_size), + stride=window_size, + padding=(self.overlap_win_size - window_size) // 2, + ) + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( # type: ignore + torch.zeros( + (window_size + self.overlap_win_size - 1) + * (window_size + self.overlap_win_size - 1), + num_heads, + ) + ) # 2*Wh-1 * 2*Ww-1, nH + + trunc_normal_(self.relative_position_bias_table, std=0.02) + self.softmax = nn.Softmax(dim=-1) + + self.proj = nn.Linear(dim, dim) + + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU + ) + + def forward(self, x, x_size, rpi): + h, w = x_size + b, _, c = x.shape + + shortcut = x + x = self.norm1(x) + x = x.view(b, h, w, c) + + qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2) # 3, b, c, h, w + q = qkv[0].permute(0, 2, 3, 1) # b, h, w, c + kv = torch.cat((qkv[1], qkv[2]), dim=1) # b, 2*c, h, w + + # partition windows + q_windows = window_partition( + q, self.window_size + ) # nw*b, window_size, window_size, c + q_windows = q_windows.view( + -1, self.window_size * self.window_size, c + ) # nw*b, window_size*window_size, c + + kv_windows = self.unfold(kv) # b, c*w*w, nw + kv_windows = rearrange( + kv_windows, + "b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch", + nc=2, + ch=c, + owh=self.overlap_win_size, + oww=self.overlap_win_size, + ).contiguous() # 2, nw*b, ow*ow, c + # Do the above rearrangement without the rearrange function + # kv_windows = kv_windows.view( + # 2, b, self.overlap_win_size, self.overlap_win_size, c, -1 + # ) + # kv_windows = kv_windows.permute(0, 5, 1, 2, 3, 4).contiguous() + # kv_windows = kv_windows.view( + # 2, -1, self.overlap_win_size * self.overlap_win_size, c + # ) + + k_windows, v_windows = kv_windows[0], kv_windows[1] # nw*b, ow*ow, c + + b_, nq, _ = q_windows.shape + _, n, _ = k_windows.shape + d = self.dim // self.num_heads + q = q_windows.reshape(b_, nq, self.num_heads, d).permute( + 0, 2, 1, 3 + ) # nw*b, nH, nq, d + k = k_windows.reshape(b_, n, self.num_heads, d).permute( + 0, 2, 1, 3 + ) # nw*b, nH, n, d + v = v_windows.reshape(b_, n, self.num_heads, d).permute( + 0, 2, 1, 3 + ) # nw*b, nH, n, d + + q = q * self.scale + attn = q @ k.transpose(-2, -1) + + relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view( + self.window_size * self.window_size, + self.overlap_win_size * self.overlap_win_size, + -1, + ) # ws*ws, wse*wse, nH + relative_position_bias = relative_position_bias.permute( + 2, 0, 1 + ).contiguous() # nH, ws*ws, wse*wse + attn = attn + relative_position_bias.unsqueeze(0) + + attn = self.softmax(attn) + attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim) + + # merge windows + attn_windows = attn_windows.view( + -1, self.window_size, self.window_size, self.dim + ) + x = window_reverse(attn_windows, self.window_size, h, w) # b h w c + x = x.view(b, h * w, self.dim) + + x = self.proj(x) + shortcut + + x = x + self.mlp(self.norm2(x)) + return x + + +class AttenBlocks(nn.Module): + """A series of attention blocks for one RHAG. + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + """ + + def __init__( + self, + dim, + input_resolution, + depth, + num_heads, + window_size, + compress_ratio, + squeeze_factor, + conv_scale, + overlap_ratio, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + norm_layer=nn.LayerNorm, + downsample=None, + use_checkpoint=False, + ): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList( + [ + HAB( + dim=dim, + input_resolution=input_resolution, + num_heads=num_heads, + window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + compress_ratio=compress_ratio, + squeeze_factor=squeeze_factor, + conv_scale=conv_scale, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop, + attn_drop=attn_drop, + drop_path=drop_path[i] + if isinstance(drop_path, list) + else drop_path, + norm_layer=norm_layer, + ) + for i in range(depth) + ] + ) + + # OCAB + self.overlap_attn = OCAB( + dim=dim, + input_resolution=input_resolution, + window_size=window_size, + overlap_ratio=overlap_ratio, + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + mlp_ratio=mlp_ratio, # type: ignore + norm_layer=norm_layer, + ) + + # patch merging layer + if downsample is not None: + self.downsample = downsample( + input_resolution, dim=dim, norm_layer=norm_layer + ) + else: + self.downsample = None + + def forward(self, x, x_size, params): + for blk in self.blocks: + x = blk(x, x_size, params["rpi_sa"], params["attn_mask"]) + + x = self.overlap_attn(x, x_size, params["rpi_oca"]) + + if self.downsample is not None: + x = self.downsample(x) + return x + + +class RHAG(nn.Module): + """Residual Hybrid Attention Group (RHAG). + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + img_size: Input image size. + patch_size: Patch size. + resi_connection: The convolutional block before residual connection. + """ + + def __init__( + self, + dim, + input_resolution, + depth, + num_heads, + window_size, + compress_ratio, + squeeze_factor, + conv_scale, + overlap_ratio, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + norm_layer=nn.LayerNorm, + downsample=None, + use_checkpoint=False, + img_size=224, + patch_size=4, + resi_connection="1conv", + ): + super(RHAG, self).__init__() + + self.dim = dim + self.input_resolution = input_resolution + + self.residual_group = AttenBlocks( + dim=dim, + input_resolution=input_resolution, + depth=depth, + num_heads=num_heads, + window_size=window_size, + compress_ratio=compress_ratio, + squeeze_factor=squeeze_factor, + conv_scale=conv_scale, + overlap_ratio=overlap_ratio, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop, + attn_drop=attn_drop, + drop_path=drop_path, + norm_layer=norm_layer, + downsample=downsample, + use_checkpoint=use_checkpoint, + ) + + if resi_connection == "1conv": + self.conv = nn.Conv2d(dim, dim, 3, 1, 1) + elif resi_connection == "identity": + self.conv = nn.Identity() + + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=0, + embed_dim=dim, + norm_layer=None, + ) + + self.patch_unembed = PatchUnEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=0, + embed_dim=dim, + norm_layer=None, + ) + + def forward(self, x, x_size, params): + return ( + self.patch_embed( + self.conv( + self.patch_unembed(self.residual_group(x, x_size, params), x_size) + ) + ) + + x + ) + + +class PatchEmbed(nn.Module): + r"""Image to Patch Embedding + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__( + self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None + ): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [ + img_size[0] // patch_size[0], # type: ignore + img_size[1] // patch_size[1], # type: ignore + ] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + if norm_layer is not None: + self.norm = norm_layer(embed_dim) + else: + self.norm = None + + def forward(self, x): + x = x.flatten(2).transpose(1, 2) # b Ph*Pw c + if self.norm is not None: + x = self.norm(x) + return x + + +class PatchUnEmbed(nn.Module): + r"""Image to Patch Unembedding + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__( + self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None + ): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [ + img_size[0] // patch_size[0], # type: ignore + img_size[1] // patch_size[1], # type: ignore + ] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + def forward(self, x, x_size): + x = ( + x.transpose(1, 2) + .contiguous() + .view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) + ) # b Ph*Pw c + return x + + +class Upsample(nn.Sequential): + """Upsample module. + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError( + f"scale {scale} is not supported. " "Supported scales: 2^n and 3." + ) + super(Upsample, self).__init__(*m) + + +class HAT(nn.Module): + r"""Hybrid Attention Transformer + A PyTorch implementation of : `Activating More Pixels in Image Super-Resolution Transformer`. + Some codes are based on SwinIR. + Args: + img_size (int | tuple(int)): Input image size. Default 64 + patch_size (int | tuple(int)): Patch size. Default: 1 + in_chans (int): Number of input image channels. Default: 3 + embed_dim (int): Patch embedding dimension. Default: 96 + depths (tuple(int)): Depth of each Swin Transformer layer. + num_heads (tuple(int)): Number of attention heads in different layers. + window_size (int): Window size. Default: 7 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False + patch_norm (bool): If True, add normalization after patch embedding. Default: True + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False + upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction + img_range: Image range. 1. or 255. + upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__( + self, + state_dict, + **kwargs, + ): + super(HAT, self).__init__() + + # Defaults + img_size = 64 + patch_size = 1 + in_chans = 3 + embed_dim = 96 + depths = (6, 6, 6, 6) + num_heads = (6, 6, 6, 6) + window_size = 7 + compress_ratio = 3 + squeeze_factor = 30 + conv_scale = 0.01 + overlap_ratio = 0.5 + mlp_ratio = 4.0 + qkv_bias = True + qk_scale = None + drop_rate = 0.0 + attn_drop_rate = 0.0 + drop_path_rate = 0.1 + norm_layer = nn.LayerNorm + ape = False + patch_norm = True + use_checkpoint = False + upscale = 2 + img_range = 1.0 + upsampler = "" + resi_connection = "1conv" + + self.state = state_dict + self.model_arch = "HAT" + self.sub_type = "SR" + self.supports_fp16 = False + self.support_bf16 = True + self.min_size_restriction = 16 + + state_keys = list(state_dict.keys()) + + num_feat = state_dict["conv_last.weight"].shape[1] + in_chans = state_dict["conv_first.weight"].shape[1] + num_out_ch = state_dict["conv_last.weight"].shape[0] + embed_dim = state_dict["conv_first.weight"].shape[0] + + if "conv_before_upsample.0.weight" in state_keys: + if "conv_up1.weight" in state_keys: + upsampler = "nearest+conv" + else: + upsampler = "pixelshuffle" + supports_fp16 = False + elif "upsample.0.weight" in state_keys: + upsampler = "pixelshuffledirect" + else: + upsampler = "" + upscale = 1 + if upsampler == "nearest+conv": + upsample_keys = [ + x for x in state_keys if "conv_up" in x and "bias" not in x + ] + + for upsample_key in upsample_keys: + upscale *= 2 + elif upsampler == "pixelshuffle": + upsample_keys = [ + x + for x in state_keys + if "upsample" in x and "conv" not in x and "bias" not in x + ] + for upsample_key in upsample_keys: + shape = self.state[upsample_key].shape[0] + upscale *= math.sqrt(shape // num_feat) + upscale = int(upscale) + elif upsampler == "pixelshuffledirect": + upscale = int( + math.sqrt(self.state["upsample.0.bias"].shape[0] // num_out_ch) + ) + + max_layer_num = 0 + max_block_num = 0 + for key in state_keys: + result = re.match( + r"layers.(\d*).residual_group.blocks.(\d*).conv_block.cab.0.weight", key + ) + if result: + layer_num, block_num = result.groups() + max_layer_num = max(max_layer_num, int(layer_num)) + max_block_num = max(max_block_num, int(block_num)) + + depths = [max_block_num + 1 for _ in range(max_layer_num + 1)] + + if ( + "layers.0.residual_group.blocks.0.attn.relative_position_bias_table" + in state_keys + ): + num_heads_num = self.state[ + "layers.0.residual_group.blocks.0.attn.relative_position_bias_table" + ].shape[-1] + num_heads = [num_heads_num for _ in range(max_layer_num + 1)] + else: + num_heads = depths + + mlp_ratio = float( + self.state["layers.0.residual_group.blocks.0.mlp.fc1.bias"].shape[0] + / embed_dim + ) + + # TODO: could actually count the layers, but this should do + if "layers.0.conv.4.weight" in state_keys: + resi_connection = "3conv" + else: + resi_connection = "1conv" + + window_size = int(math.sqrt(self.state["relative_position_index_SA"].shape[0])) + + # Not sure if this is needed or used at all anywhere in HAT's config + if "layers.0.residual_group.blocks.1.attn_mask" in state_keys: + img_size = int( + math.sqrt( + self.state["layers.0.residual_group.blocks.1.attn_mask"].shape[0] + ) + * window_size + ) + + self.window_size = window_size + self.shift_size = window_size // 2 + self.overlap_ratio = overlap_ratio + + self.in_nc = in_chans + self.out_nc = num_out_ch + self.num_feat = num_feat + self.embed_dim = embed_dim + self.num_heads = num_heads + self.depths = depths + self.window_size = window_size + self.mlp_ratio = mlp_ratio + self.scale = upscale + self.upsampler = upsampler + self.img_size = img_size + self.img_range = img_range + self.resi_connection = resi_connection + + num_in_ch = in_chans + # num_out_ch = in_chans + # num_feat = 64 + self.img_range = img_range + if in_chans == 3: + rgb_mean = (0.4488, 0.4371, 0.4040) + self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) + else: + self.mean = torch.zeros(1, 1, 1, 1) + self.upscale = upscale + self.upsampler = upsampler + + # relative position index + relative_position_index_SA = self.calculate_rpi_sa() + relative_position_index_OCA = self.calculate_rpi_oca() + self.register_buffer("relative_position_index_SA", relative_position_index_SA) + self.register_buffer("relative_position_index_OCA", relative_position_index_OCA) + + # ------------------------- 1, shallow feature extraction ------------------------- # + self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) + + # ------------------------- 2, deep feature extraction ------------------------- # + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.ape = ape + self.patch_norm = patch_norm + self.num_features = embed_dim + self.mlp_ratio = mlp_ratio + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=embed_dim, + embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None, + ) + num_patches = self.patch_embed.num_patches + patches_resolution = self.patch_embed.patches_resolution + self.patches_resolution = patches_resolution + + # merge non-overlapping patches into image + self.patch_unembed = PatchUnEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=embed_dim, + embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None, + ) + + # absolute position embedding + if self.ape: + self.absolute_pos_embed = nn.Parameter( # type: ignore[arg-type] + torch.zeros(1, num_patches, embed_dim) + ) + trunc_normal_(self.absolute_pos_embed, std=0.02) + + self.pos_drop = nn.Dropout(p=drop_rate) + + # stochastic depth + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) + ] # stochastic depth decay rule + + # build Residual Hybrid Attention Groups (RHAG) + self.layers = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = RHAG( + dim=embed_dim, + input_resolution=(patches_resolution[0], patches_resolution[1]), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + compress_ratio=compress_ratio, + squeeze_factor=squeeze_factor, + conv_scale=conv_scale, + overlap_ratio=overlap_ratio, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[ + sum(depths[:i_layer]) : sum(depths[: i_layer + 1]) # type: ignore + ], # no impact on SR results + norm_layer=norm_layer, + downsample=None, + use_checkpoint=use_checkpoint, + img_size=img_size, + patch_size=patch_size, + resi_connection=resi_connection, + ) + self.layers.append(layer) + self.norm = norm_layer(self.num_features) + + # build the last conv layer in deep feature extraction + if resi_connection == "1conv": + self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + elif resi_connection == "identity": + self.conv_after_body = nn.Identity() + + # ------------------------- 3, high quality image reconstruction ------------------------- # + if self.upsampler == "pixelshuffle": + # for classical SR + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + + self.apply(self._init_weights) + self.load_state_dict(self.state, strict=False) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def calculate_rpi_sa(self): + # calculate relative position index for SA + coords_h = torch.arange(self.window_size) + coords_w = torch.arange(self.window_size) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = ( + coords_flatten[:, :, None] - coords_flatten[:, None, :] + ) # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute( + 1, 2, 0 + ).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size - 1 + relative_coords[:, :, 0] *= 2 * self.window_size - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + return relative_position_index + + def calculate_rpi_oca(self): + # calculate relative position index for OCA + window_size_ori = self.window_size + window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size) + + coords_h = torch.arange(window_size_ori) + coords_w = torch.arange(window_size_ori) + coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, ws, ws + coords_ori_flatten = torch.flatten(coords_ori, 1) # 2, ws*ws + + coords_h = torch.arange(window_size_ext) + coords_w = torch.arange(window_size_ext) + coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, wse, wse + coords_ext_flatten = torch.flatten(coords_ext, 1) # 2, wse*wse + + relative_coords = ( + coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None] + ) # 2, ws*ws, wse*wse + + relative_coords = relative_coords.permute( + 1, 2, 0 + ).contiguous() # ws*ws, wse*wse, 2 + relative_coords[:, :, 0] += ( + window_size_ori - window_size_ext + 1 + ) # shift to start from 0 + relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1 + + relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1 + relative_position_index = relative_coords.sum(-1) + return relative_position_index + + def calculate_mask(self, x_size): + # calculate attention mask for SW-MSA + h, w = x_size + img_mask = torch.zeros((1, h, w, 1)) # 1 h w 1 + h_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + w_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition( + img_mask, self.window_size + ) # nw, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( + attn_mask == 0, float(0.0) + ) + + return attn_mask + + @torch.jit.ignore # type: ignore + def no_weight_decay(self): + return {"absolute_pos_embed"} + + @torch.jit.ignore # type: ignore + def no_weight_decay_keywords(self): + return {"relative_position_bias_table"} + + def check_image_size(self, x): + _, _, h, w = x.size() + mod_pad_h = (self.window_size - h % self.window_size) % self.window_size + mod_pad_w = (self.window_size - w % self.window_size) % self.window_size + x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect") + return x + + def forward_features(self, x): + x_size = (x.shape[2], x.shape[3]) + + # Calculate attention mask and relative position index in advance to speed up inference. + # The original code is very time-cosuming for large window size. + attn_mask = self.calculate_mask(x_size).to(x.device) + params = { + "attn_mask": attn_mask, + "rpi_sa": self.relative_position_index_SA, + "rpi_oca": self.relative_position_index_OCA, + } + + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers: + x = layer(x, x_size, params) + + x = self.norm(x) # b seq_len c + x = self.patch_unembed(x, x_size) + + return x + + def forward(self, x): + H, W = x.shape[2:] + self.mean = self.mean.type_as(x) + x = (x - self.mean) * self.img_range + x = self.check_image_size(x) + + if self.upsampler == "pixelshuffle": + # for classical SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.conv_last(self.upsample(x)) + + x = x / self.img_range + self.mean + + return x[:, :, : H * self.upscale, : W * self.upscale] diff --git a/comfy_extras/chainner_models/architecture/LICENSE-DAT b/comfy_extras/chainner_models/architecture/LICENSE-DAT new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LICENSE-DAT @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/comfy_extras/chainner_models/architecture/LICENSE-ESRGAN b/comfy_extras/chainner_models/architecture/LICENSE-ESRGAN new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LICENSE-ESRGAN @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/comfy_extras/chainner_models/architecture/LICENSE-HAT b/comfy_extras/chainner_models/architecture/LICENSE-HAT new file mode 100644 index 0000000000000000000000000000000000000000..003e97e96cbed07d07b5ff15831711181607edb3 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LICENSE-HAT @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2022 Xiangyu Chen + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/comfy_extras/chainner_models/architecture/LICENSE-RealESRGAN b/comfy_extras/chainner_models/architecture/LICENSE-RealESRGAN new file mode 100644 index 0000000000000000000000000000000000000000..552a1eeaf01f4e7077013ed3496600c608f35202 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LICENSE-RealESRGAN @@ -0,0 +1,29 @@ +BSD 3-Clause License + +Copyright (c) 2021, Xintao Wang +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/comfy_extras/chainner_models/architecture/LICENSE-SCUNet b/comfy_extras/chainner_models/architecture/LICENSE-SCUNet new file mode 100644 index 0000000000000000000000000000000000000000..ff75c988f3482ab21da41f0d10068108be54ad88 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LICENSE-SCUNet @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2022 Kai Zhang (cskaizhang@gmail.com, https://cszn.github.io/). All rights reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/comfy_extras/chainner_models/architecture/LICENSE-SPSR b/comfy_extras/chainner_models/architecture/LICENSE-SPSR new file mode 100644 index 0000000000000000000000000000000000000000..3245f3f9e4f476ee3a283f41dd0d9db65544c222 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LICENSE-SPSR @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2018-2022 BasicSR Authors + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/comfy_extras/chainner_models/architecture/LICENSE-SwiftSRGAN b/comfy_extras/chainner_models/architecture/LICENSE-SwiftSRGAN new file mode 100644 index 0000000000000000000000000000000000000000..0e259d42c996742e9e3cba14c677129b2c1b6311 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LICENSE-SwiftSRGAN @@ -0,0 +1,121 @@ +Creative Commons Legal Code + +CC0 1.0 Universal + + CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE + LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN + ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS + INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES + REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS + PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM + THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED + HEREUNDER. + +Statement of Purpose + +The laws of most jurisdictions throughout the world automatically confer +exclusive Copyright and Related Rights (defined below) upon the creator +and subsequent owner(s) (each and all, an "owner") of an original work of +authorship and/or a database (each, a "Work"). + +Certain owners wish to permanently relinquish those rights to a Work for +the purpose of contributing to a commons of creative, cultural and +scientific works ("Commons") that the public can reliably and without fear +of later claims of infringement build upon, modify, incorporate in other +works, reuse and redistribute as freely as possible in any form whatsoever +and for any purposes, including without limitation commercial purposes. +These owners may contribute to the Commons to promote the ideal of a free +culture and the further production of creative, cultural and scientific +works, or to gain reputation or greater distribution for their Work in +part through the use and efforts of others. + +For these and/or other purposes and motivations, and without any +expectation of additional consideration or compensation, the person +associating CC0 with a Work (the "Affirmer"), to the extent that he or she +is an owner of Copyright and Related Rights in the Work, voluntarily +elects to apply CC0 to the Work and publicly distribute the Work under its +terms, with knowledge of his or her Copyright and Related Rights in the +Work and the meaning and intended legal effect of CC0 on those rights. + +1. Copyright and Related Rights. A Work made available under CC0 may be +protected by copyright and related or neighboring rights ("Copyright and +Related Rights"). Copyright and Related Rights include, but are not +limited to, the following: + + i. the right to reproduce, adapt, distribute, perform, display, + communicate, and translate a Work; + ii. moral rights retained by the original author(s) and/or performer(s); +iii. publicity and privacy rights pertaining to a person's image or + likeness depicted in a Work; + iv. rights protecting against unfair competition in regards to a Work, + subject to the limitations in paragraph 4(a), below; + v. rights protecting the extraction, dissemination, use and reuse of data + in a Work; + vi. database rights (such as those arising under Directive 96/9/EC of the + European Parliament and of the Council of 11 March 1996 on the legal + protection of databases, and under any national implementation + thereof, including any amended or successor version of such + directive); and +vii. other similar, equivalent or corresponding rights throughout the + world based on applicable law or treaty, and any national + implementations thereof. + +2. Waiver. To the greatest extent permitted by, but not in contravention +of, applicable law, Affirmer hereby overtly, fully, permanently, +irrevocably and unconditionally waives, abandons, and surrenders all of +Affirmer's Copyright and Related Rights and associated claims and causes +of action, whether now known or unknown (including existing as well as +future claims and causes of action), in the Work (i) in all territories +worldwide, (ii) for the maximum duration provided by applicable law or +treaty (including future time extensions), (iii) in any current or future +medium and for any number of copies, and (iv) for any purpose whatsoever, +including without limitation commercial, advertising or promotional +purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each +member of the public at large and to the detriment of Affirmer's heirs and +successors, fully intending that such Waiver shall not be subject to +revocation, rescission, cancellation, termination, or any other legal or +equitable action to disrupt the quiet enjoyment of the Work by the public +as contemplated by Affirmer's express Statement of Purpose. + +3. Public License Fallback. Should any part of the Waiver for any reason +be judged legally invalid or ineffective under applicable law, then the +Waiver shall be preserved to the maximum extent permitted taking into +account Affirmer's express Statement of Purpose. In addition, to the +extent the Waiver is so judged Affirmer hereby grants to each affected +person a royalty-free, non transferable, non sublicensable, non exclusive, +irrevocable and unconditional license to exercise Affirmer's Copyright and +Related Rights in the Work (i) in all territories worldwide, (ii) for the +maximum duration provided by applicable law or treaty (including future +time extensions), (iii) in any current or future medium and for any number +of copies, and (iv) for any purpose whatsoever, including without +limitation commercial, advertising or promotional purposes (the +"License"). The License shall be deemed effective as of the date CC0 was +applied by Affirmer to the Work. Should any part of the License for any +reason be judged legally invalid or ineffective under applicable law, such +partial invalidity or ineffectiveness shall not invalidate the remainder +of the License, and in such case Affirmer hereby affirms that he or she +will not (i) exercise any of his or her remaining Copyright and Related +Rights in the Work or (ii) assert any associated claims and causes of +action with respect to the Work, in either case contrary to Affirmer's +express Statement of Purpose. + +4. Limitations and Disclaimers. + + a. No trademark or patent rights held by Affirmer are waived, abandoned, + surrendered, licensed or otherwise affected by this document. + b. Affirmer offers the Work as-is and makes no representations or + warranties of any kind concerning the Work, express, implied, + statutory or otherwise, including without limitation warranties of + title, merchantability, fitness for a particular purpose, non + infringement, or the absence of latent or other defects, accuracy, or + the present or absence of errors, whether or not discoverable, all to + the greatest extent permissible under applicable law. + c. Affirmer disclaims responsibility for clearing rights of other persons + that may apply to the Work or any use thereof, including without + limitation any person's Copyright and Related Rights in the Work. + Further, Affirmer disclaims responsibility for obtaining any necessary + consents, permissions or other rights required for any use of the + Work. + d. Affirmer understands and acknowledges that Creative Commons is not a + party to this document and has no duty or obligation with respect to + this CC0 or use of the Work. diff --git a/comfy_extras/chainner_models/architecture/LICENSE-Swin2SR b/comfy_extras/chainner_models/architecture/LICENSE-Swin2SR new file mode 100644 index 0000000000000000000000000000000000000000..e5e4ee061a3f3fbad64bc837425716af7fb108f5 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LICENSE-Swin2SR @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [2021] [SwinIR Authors] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/comfy_extras/chainner_models/architecture/LICENSE-SwinIR b/comfy_extras/chainner_models/architecture/LICENSE-SwinIR new file mode 100644 index 0000000000000000000000000000000000000000..e5e4ee061a3f3fbad64bc837425716af7fb108f5 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LICENSE-SwinIR @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [2021] [SwinIR Authors] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/comfy_extras/chainner_models/architecture/LICENSE-lama b/comfy_extras/chainner_models/architecture/LICENSE-lama new file mode 100644 index 0000000000000000000000000000000000000000..ca822bb5f62a37a5a73f56a2d563b16dab46c03f --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LICENSE-lama @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [2021] Samsung Research + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/comfy_extras/chainner_models/architecture/LaMa.py b/comfy_extras/chainner_models/architecture/LaMa.py new file mode 100644 index 0000000000000000000000000000000000000000..a781f3e4dda789c06493fcf35a9803ee61efce73 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/LaMa.py @@ -0,0 +1,694 @@ +# pylint: skip-file +""" +Model adapted from advimman's lama project: https://github.com/advimman/lama +""" + +# Fast Fourier Convolution NeurIPS 2020 +# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py +# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf + +from typing import List + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torchvision.transforms.functional import InterpolationMode, rotate + + +class LearnableSpatialTransformWrapper(nn.Module): + def __init__(self, impl, pad_coef=0.5, angle_init_range=80, train_angle=True): + super().__init__() + self.impl = impl + self.angle = torch.rand(1) * angle_init_range + if train_angle: + self.angle = nn.Parameter(self.angle, requires_grad=True) + self.pad_coef = pad_coef + + def forward(self, x): + if torch.is_tensor(x): + return self.inverse_transform(self.impl(self.transform(x)), x) + elif isinstance(x, tuple): + x_trans = tuple(self.transform(elem) for elem in x) + y_trans = self.impl(x_trans) + return tuple( + self.inverse_transform(elem, orig_x) for elem, orig_x in zip(y_trans, x) + ) + else: + raise ValueError(f"Unexpected input type {type(x)}") + + def transform(self, x): + height, width = x.shape[2:] + pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef) + x_padded = F.pad(x, [pad_w, pad_w, pad_h, pad_h], mode="reflect") + x_padded_rotated = rotate( + x_padded, self.angle.to(x_padded), InterpolationMode.BILINEAR, fill=0 + ) + + return x_padded_rotated + + def inverse_transform(self, y_padded_rotated, orig_x): + height, width = orig_x.shape[2:] + pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef) + + y_padded = rotate( + y_padded_rotated, + -self.angle.to(y_padded_rotated), + InterpolationMode.BILINEAR, + fill=0, + ) + y_height, y_width = y_padded.shape[2:] + y = y_padded[:, :, pad_h : y_height - pad_h, pad_w : y_width - pad_w] + return y + + +class SELayer(nn.Module): + def __init__(self, channel, reduction=16): + super(SELayer, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Sequential( + nn.Linear(channel, channel // reduction, bias=False), + nn.ReLU(inplace=True), + nn.Linear(channel // reduction, channel, bias=False), + nn.Sigmoid(), + ) + + def forward(self, x): + b, c, _, _ = x.size() + y = self.avg_pool(x).view(b, c) + y = self.fc(y).view(b, c, 1, 1) + res = x * y.expand_as(x) + return res + + +class FourierUnit(nn.Module): + def __init__( + self, + in_channels, + out_channels, + groups=1, + spatial_scale_factor=None, + spatial_scale_mode="bilinear", + spectral_pos_encoding=False, + use_se=False, + se_kwargs=None, + ffc3d=False, + fft_norm="ortho", + ): + # bn_layer not used + super(FourierUnit, self).__init__() + self.groups = groups + + self.conv_layer = torch.nn.Conv2d( + in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0), + out_channels=out_channels * 2, + kernel_size=1, + stride=1, + padding=0, + groups=self.groups, + bias=False, + ) + self.bn = torch.nn.BatchNorm2d(out_channels * 2) + self.relu = torch.nn.ReLU(inplace=True) + + # squeeze and excitation block + self.use_se = use_se + if use_se: + if se_kwargs is None: + se_kwargs = {} + self.se = SELayer(self.conv_layer.in_channels, **se_kwargs) + + self.spatial_scale_factor = spatial_scale_factor + self.spatial_scale_mode = spatial_scale_mode + self.spectral_pos_encoding = spectral_pos_encoding + self.ffc3d = ffc3d + self.fft_norm = fft_norm + + def forward(self, x): + half_check = False + if x.type() == "torch.cuda.HalfTensor": + # half only works on gpu anyway + half_check = True + + batch = x.shape[0] + + if self.spatial_scale_factor is not None: + orig_size = x.shape[-2:] + x = F.interpolate( + x, + scale_factor=self.spatial_scale_factor, + mode=self.spatial_scale_mode, + align_corners=False, + ) + + # (batch, c, h, w/2+1, 2) + fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1) + if half_check == True: + ffted = torch.fft.rfftn( + x.float(), dim=fft_dim, norm=self.fft_norm + ) # .type(torch.cuda.HalfTensor) + else: + ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm) + + ffted = torch.stack((ffted.real, ffted.imag), dim=-1) + ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1) + ffted = ffted.view( + ( + batch, + -1, + ) + + ffted.size()[3:] + ) + + if self.spectral_pos_encoding: + height, width = ffted.shape[-2:] + coords_vert = ( + torch.linspace(0, 1, height)[None, None, :, None] + .expand(batch, 1, height, width) + .to(ffted) + ) + coords_hor = ( + torch.linspace(0, 1, width)[None, None, None, :] + .expand(batch, 1, height, width) + .to(ffted) + ) + ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1) + + if self.use_se: + ffted = self.se(ffted) + + if half_check == True: + ffted = self.conv_layer(ffted.half()) # (batch, c*2, h, w/2+1) + else: + ffted = self.conv_layer( + ffted + ) # .type(torch.cuda.FloatTensor) # (batch, c*2, h, w/2+1) + + ffted = self.relu(self.bn(ffted)) + # forcing to be always float + ffted = ffted.float() + + ffted = ( + ffted.view( + ( + batch, + -1, + 2, + ) + + ffted.size()[2:] + ) + .permute(0, 1, 3, 4, 2) + .contiguous() + ) # (batch,c, t, h, w/2+1, 2) + + ffted = torch.complex(ffted[..., 0], ffted[..., 1]) + + ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:] + output = torch.fft.irfftn( + ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm + ) + + if half_check == True: + output = output.half() + + if self.spatial_scale_factor is not None: + output = F.interpolate( + output, + size=orig_size, + mode=self.spatial_scale_mode, + align_corners=False, + ) + + return output + + +class SpectralTransform(nn.Module): + def __init__( + self, + in_channels, + out_channels, + stride=1, + groups=1, + enable_lfu=True, + separable_fu=False, + **fu_kwargs, + ): + # bn_layer not used + super(SpectralTransform, self).__init__() + self.enable_lfu = enable_lfu + if stride == 2: + self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2) + else: + self.downsample = nn.Identity() + + self.stride = stride + self.conv1 = nn.Sequential( + nn.Conv2d( + in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False + ), + nn.BatchNorm2d(out_channels // 2), + nn.ReLU(inplace=True), + ) + fu_class = FourierUnit + self.fu = fu_class(out_channels // 2, out_channels // 2, groups, **fu_kwargs) + if self.enable_lfu: + self.lfu = fu_class(out_channels // 2, out_channels // 2, groups) + self.conv2 = torch.nn.Conv2d( + out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False + ) + + def forward(self, x): + x = self.downsample(x) + x = self.conv1(x) + output = self.fu(x) + + if self.enable_lfu: + _, c, h, _ = x.shape + split_no = 2 + split_s = h // split_no + xs = torch.cat( + torch.split(x[:, : c // 4], split_s, dim=-2), dim=1 + ).contiguous() + xs = torch.cat(torch.split(xs, split_s, dim=-1), dim=1).contiguous() + xs = self.lfu(xs) + xs = xs.repeat(1, 1, split_no, split_no).contiguous() + else: + xs = 0 + + output = self.conv2(x + output + xs) + + return output + + +class FFC(nn.Module): + def __init__( + self, + in_channels, + out_channels, + kernel_size, + ratio_gin, + ratio_gout, + stride=1, + padding=0, + dilation=1, + groups=1, + bias=False, + enable_lfu=True, + padding_type="reflect", + gated=False, + **spectral_kwargs, + ): + super(FFC, self).__init__() + + assert stride == 1 or stride == 2, "Stride should be 1 or 2." + self.stride = stride + + in_cg = int(in_channels * ratio_gin) + in_cl = in_channels - in_cg + out_cg = int(out_channels * ratio_gout) + out_cl = out_channels - out_cg + # groups_g = 1 if groups == 1 else int(groups * ratio_gout) + # groups_l = 1 if groups == 1 else groups - groups_g + + self.ratio_gin = ratio_gin + self.ratio_gout = ratio_gout + self.global_in_num = in_cg + + module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d + self.convl2l = module( + in_cl, + out_cl, + kernel_size, + stride, + padding, + dilation, + groups, + bias, + padding_mode=padding_type, + ) + module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d + self.convl2g = module( + in_cl, + out_cg, + kernel_size, + stride, + padding, + dilation, + groups, + bias, + padding_mode=padding_type, + ) + module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d + self.convg2l = module( + in_cg, + out_cl, + kernel_size, + stride, + padding, + dilation, + groups, + bias, + padding_mode=padding_type, + ) + module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform + self.convg2g = module( + in_cg, + out_cg, + stride, + 1 if groups == 1 else groups // 2, + enable_lfu, + **spectral_kwargs, + ) + + self.gated = gated + module = ( + nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d + ) + self.gate = module(in_channels, 2, 1) + + def forward(self, x): + x_l, x_g = x if type(x) is tuple else (x, 0) + out_xl, out_xg = 0, 0 + + if self.gated: + total_input_parts = [x_l] + if torch.is_tensor(x_g): + total_input_parts.append(x_g) + total_input = torch.cat(total_input_parts, dim=1) + + gates = torch.sigmoid(self.gate(total_input)) + g2l_gate, l2g_gate = gates.chunk(2, dim=1) + else: + g2l_gate, l2g_gate = 1, 1 + + if self.ratio_gout != 1: + out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate + if self.ratio_gout != 0: + out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g) + + return out_xl, out_xg + + +class FFC_BN_ACT(nn.Module): + def __init__( + self, + in_channels, + out_channels, + kernel_size, + ratio_gin, + ratio_gout, + stride=1, + padding=0, + dilation=1, + groups=1, + bias=False, + norm_layer=nn.BatchNorm2d, + activation_layer=nn.Identity, + padding_type="reflect", + enable_lfu=True, + **kwargs, + ): + super(FFC_BN_ACT, self).__init__() + self.ffc = FFC( + in_channels, + out_channels, + kernel_size, + ratio_gin, + ratio_gout, + stride, + padding, + dilation, + groups, + bias, + enable_lfu, + padding_type=padding_type, + **kwargs, + ) + lnorm = nn.Identity if ratio_gout == 1 else norm_layer + gnorm = nn.Identity if ratio_gout == 0 else norm_layer + global_channels = int(out_channels * ratio_gout) + self.bn_l = lnorm(out_channels - global_channels) + self.bn_g = gnorm(global_channels) + + lact = nn.Identity if ratio_gout == 1 else activation_layer + gact = nn.Identity if ratio_gout == 0 else activation_layer + self.act_l = lact(inplace=True) + self.act_g = gact(inplace=True) + + def forward(self, x): + x_l, x_g = self.ffc(x) + x_l = self.act_l(self.bn_l(x_l)) + x_g = self.act_g(self.bn_g(x_g)) + return x_l, x_g + + +class FFCResnetBlock(nn.Module): + def __init__( + self, + dim, + padding_type, + norm_layer, + activation_layer=nn.ReLU, + dilation=1, + spatial_transform_kwargs=None, + inline=False, + **conv_kwargs, + ): + super().__init__() + self.conv1 = FFC_BN_ACT( + dim, + dim, + kernel_size=3, + padding=dilation, + dilation=dilation, + norm_layer=norm_layer, + activation_layer=activation_layer, + padding_type=padding_type, + **conv_kwargs, + ) + self.conv2 = FFC_BN_ACT( + dim, + dim, + kernel_size=3, + padding=dilation, + dilation=dilation, + norm_layer=norm_layer, + activation_layer=activation_layer, + padding_type=padding_type, + **conv_kwargs, + ) + if spatial_transform_kwargs is not None: + self.conv1 = LearnableSpatialTransformWrapper( + self.conv1, **spatial_transform_kwargs + ) + self.conv2 = LearnableSpatialTransformWrapper( + self.conv2, **spatial_transform_kwargs + ) + self.inline = inline + + def forward(self, x): + if self.inline: + x_l, x_g = ( + x[:, : -self.conv1.ffc.global_in_num], + x[:, -self.conv1.ffc.global_in_num :], + ) + else: + x_l, x_g = x if type(x) is tuple else (x, 0) + + id_l, id_g = x_l, x_g + + x_l, x_g = self.conv1((x_l, x_g)) + x_l, x_g = self.conv2((x_l, x_g)) + + x_l, x_g = id_l + x_l, id_g + x_g + out = x_l, x_g + if self.inline: + out = torch.cat(out, dim=1) + return out + + +class ConcatTupleLayer(nn.Module): + def forward(self, x): + assert isinstance(x, tuple) + x_l, x_g = x + assert torch.is_tensor(x_l) or torch.is_tensor(x_g) + if not torch.is_tensor(x_g): + return x_l + return torch.cat(x, dim=1) + + +class FFCResNetGenerator(nn.Module): + def __init__( + self, + input_nc, + output_nc, + ngf=64, + n_downsampling=3, + n_blocks=18, + norm_layer=nn.BatchNorm2d, + padding_type="reflect", + activation_layer=nn.ReLU, + up_norm_layer=nn.BatchNorm2d, + up_activation=nn.ReLU(True), + init_conv_kwargs={}, + downsample_conv_kwargs={}, + resnet_conv_kwargs={}, + spatial_transform_layers=None, + spatial_transform_kwargs={}, + max_features=1024, + out_ffc=False, + out_ffc_kwargs={}, + ): + assert n_blocks >= 0 + super().__init__() + """ + init_conv_kwargs = {'ratio_gin': 0, 'ratio_gout': 0, 'enable_lfu': False} + downsample_conv_kwargs = {'ratio_gin': '${generator.init_conv_kwargs.ratio_gout}', 'ratio_gout': '${generator.downsample_conv_kwargs.ratio_gin}', 'enable_lfu': False} + resnet_conv_kwargs = {'ratio_gin': 0.75, 'ratio_gout': '${generator.resnet_conv_kwargs.ratio_gin}', 'enable_lfu': False} + spatial_transform_kwargs = {} + out_ffc_kwargs = {} + """ + """ + print(input_nc, output_nc, ngf, n_downsampling, n_blocks, norm_layer, + padding_type, activation_layer, + up_norm_layer, up_activation, + spatial_transform_layers, + add_out_act, max_features, out_ffc, file=sys.stderr) + + 4 3 64 3 18 + reflect + + ReLU(inplace=True) + None sigmoid 1024 False + """ + init_conv_kwargs = {"ratio_gin": 0, "ratio_gout": 0, "enable_lfu": False} + downsample_conv_kwargs = {"ratio_gin": 0, "ratio_gout": 0, "enable_lfu": False} + resnet_conv_kwargs = { + "ratio_gin": 0.75, + "ratio_gout": 0.75, + "enable_lfu": False, + } + spatial_transform_kwargs = {} + out_ffc_kwargs = {} + + model = [ + nn.ReflectionPad2d(3), + FFC_BN_ACT( + input_nc, + ngf, + kernel_size=7, + padding=0, + norm_layer=norm_layer, + activation_layer=activation_layer, + **init_conv_kwargs, + ), + ] + + ### downsample + for i in range(n_downsampling): + mult = 2**i + if i == n_downsampling - 1: + cur_conv_kwargs = dict(downsample_conv_kwargs) + cur_conv_kwargs["ratio_gout"] = resnet_conv_kwargs.get("ratio_gin", 0) + else: + cur_conv_kwargs = downsample_conv_kwargs + model += [ + FFC_BN_ACT( + min(max_features, ngf * mult), + min(max_features, ngf * mult * 2), + kernel_size=3, + stride=2, + padding=1, + norm_layer=norm_layer, + activation_layer=activation_layer, + **cur_conv_kwargs, + ) + ] + + mult = 2**n_downsampling + feats_num_bottleneck = min(max_features, ngf * mult) + + ### resnet blocks + for i in range(n_blocks): + cur_resblock = FFCResnetBlock( + feats_num_bottleneck, + padding_type=padding_type, + activation_layer=activation_layer, + norm_layer=norm_layer, + **resnet_conv_kwargs, + ) + if spatial_transform_layers is not None and i in spatial_transform_layers: + cur_resblock = LearnableSpatialTransformWrapper( + cur_resblock, **spatial_transform_kwargs + ) + model += [cur_resblock] + + model += [ConcatTupleLayer()] + + ### upsample + for i in range(n_downsampling): + mult = 2 ** (n_downsampling - i) + model += [ + nn.ConvTranspose2d( + min(max_features, ngf * mult), + min(max_features, int(ngf * mult / 2)), + kernel_size=3, + stride=2, + padding=1, + output_padding=1, + ), + up_norm_layer(min(max_features, int(ngf * mult / 2))), + up_activation, + ] + + if out_ffc: + model += [ + FFCResnetBlock( + ngf, + padding_type=padding_type, + activation_layer=activation_layer, + norm_layer=norm_layer, + inline=True, + **out_ffc_kwargs, + ) + ] + + model += [ + nn.ReflectionPad2d(3), + nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), + ] + model.append(nn.Sigmoid()) + self.model = nn.Sequential(*model) + + def forward(self, image, mask): + return self.model(torch.cat([image, mask], dim=1)) + + +class LaMa(nn.Module): + def __init__(self, state_dict) -> None: + super(LaMa, self).__init__() + self.model_arch = "LaMa" + self.sub_type = "Inpaint" + self.in_nc = 4 + self.out_nc = 3 + self.scale = 1 + + self.min_size = None + self.pad_mod = 8 + self.pad_to_square = False + + self.model = FFCResNetGenerator(self.in_nc, self.out_nc) + self.state = { + k.replace("generator.model", "model.model"): v + for k, v in state_dict.items() + } + + self.supports_fp16 = False + self.support_bf16 = True + + self.load_state_dict(self.state, strict=False) + + def forward(self, img, mask): + masked_img = img * (1 - mask) + inpainted_mask = mask * self.model.forward(masked_img, mask) + result = inpainted_mask + (1 - mask) * img + return result diff --git a/comfy_extras/chainner_models/architecture/OmniSR/ChannelAttention.py b/comfy_extras/chainner_models/architecture/OmniSR/ChannelAttention.py new file mode 100644 index 0000000000000000000000000000000000000000..f4d52aa1e063d274b7aec7bd1ace77b19eb2ca61 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/OmniSR/ChannelAttention.py @@ -0,0 +1,110 @@ +import math + +import torch.nn as nn + + +class CA_layer(nn.Module): + def __init__(self, channel, reduction=16): + super(CA_layer, self).__init__() + # global average pooling + self.gap = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Sequential( + nn.Conv2d(channel, channel // reduction, kernel_size=(1, 1), bias=False), + nn.GELU(), + nn.Conv2d(channel // reduction, channel, kernel_size=(1, 1), bias=False), + # nn.Sigmoid() + ) + + def forward(self, x): + y = self.fc(self.gap(x)) + return x * y.expand_as(x) + + +class Simple_CA_layer(nn.Module): + def __init__(self, channel): + super(Simple_CA_layer, self).__init__() + self.gap = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Conv2d( + in_channels=channel, + out_channels=channel, + kernel_size=1, + padding=0, + stride=1, + groups=1, + bias=True, + ) + + def forward(self, x): + return x * self.fc(self.gap(x)) + + +class ECA_layer(nn.Module): + """Constructs a ECA module. + Args: + channel: Number of channels of the input feature map + k_size: Adaptive selection of kernel size + """ + + def __init__(self, channel): + super(ECA_layer, self).__init__() + + b = 1 + gamma = 2 + k_size = int(abs(math.log(channel, 2) + b) / gamma) + k_size = k_size if k_size % 2 else k_size + 1 + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.conv = nn.Conv1d( + 1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False + ) + # self.sigmoid = nn.Sigmoid() + + def forward(self, x): + # x: input features with shape [b, c, h, w] + # b, c, h, w = x.size() + + # feature descriptor on the global spatial information + y = self.avg_pool(x) + + # Two different branches of ECA module + y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) + + # Multi-scale information fusion + # y = self.sigmoid(y) + + return x * y.expand_as(x) + + +class ECA_MaxPool_layer(nn.Module): + """Constructs a ECA module. + Args: + channel: Number of channels of the input feature map + k_size: Adaptive selection of kernel size + """ + + def __init__(self, channel): + super(ECA_MaxPool_layer, self).__init__() + + b = 1 + gamma = 2 + k_size = int(abs(math.log(channel, 2) + b) / gamma) + k_size = k_size if k_size % 2 else k_size + 1 + self.max_pool = nn.AdaptiveMaxPool2d(1) + self.conv = nn.Conv1d( + 1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False + ) + # self.sigmoid = nn.Sigmoid() + + def forward(self, x): + # x: input features with shape [b, c, h, w] + # b, c, h, w = x.size() + + # feature descriptor on the global spatial information + y = self.max_pool(x) + + # Two different branches of ECA module + y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) + + # Multi-scale information fusion + # y = self.sigmoid(y) + + return x * y.expand_as(x) diff --git a/comfy_extras/chainner_models/architecture/OmniSR/LICENSE b/comfy_extras/chainner_models/architecture/OmniSR/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/OmniSR/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/comfy_extras/chainner_models/architecture/OmniSR/OSA.py b/comfy_extras/chainner_models/architecture/OmniSR/OSA.py new file mode 100644 index 0000000000000000000000000000000000000000..d7a129696b254b022fa6fc54dc85befcc19ffc2c --- /dev/null +++ b/comfy_extras/chainner_models/architecture/OmniSR/OSA.py @@ -0,0 +1,577 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +############################################################# +# File: OSA.py +# Created Date: Tuesday April 28th 2022 +# Author: Chen Xuanhong +# Email: chenxuanhongzju@outlook.com +# Last Modified: Sunday, 23rd April 2023 3:07:42 pm +# Modified By: Chen Xuanhong +# Copyright (c) 2020 Shanghai Jiao Tong University +############################################################# + +import torch +import torch.nn.functional as F +from einops import rearrange, repeat +from einops.layers.torch import Rearrange, Reduce +from torch import einsum, nn + +from .layernorm import LayerNorm2d + +# helpers + + +def exists(val): + return val is not None + + +def default(val, d): + return val if exists(val) else d + + +def cast_tuple(val, length=1): + return val if isinstance(val, tuple) else ((val,) * length) + + +# helper classes + + +class PreNormResidual(nn.Module): + def __init__(self, dim, fn): + super().__init__() + self.norm = nn.LayerNorm(dim) + self.fn = fn + + def forward(self, x): + return self.fn(self.norm(x)) + x + + +class Conv_PreNormResidual(nn.Module): + def __init__(self, dim, fn): + super().__init__() + self.norm = LayerNorm2d(dim) + self.fn = fn + + def forward(self, x): + return self.fn(self.norm(x)) + x + + +class FeedForward(nn.Module): + def __init__(self, dim, mult=2, dropout=0.0): + super().__init__() + inner_dim = int(dim * mult) + self.net = nn.Sequential( + nn.Linear(dim, inner_dim), + nn.GELU(), + nn.Dropout(dropout), + nn.Linear(inner_dim, dim), + nn.Dropout(dropout), + ) + + def forward(self, x): + return self.net(x) + + +class Conv_FeedForward(nn.Module): + def __init__(self, dim, mult=2, dropout=0.0): + super().__init__() + inner_dim = int(dim * mult) + self.net = nn.Sequential( + nn.Conv2d(dim, inner_dim, 1, 1, 0), + nn.GELU(), + nn.Dropout(dropout), + nn.Conv2d(inner_dim, dim, 1, 1, 0), + nn.Dropout(dropout), + ) + + def forward(self, x): + return self.net(x) + + +class Gated_Conv_FeedForward(nn.Module): + def __init__(self, dim, mult=1, bias=False, dropout=0.0): + super().__init__() + + hidden_features = int(dim * mult) + + self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias) + + self.dwconv = nn.Conv2d( + hidden_features * 2, + hidden_features * 2, + kernel_size=3, + stride=1, + padding=1, + groups=hidden_features * 2, + bias=bias, + ) + + self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias) + + def forward(self, x): + x = self.project_in(x) + x1, x2 = self.dwconv(x).chunk(2, dim=1) + x = F.gelu(x1) * x2 + x = self.project_out(x) + return x + + +# MBConv + + +class SqueezeExcitation(nn.Module): + def __init__(self, dim, shrinkage_rate=0.25): + super().__init__() + hidden_dim = int(dim * shrinkage_rate) + + self.gate = nn.Sequential( + Reduce("b c h w -> b c", "mean"), + nn.Linear(dim, hidden_dim, bias=False), + nn.SiLU(), + nn.Linear(hidden_dim, dim, bias=False), + nn.Sigmoid(), + Rearrange("b c -> b c 1 1"), + ) + + def forward(self, x): + return x * self.gate(x) + + +class MBConvResidual(nn.Module): + def __init__(self, fn, dropout=0.0): + super().__init__() + self.fn = fn + self.dropsample = Dropsample(dropout) + + def forward(self, x): + out = self.fn(x) + out = self.dropsample(out) + return out + x + + +class Dropsample(nn.Module): + def __init__(self, prob=0): + super().__init__() + self.prob = prob + + def forward(self, x): + device = x.device + + if self.prob == 0.0 or (not self.training): + return x + + keep_mask = ( + torch.FloatTensor((x.shape[0], 1, 1, 1), device=device).uniform_() + > self.prob + ) + return x * keep_mask / (1 - self.prob) + + +def MBConv( + dim_in, dim_out, *, downsample, expansion_rate=4, shrinkage_rate=0.25, dropout=0.0 +): + hidden_dim = int(expansion_rate * dim_out) + stride = 2 if downsample else 1 + + net = nn.Sequential( + nn.Conv2d(dim_in, hidden_dim, 1), + # nn.BatchNorm2d(hidden_dim), + nn.GELU(), + nn.Conv2d( + hidden_dim, hidden_dim, 3, stride=stride, padding=1, groups=hidden_dim + ), + # nn.BatchNorm2d(hidden_dim), + nn.GELU(), + SqueezeExcitation(hidden_dim, shrinkage_rate=shrinkage_rate), + nn.Conv2d(hidden_dim, dim_out, 1), + # nn.BatchNorm2d(dim_out) + ) + + if dim_in == dim_out and not downsample: + net = MBConvResidual(net, dropout=dropout) + + return net + + +# attention related classes +class Attention(nn.Module): + def __init__( + self, + dim, + dim_head=32, + dropout=0.0, + window_size=7, + with_pe=True, + ): + super().__init__() + assert ( + dim % dim_head + ) == 0, "dimension should be divisible by dimension per head" + + self.heads = dim // dim_head + self.scale = dim_head**-0.5 + self.with_pe = with_pe + + self.to_qkv = nn.Linear(dim, dim * 3, bias=False) + + self.attend = nn.Sequential(nn.Softmax(dim=-1), nn.Dropout(dropout)) + + self.to_out = nn.Sequential( + nn.Linear(dim, dim, bias=False), nn.Dropout(dropout) + ) + + # relative positional bias + if self.with_pe: + self.rel_pos_bias = nn.Embedding((2 * window_size - 1) ** 2, self.heads) + + pos = torch.arange(window_size) + grid = torch.stack(torch.meshgrid(pos, pos)) + grid = rearrange(grid, "c i j -> (i j) c") + rel_pos = rearrange(grid, "i ... -> i 1 ...") - rearrange( + grid, "j ... -> 1 j ..." + ) + rel_pos += window_size - 1 + rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum( + dim=-1 + ) + + self.register_buffer("rel_pos_indices", rel_pos_indices, persistent=False) + + def forward(self, x): + batch, height, width, window_height, window_width, _, device, h = ( + *x.shape, + x.device, + self.heads, + ) + + # flatten + + x = rearrange(x, "b x y w1 w2 d -> (b x y) (w1 w2) d") + + # project for queries, keys, values + + q, k, v = self.to_qkv(x).chunk(3, dim=-1) + + # split heads + + q, k, v = map(lambda t: rearrange(t, "b n (h d ) -> b h n d", h=h), (q, k, v)) + + # scale + + q = q * self.scale + + # sim + + sim = einsum("b h i d, b h j d -> b h i j", q, k) + + # add positional bias + if self.with_pe: + bias = self.rel_pos_bias(self.rel_pos_indices) + sim = sim + rearrange(bias, "i j h -> h i j") + + # attention + + attn = self.attend(sim) + + # aggregate + + out = einsum("b h i j, b h j d -> b h i d", attn, v) + + # merge heads + + out = rearrange( + out, "b h (w1 w2) d -> b w1 w2 (h d)", w1=window_height, w2=window_width + ) + + # combine heads out + + out = self.to_out(out) + return rearrange(out, "(b x y) ... -> b x y ...", x=height, y=width) + + +class Block_Attention(nn.Module): + def __init__( + self, + dim, + dim_head=32, + bias=False, + dropout=0.0, + window_size=7, + with_pe=True, + ): + super().__init__() + assert ( + dim % dim_head + ) == 0, "dimension should be divisible by dimension per head" + + self.heads = dim // dim_head + self.ps = window_size + self.scale = dim_head**-0.5 + self.with_pe = with_pe + + self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias) + self.qkv_dwconv = nn.Conv2d( + dim * 3, + dim * 3, + kernel_size=3, + stride=1, + padding=1, + groups=dim * 3, + bias=bias, + ) + + self.attend = nn.Sequential(nn.Softmax(dim=-1), nn.Dropout(dropout)) + + self.to_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias) + + def forward(self, x): + # project for queries, keys, values + b, c, h, w = x.shape + + qkv = self.qkv_dwconv(self.qkv(x)) + q, k, v = qkv.chunk(3, dim=1) + + # split heads + + q, k, v = map( + lambda t: rearrange( + t, + "b (h d) (x w1) (y w2) -> (b x y) h (w1 w2) d", + h=self.heads, + w1=self.ps, + w2=self.ps, + ), + (q, k, v), + ) + + # scale + + q = q * self.scale + + # sim + + sim = einsum("b h i d, b h j d -> b h i j", q, k) + + # attention + attn = self.attend(sim) + + # aggregate + + out = einsum("b h i j, b h j d -> b h i d", attn, v) + + # merge heads + out = rearrange( + out, + "(b x y) head (w1 w2) d -> b (head d) (x w1) (y w2)", + x=h // self.ps, + y=w // self.ps, + head=self.heads, + w1=self.ps, + w2=self.ps, + ) + + out = self.to_out(out) + return out + + +class Channel_Attention(nn.Module): + def __init__(self, dim, heads, bias=False, dropout=0.0, window_size=7): + super(Channel_Attention, self).__init__() + self.heads = heads + + self.temperature = nn.Parameter(torch.ones(heads, 1, 1)) + + self.ps = window_size + + self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias) + self.qkv_dwconv = nn.Conv2d( + dim * 3, + dim * 3, + kernel_size=3, + stride=1, + padding=1, + groups=dim * 3, + bias=bias, + ) + self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias) + + def forward(self, x): + b, c, h, w = x.shape + + qkv = self.qkv_dwconv(self.qkv(x)) + qkv = qkv.chunk(3, dim=1) + + q, k, v = map( + lambda t: rearrange( + t, + "b (head d) (h ph) (w pw) -> b (h w) head d (ph pw)", + ph=self.ps, + pw=self.ps, + head=self.heads, + ), + qkv, + ) + + q = F.normalize(q, dim=-1) + k = F.normalize(k, dim=-1) + + attn = (q @ k.transpose(-2, -1)) * self.temperature + attn = attn.softmax(dim=-1) + out = attn @ v + + out = rearrange( + out, + "b (h w) head d (ph pw) -> b (head d) (h ph) (w pw)", + h=h // self.ps, + w=w // self.ps, + ph=self.ps, + pw=self.ps, + head=self.heads, + ) + + out = self.project_out(out) + + return out + + +class Channel_Attention_grid(nn.Module): + def __init__(self, dim, heads, bias=False, dropout=0.0, window_size=7): + super(Channel_Attention_grid, self).__init__() + self.heads = heads + + self.temperature = nn.Parameter(torch.ones(heads, 1, 1)) + + self.ps = window_size + + self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias) + self.qkv_dwconv = nn.Conv2d( + dim * 3, + dim * 3, + kernel_size=3, + stride=1, + padding=1, + groups=dim * 3, + bias=bias, + ) + self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias) + + def forward(self, x): + b, c, h, w = x.shape + + qkv = self.qkv_dwconv(self.qkv(x)) + qkv = qkv.chunk(3, dim=1) + + q, k, v = map( + lambda t: rearrange( + t, + "b (head d) (h ph) (w pw) -> b (ph pw) head d (h w)", + ph=self.ps, + pw=self.ps, + head=self.heads, + ), + qkv, + ) + + q = F.normalize(q, dim=-1) + k = F.normalize(k, dim=-1) + + attn = (q @ k.transpose(-2, -1)) * self.temperature + attn = attn.softmax(dim=-1) + out = attn @ v + + out = rearrange( + out, + "b (ph pw) head d (h w) -> b (head d) (h ph) (w pw)", + h=h // self.ps, + w=w // self.ps, + ph=self.ps, + pw=self.ps, + head=self.heads, + ) + + out = self.project_out(out) + + return out + + +class OSA_Block(nn.Module): + def __init__( + self, + channel_num=64, + bias=True, + ffn_bias=True, + window_size=8, + with_pe=False, + dropout=0.0, + ): + super(OSA_Block, self).__init__() + + w = window_size + + self.layer = nn.Sequential( + MBConv( + channel_num, + channel_num, + downsample=False, + expansion_rate=1, + shrinkage_rate=0.25, + ), + Rearrange( + "b d (x w1) (y w2) -> b x y w1 w2 d", w1=w, w2=w + ), # block-like attention + PreNormResidual( + channel_num, + Attention( + dim=channel_num, + dim_head=channel_num // 4, + dropout=dropout, + window_size=window_size, + with_pe=with_pe, + ), + ), + Rearrange("b x y w1 w2 d -> b d (x w1) (y w2)"), + Conv_PreNormResidual( + channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout) + ), + # channel-like attention + Conv_PreNormResidual( + channel_num, + Channel_Attention( + dim=channel_num, heads=4, dropout=dropout, window_size=window_size + ), + ), + Conv_PreNormResidual( + channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout) + ), + Rearrange( + "b d (w1 x) (w2 y) -> b x y w1 w2 d", w1=w, w2=w + ), # grid-like attention + PreNormResidual( + channel_num, + Attention( + dim=channel_num, + dim_head=channel_num // 4, + dropout=dropout, + window_size=window_size, + with_pe=with_pe, + ), + ), + Rearrange("b x y w1 w2 d -> b d (w1 x) (w2 y)"), + Conv_PreNormResidual( + channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout) + ), + # channel-like attention + Conv_PreNormResidual( + channel_num, + Channel_Attention_grid( + dim=channel_num, heads=4, dropout=dropout, window_size=window_size + ), + ), + Conv_PreNormResidual( + channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout) + ), + ) + + def forward(self, x): + out = self.layer(x) + return out diff --git a/comfy_extras/chainner_models/architecture/OmniSR/OSAG.py b/comfy_extras/chainner_models/architecture/OmniSR/OSAG.py new file mode 100644 index 0000000000000000000000000000000000000000..477e81f9da4eb1db9b5ec418549d75dd591209ec --- /dev/null +++ b/comfy_extras/chainner_models/architecture/OmniSR/OSAG.py @@ -0,0 +1,60 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +############################################################# +# File: OSAG.py +# Created Date: Tuesday April 28th 2022 +# Author: Chen Xuanhong +# Email: chenxuanhongzju@outlook.com +# Last Modified: Sunday, 23rd April 2023 3:08:49 pm +# Modified By: Chen Xuanhong +# Copyright (c) 2020 Shanghai Jiao Tong University +############################################################# + + +import torch.nn as nn + +from .esa import ESA +from .OSA import OSA_Block + + +class OSAG(nn.Module): + def __init__( + self, + channel_num=64, + bias=True, + block_num=4, + ffn_bias=False, + window_size=0, + pe=False, + ): + super(OSAG, self).__init__() + + # print("window_size: %d" % (window_size)) + # print("with_pe", pe) + # print("ffn_bias: %d" % (ffn_bias)) + + # block_script_name = kwargs.get("block_script_name", "OSA") + # block_class_name = kwargs.get("block_class_name", "OSA_Block") + + # script_name = "." + block_script_name + # package = __import__(script_name, fromlist=True) + block_class = OSA_Block # getattr(package, block_class_name) + group_list = [] + for _ in range(block_num): + temp_res = block_class( + channel_num, + bias, + ffn_bias=ffn_bias, + window_size=window_size, + with_pe=pe, + ) + group_list.append(temp_res) + group_list.append(nn.Conv2d(channel_num, channel_num, 1, 1, 0, bias=bias)) + self.residual_layer = nn.Sequential(*group_list) + esa_channel = max(channel_num // 4, 16) + self.esa = ESA(esa_channel, channel_num) + + def forward(self, x): + out = self.residual_layer(x) + out = out + x + return self.esa(out) diff --git a/comfy_extras/chainner_models/architecture/OmniSR/OmniSR.py b/comfy_extras/chainner_models/architecture/OmniSR/OmniSR.py new file mode 100644 index 0000000000000000000000000000000000000000..1e1c3f35e657fb972d4209456719a61163831385 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/OmniSR/OmniSR.py @@ -0,0 +1,143 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +############################################################# +# File: OmniSR.py +# Created Date: Tuesday April 28th 2022 +# Author: Chen Xuanhong +# Email: chenxuanhongzju@outlook.com +# Last Modified: Sunday, 23rd April 2023 3:06:36 pm +# Modified By: Chen Xuanhong +# Copyright (c) 2020 Shanghai Jiao Tong University +############################################################# + +import math + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .OSAG import OSAG +from .pixelshuffle import pixelshuffle_block + + +class OmniSR(nn.Module): + def __init__( + self, + state_dict, + **kwargs, + ): + super(OmniSR, self).__init__() + self.state = state_dict + + bias = True # Fine to assume this for now + block_num = 1 # Fine to assume this for now + ffn_bias = True + pe = True + + num_feat = state_dict["input.weight"].shape[0] or 64 + num_in_ch = state_dict["input.weight"].shape[1] or 3 + num_out_ch = num_in_ch # we can just assume this for now. pixelshuffle smh + + pixelshuffle_shape = state_dict["up.0.weight"].shape[0] + up_scale = math.sqrt(pixelshuffle_shape / num_out_ch) + if up_scale - int(up_scale) > 0: + print( + "out_nc is probably different than in_nc, scale calculation might be wrong" + ) + up_scale = int(up_scale) + res_num = 0 + for key in state_dict.keys(): + if "residual_layer" in key: + temp_res_num = int(key.split(".")[1]) + if temp_res_num > res_num: + res_num = temp_res_num + res_num = res_num + 1 # zero-indexed + + residual_layer = [] + self.res_num = res_num + + if ( + "residual_layer.0.residual_layer.0.layer.2.fn.rel_pos_bias.weight" + in state_dict.keys() + ): + rel_pos_bias_weight = state_dict[ + "residual_layer.0.residual_layer.0.layer.2.fn.rel_pos_bias.weight" + ].shape[0] + self.window_size = int((math.sqrt(rel_pos_bias_weight) + 1) / 2) + else: + self.window_size = 8 + + self.up_scale = up_scale + + for _ in range(res_num): + temp_res = OSAG( + channel_num=num_feat, + bias=bias, + block_num=block_num, + ffn_bias=ffn_bias, + window_size=self.window_size, + pe=pe, + ) + residual_layer.append(temp_res) + self.residual_layer = nn.Sequential(*residual_layer) + self.input = nn.Conv2d( + in_channels=num_in_ch, + out_channels=num_feat, + kernel_size=3, + stride=1, + padding=1, + bias=bias, + ) + self.output = nn.Conv2d( + in_channels=num_feat, + out_channels=num_feat, + kernel_size=3, + stride=1, + padding=1, + bias=bias, + ) + self.up = pixelshuffle_block(num_feat, num_out_ch, up_scale, bias=bias) + + # self.tail = pixelshuffle_block(num_feat,num_out_ch,up_scale,bias=bias) + + # for m in self.modules(): + # if isinstance(m, nn.Conv2d): + # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + # m.weight.data.normal_(0, sqrt(2. / n)) + + # chaiNNer specific stuff + self.model_arch = "OmniSR" + self.sub_type = "SR" + self.in_nc = num_in_ch + self.out_nc = num_out_ch + self.num_feat = num_feat + self.scale = up_scale + + self.supports_fp16 = True # TODO: Test this + self.supports_bfp16 = True + self.min_size_restriction = 16 + + self.load_state_dict(state_dict, strict=False) + + def check_image_size(self, x): + _, _, h, w = x.size() + # import pdb; pdb.set_trace() + mod_pad_h = (self.window_size - h % self.window_size) % self.window_size + mod_pad_w = (self.window_size - w % self.window_size) % self.window_size + # x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') + x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "constant", 0) + return x + + def forward(self, x): + H, W = x.shape[2:] + x = self.check_image_size(x) + + residual = self.input(x) + out = self.residual_layer(residual) + + # origin + out = torch.add(self.output(out), residual) + out = self.up(out) + + out = out[:, :, : H * self.up_scale, : W * self.up_scale] + return out diff --git a/comfy_extras/chainner_models/architecture/OmniSR/esa.py b/comfy_extras/chainner_models/architecture/OmniSR/esa.py new file mode 100644 index 0000000000000000000000000000000000000000..f9ce7f7a60bfe20b3737eaa2e3110fd460a2d104 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/OmniSR/esa.py @@ -0,0 +1,294 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +############################################################# +# File: esa.py +# Created Date: Tuesday April 28th 2022 +# Author: Chen Xuanhong +# Email: chenxuanhongzju@outlook.com +# Last Modified: Thursday, 20th April 2023 9:28:06 am +# Modified By: Chen Xuanhong +# Copyright (c) 2020 Shanghai Jiao Tong University +############################################################# + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .layernorm import LayerNorm2d + + +def moment(x, dim=(2, 3), k=2): + assert len(x.size()) == 4 + mean = torch.mean(x, dim=dim).unsqueeze(-1).unsqueeze(-1) + mk = (1 / (x.size(2) * x.size(3))) * torch.sum(torch.pow(x - mean, k), dim=dim) + return mk + + +class ESA(nn.Module): + """ + Modification of Enhanced Spatial Attention (ESA), which is proposed by + `Residual Feature Aggregation Network for Image Super-Resolution` + Note: `conv_max` and `conv3_` are NOT used here, so the corresponding codes + are deleted. + """ + + def __init__(self, esa_channels, n_feats, conv=nn.Conv2d): + super(ESA, self).__init__() + f = esa_channels + self.conv1 = conv(n_feats, f, kernel_size=1) + self.conv_f = conv(f, f, kernel_size=1) + self.conv2 = conv(f, f, kernel_size=3, stride=2, padding=0) + self.conv3 = conv(f, f, kernel_size=3, padding=1) + self.conv4 = conv(f, n_feats, kernel_size=1) + self.sigmoid = nn.Sigmoid() + self.relu = nn.ReLU(inplace=True) + + def forward(self, x): + c1_ = self.conv1(x) + c1 = self.conv2(c1_) + v_max = F.max_pool2d(c1, kernel_size=7, stride=3) + c3 = self.conv3(v_max) + c3 = F.interpolate( + c3, (x.size(2), x.size(3)), mode="bilinear", align_corners=False + ) + cf = self.conv_f(c1_) + c4 = self.conv4(c3 + cf) + m = self.sigmoid(c4) + return x * m + + +class LK_ESA(nn.Module): + def __init__( + self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True + ): + super(LK_ESA, self).__init__() + f = esa_channels + self.conv1 = conv(n_feats, f, kernel_size=1) + self.conv_f = conv(f, f, kernel_size=1) + + kernel_size = 17 + kernel_expand = kernel_expand + padding = kernel_size // 2 + + self.vec_conv = nn.Conv2d( + in_channels=f * kernel_expand, + out_channels=f * kernel_expand, + kernel_size=(1, kernel_size), + padding=(0, padding), + groups=2, + bias=bias, + ) + self.vec_conv3x1 = nn.Conv2d( + in_channels=f * kernel_expand, + out_channels=f * kernel_expand, + kernel_size=(1, 3), + padding=(0, 1), + groups=2, + bias=bias, + ) + + self.hor_conv = nn.Conv2d( + in_channels=f * kernel_expand, + out_channels=f * kernel_expand, + kernel_size=(kernel_size, 1), + padding=(padding, 0), + groups=2, + bias=bias, + ) + self.hor_conv1x3 = nn.Conv2d( + in_channels=f * kernel_expand, + out_channels=f * kernel_expand, + kernel_size=(3, 1), + padding=(1, 0), + groups=2, + bias=bias, + ) + + self.conv4 = conv(f, n_feats, kernel_size=1) + self.sigmoid = nn.Sigmoid() + self.relu = nn.ReLU(inplace=True) + + def forward(self, x): + c1_ = self.conv1(x) + + res = self.vec_conv(c1_) + self.vec_conv3x1(c1_) + res = self.hor_conv(res) + self.hor_conv1x3(res) + + cf = self.conv_f(c1_) + c4 = self.conv4(res + cf) + m = self.sigmoid(c4) + return x * m + + +class LK_ESA_LN(nn.Module): + def __init__( + self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True + ): + super(LK_ESA_LN, self).__init__() + f = esa_channels + self.conv1 = conv(n_feats, f, kernel_size=1) + self.conv_f = conv(f, f, kernel_size=1) + + kernel_size = 17 + kernel_expand = kernel_expand + padding = kernel_size // 2 + + self.norm = LayerNorm2d(n_feats) + + self.vec_conv = nn.Conv2d( + in_channels=f * kernel_expand, + out_channels=f * kernel_expand, + kernel_size=(1, kernel_size), + padding=(0, padding), + groups=2, + bias=bias, + ) + self.vec_conv3x1 = nn.Conv2d( + in_channels=f * kernel_expand, + out_channels=f * kernel_expand, + kernel_size=(1, 3), + padding=(0, 1), + groups=2, + bias=bias, + ) + + self.hor_conv = nn.Conv2d( + in_channels=f * kernel_expand, + out_channels=f * kernel_expand, + kernel_size=(kernel_size, 1), + padding=(padding, 0), + groups=2, + bias=bias, + ) + self.hor_conv1x3 = nn.Conv2d( + in_channels=f * kernel_expand, + out_channels=f * kernel_expand, + kernel_size=(3, 1), + padding=(1, 0), + groups=2, + bias=bias, + ) + + self.conv4 = conv(f, n_feats, kernel_size=1) + self.sigmoid = nn.Sigmoid() + self.relu = nn.ReLU(inplace=True) + + def forward(self, x): + c1_ = self.norm(x) + c1_ = self.conv1(c1_) + + res = self.vec_conv(c1_) + self.vec_conv3x1(c1_) + res = self.hor_conv(res) + self.hor_conv1x3(res) + + cf = self.conv_f(c1_) + c4 = self.conv4(res + cf) + m = self.sigmoid(c4) + return x * m + + +class AdaGuidedFilter(nn.Module): + def __init__( + self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True + ): + super(AdaGuidedFilter, self).__init__() + + self.gap = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Conv2d( + in_channels=n_feats, + out_channels=1, + kernel_size=1, + padding=0, + stride=1, + groups=1, + bias=True, + ) + + self.r = 5 + + def box_filter(self, x, r): + channel = x.shape[1] + kernel_size = 2 * r + 1 + weight = 1.0 / (kernel_size**2) + box_kernel = weight * torch.ones( + (channel, 1, kernel_size, kernel_size), dtype=torch.float32, device=x.device + ) + output = F.conv2d(x, weight=box_kernel, stride=1, padding=r, groups=channel) + return output + + def forward(self, x): + _, _, H, W = x.shape + N = self.box_filter( + torch.ones((1, 1, H, W), dtype=x.dtype, device=x.device), self.r + ) + + # epsilon = self.fc(self.gap(x)) + # epsilon = torch.pow(epsilon, 2) + epsilon = 1e-2 + + mean_x = self.box_filter(x, self.r) / N + var_x = self.box_filter(x * x, self.r) / N - mean_x * mean_x + + A = var_x / (var_x + epsilon) + b = (1 - A) * mean_x + m = A * x + b + + # mean_A = self.box_filter(A, self.r) / N + # mean_b = self.box_filter(b, self.r) / N + # m = mean_A * x + mean_b + return x * m + + +class AdaConvGuidedFilter(nn.Module): + def __init__( + self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True + ): + super(AdaConvGuidedFilter, self).__init__() + f = esa_channels + + self.conv_f = conv(f, f, kernel_size=1) + + kernel_size = 17 + kernel_expand = kernel_expand + padding = kernel_size // 2 + + self.vec_conv = nn.Conv2d( + in_channels=f, + out_channels=f, + kernel_size=(1, kernel_size), + padding=(0, padding), + groups=f, + bias=bias, + ) + + self.hor_conv = nn.Conv2d( + in_channels=f, + out_channels=f, + kernel_size=(kernel_size, 1), + padding=(padding, 0), + groups=f, + bias=bias, + ) + + self.gap = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Conv2d( + in_channels=f, + out_channels=f, + kernel_size=1, + padding=0, + stride=1, + groups=1, + bias=True, + ) + + def forward(self, x): + y = self.vec_conv(x) + y = self.hor_conv(y) + + sigma = torch.pow(y, 2) + epsilon = self.fc(self.gap(y)) + + weight = sigma / (sigma + epsilon) + + m = weight * x + (1 - weight) + + return x * m diff --git a/comfy_extras/chainner_models/architecture/OmniSR/layernorm.py b/comfy_extras/chainner_models/architecture/OmniSR/layernorm.py new file mode 100644 index 0000000000000000000000000000000000000000..731a25f7542d45757a284648055d7c6ffad4c3fd --- /dev/null +++ b/comfy_extras/chainner_models/architecture/OmniSR/layernorm.py @@ -0,0 +1,70 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +############################################################# +# File: layernorm.py +# Created Date: Tuesday April 28th 2022 +# Author: Chen Xuanhong +# Email: chenxuanhongzju@outlook.com +# Last Modified: Thursday, 20th April 2023 9:28:20 am +# Modified By: Chen Xuanhong +# Copyright (c) 2020 Shanghai Jiao Tong University +############################################################# + +import torch +import torch.nn as nn + + +class LayerNormFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, x, weight, bias, eps): + ctx.eps = eps + N, C, H, W = x.size() + mu = x.mean(1, keepdim=True) + var = (x - mu).pow(2).mean(1, keepdim=True) + y = (x - mu) / (var + eps).sqrt() + ctx.save_for_backward(y, var, weight) + y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) + return y + + @staticmethod + def backward(ctx, grad_output): + eps = ctx.eps + + N, C, H, W = grad_output.size() + y, var, weight = ctx.saved_variables + g = grad_output * weight.view(1, C, 1, 1) + mean_g = g.mean(dim=1, keepdim=True) + + mean_gy = (g * y).mean(dim=1, keepdim=True) + gx = 1.0 / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) + return ( + gx, + (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), + grad_output.sum(dim=3).sum(dim=2).sum(dim=0), + None, + ) + + +class LayerNorm2d(nn.Module): + def __init__(self, channels, eps=1e-6): + super(LayerNorm2d, self).__init__() + self.register_parameter("weight", nn.Parameter(torch.ones(channels))) + self.register_parameter("bias", nn.Parameter(torch.zeros(channels))) + self.eps = eps + + def forward(self, x): + return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) + + +class GRN(nn.Module): + """GRN (Global Response Normalization) layer""" + + def __init__(self, dim): + super().__init__() + self.gamma = nn.Parameter(torch.zeros(1, dim, 1, 1)) + self.beta = nn.Parameter(torch.zeros(1, dim, 1, 1)) + + def forward(self, x): + Gx = torch.norm(x, p=2, dim=(2, 3), keepdim=True) + Nx = Gx / (Gx.mean(dim=1, keepdim=True) + 1e-6) + return self.gamma * (x * Nx) + self.beta + x diff --git a/comfy_extras/chainner_models/architecture/OmniSR/pixelshuffle.py b/comfy_extras/chainner_models/architecture/OmniSR/pixelshuffle.py new file mode 100644 index 0000000000000000000000000000000000000000..4260fb7c9d8d912e34899ce7877595b617f9bb02 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/OmniSR/pixelshuffle.py @@ -0,0 +1,31 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +############################################################# +# File: pixelshuffle.py +# Created Date: Friday July 1st 2022 +# Author: Chen Xuanhong +# Email: chenxuanhongzju@outlook.com +# Last Modified: Friday, 1st July 2022 10:18:39 am +# Modified By: Chen Xuanhong +# Copyright (c) 2022 Shanghai Jiao Tong University +############################################################# + +import torch.nn as nn + + +def pixelshuffle_block( + in_channels, out_channels, upscale_factor=2, kernel_size=3, bias=False +): + """ + Upsample features according to `upscale_factor`. + """ + padding = kernel_size // 2 + conv = nn.Conv2d( + in_channels, + out_channels * (upscale_factor**2), + kernel_size, + padding=1, + bias=bias, + ) + pixel_shuffle = nn.PixelShuffle(upscale_factor) + return nn.Sequential(*[conv, pixel_shuffle]) diff --git a/comfy_extras/chainner_models/architecture/RRDB.py b/comfy_extras/chainner_models/architecture/RRDB.py new file mode 100644 index 0000000000000000000000000000000000000000..b50db7c24a8e6edc9154168a3d807c9219cb8cea --- /dev/null +++ b/comfy_extras/chainner_models/architecture/RRDB.py @@ -0,0 +1,296 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import functools +import math +import re +from collections import OrderedDict + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from . import block as B + + +# Borrowed from https://github.com/rlaphoenix/VSGAN/blob/master/vsgan/archs/ESRGAN.py +# Which enhanced stuff that was already here +class RRDBNet(nn.Module): + def __init__( + self, + state_dict, + norm=None, + act: str = "leakyrelu", + upsampler: str = "upconv", + mode: B.ConvMode = "CNA", + ) -> None: + """ + ESRGAN - Enhanced Super-Resolution Generative Adversarial Networks. + By Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, + and Chen Change Loy. + This is old-arch Residual in Residual Dense Block Network and is not + the newest revision that's available at github.com/xinntao/ESRGAN. + This is on purpose, the newest Network has severely limited the + potential use of the Network with no benefits. + This network supports model files from both new and old-arch. + Args: + norm: Normalization layer + act: Activation layer + upsampler: Upsample layer. upconv, pixel_shuffle + mode: Convolution mode + """ + super(RRDBNet, self).__init__() + self.model_arch = "ESRGAN" + self.sub_type = "SR" + + self.state = state_dict + self.norm = norm + self.act = act + self.upsampler = upsampler + self.mode = mode + + self.state_map = { + # currently supports old, new, and newer RRDBNet arch models + # ESRGAN, BSRGAN/RealSR, Real-ESRGAN + "model.0.weight": ("conv_first.weight",), + "model.0.bias": ("conv_first.bias",), + "model.1.sub./NB/.weight": ("trunk_conv.weight", "conv_body.weight"), + "model.1.sub./NB/.bias": ("trunk_conv.bias", "conv_body.bias"), + r"model.1.sub.\1.RDB\2.conv\3.0.\4": ( + r"RRDB_trunk\.(\d+)\.RDB(\d)\.conv(\d+)\.(weight|bias)", + r"body\.(\d+)\.rdb(\d)\.conv(\d+)\.(weight|bias)", + ), + } + if "params_ema" in self.state: + self.state = self.state["params_ema"] + # self.model_arch = "RealESRGAN" + self.num_blocks = self.get_num_blocks() + self.plus = any("conv1x1" in k for k in self.state.keys()) + if self.plus: + self.model_arch = "ESRGAN+" + + self.state = self.new_to_old_arch(self.state) + + self.key_arr = list(self.state.keys()) + + self.in_nc: int = self.state[self.key_arr[0]].shape[1] + self.out_nc: int = self.state[self.key_arr[-1]].shape[0] + + self.scale: int = self.get_scale() + self.num_filters: int = self.state[self.key_arr[0]].shape[0] + + c2x2 = False + if self.state["model.0.weight"].shape[-2] == 2: + c2x2 = True + self.scale = round(math.sqrt(self.scale / 4)) + self.model_arch = "ESRGAN-2c2" + + self.supports_fp16 = True + self.supports_bfp16 = True + self.min_size_restriction = None + + # Detect if pixelunshuffle was used (Real-ESRGAN) + if self.in_nc in (self.out_nc * 4, self.out_nc * 16) and self.out_nc in ( + self.in_nc / 4, + self.in_nc / 16, + ): + self.shuffle_factor = int(math.sqrt(self.in_nc / self.out_nc)) + else: + self.shuffle_factor = None + + upsample_block = { + "upconv": B.upconv_block, + "pixel_shuffle": B.pixelshuffle_block, + }.get(self.upsampler) + if upsample_block is None: + raise NotImplementedError(f"Upsample mode [{self.upsampler}] is not found") + + if self.scale == 3: + upsample_blocks = upsample_block( + in_nc=self.num_filters, + out_nc=self.num_filters, + upscale_factor=3, + act_type=self.act, + c2x2=c2x2, + ) + else: + upsample_blocks = [ + upsample_block( + in_nc=self.num_filters, + out_nc=self.num_filters, + act_type=self.act, + c2x2=c2x2, + ) + for _ in range(int(math.log(self.scale, 2))) + ] + + self.model = B.sequential( + # fea conv + B.conv_block( + in_nc=self.in_nc, + out_nc=self.num_filters, + kernel_size=3, + norm_type=None, + act_type=None, + c2x2=c2x2, + ), + B.ShortcutBlock( + B.sequential( + # rrdb blocks + *[ + B.RRDB( + nf=self.num_filters, + kernel_size=3, + gc=32, + stride=1, + bias=True, + pad_type="zero", + norm_type=self.norm, + act_type=self.act, + mode="CNA", + plus=self.plus, + c2x2=c2x2, + ) + for _ in range(self.num_blocks) + ], + # lr conv + B.conv_block( + in_nc=self.num_filters, + out_nc=self.num_filters, + kernel_size=3, + norm_type=self.norm, + act_type=None, + mode=self.mode, + c2x2=c2x2, + ), + ) + ), + *upsample_blocks, + # hr_conv0 + B.conv_block( + in_nc=self.num_filters, + out_nc=self.num_filters, + kernel_size=3, + norm_type=None, + act_type=self.act, + c2x2=c2x2, + ), + # hr_conv1 + B.conv_block( + in_nc=self.num_filters, + out_nc=self.out_nc, + kernel_size=3, + norm_type=None, + act_type=None, + c2x2=c2x2, + ), + ) + + # Adjust these properties for calculations outside of the model + if self.shuffle_factor: + self.in_nc //= self.shuffle_factor**2 + self.scale //= self.shuffle_factor + + self.load_state_dict(self.state, strict=False) + + def new_to_old_arch(self, state): + """Convert a new-arch model state dictionary to an old-arch dictionary.""" + if "params_ema" in state: + state = state["params_ema"] + + if "conv_first.weight" not in state: + # model is already old arch, this is a loose check, but should be sufficient + return state + + # add nb to state keys + for kind in ("weight", "bias"): + self.state_map[f"model.1.sub.{self.num_blocks}.{kind}"] = self.state_map[ + f"model.1.sub./NB/.{kind}" + ] + del self.state_map[f"model.1.sub./NB/.{kind}"] + + old_state = OrderedDict() + for old_key, new_keys in self.state_map.items(): + for new_key in new_keys: + if r"\1" in old_key: + for k, v in state.items(): + sub = re.sub(new_key, old_key, k) + if sub != k: + old_state[sub] = v + else: + if new_key in state: + old_state[old_key] = state[new_key] + + # upconv layers + max_upconv = 0 + for key in state.keys(): + match = re.match(r"(upconv|conv_up)(\d)\.(weight|bias)", key) + if match is not None: + _, key_num, key_type = match.groups() + old_state[f"model.{int(key_num) * 3}.{key_type}"] = state[key] + max_upconv = max(max_upconv, int(key_num) * 3) + + # final layers + for key in state.keys(): + if key in ("HRconv.weight", "conv_hr.weight"): + old_state[f"model.{max_upconv + 2}.weight"] = state[key] + elif key in ("HRconv.bias", "conv_hr.bias"): + old_state[f"model.{max_upconv + 2}.bias"] = state[key] + elif key in ("conv_last.weight",): + old_state[f"model.{max_upconv + 4}.weight"] = state[key] + elif key in ("conv_last.bias",): + old_state[f"model.{max_upconv + 4}.bias"] = state[key] + + # Sort by first numeric value of each layer + def compare(item1, item2): + parts1 = item1.split(".") + parts2 = item2.split(".") + int1 = int(parts1[1]) + int2 = int(parts2[1]) + return int1 - int2 + + sorted_keys = sorted(old_state.keys(), key=functools.cmp_to_key(compare)) + + # Rebuild the output dict in the right order + out_dict = OrderedDict((k, old_state[k]) for k in sorted_keys) + + return out_dict + + def get_scale(self, min_part: int = 6) -> int: + n = 0 + for part in list(self.state): + parts = part.split(".")[1:] + if len(parts) == 2: + part_num = int(parts[0]) + if part_num > min_part and parts[1] == "weight": + n += 1 + return 2**n + + def get_num_blocks(self) -> int: + nbs = [] + state_keys = self.state_map[r"model.1.sub.\1.RDB\2.conv\3.0.\4"] + ( + r"model\.\d+\.sub\.(\d+)\.RDB(\d+)\.conv(\d+)\.0\.(weight|bias)", + ) + for state_key in state_keys: + for k in self.state: + m = re.search(state_key, k) + if m: + nbs.append(int(m.group(1))) + if nbs: + break + return max(*nbs) + 1 + + def forward(self, x): + if self.shuffle_factor: + _, _, h, w = x.size() + mod_pad_h = ( + self.shuffle_factor - h % self.shuffle_factor + ) % self.shuffle_factor + mod_pad_w = ( + self.shuffle_factor - w % self.shuffle_factor + ) % self.shuffle_factor + x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect") + x = torch.pixel_unshuffle(x, downscale_factor=self.shuffle_factor) + x = self.model(x) + return x[:, :, : h * self.scale, : w * self.scale] + return self.model(x) diff --git a/comfy_extras/chainner_models/architecture/SCUNet.py b/comfy_extras/chainner_models/architecture/SCUNet.py new file mode 100644 index 0000000000000000000000000000000000000000..b8354a873085140e9ff7d582c43ba9818ed9524e --- /dev/null +++ b/comfy_extras/chainner_models/architecture/SCUNet.py @@ -0,0 +1,455 @@ +# pylint: skip-file +# ----------------------------------------------------------------------------------- +# SCUNet: Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis, https://arxiv.org/abs/2203.13278 +# Zhang, Kai and Li, Yawei and Liang, Jingyun and Cao, Jiezhang and Zhang, Yulun and Tang, Hao and Timofte, Radu and Van Gool, Luc +# ----------------------------------------------------------------------------------- + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange +from einops.layers.torch import Rearrange + +from .timm.drop import DropPath +from .timm.weight_init import trunc_normal_ + + +# Borrowed from https://github.com/cszn/SCUNet/blob/main/models/network_scunet.py +class WMSA(nn.Module): + """Self-attention module in Swin Transformer""" + + def __init__(self, input_dim, output_dim, head_dim, window_size, type): + super(WMSA, self).__init__() + self.input_dim = input_dim + self.output_dim = output_dim + self.head_dim = head_dim + self.scale = self.head_dim**-0.5 + self.n_heads = input_dim // head_dim + self.window_size = window_size + self.type = type + self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True) + + self.relative_position_params = nn.Parameter( + torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads) + ) + # TODO recover + # self.relative_position_params = nn.Parameter(torch.zeros(self.n_heads, 2 * window_size - 1, 2 * window_size -1)) + self.relative_position_params = nn.Parameter( + torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads) + ) + + self.linear = nn.Linear(self.input_dim, self.output_dim) + + trunc_normal_(self.relative_position_params, std=0.02) + self.relative_position_params = torch.nn.Parameter( + self.relative_position_params.view( + 2 * window_size - 1, 2 * window_size - 1, self.n_heads + ) + .transpose(1, 2) + .transpose(0, 1) + ) + + def generate_mask(self, h, w, p, shift): + """generating the mask of SW-MSA + Args: + shift: shift parameters in CyclicShift. + Returns: + attn_mask: should be (1 1 w p p), + """ + # supporting square. + attn_mask = torch.zeros( + h, + w, + p, + p, + p, + p, + dtype=torch.bool, + device=self.relative_position_params.device, + ) + if self.type == "W": + return attn_mask + + s = p - shift + attn_mask[-1, :, :s, :, s:, :] = True + attn_mask[-1, :, s:, :, :s, :] = True + attn_mask[:, -1, :, :s, :, s:] = True + attn_mask[:, -1, :, s:, :, :s] = True + attn_mask = rearrange( + attn_mask, "w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)" + ) + return attn_mask + + def forward(self, x): + """Forward pass of Window Multi-head Self-attention module. + Args: + x: input tensor with shape of [b h w c]; + attn_mask: attention mask, fill -inf where the value is True; + Returns: + output: tensor shape [b h w c] + """ + if self.type != "W": + x = torch.roll( + x, + shifts=(-(self.window_size // 2), -(self.window_size // 2)), + dims=(1, 2), + ) + + x = rearrange( + x, + "b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c", + p1=self.window_size, + p2=self.window_size, + ) + h_windows = x.size(1) + w_windows = x.size(2) + # square validation + # assert h_windows == w_windows + + x = rearrange( + x, + "b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c", + p1=self.window_size, + p2=self.window_size, + ) + qkv = self.embedding_layer(x) + q, k, v = rearrange( + qkv, "b nw np (threeh c) -> threeh b nw np c", c=self.head_dim + ).chunk(3, dim=0) + sim = torch.einsum("hbwpc,hbwqc->hbwpq", q, k) * self.scale + # Adding learnable relative embedding + sim = sim + rearrange(self.relative_embedding(), "h p q -> h 1 1 p q") + # Using Attn Mask to distinguish different subwindows. + if self.type != "W": + attn_mask = self.generate_mask( + h_windows, w_windows, self.window_size, shift=self.window_size // 2 + ) + sim = sim.masked_fill_(attn_mask, float("-inf")) + + probs = nn.functional.softmax(sim, dim=-1) + output = torch.einsum("hbwij,hbwjc->hbwic", probs, v) + output = rearrange(output, "h b w p c -> b w p (h c)") + output = self.linear(output) + output = rearrange( + output, + "b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c", + w1=h_windows, + p1=self.window_size, + ) + + if self.type != "W": + output = torch.roll( + output, + shifts=(self.window_size // 2, self.window_size // 2), + dims=(1, 2), + ) + + return output + + def relative_embedding(self): + cord = torch.tensor( + np.array( + [ + [i, j] + for i in range(self.window_size) + for j in range(self.window_size) + ] + ) + ) + relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1 + # negative is allowed + return self.relative_position_params[ + :, relation[:, :, 0].long(), relation[:, :, 1].long() + ] + + +class Block(nn.Module): + def __init__( + self, + input_dim, + output_dim, + head_dim, + window_size, + drop_path, + type="W", + input_resolution=None, + ): + """SwinTransformer Block""" + super(Block, self).__init__() + self.input_dim = input_dim + self.output_dim = output_dim + assert type in ["W", "SW"] + self.type = type + if input_resolution <= window_size: + self.type = "W" + + self.ln1 = nn.LayerNorm(input_dim) + self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.ln2 = nn.LayerNorm(input_dim) + self.mlp = nn.Sequential( + nn.Linear(input_dim, 4 * input_dim), + nn.GELU(), + nn.Linear(4 * input_dim, output_dim), + ) + + def forward(self, x): + x = x + self.drop_path(self.msa(self.ln1(x))) + x = x + self.drop_path(self.mlp(self.ln2(x))) + return x + + +class ConvTransBlock(nn.Module): + def __init__( + self, + conv_dim, + trans_dim, + head_dim, + window_size, + drop_path, + type="W", + input_resolution=None, + ): + """SwinTransformer and Conv Block""" + super(ConvTransBlock, self).__init__() + self.conv_dim = conv_dim + self.trans_dim = trans_dim + self.head_dim = head_dim + self.window_size = window_size + self.drop_path = drop_path + self.type = type + self.input_resolution = input_resolution + + assert self.type in ["W", "SW"] + if self.input_resolution <= self.window_size: + self.type = "W" + + self.trans_block = Block( + self.trans_dim, + self.trans_dim, + self.head_dim, + self.window_size, + self.drop_path, + self.type, + self.input_resolution, + ) + self.conv1_1 = nn.Conv2d( + self.conv_dim + self.trans_dim, + self.conv_dim + self.trans_dim, + 1, + 1, + 0, + bias=True, + ) + self.conv1_2 = nn.Conv2d( + self.conv_dim + self.trans_dim, + self.conv_dim + self.trans_dim, + 1, + 1, + 0, + bias=True, + ) + + self.conv_block = nn.Sequential( + nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False), + nn.ReLU(True), + nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False), + ) + + def forward(self, x): + conv_x, trans_x = torch.split( + self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1 + ) + conv_x = self.conv_block(conv_x) + conv_x + trans_x = Rearrange("b c h w -> b h w c")(trans_x) + trans_x = self.trans_block(trans_x) + trans_x = Rearrange("b h w c -> b c h w")(trans_x) + res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1)) + x = x + res + + return x + + +class SCUNet(nn.Module): + def __init__( + self, + state_dict, + in_nc=3, + config=[4, 4, 4, 4, 4, 4, 4], + dim=64, + drop_path_rate=0.0, + input_resolution=256, + ): + super(SCUNet, self).__init__() + self.model_arch = "SCUNet" + self.sub_type = "SR" + + self.num_filters: int = 0 + + self.state = state_dict + self.config = config + self.dim = dim + self.head_dim = 32 + self.window_size = 8 + + self.in_nc = in_nc + self.out_nc = self.in_nc + self.scale = 1 + self.supports_fp16 = True + + # drop path rate for each layer + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))] + + self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)] + + begin = 0 + self.m_down1 = [ + ConvTransBlock( + dim // 2, + dim // 2, + self.head_dim, + self.window_size, + dpr[i + begin], + "W" if not i % 2 else "SW", + input_resolution, + ) + for i in range(config[0]) + ] + [nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)] + + begin += config[0] + self.m_down2 = [ + ConvTransBlock( + dim, + dim, + self.head_dim, + self.window_size, + dpr[i + begin], + "W" if not i % 2 else "SW", + input_resolution // 2, + ) + for i in range(config[1]) + ] + [nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)] + + begin += config[1] + self.m_down3 = [ + ConvTransBlock( + 2 * dim, + 2 * dim, + self.head_dim, + self.window_size, + dpr[i + begin], + "W" if not i % 2 else "SW", + input_resolution // 4, + ) + for i in range(config[2]) + ] + [nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)] + + begin += config[2] + self.m_body = [ + ConvTransBlock( + 4 * dim, + 4 * dim, + self.head_dim, + self.window_size, + dpr[i + begin], + "W" if not i % 2 else "SW", + input_resolution // 8, + ) + for i in range(config[3]) + ] + + begin += config[3] + self.m_up3 = [ + nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), + ] + [ + ConvTransBlock( + 2 * dim, + 2 * dim, + self.head_dim, + self.window_size, + dpr[i + begin], + "W" if not i % 2 else "SW", + input_resolution // 4, + ) + for i in range(config[4]) + ] + + begin += config[4] + self.m_up2 = [ + nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), + ] + [ + ConvTransBlock( + dim, + dim, + self.head_dim, + self.window_size, + dpr[i + begin], + "W" if not i % 2 else "SW", + input_resolution // 2, + ) + for i in range(config[5]) + ] + + begin += config[5] + self.m_up1 = [ + nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), + ] + [ + ConvTransBlock( + dim // 2, + dim // 2, + self.head_dim, + self.window_size, + dpr[i + begin], + "W" if not i % 2 else "SW", + input_resolution, + ) + for i in range(config[6]) + ] + + self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)] + + self.m_head = nn.Sequential(*self.m_head) + self.m_down1 = nn.Sequential(*self.m_down1) + self.m_down2 = nn.Sequential(*self.m_down2) + self.m_down3 = nn.Sequential(*self.m_down3) + self.m_body = nn.Sequential(*self.m_body) + self.m_up3 = nn.Sequential(*self.m_up3) + self.m_up2 = nn.Sequential(*self.m_up2) + self.m_up1 = nn.Sequential(*self.m_up1) + self.m_tail = nn.Sequential(*self.m_tail) + # self.apply(self._init_weights) + self.load_state_dict(state_dict, strict=True) + + def check_image_size(self, x): + _, _, h, w = x.size() + mod_pad_h = (64 - h % 64) % 64 + mod_pad_w = (64 - w % 64) % 64 + x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect") + return x + + def forward(self, x0): + h, w = x0.size()[-2:] + x0 = self.check_image_size(x0) + + x1 = self.m_head(x0) + x2 = self.m_down1(x1) + x3 = self.m_down2(x2) + x4 = self.m_down3(x3) + x = self.m_body(x4) + x = self.m_up3(x + x4) + x = self.m_up2(x + x3) + x = self.m_up1(x + x2) + x = self.m_tail(x + x1) + + x = x[:, :, :h, :w] + return x + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) diff --git a/comfy_extras/chainner_models/architecture/SPSR.py b/comfy_extras/chainner_models/architecture/SPSR.py new file mode 100644 index 0000000000000000000000000000000000000000..c3cefff190292a63cf61fe3fa9c28131dac4f369 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/SPSR.py @@ -0,0 +1,383 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import math + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from . import block as B + + +class Get_gradient_nopadding(nn.Module): + def __init__(self): + super(Get_gradient_nopadding, self).__init__() + kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]] + kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]] + kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0) + kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0) + self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False) # type: ignore + + self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False) # type: ignore + + def forward(self, x): + x_list = [] + for i in range(x.shape[1]): + x_i = x[:, i] + x_i_v = F.conv2d(x_i.unsqueeze(1), self.weight_v, padding=1) + x_i_h = F.conv2d(x_i.unsqueeze(1), self.weight_h, padding=1) + x_i = torch.sqrt(torch.pow(x_i_v, 2) + torch.pow(x_i_h, 2) + 1e-6) + x_list.append(x_i) + + x = torch.cat(x_list, dim=1) + + return x + + +class SPSRNet(nn.Module): + def __init__( + self, + state_dict, + norm=None, + act: str = "leakyrelu", + upsampler: str = "upconv", + mode: B.ConvMode = "CNA", + ): + super(SPSRNet, self).__init__() + self.model_arch = "SPSR" + self.sub_type = "SR" + + self.state = state_dict + self.norm = norm + self.act = act + self.upsampler = upsampler + self.mode = mode + + self.num_blocks = self.get_num_blocks() + + self.in_nc: int = self.state["model.0.weight"].shape[1] + self.out_nc: int = self.state["f_HR_conv1.0.bias"].shape[0] + + self.scale = self.get_scale(4) + self.num_filters: int = self.state["model.0.weight"].shape[0] + + self.supports_fp16 = True + self.supports_bfp16 = True + self.min_size_restriction = None + + n_upscale = int(math.log(self.scale, 2)) + if self.scale == 3: + n_upscale = 1 + + fea_conv = B.conv_block( + self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None + ) + rb_blocks = [ + B.RRDB( + self.num_filters, + kernel_size=3, + gc=32, + stride=1, + bias=True, + pad_type="zero", + norm_type=norm, + act_type=act, + mode="CNA", + ) + for _ in range(self.num_blocks) + ] + LR_conv = B.conv_block( + self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=norm, + act_type=None, + mode=mode, + ) + + if upsampler == "upconv": + upsample_block = B.upconv_block + elif upsampler == "pixelshuffle": + upsample_block = B.pixelshuffle_block + else: + raise NotImplementedError(f"upsample mode [{upsampler}] is not found") + if self.scale == 3: + a_upsampler = upsample_block( + self.num_filters, self.num_filters, 3, act_type=act + ) + else: + a_upsampler = [ + upsample_block(self.num_filters, self.num_filters, act_type=act) + for _ in range(n_upscale) + ] + self.HR_conv0_new = B.conv_block( + self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=None, + act_type=act, + ) + self.HR_conv1_new = B.conv_block( + self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=None, + act_type=None, + ) + + self.model = B.sequential( + fea_conv, + B.ShortcutBlockSPSR(B.sequential(*rb_blocks, LR_conv)), + *a_upsampler, + self.HR_conv0_new, + ) + + self.get_g_nopadding = Get_gradient_nopadding() + + self.b_fea_conv = B.conv_block( + self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None + ) + + self.b_concat_1 = B.conv_block( + 2 * self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=None, + act_type=None, + ) + self.b_block_1 = B.RRDB( + self.num_filters * 2, + kernel_size=3, + gc=32, + stride=1, + bias=True, + pad_type="zero", + norm_type=norm, + act_type=act, + mode="CNA", + ) + + self.b_concat_2 = B.conv_block( + 2 * self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=None, + act_type=None, + ) + self.b_block_2 = B.RRDB( + self.num_filters * 2, + kernel_size=3, + gc=32, + stride=1, + bias=True, + pad_type="zero", + norm_type=norm, + act_type=act, + mode="CNA", + ) + + self.b_concat_3 = B.conv_block( + 2 * self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=None, + act_type=None, + ) + self.b_block_3 = B.RRDB( + self.num_filters * 2, + kernel_size=3, + gc=32, + stride=1, + bias=True, + pad_type="zero", + norm_type=norm, + act_type=act, + mode="CNA", + ) + + self.b_concat_4 = B.conv_block( + 2 * self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=None, + act_type=None, + ) + self.b_block_4 = B.RRDB( + self.num_filters * 2, + kernel_size=3, + gc=32, + stride=1, + bias=True, + pad_type="zero", + norm_type=norm, + act_type=act, + mode="CNA", + ) + + self.b_LR_conv = B.conv_block( + self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=norm, + act_type=None, + mode=mode, + ) + + if upsampler == "upconv": + upsample_block = B.upconv_block + elif upsampler == "pixelshuffle": + upsample_block = B.pixelshuffle_block + else: + raise NotImplementedError(f"upsample mode [{upsampler}] is not found") + if self.scale == 3: + b_upsampler = upsample_block( + self.num_filters, self.num_filters, 3, act_type=act + ) + else: + b_upsampler = [ + upsample_block(self.num_filters, self.num_filters, act_type=act) + for _ in range(n_upscale) + ] + + b_HR_conv0 = B.conv_block( + self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=None, + act_type=act, + ) + b_HR_conv1 = B.conv_block( + self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=None, + act_type=None, + ) + + self.b_module = B.sequential(*b_upsampler, b_HR_conv0, b_HR_conv1) + + self.conv_w = B.conv_block( + self.num_filters, self.out_nc, kernel_size=1, norm_type=None, act_type=None + ) + + self.f_concat = B.conv_block( + self.num_filters * 2, + self.num_filters, + kernel_size=3, + norm_type=None, + act_type=None, + ) + + self.f_block = B.RRDB( + self.num_filters * 2, + kernel_size=3, + gc=32, + stride=1, + bias=True, + pad_type="zero", + norm_type=norm, + act_type=act, + mode="CNA", + ) + + self.f_HR_conv0 = B.conv_block( + self.num_filters, + self.num_filters, + kernel_size=3, + norm_type=None, + act_type=act, + ) + self.f_HR_conv1 = B.conv_block( + self.num_filters, self.out_nc, kernel_size=3, norm_type=None, act_type=None + ) + + self.load_state_dict(self.state, strict=False) + + def get_scale(self, min_part: int = 4) -> int: + n = 0 + for part in list(self.state): + parts = part.split(".") + if len(parts) == 3: + part_num = int(parts[1]) + if part_num > min_part and parts[0] == "model" and parts[2] == "weight": + n += 1 + return 2**n + + def get_num_blocks(self) -> int: + nb = 0 + for part in list(self.state): + parts = part.split(".") + n_parts = len(parts) + if n_parts == 5 and parts[2] == "sub": + nb = int(parts[3]) + return nb + + def forward(self, x): + x_grad = self.get_g_nopadding(x) + x = self.model[0](x) + + x, block_list = self.model[1](x) + + x_ori = x + for i in range(5): + x = block_list[i](x) + x_fea1 = x + + for i in range(5): + x = block_list[i + 5](x) + x_fea2 = x + + for i in range(5): + x = block_list[i + 10](x) + x_fea3 = x + + for i in range(5): + x = block_list[i + 15](x) + x_fea4 = x + + x = block_list[20:](x) + # short cut + x = x_ori + x + x = self.model[2:](x) + x = self.HR_conv1_new(x) + + x_b_fea = self.b_fea_conv(x_grad) + x_cat_1 = torch.cat([x_b_fea, x_fea1], dim=1) + + x_cat_1 = self.b_block_1(x_cat_1) + x_cat_1 = self.b_concat_1(x_cat_1) + + x_cat_2 = torch.cat([x_cat_1, x_fea2], dim=1) + + x_cat_2 = self.b_block_2(x_cat_2) + x_cat_2 = self.b_concat_2(x_cat_2) + + x_cat_3 = torch.cat([x_cat_2, x_fea3], dim=1) + + x_cat_3 = self.b_block_3(x_cat_3) + x_cat_3 = self.b_concat_3(x_cat_3) + + x_cat_4 = torch.cat([x_cat_3, x_fea4], dim=1) + + x_cat_4 = self.b_block_4(x_cat_4) + x_cat_4 = self.b_concat_4(x_cat_4) + + x_cat_4 = self.b_LR_conv(x_cat_4) + + # short cut + x_cat_4 = x_cat_4 + x_b_fea + x_branch = self.b_module(x_cat_4) + + # x_out_branch = self.conv_w(x_branch) + ######## + x_branch_d = x_branch + x_f_cat = torch.cat([x_branch_d, x], dim=1) + x_f_cat = self.f_block(x_f_cat) + x_out = self.f_concat(x_f_cat) + x_out = self.f_HR_conv0(x_out) + x_out = self.f_HR_conv1(x_out) + + ######### + # return x_out_branch, x_out, x_grad + return x_out diff --git a/comfy_extras/chainner_models/architecture/SRVGG.py b/comfy_extras/chainner_models/architecture/SRVGG.py new file mode 100644 index 0000000000000000000000000000000000000000..7a8ec37ae5dc4effd0ba688cf4c3a51801e1f2c9 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/SRVGG.py @@ -0,0 +1,114 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import math + +import torch.nn as nn +import torch.nn.functional as F + + +class SRVGGNetCompact(nn.Module): + """A compact VGG-style network structure for super-resolution. + It is a compact network structure, which performs upsampling in the last layer and no convolution is + conducted on the HR feature space. + Args: + num_in_ch (int): Channel number of inputs. Default: 3. + num_out_ch (int): Channel number of outputs. Default: 3. + num_feat (int): Channel number of intermediate features. Default: 64. + num_conv (int): Number of convolution layers in the body network. Default: 16. + upscale (int): Upsampling factor. Default: 4. + act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu. + """ + + def __init__( + self, + state_dict, + act_type: str = "prelu", + ): + super(SRVGGNetCompact, self).__init__() + self.model_arch = "SRVGG (RealESRGAN)" + self.sub_type = "SR" + + self.act_type = act_type + + self.state = state_dict + + if "params" in self.state: + self.state = self.state["params"] + + self.key_arr = list(self.state.keys()) + + self.in_nc = self.get_in_nc() + self.num_feat = self.get_num_feats() + self.num_conv = self.get_num_conv() + self.out_nc = self.in_nc # :( + self.pixelshuffle_shape = None # Defined in get_scale() + self.scale = self.get_scale() + + self.supports_fp16 = True + self.supports_bfp16 = True + self.min_size_restriction = None + + self.body = nn.ModuleList() + # the first conv + self.body.append(nn.Conv2d(self.in_nc, self.num_feat, 3, 1, 1)) + # the first activation + if act_type == "relu": + activation = nn.ReLU(inplace=True) + elif act_type == "prelu": + activation = nn.PReLU(num_parameters=self.num_feat) + elif act_type == "leakyrelu": + activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) + self.body.append(activation) # type: ignore + + # the body structure + for _ in range(self.num_conv): + self.body.append(nn.Conv2d(self.num_feat, self.num_feat, 3, 1, 1)) + # activation + if act_type == "relu": + activation = nn.ReLU(inplace=True) + elif act_type == "prelu": + activation = nn.PReLU(num_parameters=self.num_feat) + elif act_type == "leakyrelu": + activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) + self.body.append(activation) # type: ignore + + # the last conv + self.body.append(nn.Conv2d(self.num_feat, self.pixelshuffle_shape, 3, 1, 1)) # type: ignore + # upsample + self.upsampler = nn.PixelShuffle(self.scale) + + self.load_state_dict(self.state, strict=False) + + def get_num_conv(self) -> int: + return (int(self.key_arr[-1].split(".")[1]) - 2) // 2 + + def get_num_feats(self) -> int: + return self.state[self.key_arr[0]].shape[0] + + def get_in_nc(self) -> int: + return self.state[self.key_arr[0]].shape[1] + + def get_scale(self) -> int: + self.pixelshuffle_shape = self.state[self.key_arr[-1]].shape[0] + # Assume out_nc is the same as in_nc + # I cant think of a better way to do that + self.out_nc = self.in_nc + scale = math.sqrt(self.pixelshuffle_shape / self.out_nc) + if scale - int(scale) > 0: + print( + "out_nc is probably different than in_nc, scale calculation might be wrong" + ) + scale = int(scale) + return scale + + def forward(self, x): + out = x + for i in range(0, len(self.body)): + out = self.body[i](out) + + out = self.upsampler(out) + # add the nearest upsampled image, so that the network learns the residual + base = F.interpolate(x, scale_factor=self.scale, mode="nearest") + out += base + return out diff --git a/comfy_extras/chainner_models/architecture/SwiftSRGAN.py b/comfy_extras/chainner_models/architecture/SwiftSRGAN.py new file mode 100644 index 0000000000000000000000000000000000000000..dbb7725b08dc2462661b7ba45db605a06fadacb9 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/SwiftSRGAN.py @@ -0,0 +1,161 @@ +# From https://github.com/Koushik0901/Swift-SRGAN/blob/master/swift-srgan/models.py + +import torch +from torch import nn + + +class SeperableConv2d(nn.Module): + def __init__( + self, in_channels, out_channels, kernel_size, stride=1, padding=1, bias=True + ): + super(SeperableConv2d, self).__init__() + self.depthwise = nn.Conv2d( + in_channels, + in_channels, + kernel_size=kernel_size, + stride=stride, + groups=in_channels, + bias=bias, + padding=padding, + ) + self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias) + + def forward(self, x): + return self.pointwise(self.depthwise(x)) + + +class ConvBlock(nn.Module): + def __init__( + self, + in_channels, + out_channels, + use_act=True, + use_bn=True, + discriminator=False, + **kwargs, + ): + super(ConvBlock, self).__init__() + + self.use_act = use_act + self.cnn = SeperableConv2d(in_channels, out_channels, **kwargs, bias=not use_bn) + self.bn = nn.BatchNorm2d(out_channels) if use_bn else nn.Identity() + self.act = ( + nn.LeakyReLU(0.2, inplace=True) + if discriminator + else nn.PReLU(num_parameters=out_channels) + ) + + def forward(self, x): + return self.act(self.bn(self.cnn(x))) if self.use_act else self.bn(self.cnn(x)) + + +class UpsampleBlock(nn.Module): + def __init__(self, in_channels, scale_factor): + super(UpsampleBlock, self).__init__() + + self.conv = SeperableConv2d( + in_channels, + in_channels * scale_factor**2, + kernel_size=3, + stride=1, + padding=1, + ) + self.ps = nn.PixelShuffle( + scale_factor + ) # (in_channels * 4, H, W) -> (in_channels, H*2, W*2) + self.act = nn.PReLU(num_parameters=in_channels) + + def forward(self, x): + return self.act(self.ps(self.conv(x))) + + +class ResidualBlock(nn.Module): + def __init__(self, in_channels): + super(ResidualBlock, self).__init__() + + self.block1 = ConvBlock( + in_channels, in_channels, kernel_size=3, stride=1, padding=1 + ) + self.block2 = ConvBlock( + in_channels, in_channels, kernel_size=3, stride=1, padding=1, use_act=False + ) + + def forward(self, x): + out = self.block1(x) + out = self.block2(out) + return out + x + + +class Generator(nn.Module): + """Swift-SRGAN Generator + Args: + in_channels (int): number of input image channels. + num_channels (int): number of hidden channels. + num_blocks (int): number of residual blocks. + upscale_factor (int): factor to upscale the image [2x, 4x, 8x]. + Returns: + torch.Tensor: super resolution image + """ + + def __init__( + self, + state_dict, + ): + super(Generator, self).__init__() + self.model_arch = "Swift-SRGAN" + self.sub_type = "SR" + self.state = state_dict + if "model" in self.state: + self.state = self.state["model"] + + self.in_nc: int = self.state["initial.cnn.depthwise.weight"].shape[0] + self.out_nc: int = self.state["final_conv.pointwise.weight"].shape[0] + self.num_filters: int = self.state["initial.cnn.pointwise.weight"].shape[0] + self.num_blocks = len( + set([x.split(".")[1] for x in self.state.keys() if "residual" in x]) + ) + self.scale: int = 2 ** len( + set([x.split(".")[1] for x in self.state.keys() if "upsampler" in x]) + ) + + in_channels = self.in_nc + num_channels = self.num_filters + num_blocks = self.num_blocks + upscale_factor = self.scale + + self.supports_fp16 = True + self.supports_bfp16 = True + self.min_size_restriction = None + + self.initial = ConvBlock( + in_channels, num_channels, kernel_size=9, stride=1, padding=4, use_bn=False + ) + self.residual = nn.Sequential( + *[ResidualBlock(num_channels) for _ in range(num_blocks)] + ) + self.convblock = ConvBlock( + num_channels, + num_channels, + kernel_size=3, + stride=1, + padding=1, + use_act=False, + ) + self.upsampler = nn.Sequential( + *[ + UpsampleBlock(num_channels, scale_factor=2) + for _ in range(upscale_factor // 2) + ] + ) + self.final_conv = SeperableConv2d( + num_channels, in_channels, kernel_size=9, stride=1, padding=4 + ) + + self.load_state_dict(self.state, strict=False) + + def forward(self, x): + initial = self.initial(x) + x = self.residual(initial) + x = self.convblock(x) + initial + x = self.upsampler(x) + return (torch.tanh(self.final_conv(x)) + 1) / 2 diff --git a/comfy_extras/chainner_models/architecture/Swin2SR.py b/comfy_extras/chainner_models/architecture/Swin2SR.py new file mode 100644 index 0000000000000000000000000000000000000000..cb57ecfc4ada45a6b087247017732437b1af0fcc --- /dev/null +++ b/comfy_extras/chainner_models/architecture/Swin2SR.py @@ -0,0 +1,1377 @@ +# pylint: skip-file +# ----------------------------------------------------------------------------------- +# Swin2SR: Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration, https://arxiv.org/abs/2209.11345 +# Written by Conde and Choi et al. +# From: https://raw.githubusercontent.com/mv-lab/swin2sr/main/models/network_swin2sr.py +# ----------------------------------------------------------------------------------- + +import math +import re + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint + +# Originally from the timm package +from .timm.drop import DropPath +from .timm.helpers import to_2tuple +from .timm.weight_init import trunc_normal_ + + +class Mlp(nn.Module): + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + drop=0.0, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def window_partition(x, window_size): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) + windows = ( + x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + ) + return windows + + +def window_reverse(windows, window_size, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + Returns: + x: (B, H, W, C) + """ + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view( + B, H // window_size, W // window_size, window_size, window_size, -1 + ) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + +class WindowAttention(nn.Module): + r"""Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + pretrained_window_size (tuple[int]): The height and width of the window in pre-training. + """ + + def __init__( + self, + dim, + window_size, + num_heads, + qkv_bias=True, + attn_drop=0.0, + proj_drop=0.0, + pretrained_window_size=[0, 0], + ): + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.pretrained_window_size = pretrained_window_size + self.num_heads = num_heads + + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) # type: ignore + + # mlp to generate continuous relative position bias + self.cpb_mlp = nn.Sequential( + nn.Linear(2, 512, bias=True), + nn.ReLU(inplace=True), + nn.Linear(512, num_heads, bias=False), + ) + + # get relative_coords_table + relative_coords_h = torch.arange( + -(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32 + ) + relative_coords_w = torch.arange( + -(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32 + ) + relative_coords_table = ( + torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w])) + .permute(1, 2, 0) + .contiguous() + .unsqueeze(0) + ) # 1, 2*Wh-1, 2*Ww-1, 2 + if pretrained_window_size[0] > 0: + relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1 + relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1 + else: + relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1 + relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1 + relative_coords_table *= 8 # normalize to -8, 8 + relative_coords_table = ( + torch.sign(relative_coords_table) + * torch.log2(torch.abs(relative_coords_table) + 1.0) + / np.log2(8) + ) + + self.register_buffer("relative_coords_table", relative_coords_table) + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = ( + coords_flatten[:, :, None] - coords_flatten[:, None, :] + ) # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute( + 1, 2, 0 + ).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index) + + self.qkv = nn.Linear(dim, dim * 3, bias=False) + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(dim)) # type: ignore + self.v_bias = nn.Parameter(torch.zeros(dim)) # type: ignore + else: + self.q_bias = None + self.v_bias = None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, mask=None): + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv_bias = None + if self.q_bias is not None: + qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # type: ignore + qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = ( + qkv[0], + qkv[1], + qkv[2], + ) # make torchscript happy (cannot use tensor as tuple) + + # cosine attention + attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) + logit_scale = torch.clamp( + self.logit_scale, + max=torch.log(torch.tensor(1.0 / 0.01)).to(self.logit_scale.device), + ).exp() + attn = attn * logit_scale + + relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view( + -1, self.num_heads + ) + relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( # type: ignore + self.window_size[0] * self.window_size[1], + self.window_size[0] * self.window_size[1], + -1, + ) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute( + 2, 0, 1 + ).contiguous() # nH, Wh*Ww, Wh*Ww + relative_position_bias = 16 * torch.sigmoid(relative_position_bias) + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( + 1 + ).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def extra_repr(self) -> str: + return ( + f"dim={self.dim}, window_size={self.window_size}, " + f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" + ) + + def flops(self, N): + # calculate flops for 1 window with token length of N + flops = 0 + # qkv = self.qkv(x) + flops += N * self.dim * 3 * self.dim + # attn = (q @ k.transpose(-2, -1)) + flops += self.num_heads * N * (self.dim // self.num_heads) * N + # x = (attn @ v) + flops += self.num_heads * N * N * (self.dim // self.num_heads) + # x = self.proj(x) + flops += N * self.dim * self.dim + return flops + + +class SwinTransformerBlock(nn.Module): + r"""Swin Transformer Block. + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resulotion. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + pretrained_window_size (int): Window size in pre-training. + """ + + def __init__( + self, + dim, + input_resolution, + num_heads, + window_size=7, + shift_size=0, + mlp_ratio=4.0, + qkv_bias=True, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + pretrained_window_size=0, + ): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + if min(self.input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(self.input_resolution) + assert ( + 0 <= self.shift_size < self.window_size + ), "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, + window_size=to_2tuple(self.window_size), + num_heads=num_heads, + qkv_bias=qkv_bias, + attn_drop=attn_drop, + proj_drop=drop, + pretrained_window_size=to_2tuple(pretrained_window_size), + ) + + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=drop, + ) + + if self.shift_size > 0: + attn_mask = self.calculate_mask(self.input_resolution) + else: + attn_mask = None + + self.register_buffer("attn_mask", attn_mask) + + def calculate_mask(self, x_size): + # calculate attention mask for SW-MSA + H, W = x_size + img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 + h_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + w_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition( + img_mask, self.window_size + ) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( + attn_mask == 0, float(0.0) + ) + + return attn_mask + + def forward(self, x, x_size): + H, W = x_size + B, L, C = x.shape + # assert L == H * W, "input feature has wrong size" + + shortcut = x + x = x.view(B, H, W, C) + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll( + x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) + ) + else: + shifted_x = x + + # partition windows + x_windows = window_partition( + shifted_x, self.window_size + ) # nW*B, window_size, window_size, C + x_windows = x_windows.view( + -1, self.window_size * self.window_size, C + ) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size + if self.input_resolution == x_size: + attn_windows = self.attn( + x_windows, mask=self.attn_mask + ) # nW*B, window_size*window_size, C + else: + attn_windows = self.attn( + x_windows, mask=self.calculate_mask(x_size).to(x.device) + ) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C + + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll( + shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) + ) + else: + x = shifted_x + x = x.view(B, H * W, C) + x = shortcut + self.drop_path(self.norm1(x)) + + # FFN + x = x + self.drop_path(self.norm2(self.mlp(x))) + + return x + + def extra_repr(self) -> str: + return ( + f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " + f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" + ) + + def flops(self): + flops = 0 + H, W = self.input_resolution + # norm1 + flops += self.dim * H * W + # W-MSA/SW-MSA + nW = H * W / self.window_size / self.window_size + flops += nW * self.attn.flops(self.window_size * self.window_size) + # mlp + flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio + # norm2 + flops += self.dim * H * W + return flops + + +class PatchMerging(nn.Module): + r"""Patch Merging Layer. + Args: + input_resolution (tuple[int]): Resolution of input feature. + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(2 * dim) + + def forward(self, x): + """ + x: B, H*W, C + """ + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." + + x = x.view(B, H, W, C) + + x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C + x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C + x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C + x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C + x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C + x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C + + x = self.reduction(x) + x = self.norm(x) + + return x + + def extra_repr(self) -> str: + return f"input_resolution={self.input_resolution}, dim={self.dim}" + + def flops(self): + H, W = self.input_resolution + flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim + flops += H * W * self.dim // 2 + return flops + + +class BasicLayer(nn.Module): + """A basic Swin Transformer layer for one stage. + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + pretrained_window_size (int): Local window size in pre-training. + """ + + def __init__( + self, + dim, + input_resolution, + depth, + num_heads, + window_size, + mlp_ratio=4.0, + qkv_bias=True, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + norm_layer=nn.LayerNorm, + downsample=None, + use_checkpoint=False, + pretrained_window_size=0, + ): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList( + [ + SwinTransformerBlock( + dim=dim, + input_resolution=input_resolution, + num_heads=num_heads, + window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + drop=drop, + attn_drop=attn_drop, + drop_path=drop_path[i] + if isinstance(drop_path, list) + else drop_path, + norm_layer=norm_layer, + pretrained_window_size=pretrained_window_size, + ) + for i in range(depth) + ] + ) + + # patch merging layer + if downsample is not None: + self.downsample = downsample( + input_resolution, dim=dim, norm_layer=norm_layer + ) + else: + self.downsample = None + + def forward(self, x, x_size): + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x, x_size) + else: + x = blk(x, x_size) + if self.downsample is not None: + x = self.downsample(x) + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" + + def flops(self): + flops = 0 + for blk in self.blocks: + flops += blk.flops() # type: ignore + if self.downsample is not None: + flops += self.downsample.flops() + return flops + + def _init_respostnorm(self): + for blk in self.blocks: + nn.init.constant_(blk.norm1.bias, 0) # type: ignore + nn.init.constant_(blk.norm1.weight, 0) # type: ignore + nn.init.constant_(blk.norm2.bias, 0) # type: ignore + nn.init.constant_(blk.norm2.weight, 0) # type: ignore + + +class PatchEmbed(nn.Module): + r"""Image to Patch Embedding + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__( + self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None + ): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] # type: ignore + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=patch_size, stride=patch_size # type: ignore + ) + if norm_layer is not None: + self.norm = norm_layer(embed_dim) + else: + self.norm = None + + def forward(self, x): + B, C, H, W = x.shape + # FIXME look at relaxing size constraints + # assert H == self.img_size[0] and W == self.img_size[1], + # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C + if self.norm is not None: + x = self.norm(x) + return x + + def flops(self): + Ho, Wo = self.patches_resolution + flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) # type: ignore + if self.norm is not None: + flops += Ho * Wo * self.embed_dim + return flops + + +class RSTB(nn.Module): + """Residual Swin Transformer Block (RSTB). + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + img_size: Input image size. + patch_size: Patch size. + resi_connection: The convolutional block before residual connection. + """ + + def __init__( + self, + dim, + input_resolution, + depth, + num_heads, + window_size, + mlp_ratio=4.0, + qkv_bias=True, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + norm_layer=nn.LayerNorm, + downsample=None, + use_checkpoint=False, + img_size=224, + patch_size=4, + resi_connection="1conv", + ): + super(RSTB, self).__init__() + + self.dim = dim + self.input_resolution = input_resolution + + self.residual_group = BasicLayer( + dim=dim, + input_resolution=input_resolution, + depth=depth, + num_heads=num_heads, + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + drop=drop, + attn_drop=attn_drop, + drop_path=drop_path, + norm_layer=norm_layer, + downsample=downsample, + use_checkpoint=use_checkpoint, + ) + + if resi_connection == "1conv": + self.conv = nn.Conv2d(dim, dim, 3, 1, 1) + elif resi_connection == "3conv": + # to save parameters and memory + self.conv = nn.Sequential( + nn.Conv2d(dim, dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim, 3, 1, 1), + ) + + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=dim, + embed_dim=dim, + norm_layer=None, + ) + + self.patch_unembed = PatchUnEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=dim, + embed_dim=dim, + norm_layer=None, + ) + + def forward(self, x, x_size): + return ( + self.patch_embed( + self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size)) + ) + + x + ) + + def flops(self): + flops = 0 + flops += self.residual_group.flops() + H, W = self.input_resolution + flops += H * W * self.dim * self.dim * 9 + flops += self.patch_embed.flops() + flops += self.patch_unembed.flops() + + return flops + + +class PatchUnEmbed(nn.Module): + r"""Image to Patch Unembedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__( + self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None + ): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] # type: ignore + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + def forward(self, x, x_size): + B, HW, C = x.shape + x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C + return x + + def flops(self): + flops = 0 + return flops + + +class Upsample(nn.Sequential): + """Upsample module. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError( + f"scale {scale} is not supported. " "Supported scales: 2^n and 3." + ) + super(Upsample, self).__init__(*m) + + +class Upsample_hf(nn.Sequential): + """Upsample module. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError( + f"scale {scale} is not supported. " "Supported scales: 2^n and 3." + ) + super(Upsample_hf, self).__init__(*m) + + +class UpsampleOneStep(nn.Sequential): + """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) + Used in lightweight SR to save parameters. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + + """ + + def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): + self.num_feat = num_feat + self.input_resolution = input_resolution + m = [] + m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) + m.append(nn.PixelShuffle(scale)) + super(UpsampleOneStep, self).__init__(*m) + + def flops(self): + H, W = self.input_resolution # type: ignore + flops = H * W * self.num_feat * 3 * 9 + return flops + + +class Swin2SR(nn.Module): + r"""Swin2SR + A PyTorch impl of : `Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration`. + + Args: + img_size (int | tuple(int)): Input image size. Default 64 + patch_size (int | tuple(int)): Patch size. Default: 1 + in_chans (int): Number of input image channels. Default: 3 + embed_dim (int): Patch embedding dimension. Default: 96 + depths (tuple(int)): Depth of each Swin Transformer layer. + num_heads (tuple(int)): Number of attention heads in different layers. + window_size (int): Window size. Default: 7 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False + patch_norm (bool): If True, add normalization after patch embedding. Default: True + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False + upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction + img_range: Image range. 1. or 255. + upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__( + self, + state_dict, + **kwargs, + ): + super(Swin2SR, self).__init__() + + # Defaults + img_size = 128 + patch_size = 1 + in_chans = 3 + embed_dim = 96 + depths = [6, 6, 6, 6] + num_heads = [6, 6, 6, 6] + window_size = 7 + mlp_ratio = 4.0 + qkv_bias = True + drop_rate = 0.0 + attn_drop_rate = 0.0 + drop_path_rate = 0.1 + norm_layer = nn.LayerNorm + ape = False + patch_norm = True + use_checkpoint = False + upscale = 2 + img_range = 1.0 + upsampler = "" + resi_connection = "1conv" + num_in_ch = in_chans + num_out_ch = in_chans + num_feat = 64 + + self.model_arch = "Swin2SR" + self.sub_type = "SR" + self.state = state_dict + if "params_ema" in self.state: + self.state = self.state["params_ema"] + elif "params" in self.state: + self.state = self.state["params"] + + state_keys = self.state.keys() + + if "conv_before_upsample.0.weight" in state_keys: + if "conv_aux.weight" in state_keys: + upsampler = "pixelshuffle_aux" + elif "conv_up1.weight" in state_keys: + upsampler = "nearest+conv" + else: + upsampler = "pixelshuffle" + supports_fp16 = False + elif "upsample.0.weight" in state_keys: + upsampler = "pixelshuffledirect" + else: + upsampler = "" + + num_feat = ( + self.state.get("conv_before_upsample.0.weight", None).shape[1] + if self.state.get("conv_before_upsample.weight", None) + else 64 + ) + + num_in_ch = self.state["conv_first.weight"].shape[1] + in_chans = num_in_ch + if "conv_last.weight" in state_keys: + num_out_ch = self.state["conv_last.weight"].shape[0] + else: + num_out_ch = num_in_ch + + upscale = 1 + if upsampler == "nearest+conv": + upsample_keys = [ + x for x in state_keys if "conv_up" in x and "bias" not in x + ] + + for upsample_key in upsample_keys: + upscale *= 2 + elif upsampler == "pixelshuffle" or upsampler == "pixelshuffle_aux": + upsample_keys = [ + x + for x in state_keys + if "upsample" in x and "conv" not in x and "bias" not in x + ] + for upsample_key in upsample_keys: + shape = self.state[upsample_key].shape[0] + upscale *= math.sqrt(shape // num_feat) + upscale = int(upscale) + elif upsampler == "pixelshuffledirect": + upscale = int( + math.sqrt(self.state["upsample.0.bias"].shape[0] // num_out_ch) + ) + + max_layer_num = 0 + max_block_num = 0 + for key in state_keys: + result = re.match( + r"layers.(\d*).residual_group.blocks.(\d*).norm1.weight", key + ) + if result: + layer_num, block_num = result.groups() + max_layer_num = max(max_layer_num, int(layer_num)) + max_block_num = max(max_block_num, int(block_num)) + + depths = [max_block_num + 1 for _ in range(max_layer_num + 1)] + + if ( + "layers.0.residual_group.blocks.0.attn.relative_position_bias_table" + in state_keys + ): + num_heads_num = self.state[ + "layers.0.residual_group.blocks.0.attn.relative_position_bias_table" + ].shape[-1] + num_heads = [num_heads_num for _ in range(max_layer_num + 1)] + else: + num_heads = depths + + embed_dim = self.state["conv_first.weight"].shape[0] + + mlp_ratio = float( + self.state["layers.0.residual_group.blocks.0.mlp.fc1.bias"].shape[0] + / embed_dim + ) + + # TODO: could actually count the layers, but this should do + if "layers.0.conv.4.weight" in state_keys: + resi_connection = "3conv" + else: + resi_connection = "1conv" + + window_size = int( + math.sqrt( + self.state[ + "layers.0.residual_group.blocks.0.attn.relative_position_index" + ].shape[0] + ) + ) + + if "layers.0.residual_group.blocks.1.attn_mask" in state_keys: + img_size = int( + math.sqrt( + self.state["layers.0.residual_group.blocks.1.attn_mask"].shape[0] + ) + * window_size + ) + + # The JPEG models are the only ones with window-size 7, and they also use this range + img_range = 255.0 if window_size == 7 else 1.0 + + self.in_nc = num_in_ch + self.out_nc = num_out_ch + self.num_feat = num_feat + self.embed_dim = embed_dim + self.num_heads = num_heads + self.depths = depths + self.window_size = window_size + self.mlp_ratio = mlp_ratio + self.scale = upscale + self.upsampler = upsampler + self.img_size = img_size + self.img_range = img_range + self.resi_connection = resi_connection + + self.supports_fp16 = False # Too much weirdness to support this at the moment + self.supports_bfp16 = True + self.min_size_restriction = 16 + + ## END AUTO DETECTION + + if in_chans == 3: + rgb_mean = (0.4488, 0.4371, 0.4040) + self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) + else: + self.mean = torch.zeros(1, 1, 1, 1) + self.upscale = upscale + self.upsampler = upsampler + self.window_size = window_size + + ##################################################################################################### + ################################### 1, shallow feature extraction ################################### + self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) + + ##################################################################################################### + ################################### 2, deep feature extraction ###################################### + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.ape = ape + self.patch_norm = patch_norm + self.num_features = embed_dim + self.mlp_ratio = mlp_ratio + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=embed_dim, + embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None, + ) + num_patches = self.patch_embed.num_patches + patches_resolution = self.patch_embed.patches_resolution + self.patches_resolution = patches_resolution + + # merge non-overlapping patches into image + self.patch_unembed = PatchUnEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=embed_dim, + embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None, + ) + + # absolute position embedding + if self.ape: + self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) # type: ignore + trunc_normal_(self.absolute_pos_embed, std=0.02) + + self.pos_drop = nn.Dropout(p=drop_rate) + + # stochastic depth + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) + ] # stochastic depth decay rule + + # build Residual Swin Transformer blocks (RSTB) + self.layers = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = RSTB( + dim=embed_dim, + input_resolution=(patches_resolution[0], patches_resolution[1]), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, + drop=drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], # type: ignore # no impact on SR results + norm_layer=norm_layer, + downsample=None, + use_checkpoint=use_checkpoint, + img_size=img_size, + patch_size=patch_size, + resi_connection=resi_connection, + ) + self.layers.append(layer) + + if self.upsampler == "pixelshuffle_hf": + self.layers_hf = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = RSTB( + dim=embed_dim, + input_resolution=(patches_resolution[0], patches_resolution[1]), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, + drop=drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], # type: ignore # no impact on SR results # type: ignore + norm_layer=norm_layer, + downsample=None, + use_checkpoint=use_checkpoint, + img_size=img_size, + patch_size=patch_size, + resi_connection=resi_connection, + ) + self.layers_hf.append(layer) + + self.norm = norm_layer(self.num_features) + + # build the last conv layer in deep feature extraction + if resi_connection == "1conv": + self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + elif resi_connection == "3conv": + # to save parameters and memory + self.conv_after_body = nn.Sequential( + nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1), + ) + + ##################################################################################################### + ################################ 3, high quality image reconstruction ################################ + if self.upsampler == "pixelshuffle": + # for classical SR + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + elif self.upsampler == "pixelshuffle_aux": + self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.conv_after_aux = nn.Sequential( + nn.Conv2d(3, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + + elif self.upsampler == "pixelshuffle_hf": + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.upsample = Upsample(upscale, num_feat) + self.upsample_hf = Upsample_hf(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.conv_first_hf = nn.Sequential( + nn.Conv2d(num_feat, embed_dim, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + self.conv_before_upsample_hf = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + + elif self.upsampler == "pixelshuffledirect": + # for lightweight SR (to save parameters) + self.upsample = UpsampleOneStep( + upscale, + embed_dim, + num_out_ch, + (patches_resolution[0], patches_resolution[1]), + ) + elif self.upsampler == "nearest+conv": + # for real-world SR (less artifacts) + assert self.upscale == 4, "only support x4 now." + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + else: + # for image denoising and JPEG compression artifact reduction + self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) + + self.apply(self._init_weights) + + self.load_state_dict(state_dict) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore # type: ignore + def no_weight_decay(self): + return {"absolute_pos_embed"} + + @torch.jit.ignore # type: ignore + def no_weight_decay_keywords(self): + return {"relative_position_bias_table"} + + def check_image_size(self, x): + _, _, h, w = x.size() + mod_pad_h = (self.window_size - h % self.window_size) % self.window_size + mod_pad_w = (self.window_size - w % self.window_size) % self.window_size + x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect") + return x + + def forward_features(self, x): + x_size = (x.shape[2], x.shape[3]) + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers: + x = layer(x, x_size) + + x = self.norm(x) # B L C + x = self.patch_unembed(x, x_size) + + return x + + def forward_features_hf(self, x): + x_size = (x.shape[2], x.shape[3]) + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers_hf: + x = layer(x, x_size) + + x = self.norm(x) # B L C + x = self.patch_unembed(x, x_size) + + return x + + def forward(self, x): + H, W = x.shape[2:] + x = self.check_image_size(x) + + self.mean = self.mean.type_as(x) + x = (x - self.mean) * self.img_range + + if self.upsampler == "pixelshuffle": + # for classical SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.conv_last(self.upsample(x)) + elif self.upsampler == "pixelshuffle_aux": + bicubic = F.interpolate( + x, + size=(H * self.upscale, W * self.upscale), + mode="bicubic", + align_corners=False, + ) + bicubic = self.conv_bicubic(bicubic) + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + aux = self.conv_aux(x) # b, 3, LR_H, LR_W + x = self.conv_after_aux(aux) + x = ( + self.upsample(x)[:, :, : H * self.upscale, : W * self.upscale] + + bicubic[:, :, : H * self.upscale, : W * self.upscale] + ) + x = self.conv_last(x) + aux = aux / self.img_range + self.mean + elif self.upsampler == "pixelshuffle_hf": + # for classical SR with HF + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x_before = self.conv_before_upsample(x) + x_out = self.conv_last(self.upsample(x_before)) + + x_hf = self.conv_first_hf(x_before) + x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf + x_hf = self.conv_before_upsample_hf(x_hf) + x_hf = self.conv_last_hf(self.upsample_hf(x_hf)) + x = x_out + x_hf + x_hf = x_hf / self.img_range + self.mean + + elif self.upsampler == "pixelshuffledirect": + # for lightweight SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.upsample(x) + elif self.upsampler == "nearest+conv": + # for real-world SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.lrelu( + self.conv_up1( + torch.nn.functional.interpolate(x, scale_factor=2, mode="nearest") + ) + ) + x = self.lrelu( + self.conv_up2( + torch.nn.functional.interpolate(x, scale_factor=2, mode="nearest") + ) + ) + x = self.conv_last(self.lrelu(self.conv_hr(x))) + else: + # for image denoising and JPEG compression artifact reduction + x_first = self.conv_first(x) + res = self.conv_after_body(self.forward_features(x_first)) + x_first + x = x + self.conv_last(res) + + x = x / self.img_range + self.mean + if self.upsampler == "pixelshuffle_aux": + # NOTE: I removed an "aux" output here. not sure what that was for + return x[:, :, : H * self.upscale, : W * self.upscale] # type: ignore + + elif self.upsampler == "pixelshuffle_hf": + x_out = x_out / self.img_range + self.mean # type: ignore + return x_out[:, :, : H * self.upscale, : W * self.upscale], x[:, :, : H * self.upscale, : W * self.upscale], x_hf[:, :, : H * self.upscale, : W * self.upscale] # type: ignore + + else: + return x[:, :, : H * self.upscale, : W * self.upscale] + + def flops(self): + flops = 0 + H, W = self.patches_resolution + flops += H * W * 3 * self.embed_dim * 9 + flops += self.patch_embed.flops() + for i, layer in enumerate(self.layers): + flops += layer.flops() # type: ignore + flops += H * W * 3 * self.embed_dim * self.embed_dim + flops += self.upsample.flops() # type: ignore + return flops diff --git a/comfy_extras/chainner_models/architecture/SwinIR.py b/comfy_extras/chainner_models/architecture/SwinIR.py new file mode 100644 index 0000000000000000000000000000000000000000..439dcbcb2b12f7ff27a01490f4c2ae7b6e4eab9e --- /dev/null +++ b/comfy_extras/chainner_models/architecture/SwinIR.py @@ -0,0 +1,1224 @@ +# pylint: skip-file +# ----------------------------------------------------------------------------------- +# SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257 +# Originally Written by Ze Liu, Modified by Jingyun Liang. +# ----------------------------------------------------------------------------------- + +import math +import re + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint + +# Originally from the timm package +from .timm.drop import DropPath +from .timm.helpers import to_2tuple +from .timm.weight_init import trunc_normal_ + + +class Mlp(nn.Module): + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + drop=0.0, + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def window_partition(x, window_size): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) + windows = ( + x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + ) + return windows + + +def window_reverse(windows, window_size, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + + Returns: + x: (B, H, W, C) + """ + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view( + B, H // window_size, W // window_size, window_size, window_size, -1 + ) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + +class WindowAttention(nn.Module): + r"""Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + """ + + def __init__( + self, + dim, + window_size, + num_heads, + qkv_bias=True, + qk_scale=None, + attn_drop=0.0, + proj_drop=0.0, + ): + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim**-0.5 + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( # type: ignore + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) + ) # 2*Wh-1 * 2*Ww-1, nH + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = ( + coords_flatten[:, :, None] - coords_flatten[:, None, :] + ) # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute( + 1, 2, 0 + ).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index) + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + + self.proj_drop = nn.Dropout(proj_drop) + + trunc_normal_(self.relative_position_bias_table, std=0.02) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, mask=None): + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv = ( + self.qkv(x) + .reshape(B_, N, 3, self.num_heads, C // self.num_heads) + .permute(2, 0, 3, 1, 4) + ) + q, k, v = ( + qkv[0], + qkv[1], + qkv[2], + ) # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = q @ k.transpose(-2, -1) + + relative_position_bias = self.relative_position_bias_table[ + self.relative_position_index.view(-1) # type: ignore + ].view( + self.window_size[0] * self.window_size[1], + self.window_size[0] * self.window_size[1], + -1, + ) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute( + 2, 0, 1 + ).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( + 1 + ).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}" + + def flops(self, N): + # calculate flops for 1 window with token length of N + flops = 0 + # qkv = self.qkv(x) + flops += N * self.dim * 3 * self.dim + # attn = (q @ k.transpose(-2, -1)) + flops += self.num_heads * N * (self.dim // self.num_heads) * N + # x = (attn @ v) + flops += self.num_heads * N * N * (self.dim // self.num_heads) + # x = self.proj(x) + flops += N * self.dim * self.dim + return flops + + +class SwinTransformerBlock(nn.Module): + r"""Swin Transformer Block. + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resulotion. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__( + self, + dim, + input_resolution, + num_heads, + window_size=7, + shift_size=0, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + ): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + if min(self.input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(self.input_resolution) + assert ( + 0 <= self.shift_size < self.window_size + ), "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, + window_size=to_2tuple(self.window_size), + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop, + ) + + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=drop, + ) + + if self.shift_size > 0: + attn_mask = self.calculate_mask(self.input_resolution) + else: + attn_mask = None + + self.register_buffer("attn_mask", attn_mask) + + def calculate_mask(self, x_size): + # calculate attention mask for SW-MSA + H, W = x_size + img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 + h_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + w_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition( + img_mask, self.window_size + ) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( + attn_mask == 0, float(0.0) + ) + + return attn_mask + + def forward(self, x, x_size): + H, W = x_size + B, L, C = x.shape + # assert L == H * W, "input feature has wrong size" + + shortcut = x + x = self.norm1(x) + x = x.view(B, H, W, C) + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll( + x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) + ) + else: + shifted_x = x + + # partition windows + x_windows = window_partition( + shifted_x, self.window_size + ) # nW*B, window_size, window_size, C + x_windows = x_windows.view( + -1, self.window_size * self.window_size, C + ) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size + if self.input_resolution == x_size: + attn_windows = self.attn( + x_windows, mask=self.attn_mask + ) # nW*B, window_size*window_size, C + else: + attn_windows = self.attn( + x_windows, mask=self.calculate_mask(x_size).to(x.device) + ) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C + + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll( + shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) + ) + else: + x = shifted_x + x = x.view(B, H * W, C) + + # FFN + x = shortcut + self.drop_path(x) + x = x + self.drop_path(self.mlp(self.norm2(x))) + + return x + + def extra_repr(self) -> str: + return ( + f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " + f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" + ) + + def flops(self): + flops = 0 + H, W = self.input_resolution + # norm1 + flops += self.dim * H * W + # W-MSA/SW-MSA + nW = H * W / self.window_size / self.window_size + flops += nW * self.attn.flops(self.window_size * self.window_size) + # mlp + flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio + # norm2 + flops += self.dim * H * W + return flops + + +class PatchMerging(nn.Module): + r"""Patch Merging Layer. + + Args: + input_resolution (tuple[int]): Resolution of input feature. + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def forward(self, x): + """ + x: B, H*W, C + """ + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." + + x = x.view(B, H, W, C) + + x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C + x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C + x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C + x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C + x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C + x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C + + x = self.norm(x) + x = self.reduction(x) + + return x + + def extra_repr(self) -> str: + return f"input_resolution={self.input_resolution}, dim={self.dim}" + + def flops(self): + H, W = self.input_resolution + flops = H * W * self.dim + flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim + return flops + + +class BasicLayer(nn.Module): + """A basic Swin Transformer layer for one stage. + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + """ + + def __init__( + self, + dim, + input_resolution, + depth, + num_heads, + window_size, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + norm_layer=nn.LayerNorm, + downsample=None, + use_checkpoint=False, + ): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList( + [ + SwinTransformerBlock( + dim=dim, + input_resolution=input_resolution, + num_heads=num_heads, + window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop, + attn_drop=attn_drop, + drop_path=drop_path[i] + if isinstance(drop_path, list) + else drop_path, + norm_layer=norm_layer, + ) + for i in range(depth) + ] + ) + + # patch merging layer + if downsample is not None: + self.downsample = downsample( + input_resolution, dim=dim, norm_layer=norm_layer + ) + else: + self.downsample = None + + def forward(self, x, x_size): + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x, x_size) + else: + x = blk(x, x_size) + if self.downsample is not None: + x = self.downsample(x) + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" + + def flops(self): + flops = 0 + for blk in self.blocks: + flops += blk.flops() # type: ignore + if self.downsample is not None: + flops += self.downsample.flops() + return flops + + +class RSTB(nn.Module): + """Residual Swin Transformer Block (RSTB). + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + img_size: Input image size. + patch_size: Patch size. + resi_connection: The convolutional block before residual connection. + """ + + def __init__( + self, + dim, + input_resolution, + depth, + num_heads, + window_size, + mlp_ratio=4.0, + qkv_bias=True, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + norm_layer=nn.LayerNorm, + downsample=None, + use_checkpoint=False, + img_size=224, + patch_size=4, + resi_connection="1conv", + ): + super(RSTB, self).__init__() + + self.dim = dim + self.input_resolution = input_resolution + + self.residual_group = BasicLayer( + dim=dim, + input_resolution=input_resolution, + depth=depth, + num_heads=num_heads, + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop, + attn_drop=attn_drop, + drop_path=drop_path, + norm_layer=norm_layer, + downsample=downsample, + use_checkpoint=use_checkpoint, + ) + + if resi_connection == "1conv": + self.conv = nn.Conv2d(dim, dim, 3, 1, 1) + elif resi_connection == "3conv": + # to save parameters and memory + self.conv = nn.Sequential( + nn.Conv2d(dim, dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim, 3, 1, 1), + ) + + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=0, + embed_dim=dim, + norm_layer=None, + ) + + self.patch_unembed = PatchUnEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=0, + embed_dim=dim, + norm_layer=None, + ) + + def forward(self, x, x_size): + return ( + self.patch_embed( + self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size)) + ) + + x + ) + + def flops(self): + flops = 0 + flops += self.residual_group.flops() + H, W = self.input_resolution + flops += H * W * self.dim * self.dim * 9 + flops += self.patch_embed.flops() + flops += self.patch_unembed.flops() + + return flops + + +class PatchEmbed(nn.Module): + r"""Image to Patch Embedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__( + self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None + ): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [ + img_size[0] // patch_size[0], # type: ignore + img_size[1] // patch_size[1], # type: ignore + ] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + if norm_layer is not None: + self.norm = norm_layer(embed_dim) + else: + self.norm = None + + def forward(self, x): + x = x.flatten(2).transpose(1, 2) # B Ph*Pw C + if self.norm is not None: + x = self.norm(x) + return x + + def flops(self): + flops = 0 + H, W = self.img_size + if self.norm is not None: + flops += H * W * self.embed_dim # type: ignore + return flops + + +class PatchUnEmbed(nn.Module): + r"""Image to Patch Unembedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__( + self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None + ): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [ + img_size[0] // patch_size[0], # type: ignore + img_size[1] // patch_size[1], # type: ignore + ] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + def forward(self, x, x_size): + B, HW, C = x.shape + x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C + return x + + def flops(self): + flops = 0 + return flops + + +class Upsample(nn.Sequential): + """Upsample module. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError( + f"scale {scale} is not supported. " "Supported scales: 2^n and 3." + ) + super(Upsample, self).__init__(*m) + + +class UpsampleOneStep(nn.Sequential): + """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) + Used in lightweight SR to save parameters. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + + """ + + def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): + self.num_feat = num_feat + self.input_resolution = input_resolution + m = [] + m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) + m.append(nn.PixelShuffle(scale)) + super(UpsampleOneStep, self).__init__(*m) + + def flops(self): + H, W = self.input_resolution # type: ignore + flops = H * W * self.num_feat * 3 * 9 + return flops + + +class SwinIR(nn.Module): + r"""SwinIR + A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer. + + Args: + img_size (int | tuple(int)): Input image size. Default 64 + patch_size (int | tuple(int)): Patch size. Default: 1 + in_chans (int): Number of input image channels. Default: 3 + embed_dim (int): Patch embedding dimension. Default: 96 + depths (tuple(int)): Depth of each Swin Transformer layer. + num_heads (tuple(int)): Number of attention heads in different layers. + window_size (int): Window size. Default: 7 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False + patch_norm (bool): If True, add normalization after patch embedding. Default: True + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False + upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction + img_range: Image range. 1. or 255. + upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__( + self, + state_dict, + **kwargs, + ): + super(SwinIR, self).__init__() + + # Defaults + img_size = 64 + patch_size = 1 + in_chans = 3 + embed_dim = 96 + depths = [6, 6, 6, 6] + num_heads = [6, 6, 6, 6] + window_size = 7 + mlp_ratio = 4.0 + qkv_bias = True + qk_scale = None + drop_rate = 0.0 + attn_drop_rate = 0.0 + drop_path_rate = 0.1 + norm_layer = nn.LayerNorm + ape = False + patch_norm = True + use_checkpoint = False + upscale = 2 + img_range = 1.0 + upsampler = "" + resi_connection = "1conv" + num_feat = 64 + num_in_ch = in_chans + num_out_ch = in_chans + supports_fp16 = True + self.start_unshuffle = 1 + + self.model_arch = "SwinIR" + self.sub_type = "SR" + self.state = state_dict + if "params_ema" in self.state: + self.state = self.state["params_ema"] + elif "params" in self.state: + self.state = self.state["params"] + + state_keys = self.state.keys() + + if "conv_before_upsample.0.weight" in state_keys: + if "conv_up1.weight" in state_keys: + upsampler = "nearest+conv" + else: + upsampler = "pixelshuffle" + supports_fp16 = False + elif "upsample.0.weight" in state_keys: + upsampler = "pixelshuffledirect" + else: + upsampler = "" + + num_feat = ( + self.state.get("conv_before_upsample.0.weight", None).shape[1] + if self.state.get("conv_before_upsample.weight", None) + else 64 + ) + + if "conv_first.1.weight" in self.state: + self.state["conv_first.weight"] = self.state.pop("conv_first.1.weight") + self.state["conv_first.bias"] = self.state.pop("conv_first.1.bias") + self.start_unshuffle = round(math.sqrt(self.state["conv_first.weight"].shape[1] // 3)) + + num_in_ch = self.state["conv_first.weight"].shape[1] + in_chans = num_in_ch + if "conv_last.weight" in state_keys: + num_out_ch = self.state["conv_last.weight"].shape[0] + else: + num_out_ch = num_in_ch + + upscale = 1 + if upsampler == "nearest+conv": + upsample_keys = [ + x for x in state_keys if "conv_up" in x and "bias" not in x + ] + + for upsample_key in upsample_keys: + upscale *= 2 + elif upsampler == "pixelshuffle": + upsample_keys = [ + x + for x in state_keys + if "upsample" in x and "conv" not in x and "bias" not in x + ] + for upsample_key in upsample_keys: + shape = self.state[upsample_key].shape[0] + upscale *= math.sqrt(shape // num_feat) + upscale = int(upscale) + elif upsampler == "pixelshuffledirect": + upscale = int( + math.sqrt(self.state["upsample.0.bias"].shape[0] // num_out_ch) + ) + + max_layer_num = 0 + max_block_num = 0 + for key in state_keys: + result = re.match( + r"layers.(\d*).residual_group.blocks.(\d*).norm1.weight", key + ) + if result: + layer_num, block_num = result.groups() + max_layer_num = max(max_layer_num, int(layer_num)) + max_block_num = max(max_block_num, int(block_num)) + + depths = [max_block_num + 1 for _ in range(max_layer_num + 1)] + + if ( + "layers.0.residual_group.blocks.0.attn.relative_position_bias_table" + in state_keys + ): + num_heads_num = self.state[ + "layers.0.residual_group.blocks.0.attn.relative_position_bias_table" + ].shape[-1] + num_heads = [num_heads_num for _ in range(max_layer_num + 1)] + else: + num_heads = depths + + embed_dim = self.state["conv_first.weight"].shape[0] + + mlp_ratio = float( + self.state["layers.0.residual_group.blocks.0.mlp.fc1.bias"].shape[0] + / embed_dim + ) + + # TODO: could actually count the layers, but this should do + if "layers.0.conv.4.weight" in state_keys: + resi_connection = "3conv" + else: + resi_connection = "1conv" + + window_size = int( + math.sqrt( + self.state[ + "layers.0.residual_group.blocks.0.attn.relative_position_index" + ].shape[0] + ) + ) + + if "layers.0.residual_group.blocks.1.attn_mask" in state_keys: + img_size = int( + math.sqrt( + self.state["layers.0.residual_group.blocks.1.attn_mask"].shape[0] + ) + * window_size + ) + + # The JPEG models are the only ones with window-size 7, and they also use this range + img_range = 255.0 if window_size == 7 else 1.0 + + self.in_nc = num_in_ch + self.out_nc = num_out_ch + self.num_feat = num_feat + self.embed_dim = embed_dim + self.num_heads = num_heads + self.depths = depths + self.window_size = window_size + self.mlp_ratio = mlp_ratio + self.scale = upscale / self.start_unshuffle + self.upsampler = upsampler + self.img_size = img_size + self.img_range = img_range + self.resi_connection = resi_connection + + self.supports_fp16 = False # Too much weirdness to support this at the moment + self.supports_bfp16 = True + self.min_size_restriction = 16 + + self.img_range = img_range + if in_chans == 3: + rgb_mean = (0.4488, 0.4371, 0.4040) + self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) + else: + self.mean = torch.zeros(1, 1, 1, 1) + self.upscale = upscale + self.upsampler = upsampler + self.window_size = window_size + + ##################################################################################################### + ################################### 1, shallow feature extraction ################################### + self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) + + ##################################################################################################### + ################################### 2, deep feature extraction ###################################### + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.ape = ape + self.patch_norm = patch_norm + self.num_features = embed_dim + self.mlp_ratio = mlp_ratio + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=embed_dim, + embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None, + ) + num_patches = self.patch_embed.num_patches + patches_resolution = self.patch_embed.patches_resolution + self.patches_resolution = patches_resolution + + # merge non-overlapping patches into image + self.patch_unembed = PatchUnEmbed( + img_size=img_size, + patch_size=patch_size, + in_chans=embed_dim, + embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None, + ) + + # absolute position embedding + if self.ape: + self.absolute_pos_embed = nn.Parameter( # type: ignore + torch.zeros(1, num_patches, embed_dim) + ) + trunc_normal_(self.absolute_pos_embed, std=0.02) + + self.pos_drop = nn.Dropout(p=drop_rate) + + # stochastic depth + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) + ] # stochastic depth decay rule + + # build Residual Swin Transformer blocks (RSTB) + self.layers = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = RSTB( + dim=embed_dim, + input_resolution=(patches_resolution[0], patches_resolution[1]), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[ + sum(depths[:i_layer]) : sum(depths[: i_layer + 1]) # type: ignore + ], # no impact on SR results + norm_layer=norm_layer, + downsample=None, + use_checkpoint=use_checkpoint, + img_size=img_size, + patch_size=patch_size, + resi_connection=resi_connection, + ) + self.layers.append(layer) + self.norm = norm_layer(self.num_features) + + # build the last conv layer in deep feature extraction + if resi_connection == "1conv": + self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + elif resi_connection == "3conv": + # to save parameters and memory + self.conv_after_body = nn.Sequential( + nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1), + ) + + ##################################################################################################### + ################################ 3, high quality image reconstruction ################################ + if self.upsampler == "pixelshuffle": + # for classical SR + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + elif self.upsampler == "pixelshuffledirect": + # for lightweight SR (to save parameters) + self.upsample = UpsampleOneStep( + upscale, + embed_dim, + num_out_ch, + (patches_resolution[0], patches_resolution[1]), + ) + elif self.upsampler == "nearest+conv": + # for real-world SR (less artifacts) + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) + ) + self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + if self.upscale == 4: + self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + elif self.upscale == 8: + self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + else: + # for image denoising and JPEG compression artifact reduction + self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) + + self.apply(self._init_weights) + self.load_state_dict(self.state, strict=False) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=0.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore # type: ignore + def no_weight_decay(self): + return {"absolute_pos_embed"} + + @torch.jit.ignore # type: ignore + def no_weight_decay_keywords(self): + return {"relative_position_bias_table"} + + def check_image_size(self, x): + _, _, h, w = x.size() + mod_pad_h = (self.window_size - h % self.window_size) % self.window_size + mod_pad_w = (self.window_size - w % self.window_size) % self.window_size + x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect") + return x + + def forward_features(self, x): + x_size = (x.shape[2], x.shape[3]) + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers: + x = layer(x, x_size) + + x = self.norm(x) # B L C + x = self.patch_unembed(x, x_size) + + return x + + def forward(self, x): + H, W = x.shape[2:] + x = self.check_image_size(x) + + self.mean = self.mean.type_as(x) + x = (x - self.mean) * self.img_range + + if self.start_unshuffle > 1: + x = torch.nn.functional.pixel_unshuffle(x, self.start_unshuffle) + + if self.upsampler == "pixelshuffle": + # for classical SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.conv_last(self.upsample(x)) + elif self.upsampler == "pixelshuffledirect": + # for lightweight SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.upsample(x) + elif self.upsampler == "nearest+conv": + # for real-world SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.lrelu( + self.conv_up1( + torch.nn.functional.interpolate(x, scale_factor=2, mode="nearest") # type: ignore + ) + ) + if self.upscale == 4: + x = self.lrelu( + self.conv_up2( + torch.nn.functional.interpolate( # type: ignore + x, scale_factor=2, mode="nearest" + ) + ) + ) + elif self.upscale == 8: + x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) + x = self.lrelu(self.conv_up3(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) + x = self.conv_last(self.lrelu(self.conv_hr(x))) + else: + # for image denoising and JPEG compression artifact reduction + x_first = self.conv_first(x) + res = self.conv_after_body(self.forward_features(x_first)) + x_first + x = x + self.conv_last(res) + + x = x / self.img_range + self.mean + + return x[:, :, : H * self.upscale, : W * self.upscale] + + def flops(self): + flops = 0 + H, W = self.patches_resolution + flops += H * W * 3 * self.embed_dim * 9 + flops += self.patch_embed.flops() + for i, layer in enumerate(self.layers): + flops += layer.flops() # type: ignore + flops += H * W * 3 * self.embed_dim * self.embed_dim + flops += self.upsample.flops() # type: ignore + return flops diff --git a/comfy_extras/chainner_models/architecture/__init__.py b/comfy_extras/chainner_models/architecture/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/comfy_extras/chainner_models/architecture/block.py b/comfy_extras/chainner_models/architecture/block.py new file mode 100644 index 0000000000000000000000000000000000000000..d7bc5d227008a73c40f9087da1ee3ae2ca25a896 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/block.py @@ -0,0 +1,546 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +from __future__ import annotations + +from collections import OrderedDict +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal + +import torch +import torch.nn as nn + +#################### +# Basic blocks +#################### + + +def act(act_type: str, inplace=True, neg_slope=0.2, n_prelu=1): + # helper selecting activation + # neg_slope: for leakyrelu and init of prelu + # n_prelu: for p_relu num_parameters + act_type = act_type.lower() + if act_type == "relu": + layer = nn.ReLU(inplace) + elif act_type == "leakyrelu": + layer = nn.LeakyReLU(neg_slope, inplace) + elif act_type == "prelu": + layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) + else: + raise NotImplementedError( + "activation layer [{:s}] is not found".format(act_type) + ) + return layer + + +def norm(norm_type: str, nc: int): + # helper selecting normalization layer + norm_type = norm_type.lower() + if norm_type == "batch": + layer = nn.BatchNorm2d(nc, affine=True) + elif norm_type == "instance": + layer = nn.InstanceNorm2d(nc, affine=False) + else: + raise NotImplementedError( + "normalization layer [{:s}] is not found".format(norm_type) + ) + return layer + + +def pad(pad_type: str, padding): + # helper selecting padding layer + # if padding is 'zero', do by conv layers + pad_type = pad_type.lower() + if padding == 0: + return None + if pad_type == "reflect": + layer = nn.ReflectionPad2d(padding) + elif pad_type == "replicate": + layer = nn.ReplicationPad2d(padding) + else: + raise NotImplementedError( + "padding layer [{:s}] is not implemented".format(pad_type) + ) + return layer + + +def get_valid_padding(kernel_size, dilation): + kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) + padding = (kernel_size - 1) // 2 + return padding + + +class ConcatBlock(nn.Module): + # Concat the output of a submodule to its input + def __init__(self, submodule): + super(ConcatBlock, self).__init__() + self.sub = submodule + + def forward(self, x): + output = torch.cat((x, self.sub(x)), dim=1) + return output + + def __repr__(self): + tmpstr = "Identity .. \n|" + modstr = self.sub.__repr__().replace("\n", "\n|") + tmpstr = tmpstr + modstr + return tmpstr + + +class ShortcutBlock(nn.Module): + # Elementwise sum the output of a submodule to its input + def __init__(self, submodule): + super(ShortcutBlock, self).__init__() + self.sub = submodule + + def forward(self, x): + output = x + self.sub(x) + return output + + def __repr__(self): + tmpstr = "Identity + \n|" + modstr = self.sub.__repr__().replace("\n", "\n|") + tmpstr = tmpstr + modstr + return tmpstr + + +class ShortcutBlockSPSR(nn.Module): + # Elementwise sum the output of a submodule to its input + def __init__(self, submodule): + super(ShortcutBlockSPSR, self).__init__() + self.sub = submodule + + def forward(self, x): + return x, self.sub + + def __repr__(self): + tmpstr = "Identity + \n|" + modstr = self.sub.__repr__().replace("\n", "\n|") + tmpstr = tmpstr + modstr + return tmpstr + + +def sequential(*args): + # Flatten Sequential. It unwraps nn.Sequential. + if len(args) == 1: + if isinstance(args[0], OrderedDict): + raise NotImplementedError("sequential does not support OrderedDict input.") + return args[0] # No sequential is needed. + modules = [] + for module in args: + if isinstance(module, nn.Sequential): + for submodule in module.children(): + modules.append(submodule) + elif isinstance(module, nn.Module): + modules.append(module) + return nn.Sequential(*modules) + + +ConvMode = Literal["CNA", "NAC", "CNAC"] + + +# 2x2x2 Conv Block +def conv_block_2c2( + in_nc, + out_nc, + act_type="relu", +): + return sequential( + nn.Conv2d(in_nc, out_nc, kernel_size=2, padding=1), + nn.Conv2d(out_nc, out_nc, kernel_size=2, padding=0), + act(act_type) if act_type else None, + ) + + +def conv_block( + in_nc: int, + out_nc: int, + kernel_size, + stride=1, + dilation=1, + groups=1, + bias=True, + pad_type="zero", + norm_type: str | None = None, + act_type: str | None = "relu", + mode: ConvMode = "CNA", + c2x2=False, +): + """ + Conv layer with padding, normalization, activation + mode: CNA --> Conv -> Norm -> Act + NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16) + """ + + if c2x2: + return conv_block_2c2(in_nc, out_nc, act_type=act_type) + + assert mode in ("CNA", "NAC", "CNAC"), "Wrong conv mode [{:s}]".format(mode) + padding = get_valid_padding(kernel_size, dilation) + p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None + padding = padding if pad_type == "zero" else 0 + + c = nn.Conv2d( + in_nc, + out_nc, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + bias=bias, + groups=groups, + ) + a = act(act_type) if act_type else None + if mode in ("CNA", "CNAC"): + n = norm(norm_type, out_nc) if norm_type else None + return sequential(p, c, n, a) + elif mode == "NAC": + if norm_type is None and act_type is not None: + a = act(act_type, inplace=False) + # Important! + # input----ReLU(inplace)----Conv--+----output + # |________________________| + # inplace ReLU will modify the input, therefore wrong output + n = norm(norm_type, in_nc) if norm_type else None + return sequential(n, a, p, c) + else: + assert False, f"Invalid conv mode {mode}" + + +#################### +# Useful blocks +#################### + + +class ResNetBlock(nn.Module): + """ + ResNet Block, 3-3 style + with extra residual scaling used in EDSR + (Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17) + """ + + def __init__( + self, + in_nc, + mid_nc, + out_nc, + kernel_size=3, + stride=1, + dilation=1, + groups=1, + bias=True, + pad_type="zero", + norm_type=None, + act_type="relu", + mode: ConvMode = "CNA", + res_scale=1, + ): + super(ResNetBlock, self).__init__() + conv0 = conv_block( + in_nc, + mid_nc, + kernel_size, + stride, + dilation, + groups, + bias, + pad_type, + norm_type, + act_type, + mode, + ) + if mode == "CNA": + act_type = None + if mode == "CNAC": # Residual path: |-CNAC-| + act_type = None + norm_type = None + conv1 = conv_block( + mid_nc, + out_nc, + kernel_size, + stride, + dilation, + groups, + bias, + pad_type, + norm_type, + act_type, + mode, + ) + # if in_nc != out_nc: + # self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \ + # None, None) + # print('Need a projecter in ResNetBlock.') + # else: + # self.project = lambda x:x + self.res = sequential(conv0, conv1) + self.res_scale = res_scale + + def forward(self, x): + res = self.res(x).mul(self.res_scale) + return x + res + + +class RRDB(nn.Module): + """ + Residual in Residual Dense Block + (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks) + """ + + def __init__( + self, + nf, + kernel_size=3, + gc=32, + stride=1, + bias: bool = True, + pad_type="zero", + norm_type=None, + act_type="leakyrelu", + mode: ConvMode = "CNA", + _convtype="Conv2D", + _spectral_norm=False, + plus=False, + c2x2=False, + ): + super(RRDB, self).__init__() + self.RDB1 = ResidualDenseBlock_5C( + nf, + kernel_size, + gc, + stride, + bias, + pad_type, + norm_type, + act_type, + mode, + plus=plus, + c2x2=c2x2, + ) + self.RDB2 = ResidualDenseBlock_5C( + nf, + kernel_size, + gc, + stride, + bias, + pad_type, + norm_type, + act_type, + mode, + plus=plus, + c2x2=c2x2, + ) + self.RDB3 = ResidualDenseBlock_5C( + nf, + kernel_size, + gc, + stride, + bias, + pad_type, + norm_type, + act_type, + mode, + plus=plus, + c2x2=c2x2, + ) + + def forward(self, x): + out = self.RDB1(x) + out = self.RDB2(out) + out = self.RDB3(out) + return out * 0.2 + x + + +class ResidualDenseBlock_5C(nn.Module): + """ + Residual Dense Block + style: 5 convs + The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) + Modified options that can be used: + - "Partial Convolution based Padding" arXiv:1811.11718 + - "Spectral normalization" arXiv:1802.05957 + - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C. + {Rakotonirina} and A. {Rasoanaivo} + + Args: + nf (int): Channel number of intermediate features (num_feat). + gc (int): Channels for each growth (num_grow_ch: growth channel, + i.e. intermediate channels). + convtype (str): the type of convolution to use. Default: 'Conv2D' + gaussian_noise (bool): enable the ESRGAN+ gaussian noise (no new + trainable parameters) + plus (bool): enable the additional residual paths from ESRGAN+ + (adds trainable parameters) + """ + + def __init__( + self, + nf=64, + kernel_size=3, + gc=32, + stride=1, + bias: bool = True, + pad_type="zero", + norm_type=None, + act_type="leakyrelu", + mode: ConvMode = "CNA", + plus=False, + c2x2=False, + ): + super(ResidualDenseBlock_5C, self).__init__() + + ## + + self.conv1x1 = conv1x1(nf, gc) if plus else None + ## + + + self.conv1 = conv_block( + nf, + gc, + kernel_size, + stride, + bias=bias, + pad_type=pad_type, + norm_type=norm_type, + act_type=act_type, + mode=mode, + c2x2=c2x2, + ) + self.conv2 = conv_block( + nf + gc, + gc, + kernel_size, + stride, + bias=bias, + pad_type=pad_type, + norm_type=norm_type, + act_type=act_type, + mode=mode, + c2x2=c2x2, + ) + self.conv3 = conv_block( + nf + 2 * gc, + gc, + kernel_size, + stride, + bias=bias, + pad_type=pad_type, + norm_type=norm_type, + act_type=act_type, + mode=mode, + c2x2=c2x2, + ) + self.conv4 = conv_block( + nf + 3 * gc, + gc, + kernel_size, + stride, + bias=bias, + pad_type=pad_type, + norm_type=norm_type, + act_type=act_type, + mode=mode, + c2x2=c2x2, + ) + if mode == "CNA": + last_act = None + else: + last_act = act_type + self.conv5 = conv_block( + nf + 4 * gc, + nf, + 3, + stride, + bias=bias, + pad_type=pad_type, + norm_type=norm_type, + act_type=last_act, + mode=mode, + c2x2=c2x2, + ) + + def forward(self, x): + x1 = self.conv1(x) + x2 = self.conv2(torch.cat((x, x1), 1)) + if self.conv1x1: + # pylint: disable=not-callable + x2 = x2 + self.conv1x1(x) # + + x3 = self.conv3(torch.cat((x, x1, x2), 1)) + x4 = self.conv4(torch.cat((x, x1, x2, x3), 1)) + if self.conv1x1: + x4 = x4 + x2 # + + x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) + return x5 * 0.2 + x + + +def conv1x1(in_planes, out_planes, stride=1): + return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) + + +#################### +# Upsampler +#################### + + +def pixelshuffle_block( + in_nc: int, + out_nc: int, + upscale_factor=2, + kernel_size=3, + stride=1, + bias=True, + pad_type="zero", + norm_type: str | None = None, + act_type="relu", +): + """ + Pixel shuffle layer + (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional + Neural Network, CVPR17) + """ + conv = conv_block( + in_nc, + out_nc * (upscale_factor**2), + kernel_size, + stride, + bias=bias, + pad_type=pad_type, + norm_type=None, + act_type=None, + ) + pixel_shuffle = nn.PixelShuffle(upscale_factor) + + n = norm(norm_type, out_nc) if norm_type else None + a = act(act_type) if act_type else None + return sequential(conv, pixel_shuffle, n, a) + + +def upconv_block( + in_nc: int, + out_nc: int, + upscale_factor=2, + kernel_size=3, + stride=1, + bias=True, + pad_type="zero", + norm_type: str | None = None, + act_type="relu", + mode="nearest", + c2x2=False, +): + # Up conv + # described in https://distill.pub/2016/deconv-checkerboard/ + upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode) + conv = conv_block( + in_nc, + out_nc, + kernel_size, + stride, + bias=bias, + pad_type=pad_type, + norm_type=norm_type, + act_type=act_type, + c2x2=c2x2, + ) + return sequential(upsample, conv) diff --git a/comfy_extras/chainner_models/architecture/face/LICENSE-GFPGAN b/comfy_extras/chainner_models/architecture/face/LICENSE-GFPGAN new file mode 100644 index 0000000000000000000000000000000000000000..5ac273fd509e328f396e6e4444673a3b051a4968 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/LICENSE-GFPGAN @@ -0,0 +1,351 @@ +Tencent is pleased to support the open source community by making GFPGAN available. + +Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. + +GFPGAN is licensed under the Apache License Version 2.0 except for the third-party components listed below. + + +Terms of the Apache License Version 2.0: +--------------------------------------------- +Apache License + +Version 2.0, January 2004 + +http://www.apache.org/licenses/ + +TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION +1. Definitions. + +“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. + +“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. + +“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. + +“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License. + +“Source” form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. + +“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. + +“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). + +“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. + +“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.” + +“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. + +2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. + +3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. + +4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: + +You must give any other recipients of the Work or Derivative Works a copy of this License; and + +You must cause any modified files to carry prominent notices stating that You changed the files; and + +You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and + +If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. + +You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. + +5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. + +6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. + +7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. + +8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. + +9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. + +END OF TERMS AND CONDITIONS + + + +Other dependencies and licenses: + + +Open Source Software licensed under the Apache 2.0 license and Other Licenses of the Third-Party Components therein: +--------------------------------------------- +1. basicsr +Copyright 2018-2020 BasicSR Authors + + +This BasicSR project is released under the Apache 2.0 license. + +A copy of Apache 2.0 is included in this file. + +StyleGAN2 +The codes are modified from the repository stylegan2-pytorch. Many thanks to the author - Kim Seonghyeon 😊 for translating from the official TensorFlow codes to PyTorch ones. Here is the license of stylegan2-pytorch. +The official repository is https://github.com/NVlabs/stylegan2, and here is the NVIDIA license. +DFDNet +The codes are largely modified from the repository DFDNet. Their license is Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. + +Terms of the Nvidia License: +--------------------------------------------- + +1. Definitions + +"Licensor" means any person or entity that distributes its Work. + +"Software" means the original work of authorship made available under +this License. + +"Work" means the Software and any additions to or derivative works of +the Software that are made available under this License. + +"Nvidia Processors" means any central processing unit (CPU), graphics +processing unit (GPU), field-programmable gate array (FPGA), +application-specific integrated circuit (ASIC) or any combination +thereof designed, made, sold, or provided by Nvidia or its affiliates. + +The terms "reproduce," "reproduction," "derivative works," and +"distribution" have the meaning as provided under U.S. copyright law; +provided, however, that for the purposes of this License, derivative +works shall not include works that remain separable from, or merely +link (or bind by name) to the interfaces of, the Work. + +Works, including the Software, are "made available" under this License +by including in or with the Work either (a) a copyright notice +referencing the applicability of this License to the Work, or (b) a +copy of this License. + +2. License Grants + + 2.1 Copyright Grant. Subject to the terms and conditions of this + License, each Licensor grants to you a perpetual, worldwide, + non-exclusive, royalty-free, copyright license to reproduce, + prepare derivative works of, publicly display, publicly perform, + sublicense and distribute its Work and any resulting derivative + works in any form. + +3. Limitations + + 3.1 Redistribution. You may reproduce or distribute the Work only + if (a) you do so under this License, (b) you include a complete + copy of this License with your distribution, and (c) you retain + without modification any copyright, patent, trademark, or + attribution notices that are present in the Work. + + 3.2 Derivative Works. You may specify that additional or different + terms apply to the use, reproduction, and distribution of your + derivative works of the Work ("Your Terms") only if (a) Your Terms + provide that the use limitation in Section 3.3 applies to your + derivative works, and (b) you identify the specific derivative + works that are subject to Your Terms. Notwithstanding Your Terms, + this License (including the redistribution requirements in Section + 3.1) will continue to apply to the Work itself. + + 3.3 Use Limitation. The Work and any derivative works thereof only + may be used or intended for use non-commercially. The Work or + derivative works thereof may be used or intended for use by Nvidia + or its affiliates commercially or non-commercially. As used herein, + "non-commercially" means for research or evaluation purposes only. + + 3.4 Patent Claims. If you bring or threaten to bring a patent claim + against any Licensor (including any claim, cross-claim or + counterclaim in a lawsuit) to enforce any patents that you allege + are infringed by any Work, then your rights under this License from + such Licensor (including the grants in Sections 2.1 and 2.2) will + terminate immediately. + + 3.5 Trademarks. This License does not grant any rights to use any + Licensor's or its affiliates' names, logos, or trademarks, except + as necessary to reproduce the notices described in this License. + + 3.6 Termination. If you violate any term of this License, then your + rights under this License (including the grants in Sections 2.1 and + 2.2) will terminate immediately. + +4. Disclaimer of Warranty. + +THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY +KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR +NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER +THIS LICENSE. + +5. Limitation of Liability. + +EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL +THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE +SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, +INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF +OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK +(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, +LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER +COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF +THE POSSIBILITY OF SUCH DAMAGES. + +MIT License + +Copyright (c) 2019 Kim Seonghyeon + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + + + +Open Source Software licensed under the BSD 3-Clause license: +--------------------------------------------- +1. torchvision +Copyright (c) Soumith Chintala 2016, +All rights reserved. + +2. torch +Copyright (c) 2016- Facebook, Inc (Adam Paszke) +Copyright (c) 2014- Facebook, Inc (Soumith Chintala) +Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert) +Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) +Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) +Copyright (c) 2011-2013 NYU (Clement Farabet) +Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston) +Copyright (c) 2006 Idiap Research Institute (Samy Bengio) +Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz) + + +Terms of the BSD 3-Clause License: +--------------------------------------------- +Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + + +Open Source Software licensed under the BSD 3-Clause License and Other Licenses of the Third-Party Components therein: +--------------------------------------------- +1. numpy +Copyright (c) 2005-2020, NumPy Developers. +All rights reserved. + +A copy of BSD 3-Clause License is included in this file. + +The NumPy repository and source distributions bundle several libraries that are +compatibly licensed. We list these here. + +Name: Numpydoc +Files: doc/sphinxext/numpydoc/* +License: BSD-2-Clause + For details, see doc/sphinxext/LICENSE.txt + +Name: scipy-sphinx-theme +Files: doc/scipy-sphinx-theme/* +License: BSD-3-Clause AND PSF-2.0 AND Apache-2.0 + For details, see doc/scipy-sphinx-theme/LICENSE.txt + +Name: lapack-lite +Files: numpy/linalg/lapack_lite/* +License: BSD-3-Clause + For details, see numpy/linalg/lapack_lite/LICENSE.txt + +Name: tempita +Files: tools/npy_tempita/* +License: MIT + For details, see tools/npy_tempita/license.txt + +Name: dragon4 +Files: numpy/core/src/multiarray/dragon4.c +License: MIT + For license text, see numpy/core/src/multiarray/dragon4.c + + + +Open Source Software licensed under the MIT license: +--------------------------------------------- +1. facexlib +Copyright (c) 2020 Xintao Wang + +2. opencv-python +Copyright (c) Olli-Pekka Heinisuo +Please note that only files in cv2 package are used. + + +Terms of the MIT License: +--------------------------------------------- +Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + + +Open Source Software licensed under the MIT license and Other Licenses of the Third-Party Components therein: +--------------------------------------------- +1. tqdm +Copyright (c) 2013 noamraph + +`tqdm` is a product of collaborative work. +Unless otherwise stated, all authors (see commit logs) retain copyright +for their respective work, and release the work under the MIT licence +(text below). + +Exceptions or notable authors are listed below +in reverse chronological order: + +* files: * + MPLv2.0 2015-2020 (c) Casper da Costa-Luis + [casperdcl](https://github.com/casperdcl). +* files: tqdm/_tqdm.py + MIT 2016 (c) [PR #96] on behalf of Google Inc. +* files: tqdm/_tqdm.py setup.py README.rst MANIFEST.in .gitignore + MIT 2013 (c) Noam Yorav-Raphael, original author. + +[PR #96]: https://github.com/tqdm/tqdm/pull/96 + + +Mozilla Public Licence (MPL) v. 2.0 - Exhibit A +----------------------------------------------- + +This Source Code Form is subject to the terms of the +Mozilla Public License, v. 2.0. +If a copy of the MPL was not distributed with this file, +You can obtain one at https://mozilla.org/MPL/2.0/. + + +MIT License (MIT) +----------------- + +Copyright (c) 2013 noamraph + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the Software is furnished to do so, +subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. \ No newline at end of file diff --git a/comfy_extras/chainner_models/architecture/face/LICENSE-RestoreFormer b/comfy_extras/chainner_models/architecture/face/LICENSE-RestoreFormer new file mode 100644 index 0000000000000000000000000000000000000000..5ac273fd509e328f396e6e4444673a3b051a4968 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/LICENSE-RestoreFormer @@ -0,0 +1,351 @@ +Tencent is pleased to support the open source community by making GFPGAN available. + +Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. + +GFPGAN is licensed under the Apache License Version 2.0 except for the third-party components listed below. + + +Terms of the Apache License Version 2.0: +--------------------------------------------- +Apache License + +Version 2.0, January 2004 + +http://www.apache.org/licenses/ + +TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION +1. Definitions. + +“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. + +“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. + +“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. + +“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License. + +“Source” form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. + +“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. + +“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). + +“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. + +“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.” + +“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. + +2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. + +3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. + +4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: + +You must give any other recipients of the Work or Derivative Works a copy of this License; and + +You must cause any modified files to carry prominent notices stating that You changed the files; and + +You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and + +If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. + +You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. + +5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. + +6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. + +7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. + +8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. + +9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. + +END OF TERMS AND CONDITIONS + + + +Other dependencies and licenses: + + +Open Source Software licensed under the Apache 2.0 license and Other Licenses of the Third-Party Components therein: +--------------------------------------------- +1. basicsr +Copyright 2018-2020 BasicSR Authors + + +This BasicSR project is released under the Apache 2.0 license. + +A copy of Apache 2.0 is included in this file. + +StyleGAN2 +The codes are modified from the repository stylegan2-pytorch. Many thanks to the author - Kim Seonghyeon 😊 for translating from the official TensorFlow codes to PyTorch ones. Here is the license of stylegan2-pytorch. +The official repository is https://github.com/NVlabs/stylegan2, and here is the NVIDIA license. +DFDNet +The codes are largely modified from the repository DFDNet. Their license is Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. + +Terms of the Nvidia License: +--------------------------------------------- + +1. Definitions + +"Licensor" means any person or entity that distributes its Work. + +"Software" means the original work of authorship made available under +this License. + +"Work" means the Software and any additions to or derivative works of +the Software that are made available under this License. + +"Nvidia Processors" means any central processing unit (CPU), graphics +processing unit (GPU), field-programmable gate array (FPGA), +application-specific integrated circuit (ASIC) or any combination +thereof designed, made, sold, or provided by Nvidia or its affiliates. + +The terms "reproduce," "reproduction," "derivative works," and +"distribution" have the meaning as provided under U.S. copyright law; +provided, however, that for the purposes of this License, derivative +works shall not include works that remain separable from, or merely +link (or bind by name) to the interfaces of, the Work. + +Works, including the Software, are "made available" under this License +by including in or with the Work either (a) a copyright notice +referencing the applicability of this License to the Work, or (b) a +copy of this License. + +2. License Grants + + 2.1 Copyright Grant. Subject to the terms and conditions of this + License, each Licensor grants to you a perpetual, worldwide, + non-exclusive, royalty-free, copyright license to reproduce, + prepare derivative works of, publicly display, publicly perform, + sublicense and distribute its Work and any resulting derivative + works in any form. + +3. Limitations + + 3.1 Redistribution. You may reproduce or distribute the Work only + if (a) you do so under this License, (b) you include a complete + copy of this License with your distribution, and (c) you retain + without modification any copyright, patent, trademark, or + attribution notices that are present in the Work. + + 3.2 Derivative Works. You may specify that additional or different + terms apply to the use, reproduction, and distribution of your + derivative works of the Work ("Your Terms") only if (a) Your Terms + provide that the use limitation in Section 3.3 applies to your + derivative works, and (b) you identify the specific derivative + works that are subject to Your Terms. Notwithstanding Your Terms, + this License (including the redistribution requirements in Section + 3.1) will continue to apply to the Work itself. + + 3.3 Use Limitation. The Work and any derivative works thereof only + may be used or intended for use non-commercially. The Work or + derivative works thereof may be used or intended for use by Nvidia + or its affiliates commercially or non-commercially. As used herein, + "non-commercially" means for research or evaluation purposes only. + + 3.4 Patent Claims. If you bring or threaten to bring a patent claim + against any Licensor (including any claim, cross-claim or + counterclaim in a lawsuit) to enforce any patents that you allege + are infringed by any Work, then your rights under this License from + such Licensor (including the grants in Sections 2.1 and 2.2) will + terminate immediately. + + 3.5 Trademarks. This License does not grant any rights to use any + Licensor's or its affiliates' names, logos, or trademarks, except + as necessary to reproduce the notices described in this License. + + 3.6 Termination. If you violate any term of this License, then your + rights under this License (including the grants in Sections 2.1 and + 2.2) will terminate immediately. + +4. Disclaimer of Warranty. + +THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY +KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR +NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER +THIS LICENSE. + +5. Limitation of Liability. + +EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL +THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE +SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, +INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF +OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK +(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, +LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER +COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF +THE POSSIBILITY OF SUCH DAMAGES. + +MIT License + +Copyright (c) 2019 Kim Seonghyeon + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + + + +Open Source Software licensed under the BSD 3-Clause license: +--------------------------------------------- +1. torchvision +Copyright (c) Soumith Chintala 2016, +All rights reserved. + +2. torch +Copyright (c) 2016- Facebook, Inc (Adam Paszke) +Copyright (c) 2014- Facebook, Inc (Soumith Chintala) +Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert) +Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) +Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) +Copyright (c) 2011-2013 NYU (Clement Farabet) +Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston) +Copyright (c) 2006 Idiap Research Institute (Samy Bengio) +Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz) + + +Terms of the BSD 3-Clause License: +--------------------------------------------- +Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + + +Open Source Software licensed under the BSD 3-Clause License and Other Licenses of the Third-Party Components therein: +--------------------------------------------- +1. numpy +Copyright (c) 2005-2020, NumPy Developers. +All rights reserved. + +A copy of BSD 3-Clause License is included in this file. + +The NumPy repository and source distributions bundle several libraries that are +compatibly licensed. We list these here. + +Name: Numpydoc +Files: doc/sphinxext/numpydoc/* +License: BSD-2-Clause + For details, see doc/sphinxext/LICENSE.txt + +Name: scipy-sphinx-theme +Files: doc/scipy-sphinx-theme/* +License: BSD-3-Clause AND PSF-2.0 AND Apache-2.0 + For details, see doc/scipy-sphinx-theme/LICENSE.txt + +Name: lapack-lite +Files: numpy/linalg/lapack_lite/* +License: BSD-3-Clause + For details, see numpy/linalg/lapack_lite/LICENSE.txt + +Name: tempita +Files: tools/npy_tempita/* +License: MIT + For details, see tools/npy_tempita/license.txt + +Name: dragon4 +Files: numpy/core/src/multiarray/dragon4.c +License: MIT + For license text, see numpy/core/src/multiarray/dragon4.c + + + +Open Source Software licensed under the MIT license: +--------------------------------------------- +1. facexlib +Copyright (c) 2020 Xintao Wang + +2. opencv-python +Copyright (c) Olli-Pekka Heinisuo +Please note that only files in cv2 package are used. + + +Terms of the MIT License: +--------------------------------------------- +Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + + +Open Source Software licensed under the MIT license and Other Licenses of the Third-Party Components therein: +--------------------------------------------- +1. tqdm +Copyright (c) 2013 noamraph + +`tqdm` is a product of collaborative work. +Unless otherwise stated, all authors (see commit logs) retain copyright +for their respective work, and release the work under the MIT licence +(text below). + +Exceptions or notable authors are listed below +in reverse chronological order: + +* files: * + MPLv2.0 2015-2020 (c) Casper da Costa-Luis + [casperdcl](https://github.com/casperdcl). +* files: tqdm/_tqdm.py + MIT 2016 (c) [PR #96] on behalf of Google Inc. +* files: tqdm/_tqdm.py setup.py README.rst MANIFEST.in .gitignore + MIT 2013 (c) Noam Yorav-Raphael, original author. + +[PR #96]: https://github.com/tqdm/tqdm/pull/96 + + +Mozilla Public Licence (MPL) v. 2.0 - Exhibit A +----------------------------------------------- + +This Source Code Form is subject to the terms of the +Mozilla Public License, v. 2.0. +If a copy of the MPL was not distributed with this file, +You can obtain one at https://mozilla.org/MPL/2.0/. + + +MIT License (MIT) +----------------- + +Copyright (c) 2013 noamraph + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the Software is furnished to do so, +subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. \ No newline at end of file diff --git a/comfy_extras/chainner_models/architecture/face/LICENSE-codeformer b/comfy_extras/chainner_models/architecture/face/LICENSE-codeformer new file mode 100644 index 0000000000000000000000000000000000000000..be6c4ed8048a7cb436376bbea84cb0bd726ab721 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/LICENSE-codeformer @@ -0,0 +1,35 @@ +S-Lab License 1.0 + +Copyright 2022 S-Lab + +Redistribution and use for non-commercial purpose in source and +binary forms, with or without modification, are permitted provided +that the following conditions are met: + +1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +In the event that redistribution and/or use for commercial purpose in +source or binary forms, with or without modification is required, +please contact the contributor(s) of the work. diff --git a/comfy_extras/chainner_models/architecture/face/arcface_arch.py b/comfy_extras/chainner_models/architecture/face/arcface_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..b548af059a71b38c6c18cd35cbfed7bae7e55441 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/arcface_arch.py @@ -0,0 +1,265 @@ +import torch.nn as nn + + +def conv3x3(inplanes, outplanes, stride=1): + """A simple wrapper for 3x3 convolution with padding. + + Args: + inplanes (int): Channel number of inputs. + outplanes (int): Channel number of outputs. + stride (int): Stride in convolution. Default: 1. + """ + return nn.Conv2d( + inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False + ) + + +class BasicBlock(nn.Module): + """Basic residual block used in the ResNetArcFace architecture. + + Args: + inplanes (int): Channel number of inputs. + planes (int): Channel number of outputs. + stride (int): Stride in convolution. Default: 1. + downsample (nn.Module): The downsample module. Default: None. + """ + + expansion = 1 # output channel expansion ratio + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = nn.BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class IRBlock(nn.Module): + """Improved residual block (IR Block) used in the ResNetArcFace architecture. + + Args: + inplanes (int): Channel number of inputs. + planes (int): Channel number of outputs. + stride (int): Stride in convolution. Default: 1. + downsample (nn.Module): The downsample module. Default: None. + use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. + """ + + expansion = 1 # output channel expansion ratio + + def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True): + super(IRBlock, self).__init__() + self.bn0 = nn.BatchNorm2d(inplanes) + self.conv1 = conv3x3(inplanes, inplanes) + self.bn1 = nn.BatchNorm2d(inplanes) + self.prelu = nn.PReLU() + self.conv2 = conv3x3(inplanes, planes, stride) + self.bn2 = nn.BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + self.use_se = use_se + if self.use_se: + self.se = SEBlock(planes) + + def forward(self, x): + residual = x + out = self.bn0(x) + out = self.conv1(out) + out = self.bn1(out) + out = self.prelu(out) + + out = self.conv2(out) + out = self.bn2(out) + if self.use_se: + out = self.se(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.prelu(out) + + return out + + +class Bottleneck(nn.Module): + """Bottleneck block used in the ResNetArcFace architecture. + + Args: + inplanes (int): Channel number of inputs. + planes (int): Channel number of outputs. + stride (int): Stride in convolution. Default: 1. + downsample (nn.Module): The downsample module. Default: None. + """ + + expansion = 4 # output channel expansion ratio + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(Bottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = nn.Conv2d( + planes, planes, kernel_size=3, stride=stride, padding=1, bias=False + ) + self.bn2 = nn.BatchNorm2d(planes) + self.conv3 = nn.Conv2d( + planes, planes * self.expansion, kernel_size=1, bias=False + ) + self.bn3 = nn.BatchNorm2d(planes * self.expansion) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class SEBlock(nn.Module): + """The squeeze-and-excitation block (SEBlock) used in the IRBlock. + + Args: + channel (int): Channel number of inputs. + reduction (int): Channel reduction ration. Default: 16. + """ + + def __init__(self, channel, reduction=16): + super(SEBlock, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d( + 1 + ) # pool to 1x1 without spatial information + self.fc = nn.Sequential( + nn.Linear(channel, channel // reduction), + nn.PReLU(), + nn.Linear(channel // reduction, channel), + nn.Sigmoid(), + ) + + def forward(self, x): + b, c, _, _ = x.size() + y = self.avg_pool(x).view(b, c) + y = self.fc(y).view(b, c, 1, 1) + return x * y + + +class ResNetArcFace(nn.Module): + """ArcFace with ResNet architectures. + + Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition. + + Args: + block (str): Block used in the ArcFace architecture. + layers (tuple(int)): Block numbers in each layer. + use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. + """ + + def __init__(self, block, layers, use_se=True): + if block == "IRBlock": + block = IRBlock + self.inplanes = 64 + self.use_se = use_se + super(ResNetArcFace, self).__init__() + + self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.prelu = nn.PReLU() + self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.bn4 = nn.BatchNorm2d(512) + self.dropout = nn.Dropout() + self.fc5 = nn.Linear(512 * 8 * 8, 512) + self.bn5 = nn.BatchNorm1d(512) + + # initialization + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.xavier_normal_(m.weight) + elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.Linear): + nn.init.xavier_normal_(m.weight) + nn.init.constant_(m.bias, 0) + + def _make_layer(self, block, planes, num_blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d( + self.inplanes, + planes * block.expansion, + kernel_size=1, + stride=stride, + bias=False, + ), + nn.BatchNorm2d(planes * block.expansion), + ) + layers = [] + layers.append( + block(self.inplanes, planes, stride, downsample, use_se=self.use_se) + ) + self.inplanes = planes + for _ in range(1, num_blocks): + layers.append(block(self.inplanes, planes, use_se=self.use_se)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.prelu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + x = self.bn4(x) + x = self.dropout(x) + x = x.view(x.size(0), -1) + x = self.fc5(x) + x = self.bn5(x) + + return x diff --git a/comfy_extras/chainner_models/architecture/face/codeformer.py b/comfy_extras/chainner_models/architecture/face/codeformer.py new file mode 100644 index 0000000000000000000000000000000000000000..066140078643d2274259283163cd392bb692b409 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/codeformer.py @@ -0,0 +1,790 @@ +""" +Modified from https://github.com/sczhou/CodeFormer +VQGAN code, adapted from the original created by the Unleashing Transformers authors: +https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py +This verison of the arch specifically was gathered from an old version of GFPGAN. If this is a problem, please contact me. +""" +import math +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F +import logging as logger +from torch import Tensor + + +class VectorQuantizer(nn.Module): + def __init__(self, codebook_size, emb_dim, beta): + super(VectorQuantizer, self).__init__() + self.codebook_size = codebook_size # number of embeddings + self.emb_dim = emb_dim # dimension of embedding + self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 + self.embedding = nn.Embedding(self.codebook_size, self.emb_dim) + self.embedding.weight.data.uniform_( + -1.0 / self.codebook_size, 1.0 / self.codebook_size + ) + + def forward(self, z): + # reshape z -> (batch, height, width, channel) and flatten + z = z.permute(0, 2, 3, 1).contiguous() + z_flattened = z.view(-1, self.emb_dim) + + # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z + d = ( + (z_flattened**2).sum(dim=1, keepdim=True) + + (self.embedding.weight**2).sum(1) + - 2 * torch.matmul(z_flattened, self.embedding.weight.t()) + ) + + mean_distance = torch.mean(d) + # find closest encodings + # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) + min_encoding_scores, min_encoding_indices = torch.topk( + d, 1, dim=1, largest=False + ) + # [0-1], higher score, higher confidence + min_encoding_scores = torch.exp(-min_encoding_scores / 10) + + min_encodings = torch.zeros( + min_encoding_indices.shape[0], self.codebook_size + ).to(z) + min_encodings.scatter_(1, min_encoding_indices, 1) + + # get quantized latent vectors + z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) + # compute loss for embedding + loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean( + (z_q - z.detach()) ** 2 + ) + # preserve gradients + z_q = z + (z_q - z).detach() + + # perplexity + e_mean = torch.mean(min_encodings, dim=0) + perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) + # reshape back to match original input shape + z_q = z_q.permute(0, 3, 1, 2).contiguous() + + return ( + z_q, + loss, + { + "perplexity": perplexity, + "min_encodings": min_encodings, + "min_encoding_indices": min_encoding_indices, + "min_encoding_scores": min_encoding_scores, + "mean_distance": mean_distance, + }, + ) + + def get_codebook_feat(self, indices, shape): + # input indices: batch*token_num -> (batch*token_num)*1 + # shape: batch, height, width, channel + indices = indices.view(-1, 1) + min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices) + min_encodings.scatter_(1, indices, 1) + # get quantized latent vectors + z_q = torch.matmul(min_encodings.float(), self.embedding.weight) + + if shape is not None: # reshape back to match original input shape + z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous() + + return z_q + + +class GumbelQuantizer(nn.Module): + def __init__( + self, + codebook_size, + emb_dim, + num_hiddens, + straight_through=False, + kl_weight=5e-4, + temp_init=1.0, + ): + super().__init__() + self.codebook_size = codebook_size # number of embeddings + self.emb_dim = emb_dim # dimension of embedding + self.straight_through = straight_through + self.temperature = temp_init + self.kl_weight = kl_weight + self.proj = nn.Conv2d( + num_hiddens, codebook_size, 1 + ) # projects last encoder layer to quantized logits + self.embed = nn.Embedding(codebook_size, emb_dim) + + def forward(self, z): + hard = self.straight_through if self.training else True + + logits = self.proj(z) + + soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard) + + z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight) + + # + kl divergence to the prior loss + qy = F.softmax(logits, dim=1) + diff = ( + self.kl_weight + * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean() + ) + min_encoding_indices = soft_one_hot.argmax(dim=1) + + return z_q, diff, {"min_encoding_indices": min_encoding_indices} + + +class Downsample(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=2, padding=0 + ) + + def forward(self, x): + pad = (0, 1, 0, 1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + return x + + +class Upsample(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.conv = nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + x = F.interpolate(x, scale_factor=2.0, mode="nearest") + x = self.conv(x) + + return x + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = q.reshape(b, c, h * w) + q = q.permute(0, 2, 1) + k = k.reshape(b, c, h * w) + w_ = torch.bmm(q, k) + w_ = w_ * (int(c) ** (-0.5)) + w_ = F.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b, c, h * w) + w_ = w_.permute(0, 2, 1) + h_ = torch.bmm(v, w_) + h_ = h_.reshape(b, c, h, w) + + h_ = self.proj_out(h_) + + return x + h_ + + +class Encoder(nn.Module): + def __init__( + self, + in_channels, + nf, + out_channels, + ch_mult, + num_res_blocks, + resolution, + attn_resolutions, + ): + super().__init__() + self.nf = nf + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.attn_resolutions = attn_resolutions + + curr_res = self.resolution + in_ch_mult = (1,) + tuple(ch_mult) + + blocks = [] + # initial convultion + blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1)) + + # residual and downsampling blocks, with attention on smaller res (16x16) + for i in range(self.num_resolutions): + block_in_ch = nf * in_ch_mult[i] + block_out_ch = nf * ch_mult[i] + for _ in range(self.num_res_blocks): + blocks.append(ResBlock(block_in_ch, block_out_ch)) + block_in_ch = block_out_ch + if curr_res in attn_resolutions: + blocks.append(AttnBlock(block_in_ch)) + + if i != self.num_resolutions - 1: + blocks.append(Downsample(block_in_ch)) + curr_res = curr_res // 2 + + # non-local attention block + blocks.append(ResBlock(block_in_ch, block_in_ch)) # type: ignore + blocks.append(AttnBlock(block_in_ch)) # type: ignore + blocks.append(ResBlock(block_in_ch, block_in_ch)) # type: ignore + + # normalise and convert to latent size + blocks.append(normalize(block_in_ch)) # type: ignore + blocks.append( + nn.Conv2d(block_in_ch, out_channels, kernel_size=3, stride=1, padding=1) # type: ignore + ) + self.blocks = nn.ModuleList(blocks) + + def forward(self, x): + for block in self.blocks: + x = block(x) + + return x + + +class Generator(nn.Module): + def __init__(self, nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim): + super().__init__() + self.nf = nf + self.ch_mult = ch_mult + self.num_resolutions = len(self.ch_mult) + self.num_res_blocks = res_blocks + self.resolution = img_size + self.attn_resolutions = attn_resolutions + self.in_channels = emb_dim + self.out_channels = 3 + block_in_ch = self.nf * self.ch_mult[-1] + curr_res = self.resolution // 2 ** (self.num_resolutions - 1) + + blocks = [] + # initial conv + blocks.append( + nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1) + ) + + # non-local attention block + blocks.append(ResBlock(block_in_ch, block_in_ch)) + blocks.append(AttnBlock(block_in_ch)) + blocks.append(ResBlock(block_in_ch, block_in_ch)) + + for i in reversed(range(self.num_resolutions)): + block_out_ch = self.nf * self.ch_mult[i] + + for _ in range(self.num_res_blocks): + blocks.append(ResBlock(block_in_ch, block_out_ch)) + block_in_ch = block_out_ch + + if curr_res in self.attn_resolutions: + blocks.append(AttnBlock(block_in_ch)) + + if i != 0: + blocks.append(Upsample(block_in_ch)) + curr_res = curr_res * 2 + + blocks.append(normalize(block_in_ch)) + blocks.append( + nn.Conv2d( + block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1 + ) + ) + + self.blocks = nn.ModuleList(blocks) + + def forward(self, x): + for block in self.blocks: + x = block(x) + + return x + + +class VQAutoEncoder(nn.Module): + def __init__( + self, + img_size, + nf, + ch_mult, + quantizer="nearest", + res_blocks=2, + attn_resolutions=[16], + codebook_size=1024, + emb_dim=256, + beta=0.25, + gumbel_straight_through=False, + gumbel_kl_weight=1e-8, + model_path=None, + ): + super().__init__() + self.in_channels = 3 + self.nf = nf + self.n_blocks = res_blocks + self.codebook_size = codebook_size + self.embed_dim = emb_dim + self.ch_mult = ch_mult + self.resolution = img_size + self.attn_resolutions = attn_resolutions + self.quantizer_type = quantizer + self.encoder = Encoder( + self.in_channels, + self.nf, + self.embed_dim, + self.ch_mult, + self.n_blocks, + self.resolution, + self.attn_resolutions, + ) + if self.quantizer_type == "nearest": + self.beta = beta # 0.25 + self.quantize = VectorQuantizer( + self.codebook_size, self.embed_dim, self.beta + ) + elif self.quantizer_type == "gumbel": + self.gumbel_num_hiddens = emb_dim + self.straight_through = gumbel_straight_through + self.kl_weight = gumbel_kl_weight + self.quantize = GumbelQuantizer( + self.codebook_size, + self.embed_dim, + self.gumbel_num_hiddens, + self.straight_through, + self.kl_weight, + ) + self.generator = Generator( + nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim + ) + + if model_path is not None: + chkpt = torch.load(model_path, map_location="cpu") + if "params_ema" in chkpt: + self.load_state_dict( + torch.load(model_path, map_location="cpu")["params_ema"] + ) + logger.info(f"vqgan is loaded from: {model_path} [params_ema]") + elif "params" in chkpt: + self.load_state_dict( + torch.load(model_path, map_location="cpu")["params"] + ) + logger.info(f"vqgan is loaded from: {model_path} [params]") + else: + raise ValueError("Wrong params!") + + def forward(self, x): + x = self.encoder(x) + quant, codebook_loss, quant_stats = self.quantize(x) + x = self.generator(quant) + return x, codebook_loss, quant_stats + + +def calc_mean_std(feat, eps=1e-5): + """Calculate mean and std for adaptive_instance_normalization. + Args: + feat (Tensor): 4D tensor. + eps (float): A small value added to the variance to avoid + divide-by-zero. Default: 1e-5. + """ + size = feat.size() + assert len(size) == 4, "The input feature should be 4D tensor." + b, c = size[:2] + feat_var = feat.view(b, c, -1).var(dim=2) + eps + feat_std = feat_var.sqrt().view(b, c, 1, 1) + feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) + return feat_mean, feat_std + + +def adaptive_instance_normalization(content_feat, style_feat): + """Adaptive instance normalization. + Adjust the reference features to have the similar color and illuminations + as those in the degradate features. + Args: + content_feat (Tensor): The reference feature. + style_feat (Tensor): The degradate features. + """ + size = content_feat.size() + style_mean, style_std = calc_mean_std(style_feat) + content_mean, content_std = calc_mean_std(content_feat) + normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand( + size + ) + return normalized_feat * style_std.expand(size) + style_mean.expand(size) + + +class PositionEmbeddingSine(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one + used by the Attention is all you need paper, generalized to work on images. + """ + + def __init__( + self, num_pos_feats=64, temperature=10000, normalize=False, scale=None + ): + super().__init__() + self.num_pos_feats = num_pos_feats + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + def forward(self, x, mask=None): + if mask is None: + mask = torch.zeros( + (x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool + ) + not_mask = ~mask # pylint: disable=invalid-unary-operand-type + y_embed = not_mask.cumsum(1, dtype=torch.float32) + x_embed = not_mask.cumsum(2, dtype=torch.float32) + if self.normalize: + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack( + (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos_y = torch.stack( + (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos + + +def _get_activation_fn(activation): + """Return an activation function given a string""" + if activation == "relu": + return F.relu + if activation == "gelu": + return F.gelu + if activation == "glu": + return F.glu + raise RuntimeError(f"activation should be relu/gelu, not {activation}.") + + +class TransformerSALayer(nn.Module): + def __init__( + self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu" + ): + super().__init__() + self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) + # Implementation of Feedforward model - MLP + self.linear1 = nn.Linear(embed_dim, dim_mlp) + self.dropout = nn.Dropout(dropout) + self.linear2 = nn.Linear(dim_mlp, embed_dim) + + self.norm1 = nn.LayerNorm(embed_dim) + self.norm2 = nn.LayerNorm(embed_dim) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + + self.activation = _get_activation_fn(activation) + + def with_pos_embed(self, tensor, pos: Optional[Tensor]): + return tensor if pos is None else tensor + pos + + def forward( + self, + tgt, + tgt_mask: Optional[Tensor] = None, + tgt_key_padding_mask: Optional[Tensor] = None, + query_pos: Optional[Tensor] = None, + ): + # self attention + tgt2 = self.norm1(tgt) + q = k = self.with_pos_embed(tgt2, query_pos) + tgt2 = self.self_attn( + q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask + )[0] + tgt = tgt + self.dropout1(tgt2) + + # ffn + tgt2 = self.norm2(tgt) + tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) + tgt = tgt + self.dropout2(tgt2) + return tgt + + +def normalize(in_channels): + return torch.nn.GroupNorm( + num_groups=32, num_channels=in_channels, eps=1e-6, affine=True + ) + + +@torch.jit.script # type: ignore +def swish(x): + return x * torch.sigmoid(x) + + +class ResBlock(nn.Module): + def __init__(self, in_channels, out_channels=None): + super(ResBlock, self).__init__() + self.in_channels = in_channels + self.out_channels = in_channels if out_channels is None else out_channels + self.norm1 = normalize(in_channels) + self.conv1 = nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 # type: ignore + ) + self.norm2 = normalize(out_channels) + self.conv2 = nn.Conv2d( + out_channels, out_channels, kernel_size=3, stride=1, padding=1 # type: ignore + ) + if self.in_channels != self.out_channels: + self.conv_out = nn.Conv2d( + in_channels, out_channels, kernel_size=1, stride=1, padding=0 # type: ignore + ) + + def forward(self, x_in): + x = x_in + x = self.norm1(x) + x = swish(x) + x = self.conv1(x) + x = self.norm2(x) + x = swish(x) + x = self.conv2(x) + if self.in_channels != self.out_channels: + x_in = self.conv_out(x_in) + + return x + x_in + + +class Fuse_sft_block(nn.Module): + def __init__(self, in_ch, out_ch): + super().__init__() + self.encode_enc = ResBlock(2 * in_ch, out_ch) + + self.scale = nn.Sequential( + nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), + nn.LeakyReLU(0.2, True), + nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), + ) + + self.shift = nn.Sequential( + nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), + nn.LeakyReLU(0.2, True), + nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), + ) + + def forward(self, enc_feat, dec_feat, w=1): + enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) + scale = self.scale(enc_feat) + shift = self.shift(enc_feat) + residual = w * (dec_feat * scale + shift) + out = dec_feat + residual + return out + + +class CodeFormer(VQAutoEncoder): + def __init__(self, state_dict): + dim_embd = 512 + n_head = 8 + n_layers = 9 + codebook_size = 1024 + latent_size = 256 + connect_list = ["32", "64", "128", "256"] + fix_modules = ["quantize", "generator"] + + # This is just a guess as I only have one model to look at + position_emb = state_dict["position_emb"] + dim_embd = position_emb.shape[1] + latent_size = position_emb.shape[0] + + try: + n_layers = len( + set([x.split(".")[1] for x in state_dict.keys() if "ft_layers" in x]) + ) + except: + pass + + codebook_size = state_dict["quantize.embedding.weight"].shape[0] + + # This is also just another guess + n_head_exp = ( + state_dict["ft_layers.0.self_attn.in_proj_weight"].shape[0] // dim_embd + ) + n_head = 2**n_head_exp + + in_nc = state_dict["encoder.blocks.0.weight"].shape[1] + + self.model_arch = "CodeFormer" + self.sub_type = "Face SR" + self.scale = 8 + self.in_nc = in_nc + self.out_nc = in_nc + + self.state = state_dict + + self.supports_fp16 = False + self.supports_bf16 = True + self.min_size_restriction = 16 + + super(CodeFormer, self).__init__( + 512, 64, [1, 2, 2, 4, 4, 8], "nearest", 2, [16], codebook_size + ) + + if fix_modules is not None: + for module in fix_modules: + for param in getattr(self, module).parameters(): + param.requires_grad = False + + self.connect_list = connect_list + self.n_layers = n_layers + self.dim_embd = dim_embd + self.dim_mlp = dim_embd * 2 + + self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) # type: ignore + self.feat_emb = nn.Linear(256, self.dim_embd) + + # transformer + self.ft_layers = nn.Sequential( + *[ + TransformerSALayer( + embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0 + ) + for _ in range(self.n_layers) + ] + ) + + # logits_predict head + self.idx_pred_layer = nn.Sequential( + nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False) + ) + + self.channels = { + "16": 512, + "32": 256, + "64": 256, + "128": 128, + "256": 128, + "512": 64, + } + + # after second residual block for > 16, before attn layer for ==16 + self.fuse_encoder_block = { + "512": 2, + "256": 5, + "128": 8, + "64": 11, + "32": 14, + "16": 18, + } + # after first residual block for > 16, before attn layer for ==16 + self.fuse_generator_block = { + "16": 6, + "32": 9, + "64": 12, + "128": 15, + "256": 18, + "512": 21, + } + + # fuse_convs_dict + self.fuse_convs_dict = nn.ModuleDict() + for f_size in self.connect_list: + in_ch = self.channels[f_size] + self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) + + self.load_state_dict(state_dict) + + def _init_weights(self, module): + if isinstance(module, (nn.Linear, nn.Embedding)): + module.weight.data.normal_(mean=0.0, std=0.02) + if isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def forward(self, x, weight=0.5, **kwargs): + detach_16 = True + code_only = False + adain = True + # ################### Encoder ##################### + enc_feat_dict = {} + out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] + for i, block in enumerate(self.encoder.blocks): + x = block(x) + if i in out_list: + enc_feat_dict[str(x.shape[-1])] = x.clone() + + lq_feat = x + # ################# Transformer ################### + # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) + pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1) + # BCHW -> BC(HW) -> (HW)BC + feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1)) + query_emb = feat_emb + # Transformer encoder + for layer in self.ft_layers: + query_emb = layer(query_emb, query_pos=pos_emb) + + # output logits + logits = self.idx_pred_layer(query_emb) # (hw)bn + logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n + + if code_only: # for training stage II + # logits doesn't need softmax before cross_entropy loss + return logits, lq_feat + + # ################# Quantization ################### + # if self.training: + # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) + # # b(hw)c -> bc(hw) -> bchw + # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) + # ------------ + soft_one_hot = F.softmax(logits, dim=2) + _, top_idx = torch.topk(soft_one_hot, 1, dim=2) + quant_feat = self.quantize.get_codebook_feat( + top_idx, shape=[x.shape[0], 16, 16, 256] # type: ignore + ) + # preserve gradients + # quant_feat = lq_feat + (quant_feat - lq_feat).detach() + + if detach_16: + quant_feat = quant_feat.detach() # for training stage III + if adain: + quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) + + # ################## Generator #################### + x = quant_feat + fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] + + for i, block in enumerate(self.generator.blocks): + x = block(x) + if i in fuse_list: # fuse after i-th block + f_size = str(x.shape[-1]) + if weight > 0: + x = self.fuse_convs_dict[f_size]( + enc_feat_dict[f_size].detach(), x, weight + ) + out = x + # logits doesn't need softmax before cross_entropy loss + # return out, logits, lq_feat + return out, logits diff --git a/comfy_extras/chainner_models/architecture/face/fused_act.py b/comfy_extras/chainner_models/architecture/face/fused_act.py new file mode 100644 index 0000000000000000000000000000000000000000..7ed526547b4644ac6341947a801b76d9ed798f26 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/fused_act.py @@ -0,0 +1,81 @@ +# pylint: skip-file +# type: ignore +# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_act.py # noqa:E501 + +import torch +from torch import nn +from torch.autograd import Function + +fused_act_ext = None + + +class FusedLeakyReLUFunctionBackward(Function): + @staticmethod + def forward(ctx, grad_output, out, negative_slope, scale): + ctx.save_for_backward(out) + ctx.negative_slope = negative_slope + ctx.scale = scale + + empty = grad_output.new_empty(0) + + grad_input = fused_act_ext.fused_bias_act( + grad_output, empty, out, 3, 1, negative_slope, scale + ) + + dim = [0] + + if grad_input.ndim > 2: + dim += list(range(2, grad_input.ndim)) + + grad_bias = grad_input.sum(dim).detach() + + return grad_input, grad_bias + + @staticmethod + def backward(ctx, gradgrad_input, gradgrad_bias): + (out,) = ctx.saved_tensors + gradgrad_out = fused_act_ext.fused_bias_act( + gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale + ) + + return gradgrad_out, None, None, None + + +class FusedLeakyReLUFunction(Function): + @staticmethod + def forward(ctx, input, bias, negative_slope, scale): + empty = input.new_empty(0) + out = fused_act_ext.fused_bias_act( + input, bias, empty, 3, 0, negative_slope, scale + ) + ctx.save_for_backward(out) + ctx.negative_slope = negative_slope + ctx.scale = scale + + return out + + @staticmethod + def backward(ctx, grad_output): + (out,) = ctx.saved_tensors + + grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( + grad_output, out, ctx.negative_slope, ctx.scale + ) + + return grad_input, grad_bias, None, None + + +class FusedLeakyReLU(nn.Module): + def __init__(self, channel, negative_slope=0.2, scale=2**0.5): + super().__init__() + + self.bias = nn.Parameter(torch.zeros(channel)) + self.negative_slope = negative_slope + self.scale = scale + + def forward(self, input): + return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) + + +def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2**0.5): + return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) diff --git a/comfy_extras/chainner_models/architecture/face/gfpgan_bilinear_arch.py b/comfy_extras/chainner_models/architecture/face/gfpgan_bilinear_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..b6e820e006f52936c3399d3d37fdf571f2385dcb --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/gfpgan_bilinear_arch.py @@ -0,0 +1,389 @@ +# pylint: skip-file +# type: ignore +import math +import random + +import torch +from torch import nn + +from .gfpganv1_arch import ResUpBlock +from .stylegan2_bilinear_arch import ( + ConvLayer, + EqualConv2d, + EqualLinear, + ResBlock, + ScaledLeakyReLU, + StyleGAN2GeneratorBilinear, +) + + +class StyleGAN2GeneratorBilinearSFT(StyleGAN2GeneratorBilinear): + """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform). + It is the bilinear version. It does not use the complicated UpFirDnSmooth function that is not friendly for + deployment. It can be easily converted to the clean version: StyleGAN2GeneratorCSFT. + Args: + out_size (int): The spatial size of outputs. + num_style_feat (int): Channel number of style features. Default: 512. + num_mlp (int): Layer number of MLP style layers. Default: 8. + channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. + lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. + narrow (float): The narrow ratio for channels. Default: 1. + sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. + """ + + def __init__( + self, + out_size, + num_style_feat=512, + num_mlp=8, + channel_multiplier=2, + lr_mlp=0.01, + narrow=1, + sft_half=False, + ): + super(StyleGAN2GeneratorBilinearSFT, self).__init__( + out_size, + num_style_feat=num_style_feat, + num_mlp=num_mlp, + channel_multiplier=channel_multiplier, + lr_mlp=lr_mlp, + narrow=narrow, + ) + self.sft_half = sft_half + + def forward( + self, + styles, + conditions, + input_is_latent=False, + noise=None, + randomize_noise=True, + truncation=1, + truncation_latent=None, + inject_index=None, + return_latents=False, + ): + """Forward function for StyleGAN2GeneratorBilinearSFT. + Args: + styles (list[Tensor]): Sample codes of styles. + conditions (list[Tensor]): SFT conditions to generators. + input_is_latent (bool): Whether input is latent style. Default: False. + noise (Tensor | None): Input noise or None. Default: None. + randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. + truncation (float): The truncation ratio. Default: 1. + truncation_latent (Tensor | None): The truncation latent tensor. Default: None. + inject_index (int | None): The injection index for mixing noise. Default: None. + return_latents (bool): Whether to return style latents. Default: False. + """ + # style codes -> latents with Style MLP layer + if not input_is_latent: + styles = [self.style_mlp(s) for s in styles] + # noises + if noise is None: + if randomize_noise: + noise = [None] * self.num_layers # for each style conv layer + else: # use the stored noise + noise = [ + getattr(self.noises, f"noise{i}") for i in range(self.num_layers) + ] + # style truncation + if truncation < 1: + style_truncation = [] + for style in styles: + style_truncation.append( + truncation_latent + truncation * (style - truncation_latent) + ) + styles = style_truncation + # get style latents with injection + if len(styles) == 1: + inject_index = self.num_latent + + if styles[0].ndim < 3: + # repeat latent code for all the layers + latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + else: # used for encoder with different latent code for each layer + latent = styles[0] + elif len(styles) == 2: # mixing noises + if inject_index is None: + inject_index = random.randint(1, self.num_latent - 1) + latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + latent2 = ( + styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) + ) + latent = torch.cat([latent1, latent2], 1) + + # main generation + out = self.constant_input(latent.shape[0]) + out = self.style_conv1(out, latent[:, 0], noise=noise[0]) + skip = self.to_rgb1(out, latent[:, 1]) + + i = 1 + for conv1, conv2, noise1, noise2, to_rgb in zip( + self.style_convs[::2], + self.style_convs[1::2], + noise[1::2], + noise[2::2], + self.to_rgbs, + ): + out = conv1(out, latent[:, i], noise=noise1) + + # the conditions may have fewer levels + if i < len(conditions): + # SFT part to combine the conditions + if self.sft_half: # only apply SFT to half of the channels + out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1) + out_sft = out_sft * conditions[i - 1] + conditions[i] + out = torch.cat([out_same, out_sft], dim=1) + else: # apply SFT to all the channels + out = out * conditions[i - 1] + conditions[i] + + out = conv2(out, latent[:, i + 1], noise=noise2) + skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space + i += 2 + + image = skip + + if return_latents: + return image, latent + else: + return image, None + + +class GFPGANBilinear(nn.Module): + """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT. + It is the bilinear version and it does not use the complicated UpFirDnSmooth function that is not friendly for + deployment. It can be easily converted to the clean version: GFPGANv1Clean. + Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. + Args: + out_size (int): The spatial size of outputs. + num_style_feat (int): Channel number of style features. Default: 512. + channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. + decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None. + fix_decoder (bool): Whether to fix the decoder. Default: True. + num_mlp (int): Layer number of MLP style layers. Default: 8. + lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. + input_is_latent (bool): Whether input is latent style. Default: False. + different_w (bool): Whether to use different latent w for different layers. Default: False. + narrow (float): The narrow ratio for channels. Default: 1. + sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. + """ + + def __init__( + self, + out_size, + num_style_feat=512, + channel_multiplier=1, + decoder_load_path=None, + fix_decoder=True, + # for stylegan decoder + num_mlp=8, + lr_mlp=0.01, + input_is_latent=False, + different_w=False, + narrow=1, + sft_half=False, + ): + super(GFPGANBilinear, self).__init__() + self.input_is_latent = input_is_latent + self.different_w = different_w + self.num_style_feat = num_style_feat + self.min_size_restriction = 512 + + unet_narrow = narrow * 0.5 # by default, use a half of input channels + channels = { + "4": int(512 * unet_narrow), + "8": int(512 * unet_narrow), + "16": int(512 * unet_narrow), + "32": int(512 * unet_narrow), + "64": int(256 * channel_multiplier * unet_narrow), + "128": int(128 * channel_multiplier * unet_narrow), + "256": int(64 * channel_multiplier * unet_narrow), + "512": int(32 * channel_multiplier * unet_narrow), + "1024": int(16 * channel_multiplier * unet_narrow), + } + + self.log_size = int(math.log(out_size, 2)) + first_out_size = 2 ** (int(math.log(out_size, 2))) + + self.conv_body_first = ConvLayer( + 3, channels[f"{first_out_size}"], 1, bias=True, activate=True + ) + + # downsample + in_channels = channels[f"{first_out_size}"] + self.conv_body_down = nn.ModuleList() + for i in range(self.log_size, 2, -1): + out_channels = channels[f"{2**(i - 1)}"] + self.conv_body_down.append(ResBlock(in_channels, out_channels)) + in_channels = out_channels + + self.final_conv = ConvLayer( + in_channels, channels["4"], 3, bias=True, activate=True + ) + + # upsample + in_channels = channels["4"] + self.conv_body_up = nn.ModuleList() + for i in range(3, self.log_size + 1): + out_channels = channels[f"{2**i}"] + self.conv_body_up.append(ResUpBlock(in_channels, out_channels)) + in_channels = out_channels + + # to RGB + self.toRGB = nn.ModuleList() + for i in range(3, self.log_size + 1): + self.toRGB.append( + EqualConv2d( + channels[f"{2**i}"], + 3, + 1, + stride=1, + padding=0, + bias=True, + bias_init_val=0, + ) + ) + + if different_w: + linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat + else: + linear_out_channel = num_style_feat + + self.final_linear = EqualLinear( + channels["4"] * 4 * 4, + linear_out_channel, + bias=True, + bias_init_val=0, + lr_mul=1, + activation=None, + ) + + # the decoder: stylegan2 generator with SFT modulations + self.stylegan_decoder = StyleGAN2GeneratorBilinearSFT( + out_size=out_size, + num_style_feat=num_style_feat, + num_mlp=num_mlp, + channel_multiplier=channel_multiplier, + lr_mlp=lr_mlp, + narrow=narrow, + sft_half=sft_half, + ) + + # load pre-trained stylegan2 model if necessary + if decoder_load_path: + self.stylegan_decoder.load_state_dict( + torch.load( + decoder_load_path, map_location=lambda storage, loc: storage + )["params_ema"] + ) + # fix decoder without updating params + if fix_decoder: + for _, param in self.stylegan_decoder.named_parameters(): + param.requires_grad = False + + # for SFT modulations (scale and shift) + self.condition_scale = nn.ModuleList() + self.condition_shift = nn.ModuleList() + for i in range(3, self.log_size + 1): + out_channels = channels[f"{2**i}"] + if sft_half: + sft_out_channels = out_channels + else: + sft_out_channels = out_channels * 2 + self.condition_scale.append( + nn.Sequential( + EqualConv2d( + out_channels, + out_channels, + 3, + stride=1, + padding=1, + bias=True, + bias_init_val=0, + ), + ScaledLeakyReLU(0.2), + EqualConv2d( + out_channels, + sft_out_channels, + 3, + stride=1, + padding=1, + bias=True, + bias_init_val=1, + ), + ) + ) + self.condition_shift.append( + nn.Sequential( + EqualConv2d( + out_channels, + out_channels, + 3, + stride=1, + padding=1, + bias=True, + bias_init_val=0, + ), + ScaledLeakyReLU(0.2), + EqualConv2d( + out_channels, + sft_out_channels, + 3, + stride=1, + padding=1, + bias=True, + bias_init_val=0, + ), + ) + ) + + def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True): + """Forward function for GFPGANBilinear. + Args: + x (Tensor): Input images. + return_latents (bool): Whether to return style latents. Default: False. + return_rgb (bool): Whether return intermediate rgb images. Default: True. + randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. + """ + conditions = [] + unet_skips = [] + out_rgbs = [] + + # encoder + feat = self.conv_body_first(x) + for i in range(self.log_size - 2): + feat = self.conv_body_down[i](feat) + unet_skips.insert(0, feat) + + feat = self.final_conv(feat) + + # style code + style_code = self.final_linear(feat.view(feat.size(0), -1)) + if self.different_w: + style_code = style_code.view(style_code.size(0), -1, self.num_style_feat) + + # decode + for i in range(self.log_size - 2): + # add unet skip + feat = feat + unet_skips[i] + # ResUpLayer + feat = self.conv_body_up[i](feat) + # generate scale and shift for SFT layers + scale = self.condition_scale[i](feat) + conditions.append(scale.clone()) + shift = self.condition_shift[i](feat) + conditions.append(shift.clone()) + # generate rgb images + if return_rgb: + out_rgbs.append(self.toRGB[i](feat)) + + # decoder + image, _ = self.stylegan_decoder( + [style_code], + conditions, + return_latents=return_latents, + input_is_latent=self.input_is_latent, + randomize_noise=randomize_noise, + ) + + return image, out_rgbs diff --git a/comfy_extras/chainner_models/architecture/face/gfpganv1_arch.py b/comfy_extras/chainner_models/architecture/face/gfpganv1_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..72d72fc865ec35b2ccd23f13b3d8ef0be5dbaf7a --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/gfpganv1_arch.py @@ -0,0 +1,566 @@ +# pylint: skip-file +# type: ignore +import math +import random + +import torch +from torch import nn +from torch.nn import functional as F + +from .fused_act import FusedLeakyReLU +from .stylegan2_arch import ( + ConvLayer, + EqualConv2d, + EqualLinear, + ResBlock, + ScaledLeakyReLU, + StyleGAN2Generator, +) + + +class StyleGAN2GeneratorSFT(StyleGAN2Generator): + """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform). + Args: + out_size (int): The spatial size of outputs. + num_style_feat (int): Channel number of style features. Default: 512. + num_mlp (int): Layer number of MLP style layers. Default: 8. + channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. + resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be + applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). + lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. + narrow (float): The narrow ratio for channels. Default: 1. + sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. + """ + + def __init__( + self, + out_size, + num_style_feat=512, + num_mlp=8, + channel_multiplier=2, + resample_kernel=(1, 3, 3, 1), + lr_mlp=0.01, + narrow=1, + sft_half=False, + ): + super(StyleGAN2GeneratorSFT, self).__init__( + out_size, + num_style_feat=num_style_feat, + num_mlp=num_mlp, + channel_multiplier=channel_multiplier, + resample_kernel=resample_kernel, + lr_mlp=lr_mlp, + narrow=narrow, + ) + self.sft_half = sft_half + + def forward( + self, + styles, + conditions, + input_is_latent=False, + noise=None, + randomize_noise=True, + truncation=1, + truncation_latent=None, + inject_index=None, + return_latents=False, + ): + """Forward function for StyleGAN2GeneratorSFT. + Args: + styles (list[Tensor]): Sample codes of styles. + conditions (list[Tensor]): SFT conditions to generators. + input_is_latent (bool): Whether input is latent style. Default: False. + noise (Tensor | None): Input noise or None. Default: None. + randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. + truncation (float): The truncation ratio. Default: 1. + truncation_latent (Tensor | None): The truncation latent tensor. Default: None. + inject_index (int | None): The injection index for mixing noise. Default: None. + return_latents (bool): Whether to return style latents. Default: False. + """ + # style codes -> latents with Style MLP layer + if not input_is_latent: + styles = [self.style_mlp(s) for s in styles] + # noises + if noise is None: + if randomize_noise: + noise = [None] * self.num_layers # for each style conv layer + else: # use the stored noise + noise = [ + getattr(self.noises, f"noise{i}") for i in range(self.num_layers) + ] + # style truncation + if truncation < 1: + style_truncation = [] + for style in styles: + style_truncation.append( + truncation_latent + truncation * (style - truncation_latent) + ) + styles = style_truncation + # get style latents with injection + if len(styles) == 1: + inject_index = self.num_latent + + if styles[0].ndim < 3: + # repeat latent code for all the layers + latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + else: # used for encoder with different latent code for each layer + latent = styles[0] + elif len(styles) == 2: # mixing noises + if inject_index is None: + inject_index = random.randint(1, self.num_latent - 1) + latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + latent2 = ( + styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) + ) + latent = torch.cat([latent1, latent2], 1) + + # main generation + out = self.constant_input(latent.shape[0]) + out = self.style_conv1(out, latent[:, 0], noise=noise[0]) + skip = self.to_rgb1(out, latent[:, 1]) + + i = 1 + for conv1, conv2, noise1, noise2, to_rgb in zip( + self.style_convs[::2], + self.style_convs[1::2], + noise[1::2], + noise[2::2], + self.to_rgbs, + ): + out = conv1(out, latent[:, i], noise=noise1) + + # the conditions may have fewer levels + if i < len(conditions): + # SFT part to combine the conditions + if self.sft_half: # only apply SFT to half of the channels + out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1) + out_sft = out_sft * conditions[i - 1] + conditions[i] + out = torch.cat([out_same, out_sft], dim=1) + else: # apply SFT to all the channels + out = out * conditions[i - 1] + conditions[i] + + out = conv2(out, latent[:, i + 1], noise=noise2) + skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space + i += 2 + + image = skip + + if return_latents: + return image, latent + else: + return image, None + + +class ConvUpLayer(nn.Module): + """Convolutional upsampling layer. It uses bilinear upsampler + Conv. + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Size of the convolving kernel. + stride (int): Stride of the convolution. Default: 1 + padding (int): Zero-padding added to both sides of the input. Default: 0. + bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``. + bias_init_val (float): Bias initialized value. Default: 0. + activate (bool): Whether use activateion. Default: True. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + padding=0, + bias=True, + bias_init_val=0, + activate=True, + ): + super(ConvUpLayer, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.stride = stride + self.padding = padding + # self.scale is used to scale the convolution weights, which is related to the common initializations. + self.scale = 1 / math.sqrt(in_channels * kernel_size**2) + + self.weight = nn.Parameter( + torch.randn(out_channels, in_channels, kernel_size, kernel_size) + ) + + if bias and not activate: + self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) + else: + self.register_parameter("bias", None) + + # activation + if activate: + if bias: + self.activation = FusedLeakyReLU(out_channels) + else: + self.activation = ScaledLeakyReLU(0.2) + else: + self.activation = None + + def forward(self, x): + # bilinear upsample + out = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False) + # conv + out = F.conv2d( + out, + self.weight * self.scale, + bias=self.bias, + stride=self.stride, + padding=self.padding, + ) + # activation + if self.activation is not None: + out = self.activation(out) + return out + + +class ResUpBlock(nn.Module): + """Residual block with upsampling. + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + """ + + def __init__(self, in_channels, out_channels): + super(ResUpBlock, self).__init__() + + self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True) + self.conv2 = ConvUpLayer( + in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True + ) + self.skip = ConvUpLayer( + in_channels, out_channels, 1, bias=False, activate=False + ) + + def forward(self, x): + out = self.conv1(x) + out = self.conv2(out) + skip = self.skip(x) + out = (out + skip) / math.sqrt(2) + return out + + +class GFPGANv1(nn.Module): + """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT. + Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. + Args: + out_size (int): The spatial size of outputs. + num_style_feat (int): Channel number of style features. Default: 512. + channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. + resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be + applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). + decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None. + fix_decoder (bool): Whether to fix the decoder. Default: True. + num_mlp (int): Layer number of MLP style layers. Default: 8. + lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. + input_is_latent (bool): Whether input is latent style. Default: False. + different_w (bool): Whether to use different latent w for different layers. Default: False. + narrow (float): The narrow ratio for channels. Default: 1. + sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. + """ + + def __init__( + self, + out_size, + num_style_feat=512, + channel_multiplier=1, + resample_kernel=(1, 3, 3, 1), + decoder_load_path=None, + fix_decoder=True, + # for stylegan decoder + num_mlp=8, + lr_mlp=0.01, + input_is_latent=False, + different_w=False, + narrow=1, + sft_half=False, + ): + super(GFPGANv1, self).__init__() + self.input_is_latent = input_is_latent + self.different_w = different_w + self.num_style_feat = num_style_feat + + unet_narrow = narrow * 0.5 # by default, use a half of input channels + channels = { + "4": int(512 * unet_narrow), + "8": int(512 * unet_narrow), + "16": int(512 * unet_narrow), + "32": int(512 * unet_narrow), + "64": int(256 * channel_multiplier * unet_narrow), + "128": int(128 * channel_multiplier * unet_narrow), + "256": int(64 * channel_multiplier * unet_narrow), + "512": int(32 * channel_multiplier * unet_narrow), + "1024": int(16 * channel_multiplier * unet_narrow), + } + + self.log_size = int(math.log(out_size, 2)) + first_out_size = 2 ** (int(math.log(out_size, 2))) + + self.conv_body_first = ConvLayer( + 3, channels[f"{first_out_size}"], 1, bias=True, activate=True + ) + + # downsample + in_channels = channels[f"{first_out_size}"] + self.conv_body_down = nn.ModuleList() + for i in range(self.log_size, 2, -1): + out_channels = channels[f"{2**(i - 1)}"] + self.conv_body_down.append( + ResBlock(in_channels, out_channels, resample_kernel) + ) + in_channels = out_channels + + self.final_conv = ConvLayer( + in_channels, channels["4"], 3, bias=True, activate=True + ) + + # upsample + in_channels = channels["4"] + self.conv_body_up = nn.ModuleList() + for i in range(3, self.log_size + 1): + out_channels = channels[f"{2**i}"] + self.conv_body_up.append(ResUpBlock(in_channels, out_channels)) + in_channels = out_channels + + # to RGB + self.toRGB = nn.ModuleList() + for i in range(3, self.log_size + 1): + self.toRGB.append( + EqualConv2d( + channels[f"{2**i}"], + 3, + 1, + stride=1, + padding=0, + bias=True, + bias_init_val=0, + ) + ) + + if different_w: + linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat + else: + linear_out_channel = num_style_feat + + self.final_linear = EqualLinear( + channels["4"] * 4 * 4, + linear_out_channel, + bias=True, + bias_init_val=0, + lr_mul=1, + activation=None, + ) + + # the decoder: stylegan2 generator with SFT modulations + self.stylegan_decoder = StyleGAN2GeneratorSFT( + out_size=out_size, + num_style_feat=num_style_feat, + num_mlp=num_mlp, + channel_multiplier=channel_multiplier, + resample_kernel=resample_kernel, + lr_mlp=lr_mlp, + narrow=narrow, + sft_half=sft_half, + ) + + # load pre-trained stylegan2 model if necessary + if decoder_load_path: + self.stylegan_decoder.load_state_dict( + torch.load( + decoder_load_path, map_location=lambda storage, loc: storage + )["params_ema"] + ) + # fix decoder without updating params + if fix_decoder: + for _, param in self.stylegan_decoder.named_parameters(): + param.requires_grad = False + + # for SFT modulations (scale and shift) + self.condition_scale = nn.ModuleList() + self.condition_shift = nn.ModuleList() + for i in range(3, self.log_size + 1): + out_channels = channels[f"{2**i}"] + if sft_half: + sft_out_channels = out_channels + else: + sft_out_channels = out_channels * 2 + self.condition_scale.append( + nn.Sequential( + EqualConv2d( + out_channels, + out_channels, + 3, + stride=1, + padding=1, + bias=True, + bias_init_val=0, + ), + ScaledLeakyReLU(0.2), + EqualConv2d( + out_channels, + sft_out_channels, + 3, + stride=1, + padding=1, + bias=True, + bias_init_val=1, + ), + ) + ) + self.condition_shift.append( + nn.Sequential( + EqualConv2d( + out_channels, + out_channels, + 3, + stride=1, + padding=1, + bias=True, + bias_init_val=0, + ), + ScaledLeakyReLU(0.2), + EqualConv2d( + out_channels, + sft_out_channels, + 3, + stride=1, + padding=1, + bias=True, + bias_init_val=0, + ), + ) + ) + + def forward( + self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs + ): + """Forward function for GFPGANv1. + Args: + x (Tensor): Input images. + return_latents (bool): Whether to return style latents. Default: False. + return_rgb (bool): Whether return intermediate rgb images. Default: True. + randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. + """ + conditions = [] + unet_skips = [] + out_rgbs = [] + + # encoder + feat = self.conv_body_first(x) + for i in range(self.log_size - 2): + feat = self.conv_body_down[i](feat) + unet_skips.insert(0, feat) + + feat = self.final_conv(feat) + + # style code + style_code = self.final_linear(feat.view(feat.size(0), -1)) + if self.different_w: + style_code = style_code.view(style_code.size(0), -1, self.num_style_feat) + + # decode + for i in range(self.log_size - 2): + # add unet skip + feat = feat + unet_skips[i] + # ResUpLayer + feat = self.conv_body_up[i](feat) + # generate scale and shift for SFT layers + scale = self.condition_scale[i](feat) + conditions.append(scale.clone()) + shift = self.condition_shift[i](feat) + conditions.append(shift.clone()) + # generate rgb images + if return_rgb: + out_rgbs.append(self.toRGB[i](feat)) + + # decoder + image, _ = self.stylegan_decoder( + [style_code], + conditions, + return_latents=return_latents, + input_is_latent=self.input_is_latent, + randomize_noise=randomize_noise, + ) + + return image, out_rgbs + + +class FacialComponentDiscriminator(nn.Module): + """Facial component (eyes, mouth, noise) discriminator used in GFPGAN.""" + + def __init__(self): + super(FacialComponentDiscriminator, self).__init__() + # It now uses a VGG-style architectrue with fixed model size + self.conv1 = ConvLayer( + 3, + 64, + 3, + downsample=False, + resample_kernel=(1, 3, 3, 1), + bias=True, + activate=True, + ) + self.conv2 = ConvLayer( + 64, + 128, + 3, + downsample=True, + resample_kernel=(1, 3, 3, 1), + bias=True, + activate=True, + ) + self.conv3 = ConvLayer( + 128, + 128, + 3, + downsample=False, + resample_kernel=(1, 3, 3, 1), + bias=True, + activate=True, + ) + self.conv4 = ConvLayer( + 128, + 256, + 3, + downsample=True, + resample_kernel=(1, 3, 3, 1), + bias=True, + activate=True, + ) + self.conv5 = ConvLayer( + 256, + 256, + 3, + downsample=False, + resample_kernel=(1, 3, 3, 1), + bias=True, + activate=True, + ) + self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False) + + def forward(self, x, return_feats=False, **kwargs): + """Forward function for FacialComponentDiscriminator. + Args: + x (Tensor): Input images. + return_feats (bool): Whether to return intermediate features. Default: False. + """ + feat = self.conv1(x) + feat = self.conv3(self.conv2(feat)) + rlt_feats = [] + if return_feats: + rlt_feats.append(feat.clone()) + feat = self.conv5(self.conv4(feat)) + if return_feats: + rlt_feats.append(feat.clone()) + out = self.final_conv(feat) + + if return_feats: + return out, rlt_feats + else: + return out, None diff --git a/comfy_extras/chainner_models/architecture/face/gfpganv1_clean_arch.py b/comfy_extras/chainner_models/architecture/face/gfpganv1_clean_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..16470d6345f71ed1517ff26f65b9cd125d80d99e --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/gfpganv1_clean_arch.py @@ -0,0 +1,370 @@ +# pylint: skip-file +# type: ignore +import math +import random + +import torch +from torch import nn +from torch.nn import functional as F + +from .stylegan2_clean_arch import StyleGAN2GeneratorClean + + +class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean): + """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform). + It is the clean version without custom compiled CUDA extensions used in StyleGAN2. + Args: + out_size (int): The spatial size of outputs. + num_style_feat (int): Channel number of style features. Default: 512. + num_mlp (int): Layer number of MLP style layers. Default: 8. + channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. + narrow (float): The narrow ratio for channels. Default: 1. + sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. + """ + + def __init__( + self, + out_size, + num_style_feat=512, + num_mlp=8, + channel_multiplier=2, + narrow=1, + sft_half=False, + ): + super(StyleGAN2GeneratorCSFT, self).__init__( + out_size, + num_style_feat=num_style_feat, + num_mlp=num_mlp, + channel_multiplier=channel_multiplier, + narrow=narrow, + ) + self.sft_half = sft_half + + def forward( + self, + styles, + conditions, + input_is_latent=False, + noise=None, + randomize_noise=True, + truncation=1, + truncation_latent=None, + inject_index=None, + return_latents=False, + ): + """Forward function for StyleGAN2GeneratorCSFT. + Args: + styles (list[Tensor]): Sample codes of styles. + conditions (list[Tensor]): SFT conditions to generators. + input_is_latent (bool): Whether input is latent style. Default: False. + noise (Tensor | None): Input noise or None. Default: None. + randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. + truncation (float): The truncation ratio. Default: 1. + truncation_latent (Tensor | None): The truncation latent tensor. Default: None. + inject_index (int | None): The injection index for mixing noise. Default: None. + return_latents (bool): Whether to return style latents. Default: False. + """ + # style codes -> latents with Style MLP layer + if not input_is_latent: + styles = [self.style_mlp(s) for s in styles] + # noises + if noise is None: + if randomize_noise: + noise = [None] * self.num_layers # for each style conv layer + else: # use the stored noise + noise = [ + getattr(self.noises, f"noise{i}") for i in range(self.num_layers) + ] + # style truncation + if truncation < 1: + style_truncation = [] + for style in styles: + style_truncation.append( + truncation_latent + truncation * (style - truncation_latent) + ) + styles = style_truncation + # get style latents with injection + if len(styles) == 1: + inject_index = self.num_latent + + if styles[0].ndim < 3: + # repeat latent code for all the layers + latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + else: # used for encoder with different latent code for each layer + latent = styles[0] + elif len(styles) == 2: # mixing noises + if inject_index is None: + inject_index = random.randint(1, self.num_latent - 1) + latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + latent2 = ( + styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) + ) + latent = torch.cat([latent1, latent2], 1) + + # main generation + out = self.constant_input(latent.shape[0]) + out = self.style_conv1(out, latent[:, 0], noise=noise[0]) + skip = self.to_rgb1(out, latent[:, 1]) + + i = 1 + for conv1, conv2, noise1, noise2, to_rgb in zip( + self.style_convs[::2], + self.style_convs[1::2], + noise[1::2], + noise[2::2], + self.to_rgbs, + ): + out = conv1(out, latent[:, i], noise=noise1) + + # the conditions may have fewer levels + if i < len(conditions): + # SFT part to combine the conditions + if self.sft_half: # only apply SFT to half of the channels + out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1) + out_sft = out_sft * conditions[i - 1] + conditions[i] + out = torch.cat([out_same, out_sft], dim=1) + else: # apply SFT to all the channels + out = out * conditions[i - 1] + conditions[i] + + out = conv2(out, latent[:, i + 1], noise=noise2) + skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space + i += 2 + + image = skip + + if return_latents: + return image, latent + else: + return image, None + + +class ResBlock(nn.Module): + """Residual block with bilinear upsampling/downsampling. + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + mode (str): Upsampling/downsampling mode. Options: down | up. Default: down. + """ + + def __init__(self, in_channels, out_channels, mode="down"): + super(ResBlock, self).__init__() + + self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1) + self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1) + self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False) + if mode == "down": + self.scale_factor = 0.5 + elif mode == "up": + self.scale_factor = 2 + + def forward(self, x): + out = F.leaky_relu_(self.conv1(x), negative_slope=0.2) + # upsample/downsample + out = F.interpolate( + out, scale_factor=self.scale_factor, mode="bilinear", align_corners=False + ) + out = F.leaky_relu_(self.conv2(out), negative_slope=0.2) + # skip + x = F.interpolate( + x, scale_factor=self.scale_factor, mode="bilinear", align_corners=False + ) + skip = self.skip(x) + out = out + skip + return out + + +class GFPGANv1Clean(nn.Module): + """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT. + It is the clean version without custom compiled CUDA extensions used in StyleGAN2. + Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. + Args: + out_size (int): The spatial size of outputs. + num_style_feat (int): Channel number of style features. Default: 512. + channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. + decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None. + fix_decoder (bool): Whether to fix the decoder. Default: True. + num_mlp (int): Layer number of MLP style layers. Default: 8. + input_is_latent (bool): Whether input is latent style. Default: False. + different_w (bool): Whether to use different latent w for different layers. Default: False. + narrow (float): The narrow ratio for channels. Default: 1. + sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. + """ + + def __init__( + self, + state_dict, + ): + super(GFPGANv1Clean, self).__init__() + + out_size = 512 + num_style_feat = 512 + channel_multiplier = 2 + decoder_load_path = None + fix_decoder = False + num_mlp = 8 + input_is_latent = True + different_w = True + narrow = 1 + sft_half = True + + self.model_arch = "GFPGAN" + self.sub_type = "Face SR" + self.scale = 8 + self.in_nc = 3 + self.out_nc = 3 + self.state = state_dict + + self.supports_fp16 = False + self.supports_bf16 = True + self.min_size_restriction = 512 + + self.input_is_latent = input_is_latent + self.different_w = different_w + self.num_style_feat = num_style_feat + + unet_narrow = narrow * 0.5 # by default, use a half of input channels + channels = { + "4": int(512 * unet_narrow), + "8": int(512 * unet_narrow), + "16": int(512 * unet_narrow), + "32": int(512 * unet_narrow), + "64": int(256 * channel_multiplier * unet_narrow), + "128": int(128 * channel_multiplier * unet_narrow), + "256": int(64 * channel_multiplier * unet_narrow), + "512": int(32 * channel_multiplier * unet_narrow), + "1024": int(16 * channel_multiplier * unet_narrow), + } + + self.log_size = int(math.log(out_size, 2)) + first_out_size = 2 ** (int(math.log(out_size, 2))) + + self.conv_body_first = nn.Conv2d(3, channels[f"{first_out_size}"], 1) + + # downsample + in_channels = channels[f"{first_out_size}"] + self.conv_body_down = nn.ModuleList() + for i in range(self.log_size, 2, -1): + out_channels = channels[f"{2**(i - 1)}"] + self.conv_body_down.append(ResBlock(in_channels, out_channels, mode="down")) + in_channels = out_channels + + self.final_conv = nn.Conv2d(in_channels, channels["4"], 3, 1, 1) + + # upsample + in_channels = channels["4"] + self.conv_body_up = nn.ModuleList() + for i in range(3, self.log_size + 1): + out_channels = channels[f"{2**i}"] + self.conv_body_up.append(ResBlock(in_channels, out_channels, mode="up")) + in_channels = out_channels + + # to RGB + self.toRGB = nn.ModuleList() + for i in range(3, self.log_size + 1): + self.toRGB.append(nn.Conv2d(channels[f"{2**i}"], 3, 1)) + + if different_w: + linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat + else: + linear_out_channel = num_style_feat + + self.final_linear = nn.Linear(channels["4"] * 4 * 4, linear_out_channel) + + # the decoder: stylegan2 generator with SFT modulations + self.stylegan_decoder = StyleGAN2GeneratorCSFT( + out_size=out_size, + num_style_feat=num_style_feat, + num_mlp=num_mlp, + channel_multiplier=channel_multiplier, + narrow=narrow, + sft_half=sft_half, + ) + + # load pre-trained stylegan2 model if necessary + if decoder_load_path: + self.stylegan_decoder.load_state_dict( + torch.load( + decoder_load_path, map_location=lambda storage, loc: storage + )["params_ema"] + ) + # fix decoder without updating params + if fix_decoder: + for _, param in self.stylegan_decoder.named_parameters(): + param.requires_grad = False + + # for SFT modulations (scale and shift) + self.condition_scale = nn.ModuleList() + self.condition_shift = nn.ModuleList() + for i in range(3, self.log_size + 1): + out_channels = channels[f"{2**i}"] + if sft_half: + sft_out_channels = out_channels + else: + sft_out_channels = out_channels * 2 + self.condition_scale.append( + nn.Sequential( + nn.Conv2d(out_channels, out_channels, 3, 1, 1), + nn.LeakyReLU(0.2, True), + nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1), + ) + ) + self.condition_shift.append( + nn.Sequential( + nn.Conv2d(out_channels, out_channels, 3, 1, 1), + nn.LeakyReLU(0.2, True), + nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1), + ) + ) + self.load_state_dict(state_dict) + + def forward( + self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs + ): + """Forward function for GFPGANv1Clean. + Args: + x (Tensor): Input images. + return_latents (bool): Whether to return style latents. Default: False. + return_rgb (bool): Whether return intermediate rgb images. Default: True. + randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. + """ + conditions = [] + unet_skips = [] + out_rgbs = [] + + # encoder + feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2) + for i in range(self.log_size - 2): + feat = self.conv_body_down[i](feat) + unet_skips.insert(0, feat) + feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2) + + # style code + style_code = self.final_linear(feat.view(feat.size(0), -1)) + if self.different_w: + style_code = style_code.view(style_code.size(0), -1, self.num_style_feat) + + # decode + for i in range(self.log_size - 2): + # add unet skip + feat = feat + unet_skips[i] + # ResUpLayer + feat = self.conv_body_up[i](feat) + # generate scale and shift for SFT layers + scale = self.condition_scale[i](feat) + conditions.append(scale.clone()) + shift = self.condition_shift[i](feat) + conditions.append(shift.clone()) + # generate rgb images + if return_rgb: + out_rgbs.append(self.toRGB[i](feat)) + + # decoder + image, _ = self.stylegan_decoder( + [style_code], + conditions, + return_latents=return_latents, + input_is_latent=self.input_is_latent, + randomize_noise=randomize_noise, + ) + + return image, out_rgbs diff --git a/comfy_extras/chainner_models/architecture/face/restoreformer_arch.py b/comfy_extras/chainner_models/architecture/face/restoreformer_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..4492260291d6d74b2c0d38130f7aa8b50ba2fc11 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/restoreformer_arch.py @@ -0,0 +1,776 @@ +# pylint: skip-file +# type: ignore +"""Modified from https://github.com/wzhouxiff/RestoreFormer +""" +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class VectorQuantizer(nn.Module): + """ + see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py + ____________________________________________ + Discretization bottleneck part of the VQ-VAE. + Inputs: + - n_e : number of embeddings + - e_dim : dimension of embedding + - beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 + _____________________________________________ + """ + + def __init__(self, n_e, e_dim, beta): + super(VectorQuantizer, self).__init__() + self.n_e = n_e + self.e_dim = e_dim + self.beta = beta + + self.embedding = nn.Embedding(self.n_e, self.e_dim) + self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) + + def forward(self, z): + """ + Inputs the output of the encoder network z and maps it to a discrete + one-hot vector that is the index of the closest embedding vector e_j + z (continuous) -> z_q (discrete) + z.shape = (batch, channel, height, width) + quantization pipeline: + 1. get encoder input (B,C,H,W) + 2. flatten input to (B*H*W,C) + """ + # reshape z -> (batch, height, width, channel) and flatten + z = z.permute(0, 2, 3, 1).contiguous() + z_flattened = z.view(-1, self.e_dim) + # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z + + d = ( + torch.sum(z_flattened**2, dim=1, keepdim=True) + + torch.sum(self.embedding.weight**2, dim=1) + - 2 * torch.matmul(z_flattened, self.embedding.weight.t()) + ) + + # could possible replace this here + # #\start... + # find closest encodings + + min_value, min_encoding_indices = torch.min(d, dim=1) + + min_encoding_indices = min_encoding_indices.unsqueeze(1) + + min_encodings = torch.zeros(min_encoding_indices.shape[0], self.n_e).to(z) + min_encodings.scatter_(1, min_encoding_indices, 1) + + # dtype min encodings: torch.float32 + # min_encodings shape: torch.Size([2048, 512]) + # min_encoding_indices.shape: torch.Size([2048, 1]) + + # get quantized latent vectors + z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) + # .........\end + + # with: + # .........\start + # min_encoding_indices = torch.argmin(d, dim=1) + # z_q = self.embedding(min_encoding_indices) + # ......\end......... (TODO) + + # compute loss for embedding + loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean( + (z_q - z.detach()) ** 2 + ) + + # preserve gradients + z_q = z + (z_q - z).detach() + + # perplexity + + e_mean = torch.mean(min_encodings, dim=0) + perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) + + # reshape back to match original input shape + z_q = z_q.permute(0, 3, 1, 2).contiguous() + + return z_q, loss, (perplexity, min_encodings, min_encoding_indices, d) + + def get_codebook_entry(self, indices, shape): + # shape specifying (batch, height, width, channel) + # TODO: check for more easy handling with nn.Embedding + min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) + min_encodings.scatter_(1, indices[:, None], 1) + + # get quantized latent vectors + z_q = torch.matmul(min_encodings.float(), self.embedding.weight) + + if shape is not None: + z_q = z_q.view(shape) + + # reshape back to match original input shape + z_q = z_q.permute(0, 3, 1, 2).contiguous() + + return z_q + + +# pytorch_diffusion + derived encoder decoder +def nonlinearity(x): + # swish + return x * torch.sigmoid(x) + + +def Normalize(in_channels): + return torch.nn.GroupNorm( + num_groups=32, num_channels=in_channels, eps=1e-6, affine=True + ) + + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + if self.with_conv: + x = self.conv(x) + return x + + +class Downsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=2, padding=0 + ) + + def forward(self, x): + if self.with_conv: + pad = (0, 1, 0, 1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + return x + + +class ResnetBlock(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout, + temb_channels=512 + ): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels) + self.conv1 = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if temb_channels > 0: + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d( + out_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + else: + self.nin_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = nonlinearity(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] + + h = self.norm2(h) + h = nonlinearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class MultiHeadAttnBlock(nn.Module): + def __init__(self, in_channels, head_size=1): + super().__init__() + self.in_channels = in_channels + self.head_size = head_size + self.att_size = in_channels // head_size + assert ( + in_channels % head_size == 0 + ), "The size of head should be divided by the number of channels." + + self.norm1 = Normalize(in_channels) + self.norm2 = Normalize(in_channels) + + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.num = 0 + + def forward(self, x, y=None): + h_ = x + h_ = self.norm1(h_) + if y is None: + y = h_ + else: + y = self.norm2(y) + + q = self.q(y) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = q.reshape(b, self.head_size, self.att_size, h * w) + q = q.permute(0, 3, 1, 2) # b, hw, head, att + + k = k.reshape(b, self.head_size, self.att_size, h * w) + k = k.permute(0, 3, 1, 2) + + v = v.reshape(b, self.head_size, self.att_size, h * w) + v = v.permute(0, 3, 1, 2) + + q = q.transpose(1, 2) + v = v.transpose(1, 2) + k = k.transpose(1, 2).transpose(2, 3) + + scale = int(self.att_size) ** (-0.5) + q.mul_(scale) + w_ = torch.matmul(q, k) + w_ = F.softmax(w_, dim=3) + + w_ = w_.matmul(v) + + w_ = w_.transpose(1, 2).contiguous() # [b, h*w, head, att] + w_ = w_.view(b, h, w, -1) + w_ = w_.permute(0, 3, 1, 2) + + w_ = self.proj_out(w_) + + return x + w_ + + +class MultiHeadEncoder(nn.Module): + def __init__( + self, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks=2, + attn_resolutions=(16,), + dropout=0.0, + resamp_with_conv=True, + in_channels=3, + resolution=512, + z_channels=256, + double_z=True, + enable_mid=True, + head_size=1, + **ignore_kwargs + ): + super().__init__() + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.enable_mid = enable_mid + + # downsampling + self.conv_in = torch.nn.Conv2d( + in_channels, self.ch, kernel_size=3, stride=1, padding=1 + ) + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(MultiHeadAttnBlock(block_in, head_size)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + if self.enable_mid: + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, + 2 * z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + def forward(self, x): + hs = {} + # timestep embedding + temb = None + + # downsampling + h = self.conv_in(x) + hs["in"] = h + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](h, temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + + if i_level != self.num_resolutions - 1: + # hs.append(h) + hs["block_" + str(i_level)] = h + h = self.down[i_level].downsample(h) + + # middle + # h = hs[-1] + if self.enable_mid: + h = self.mid.block_1(h, temb) + hs["block_" + str(i_level) + "_atten"] = h + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + hs["mid_atten"] = h + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + # hs.append(h) + hs["out"] = h + + return hs + + +class MultiHeadDecoder(nn.Module): + def __init__( + self, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks=2, + attn_resolutions=(16,), + dropout=0.0, + resamp_with_conv=True, + in_channels=3, + resolution=512, + z_channels=256, + give_pre_end=False, + enable_mid=True, + head_size=1, + **ignorekwargs + ): + super().__init__() + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.enable_mid = enable_mid + + # compute in_ch_mult, block_in and curr_res at lowest res + block_in = ch * ch_mult[self.num_resolutions - 1] + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.z_shape = (1, z_channels, curr_res, curr_res) + print( + "Working with z of shape {} = {} dimensions.".format( + self.z_shape, np.prod(self.z_shape) + ) + ) + + # z to block_in + self.conv_in = torch.nn.Conv2d( + z_channels, block_in, kernel_size=3, stride=1, padding=1 + ) + + # middle + if self.enable_mid: + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(MultiHeadAttnBlock(block_in, head_size)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, z): + # assert z.shape[1:] == self.z_shape[1:] + self.last_z_shape = z.shape + + # timestep embedding + temb = None + + # z to block_in + h = self.conv_in(z) + + # middle + if self.enable_mid: + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block](h, temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class MultiHeadDecoderTransformer(nn.Module): + def __init__( + self, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks=2, + attn_resolutions=(16,), + dropout=0.0, + resamp_with_conv=True, + in_channels=3, + resolution=512, + z_channels=256, + give_pre_end=False, + enable_mid=True, + head_size=1, + **ignorekwargs + ): + super().__init__() + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.enable_mid = enable_mid + + # compute in_ch_mult, block_in and curr_res at lowest res + block_in = ch * ch_mult[self.num_resolutions - 1] + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.z_shape = (1, z_channels, curr_res, curr_res) + print( + "Working with z of shape {} = {} dimensions.".format( + self.z_shape, np.prod(self.z_shape) + ) + ) + + # z to block_in + self.conv_in = torch.nn.Conv2d( + z_channels, block_in, kernel_size=3, stride=1, padding=1 + ) + + # middle + if self.enable_mid: + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(MultiHeadAttnBlock(block_in, head_size)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, z, hs): + # assert z.shape[1:] == self.z_shape[1:] + # self.last_z_shape = z.shape + + # timestep embedding + temb = None + + # z to block_in + h = self.conv_in(z) + + # middle + if self.enable_mid: + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h, hs["mid_atten"]) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block](h, temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block]( + h, hs["block_" + str(i_level) + "_atten"] + ) + # hfeature = h.clone() + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class RestoreFormer(nn.Module): + def __init__( + self, + state_dict, + ): + super(RestoreFormer, self).__init__() + + n_embed = 1024 + embed_dim = 256 + ch = 64 + out_ch = 3 + ch_mult = (1, 2, 2, 4, 4, 8) + num_res_blocks = 2 + attn_resolutions = (16,) + dropout = 0.0 + in_channels = 3 + resolution = 512 + z_channels = 256 + double_z = False + enable_mid = True + fix_decoder = False + fix_codebook = True + fix_encoder = False + head_size = 8 + + self.model_arch = "RestoreFormer" + self.sub_type = "Face SR" + self.scale = 8 + self.in_nc = 3 + self.out_nc = out_ch + self.state = state_dict + + self.supports_fp16 = False + self.supports_bf16 = True + self.min_size_restriction = 16 + + self.encoder = MultiHeadEncoder( + ch=ch, + out_ch=out_ch, + ch_mult=ch_mult, + num_res_blocks=num_res_blocks, + attn_resolutions=attn_resolutions, + dropout=dropout, + in_channels=in_channels, + resolution=resolution, + z_channels=z_channels, + double_z=double_z, + enable_mid=enable_mid, + head_size=head_size, + ) + self.decoder = MultiHeadDecoderTransformer( + ch=ch, + out_ch=out_ch, + ch_mult=ch_mult, + num_res_blocks=num_res_blocks, + attn_resolutions=attn_resolutions, + dropout=dropout, + in_channels=in_channels, + resolution=resolution, + z_channels=z_channels, + enable_mid=enable_mid, + head_size=head_size, + ) + + self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25) + + self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1) + self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) + + if fix_decoder: + for _, param in self.decoder.named_parameters(): + param.requires_grad = False + for _, param in self.post_quant_conv.named_parameters(): + param.requires_grad = False + for _, param in self.quantize.named_parameters(): + param.requires_grad = False + elif fix_codebook: + for _, param in self.quantize.named_parameters(): + param.requires_grad = False + + if fix_encoder: + for _, param in self.encoder.named_parameters(): + param.requires_grad = False + + self.load_state_dict(state_dict) + + def encode(self, x): + hs = self.encoder(x) + h = self.quant_conv(hs["out"]) + quant, emb_loss, info = self.quantize(h) + return quant, emb_loss, info, hs + + def decode(self, quant, hs): + quant = self.post_quant_conv(quant) + dec = self.decoder(quant, hs) + + return dec + + def forward(self, input, **kwargs): + quant, diff, info, hs = self.encode(input) + dec = self.decode(quant, hs) + + return dec, None diff --git a/comfy_extras/chainner_models/architecture/face/stylegan2_arch.py b/comfy_extras/chainner_models/architecture/face/stylegan2_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..1eb0e9f15f706e2b9759bde4d0244d424c3ae76f --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/stylegan2_arch.py @@ -0,0 +1,865 @@ +# pylint: skip-file +# type: ignore +import math +import random + +import torch +from torch import nn +from torch.nn import functional as F + +from .fused_act import FusedLeakyReLU, fused_leaky_relu +from .upfirdn2d import upfirdn2d + + +class NormStyleCode(nn.Module): + def forward(self, x): + """Normalize the style codes. + + Args: + x (Tensor): Style codes with shape (b, c). + + Returns: + Tensor: Normalized tensor. + """ + return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8) + + +def make_resample_kernel(k): + """Make resampling kernel for UpFirDn. + + Args: + k (list[int]): A list indicating the 1D resample kernel magnitude. + + Returns: + Tensor: 2D resampled kernel. + """ + k = torch.tensor(k, dtype=torch.float32) + if k.ndim == 1: + k = k[None, :] * k[:, None] # to 2D kernel, outer product + # normalize + k /= k.sum() + return k + + +class UpFirDnUpsample(nn.Module): + """Upsample, FIR filter, and downsample (upsampole version). + + References: + 1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501 + 2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501 + + Args: + resample_kernel (list[int]): A list indicating the 1D resample kernel + magnitude. + factor (int): Upsampling scale factor. Default: 2. + """ + + def __init__(self, resample_kernel, factor=2): + super(UpFirDnUpsample, self).__init__() + self.kernel = make_resample_kernel(resample_kernel) * (factor**2) + self.factor = factor + + pad = self.kernel.shape[0] - factor + self.pad = ((pad + 1) // 2 + factor - 1, pad // 2) + + def forward(self, x): + out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad) + return out + + def __repr__(self): + return f"{self.__class__.__name__}(factor={self.factor})" + + +class UpFirDnDownsample(nn.Module): + """Upsample, FIR filter, and downsample (downsampole version). + + Args: + resample_kernel (list[int]): A list indicating the 1D resample kernel + magnitude. + factor (int): Downsampling scale factor. Default: 2. + """ + + def __init__(self, resample_kernel, factor=2): + super(UpFirDnDownsample, self).__init__() + self.kernel = make_resample_kernel(resample_kernel) + self.factor = factor + + pad = self.kernel.shape[0] - factor + self.pad = ((pad + 1) // 2, pad // 2) + + def forward(self, x): + out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=self.factor, pad=self.pad) + return out + + def __repr__(self): + return f"{self.__class__.__name__}(factor={self.factor})" + + +class UpFirDnSmooth(nn.Module): + """Upsample, FIR filter, and downsample (smooth version). + + Args: + resample_kernel (list[int]): A list indicating the 1D resample kernel + magnitude. + upsample_factor (int): Upsampling scale factor. Default: 1. + downsample_factor (int): Downsampling scale factor. Default: 1. + kernel_size (int): Kernel size: Default: 1. + """ + + def __init__( + self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1 + ): + super(UpFirDnSmooth, self).__init__() + self.upsample_factor = upsample_factor + self.downsample_factor = downsample_factor + self.kernel = make_resample_kernel(resample_kernel) + if upsample_factor > 1: + self.kernel = self.kernel * (upsample_factor**2) + + if upsample_factor > 1: + pad = (self.kernel.shape[0] - upsample_factor) - (kernel_size - 1) + self.pad = ((pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1) + elif downsample_factor > 1: + pad = (self.kernel.shape[0] - downsample_factor) + (kernel_size - 1) + self.pad = ((pad + 1) // 2, pad // 2) + else: + raise NotImplementedError + + def forward(self, x): + out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad) + return out + + def __repr__(self): + return ( + f"{self.__class__.__name__}(upsample_factor={self.upsample_factor}" + f", downsample_factor={self.downsample_factor})" + ) + + +class EqualLinear(nn.Module): + """Equalized Linear as StyleGAN2. + + Args: + in_channels (int): Size of each sample. + out_channels (int): Size of each output sample. + bias (bool): If set to ``False``, the layer will not learn an additive + bias. Default: ``True``. + bias_init_val (float): Bias initialized value. Default: 0. + lr_mul (float): Learning rate multiplier. Default: 1. + activation (None | str): The activation after ``linear`` operation. + Supported: 'fused_lrelu', None. Default: None. + """ + + def __init__( + self, + in_channels, + out_channels, + bias=True, + bias_init_val=0, + lr_mul=1, + activation=None, + ): + super(EqualLinear, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.lr_mul = lr_mul + self.activation = activation + if self.activation not in ["fused_lrelu", None]: + raise ValueError( + f"Wrong activation value in EqualLinear: {activation}" + "Supported ones are: ['fused_lrelu', None]." + ) + self.scale = (1 / math.sqrt(in_channels)) * lr_mul + + self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul)) + if bias: + self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) + else: + self.register_parameter("bias", None) + + def forward(self, x): + if self.bias is None: + bias = None + else: + bias = self.bias * self.lr_mul + if self.activation == "fused_lrelu": + out = F.linear(x, self.weight * self.scale) + out = fused_leaky_relu(out, bias) + else: + out = F.linear(x, self.weight * self.scale, bias=bias) + return out + + def __repr__(self): + return ( + f"{self.__class__.__name__}(in_channels={self.in_channels}, " + f"out_channels={self.out_channels}, bias={self.bias is not None})" + ) + + +class ModulatedConv2d(nn.Module): + """Modulated Conv2d used in StyleGAN2. + + There is no bias in ModulatedConv2d. + + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Size of the convolving kernel. + num_style_feat (int): Channel number of style features. + demodulate (bool): Whether to demodulate in the conv layer. + Default: True. + sample_mode (str | None): Indicating 'upsample', 'downsample' or None. + Default: None. + resample_kernel (list[int]): A list indicating the 1D resample kernel + magnitude. Default: (1, 3, 3, 1). + eps (float): A value added to the denominator for numerical stability. + Default: 1e-8. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + num_style_feat, + demodulate=True, + sample_mode=None, + resample_kernel=(1, 3, 3, 1), + eps=1e-8, + ): + super(ModulatedConv2d, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.demodulate = demodulate + self.sample_mode = sample_mode + self.eps = eps + + if self.sample_mode == "upsample": + self.smooth = UpFirDnSmooth( + resample_kernel, + upsample_factor=2, + downsample_factor=1, + kernel_size=kernel_size, + ) + elif self.sample_mode == "downsample": + self.smooth = UpFirDnSmooth( + resample_kernel, + upsample_factor=1, + downsample_factor=2, + kernel_size=kernel_size, + ) + elif self.sample_mode is None: + pass + else: + raise ValueError( + f"Wrong sample mode {self.sample_mode}, " + "supported ones are ['upsample', 'downsample', None]." + ) + + self.scale = 1 / math.sqrt(in_channels * kernel_size**2) + # modulation inside each modulated conv + self.modulation = EqualLinear( + num_style_feat, + in_channels, + bias=True, + bias_init_val=1, + lr_mul=1, + activation=None, + ) + + self.weight = nn.Parameter( + torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) + ) + self.padding = kernel_size // 2 + + def forward(self, x, style): + """Forward function. + + Args: + x (Tensor): Tensor with shape (b, c, h, w). + style (Tensor): Tensor with shape (b, num_style_feat). + + Returns: + Tensor: Modulated tensor after convolution. + """ + b, c, h, w = x.shape # c = c_in + # weight modulation + style = self.modulation(style).view(b, 1, c, 1, 1) + # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1) + weight = self.scale * self.weight * style # (b, c_out, c_in, k, k) + + if self.demodulate: + demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) + weight = weight * demod.view(b, self.out_channels, 1, 1, 1) + + weight = weight.view( + b * self.out_channels, c, self.kernel_size, self.kernel_size + ) + + if self.sample_mode == "upsample": + x = x.view(1, b * c, h, w) + weight = weight.view( + b, self.out_channels, c, self.kernel_size, self.kernel_size + ) + weight = weight.transpose(1, 2).reshape( + b * c, self.out_channels, self.kernel_size, self.kernel_size + ) + out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b) + out = out.view(b, self.out_channels, *out.shape[2:4]) + out = self.smooth(out) + elif self.sample_mode == "downsample": + x = self.smooth(x) + x = x.view(1, b * c, *x.shape[2:4]) + out = F.conv2d(x, weight, padding=0, stride=2, groups=b) + out = out.view(b, self.out_channels, *out.shape[2:4]) + else: + x = x.view(1, b * c, h, w) + # weight: (b*c_out, c_in, k, k), groups=b + out = F.conv2d(x, weight, padding=self.padding, groups=b) + out = out.view(b, self.out_channels, *out.shape[2:4]) + + return out + + def __repr__(self): + return ( + f"{self.__class__.__name__}(in_channels={self.in_channels}, " + f"out_channels={self.out_channels}, " + f"kernel_size={self.kernel_size}, " + f"demodulate={self.demodulate}, sample_mode={self.sample_mode})" + ) + + +class StyleConv(nn.Module): + """Style conv. + + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Size of the convolving kernel. + num_style_feat (int): Channel number of style features. + demodulate (bool): Whether demodulate in the conv layer. Default: True. + sample_mode (str | None): Indicating 'upsample', 'downsample' or None. + Default: None. + resample_kernel (list[int]): A list indicating the 1D resample kernel + magnitude. Default: (1, 3, 3, 1). + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + num_style_feat, + demodulate=True, + sample_mode=None, + resample_kernel=(1, 3, 3, 1), + ): + super(StyleConv, self).__init__() + self.modulated_conv = ModulatedConv2d( + in_channels, + out_channels, + kernel_size, + num_style_feat, + demodulate=demodulate, + sample_mode=sample_mode, + resample_kernel=resample_kernel, + ) + self.weight = nn.Parameter(torch.zeros(1)) # for noise injection + self.activate = FusedLeakyReLU(out_channels) + + def forward(self, x, style, noise=None): + # modulate + out = self.modulated_conv(x, style) + # noise injection + if noise is None: + b, _, h, w = out.shape + noise = out.new_empty(b, 1, h, w).normal_() + out = out + self.weight * noise + # activation (with bias) + out = self.activate(out) + return out + + +class ToRGB(nn.Module): + """To RGB from features. + + Args: + in_channels (int): Channel number of input. + num_style_feat (int): Channel number of style features. + upsample (bool): Whether to upsample. Default: True. + resample_kernel (list[int]): A list indicating the 1D resample kernel + magnitude. Default: (1, 3, 3, 1). + """ + + def __init__( + self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1) + ): + super(ToRGB, self).__init__() + if upsample: + self.upsample = UpFirDnUpsample(resample_kernel, factor=2) + else: + self.upsample = None + self.modulated_conv = ModulatedConv2d( + in_channels, + 3, + kernel_size=1, + num_style_feat=num_style_feat, + demodulate=False, + sample_mode=None, + ) + self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) + + def forward(self, x, style, skip=None): + """Forward function. + + Args: + x (Tensor): Feature tensor with shape (b, c, h, w). + style (Tensor): Tensor with shape (b, num_style_feat). + skip (Tensor): Base/skip tensor. Default: None. + + Returns: + Tensor: RGB images. + """ + out = self.modulated_conv(x, style) + out = out + self.bias + if skip is not None: + if self.upsample: + skip = self.upsample(skip) + out = out + skip + return out + + +class ConstantInput(nn.Module): + """Constant input. + + Args: + num_channel (int): Channel number of constant input. + size (int): Spatial size of constant input. + """ + + def __init__(self, num_channel, size): + super(ConstantInput, self).__init__() + self.weight = nn.Parameter(torch.randn(1, num_channel, size, size)) + + def forward(self, batch): + out = self.weight.repeat(batch, 1, 1, 1) + return out + + +class StyleGAN2Generator(nn.Module): + """StyleGAN2 Generator. + + Args: + out_size (int): The spatial size of outputs. + num_style_feat (int): Channel number of style features. Default: 512. + num_mlp (int): Layer number of MLP style layers. Default: 8. + channel_multiplier (int): Channel multiplier for large networks of + StyleGAN2. Default: 2. + resample_kernel (list[int]): A list indicating the 1D resample kernel + magnitude. A cross production will be applied to extent 1D resample + kernel to 2D resample kernel. Default: (1, 3, 3, 1). + lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. + narrow (float): Narrow ratio for channels. Default: 1.0. + """ + + def __init__( + self, + out_size, + num_style_feat=512, + num_mlp=8, + channel_multiplier=2, + resample_kernel=(1, 3, 3, 1), + lr_mlp=0.01, + narrow=1, + ): + super(StyleGAN2Generator, self).__init__() + # Style MLP layers + self.num_style_feat = num_style_feat + style_mlp_layers = [NormStyleCode()] + for i in range(num_mlp): + style_mlp_layers.append( + EqualLinear( + num_style_feat, + num_style_feat, + bias=True, + bias_init_val=0, + lr_mul=lr_mlp, + activation="fused_lrelu", + ) + ) + self.style_mlp = nn.Sequential(*style_mlp_layers) + + channels = { + "4": int(512 * narrow), + "8": int(512 * narrow), + "16": int(512 * narrow), + "32": int(512 * narrow), + "64": int(256 * channel_multiplier * narrow), + "128": int(128 * channel_multiplier * narrow), + "256": int(64 * channel_multiplier * narrow), + "512": int(32 * channel_multiplier * narrow), + "1024": int(16 * channel_multiplier * narrow), + } + self.channels = channels + + self.constant_input = ConstantInput(channels["4"], size=4) + self.style_conv1 = StyleConv( + channels["4"], + channels["4"], + kernel_size=3, + num_style_feat=num_style_feat, + demodulate=True, + sample_mode=None, + resample_kernel=resample_kernel, + ) + self.to_rgb1 = ToRGB( + channels["4"], + num_style_feat, + upsample=False, + resample_kernel=resample_kernel, + ) + + self.log_size = int(math.log(out_size, 2)) + self.num_layers = (self.log_size - 2) * 2 + 1 + self.num_latent = self.log_size * 2 - 2 + + self.style_convs = nn.ModuleList() + self.to_rgbs = nn.ModuleList() + self.noises = nn.Module() + + in_channels = channels["4"] + # noise + for layer_idx in range(self.num_layers): + resolution = 2 ** ((layer_idx + 5) // 2) + shape = [1, 1, resolution, resolution] + self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape)) + # style convs and to_rgbs + for i in range(3, self.log_size + 1): + out_channels = channels[f"{2**i}"] + self.style_convs.append( + StyleConv( + in_channels, + out_channels, + kernel_size=3, + num_style_feat=num_style_feat, + demodulate=True, + sample_mode="upsample", + resample_kernel=resample_kernel, + ) + ) + self.style_convs.append( + StyleConv( + out_channels, + out_channels, + kernel_size=3, + num_style_feat=num_style_feat, + demodulate=True, + sample_mode=None, + resample_kernel=resample_kernel, + ) + ) + self.to_rgbs.append( + ToRGB( + out_channels, + num_style_feat, + upsample=True, + resample_kernel=resample_kernel, + ) + ) + in_channels = out_channels + + def make_noise(self): + """Make noise for noise injection.""" + device = self.constant_input.weight.device + noises = [torch.randn(1, 1, 4, 4, device=device)] + + for i in range(3, self.log_size + 1): + for _ in range(2): + noises.append(torch.randn(1, 1, 2**i, 2**i, device=device)) + + return noises + + def get_latent(self, x): + return self.style_mlp(x) + + def mean_latent(self, num_latent): + latent_in = torch.randn( + num_latent, self.num_style_feat, device=self.constant_input.weight.device + ) + latent = self.style_mlp(latent_in).mean(0, keepdim=True) + return latent + + def forward( + self, + styles, + input_is_latent=False, + noise=None, + randomize_noise=True, + truncation=1, + truncation_latent=None, + inject_index=None, + return_latents=False, + ): + """Forward function for StyleGAN2Generator. + + Args: + styles (list[Tensor]): Sample codes of styles. + input_is_latent (bool): Whether input is latent style. + Default: False. + noise (Tensor | None): Input noise or None. Default: None. + randomize_noise (bool): Randomize noise, used when 'noise' is + False. Default: True. + truncation (float): TODO. Default: 1. + truncation_latent (Tensor | None): TODO. Default: None. + inject_index (int | None): The injection index for mixing noise. + Default: None. + return_latents (bool): Whether to return style latents. + Default: False. + """ + # style codes -> latents with Style MLP layer + if not input_is_latent: + styles = [self.style_mlp(s) for s in styles] + # noises + if noise is None: + if randomize_noise: + noise = [None] * self.num_layers # for each style conv layer + else: # use the stored noise + noise = [ + getattr(self.noises, f"noise{i}") for i in range(self.num_layers) + ] + # style truncation + if truncation < 1: + style_truncation = [] + for style in styles: + style_truncation.append( + truncation_latent + truncation * (style - truncation_latent) + ) + styles = style_truncation + # get style latent with injection + if len(styles) == 1: + inject_index = self.num_latent + + if styles[0].ndim < 3: + # repeat latent code for all the layers + latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + else: # used for encoder with different latent code for each layer + latent = styles[0] + elif len(styles) == 2: # mixing noises + if inject_index is None: + inject_index = random.randint(1, self.num_latent - 1) + latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + latent2 = ( + styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) + ) + latent = torch.cat([latent1, latent2], 1) + + # main generation + out = self.constant_input(latent.shape[0]) + out = self.style_conv1(out, latent[:, 0], noise=noise[0]) + skip = self.to_rgb1(out, latent[:, 1]) + + i = 1 + for conv1, conv2, noise1, noise2, to_rgb in zip( + self.style_convs[::2], + self.style_convs[1::2], + noise[1::2], + noise[2::2], + self.to_rgbs, + ): + out = conv1(out, latent[:, i], noise=noise1) + out = conv2(out, latent[:, i + 1], noise=noise2) + skip = to_rgb(out, latent[:, i + 2], skip) + i += 2 + + image = skip + + if return_latents: + return image, latent + else: + return image, None + + +class ScaledLeakyReLU(nn.Module): + """Scaled LeakyReLU. + + Args: + negative_slope (float): Negative slope. Default: 0.2. + """ + + def __init__(self, negative_slope=0.2): + super(ScaledLeakyReLU, self).__init__() + self.negative_slope = negative_slope + + def forward(self, x): + out = F.leaky_relu(x, negative_slope=self.negative_slope) + return out * math.sqrt(2) + + +class EqualConv2d(nn.Module): + """Equalized Linear as StyleGAN2. + + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Size of the convolving kernel. + stride (int): Stride of the convolution. Default: 1 + padding (int): Zero-padding added to both sides of the input. + Default: 0. + bias (bool): If ``True``, adds a learnable bias to the output. + Default: ``True``. + bias_init_val (float): Bias initialized value. Default: 0. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + padding=0, + bias=True, + bias_init_val=0, + ): + super(EqualConv2d, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.stride = stride + self.padding = padding + self.scale = 1 / math.sqrt(in_channels * kernel_size**2) + + self.weight = nn.Parameter( + torch.randn(out_channels, in_channels, kernel_size, kernel_size) + ) + if bias: + self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) + else: + self.register_parameter("bias", None) + + def forward(self, x): + out = F.conv2d( + x, + self.weight * self.scale, + bias=self.bias, + stride=self.stride, + padding=self.padding, + ) + + return out + + def __repr__(self): + return ( + f"{self.__class__.__name__}(in_channels={self.in_channels}, " + f"out_channels={self.out_channels}, " + f"kernel_size={self.kernel_size}," + f" stride={self.stride}, padding={self.padding}, " + f"bias={self.bias is not None})" + ) + + +class ConvLayer(nn.Sequential): + """Conv Layer used in StyleGAN2 Discriminator. + + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Kernel size. + downsample (bool): Whether downsample by a factor of 2. + Default: False. + resample_kernel (list[int]): A list indicating the 1D resample + kernel magnitude. A cross production will be applied to + extent 1D resample kernel to 2D resample kernel. + Default: (1, 3, 3, 1). + bias (bool): Whether with bias. Default: True. + activate (bool): Whether use activateion. Default: True. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + downsample=False, + resample_kernel=(1, 3, 3, 1), + bias=True, + activate=True, + ): + layers = [] + # downsample + if downsample: + layers.append( + UpFirDnSmooth( + resample_kernel, + upsample_factor=1, + downsample_factor=2, + kernel_size=kernel_size, + ) + ) + stride = 2 + self.padding = 0 + else: + stride = 1 + self.padding = kernel_size // 2 + # conv + layers.append( + EqualConv2d( + in_channels, + out_channels, + kernel_size, + stride=stride, + padding=self.padding, + bias=bias and not activate, + ) + ) + # activation + if activate: + if bias: + layers.append(FusedLeakyReLU(out_channels)) + else: + layers.append(ScaledLeakyReLU(0.2)) + + super(ConvLayer, self).__init__(*layers) + + +class ResBlock(nn.Module): + """Residual block used in StyleGAN2 Discriminator. + + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + resample_kernel (list[int]): A list indicating the 1D resample + kernel magnitude. A cross production will be applied to + extent 1D resample kernel to 2D resample kernel. + Default: (1, 3, 3, 1). + """ + + def __init__(self, in_channels, out_channels, resample_kernel=(1, 3, 3, 1)): + super(ResBlock, self).__init__() + + self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True) + self.conv2 = ConvLayer( + in_channels, + out_channels, + 3, + downsample=True, + resample_kernel=resample_kernel, + bias=True, + activate=True, + ) + self.skip = ConvLayer( + in_channels, + out_channels, + 1, + downsample=True, + resample_kernel=resample_kernel, + bias=False, + activate=False, + ) + + def forward(self, x): + out = self.conv1(x) + out = self.conv2(out) + skip = self.skip(x) + out = (out + skip) / math.sqrt(2) + return out diff --git a/comfy_extras/chainner_models/architecture/face/stylegan2_bilinear_arch.py b/comfy_extras/chainner_models/architecture/face/stylegan2_bilinear_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..601f8cc4b33bdbb371d710a2bb0656e8ce102e26 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/stylegan2_bilinear_arch.py @@ -0,0 +1,709 @@ +# pylint: skip-file +# type: ignore +import math +import random + +import torch +from torch import nn +from torch.nn import functional as F + +from .fused_act import FusedLeakyReLU, fused_leaky_relu + + +class NormStyleCode(nn.Module): + def forward(self, x): + """Normalize the style codes. + Args: + x (Tensor): Style codes with shape (b, c). + Returns: + Tensor: Normalized tensor. + """ + return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8) + + +class EqualLinear(nn.Module): + """Equalized Linear as StyleGAN2. + Args: + in_channels (int): Size of each sample. + out_channels (int): Size of each output sample. + bias (bool): If set to ``False``, the layer will not learn an additive + bias. Default: ``True``. + bias_init_val (float): Bias initialized value. Default: 0. + lr_mul (float): Learning rate multiplier. Default: 1. + activation (None | str): The activation after ``linear`` operation. + Supported: 'fused_lrelu', None. Default: None. + """ + + def __init__( + self, + in_channels, + out_channels, + bias=True, + bias_init_val=0, + lr_mul=1, + activation=None, + ): + super(EqualLinear, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.lr_mul = lr_mul + self.activation = activation + if self.activation not in ["fused_lrelu", None]: + raise ValueError( + f"Wrong activation value in EqualLinear: {activation}" + "Supported ones are: ['fused_lrelu', None]." + ) + self.scale = (1 / math.sqrt(in_channels)) * lr_mul + + self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul)) + if bias: + self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) + else: + self.register_parameter("bias", None) + + def forward(self, x): + if self.bias is None: + bias = None + else: + bias = self.bias * self.lr_mul + if self.activation == "fused_lrelu": + out = F.linear(x, self.weight * self.scale) + out = fused_leaky_relu(out, bias) + else: + out = F.linear(x, self.weight * self.scale, bias=bias) + return out + + def __repr__(self): + return ( + f"{self.__class__.__name__}(in_channels={self.in_channels}, " + f"out_channels={self.out_channels}, bias={self.bias is not None})" + ) + + +class ModulatedConv2d(nn.Module): + """Modulated Conv2d used in StyleGAN2. + There is no bias in ModulatedConv2d. + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Size of the convolving kernel. + num_style_feat (int): Channel number of style features. + demodulate (bool): Whether to demodulate in the conv layer. + Default: True. + sample_mode (str | None): Indicating 'upsample', 'downsample' or None. + Default: None. + eps (float): A value added to the denominator for numerical stability. + Default: 1e-8. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + num_style_feat, + demodulate=True, + sample_mode=None, + eps=1e-8, + interpolation_mode="bilinear", + ): + super(ModulatedConv2d, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.demodulate = demodulate + self.sample_mode = sample_mode + self.eps = eps + self.interpolation_mode = interpolation_mode + if self.interpolation_mode == "nearest": + self.align_corners = None + else: + self.align_corners = False + + self.scale = 1 / math.sqrt(in_channels * kernel_size**2) + # modulation inside each modulated conv + self.modulation = EqualLinear( + num_style_feat, + in_channels, + bias=True, + bias_init_val=1, + lr_mul=1, + activation=None, + ) + + self.weight = nn.Parameter( + torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) + ) + self.padding = kernel_size // 2 + + def forward(self, x, style): + """Forward function. + Args: + x (Tensor): Tensor with shape (b, c, h, w). + style (Tensor): Tensor with shape (b, num_style_feat). + Returns: + Tensor: Modulated tensor after convolution. + """ + b, c, h, w = x.shape # c = c_in + # weight modulation + style = self.modulation(style).view(b, 1, c, 1, 1) + # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1) + weight = self.scale * self.weight * style # (b, c_out, c_in, k, k) + + if self.demodulate: + demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) + weight = weight * demod.view(b, self.out_channels, 1, 1, 1) + + weight = weight.view( + b * self.out_channels, c, self.kernel_size, self.kernel_size + ) + + if self.sample_mode == "upsample": + x = F.interpolate( + x, + scale_factor=2, + mode=self.interpolation_mode, + align_corners=self.align_corners, + ) + elif self.sample_mode == "downsample": + x = F.interpolate( + x, + scale_factor=0.5, + mode=self.interpolation_mode, + align_corners=self.align_corners, + ) + + b, c, h, w = x.shape + x = x.view(1, b * c, h, w) + # weight: (b*c_out, c_in, k, k), groups=b + out = F.conv2d(x, weight, padding=self.padding, groups=b) + out = out.view(b, self.out_channels, *out.shape[2:4]) + + return out + + def __repr__(self): + return ( + f"{self.__class__.__name__}(in_channels={self.in_channels}, " + f"out_channels={self.out_channels}, " + f"kernel_size={self.kernel_size}, " + f"demodulate={self.demodulate}, sample_mode={self.sample_mode})" + ) + + +class StyleConv(nn.Module): + """Style conv. + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Size of the convolving kernel. + num_style_feat (int): Channel number of style features. + demodulate (bool): Whether demodulate in the conv layer. Default: True. + sample_mode (str | None): Indicating 'upsample', 'downsample' or None. + Default: None. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + num_style_feat, + demodulate=True, + sample_mode=None, + interpolation_mode="bilinear", + ): + super(StyleConv, self).__init__() + self.modulated_conv = ModulatedConv2d( + in_channels, + out_channels, + kernel_size, + num_style_feat, + demodulate=demodulate, + sample_mode=sample_mode, + interpolation_mode=interpolation_mode, + ) + self.weight = nn.Parameter(torch.zeros(1)) # for noise injection + self.activate = FusedLeakyReLU(out_channels) + + def forward(self, x, style, noise=None): + # modulate + out = self.modulated_conv(x, style) + # noise injection + if noise is None: + b, _, h, w = out.shape + noise = out.new_empty(b, 1, h, w).normal_() + out = out + self.weight * noise + # activation (with bias) + out = self.activate(out) + return out + + +class ToRGB(nn.Module): + """To RGB from features. + Args: + in_channels (int): Channel number of input. + num_style_feat (int): Channel number of style features. + upsample (bool): Whether to upsample. Default: True. + """ + + def __init__( + self, in_channels, num_style_feat, upsample=True, interpolation_mode="bilinear" + ): + super(ToRGB, self).__init__() + self.upsample = upsample + self.interpolation_mode = interpolation_mode + if self.interpolation_mode == "nearest": + self.align_corners = None + else: + self.align_corners = False + self.modulated_conv = ModulatedConv2d( + in_channels, + 3, + kernel_size=1, + num_style_feat=num_style_feat, + demodulate=False, + sample_mode=None, + interpolation_mode=interpolation_mode, + ) + self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) + + def forward(self, x, style, skip=None): + """Forward function. + Args: + x (Tensor): Feature tensor with shape (b, c, h, w). + style (Tensor): Tensor with shape (b, num_style_feat). + skip (Tensor): Base/skip tensor. Default: None. + Returns: + Tensor: RGB images. + """ + out = self.modulated_conv(x, style) + out = out + self.bias + if skip is not None: + if self.upsample: + skip = F.interpolate( + skip, + scale_factor=2, + mode=self.interpolation_mode, + align_corners=self.align_corners, + ) + out = out + skip + return out + + +class ConstantInput(nn.Module): + """Constant input. + Args: + num_channel (int): Channel number of constant input. + size (int): Spatial size of constant input. + """ + + def __init__(self, num_channel, size): + super(ConstantInput, self).__init__() + self.weight = nn.Parameter(torch.randn(1, num_channel, size, size)) + + def forward(self, batch): + out = self.weight.repeat(batch, 1, 1, 1) + return out + + +class StyleGAN2GeneratorBilinear(nn.Module): + """StyleGAN2 Generator. + Args: + out_size (int): The spatial size of outputs. + num_style_feat (int): Channel number of style features. Default: 512. + num_mlp (int): Layer number of MLP style layers. Default: 8. + channel_multiplier (int): Channel multiplier for large networks of + StyleGAN2. Default: 2. + lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. + narrow (float): Narrow ratio for channels. Default: 1.0. + """ + + def __init__( + self, + out_size, + num_style_feat=512, + num_mlp=8, + channel_multiplier=2, + lr_mlp=0.01, + narrow=1, + interpolation_mode="bilinear", + ): + super(StyleGAN2GeneratorBilinear, self).__init__() + # Style MLP layers + self.num_style_feat = num_style_feat + style_mlp_layers = [NormStyleCode()] + for i in range(num_mlp): + style_mlp_layers.append( + EqualLinear( + num_style_feat, + num_style_feat, + bias=True, + bias_init_val=0, + lr_mul=lr_mlp, + activation="fused_lrelu", + ) + ) + self.style_mlp = nn.Sequential(*style_mlp_layers) + + channels = { + "4": int(512 * narrow), + "8": int(512 * narrow), + "16": int(512 * narrow), + "32": int(512 * narrow), + "64": int(256 * channel_multiplier * narrow), + "128": int(128 * channel_multiplier * narrow), + "256": int(64 * channel_multiplier * narrow), + "512": int(32 * channel_multiplier * narrow), + "1024": int(16 * channel_multiplier * narrow), + } + self.channels = channels + + self.constant_input = ConstantInput(channels["4"], size=4) + self.style_conv1 = StyleConv( + channels["4"], + channels["4"], + kernel_size=3, + num_style_feat=num_style_feat, + demodulate=True, + sample_mode=None, + interpolation_mode=interpolation_mode, + ) + self.to_rgb1 = ToRGB( + channels["4"], + num_style_feat, + upsample=False, + interpolation_mode=interpolation_mode, + ) + + self.log_size = int(math.log(out_size, 2)) + self.num_layers = (self.log_size - 2) * 2 + 1 + self.num_latent = self.log_size * 2 - 2 + + self.style_convs = nn.ModuleList() + self.to_rgbs = nn.ModuleList() + self.noises = nn.Module() + + in_channels = channels["4"] + # noise + for layer_idx in range(self.num_layers): + resolution = 2 ** ((layer_idx + 5) // 2) + shape = [1, 1, resolution, resolution] + self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape)) + # style convs and to_rgbs + for i in range(3, self.log_size + 1): + out_channels = channels[f"{2**i}"] + self.style_convs.append( + StyleConv( + in_channels, + out_channels, + kernel_size=3, + num_style_feat=num_style_feat, + demodulate=True, + sample_mode="upsample", + interpolation_mode=interpolation_mode, + ) + ) + self.style_convs.append( + StyleConv( + out_channels, + out_channels, + kernel_size=3, + num_style_feat=num_style_feat, + demodulate=True, + sample_mode=None, + interpolation_mode=interpolation_mode, + ) + ) + self.to_rgbs.append( + ToRGB( + out_channels, + num_style_feat, + upsample=True, + interpolation_mode=interpolation_mode, + ) + ) + in_channels = out_channels + + def make_noise(self): + """Make noise for noise injection.""" + device = self.constant_input.weight.device + noises = [torch.randn(1, 1, 4, 4, device=device)] + + for i in range(3, self.log_size + 1): + for _ in range(2): + noises.append(torch.randn(1, 1, 2**i, 2**i, device=device)) + + return noises + + def get_latent(self, x): + return self.style_mlp(x) + + def mean_latent(self, num_latent): + latent_in = torch.randn( + num_latent, self.num_style_feat, device=self.constant_input.weight.device + ) + latent = self.style_mlp(latent_in).mean(0, keepdim=True) + return latent + + def forward( + self, + styles, + input_is_latent=False, + noise=None, + randomize_noise=True, + truncation=1, + truncation_latent=None, + inject_index=None, + return_latents=False, + ): + """Forward function for StyleGAN2Generator. + Args: + styles (list[Tensor]): Sample codes of styles. + input_is_latent (bool): Whether input is latent style. + Default: False. + noise (Tensor | None): Input noise or None. Default: None. + randomize_noise (bool): Randomize noise, used when 'noise' is + False. Default: True. + truncation (float): TODO. Default: 1. + truncation_latent (Tensor | None): TODO. Default: None. + inject_index (int | None): The injection index for mixing noise. + Default: None. + return_latents (bool): Whether to return style latents. + Default: False. + """ + # style codes -> latents with Style MLP layer + if not input_is_latent: + styles = [self.style_mlp(s) for s in styles] + # noises + if noise is None: + if randomize_noise: + noise = [None] * self.num_layers # for each style conv layer + else: # use the stored noise + noise = [ + getattr(self.noises, f"noise{i}") for i in range(self.num_layers) + ] + # style truncation + if truncation < 1: + style_truncation = [] + for style in styles: + style_truncation.append( + truncation_latent + truncation * (style - truncation_latent) + ) + styles = style_truncation + # get style latent with injection + if len(styles) == 1: + inject_index = self.num_latent + + if styles[0].ndim < 3: + # repeat latent code for all the layers + latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + else: # used for encoder with different latent code for each layer + latent = styles[0] + elif len(styles) == 2: # mixing noises + if inject_index is None: + inject_index = random.randint(1, self.num_latent - 1) + latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + latent2 = ( + styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) + ) + latent = torch.cat([latent1, latent2], 1) + + # main generation + out = self.constant_input(latent.shape[0]) + out = self.style_conv1(out, latent[:, 0], noise=noise[0]) + skip = self.to_rgb1(out, latent[:, 1]) + + i = 1 + for conv1, conv2, noise1, noise2, to_rgb in zip( + self.style_convs[::2], + self.style_convs[1::2], + noise[1::2], + noise[2::2], + self.to_rgbs, + ): + out = conv1(out, latent[:, i], noise=noise1) + out = conv2(out, latent[:, i + 1], noise=noise2) + skip = to_rgb(out, latent[:, i + 2], skip) + i += 2 + + image = skip + + if return_latents: + return image, latent + else: + return image, None + + +class ScaledLeakyReLU(nn.Module): + """Scaled LeakyReLU. + Args: + negative_slope (float): Negative slope. Default: 0.2. + """ + + def __init__(self, negative_slope=0.2): + super(ScaledLeakyReLU, self).__init__() + self.negative_slope = negative_slope + + def forward(self, x): + out = F.leaky_relu(x, negative_slope=self.negative_slope) + return out * math.sqrt(2) + + +class EqualConv2d(nn.Module): + """Equalized Linear as StyleGAN2. + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Size of the convolving kernel. + stride (int): Stride of the convolution. Default: 1 + padding (int): Zero-padding added to both sides of the input. + Default: 0. + bias (bool): If ``True``, adds a learnable bias to the output. + Default: ``True``. + bias_init_val (float): Bias initialized value. Default: 0. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + padding=0, + bias=True, + bias_init_val=0, + ): + super(EqualConv2d, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.stride = stride + self.padding = padding + self.scale = 1 / math.sqrt(in_channels * kernel_size**2) + + self.weight = nn.Parameter( + torch.randn(out_channels, in_channels, kernel_size, kernel_size) + ) + if bias: + self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) + else: + self.register_parameter("bias", None) + + def forward(self, x): + out = F.conv2d( + x, + self.weight * self.scale, + bias=self.bias, + stride=self.stride, + padding=self.padding, + ) + + return out + + def __repr__(self): + return ( + f"{self.__class__.__name__}(in_channels={self.in_channels}, " + f"out_channels={self.out_channels}, " + f"kernel_size={self.kernel_size}," + f" stride={self.stride}, padding={self.padding}, " + f"bias={self.bias is not None})" + ) + + +class ConvLayer(nn.Sequential): + """Conv Layer used in StyleGAN2 Discriminator. + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Kernel size. + downsample (bool): Whether downsample by a factor of 2. + Default: False. + bias (bool): Whether with bias. Default: True. + activate (bool): Whether use activateion. Default: True. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + downsample=False, + bias=True, + activate=True, + interpolation_mode="bilinear", + ): + layers = [] + self.interpolation_mode = interpolation_mode + # downsample + if downsample: + if self.interpolation_mode == "nearest": + self.align_corners = None + else: + self.align_corners = False + + layers.append( + torch.nn.Upsample( + scale_factor=0.5, + mode=interpolation_mode, + align_corners=self.align_corners, + ) + ) + stride = 1 + self.padding = kernel_size // 2 + # conv + layers.append( + EqualConv2d( + in_channels, + out_channels, + kernel_size, + stride=stride, + padding=self.padding, + bias=bias and not activate, + ) + ) + # activation + if activate: + if bias: + layers.append(FusedLeakyReLU(out_channels)) + else: + layers.append(ScaledLeakyReLU(0.2)) + + super(ConvLayer, self).__init__(*layers) + + +class ResBlock(nn.Module): + """Residual block used in StyleGAN2 Discriminator. + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + """ + + def __init__(self, in_channels, out_channels, interpolation_mode="bilinear"): + super(ResBlock, self).__init__() + + self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True) + self.conv2 = ConvLayer( + in_channels, + out_channels, + 3, + downsample=True, + interpolation_mode=interpolation_mode, + bias=True, + activate=True, + ) + self.skip = ConvLayer( + in_channels, + out_channels, + 1, + downsample=True, + interpolation_mode=interpolation_mode, + bias=False, + activate=False, + ) + + def forward(self, x): + out = self.conv1(x) + out = self.conv2(out) + skip = self.skip(x) + out = (out + skip) / math.sqrt(2) + return out diff --git a/comfy_extras/chainner_models/architecture/face/stylegan2_clean_arch.py b/comfy_extras/chainner_models/architecture/face/stylegan2_clean_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..c48de9af6904b8d1891a84efa8e4d76104d5d710 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/stylegan2_clean_arch.py @@ -0,0 +1,453 @@ +# pylint: skip-file +# type: ignore +import math + +import torch +from torch import nn +from torch.nn import functional as F +from torch.nn import init +from torch.nn.modules.batchnorm import _BatchNorm + + +@torch.no_grad() +def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): + """Initialize network weights. + Args: + module_list (list[nn.Module] | nn.Module): Modules to be initialized. + scale (float): Scale initialized weights, especially for residual + blocks. Default: 1. + bias_fill (float): The value to fill bias. Default: 0 + kwargs (dict): Other arguments for initialization function. + """ + if not isinstance(module_list, list): + module_list = [module_list] + for module in module_list: + for m in module.modules(): + if isinstance(m, nn.Conv2d): + init.kaiming_normal_(m.weight, **kwargs) + m.weight.data *= scale + if m.bias is not None: + m.bias.data.fill_(bias_fill) + elif isinstance(m, nn.Linear): + init.kaiming_normal_(m.weight, **kwargs) + m.weight.data *= scale + if m.bias is not None: + m.bias.data.fill_(bias_fill) + elif isinstance(m, _BatchNorm): + init.constant_(m.weight, 1) + if m.bias is not None: + m.bias.data.fill_(bias_fill) + + +class NormStyleCode(nn.Module): + def forward(self, x): + """Normalize the style codes. + Args: + x (Tensor): Style codes with shape (b, c). + Returns: + Tensor: Normalized tensor. + """ + return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8) + + +class ModulatedConv2d(nn.Module): + """Modulated Conv2d used in StyleGAN2. + There is no bias in ModulatedConv2d. + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Size of the convolving kernel. + num_style_feat (int): Channel number of style features. + demodulate (bool): Whether to demodulate in the conv layer. Default: True. + sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. + eps (float): A value added to the denominator for numerical stability. Default: 1e-8. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + num_style_feat, + demodulate=True, + sample_mode=None, + eps=1e-8, + ): + super(ModulatedConv2d, self).__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.demodulate = demodulate + self.sample_mode = sample_mode + self.eps = eps + + # modulation inside each modulated conv + self.modulation = nn.Linear(num_style_feat, in_channels, bias=True) + # initialization + default_init_weights( + self.modulation, + scale=1, + bias_fill=1, + a=0, + mode="fan_in", + nonlinearity="linear", + ) + + self.weight = nn.Parameter( + torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) + / math.sqrt(in_channels * kernel_size**2) + ) + self.padding = kernel_size // 2 + + def forward(self, x, style): + """Forward function. + Args: + x (Tensor): Tensor with shape (b, c, h, w). + style (Tensor): Tensor with shape (b, num_style_feat). + Returns: + Tensor: Modulated tensor after convolution. + """ + b, c, h, w = x.shape # c = c_in + # weight modulation + style = self.modulation(style).view(b, 1, c, 1, 1) + # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1) + weight = self.weight * style # (b, c_out, c_in, k, k) + + if self.demodulate: + demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) + weight = weight * demod.view(b, self.out_channels, 1, 1, 1) + + weight = weight.view( + b * self.out_channels, c, self.kernel_size, self.kernel_size + ) + + # upsample or downsample if necessary + if self.sample_mode == "upsample": + x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False) + elif self.sample_mode == "downsample": + x = F.interpolate(x, scale_factor=0.5, mode="bilinear", align_corners=False) + + b, c, h, w = x.shape + x = x.view(1, b * c, h, w) + # weight: (b*c_out, c_in, k, k), groups=b + out = F.conv2d(x, weight, padding=self.padding, groups=b) + out = out.view(b, self.out_channels, *out.shape[2:4]) + + return out + + def __repr__(self): + return ( + f"{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, " + f"kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})" + ) + + +class StyleConv(nn.Module): + """Style conv used in StyleGAN2. + Args: + in_channels (int): Channel number of the input. + out_channels (int): Channel number of the output. + kernel_size (int): Size of the convolving kernel. + num_style_feat (int): Channel number of style features. + demodulate (bool): Whether demodulate in the conv layer. Default: True. + sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + num_style_feat, + demodulate=True, + sample_mode=None, + ): + super(StyleConv, self).__init__() + self.modulated_conv = ModulatedConv2d( + in_channels, + out_channels, + kernel_size, + num_style_feat, + demodulate=demodulate, + sample_mode=sample_mode, + ) + self.weight = nn.Parameter(torch.zeros(1)) # for noise injection + self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1)) + self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) + + def forward(self, x, style, noise=None): + # modulate + out = self.modulated_conv(x, style) * 2**0.5 # for conversion + # noise injection + if noise is None: + b, _, h, w = out.shape + noise = out.new_empty(b, 1, h, w).normal_() + out = out + self.weight * noise + # add bias + out = out + self.bias + # activation + out = self.activate(out) + return out + + +class ToRGB(nn.Module): + """To RGB (image space) from features. + Args: + in_channels (int): Channel number of input. + num_style_feat (int): Channel number of style features. + upsample (bool): Whether to upsample. Default: True. + """ + + def __init__(self, in_channels, num_style_feat, upsample=True): + super(ToRGB, self).__init__() + self.upsample = upsample + self.modulated_conv = ModulatedConv2d( + in_channels, + 3, + kernel_size=1, + num_style_feat=num_style_feat, + demodulate=False, + sample_mode=None, + ) + self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) + + def forward(self, x, style, skip=None): + """Forward function. + Args: + x (Tensor): Feature tensor with shape (b, c, h, w). + style (Tensor): Tensor with shape (b, num_style_feat). + skip (Tensor): Base/skip tensor. Default: None. + Returns: + Tensor: RGB images. + """ + out = self.modulated_conv(x, style) + out = out + self.bias + if skip is not None: + if self.upsample: + skip = F.interpolate( + skip, scale_factor=2, mode="bilinear", align_corners=False + ) + out = out + skip + return out + + +class ConstantInput(nn.Module): + """Constant input. + Args: + num_channel (int): Channel number of constant input. + size (int): Spatial size of constant input. + """ + + def __init__(self, num_channel, size): + super(ConstantInput, self).__init__() + self.weight = nn.Parameter(torch.randn(1, num_channel, size, size)) + + def forward(self, batch): + out = self.weight.repeat(batch, 1, 1, 1) + return out + + +class StyleGAN2GeneratorClean(nn.Module): + """Clean version of StyleGAN2 Generator. + Args: + out_size (int): The spatial size of outputs. + num_style_feat (int): Channel number of style features. Default: 512. + num_mlp (int): Layer number of MLP style layers. Default: 8. + channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. + narrow (float): Narrow ratio for channels. Default: 1.0. + """ + + def __init__( + self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1 + ): + super(StyleGAN2GeneratorClean, self).__init__() + # Style MLP layers + self.num_style_feat = num_style_feat + style_mlp_layers = [NormStyleCode()] + for i in range(num_mlp): + style_mlp_layers.extend( + [ + nn.Linear(num_style_feat, num_style_feat, bias=True), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + ] + ) + self.style_mlp = nn.Sequential(*style_mlp_layers) + # initialization + default_init_weights( + self.style_mlp, + scale=1, + bias_fill=0, + a=0.2, + mode="fan_in", + nonlinearity="leaky_relu", + ) + + # channel list + channels = { + "4": int(512 * narrow), + "8": int(512 * narrow), + "16": int(512 * narrow), + "32": int(512 * narrow), + "64": int(256 * channel_multiplier * narrow), + "128": int(128 * channel_multiplier * narrow), + "256": int(64 * channel_multiplier * narrow), + "512": int(32 * channel_multiplier * narrow), + "1024": int(16 * channel_multiplier * narrow), + } + self.channels = channels + + self.constant_input = ConstantInput(channels["4"], size=4) + self.style_conv1 = StyleConv( + channels["4"], + channels["4"], + kernel_size=3, + num_style_feat=num_style_feat, + demodulate=True, + sample_mode=None, + ) + self.to_rgb1 = ToRGB(channels["4"], num_style_feat, upsample=False) + + self.log_size = int(math.log(out_size, 2)) + self.num_layers = (self.log_size - 2) * 2 + 1 + self.num_latent = self.log_size * 2 - 2 + + self.style_convs = nn.ModuleList() + self.to_rgbs = nn.ModuleList() + self.noises = nn.Module() + + in_channels = channels["4"] + # noise + for layer_idx in range(self.num_layers): + resolution = 2 ** ((layer_idx + 5) // 2) + shape = [1, 1, resolution, resolution] + self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape)) + # style convs and to_rgbs + for i in range(3, self.log_size + 1): + out_channels = channels[f"{2**i}"] + self.style_convs.append( + StyleConv( + in_channels, + out_channels, + kernel_size=3, + num_style_feat=num_style_feat, + demodulate=True, + sample_mode="upsample", + ) + ) + self.style_convs.append( + StyleConv( + out_channels, + out_channels, + kernel_size=3, + num_style_feat=num_style_feat, + demodulate=True, + sample_mode=None, + ) + ) + self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True)) + in_channels = out_channels + + def make_noise(self): + """Make noise for noise injection.""" + device = self.constant_input.weight.device + noises = [torch.randn(1, 1, 4, 4, device=device)] + + for i in range(3, self.log_size + 1): + for _ in range(2): + noises.append(torch.randn(1, 1, 2**i, 2**i, device=device)) + + return noises + + def get_latent(self, x): + return self.style_mlp(x) + + def mean_latent(self, num_latent): + latent_in = torch.randn( + num_latent, self.num_style_feat, device=self.constant_input.weight.device + ) + latent = self.style_mlp(latent_in).mean(0, keepdim=True) + return latent + + def forward( + self, + styles, + input_is_latent=False, + noise=None, + randomize_noise=True, + truncation=1, + truncation_latent=None, + inject_index=None, + return_latents=False, + ): + """Forward function for StyleGAN2GeneratorClean. + Args: + styles (list[Tensor]): Sample codes of styles. + input_is_latent (bool): Whether input is latent style. Default: False. + noise (Tensor | None): Input noise or None. Default: None. + randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. + truncation (float): The truncation ratio. Default: 1. + truncation_latent (Tensor | None): The truncation latent tensor. Default: None. + inject_index (int | None): The injection index for mixing noise. Default: None. + return_latents (bool): Whether to return style latents. Default: False. + """ + # style codes -> latents with Style MLP layer + if not input_is_latent: + styles = [self.style_mlp(s) for s in styles] + # noises + if noise is None: + if randomize_noise: + noise = [None] * self.num_layers # for each style conv layer + else: # use the stored noise + noise = [ + getattr(self.noises, f"noise{i}") for i in range(self.num_layers) + ] + # style truncation + if truncation < 1: + style_truncation = [] + for style in styles: + style_truncation.append( + truncation_latent + truncation * (style - truncation_latent) + ) + styles = style_truncation + # get style latents with injection + if len(styles) == 1: + inject_index = self.num_latent + + if styles[0].ndim < 3: + # repeat latent code for all the layers + latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + else: # used for encoder with different latent code for each layer + latent = styles[0] + elif len(styles) == 2: # mixing noises + if inject_index is None: + inject_index = random.randint(1, self.num_latent - 1) + latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) + latent2 = ( + styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) + ) + latent = torch.cat([latent1, latent2], 1) + + # main generation + out = self.constant_input(latent.shape[0]) + out = self.style_conv1(out, latent[:, 0], noise=noise[0]) + skip = self.to_rgb1(out, latent[:, 1]) + + i = 1 + for conv1, conv2, noise1, noise2, to_rgb in zip( + self.style_convs[::2], + self.style_convs[1::2], + noise[1::2], + noise[2::2], + self.to_rgbs, + ): + out = conv1(out, latent[:, i], noise=noise1) + out = conv2(out, latent[:, i + 1], noise=noise2) + skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space + i += 2 + + image = skip + + if return_latents: + return image, latent + else: + return image, None diff --git a/comfy_extras/chainner_models/architecture/face/upfirdn2d.py b/comfy_extras/chainner_models/architecture/face/upfirdn2d.py new file mode 100644 index 0000000000000000000000000000000000000000..4ea4541513f27e3c9dddcee864cfeb87efddadb7 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/face/upfirdn2d.py @@ -0,0 +1,194 @@ +# pylint: skip-file +# type: ignore +# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/upfirdn2d.py # noqa:E501 + +import os + +import torch +from torch.autograd import Function +from torch.nn import functional as F + +upfirdn2d_ext = None + + +class UpFirDn2dBackward(Function): + @staticmethod + def forward( + ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size + ): + up_x, up_y = up + down_x, down_y = down + g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad + + grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) + + grad_input = upfirdn2d_ext.upfirdn2d( + grad_output, + grad_kernel, + down_x, + down_y, + up_x, + up_y, + g_pad_x0, + g_pad_x1, + g_pad_y0, + g_pad_y1, + ) + grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) + + ctx.save_for_backward(kernel) + + pad_x0, pad_x1, pad_y0, pad_y1 = pad + + ctx.up_x = up_x + ctx.up_y = up_y + ctx.down_x = down_x + ctx.down_y = down_y + ctx.pad_x0 = pad_x0 + ctx.pad_x1 = pad_x1 + ctx.pad_y0 = pad_y0 + ctx.pad_y1 = pad_y1 + ctx.in_size = in_size + ctx.out_size = out_size + + return grad_input + + @staticmethod + def backward(ctx, gradgrad_input): + (kernel,) = ctx.saved_tensors + + gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1) + + gradgrad_out = upfirdn2d_ext.upfirdn2d( + gradgrad_input, + kernel, + ctx.up_x, + ctx.up_y, + ctx.down_x, + ctx.down_y, + ctx.pad_x0, + ctx.pad_x1, + ctx.pad_y0, + ctx.pad_y1, + ) + # gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], + # ctx.out_size[1], ctx.in_size[3]) + gradgrad_out = gradgrad_out.view( + ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1] + ) + + return gradgrad_out, None, None, None, None, None, None, None, None + + +class UpFirDn2d(Function): + @staticmethod + def forward(ctx, input, kernel, up, down, pad): + up_x, up_y = up + down_x, down_y = down + pad_x0, pad_x1, pad_y0, pad_y1 = pad + + kernel_h, kernel_w = kernel.shape + _, channel, in_h, in_w = input.shape + ctx.in_size = input.shape + + input = input.reshape(-1, in_h, in_w, 1) + + ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) + + out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 + out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 + ctx.out_size = (out_h, out_w) + + ctx.up = (up_x, up_y) + ctx.down = (down_x, down_y) + ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1) + + g_pad_x0 = kernel_w - pad_x0 - 1 + g_pad_y0 = kernel_h - pad_y0 - 1 + g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 + g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 + + ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) + + out = upfirdn2d_ext.upfirdn2d( + input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 + ) + # out = out.view(major, out_h, out_w, minor) + out = out.view(-1, channel, out_h, out_w) + + return out + + @staticmethod + def backward(ctx, grad_output): + kernel, grad_kernel = ctx.saved_tensors + + grad_input = UpFirDn2dBackward.apply( + grad_output, + kernel, + grad_kernel, + ctx.up, + ctx.down, + ctx.pad, + ctx.g_pad, + ctx.in_size, + ctx.out_size, + ) + + return grad_input, None, None, None, None + + +def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): + if input.device.type == "cpu": + out = upfirdn2d_native( + input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1] + ) + else: + out = UpFirDn2d.apply( + input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]) + ) + + return out + + +def upfirdn2d_native( + input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 +): + _, channel, in_h, in_w = input.shape + input = input.reshape(-1, in_h, in_w, 1) + + _, in_h, in_w, minor = input.shape + kernel_h, kernel_w = kernel.shape + + out = input.view(-1, in_h, 1, in_w, 1, minor) + out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) + out = out.view(-1, in_h * up_y, in_w * up_x, minor) + + out = F.pad( + out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)] + ) + out = out[ + :, + max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), + max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), + :, + ] + + out = out.permute(0, 3, 1, 2) + out = out.reshape( + [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1] + ) + w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) + out = F.conv2d(out, w) + out = out.reshape( + -1, + minor, + in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, + in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, + ) + out = out.permute(0, 2, 3, 1) + out = out[:, ::down_y, ::down_x, :] + + out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 + out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 + + return out.view(-1, channel, out_h, out_w) diff --git a/comfy_extras/chainner_models/architecture/timm/LICENSE b/comfy_extras/chainner_models/architecture/timm/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..b4e9438bd1e07e17abf58cfd86e536ec880348a3 --- /dev/null +++ b/comfy_extras/chainner_models/architecture/timm/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "{}" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2019 Ross Wightman + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. \ No newline at end of file diff --git a/comfy_extras/chainner_models/architecture/timm/drop.py b/comfy_extras/chainner_models/architecture/timm/drop.py new file mode 100644 index 0000000000000000000000000000000000000000..14f0da914b2a198af7e6124cd90bad6adaf8a84e --- /dev/null +++ b/comfy_extras/chainner_models/architecture/timm/drop.py @@ -0,0 +1,223 @@ +""" DropBlock, DropPath + +PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers. + +Papers: +DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890) + +Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382) + +Code: +DropBlock impl inspired by two Tensorflow impl that I liked: + - https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74 + - https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py + +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def drop_block_2d( + x, + drop_prob: float = 0.1, + block_size: int = 7, + gamma_scale: float = 1.0, + with_noise: bool = False, + inplace: bool = False, + batchwise: bool = False, +): + """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf + + DropBlock with an experimental gaussian noise option. This layer has been tested on a few training + runs with success, but needs further validation and possibly optimization for lower runtime impact. + """ + _, C, H, W = x.shape + total_size = W * H + clipped_block_size = min(block_size, min(W, H)) + # seed_drop_rate, the gamma parameter + gamma = ( + gamma_scale + * drop_prob + * total_size + / clipped_block_size**2 + / ((W - block_size + 1) * (H - block_size + 1)) + ) + + # Forces the block to be inside the feature map. + w_i, h_i = torch.meshgrid( + torch.arange(W).to(x.device), torch.arange(H).to(x.device) + ) + valid_block = ( + (w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2) + ) & ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2)) + valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype) + + if batchwise: + # one mask for whole batch, quite a bit faster + uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) + else: + uniform_noise = torch.rand_like(x) + block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype) + block_mask = -F.max_pool2d( + -block_mask, + kernel_size=clipped_block_size, # block_size, + stride=1, + padding=clipped_block_size // 2, + ) + + if with_noise: + normal_noise = ( + torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) + if batchwise + else torch.randn_like(x) + ) + if inplace: + x.mul_(block_mask).add_(normal_noise * (1 - block_mask)) + else: + x = x * block_mask + normal_noise * (1 - block_mask) + else: + normalize_scale = ( + block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7) + ).to(x.dtype) + if inplace: + x.mul_(block_mask * normalize_scale) + else: + x = x * block_mask * normalize_scale + return x + + +def drop_block_fast_2d( + x: torch.Tensor, + drop_prob: float = 0.1, + block_size: int = 7, + gamma_scale: float = 1.0, + with_noise: bool = False, + inplace: bool = False, +): + """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf + + DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid + block mask at edges. + """ + _, _, H, W = x.shape + total_size = W * H + clipped_block_size = min(block_size, min(W, H)) + gamma = ( + gamma_scale + * drop_prob + * total_size + / clipped_block_size**2 + / ((W - block_size + 1) * (H - block_size + 1)) + ) + + block_mask = torch.empty_like(x).bernoulli_(gamma) + block_mask = F.max_pool2d( + block_mask.to(x.dtype), + kernel_size=clipped_block_size, + stride=1, + padding=clipped_block_size // 2, + ) + + if with_noise: + normal_noise = torch.empty_like(x).normal_() + if inplace: + x.mul_(1.0 - block_mask).add_(normal_noise * block_mask) + else: + x = x * (1.0 - block_mask) + normal_noise * block_mask + else: + block_mask = 1 - block_mask + normalize_scale = ( + block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-6) + ).to(dtype=x.dtype) + if inplace: + x.mul_(block_mask * normalize_scale) + else: + x = x * block_mask * normalize_scale + return x + + +class DropBlock2d(nn.Module): + """DropBlock. See https://arxiv.org/pdf/1810.12890.pdf""" + + def __init__( + self, + drop_prob: float = 0.1, + block_size: int = 7, + gamma_scale: float = 1.0, + with_noise: bool = False, + inplace: bool = False, + batchwise: bool = False, + fast: bool = True, + ): + super(DropBlock2d, self).__init__() + self.drop_prob = drop_prob + self.gamma_scale = gamma_scale + self.block_size = block_size + self.with_noise = with_noise + self.inplace = inplace + self.batchwise = batchwise + self.fast = fast # FIXME finish comparisons of fast vs not + + def forward(self, x): + if not self.training or not self.drop_prob: + return x + if self.fast: + return drop_block_fast_2d( + x, + self.drop_prob, + self.block_size, + self.gamma_scale, + self.with_noise, + self.inplace, + ) + else: + return drop_block_2d( + x, + self.drop_prob, + self.block_size, + self.gamma_scale, + self.with_noise, + self.inplace, + self.batchwise, + ) + + +def drop_path( + x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True +): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, + the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for + changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use + 'survival rate' as the argument. + + """ + if drop_prob == 0.0 or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * ( + x.ndim - 1 + ) # work with diff dim tensors, not just 2D ConvNets + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + self.scale_by_keep = scale_by_keep + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) + + def extra_repr(self): + return f"drop_prob={round(self.drop_prob,3):0.3f}" diff --git a/comfy_extras/chainner_models/architecture/timm/helpers.py b/comfy_extras/chainner_models/architecture/timm/helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..cdafee0709165dd992118e3b09b8d26f70ea8a2a --- /dev/null +++ b/comfy_extras/chainner_models/architecture/timm/helpers.py @@ -0,0 +1,31 @@ +""" Layer/Module Helpers +Hacked together by / Copyright 2020 Ross Wightman +""" +import collections.abc +from itertools import repeat + + +# From PyTorch internals +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): + return x + return tuple(repeat(x, n)) + + return parse + + +to_1tuple = _ntuple(1) +to_2tuple = _ntuple(2) +to_3tuple = _ntuple(3) +to_4tuple = _ntuple(4) +to_ntuple = _ntuple + + +def make_divisible(v, divisor=8, min_value=None, round_limit=0.9): + min_value = min_value or divisor + new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than 10%. + if new_v < round_limit * v: + new_v += divisor + return new_v diff --git a/comfy_extras/chainner_models/architecture/timm/weight_init.py b/comfy_extras/chainner_models/architecture/timm/weight_init.py new file mode 100644 index 0000000000000000000000000000000000000000..b0169774657d86c1946008e746f2f4f7e833a44c --- /dev/null +++ b/comfy_extras/chainner_models/architecture/timm/weight_init.py @@ -0,0 +1,128 @@ +import math +import warnings + +import torch +from torch.nn.init import _calculate_fan_in_and_fan_out + + +def _no_grad_trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn( + "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2, + ) + + with torch.no_grad(): + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.0)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + tensor.clamp_(min=a, max=b) + return tensor + + +def trunc_normal_( + tensor: torch.Tensor, mean=0.0, std=1.0, a=-2.0, b=2.0 +) -> torch.Tensor: + r"""Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \leq \text{mean} \leq b`. + + NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are + applied while sampling the normal with mean/std applied, therefore a, b args + should be adjusted to match the range of mean, std args. + + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + Examples: + >>> w = torch.empty(3, 5) + >>> nn.init.trunc_normal_(w) + """ + return _no_grad_trunc_normal_(tensor, mean, std, a, b) + + +def trunc_normal_tf_( + tensor: torch.Tensor, mean=0.0, std=1.0, a=-2.0, b=2.0 +) -> torch.Tensor: + r"""Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \leq \text{mean} \leq b`. + + NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the + bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 + and the result is subsquently scaled and shifted by the mean and std args. + + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + Examples: + >>> w = torch.empty(3, 5) + >>> nn.init.trunc_normal_(w) + """ + _no_grad_trunc_normal_(tensor, 0, 1.0, a, b) + with torch.no_grad(): + tensor.mul_(std).add_(mean) + return tensor + + +def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): + fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) + if mode == "fan_in": + denom = fan_in + elif mode == "fan_out": + denom = fan_out + elif mode == "fan_avg": + denom = (fan_in + fan_out) / 2 + + variance = scale / denom # type: ignore + + if distribution == "truncated_normal": + # constant is stddev of standard normal truncated to (-2, 2) + trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) + elif distribution == "normal": + tensor.normal_(std=math.sqrt(variance)) + elif distribution == "uniform": + bound = math.sqrt(3 * variance) + # pylint: disable=invalid-unary-operand-type + tensor.uniform_(-bound, bound) + else: + raise ValueError(f"invalid distribution {distribution}") + + +def lecun_normal_(tensor): + variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") diff --git a/comfy_extras/chainner_models/model_loading.py b/comfy_extras/chainner_models/model_loading.py new file mode 100644 index 0000000000000000000000000000000000000000..e000871c1bfe66a07dc13b51ad709cb0de092a41 --- /dev/null +++ b/comfy_extras/chainner_models/model_loading.py @@ -0,0 +1,99 @@ +import logging as logger + +from .architecture.DAT import DAT +from .architecture.face.codeformer import CodeFormer +from .architecture.face.gfpganv1_clean_arch import GFPGANv1Clean +from .architecture.face.restoreformer_arch import RestoreFormer +from .architecture.HAT import HAT +from .architecture.LaMa import LaMa +from .architecture.OmniSR.OmniSR import OmniSR +from .architecture.RRDB import RRDBNet as ESRGAN +from .architecture.SCUNet import SCUNet +from .architecture.SPSR import SPSRNet as SPSR +from .architecture.SRVGG import SRVGGNetCompact as RealESRGANv2 +from .architecture.SwiftSRGAN import Generator as SwiftSRGAN +from .architecture.Swin2SR import Swin2SR +from .architecture.SwinIR import SwinIR +from .types import PyTorchModel + + +class UnsupportedModel(Exception): + pass + + +def load_state_dict(state_dict) -> PyTorchModel: + logger.debug(f"Loading state dict into pytorch model arch") + + state_dict_keys = list(state_dict.keys()) + + if "params_ema" in state_dict_keys: + state_dict = state_dict["params_ema"] + elif "params-ema" in state_dict_keys: + state_dict = state_dict["params-ema"] + elif "params" in state_dict_keys: + state_dict = state_dict["params"] + + state_dict_keys = list(state_dict.keys()) + # SRVGGNet Real-ESRGAN (v2) + if "body.0.weight" in state_dict_keys and "body.1.weight" in state_dict_keys: + model = RealESRGANv2(state_dict) + # SPSR (ESRGAN with lots of extra layers) + elif "f_HR_conv1.0.weight" in state_dict: + model = SPSR(state_dict) + # Swift-SRGAN + elif ( + "model" in state_dict_keys + and "initial.cnn.depthwise.weight" in state_dict["model"].keys() + ): + model = SwiftSRGAN(state_dict) + # SwinIR, Swin2SR, HAT + elif "layers.0.residual_group.blocks.0.norm1.weight" in state_dict_keys: + if ( + "layers.0.residual_group.blocks.0.conv_block.cab.0.weight" + in state_dict_keys + ): + model = HAT(state_dict) + elif "patch_embed.proj.weight" in state_dict_keys: + model = Swin2SR(state_dict) + else: + model = SwinIR(state_dict) + # GFPGAN + elif ( + "toRGB.0.weight" in state_dict_keys + and "stylegan_decoder.style_mlp.1.weight" in state_dict_keys + ): + model = GFPGANv1Clean(state_dict) + # RestoreFormer + elif ( + "encoder.conv_in.weight" in state_dict_keys + and "encoder.down.0.block.0.norm1.weight" in state_dict_keys + ): + model = RestoreFormer(state_dict) + elif ( + "encoder.blocks.0.weight" in state_dict_keys + and "quantize.embedding.weight" in state_dict_keys + ): + model = CodeFormer(state_dict) + # LaMa + elif ( + "model.model.1.bn_l.running_mean" in state_dict_keys + or "generator.model.1.bn_l.running_mean" in state_dict_keys + ): + model = LaMa(state_dict) + # Omni-SR + elif "residual_layer.0.residual_layer.0.layer.0.fn.0.weight" in state_dict_keys: + model = OmniSR(state_dict) + # SCUNet + elif "m_head.0.weight" in state_dict_keys and "m_tail.0.weight" in state_dict_keys: + model = SCUNet(state_dict) + # DAT + elif "layers.0.blocks.2.attn.attn_mask_0" in state_dict_keys: + model = DAT(state_dict) + # Regular ESRGAN, "new-arch" ESRGAN, Real-ESRGAN v1 + else: + try: + model = ESRGAN(state_dict) + except: + # pylint: disable=raise-missing-from + raise UnsupportedModel + return model diff --git a/comfy_extras/chainner_models/types.py b/comfy_extras/chainner_models/types.py new file mode 100644 index 0000000000000000000000000000000000000000..193333b9e8049d9558ca2ea253d41ee44b0b294b --- /dev/null +++ b/comfy_extras/chainner_models/types.py @@ -0,0 +1,69 @@ +from typing import Union + +from .architecture.DAT import DAT +from .architecture.face.codeformer import CodeFormer +from .architecture.face.gfpganv1_clean_arch import GFPGANv1Clean +from .architecture.face.restoreformer_arch import RestoreFormer +from .architecture.HAT import HAT +from .architecture.LaMa import LaMa +from .architecture.OmniSR.OmniSR import OmniSR +from .architecture.RRDB import RRDBNet as ESRGAN +from .architecture.SCUNet import SCUNet +from .architecture.SPSR import SPSRNet as SPSR +from .architecture.SRVGG import SRVGGNetCompact as RealESRGANv2 +from .architecture.SwiftSRGAN import Generator as SwiftSRGAN +from .architecture.Swin2SR import Swin2SR +from .architecture.SwinIR import SwinIR + +PyTorchSRModels = ( + RealESRGANv2, + SPSR, + SwiftSRGAN, + ESRGAN, + SwinIR, + Swin2SR, + HAT, + OmniSR, + SCUNet, + DAT, +) +PyTorchSRModel = Union[ + RealESRGANv2, + SPSR, + SwiftSRGAN, + ESRGAN, + SwinIR, + Swin2SR, + HAT, + OmniSR, + SCUNet, + DAT, +] + + +def is_pytorch_sr_model(model: object): + return isinstance(model, PyTorchSRModels) + + +PyTorchFaceModels = (GFPGANv1Clean, RestoreFormer, CodeFormer) +PyTorchFaceModel = Union[GFPGANv1Clean, RestoreFormer, CodeFormer] + + +def is_pytorch_face_model(model: object): + return isinstance(model, PyTorchFaceModels) + + +PyTorchInpaintModels = (LaMa,) +PyTorchInpaintModel = Union[LaMa] + + +def is_pytorch_inpaint_model(model: object): + return isinstance(model, PyTorchInpaintModels) + + +PyTorchModels = (*PyTorchSRModels, *PyTorchFaceModels, *PyTorchInpaintModels) +PyTorchModel = Union[PyTorchSRModel, PyTorchFaceModel, PyTorchInpaintModel] + + +def is_pytorch_model(model: object): + return isinstance(model, PyTorchModels) diff --git a/comfy_extras/nodes_canny.py b/comfy_extras/nodes_canny.py new file mode 100644 index 0000000000000000000000000000000000000000..730dded5fd400fe5ca4e6e8d88d470d75bc142a0 --- /dev/null +++ b/comfy_extras/nodes_canny.py @@ -0,0 +1,299 @@ +#From https://github.com/kornia/kornia +import math + +import torch +import torch.nn.functional as F +import comfy.model_management + +def get_canny_nms_kernel(device=None, dtype=None): + """Utility function that returns 3x3 kernels for the Canny Non-maximal suppression.""" + return torch.tensor( + [ + [[[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]]], + [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]], + [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]]], + [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]]], + [[[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], + [[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], + [[[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], + [[[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], + ], + device=device, + dtype=dtype, + ) + + +def get_hysteresis_kernel(device=None, dtype=None): + """Utility function that returns the 3x3 kernels for the Canny hysteresis.""" + return torch.tensor( + [ + [[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]], + [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]], + [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]], + [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]]], + [[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], + [[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], + [[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], + [[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], + ], + device=device, + dtype=dtype, + ) + +def gaussian_blur_2d(img, kernel_size, sigma): + ksize_half = (kernel_size - 1) * 0.5 + + x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) + + pdf = torch.exp(-0.5 * (x / sigma).pow(2)) + + x_kernel = pdf / pdf.sum() + x_kernel = x_kernel.to(device=img.device, dtype=img.dtype) + + kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :]) + kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1]) + + padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2] + + img = torch.nn.functional.pad(img, padding, mode="reflect") + img = torch.nn.functional.conv2d(img, kernel2d, groups=img.shape[-3]) + + return img + +def get_sobel_kernel2d(device=None, dtype=None): + kernel_x = torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]], device=device, dtype=dtype) + kernel_y = kernel_x.transpose(0, 1) + return torch.stack([kernel_x, kernel_y]) + +def spatial_gradient(input, normalized: bool = True): + r"""Compute the first order image derivative in both x and y using a Sobel operator. + .. image:: _static/img/spatial_gradient.png + Args: + input: input image tensor with shape :math:`(B, C, H, W)`. + mode: derivatives modality, can be: `sobel` or `diff`. + order: the order of the derivatives. + normalized: whether the output is normalized. + Return: + the derivatives of the input feature map. with shape :math:`(B, C, 2, H, W)`. + .. note:: + See a working example `here `__. + Examples: + >>> input = torch.rand(1, 3, 4, 4) + >>> output = spatial_gradient(input) # 1x3x2x4x4 + >>> output.shape + torch.Size([1, 3, 2, 4, 4]) + """ + # KORNIA_CHECK_IS_TENSOR(input) + # KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W']) + + # allocate kernel + kernel = get_sobel_kernel2d(device=input.device, dtype=input.dtype) + if normalized: + kernel = normalize_kernel2d(kernel) + + # prepare kernel + b, c, h, w = input.shape + tmp_kernel = kernel[:, None, ...] + + # Pad with "replicate for spatial dims, but with zeros for channel + spatial_pad = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2] + out_channels: int = 2 + padded_inp = torch.nn.functional.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate') + out = F.conv2d(padded_inp, tmp_kernel, groups=1, padding=0, stride=1) + return out.reshape(b, c, out_channels, h, w) + +def rgb_to_grayscale(image, rgb_weights = None): + r"""Convert a RGB image to grayscale version of image. + + .. image:: _static/img/rgb_to_grayscale.png + + The image data is assumed to be in the range of (0, 1). + + Args: + image: RGB image to be converted to grayscale with shape :math:`(*,3,H,W)`. + rgb_weights: Weights that will be applied on each channel (RGB). + The sum of the weights should add up to one. + Returns: + grayscale version of the image with shape :math:`(*,1,H,W)`. + + .. note:: + See a working example `here `__. + + Example: + >>> input = torch.rand(2, 3, 4, 5) + >>> gray = rgb_to_grayscale(input) # 2x1x4x5 + """ + + if len(image.shape) < 3 or image.shape[-3] != 3: + raise ValueError(f"Input size must have a shape of (*, 3, H, W). Got {image.shape}") + + if rgb_weights is None: + # 8 bit images + if image.dtype == torch.uint8: + rgb_weights = torch.tensor([76, 150, 29], device=image.device, dtype=torch.uint8) + # floating point images + elif image.dtype in (torch.float16, torch.float32, torch.float64): + rgb_weights = torch.tensor([0.299, 0.587, 0.114], device=image.device, dtype=image.dtype) + else: + raise TypeError(f"Unknown data type: {image.dtype}") + else: + # is tensor that we make sure is in the same device/dtype + rgb_weights = rgb_weights.to(image) + + # unpack the color image channels with RGB order + r: Tensor = image[..., 0:1, :, :] + g: Tensor = image[..., 1:2, :, :] + b: Tensor = image[..., 2:3, :, :] + + w_r, w_g, w_b = rgb_weights.unbind() + return w_r * r + w_g * g + w_b * b + +def canny( + input, + low_threshold = 0.1, + high_threshold = 0.2, + kernel_size = 5, + sigma = 1, + hysteresis = True, + eps = 1e-6, +): + r"""Find edges of the input image and filters them using the Canny algorithm. + .. image:: _static/img/canny.png + Args: + input: input image tensor with shape :math:`(B,C,H,W)`. + low_threshold: lower threshold for the hysteresis procedure. + high_threshold: upper threshold for the hysteresis procedure. + kernel_size: the size of the kernel for the gaussian blur. + sigma: the standard deviation of the kernel for the gaussian blur. + hysteresis: if True, applies the hysteresis edge tracking. + Otherwise, the edges are divided between weak (0.5) and strong (1) edges. + eps: regularization number to avoid NaN during backprop. + Returns: + - the canny edge magnitudes map, shape of :math:`(B,1,H,W)`. + - the canny edge detection filtered by thresholds and hysteresis, shape of :math:`(B,1,H,W)`. + .. note:: + See a working example `here `__. + Example: + >>> input = torch.rand(5, 3, 4, 4) + >>> magnitude, edges = canny(input) # 5x3x4x4 + >>> magnitude.shape + torch.Size([5, 1, 4, 4]) + >>> edges.shape + torch.Size([5, 1, 4, 4]) + """ + # KORNIA_CHECK_IS_TENSOR(input) + # KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W']) + # KORNIA_CHECK( + # low_threshold <= high_threshold, + # "Invalid input thresholds. low_threshold should be smaller than the high_threshold. Got: " + # f"{low_threshold}>{high_threshold}", + # ) + # KORNIA_CHECK(0 < low_threshold < 1, f'Invalid low threshold. Should be in range (0, 1). Got: {low_threshold}') + # KORNIA_CHECK(0 < high_threshold < 1, f'Invalid high threshold. Should be in range (0, 1). Got: {high_threshold}') + + device = input.device + dtype = input.dtype + + # To Grayscale + if input.shape[1] == 3: + input = rgb_to_grayscale(input) + + # Gaussian filter + blurred: Tensor = gaussian_blur_2d(input, kernel_size, sigma) + + # Compute the gradients + gradients: Tensor = spatial_gradient(blurred, normalized=False) + + # Unpack the edges + gx: Tensor = gradients[:, :, 0] + gy: Tensor = gradients[:, :, 1] + + # Compute gradient magnitude and angle + magnitude: Tensor = torch.sqrt(gx * gx + gy * gy + eps) + angle: Tensor = torch.atan2(gy, gx) + + # Radians to Degrees + angle = 180.0 * angle / math.pi + + # Round angle to the nearest 45 degree + angle = torch.round(angle / 45) * 45 + + # Non-maximal suppression + nms_kernels: Tensor = get_canny_nms_kernel(device, dtype) + nms_magnitude: Tensor = F.conv2d(magnitude, nms_kernels, padding=nms_kernels.shape[-1] // 2) + + # Get the indices for both directions + positive_idx: Tensor = (angle / 45) % 8 + positive_idx = positive_idx.long() + + negative_idx: Tensor = ((angle / 45) + 4) % 8 + negative_idx = negative_idx.long() + + # Apply the non-maximum suppression to the different directions + channel_select_filtered_positive: Tensor = torch.gather(nms_magnitude, 1, positive_idx) + channel_select_filtered_negative: Tensor = torch.gather(nms_magnitude, 1, negative_idx) + + channel_select_filtered: Tensor = torch.stack( + [channel_select_filtered_positive, channel_select_filtered_negative], 1 + ) + + is_max: Tensor = channel_select_filtered.min(dim=1)[0] > 0.0 + + magnitude = magnitude * is_max + + # Threshold + edges: Tensor = F.threshold(magnitude, low_threshold, 0.0) + + low: Tensor = magnitude > low_threshold + high: Tensor = magnitude > high_threshold + + edges = low * 0.5 + high * 0.5 + edges = edges.to(dtype) + + # Hysteresis + if hysteresis: + edges_old: Tensor = -torch.ones(edges.shape, device=edges.device, dtype=dtype) + hysteresis_kernels: Tensor = get_hysteresis_kernel(device, dtype) + + while ((edges_old - edges).abs() != 0).any(): + weak: Tensor = (edges == 0.5).float() + strong: Tensor = (edges == 1).float() + + hysteresis_magnitude: Tensor = F.conv2d( + edges, hysteresis_kernels, padding=hysteresis_kernels.shape[-1] // 2 + ) + hysteresis_magnitude = (hysteresis_magnitude == 1).any(1, keepdim=True).to(dtype) + hysteresis_magnitude = hysteresis_magnitude * weak + strong + + edges_old = edges.clone() + edges = hysteresis_magnitude + (hysteresis_magnitude == 0) * weak * 0.5 + + edges = hysteresis_magnitude + + return magnitude, edges + + +class Canny: + @classmethod + def INPUT_TYPES(s): + return {"required": {"image": ("IMAGE",), + "low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}), + "high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01}) + }} + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "detect_edge" + + CATEGORY = "image/preprocessors" + + def detect_edge(self, image, low_threshold, high_threshold): + output = canny(image.to(comfy.model_management.get_torch_device()).movedim(-1, 1), low_threshold, high_threshold) + img_out = output[1].to(comfy.model_management.intermediate_device()).repeat(1, 3, 1, 1).movedim(1, -1) + return (img_out,) + +NODE_CLASS_MAPPINGS = { + "Canny": Canny, +} diff --git a/comfy_extras/nodes_clip_sdxl.py b/comfy_extras/nodes_clip_sdxl.py new file mode 100644 index 0000000000000000000000000000000000000000..dcf8859fa0c23231abbbfca0a9b01aaa7145a5e4 --- /dev/null +++ b/comfy_extras/nodes_clip_sdxl.py @@ -0,0 +1,56 @@ +import torch +from nodes import MAX_RESOLUTION + +class CLIPTextEncodeSDXLRefiner: + @classmethod + def INPUT_TYPES(s): + return {"required": { + "ascore": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 1000.0, "step": 0.01}), + "width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), + "height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), + "text": ("STRING", {"multiline": True}), "clip": ("CLIP", ), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "encode" + + CATEGORY = "advanced/conditioning" + + def encode(self, clip, ascore, width, height, text): + tokens = clip.tokenize(text) + cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) + return ([[cond, {"pooled_output": pooled, "aesthetic_score": ascore, "width": width,"height": height}]], ) + +class CLIPTextEncodeSDXL: + @classmethod + def INPUT_TYPES(s): + return {"required": { + "width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), + "height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), + "crop_w": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}), + "crop_h": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}), + "target_width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), + "target_height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), + "text_g": ("STRING", {"multiline": True, "default": "CLIP_G"}), "clip": ("CLIP", ), + "text_l": ("STRING", {"multiline": True, "default": "CLIP_L"}), "clip": ("CLIP", ), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "encode" + + CATEGORY = "advanced/conditioning" + + def encode(self, clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l): + tokens = clip.tokenize(text_g) + tokens["l"] = clip.tokenize(text_l)["l"] + if len(tokens["l"]) != len(tokens["g"]): + empty = clip.tokenize("") + while len(tokens["l"]) < len(tokens["g"]): + tokens["l"] += empty["l"] + while len(tokens["l"]) > len(tokens["g"]): + tokens["g"] += empty["g"] + cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) + return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], ) + +NODE_CLASS_MAPPINGS = { + "CLIPTextEncodeSDXLRefiner": CLIPTextEncodeSDXLRefiner, + "CLIPTextEncodeSDXL": CLIPTextEncodeSDXL, +} diff --git a/comfy_extras/nodes_compositing.py b/comfy_extras/nodes_compositing.py new file mode 100644 index 0000000000000000000000000000000000000000..181b36ed68ead1d938e183b05a1b78477b60948a --- /dev/null +++ b/comfy_extras/nodes_compositing.py @@ -0,0 +1,202 @@ +import numpy as np +import torch +import comfy.utils +from enum import Enum + +def resize_mask(mask, shape): + return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1) + +class PorterDuffMode(Enum): + ADD = 0 + CLEAR = 1 + DARKEN = 2 + DST = 3 + DST_ATOP = 4 + DST_IN = 5 + DST_OUT = 6 + DST_OVER = 7 + LIGHTEN = 8 + MULTIPLY = 9 + OVERLAY = 10 + SCREEN = 11 + SRC = 12 + SRC_ATOP = 13 + SRC_IN = 14 + SRC_OUT = 15 + SRC_OVER = 16 + XOR = 17 + + +def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_image: torch.Tensor, dst_alpha: torch.Tensor, mode: PorterDuffMode): + if mode == PorterDuffMode.ADD: + out_alpha = torch.clamp(src_alpha + dst_alpha, 0, 1) + out_image = torch.clamp(src_image + dst_image, 0, 1) + elif mode == PorterDuffMode.CLEAR: + out_alpha = torch.zeros_like(dst_alpha) + out_image = torch.zeros_like(dst_image) + elif mode == PorterDuffMode.DARKEN: + out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha + out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.min(src_image, dst_image) + elif mode == PorterDuffMode.DST: + out_alpha = dst_alpha + out_image = dst_image + elif mode == PorterDuffMode.DST_ATOP: + out_alpha = src_alpha + out_image = src_alpha * dst_image + (1 - dst_alpha) * src_image + elif mode == PorterDuffMode.DST_IN: + out_alpha = src_alpha * dst_alpha + out_image = dst_image * src_alpha + elif mode == PorterDuffMode.DST_OUT: + out_alpha = (1 - src_alpha) * dst_alpha + out_image = (1 - src_alpha) * dst_image + elif mode == PorterDuffMode.DST_OVER: + out_alpha = dst_alpha + (1 - dst_alpha) * src_alpha + out_image = dst_image + (1 - dst_alpha) * src_image + elif mode == PorterDuffMode.LIGHTEN: + out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha + out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.max(src_image, dst_image) + elif mode == PorterDuffMode.MULTIPLY: + out_alpha = src_alpha * dst_alpha + out_image = src_image * dst_image + elif mode == PorterDuffMode.OVERLAY: + out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha + out_image = torch.where(2 * dst_image < dst_alpha, 2 * src_image * dst_image, + src_alpha * dst_alpha - 2 * (dst_alpha - src_image) * (src_alpha - dst_image)) + elif mode == PorterDuffMode.SCREEN: + out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha + out_image = src_image + dst_image - src_image * dst_image + elif mode == PorterDuffMode.SRC: + out_alpha = src_alpha + out_image = src_image + elif mode == PorterDuffMode.SRC_ATOP: + out_alpha = dst_alpha + out_image = dst_alpha * src_image + (1 - src_alpha) * dst_image + elif mode == PorterDuffMode.SRC_IN: + out_alpha = src_alpha * dst_alpha + out_image = src_image * dst_alpha + elif mode == PorterDuffMode.SRC_OUT: + out_alpha = (1 - dst_alpha) * src_alpha + out_image = (1 - dst_alpha) * src_image + elif mode == PorterDuffMode.SRC_OVER: + out_alpha = src_alpha + (1 - src_alpha) * dst_alpha + out_image = src_image + (1 - src_alpha) * dst_image + elif mode == PorterDuffMode.XOR: + out_alpha = (1 - dst_alpha) * src_alpha + (1 - src_alpha) * dst_alpha + out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + else: + out_alpha = None + out_image = None + return out_image, out_alpha + + +class PorterDuffImageComposite: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "source": ("IMAGE",), + "source_alpha": ("MASK",), + "destination": ("IMAGE",), + "destination_alpha": ("MASK",), + "mode": ([mode.name for mode in PorterDuffMode], {"default": PorterDuffMode.DST.name}), + }, + } + + RETURN_TYPES = ("IMAGE", "MASK") + FUNCTION = "composite" + CATEGORY = "mask/compositing" + + def composite(self, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode): + batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha)) + out_images = [] + out_alphas = [] + + for i in range(batch_size): + src_image = source[i] + dst_image = destination[i] + + assert src_image.shape[2] == dst_image.shape[2] # inputs need to have same number of channels + + src_alpha = source_alpha[i].unsqueeze(2) + dst_alpha = destination_alpha[i].unsqueeze(2) + + if dst_alpha.shape[:2] != dst_image.shape[:2]: + upscale_input = dst_alpha.unsqueeze(0).permute(0, 3, 1, 2) + upscale_output = comfy.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center') + dst_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0) + if src_image.shape != dst_image.shape: + upscale_input = src_image.unsqueeze(0).permute(0, 3, 1, 2) + upscale_output = comfy.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center') + src_image = upscale_output.permute(0, 2, 3, 1).squeeze(0) + if src_alpha.shape != dst_alpha.shape: + upscale_input = src_alpha.unsqueeze(0).permute(0, 3, 1, 2) + upscale_output = comfy.utils.common_upscale(upscale_input, dst_alpha.shape[1], dst_alpha.shape[0], upscale_method='bicubic', crop='center') + src_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0) + + out_image, out_alpha = porter_duff_composite(src_image, src_alpha, dst_image, dst_alpha, PorterDuffMode[mode]) + + out_images.append(out_image) + out_alphas.append(out_alpha.squeeze(2)) + + result = (torch.stack(out_images), torch.stack(out_alphas)) + return result + + +class SplitImageWithAlpha: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image": ("IMAGE",), + } + } + + CATEGORY = "mask/compositing" + RETURN_TYPES = ("IMAGE", "MASK") + FUNCTION = "split_image_with_alpha" + + def split_image_with_alpha(self, image: torch.Tensor): + out_images = [i[:,:,:3] for i in image] + out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image] + result = (torch.stack(out_images), 1.0 - torch.stack(out_alphas)) + return result + + +class JoinImageWithAlpha: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image": ("IMAGE",), + "alpha": ("MASK",), + } + } + + CATEGORY = "mask/compositing" + RETURN_TYPES = ("IMAGE",) + FUNCTION = "join_image_with_alpha" + + def join_image_with_alpha(self, image: torch.Tensor, alpha: torch.Tensor): + batch_size = min(len(image), len(alpha)) + out_images = [] + + alpha = 1.0 - resize_mask(alpha, image.shape[1:]) + for i in range(batch_size): + out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2)) + + result = (torch.stack(out_images),) + return result + + +NODE_CLASS_MAPPINGS = { + "PorterDuffImageComposite": PorterDuffImageComposite, + "SplitImageWithAlpha": SplitImageWithAlpha, + "JoinImageWithAlpha": JoinImageWithAlpha, +} + + +NODE_DISPLAY_NAME_MAPPINGS = { + "PorterDuffImageComposite": "Porter-Duff Image Composite", + "SplitImageWithAlpha": "Split Image with Alpha", + "JoinImageWithAlpha": "Join Image with Alpha", +} diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py new file mode 100644 index 0000000000000000000000000000000000000000..99f9ea7dcefe6d41b03e5e73fc010331c485e139 --- /dev/null +++ b/comfy_extras/nodes_custom_sampler.py @@ -0,0 +1,295 @@ +import comfy.samplers +import comfy.sample +from comfy.k_diffusion import sampling as k_diffusion_sampling +import latent_preview +import torch +import comfy.utils + + +class BasicScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"model": ("MODEL",), + "scheduler": (comfy.samplers.SCHEDULER_NAMES, ), + "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, model, scheduler, steps, denoise): + total_steps = steps + if denoise < 1.0: + total_steps = int(steps/denoise) + + comfy.model_management.load_models_gpu([model]) + sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, total_steps).cpu() + sigmas = sigmas[-(steps + 1):] + return (sigmas, ) + + +class KarrasScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, steps, sigma_max, sigma_min, rho): + sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho) + return (sigmas, ) + +class ExponentialScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, steps, sigma_max, sigma_min): + sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max) + return (sigmas, ) + +class PolyexponentialScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, steps, sigma_max, sigma_min, rho): + sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho) + return (sigmas, ) + +class SDTurboScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"model": ("MODEL",), + "steps": ("INT", {"default": 1, "min": 1, "max": 10}), + "denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, model, steps, denoise): + start_step = 10 - int(10 * denoise) + timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps] + comfy.model_management.load_models_gpu([model]) + sigmas = model.model.model_sampling.sigma(timesteps) + sigmas = torch.cat([sigmas, sigmas.new_zeros([1])]) + return (sigmas, ) + +class VPScheduler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), #TODO: fix default values + "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), + "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/schedulers" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, steps, beta_d, beta_min, eps_s): + sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s) + return (sigmas, ) + +class SplitSigmas: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"sigmas": ("SIGMAS", ), + "step": ("INT", {"default": 0, "min": 0, "max": 10000}), + } + } + RETURN_TYPES = ("SIGMAS","SIGMAS") + CATEGORY = "sampling/custom_sampling/sigmas" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, sigmas, step): + sigmas1 = sigmas[:step + 1] + sigmas2 = sigmas[step:] + return (sigmas1, sigmas2) + +class FlipSigmas: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"sigmas": ("SIGMAS", ), + } + } + RETURN_TYPES = ("SIGMAS",) + CATEGORY = "sampling/custom_sampling/sigmas" + + FUNCTION = "get_sigmas" + + def get_sigmas(self, sigmas): + sigmas = sigmas.flip(0) + if sigmas[0] == 0: + sigmas[0] = 0.0001 + return (sigmas,) + +class KSamplerSelect: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ), + } + } + RETURN_TYPES = ("SAMPLER",) + CATEGORY = "sampling/custom_sampling/samplers" + + FUNCTION = "get_sampler" + + def get_sampler(self, sampler_name): + sampler = comfy.samplers.sampler_object(sampler_name) + return (sampler, ) + +class SamplerDPMPP_2M_SDE: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"solver_type": (['midpoint', 'heun'], ), + "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + "noise_device": (['gpu', 'cpu'], ), + } + } + RETURN_TYPES = ("SAMPLER",) + CATEGORY = "sampling/custom_sampling/samplers" + + FUNCTION = "get_sampler" + + def get_sampler(self, solver_type, eta, s_noise, noise_device): + if noise_device == 'cpu': + sampler_name = "dpmpp_2m_sde" + else: + sampler_name = "dpmpp_2m_sde_gpu" + sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type}) + return (sampler, ) + + +class SamplerDPMPP_SDE: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), + "noise_device": (['gpu', 'cpu'], ), + } + } + RETURN_TYPES = ("SAMPLER",) + CATEGORY = "sampling/custom_sampling/samplers" + + FUNCTION = "get_sampler" + + def get_sampler(self, eta, s_noise, r, noise_device): + if noise_device == 'cpu': + sampler_name = "dpmpp_sde" + else: + sampler_name = "dpmpp_sde_gpu" + sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r}) + return (sampler, ) + +class SamplerCustom: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"model": ("MODEL",), + "add_noise": ("BOOLEAN", {"default": True}), + "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), + "positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "sampler": ("SAMPLER", ), + "sigmas": ("SIGMAS", ), + "latent_image": ("LATENT", ), + } + } + + RETURN_TYPES = ("LATENT","LATENT") + RETURN_NAMES = ("output", "denoised_output") + + FUNCTION = "sample" + + CATEGORY = "sampling/custom_sampling" + + def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image): + latent = latent_image + latent_image = latent["samples"] + if not add_noise: + noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") + else: + batch_inds = latent["batch_index"] if "batch_index" in latent else None + noise = comfy.sample.prepare_noise(latent_image, noise_seed, batch_inds) + + noise_mask = None + if "noise_mask" in latent: + noise_mask = latent["noise_mask"] + + x0_output = {} + callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output) + + disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED + samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed) + + out = latent.copy() + out["samples"] = samples + if "x0" in x0_output: + out_denoised = latent.copy() + out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu()) + else: + out_denoised = out + return (out, out_denoised) + +NODE_CLASS_MAPPINGS = { + "SamplerCustom": SamplerCustom, + "BasicScheduler": BasicScheduler, + "KarrasScheduler": KarrasScheduler, + "ExponentialScheduler": ExponentialScheduler, + "PolyexponentialScheduler": PolyexponentialScheduler, + "VPScheduler": VPScheduler, + "SDTurboScheduler": SDTurboScheduler, + "KSamplerSelect": KSamplerSelect, + "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE, + "SamplerDPMPP_SDE": SamplerDPMPP_SDE, + "SplitSigmas": SplitSigmas, + "FlipSigmas": FlipSigmas, +} diff --git a/comfy_extras/nodes_freelunch.py b/comfy_extras/nodes_freelunch.py new file mode 100644 index 0000000000000000000000000000000000000000..7764aa0b0138f927f5bf5308e18518324b015ef2 --- /dev/null +++ b/comfy_extras/nodes_freelunch.py @@ -0,0 +1,113 @@ +#code originally taken from: https://github.com/ChenyangSi/FreeU (under MIT License) + +import torch + + +def Fourier_filter(x, threshold, scale): + # FFT + x_freq = torch.fft.fftn(x.float(), dim=(-2, -1)) + x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1)) + + B, C, H, W = x_freq.shape + mask = torch.ones((B, C, H, W), device=x.device) + + crow, ccol = H // 2, W //2 + mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale + x_freq = x_freq * mask + + # IFFT + x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1)) + x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real + + return x_filtered.to(x.dtype) + + +class FreeU: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}), + "b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}), + "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), + "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "model_patches" + + def patch(self, model, b1, b2, s1, s2): + model_channels = model.model.model_config.unet_config["model_channels"] + scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} + on_cpu_devices = {} + + def output_block_patch(h, hsp, transformer_options): + scale = scale_dict.get(h.shape[1], None) + if scale is not None: + h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * scale[0] + if hsp.device not in on_cpu_devices: + try: + hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) + except: + print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.") + on_cpu_devices[hsp.device] = True + hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) + else: + hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) + + return h, hsp + + m = model.clone() + m.set_model_output_block_patch(output_block_patch) + return (m, ) + +class FreeU_V2: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}), + "b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}), + "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), + "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "model_patches" + + def patch(self, model, b1, b2, s1, s2): + model_channels = model.model.model_config.unet_config["model_channels"] + scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} + on_cpu_devices = {} + + def output_block_patch(h, hsp, transformer_options): + scale = scale_dict.get(h.shape[1], None) + if scale is not None: + hidden_mean = h.mean(1).unsqueeze(1) + B = hidden_mean.shape[0] + hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) + hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) + + h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1) + + if hsp.device not in on_cpu_devices: + try: + hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) + except: + print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.") + on_cpu_devices[hsp.device] = True + hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) + else: + hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) + + return h, hsp + + m = model.clone() + m.set_model_output_block_patch(output_block_patch) + return (m, ) + +NODE_CLASS_MAPPINGS = { + "FreeU": FreeU, + "FreeU_V2": FreeU_V2, +} diff --git a/comfy_extras/nodes_hypernetwork.py b/comfy_extras/nodes_hypernetwork.py new file mode 100644 index 0000000000000000000000000000000000000000..f692945a86b1c934cce104f0468e6f6128010ee4 --- /dev/null +++ b/comfy_extras/nodes_hypernetwork.py @@ -0,0 +1,119 @@ +import comfy.utils +import folder_paths +import torch + +def load_hypernetwork_patch(path, strength): + sd = comfy.utils.load_torch_file(path, safe_load=True) + activation_func = sd.get('activation_func', 'linear') + is_layer_norm = sd.get('is_layer_norm', False) + use_dropout = sd.get('use_dropout', False) + activate_output = sd.get('activate_output', False) + last_layer_dropout = sd.get('last_layer_dropout', False) + + valid_activation = { + "linear": torch.nn.Identity, + "relu": torch.nn.ReLU, + "leakyrelu": torch.nn.LeakyReLU, + "elu": torch.nn.ELU, + "swish": torch.nn.Hardswish, + "tanh": torch.nn.Tanh, + "sigmoid": torch.nn.Sigmoid, + "softsign": torch.nn.Softsign, + "mish": torch.nn.Mish, + } + + if activation_func not in valid_activation: + print("Unsupported Hypernetwork format, if you report it I might implement it.", path, " ", activation_func, is_layer_norm, use_dropout, activate_output, last_layer_dropout) + return None + + out = {} + + for d in sd: + try: + dim = int(d) + except: + continue + + output = [] + for index in [0, 1]: + attn_weights = sd[dim][index] + keys = attn_weights.keys() + + linears = filter(lambda a: a.endswith(".weight"), keys) + linears = list(map(lambda a: a[:-len(".weight")], linears)) + layers = [] + + i = 0 + while i < len(linears): + lin_name = linears[i] + last_layer = (i == (len(linears) - 1)) + penultimate_layer = (i == (len(linears) - 2)) + + lin_weight = attn_weights['{}.weight'.format(lin_name)] + lin_bias = attn_weights['{}.bias'.format(lin_name)] + layer = torch.nn.Linear(lin_weight.shape[1], lin_weight.shape[0]) + layer.load_state_dict({"weight": lin_weight, "bias": lin_bias}) + layers.append(layer) + if activation_func != "linear": + if (not last_layer) or (activate_output): + layers.append(valid_activation[activation_func]()) + if is_layer_norm: + i += 1 + ln_name = linears[i] + ln_weight = attn_weights['{}.weight'.format(ln_name)] + ln_bias = attn_weights['{}.bias'.format(ln_name)] + ln = torch.nn.LayerNorm(ln_weight.shape[0]) + ln.load_state_dict({"weight": ln_weight, "bias": ln_bias}) + layers.append(ln) + if use_dropout: + if (not last_layer) and (not penultimate_layer or last_layer_dropout): + layers.append(torch.nn.Dropout(p=0.3)) + i += 1 + + output.append(torch.nn.Sequential(*layers)) + out[dim] = torch.nn.ModuleList(output) + + class hypernetwork_patch: + def __init__(self, hypernet, strength): + self.hypernet = hypernet + self.strength = strength + def __call__(self, q, k, v, extra_options): + dim = k.shape[-1] + if dim in self.hypernet: + hn = self.hypernet[dim] + k = k + hn[0](k) * self.strength + v = v + hn[1](v) * self.strength + + return q, k, v + + def to(self, device): + for d in self.hypernet.keys(): + self.hypernet[d] = self.hypernet[d].to(device) + return self + + return hypernetwork_patch(out, strength) + +class HypernetworkLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "hypernetwork_name": (folder_paths.get_filename_list("hypernetworks"), ), + "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "load_hypernetwork" + + CATEGORY = "loaders" + + def load_hypernetwork(self, model, hypernetwork_name, strength): + hypernetwork_path = folder_paths.get_full_path("hypernetworks", hypernetwork_name) + model_hypernetwork = model.clone() + patch = load_hypernetwork_patch(hypernetwork_path, strength) + if patch is not None: + model_hypernetwork.set_model_attn1_patch(patch) + model_hypernetwork.set_model_attn2_patch(patch) + return (model_hypernetwork,) + +NODE_CLASS_MAPPINGS = { + "HypernetworkLoader": HypernetworkLoader +} diff --git a/comfy_extras/nodes_hypertile.py b/comfy_extras/nodes_hypertile.py new file mode 100644 index 0000000000000000000000000000000000000000..ae55d23dd06da7435bbf520b66b004619f619784 --- /dev/null +++ b/comfy_extras/nodes_hypertile.py @@ -0,0 +1,83 @@ +#Taken from: https://github.com/tfernd/HyperTile/ + +import math +from einops import rearrange +# Use torch rng for consistency across generations +from torch import randint + +def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int: + min_value = min(min_value, value) + + # All big divisors of value (inclusive) + divisors = [i for i in range(min_value, value + 1) if value % i == 0] + + ns = [value // i for i in divisors[:max_options]] # has at least 1 element + + if len(ns) - 1 > 0: + idx = randint(low=0, high=len(ns) - 1, size=(1,)).item() + else: + idx = 0 + + return ns[idx] + +class HyperTile: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "tile_size": ("INT", {"default": 256, "min": 1, "max": 2048}), + "swap_size": ("INT", {"default": 2, "min": 1, "max": 128}), + "max_depth": ("INT", {"default": 0, "min": 0, "max": 10}), + "scale_depth": ("BOOLEAN", {"default": False}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "model_patches" + + def patch(self, model, tile_size, swap_size, max_depth, scale_depth): + model_channels = model.model.model_config.unet_config["model_channels"] + + latent_tile_size = max(32, tile_size) // 8 + self.temp = None + + def hypertile_in(q, k, v, extra_options): + model_chans = q.shape[-2] + orig_shape = extra_options['original_shape'] + apply_to = [] + for i in range(max_depth + 1): + apply_to.append((orig_shape[-2] / (2 ** i)) * (orig_shape[-1] / (2 ** i))) + + if model_chans in apply_to: + shape = extra_options["original_shape"] + aspect_ratio = shape[-1] / shape[-2] + + hw = q.size(1) + h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio)) + + factor = (2 ** apply_to.index(model_chans)) if scale_depth else 1 + nh = random_divisor(h, latent_tile_size * factor, swap_size) + nw = random_divisor(w, latent_tile_size * factor, swap_size) + + if nh * nw > 1: + q = rearrange(q, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw) + self.temp = (nh, nw, h, w) + return q, k, v + + return q, k, v + def hypertile_out(out, extra_options): + if self.temp is not None: + nh, nw, h, w = self.temp + self.temp = None + out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw) + out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw) + return out + + + m = model.clone() + m.set_model_attn1_patch(hypertile_in) + m.set_model_attn1_output_patch(hypertile_out) + return (m, ) + +NODE_CLASS_MAPPINGS = { + "HyperTile": HyperTile, +} diff --git a/comfy_extras/nodes_images.py b/comfy_extras/nodes_images.py new file mode 100644 index 0000000000000000000000000000000000000000..aa80f5269a371293c2d9bc82a38b2be6c840e4b7 --- /dev/null +++ b/comfy_extras/nodes_images.py @@ -0,0 +1,175 @@ +import nodes +import folder_paths +from comfy.cli_args import args + +from PIL import Image +from PIL.PngImagePlugin import PngInfo + +import numpy as np +import json +import os + +MAX_RESOLUTION = nodes.MAX_RESOLUTION + +class ImageCrop: + @classmethod + def INPUT_TYPES(s): + return {"required": { "image": ("IMAGE",), + "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), + "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), + "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + }} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "crop" + + CATEGORY = "image/transform" + + def crop(self, image, width, height, x, y): + x = min(x, image.shape[2] - 1) + y = min(y, image.shape[1] - 1) + to_x = width + x + to_y = height + y + img = image[:,y:to_y, x:to_x, :] + return (img,) + +class RepeatImageBatch: + @classmethod + def INPUT_TYPES(s): + return {"required": { "image": ("IMAGE",), + "amount": ("INT", {"default": 1, "min": 1, "max": 64}), + }} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "repeat" + + CATEGORY = "image/batch" + + def repeat(self, image, amount): + s = image.repeat((amount, 1,1,1)) + return (s,) + +class SaveAnimatedWEBP: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + self.type = "output" + self.prefix_append = "" + + methods = {"default": 4, "fastest": 0, "slowest": 6} + @classmethod + def INPUT_TYPES(s): + return {"required": + {"images": ("IMAGE", ), + "filename_prefix": ("STRING", {"default": "ComfyUI"}), + "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), + "lossless": ("BOOLEAN", {"default": True}), + "quality": ("INT", {"default": 80, "min": 0, "max": 100}), + "method": (list(s.methods.keys()),), + # "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}), + }, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, + } + + RETURN_TYPES = () + FUNCTION = "save_images" + + OUTPUT_NODE = True + + CATEGORY = "image/animation" + + def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None): + method = self.methods.get(method) + filename_prefix += self.prefix_append + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) + results = list() + pil_images = [] + for image in images: + i = 255. * image.cpu().numpy() + img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) + pil_images.append(img) + + metadata = pil_images[0].getexif() + if not args.disable_metadata: + if prompt is not None: + metadata[0x0110] = "prompt:{}".format(json.dumps(prompt)) + if extra_pnginfo is not None: + inital_exif = 0x010f + for x in extra_pnginfo: + metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x])) + inital_exif -= 1 + + if num_frames == 0: + num_frames = len(pil_images) + + c = len(pil_images) + for i in range(0, c, num_frames): + file = f"{filename}_{counter:05}_.webp" + pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method) + results.append({ + "filename": file, + "subfolder": subfolder, + "type": self.type + }) + counter += 1 + + animated = num_frames != 1 + return { "ui": { "images": results, "animated": (animated,) } } + +class SaveAnimatedPNG: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + self.type = "output" + self.prefix_append = "" + + @classmethod + def INPUT_TYPES(s): + return {"required": + {"images": ("IMAGE", ), + "filename_prefix": ("STRING", {"default": "ComfyUI"}), + "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), + "compress_level": ("INT", {"default": 4, "min": 0, "max": 9}) + }, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, + } + + RETURN_TYPES = () + FUNCTION = "save_images" + + OUTPUT_NODE = True + + CATEGORY = "image/animation" + + def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): + filename_prefix += self.prefix_append + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) + results = list() + pil_images = [] + for image in images: + i = 255. * image.cpu().numpy() + img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) + pil_images.append(img) + + metadata = None + if not args.disable_metadata: + metadata = PngInfo() + if prompt is not None: + metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True) + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True) + + file = f"{filename}_{counter:05}_.png" + pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:]) + results.append({ + "filename": file, + "subfolder": subfolder, + "type": self.type + }) + + return { "ui": { "images": results, "animated": (True,)} } + +NODE_CLASS_MAPPINGS = { + "ImageCrop": ImageCrop, + "RepeatImageBatch": RepeatImageBatch, + "SaveAnimatedWEBP": SaveAnimatedWEBP, + "SaveAnimatedPNG": SaveAnimatedPNG, +} diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py new file mode 100644 index 0000000000000000000000000000000000000000..eabae0885163bbbe4d3a6a6e6e1ac9c81ae795c4 --- /dev/null +++ b/comfy_extras/nodes_latent.py @@ -0,0 +1,155 @@ +import comfy.utils +import torch + +def reshape_latent_to(target_shape, latent): + if latent.shape[1:] != target_shape[1:]: + latent = comfy.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center") + return comfy.utils.repeat_to_batch_size(latent, target_shape[0]) + + +class LatentAdd: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} + + RETURN_TYPES = ("LATENT",) + FUNCTION = "op" + + CATEGORY = "latent/advanced" + + def op(self, samples1, samples2): + samples_out = samples1.copy() + + s1 = samples1["samples"] + s2 = samples2["samples"] + + s2 = reshape_latent_to(s1.shape, s2) + samples_out["samples"] = s1 + s2 + return (samples_out,) + +class LatentSubtract: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} + + RETURN_TYPES = ("LATENT",) + FUNCTION = "op" + + CATEGORY = "latent/advanced" + + def op(self, samples1, samples2): + samples_out = samples1.copy() + + s1 = samples1["samples"] + s2 = samples2["samples"] + + s2 = reshape_latent_to(s1.shape, s2) + samples_out["samples"] = s1 - s2 + return (samples_out,) + +class LatentMultiply: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT",), + "multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + }} + + RETURN_TYPES = ("LATENT",) + FUNCTION = "op" + + CATEGORY = "latent/advanced" + + def op(self, samples, multiplier): + samples_out = samples.copy() + + s1 = samples["samples"] + samples_out["samples"] = s1 * multiplier + return (samples_out,) + +class LatentInterpolate: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples1": ("LATENT",), + "samples2": ("LATENT",), + "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + + RETURN_TYPES = ("LATENT",) + FUNCTION = "op" + + CATEGORY = "latent/advanced" + + def op(self, samples1, samples2, ratio): + samples_out = samples1.copy() + + s1 = samples1["samples"] + s2 = samples2["samples"] + + s2 = reshape_latent_to(s1.shape, s2) + + m1 = torch.linalg.vector_norm(s1, dim=(1)) + m2 = torch.linalg.vector_norm(s2, dim=(1)) + + s1 = torch.nan_to_num(s1 / m1) + s2 = torch.nan_to_num(s2 / m2) + + t = (s1 * ratio + s2 * (1.0 - ratio)) + mt = torch.linalg.vector_norm(t, dim=(1)) + st = torch.nan_to_num(t / mt) + + samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio)) + return (samples_out,) + +class LatentBatch: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}} + + RETURN_TYPES = ("LATENT",) + FUNCTION = "batch" + + CATEGORY = "latent/batch" + + def batch(self, samples1, samples2): + samples_out = samples1.copy() + s1 = samples1["samples"] + s2 = samples2["samples"] + + if s1.shape[1:] != s2.shape[1:]: + s2 = comfy.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center") + s = torch.cat((s1, s2), dim=0) + samples_out["samples"] = s + samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])]) + return (samples_out,) + +class LatentBatchSeedBehavior: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT",), + "seed_behavior": (["random", "fixed"],{"default": "fixed"}),}} + + RETURN_TYPES = ("LATENT",) + FUNCTION = "op" + + CATEGORY = "latent/advanced" + + def op(self, samples, seed_behavior): + samples_out = samples.copy() + latent = samples["samples"] + if seed_behavior == "random": + if 'batch_index' in samples_out: + samples_out.pop('batch_index') + elif seed_behavior == "fixed": + batch_number = samples_out.get("batch_index", [0])[0] + samples_out["batch_index"] = [batch_number] * latent.shape[0] + + return (samples_out,) + +NODE_CLASS_MAPPINGS = { + "LatentAdd": LatentAdd, + "LatentSubtract": LatentSubtract, + "LatentMultiply": LatentMultiply, + "LatentInterpolate": LatentInterpolate, + "LatentBatch": LatentBatch, + "LatentBatchSeedBehavior": LatentBatchSeedBehavior, +} diff --git a/comfy_extras/nodes_mask.py b/comfy_extras/nodes_mask.py new file mode 100644 index 0000000000000000000000000000000000000000..a7d164bf71d4640ddbcaf1eb4eddb20003012d57 --- /dev/null +++ b/comfy_extras/nodes_mask.py @@ -0,0 +1,363 @@ +import numpy as np +import scipy.ndimage +import torch +import comfy.utils + +from nodes import MAX_RESOLUTION + +def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False): + source = source.to(destination.device) + if resize_source: + source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear") + + source = comfy.utils.repeat_to_batch_size(source, destination.shape[0]) + + x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier)) + y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier)) + + left, top = (x // multiplier, y // multiplier) + right, bottom = (left + source.shape[3], top + source.shape[2],) + + if mask is None: + mask = torch.ones_like(source) + else: + mask = mask.to(destination.device, copy=True) + mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[2], source.shape[3]), mode="bilinear") + mask = comfy.utils.repeat_to_batch_size(mask, source.shape[0]) + + # calculate the bounds of the source that will be overlapping the destination + # this prevents the source trying to overwrite latent pixels that are out of bounds + # of the destination + visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),) + + mask = mask[:, :, :visible_height, :visible_width] + inverse_mask = torch.ones_like(mask) - mask + + source_portion = mask * source[:, :, :visible_height, :visible_width] + destination_portion = inverse_mask * destination[:, :, top:bottom, left:right] + + destination[:, :, top:bottom, left:right] = source_portion + destination_portion + return destination + +class LatentCompositeMasked: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "destination": ("LATENT",), + "source": ("LATENT",), + "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "resize_source": ("BOOLEAN", {"default": False}), + }, + "optional": { + "mask": ("MASK",), + } + } + RETURN_TYPES = ("LATENT",) + FUNCTION = "composite" + + CATEGORY = "latent" + + def composite(self, destination, source, x, y, resize_source, mask = None): + output = destination.copy() + destination = destination["samples"].clone() + source = source["samples"] + output["samples"] = composite(destination, source, x, y, mask, 8, resize_source) + return (output,) + +class ImageCompositeMasked: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "destination": ("IMAGE",), + "source": ("IMAGE",), + "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "resize_source": ("BOOLEAN", {"default": False}), + }, + "optional": { + "mask": ("MASK",), + } + } + RETURN_TYPES = ("IMAGE",) + FUNCTION = "composite" + + CATEGORY = "image" + + def composite(self, destination, source, x, y, resize_source, mask = None): + destination = destination.clone().movedim(-1, 1) + output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1) + return (output,) + +class MaskToImage: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "mask": ("MASK",), + } + } + + CATEGORY = "mask" + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "mask_to_image" + + def mask_to_image(self, mask): + result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) + return (result,) + +class ImageToMask: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image": ("IMAGE",), + "channel": (["red", "green", "blue", "alpha"],), + } + } + + CATEGORY = "mask" + + RETURN_TYPES = ("MASK",) + FUNCTION = "image_to_mask" + + def image_to_mask(self, image, channel): + channels = ["red", "green", "blue", "alpha"] + mask = image[:, :, :, channels.index(channel)] + return (mask,) + +class ImageColorToMask: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image": ("IMAGE",), + "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}), + } + } + + CATEGORY = "mask" + + RETURN_TYPES = ("MASK",) + FUNCTION = "image_to_mask" + + def image_to_mask(self, image, color): + temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int) + temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2] + mask = torch.where(temp == color, 255, 0).float() + return (mask,) + +class SolidMask: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), + "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), + } + } + + CATEGORY = "mask" + + RETURN_TYPES = ("MASK",) + + FUNCTION = "solid" + + def solid(self, value, width, height): + out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu") + return (out,) + +class InvertMask: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "mask": ("MASK",), + } + } + + CATEGORY = "mask" + + RETURN_TYPES = ("MASK",) + + FUNCTION = "invert" + + def invert(self, mask): + out = 1.0 - mask + return (out,) + +class CropMask: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "mask": ("MASK",), + "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), + "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), + } + } + + CATEGORY = "mask" + + RETURN_TYPES = ("MASK",) + + FUNCTION = "crop" + + def crop(self, mask, x, y, width, height): + mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) + out = mask[:, y:y + height, x:x + width] + return (out,) + +class MaskComposite: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "destination": ("MASK",), + "source": ("MASK",), + "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "operation": (["multiply", "add", "subtract", "and", "or", "xor"],), + } + } + + CATEGORY = "mask" + + RETURN_TYPES = ("MASK",) + + FUNCTION = "combine" + + def combine(self, destination, source, x, y, operation): + output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone() + source = source.reshape((-1, source.shape[-2], source.shape[-1])) + + left, top = (x, y,) + right, bottom = (min(left + source.shape[-1], destination.shape[-1]), min(top + source.shape[-2], destination.shape[-2])) + visible_width, visible_height = (right - left, bottom - top,) + + source_portion = source[:, :visible_height, :visible_width] + destination_portion = destination[:, top:bottom, left:right] + + if operation == "multiply": + output[:, top:bottom, left:right] = destination_portion * source_portion + elif operation == "add": + output[:, top:bottom, left:right] = destination_portion + source_portion + elif operation == "subtract": + output[:, top:bottom, left:right] = destination_portion - source_portion + elif operation == "and": + output[:, top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float() + elif operation == "or": + output[:, top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float() + elif operation == "xor": + output[:, top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float() + + output = torch.clamp(output, 0.0, 1.0) + + return (output,) + +class FeatherMask: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "mask": ("MASK",), + "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + } + } + + CATEGORY = "mask" + + RETURN_TYPES = ("MASK",) + + FUNCTION = "feather" + + def feather(self, mask, left, top, right, bottom): + output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone() + + left = min(left, output.shape[-1]) + right = min(right, output.shape[-1]) + top = min(top, output.shape[-2]) + bottom = min(bottom, output.shape[-2]) + + for x in range(left): + feather_rate = (x + 1.0) / left + output[:, :, x] *= feather_rate + + for x in range(right): + feather_rate = (x + 1) / right + output[:, :, -x] *= feather_rate + + for y in range(top): + feather_rate = (y + 1) / top + output[:, y, :] *= feather_rate + + for y in range(bottom): + feather_rate = (y + 1) / bottom + output[:, -y, :] *= feather_rate + + return (output,) + +class GrowMask: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "mask": ("MASK",), + "expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}), + "tapered_corners": ("BOOLEAN", {"default": True}), + }, + } + + CATEGORY = "mask" + + RETURN_TYPES = ("MASK",) + + FUNCTION = "expand_mask" + + def expand_mask(self, mask, expand, tapered_corners): + c = 0 if tapered_corners else 1 + kernel = np.array([[c, 1, c], + [1, 1, 1], + [c, 1, c]]) + mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) + out = [] + for m in mask: + output = m.numpy() + for _ in range(abs(expand)): + if expand < 0: + output = scipy.ndimage.grey_erosion(output, footprint=kernel) + else: + output = scipy.ndimage.grey_dilation(output, footprint=kernel) + output = torch.from_numpy(output) + out.append(output) + return (torch.stack(out, dim=0),) + + + +NODE_CLASS_MAPPINGS = { + "LatentCompositeMasked": LatentCompositeMasked, + "ImageCompositeMasked": ImageCompositeMasked, + "MaskToImage": MaskToImage, + "ImageToMask": ImageToMask, + "ImageColorToMask": ImageColorToMask, + "SolidMask": SolidMask, + "InvertMask": InvertMask, + "CropMask": CropMask, + "MaskComposite": MaskComposite, + "FeatherMask": FeatherMask, + "GrowMask": GrowMask, +} + +NODE_DISPLAY_NAME_MAPPINGS = { + "ImageToMask": "Convert Image to Mask", + "MaskToImage": "Convert Mask to Image", +} diff --git a/comfy_extras/nodes_model_advanced.py b/comfy_extras/nodes_model_advanced.py new file mode 100644 index 0000000000000000000000000000000000000000..541ce8fa5cc92a88b891a783e929cddceca8cb2d --- /dev/null +++ b/comfy_extras/nodes_model_advanced.py @@ -0,0 +1,175 @@ +import folder_paths +import comfy.sd +import comfy.model_sampling +import torch + +class LCM(comfy.model_sampling.EPS): + def calculate_denoised(self, sigma, model_output, model_input): + timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) + x0 = model_input - model_output * sigma + + sigma_data = 0.5 + scaled_timestep = timestep * 10.0 #timestep_scaling + + c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2) + c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5 + + return c_out * x0 + c_skip * model_input + +class ModelSamplingDiscreteDistilled(comfy.model_sampling.ModelSamplingDiscrete): + original_timesteps = 50 + + def __init__(self, model_config=None): + super().__init__(model_config) + + self.skip_steps = self.num_timesteps // self.original_timesteps + + sigmas_valid = torch.zeros((self.original_timesteps), dtype=torch.float32) + for x in range(self.original_timesteps): + sigmas_valid[self.original_timesteps - 1 - x] = self.sigmas[self.num_timesteps - 1 - x * self.skip_steps] + + self.set_sigmas(sigmas_valid) + + def timestep(self, sigma): + log_sigma = sigma.log() + dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] + return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device) + + def sigma(self, timestep): + t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1)) + low_idx = t.floor().long() + high_idx = t.ceil().long() + w = t.frac() + log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] + return log_sigma.exp().to(timestep.device) + + +def rescale_zero_terminal_snr_sigmas(sigmas): + alphas_cumprod = 1 / ((sigmas * sigmas) + 1) + alphas_bar_sqrt = alphas_cumprod.sqrt() + + # Store old values. + alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() + alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() + + # Shift so the last timestep is zero. + alphas_bar_sqrt -= (alphas_bar_sqrt_T) + + # Scale so the first timestep is back to the old value. + alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) + + # Convert alphas_bar_sqrt to betas + alphas_bar = alphas_bar_sqrt**2 # Revert sqrt + alphas_bar[-1] = 4.8973451890853435e-08 + return ((1 - alphas_bar) / alphas_bar) ** 0.5 + +class ModelSamplingDiscrete: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "sampling": (["eps", "v_prediction", "lcm"],), + "zsnr": ("BOOLEAN", {"default": False}), + }} + + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "advanced/model" + + def patch(self, model, sampling, zsnr): + m = model.clone() + + sampling_base = comfy.model_sampling.ModelSamplingDiscrete + if sampling == "eps": + sampling_type = comfy.model_sampling.EPS + elif sampling == "v_prediction": + sampling_type = comfy.model_sampling.V_PREDICTION + elif sampling == "lcm": + sampling_type = LCM + sampling_base = ModelSamplingDiscreteDistilled + + class ModelSamplingAdvanced(sampling_base, sampling_type): + pass + + model_sampling = ModelSamplingAdvanced(model.model.model_config) + if zsnr: + model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas)) + + m.add_object_patch("model_sampling", model_sampling) + return (m, ) + +class ModelSamplingContinuousEDM: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "sampling": (["v_prediction", "eps"],), + "sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}), + "sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}), + }} + + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "advanced/model" + + def patch(self, model, sampling, sigma_max, sigma_min): + m = model.clone() + + if sampling == "eps": + sampling_type = comfy.model_sampling.EPS + elif sampling == "v_prediction": + sampling_type = comfy.model_sampling.V_PREDICTION + + class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousEDM, sampling_type): + pass + + model_sampling = ModelSamplingAdvanced(model.model.model_config) + model_sampling.set_sigma_range(sigma_min, sigma_max) + m.add_object_patch("model_sampling", model_sampling) + return (m, ) + +class RescaleCFG: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "advanced/model" + + def patch(self, model, multiplier): + def rescale_cfg(args): + cond = args["cond"] + uncond = args["uncond"] + cond_scale = args["cond_scale"] + sigma = args["sigma"] + sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1)) + x_orig = args["input"] + + #rescale cfg has to be done on v-pred model output + x = x_orig / (sigma * sigma + 1.0) + cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) + uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) + + #rescalecfg + x_cfg = uncond + cond_scale * (cond - uncond) + ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True) + ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True) + + x_rescaled = x_cfg * (ro_pos / ro_cfg) + x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg + + return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5) + + m = model.clone() + m.set_model_sampler_cfg_function(rescale_cfg) + return (m, ) + +NODE_CLASS_MAPPINGS = { + "ModelSamplingDiscrete": ModelSamplingDiscrete, + "ModelSamplingContinuousEDM": ModelSamplingContinuousEDM, + "RescaleCFG": RescaleCFG, +} diff --git a/comfy_extras/nodes_model_downscale.py b/comfy_extras/nodes_model_downscale.py new file mode 100644 index 0000000000000000000000000000000000000000..48bcc6892732a3033e40bf4fc89a6098aee22400 --- /dev/null +++ b/comfy_extras/nodes_model_downscale.py @@ -0,0 +1,53 @@ +import torch +import comfy.utils + +class PatchModelAddDownscale: + upscale_methods = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"] + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "block_number": ("INT", {"default": 3, "min": 1, "max": 32, "step": 1}), + "downscale_factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 9.0, "step": 0.001}), + "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), + "end_percent": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.001}), + "downscale_after_skip": ("BOOLEAN", {"default": True}), + "downscale_method": (s.upscale_methods,), + "upscale_method": (s.upscale_methods,), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "_for_testing" + + def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method): + sigma_start = model.model.model_sampling.percent_to_sigma(start_percent) + sigma_end = model.model.model_sampling.percent_to_sigma(end_percent) + + def input_block_patch(h, transformer_options): + if transformer_options["block"][1] == block_number: + sigma = transformer_options["sigmas"][0].item() + if sigma <= sigma_start and sigma >= sigma_end: + h = comfy.utils.common_upscale(h, round(h.shape[-1] * (1.0 / downscale_factor)), round(h.shape[-2] * (1.0 / downscale_factor)), downscale_method, "disabled") + return h + + def output_block_patch(h, hsp, transformer_options): + if h.shape[2] != hsp.shape[2]: + h = comfy.utils.common_upscale(h, hsp.shape[-1], hsp.shape[-2], upscale_method, "disabled") + return h, hsp + + m = model.clone() + if downscale_after_skip: + m.set_model_input_block_patch_after_skip(input_block_patch) + else: + m.set_model_input_block_patch(input_block_patch) + m.set_model_output_block_patch(output_block_patch) + return (m, ) + +NODE_CLASS_MAPPINGS = { + "PatchModelAddDownscale": PatchModelAddDownscale, +} + +NODE_DISPLAY_NAME_MAPPINGS = { + # Sampling + "PatchModelAddDownscale": "PatchModelAddDownscale (Kohya Deep Shrink)", +} diff --git a/comfy_extras/nodes_model_merging.py b/comfy_extras/nodes_model_merging.py new file mode 100644 index 0000000000000000000000000000000000000000..d594cf490b678490e70b71bb00748f052e440f35 --- /dev/null +++ b/comfy_extras/nodes_model_merging.py @@ -0,0 +1,284 @@ +import comfy.sd +import comfy.utils +import comfy.model_base +import comfy.model_management + +import folder_paths +import json +import os + +from comfy.cli_args import args + +class ModelMergeSimple: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model1": ("MODEL",), + "model2": ("MODEL",), + "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "merge" + + CATEGORY = "advanced/model_merging" + + def merge(self, model1, model2, ratio): + m = model1.clone() + kp = model2.get_key_patches("diffusion_model.") + for k in kp: + m.add_patches({k: kp[k]}, 1.0 - ratio, ratio) + return (m, ) + +class ModelSubtract: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model1": ("MODEL",), + "model2": ("MODEL",), + "multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "merge" + + CATEGORY = "advanced/model_merging" + + def merge(self, model1, model2, multiplier): + m = model1.clone() + kp = model2.get_key_patches("diffusion_model.") + for k in kp: + m.add_patches({k: kp[k]}, - multiplier, multiplier) + return (m, ) + +class ModelAdd: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model1": ("MODEL",), + "model2": ("MODEL",), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "merge" + + CATEGORY = "advanced/model_merging" + + def merge(self, model1, model2): + m = model1.clone() + kp = model2.get_key_patches("diffusion_model.") + for k in kp: + m.add_patches({k: kp[k]}, 1.0, 1.0) + return (m, ) + + +class CLIPMergeSimple: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip1": ("CLIP",), + "clip2": ("CLIP",), + "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + RETURN_TYPES = ("CLIP",) + FUNCTION = "merge" + + CATEGORY = "advanced/model_merging" + + def merge(self, clip1, clip2, ratio): + m = clip1.clone() + kp = clip2.get_key_patches() + for k in kp: + if k.endswith(".position_ids") or k.endswith(".logit_scale"): + continue + m.add_patches({k: kp[k]}, 1.0 - ratio, ratio) + return (m, ) + +class ModelMergeBlocks: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model1": ("MODEL",), + "model2": ("MODEL",), + "input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + "middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + "out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}) + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "merge" + + CATEGORY = "advanced/model_merging" + + def merge(self, model1, model2, **kwargs): + m = model1.clone() + kp = model2.get_key_patches("diffusion_model.") + default_ratio = next(iter(kwargs.values())) + + for k in kp: + ratio = default_ratio + k_unet = k[len("diffusion_model."):] + + last_arg_size = 0 + for arg in kwargs: + if k_unet.startswith(arg) and last_arg_size < len(arg): + ratio = kwargs[arg] + last_arg_size = len(arg) + + m.add_patches({k: kp[k]}, 1.0 - ratio, ratio) + return (m, ) + +def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None): + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir) + prompt_info = "" + if prompt is not None: + prompt_info = json.dumps(prompt) + + metadata = {} + + enable_modelspec = True + if isinstance(model.model, comfy.model_base.SDXL): + metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base" + elif isinstance(model.model, comfy.model_base.SDXLRefiner): + metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner" + else: + enable_modelspec = False + + if enable_modelspec: + metadata["modelspec.sai_model_spec"] = "1.0.0" + metadata["modelspec.implementation"] = "sgm" + metadata["modelspec.title"] = "{} {}".format(filename, counter) + + #TODO: + # "stable-diffusion-v1", "stable-diffusion-v1-inpainting", "stable-diffusion-v2-512", + # "stable-diffusion-v2-768-v", "stable-diffusion-v2-unclip-l", "stable-diffusion-v2-unclip-h", + # "v2-inpainting" + + if model.model.model_type == comfy.model_base.ModelType.EPS: + metadata["modelspec.predict_key"] = "epsilon" + elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION: + metadata["modelspec.predict_key"] = "v" + + if not args.disable_metadata: + metadata["prompt"] = prompt_info + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata[x] = json.dumps(extra_pnginfo[x]) + + output_checkpoint = f"{filename}_{counter:05}_.safetensors" + output_checkpoint = os.path.join(full_output_folder, output_checkpoint) + + comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata) + +class CheckpointSave: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "clip": ("CLIP",), + "vae": ("VAE",), + "filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),}, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} + RETURN_TYPES = () + FUNCTION = "save" + OUTPUT_NODE = True + + CATEGORY = "advanced/model_merging" + + def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None): + save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo) + return {} + +class CLIPSave: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip": ("CLIP",), + "filename_prefix": ("STRING", {"default": "clip/ComfyUI"}),}, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} + RETURN_TYPES = () + FUNCTION = "save" + OUTPUT_NODE = True + + CATEGORY = "advanced/model_merging" + + def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None): + prompt_info = "" + if prompt is not None: + prompt_info = json.dumps(prompt) + + metadata = {} + if not args.disable_metadata: + metadata["prompt"] = prompt_info + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata[x] = json.dumps(extra_pnginfo[x]) + + comfy.model_management.load_models_gpu([clip.load_model()]) + clip_sd = clip.get_sd() + + for prefix in ["clip_l.", "clip_g.", ""]: + k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys())) + current_clip_sd = {} + for x in k: + current_clip_sd[x] = clip_sd.pop(x) + if len(current_clip_sd) == 0: + continue + + p = prefix[:-1] + replace_prefix = {} + filename_prefix_ = filename_prefix + if len(p) > 0: + filename_prefix_ = "{}_{}".format(filename_prefix_, p) + replace_prefix[prefix] = "" + replace_prefix["transformer."] = "" + + full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, self.output_dir) + + output_checkpoint = f"{filename}_{counter:05}_.safetensors" + output_checkpoint = os.path.join(full_output_folder, output_checkpoint) + + current_clip_sd = comfy.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix) + + comfy.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata) + return {} + +class VAESave: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + + @classmethod + def INPUT_TYPES(s): + return {"required": { "vae": ("VAE",), + "filename_prefix": ("STRING", {"default": "vae/ComfyUI_vae"}),}, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} + RETURN_TYPES = () + FUNCTION = "save" + OUTPUT_NODE = True + + CATEGORY = "advanced/model_merging" + + def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None): + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) + prompt_info = "" + if prompt is not None: + prompt_info = json.dumps(prompt) + + metadata = {} + if not args.disable_metadata: + metadata["prompt"] = prompt_info + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata[x] = json.dumps(extra_pnginfo[x]) + + output_checkpoint = f"{filename}_{counter:05}_.safetensors" + output_checkpoint = os.path.join(full_output_folder, output_checkpoint) + + comfy.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata) + return {} + +NODE_CLASS_MAPPINGS = { + "ModelMergeSimple": ModelMergeSimple, + "ModelMergeBlocks": ModelMergeBlocks, + "ModelMergeSubtract": ModelSubtract, + "ModelMergeAdd": ModelAdd, + "CheckpointSave": CheckpointSave, + "CLIPMergeSimple": CLIPMergeSimple, + "CLIPSave": CLIPSave, + "VAESave": VAESave, +} diff --git a/comfy_extras/nodes_perpneg.py b/comfy_extras/nodes_perpneg.py new file mode 100644 index 0000000000000000000000000000000000000000..45e4d418f4f5bb73ba2441060584fa2e6cff0dbd --- /dev/null +++ b/comfy_extras/nodes_perpneg.py @@ -0,0 +1,55 @@ +import torch +import comfy.model_management +import comfy.sample +import comfy.samplers +import comfy.utils + + +class PerpNeg: + @classmethod + def INPUT_TYPES(s): + return {"required": {"model": ("MODEL", ), + "empty_conditioning": ("CONDITIONING", ), + "neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "_for_testing" + + def patch(self, model, empty_conditioning, neg_scale): + m = model.clone() + nocond = comfy.sample.convert_cond(empty_conditioning) + + def cfg_function(args): + model = args["model"] + noise_pred_pos = args["cond_denoised"] + noise_pred_neg = args["uncond_denoised"] + cond_scale = args["cond_scale"] + x = args["input"] + sigma = args["sigma"] + model_options = args["model_options"] + nocond_processed = comfy.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative") + + (noise_pred_nocond, _) = comfy.samplers.calc_cond_uncond_batch(model, nocond_processed, None, x, sigma, model_options) + + pos = noise_pred_pos - noise_pred_nocond + neg = noise_pred_neg - noise_pred_nocond + perp = ((torch.mul(pos, neg).sum())/(torch.norm(neg)**2)) * neg + perp_neg = perp * neg_scale + cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg) + cfg_result = x - cfg_result + return cfg_result + + m.set_model_sampler_cfg_function(cfg_function) + + return (m, ) + + +NODE_CLASS_MAPPINGS = { + "PerpNeg": PerpNeg, +} + +NODE_DISPLAY_NAME_MAPPINGS = { + "PerpNeg": "Perp-Neg", +} diff --git a/comfy_extras/nodes_photomaker.py b/comfy_extras/nodes_photomaker.py new file mode 100644 index 0000000000000000000000000000000000000000..90130142b280f9d5caf27f68a7ab72f1631bbe4a --- /dev/null +++ b/comfy_extras/nodes_photomaker.py @@ -0,0 +1,187 @@ +import torch +import torch.nn as nn +import folder_paths +import comfy.clip_model +import comfy.clip_vision +import comfy.ops + +# code for model from: https://github.com/TencentARC/PhotoMaker/blob/main/photomaker/model.py under Apache License Version 2.0 +VISION_CONFIG_DICT = { + "hidden_size": 1024, + "image_size": 224, + "intermediate_size": 4096, + "num_attention_heads": 16, + "num_channels": 3, + "num_hidden_layers": 24, + "patch_size": 14, + "projection_dim": 768, + "hidden_act": "quick_gelu", +} + +class MLP(nn.Module): + def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True, operations=comfy.ops): + super().__init__() + if use_residual: + assert in_dim == out_dim + self.layernorm = operations.LayerNorm(in_dim) + self.fc1 = operations.Linear(in_dim, hidden_dim) + self.fc2 = operations.Linear(hidden_dim, out_dim) + self.use_residual = use_residual + self.act_fn = nn.GELU() + + def forward(self, x): + residual = x + x = self.layernorm(x) + x = self.fc1(x) + x = self.act_fn(x) + x = self.fc2(x) + if self.use_residual: + x = x + residual + return x + + +class FuseModule(nn.Module): + def __init__(self, embed_dim, operations): + super().__init__() + self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False, operations=operations) + self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True, operations=operations) + self.layer_norm = operations.LayerNorm(embed_dim) + + def fuse_fn(self, prompt_embeds, id_embeds): + stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1) + stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds + stacked_id_embeds = self.mlp2(stacked_id_embeds) + stacked_id_embeds = self.layer_norm(stacked_id_embeds) + return stacked_id_embeds + + def forward( + self, + prompt_embeds, + id_embeds, + class_tokens_mask, + ) -> torch.Tensor: + # id_embeds shape: [b, max_num_inputs, 1, 2048] + id_embeds = id_embeds.to(prompt_embeds.dtype) + num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case + batch_size, max_num_inputs = id_embeds.shape[:2] + # seq_length: 77 + seq_length = prompt_embeds.shape[1] + # flat_id_embeds shape: [b*max_num_inputs, 1, 2048] + flat_id_embeds = id_embeds.view( + -1, id_embeds.shape[-2], id_embeds.shape[-1] + ) + # valid_id_mask [b*max_num_inputs] + valid_id_mask = ( + torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :] + < num_inputs[:, None] + ) + valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()] + + prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1]) + class_tokens_mask = class_tokens_mask.view(-1) + valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1]) + # slice out the image token embeddings + image_token_embeds = prompt_embeds[class_tokens_mask] + stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds) + assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}" + prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype)) + updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1) + return updated_prompt_embeds + +class PhotoMakerIDEncoder(comfy.clip_model.CLIPVisionModelProjection): + def __init__(self): + self.load_device = comfy.model_management.text_encoder_device() + offload_device = comfy.model_management.text_encoder_offload_device() + dtype = comfy.model_management.text_encoder_dtype(self.load_device) + + super().__init__(VISION_CONFIG_DICT, dtype, offload_device, comfy.ops.manual_cast) + self.visual_projection_2 = comfy.ops.manual_cast.Linear(1024, 1280, bias=False) + self.fuse_module = FuseModule(2048, comfy.ops.manual_cast) + + def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask): + b, num_inputs, c, h, w = id_pixel_values.shape + id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w) + + shared_id_embeds = self.vision_model(id_pixel_values)[2] + id_embeds = self.visual_projection(shared_id_embeds) + id_embeds_2 = self.visual_projection_2(shared_id_embeds) + + id_embeds = id_embeds.view(b, num_inputs, 1, -1) + id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1) + + id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1) + updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask) + + return updated_prompt_embeds + + +class PhotoMakerLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "photomaker_model_name": (folder_paths.get_filename_list("photomaker"), )}} + + RETURN_TYPES = ("PHOTOMAKER",) + FUNCTION = "load_photomaker_model" + + CATEGORY = "_for_testing/photomaker" + + def load_photomaker_model(self, photomaker_model_name): + photomaker_model_path = folder_paths.get_full_path("photomaker", photomaker_model_name) + photomaker_model = PhotoMakerIDEncoder() + data = comfy.utils.load_torch_file(photomaker_model_path, safe_load=True) + if "id_encoder" in data: + data = data["id_encoder"] + photomaker_model.load_state_dict(data) + return (photomaker_model,) + + +class PhotoMakerEncode: + @classmethod + def INPUT_TYPES(s): + return {"required": { "photomaker": ("PHOTOMAKER",), + "image": ("IMAGE",), + "clip": ("CLIP", ), + "text": ("STRING", {"multiline": True, "default": "photograph of photomaker"}), + }} + + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "apply_photomaker" + + CATEGORY = "_for_testing/photomaker" + + def apply_photomaker(self, photomaker, image, clip, text): + special_token = "photomaker" + pixel_values = comfy.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float() + try: + index = text.split(" ").index(special_token) + 1 + except ValueError: + index = -1 + tokens = clip.tokenize(text, return_word_ids=True) + out_tokens = {} + for k in tokens: + out_tokens[k] = [] + for t in tokens[k]: + f = list(filter(lambda x: x[2] != index, t)) + while len(f) < len(t): + f.append(t[-1]) + out_tokens[k].append(f) + + cond, pooled = clip.encode_from_tokens(out_tokens, return_pooled=True) + + if index > 0: + token_index = index - 1 + num_id_images = 1 + class_tokens_mask = [True if token_index <= i < token_index+num_id_images else False for i in range(77)] + out = photomaker(id_pixel_values=pixel_values.unsqueeze(0), prompt_embeds=cond.to(photomaker.load_device), + class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0)) + else: + out = cond + + return ([[out, {"pooled_output": pooled}]], ) + + +NODE_CLASS_MAPPINGS = { + "PhotoMakerLoader": PhotoMakerLoader, + "PhotoMakerEncode": PhotoMakerEncode, +} + diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py new file mode 100644 index 0000000000000000000000000000000000000000..cb5c7d228177274040ec83e738b76147fc0e8e58 --- /dev/null +++ b/comfy_extras/nodes_post_processing.py @@ -0,0 +1,276 @@ +import numpy as np +import torch +import torch.nn.functional as F +from PIL import Image +import math + +import comfy.utils + + +class Blend: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image1": ("IMAGE",), + "image2": ("IMAGE",), + "blend_factor": ("FLOAT", { + "default": 0.5, + "min": 0.0, + "max": 1.0, + "step": 0.01 + }), + "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "blend_images" + + CATEGORY = "image/postprocessing" + + def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str): + image2 = image2.to(image1.device) + if image1.shape != image2.shape: + image2 = image2.permute(0, 3, 1, 2) + image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center') + image2 = image2.permute(0, 2, 3, 1) + + blended_image = self.blend_mode(image1, image2, blend_mode) + blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor + blended_image = torch.clamp(blended_image, 0, 1) + return (blended_image,) + + def blend_mode(self, img1, img2, mode): + if mode == "normal": + return img2 + elif mode == "multiply": + return img1 * img2 + elif mode == "screen": + return 1 - (1 - img1) * (1 - img2) + elif mode == "overlay": + return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2)) + elif mode == "soft_light": + return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1)) + elif mode == "difference": + return img1 - img2 + else: + raise ValueError(f"Unsupported blend mode: {mode}") + + def g(self, x): + return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x)) + +def gaussian_kernel(kernel_size: int, sigma: float, device=None): + x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij") + d = torch.sqrt(x * x + y * y) + g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) + return g / g.sum() + +class Blur: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image": ("IMAGE",), + "blur_radius": ("INT", { + "default": 1, + "min": 1, + "max": 31, + "step": 1 + }), + "sigma": ("FLOAT", { + "default": 1.0, + "min": 0.1, + "max": 10.0, + "step": 0.1 + }), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "blur" + + CATEGORY = "image/postprocessing" + + def blur(self, image: torch.Tensor, blur_radius: int, sigma: float): + if blur_radius == 0: + return (image,) + + batch_size, height, width, channels = image.shape + + kernel_size = blur_radius * 2 + 1 + kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1) + + image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) + padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect') + blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius] + blurred = blurred.permute(0, 2, 3, 1) + + return (blurred,) + +class Quantize: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image": ("IMAGE",), + "colors": ("INT", { + "default": 256, + "min": 1, + "max": 256, + "step": 1 + }), + "dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "quantize" + + CATEGORY = "image/postprocessing" + + def bayer(im, pal_im, order): + def normalized_bayer_matrix(n): + if n == 0: + return np.zeros((1,1), "float32") + else: + q = 4 ** n + m = q * normalized_bayer_matrix(n - 1) + return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q + + num_colors = len(pal_im.getpalette()) // 3 + spread = 2 * 256 / num_colors + bayer_n = int(math.log2(order)) + bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5) + + result = torch.from_numpy(np.array(im).astype(np.float32)) + tw = math.ceil(result.shape[0] / bayer_matrix.shape[0]) + th = math.ceil(result.shape[1] / bayer_matrix.shape[1]) + tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1) + result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255) + result = result.to(dtype=torch.uint8) + + im = Image.fromarray(result.cpu().numpy()) + im = im.quantize(palette=pal_im, dither=Image.Dither.NONE) + return im + + def quantize(self, image: torch.Tensor, colors: int, dither: str): + batch_size, height, width, _ = image.shape + result = torch.zeros_like(image) + + for b in range(batch_size): + im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB') + + pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836 + + if dither == "none": + quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE) + elif dither == "floyd-steinberg": + quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG) + elif dither.startswith("bayer"): + order = int(dither.split('-')[-1]) + quantized_image = Quantize.bayer(im, pal_im, order) + + quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255 + result[b] = quantized_array + + return (result,) + +class Sharpen: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image": ("IMAGE",), + "sharpen_radius": ("INT", { + "default": 1, + "min": 1, + "max": 31, + "step": 1 + }), + "sigma": ("FLOAT", { + "default": 1.0, + "min": 0.1, + "max": 10.0, + "step": 0.1 + }), + "alpha": ("FLOAT", { + "default": 1.0, + "min": 0.0, + "max": 5.0, + "step": 0.1 + }), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "sharpen" + + CATEGORY = "image/postprocessing" + + def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float): + if sharpen_radius == 0: + return (image,) + + batch_size, height, width, channels = image.shape + + kernel_size = sharpen_radius * 2 + 1 + kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10) + center = kernel_size // 2 + kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0 + kernel = kernel.repeat(channels, 1, 1).unsqueeze(1) + + tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) + tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect') + sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius] + sharpened = sharpened.permute(0, 2, 3, 1) + + result = torch.clamp(sharpened, 0, 1) + + return (result,) + +class ImageScaleToTotalPixels: + upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + crop_methods = ["disabled", "center"] + + @classmethod + def INPUT_TYPES(s): + return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,), + "megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}), + }} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "upscale" + + CATEGORY = "image/upscaling" + + def upscale(self, image, upscale_method, megapixels): + samples = image.movedim(-1,1) + total = int(megapixels * 1024 * 1024) + + scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) + width = round(samples.shape[3] * scale_by) + height = round(samples.shape[2] * scale_by) + + s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") + s = s.movedim(1,-1) + return (s,) + +NODE_CLASS_MAPPINGS = { + "ImageBlend": Blend, + "ImageBlur": Blur, + "ImageQuantize": Quantize, + "ImageSharpen": Sharpen, + "ImageScaleToTotalPixels": ImageScaleToTotalPixels, +} diff --git a/comfy_extras/nodes_rebatch.py b/comfy_extras/nodes_rebatch.py new file mode 100644 index 0000000000000000000000000000000000000000..3010fbd4b69034399390894d74c1b8cc415b61f0 --- /dev/null +++ b/comfy_extras/nodes_rebatch.py @@ -0,0 +1,138 @@ +import torch + +class LatentRebatch: + @classmethod + def INPUT_TYPES(s): + return {"required": { "latents": ("LATENT",), + "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), + }} + RETURN_TYPES = ("LATENT",) + INPUT_IS_LIST = True + OUTPUT_IS_LIST = (True, ) + + FUNCTION = "rebatch" + + CATEGORY = "latent/batch" + + @staticmethod + def get_batch(latents, list_ind, offset): + '''prepare a batch out of the list of latents''' + samples = latents[list_ind]['samples'] + shape = samples.shape + mask = latents[list_ind]['noise_mask'] if 'noise_mask' in latents[list_ind] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu') + if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]: + torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear") + if mask.shape[0] < samples.shape[0]: + mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]] + if 'batch_index' in latents[list_ind]: + batch_inds = latents[list_ind]['batch_index'] + else: + batch_inds = [x+offset for x in range(shape[0])] + return samples, mask, batch_inds + + @staticmethod + def get_slices(indexable, num, batch_size): + '''divides an indexable object into num slices of length batch_size, and a remainder''' + slices = [] + for i in range(num): + slices.append(indexable[i*batch_size:(i+1)*batch_size]) + if num * batch_size < len(indexable): + return slices, indexable[num * batch_size:] + else: + return slices, None + + @staticmethod + def slice_batch(batch, num, batch_size): + result = [LatentRebatch.get_slices(x, num, batch_size) for x in batch] + return list(zip(*result)) + + @staticmethod + def cat_batch(batch1, batch2): + if batch1[0] is None: + return batch2 + result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)] + return result + + def rebatch(self, latents, batch_size): + batch_size = batch_size[0] + + output_list = [] + current_batch = (None, None, None) + processed = 0 + + for i in range(len(latents)): + # fetch new entry of list + #samples, masks, indices = self.get_batch(latents, i) + next_batch = self.get_batch(latents, i, processed) + processed += len(next_batch[2]) + # set to current if current is None + if current_batch[0] is None: + current_batch = next_batch + # add previous to list if dimensions do not match + elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]: + sliced, _ = self.slice_batch(current_batch, 1, batch_size) + output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]}) + current_batch = next_batch + # cat if everything checks out + else: + current_batch = self.cat_batch(current_batch, next_batch) + + # add to list if dimensions gone above target batch size + if current_batch[0].shape[0] > batch_size: + num = current_batch[0].shape[0] // batch_size + sliced, remainder = self.slice_batch(current_batch, num, batch_size) + + for i in range(num): + output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]}) + + current_batch = remainder + + #add remainder + if current_batch[0] is not None: + sliced, _ = self.slice_batch(current_batch, 1, batch_size) + output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]}) + + #get rid of empty masks + for s in output_list: + if s['noise_mask'].mean() == 1.0: + del s['noise_mask'] + + return (output_list,) + +class ImageRebatch: + @classmethod + def INPUT_TYPES(s): + return {"required": { "images": ("IMAGE",), + "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), + }} + RETURN_TYPES = ("IMAGE",) + INPUT_IS_LIST = True + OUTPUT_IS_LIST = (True, ) + + FUNCTION = "rebatch" + + CATEGORY = "image/batch" + + def rebatch(self, images, batch_size): + batch_size = batch_size[0] + + output_list = [] + all_images = [] + for img in images: + for i in range(img.shape[0]): + all_images.append(img[i:i+1]) + + for i in range(0, len(all_images), batch_size): + output_list.append(torch.cat(all_images[i:i+batch_size], dim=0)) + + return (output_list,) + +NODE_CLASS_MAPPINGS = { + "RebatchLatents": LatentRebatch, + "RebatchImages": ImageRebatch, +} + +NODE_DISPLAY_NAME_MAPPINGS = { + "RebatchLatents": "Rebatch Latents", + "RebatchImages": "Rebatch Images", +} diff --git a/comfy_extras/nodes_sag.py b/comfy_extras/nodes_sag.py new file mode 100644 index 0000000000000000000000000000000000000000..bbd3808078db6e015e755cda3fe345c2977a2755 --- /dev/null +++ b/comfy_extras/nodes_sag.py @@ -0,0 +1,170 @@ +import torch +from torch import einsum +import torch.nn.functional as F +import math + +from einops import rearrange, repeat +import os +from comfy.ldm.modules.attention import optimized_attention, _ATTN_PRECISION +import comfy.samplers + +# from comfy/ldm/modules/attention.py +# but modified to return attention scores as well as output +def attention_basic_with_sim(q, k, v, heads, mask=None): + b, _, dim_head = q.shape + dim_head //= heads + scale = dim_head ** -0.5 + + h = heads + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, -1, heads, dim_head) + .permute(0, 2, 1, 3) + .reshape(b * heads, -1, dim_head) + .contiguous(), + (q, k, v), + ) + + # force cast to fp32 to avoid overflowing + if _ATTN_PRECISION =="fp32": + sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale + else: + sim = einsum('b i d, b j d -> b i j', q, k) * scale + + del q, k + + if mask is not None: + mask = rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + + out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v) + out = ( + out.unsqueeze(0) + .reshape(b, heads, -1, dim_head) + .permute(0, 2, 1, 3) + .reshape(b, -1, heads * dim_head) + ) + return (out, sim) + +def create_blur_map(x0, attn, sigma=3.0, threshold=1.0): + # reshape and GAP the attention map + _, hw1, hw2 = attn.shape + b, _, lh, lw = x0.shape + attn = attn.reshape(b, -1, hw1, hw2) + # Global Average Pool + mask = attn.mean(1, keepdim=False).sum(1, keepdim=False) > threshold + ratio = 2**(math.ceil(math.sqrt(lh * lw / hw1)) - 1).bit_length() + mid_shape = [math.ceil(lh / ratio), math.ceil(lw / ratio)] + + # Reshape + mask = ( + mask.reshape(b, *mid_shape) + .unsqueeze(1) + .type(attn.dtype) + ) + # Upsample + mask = F.interpolate(mask, (lh, lw)) + + blurred = gaussian_blur_2d(x0, kernel_size=9, sigma=sigma) + blurred = blurred * mask + x0 * (1 - mask) + return blurred + +def gaussian_blur_2d(img, kernel_size, sigma): + ksize_half = (kernel_size - 1) * 0.5 + + x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) + + pdf = torch.exp(-0.5 * (x / sigma).pow(2)) + + x_kernel = pdf / pdf.sum() + x_kernel = x_kernel.to(device=img.device, dtype=img.dtype) + + kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :]) + kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1]) + + padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2] + + img = F.pad(img, padding, mode="reflect") + img = F.conv2d(img, kernel2d, groups=img.shape[-3]) + return img + +class SelfAttentionGuidance: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "scale": ("FLOAT", {"default": 0.5, "min": -2.0, "max": 5.0, "step": 0.1}), + "blur_sigma": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 10.0, "step": 0.1}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "_for_testing" + + def patch(self, model, scale, blur_sigma): + m = model.clone() + + attn_scores = None + + # TODO: make this work properly with chunked batches + # currently, we can only save the attn from one UNet call + def attn_and_record(q, k, v, extra_options): + nonlocal attn_scores + # if uncond, save the attention scores + heads = extra_options["n_heads"] + cond_or_uncond = extra_options["cond_or_uncond"] + b = q.shape[0] // len(cond_or_uncond) + if 1 in cond_or_uncond: + uncond_index = cond_or_uncond.index(1) + # do the entire attention operation, but save the attention scores to attn_scores + (out, sim) = attention_basic_with_sim(q, k, v, heads=heads) + # when using a higher batch size, I BELIEVE the result batch dimension is [uc1, ... ucn, c1, ... cn] + n_slices = heads * b + attn_scores = sim[n_slices * uncond_index:n_slices * (uncond_index+1)] + return out + else: + return optimized_attention(q, k, v, heads=heads) + + def post_cfg_function(args): + nonlocal attn_scores + uncond_attn = attn_scores + + sag_scale = scale + sag_sigma = blur_sigma + sag_threshold = 1.0 + model = args["model"] + uncond_pred = args["uncond_denoised"] + uncond = args["uncond"] + cfg_result = args["denoised"] + sigma = args["sigma"] + model_options = args["model_options"] + x = args["input"] + if min(cfg_result.shape[2:]) <= 4: #skip when too small to add padding + return cfg_result + + # create the adversarially blurred image + degraded = create_blur_map(uncond_pred, uncond_attn, sag_sigma, sag_threshold) + degraded_noised = degraded + x - uncond_pred + # call into the UNet + (sag, _) = comfy.samplers.calc_cond_uncond_batch(model, uncond, None, degraded_noised, sigma, model_options) + return cfg_result + (degraded - sag) * sag_scale + + m.set_model_sampler_post_cfg_function(post_cfg_function, disable_cfg1_optimization=True) + + # from diffusers: + # unet.mid_block.attentions[0].transformer_blocks[0].attn1.patch + m.set_model_attn1_replace(attn_and_record, "middle", 0, 0) + + return (m, ) + +NODE_CLASS_MAPPINGS = { + "SelfAttentionGuidance": SelfAttentionGuidance, +} + +NODE_DISPLAY_NAME_MAPPINGS = { + "SelfAttentionGuidance": "Self-Attention Guidance", +} diff --git a/comfy_extras/nodes_sdupscale.py b/comfy_extras/nodes_sdupscale.py new file mode 100644 index 0000000000000000000000000000000000000000..28c1cb0f171e009585f180eef2120291ae0c9bef --- /dev/null +++ b/comfy_extras/nodes_sdupscale.py @@ -0,0 +1,47 @@ +import torch +import nodes +import comfy.utils + +class SD_4XUpscale_Conditioning: + @classmethod + def INPUT_TYPES(s): + return {"required": { "images": ("IMAGE",), + "positive": ("CONDITIONING",), + "negative": ("CONDITIONING",), + "scale_ratio": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 10.0, "step": 0.01}), + "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), + }} + RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") + RETURN_NAMES = ("positive", "negative", "latent") + + FUNCTION = "encode" + + CATEGORY = "conditioning/upscale_diffusion" + + def encode(self, images, positive, negative, scale_ratio, noise_augmentation): + width = max(1, round(images.shape[-2] * scale_ratio)) + height = max(1, round(images.shape[-3] * scale_ratio)) + + pixels = comfy.utils.common_upscale((images.movedim(-1,1) * 2.0) - 1.0, width // 4, height // 4, "bilinear", "center") + + out_cp = [] + out_cn = [] + + for t in positive: + n = [t[0], t[1].copy()] + n[1]['concat_image'] = pixels + n[1]['noise_augmentation'] = noise_augmentation + out_cp.append(n) + + for t in negative: + n = [t[0], t[1].copy()] + n[1]['concat_image'] = pixels + n[1]['noise_augmentation'] = noise_augmentation + out_cn.append(n) + + latent = torch.zeros([images.shape[0], 4, height // 4, width // 4]) + return (out_cp, out_cn, {"samples":latent}) + +NODE_CLASS_MAPPINGS = { + "SD_4XUpscale_Conditioning": SD_4XUpscale_Conditioning, +} diff --git a/comfy_extras/nodes_stable3d.py b/comfy_extras/nodes_stable3d.py new file mode 100644 index 0000000000000000000000000000000000000000..4375d8f960e776dfb019894f57749f9e5d625dec --- /dev/null +++ b/comfy_extras/nodes_stable3d.py @@ -0,0 +1,102 @@ +import torch +import nodes +import comfy.utils + +def camera_embeddings(elevation, azimuth): + elevation = torch.as_tensor([elevation]) + azimuth = torch.as_tensor([azimuth]) + embeddings = torch.stack( + [ + torch.deg2rad( + (90 - elevation) - (90) + ), # Zero123 polar is 90-elevation + torch.sin(torch.deg2rad(azimuth)), + torch.cos(torch.deg2rad(azimuth)), + torch.deg2rad( + 90 - torch.full_like(elevation, 0) + ), + ], dim=-1).unsqueeze(1) + + return embeddings + + +class StableZero123_Conditioning: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip_vision": ("CLIP_VISION",), + "init_image": ("IMAGE",), + "vae": ("VAE",), + "width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), + "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), + "elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), + "azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), + }} + RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") + RETURN_NAMES = ("positive", "negative", "latent") + + FUNCTION = "encode" + + CATEGORY = "conditioning/3d_models" + + def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth): + output = clip_vision.encode_image(init_image) + pooled = output.image_embeds.unsqueeze(0) + pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) + encode_pixels = pixels[:,:,:,:3] + t = vae.encode(encode_pixels) + cam_embeds = camera_embeddings(elevation, azimuth) + cond = torch.cat([pooled, cam_embeds.to(pooled.device).repeat((pooled.shape[0], 1, 1))], dim=-1) + + positive = [[cond, {"concat_latent_image": t}]] + negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]] + latent = torch.zeros([batch_size, 4, height // 8, width // 8]) + return (positive, negative, {"samples":latent}) + +class StableZero123_Conditioning_Batched: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip_vision": ("CLIP_VISION",), + "init_image": ("IMAGE",), + "vae": ("VAE",), + "width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), + "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), + "elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), + "azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), + "elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), + "azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}), + }} + RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") + RETURN_NAMES = ("positive", "negative", "latent") + + FUNCTION = "encode" + + CATEGORY = "conditioning/3d_models" + + def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth, elevation_batch_increment, azimuth_batch_increment): + output = clip_vision.encode_image(init_image) + pooled = output.image_embeds.unsqueeze(0) + pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) + encode_pixels = pixels[:,:,:,:3] + t = vae.encode(encode_pixels) + + cam_embeds = [] + for i in range(batch_size): + cam_embeds.append(camera_embeddings(elevation, azimuth)) + elevation += elevation_batch_increment + azimuth += azimuth_batch_increment + + cam_embeds = torch.cat(cam_embeds, dim=0) + cond = torch.cat([comfy.utils.repeat_to_batch_size(pooled, batch_size), cam_embeds], dim=-1) + + positive = [[cond, {"concat_latent_image": t}]] + negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]] + latent = torch.zeros([batch_size, 4, height // 8, width // 8]) + return (positive, negative, {"samples":latent, "batch_index": [0] * batch_size}) + + +NODE_CLASS_MAPPINGS = { + "StableZero123_Conditioning": StableZero123_Conditioning, + "StableZero123_Conditioning_Batched": StableZero123_Conditioning_Batched, +} diff --git a/comfy_extras/nodes_tomesd.py b/comfy_extras/nodes_tomesd.py new file mode 100644 index 0000000000000000000000000000000000000000..df0485063e68d3a38eac4755600748e096426231 --- /dev/null +++ b/comfy_extras/nodes_tomesd.py @@ -0,0 +1,177 @@ +#Taken from: https://github.com/dbolya/tomesd + +import torch +from typing import Tuple, Callable +import math + +def do_nothing(x: torch.Tensor, mode:str=None): + return x + + +def mps_gather_workaround(input, dim, index): + if input.shape[-1] == 1: + return torch.gather( + input.unsqueeze(-1), + dim - 1 if dim < 0 else dim, + index.unsqueeze(-1) + ).squeeze(-1) + else: + return torch.gather(input, dim, index) + + +def bipartite_soft_matching_random2d(metric: torch.Tensor, + w: int, h: int, sx: int, sy: int, r: int, + no_rand: bool = False) -> Tuple[Callable, Callable]: + """ + Partitions the tokens into src and dst and merges r tokens from src to dst. + Dst tokens are partitioned by choosing one randomy in each (sx, sy) region. + Args: + - metric [B, N, C]: metric to use for similarity + - w: image width in tokens + - h: image height in tokens + - sx: stride in the x dimension for dst, must divide w + - sy: stride in the y dimension for dst, must divide h + - r: number of tokens to remove (by merging) + - no_rand: if true, disable randomness (use top left corner only) + """ + B, N, _ = metric.shape + + if r <= 0 or w == 1 or h == 1: + return do_nothing, do_nothing + + gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather + + with torch.no_grad(): + + hsy, wsx = h // sy, w // sx + + # For each sy by sx kernel, randomly assign one token to be dst and the rest src + if no_rand: + rand_idx = torch.zeros(hsy, wsx, 1, device=metric.device, dtype=torch.int64) + else: + rand_idx = torch.randint(sy*sx, size=(hsy, wsx, 1), device=metric.device) + + # The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead + idx_buffer_view = torch.zeros(hsy, wsx, sy*sx, device=metric.device, dtype=torch.int64) + idx_buffer_view.scatter_(dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype)) + idx_buffer_view = idx_buffer_view.view(hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx) + + # Image is not divisible by sx or sy so we need to move it into a new buffer + if (hsy * sy) < h or (wsx * sx) < w: + idx_buffer = torch.zeros(h, w, device=metric.device, dtype=torch.int64) + idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view + else: + idx_buffer = idx_buffer_view + + # We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices + rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1) + + # We're finished with these + del idx_buffer, idx_buffer_view + + # rand_idx is currently dst|src, so split them + num_dst = hsy * wsx + a_idx = rand_idx[:, num_dst:, :] # src + b_idx = rand_idx[:, :num_dst, :] # dst + + def split(x): + C = x.shape[-1] + src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C)) + dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C)) + return src, dst + + # Cosine similarity between A and B + metric = metric / metric.norm(dim=-1, keepdim=True) + a, b = split(metric) + scores = a @ b.transpose(-1, -2) + + # Can't reduce more than the # tokens in src + r = min(a.shape[1], r) + + # Find the most similar greedily + node_max, node_idx = scores.max(dim=-1) + edge_idx = node_max.argsort(dim=-1, descending=True)[..., None] + + unm_idx = edge_idx[..., r:, :] # Unmerged Tokens + src_idx = edge_idx[..., :r, :] # Merged Tokens + dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) + + def merge(x: torch.Tensor, mode="mean") -> torch.Tensor: + src, dst = split(x) + n, t1, c = src.shape + + unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c)) + src = gather(src, dim=-2, index=src_idx.expand(n, r, c)) + dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode) + + return torch.cat([unm, dst], dim=1) + + def unmerge(x: torch.Tensor) -> torch.Tensor: + unm_len = unm_idx.shape[1] + unm, dst = x[..., :unm_len, :], x[..., unm_len:, :] + _, _, c = unm.shape + + src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c)) + + # Combine back to the original shape + out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype) + out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst) + out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm) + out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src) + + return out + + return merge, unmerge + + +def get_functions(x, ratio, original_shape): + b, c, original_h, original_w = original_shape + original_tokens = original_h * original_w + downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1]))) + stride_x = 2 + stride_y = 2 + max_downsample = 1 + + if downsample <= max_downsample: + w = int(math.ceil(original_w / downsample)) + h = int(math.ceil(original_h / downsample)) + r = int(x.shape[1] * ratio) + no_rand = False + m, u = bipartite_soft_matching_random2d(x, w, h, stride_x, stride_y, r, no_rand) + return m, u + + nothing = lambda y: y + return nothing, nothing + + + +class TomePatchModel: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "_for_testing" + + def patch(self, model, ratio): + self.u = None + def tomesd_m(q, k, v, extra_options): + #NOTE: In the reference code get_functions takes x (input of the transformer block) as the argument instead of q + #however from my basic testing it seems that using q instead gives better results + m, self.u = get_functions(q, ratio, extra_options["original_shape"]) + return m(q), k, v + def tomesd_u(n, extra_options): + return self.u(n) + + m = model.clone() + m.set_model_attn1_patch(tomesd_m) + m.set_model_attn1_output_patch(tomesd_u) + return (m, ) + + +NODE_CLASS_MAPPINGS = { + "TomePatchModel": TomePatchModel, +} diff --git a/comfy_extras/nodes_upscale_model.py b/comfy_extras/nodes_upscale_model.py new file mode 100644 index 0000000000000000000000000000000000000000..2b5e49a55c2ecd64efea3cab9d1751b25912d898 --- /dev/null +++ b/comfy_extras/nodes_upscale_model.py @@ -0,0 +1,66 @@ +import os +from comfy_extras.chainner_models import model_loading +from comfy import model_management +import torch +import comfy.utils +import folder_paths + +class UpscaleModelLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model_name": (folder_paths.get_filename_list("upscale_models"), ), + }} + RETURN_TYPES = ("UPSCALE_MODEL",) + FUNCTION = "load_model" + + CATEGORY = "loaders" + + def load_model(self, model_name): + model_path = folder_paths.get_full_path("upscale_models", model_name) + sd = comfy.utils.load_torch_file(model_path, safe_load=True) + if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd: + sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""}) + out = model_loading.load_state_dict(sd).eval() + return (out, ) + + +class ImageUpscaleWithModel: + @classmethod + def INPUT_TYPES(s): + return {"required": { "upscale_model": ("UPSCALE_MODEL",), + "image": ("IMAGE",), + }} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "upscale" + + CATEGORY = "image/upscaling" + + def upscale(self, upscale_model, image): + device = model_management.get_torch_device() + upscale_model.to(device) + in_img = image.movedim(-1,-3).to(device) + free_memory = model_management.get_free_memory(device) + + tile = 512 + overlap = 32 + + oom = True + while oom: + try: + steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) + pbar = comfy.utils.ProgressBar(steps) + s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) + oom = False + except model_management.OOM_EXCEPTION as e: + tile //= 2 + if tile < 128: + raise e + + upscale_model.cpu() + s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) + return (s,) + +NODE_CLASS_MAPPINGS = { + "UpscaleModelLoader": UpscaleModelLoader, + "ImageUpscaleWithModel": ImageUpscaleWithModel +} diff --git a/comfy_extras/nodes_video_model.py b/comfy_extras/nodes_video_model.py new file mode 100644 index 0000000000000000000000000000000000000000..a5262565282bba3ca4f3ab1db5554a810ca696ca --- /dev/null +++ b/comfy_extras/nodes_video_model.py @@ -0,0 +1,106 @@ +import nodes +import torch +import comfy.utils +import comfy.sd +import folder_paths +import comfy_extras.nodes_model_merging + + +class ImageOnlyCheckpointLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), + }} + RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE") + FUNCTION = "load_checkpoint" + + CATEGORY = "loaders/video_models" + + def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): + ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) + out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) + return (out[0], out[3], out[2]) + + +class SVD_img2vid_Conditioning: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip_vision": ("CLIP_VISION",), + "init_image": ("IMAGE",), + "vae": ("VAE",), + "width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), + "video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}), + "motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}), + "fps": ("INT", {"default": 6, "min": 1, "max": 1024}), + "augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}) + }} + RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") + RETURN_NAMES = ("positive", "negative", "latent") + + FUNCTION = "encode" + + CATEGORY = "conditioning/video_models" + + def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level): + output = clip_vision.encode_image(init_image) + pooled = output.image_embeds.unsqueeze(0) + pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) + encode_pixels = pixels[:,:,:,:3] + if augmentation_level > 0: + encode_pixels += torch.randn_like(pixels) * augmentation_level + t = vae.encode(encode_pixels) + positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]] + negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]] + latent = torch.zeros([video_frames, 4, height // 8, width // 8]) + return (positive, negative, {"samples":latent}) + +class VideoLinearCFGGuidance: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "sampling/video_models" + + def patch(self, model, min_cfg): + def linear_cfg(args): + cond = args["cond"] + uncond = args["uncond"] + cond_scale = args["cond_scale"] + + scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1)) + return uncond + scale * (cond - uncond) + + m = model.clone() + m.set_model_sampler_cfg_function(linear_cfg) + return (m, ) + +class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave): + CATEGORY = "_for_testing" + + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "clip_vision": ("CLIP_VISION",), + "vae": ("VAE",), + "filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),}, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},} + + def save(self, model, clip_vision, vae, filename_prefix, prompt=None, extra_pnginfo=None): + comfy_extras.nodes_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo) + return {} + +NODE_CLASS_MAPPINGS = { + "ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader, + "SVD_img2vid_Conditioning": SVD_img2vid_Conditioning, + "VideoLinearCFGGuidance": VideoLinearCFGGuidance, + "ImageOnlyCheckpointSave": ImageOnlyCheckpointSave, +} + +NODE_DISPLAY_NAME_MAPPINGS = { + "ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)", +} diff --git a/comfyui_screenshot.png b/comfyui_screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..73272eae69339f92c88422c45ad166cbc5900adf Binary files /dev/null and b/comfyui_screenshot.png differ diff --git a/cuda_malloc.py b/cuda_malloc.py new file mode 100644 index 0000000000000000000000000000000000000000..144cdacd3a423319f369e8080365a4aed6b388e7 --- /dev/null +++ b/cuda_malloc.py @@ -0,0 +1,84 @@ +import os +import importlib.util +from comfy.cli_args import args + +#Can't use pytorch to get the GPU names because the cuda malloc has to be set before the first import. +def get_gpu_names(): + if os.name == 'nt': + import ctypes + + # Define necessary C structures and types + class DISPLAY_DEVICEA(ctypes.Structure): + _fields_ = [ + ('cb', ctypes.c_ulong), + ('DeviceName', ctypes.c_char * 32), + ('DeviceString', ctypes.c_char * 128), + ('StateFlags', ctypes.c_ulong), + ('DeviceID', ctypes.c_char * 128), + ('DeviceKey', ctypes.c_char * 128) + ] + + # Load user32.dll + user32 = ctypes.windll.user32 + + # Call EnumDisplayDevicesA + def enum_display_devices(): + device_info = DISPLAY_DEVICEA() + device_info.cb = ctypes.sizeof(device_info) + device_index = 0 + gpu_names = set() + + while user32.EnumDisplayDevicesA(None, device_index, ctypes.byref(device_info), 0): + device_index += 1 + gpu_names.add(device_info.DeviceString.decode('utf-8')) + return gpu_names + return enum_display_devices() + else: + return set() + +blacklist = {"GeForce GTX TITAN X", "GeForce GTX 980", "GeForce GTX 970", "GeForce GTX 960", "GeForce GTX 950", "GeForce 945M", + "GeForce 940M", "GeForce 930M", "GeForce 920M", "GeForce 910M", "GeForce GTX 750", "GeForce GTX 745", "Quadro K620", + "Quadro K1200", "Quadro K2200", "Quadro M500", "Quadro M520", "Quadro M600", "Quadro M620", "Quadro M1000", + "Quadro M1200", "Quadro M2000", "Quadro M2200", "Quadro M3000", "Quadro M4000", "Quadro M5000", "Quadro M5500", "Quadro M6000", + "GeForce MX110", "GeForce MX130", "GeForce 830M", "GeForce 840M", "GeForce GTX 850M", "GeForce GTX 860M", + "GeForce GTX 1650", "GeForce GTX 1630" + } + +def cuda_malloc_supported(): + try: + names = get_gpu_names() + except: + names = set() + for x in names: + if "NVIDIA" in x: + for b in blacklist: + if b in x: + return False + return True + + +if not args.cuda_malloc: + try: + version = "" + torch_spec = importlib.util.find_spec("torch") + for folder in torch_spec.submodule_search_locations: + ver_file = os.path.join(folder, "version.py") + if os.path.isfile(ver_file): + spec = importlib.util.spec_from_file_location("torch_version_import", ver_file) + module = importlib.util.module_from_spec(spec) + spec.loader.exec_module(module) + version = module.__version__ + if int(version[0]) >= 2: #enable by default for torch version 2.0 and up + args.cuda_malloc = cuda_malloc_supported() + except: + pass + + +if args.cuda_malloc and not args.disable_cuda_malloc: + env_var = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', None) + if env_var is None: + env_var = "backend:cudaMallocAsync" + else: + env_var += ",backend:cudaMallocAsync" + + os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var diff --git a/custom_nodes/example_node.py.example b/custom_nodes/example_node.py.example new file mode 100644 index 0000000000000000000000000000000000000000..7ce271ec617b8a25d73efad07ab7da6ab2b94e86 --- /dev/null +++ b/custom_nodes/example_node.py.example @@ -0,0 +1,115 @@ +class Example: + """ + A example node + + Class methods + ------------- + INPUT_TYPES (dict): + Tell the main program input parameters of nodes. + IS_CHANGED: + optional method to control when the node is re executed. + + Attributes + ---------- + RETURN_TYPES (`tuple`): + The type of each element in the output tulple. + RETURN_NAMES (`tuple`): + Optional: The name of each output in the output tulple. + FUNCTION (`str`): + The name of the entry-point method. For example, if `FUNCTION = "execute"` then it will run Example().execute() + OUTPUT_NODE ([`bool`]): + If this node is an output node that outputs a result/image from the graph. The SaveImage node is an example. + The backend iterates on these output nodes and tries to execute all their parents if their parent graph is properly connected. + Assumed to be False if not present. + CATEGORY (`str`): + The category the node should appear in the UI. + execute(s) -> tuple || None: + The entry point method. The name of this method must be the same as the value of property `FUNCTION`. + For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`. + """ + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(s): + """ + Return a dictionary which contains config for all input fields. + Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT". + Input types "INT", "STRING" or "FLOAT" are special values for fields on the node. + The type can be a list for selection. + + Returns: `dict`: + - Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required` + - Value input_fields (`dict`): Contains input fields config: + * Key field_name (`string`): Name of a entry-point method's argument + * Value field_config (`tuple`): + + First value is a string indicate the type of field or a list for selection. + + Secound value is a config for type "INT", "STRING" or "FLOAT". + """ + return { + "required": { + "image": ("IMAGE",), + "int_field": ("INT", { + "default": 0, + "min": 0, #Minimum value + "max": 4096, #Maximum value + "step": 64, #Slider's step + "display": "number" # Cosmetic only: display as "number" or "slider" + }), + "float_field": ("FLOAT", { + "default": 1.0, + "min": 0.0, + "max": 10.0, + "step": 0.01, + "round": 0.001, #The value represeting the precision to round to, will be set to the step value by default. Can be set to False to disable rounding. + "display": "number"}), + "print_to_screen": (["enable", "disable"],), + "string_field": ("STRING", { + "multiline": False, #True if you want the field to look like the one on the ClipTextEncode node + "default": "Hello World!" + }), + }, + } + + RETURN_TYPES = ("IMAGE",) + #RETURN_NAMES = ("image_output_name",) + + FUNCTION = "test" + + #OUTPUT_NODE = False + + CATEGORY = "Example" + + def test(self, image, string_field, int_field, float_field, print_to_screen): + if print_to_screen == "enable": + print(f"""Your input contains: + string_field aka input text: {string_field} + int_field: {int_field} + float_field: {float_field} + """) + #do some processing on the image, in this example I just invert it + image = 1.0 - image + return (image,) + + """ + The node will always be re executed if any of the inputs change but + this method can be used to force the node to execute again even when the inputs don't change. + You can make this node return a number or a string. This value will be compared to the one returned the last time the node was + executed, if it is different the node will be executed again. + This method is used in the core repo for the LoadImage node where they return the image hash as a string, if the image hash + changes between executions the LoadImage node is executed again. + """ + #@classmethod + #def IS_CHANGED(s, image, string_field, int_field, float_field, print_to_screen): + # return "" + +# A dictionary that contains all nodes you want to export with their names +# NOTE: names should be globally unique +NODE_CLASS_MAPPINGS = { + "Example": Example +} + +# A dictionary that contains the friendly/humanly readable titles for the nodes +NODE_DISPLAY_NAME_MAPPINGS = { + "Example": "Example Node" +} diff --git a/execution.py b/execution.py new file mode 100644 index 0000000000000000000000000000000000000000..00908eadd46bfbde8586784c5c5268fad3e9d2f0 --- /dev/null +++ b/execution.py @@ -0,0 +1,830 @@ +import sys +import copy +import logging +import threading +import heapq +import traceback +import inspect +from typing import List, Literal, NamedTuple, Optional + +import torch +import nodes + +import comfy.model_management + +def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_data={}): + valid_inputs = class_def.INPUT_TYPES() + input_data_all = {} + for x in inputs: + input_data = inputs[x] + if isinstance(input_data, list): + input_unique_id = input_data[0] + output_index = input_data[1] + if input_unique_id not in outputs: + input_data_all[x] = (None,) + continue + obj = outputs[input_unique_id][output_index] + input_data_all[x] = obj + else: + if ("required" in valid_inputs and x in valid_inputs["required"]) or ("optional" in valid_inputs and x in valid_inputs["optional"]): + input_data_all[x] = [input_data] + + if "hidden" in valid_inputs: + h = valid_inputs["hidden"] + for x in h: + if h[x] == "PROMPT": + input_data_all[x] = [prompt] + if h[x] == "EXTRA_PNGINFO": + if "extra_pnginfo" in extra_data: + input_data_all[x] = [extra_data['extra_pnginfo']] + if h[x] == "UNIQUE_ID": + input_data_all[x] = [unique_id] + return input_data_all + +def map_node_over_list(obj, input_data_all, func, allow_interrupt=False): + # check if node wants the lists + input_is_list = False + if hasattr(obj, "INPUT_IS_LIST"): + input_is_list = obj.INPUT_IS_LIST + + if len(input_data_all) == 0: + max_len_input = 0 + else: + max_len_input = max([len(x) for x in input_data_all.values()]) + + # get a slice of inputs, repeat last input when list isn't long enough + def slice_dict(d, i): + d_new = dict() + for k,v in d.items(): + d_new[k] = v[i if len(v) > i else -1] + return d_new + + results = [] + if input_is_list: + if allow_interrupt: + nodes.before_node_execution() + results.append(getattr(obj, func)(**input_data_all)) + elif max_len_input == 0: + if allow_interrupt: + nodes.before_node_execution() + results.append(getattr(obj, func)()) + else: + for i in range(max_len_input): + if allow_interrupt: + nodes.before_node_execution() + results.append(getattr(obj, func)(**slice_dict(input_data_all, i))) + return results + +def get_output_data(obj, input_data_all): + + results = [] + uis = [] + return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True) + + for r in return_values: + if isinstance(r, dict): + if 'ui' in r: + uis.append(r['ui']) + if 'result' in r: + results.append(r['result']) + else: + results.append(r) + + output = [] + if len(results) > 0: + # check which outputs need concatenating + output_is_list = [False] * len(results[0]) + if hasattr(obj, "OUTPUT_IS_LIST"): + output_is_list = obj.OUTPUT_IS_LIST + + # merge node execution results + for i, is_list in zip(range(len(results[0])), output_is_list): + if is_list: + output.append([x for o in results for x in o[i]]) + else: + output.append([o[i] for o in results]) + + ui = dict() + if len(uis) > 0: + ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()} + return output, ui + +def format_value(x): + if x is None: + return None + elif isinstance(x, (int, float, bool, str)): + return x + else: + return str(x) + +def recursive_execute(server, prompt, outputs, current_item, extra_data, executed, prompt_id, outputs_ui, object_storage): + unique_id = current_item + inputs = prompt[unique_id]['inputs'] + class_type = prompt[unique_id]['class_type'] + class_def = nodes.NODE_CLASS_MAPPINGS[class_type] + if unique_id in outputs: + return (True, None, None) + + for x in inputs: + input_data = inputs[x] + + if isinstance(input_data, list): + input_unique_id = input_data[0] + output_index = input_data[1] + if input_unique_id not in outputs: + result = recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed, prompt_id, outputs_ui, object_storage) + if result[0] is not True: + # Another node failed further upstream + return result + + input_data_all = None + try: + input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data) + if server.client_id is not None: + server.last_node_id = unique_id + server.send_sync("executing", { "node": unique_id, "prompt_id": prompt_id }, server.client_id) + + obj = object_storage.get((unique_id, class_type), None) + if obj is None: + obj = class_def() + object_storage[(unique_id, class_type)] = obj + + output_data, output_ui = get_output_data(obj, input_data_all) + outputs[unique_id] = output_data + if len(output_ui) > 0: + outputs_ui[unique_id] = output_ui + if server.client_id is not None: + server.send_sync("executed", { "node": unique_id, "output": output_ui, "prompt_id": prompt_id }, server.client_id) + except comfy.model_management.InterruptProcessingException as iex: + logging.info("Processing interrupted") + + # skip formatting inputs/outputs + error_details = { + "node_id": unique_id, + } + + return (False, error_details, iex) + except Exception as ex: + typ, _, tb = sys.exc_info() + exception_type = full_type_name(typ) + input_data_formatted = {} + if input_data_all is not None: + input_data_formatted = {} + for name, inputs in input_data_all.items(): + input_data_formatted[name] = [format_value(x) for x in inputs] + + output_data_formatted = {} + for node_id, node_outputs in outputs.items(): + output_data_formatted[node_id] = [[format_value(x) for x in l] for l in node_outputs] + + logging.error("!!! Exception during processing !!!") + logging.error(traceback.format_exc()) + + error_details = { + "node_id": unique_id, + "exception_message": str(ex), + "exception_type": exception_type, + "traceback": traceback.format_tb(tb), + "current_inputs": input_data_formatted, + "current_outputs": output_data_formatted + } + return (False, error_details, ex) + + executed.add(unique_id) + + return (True, None, None) + +def recursive_will_execute(prompt, outputs, current_item): + unique_id = current_item + inputs = prompt[unique_id]['inputs'] + will_execute = [] + if unique_id in outputs: + return [] + + for x in inputs: + input_data = inputs[x] + if isinstance(input_data, list): + input_unique_id = input_data[0] + output_index = input_data[1] + if input_unique_id not in outputs: + will_execute += recursive_will_execute(prompt, outputs, input_unique_id) + + return will_execute + [unique_id] + +def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item): + unique_id = current_item + inputs = prompt[unique_id]['inputs'] + class_type = prompt[unique_id]['class_type'] + class_def = nodes.NODE_CLASS_MAPPINGS[class_type] + + is_changed_old = '' + is_changed = '' + to_delete = False + if hasattr(class_def, 'IS_CHANGED'): + if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]: + is_changed_old = old_prompt[unique_id]['is_changed'] + if 'is_changed' not in prompt[unique_id]: + input_data_all = get_input_data(inputs, class_def, unique_id, outputs) + if input_data_all is not None: + try: + #is_changed = class_def.IS_CHANGED(**input_data_all) + is_changed = map_node_over_list(class_def, input_data_all, "IS_CHANGED") + prompt[unique_id]['is_changed'] = is_changed + except: + to_delete = True + else: + is_changed = prompt[unique_id]['is_changed'] + + if unique_id not in outputs: + return True + + if not to_delete: + if is_changed != is_changed_old: + to_delete = True + elif unique_id not in old_prompt: + to_delete = True + elif inputs == old_prompt[unique_id]['inputs']: + for x in inputs: + input_data = inputs[x] + + if isinstance(input_data, list): + input_unique_id = input_data[0] + output_index = input_data[1] + if input_unique_id in outputs: + to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id) + else: + to_delete = True + if to_delete: + break + else: + to_delete = True + + if to_delete: + d = outputs.pop(unique_id) + del d + return to_delete + +class PromptExecutor: + def __init__(self, server): + self.server = server + self.reset() + + def reset(self): + self.outputs = {} + self.object_storage = {} + self.outputs_ui = {} + self.status_messages = [] + self.success = True + self.old_prompt = {} + + def add_message(self, event, data, broadcast: bool): + self.status_messages.append((event, data)) + if self.server.client_id is not None or broadcast: + self.server.send_sync(event, data, self.server.client_id) + + def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex): + node_id = error["node_id"] + class_type = prompt[node_id]["class_type"] + + # First, send back the status to the frontend depending + # on the exception type + if isinstance(ex, comfy.model_management.InterruptProcessingException): + mes = { + "prompt_id": prompt_id, + "node_id": node_id, + "node_type": class_type, + "executed": list(executed), + } + self.add_message("execution_interrupted", mes, broadcast=True) + else: + mes = { + "prompt_id": prompt_id, + "node_id": node_id, + "node_type": class_type, + "executed": list(executed), + + "exception_message": error["exception_message"], + "exception_type": error["exception_type"], + "traceback": error["traceback"], + "current_inputs": error["current_inputs"], + "current_outputs": error["current_outputs"], + } + self.add_message("execution_error", mes, broadcast=False) + + # Next, remove the subsequent outputs since they will not be executed + to_delete = [] + for o in self.outputs: + if (o not in current_outputs) and (o not in executed): + to_delete += [o] + if o in self.old_prompt: + d = self.old_prompt.pop(o) + del d + for o in to_delete: + d = self.outputs.pop(o) + del d + + def execute(self, prompt, prompt_id, extra_data={}, execute_outputs=[]): + nodes.interrupt_processing(False) + + if "client_id" in extra_data: + self.server.client_id = extra_data["client_id"] + else: + self.server.client_id = None + + self.status_messages = [] + self.add_message("execution_start", { "prompt_id": prompt_id}, broadcast=False) + + with torch.inference_mode(): + #delete cached outputs if nodes don't exist for them + to_delete = [] + for o in self.outputs: + if o not in prompt: + to_delete += [o] + for o in to_delete: + d = self.outputs.pop(o) + del d + to_delete = [] + for o in self.object_storage: + if o[0] not in prompt: + to_delete += [o] + else: + p = prompt[o[0]] + if o[1] != p['class_type']: + to_delete += [o] + for o in to_delete: + d = self.object_storage.pop(o) + del d + + for x in prompt: + recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x) + + current_outputs = set(self.outputs.keys()) + for x in list(self.outputs_ui.keys()): + if x not in current_outputs: + d = self.outputs_ui.pop(x) + del d + + comfy.model_management.cleanup_models() + self.add_message("execution_cached", + { "nodes": list(current_outputs) , "prompt_id": prompt_id}, + broadcast=False) + executed = set() + output_node_id = None + to_execute = [] + + for node_id in list(execute_outputs): + to_execute += [(0, node_id)] + + while len(to_execute) > 0: + #always execute the output that depends on the least amount of unexecuted nodes first + to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute))) + output_node_id = to_execute.pop(0)[-1] + + # This call shouldn't raise anything if there's an error deep in + # the actual SD code, instead it will report the node where the + # error was raised + self.success, error, ex = recursive_execute(self.server, prompt, self.outputs, output_node_id, extra_data, executed, prompt_id, self.outputs_ui, self.object_storage) + if self.success is not True: + self.handle_execution_error(prompt_id, prompt, current_outputs, executed, error, ex) + break + + for x in executed: + self.old_prompt[x] = copy.deepcopy(prompt[x]) + self.server.last_node_id = None + if comfy.model_management.DISABLE_SMART_MEMORY: + comfy.model_management.unload_all_models() + + + +def validate_inputs(prompt, item, validated): + unique_id = item + if unique_id in validated: + return validated[unique_id] + + inputs = prompt[unique_id]['inputs'] + class_type = prompt[unique_id]['class_type'] + obj_class = nodes.NODE_CLASS_MAPPINGS[class_type] + + class_inputs = obj_class.INPUT_TYPES() + required_inputs = class_inputs['required'] + + errors = [] + valid = True + + validate_function_inputs = [] + if hasattr(obj_class, "VALIDATE_INPUTS"): + validate_function_inputs = inspect.getfullargspec(obj_class.VALIDATE_INPUTS).args + + for x in required_inputs: + if x not in inputs: + error = { + "type": "required_input_missing", + "message": "Required input is missing", + "details": f"{x}", + "extra_info": { + "input_name": x + } + } + errors.append(error) + continue + + val = inputs[x] + info = required_inputs[x] + type_input = info[0] + if isinstance(val, list): + if len(val) != 2: + error = { + "type": "bad_linked_input", + "message": "Bad linked input, must be a length-2 list of [node_id, slot_index]", + "details": f"{x}", + "extra_info": { + "input_name": x, + "input_config": info, + "received_value": val + } + } + errors.append(error) + continue + + o_id = val[0] + o_class_type = prompt[o_id]['class_type'] + r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES + if r[val[1]] != type_input: + received_type = r[val[1]] + details = f"{x}, {received_type} != {type_input}" + error = { + "type": "return_type_mismatch", + "message": "Return type mismatch between linked nodes", + "details": details, + "extra_info": { + "input_name": x, + "input_config": info, + "received_type": received_type, + "linked_node": val + } + } + errors.append(error) + continue + try: + r = validate_inputs(prompt, o_id, validated) + if r[0] is False: + # `r` will be set in `validated[o_id]` already + valid = False + continue + except Exception as ex: + typ, _, tb = sys.exc_info() + valid = False + exception_type = full_type_name(typ) + reasons = [{ + "type": "exception_during_inner_validation", + "message": "Exception when validating inner node", + "details": str(ex), + "extra_info": { + "input_name": x, + "input_config": info, + "exception_message": str(ex), + "exception_type": exception_type, + "traceback": traceback.format_tb(tb), + "linked_node": val + } + }] + validated[o_id] = (False, reasons, o_id) + continue + else: + try: + if type_input == "INT": + val = int(val) + inputs[x] = val + if type_input == "FLOAT": + val = float(val) + inputs[x] = val + if type_input == "STRING": + val = str(val) + inputs[x] = val + except Exception as ex: + error = { + "type": "invalid_input_type", + "message": f"Failed to convert an input value to a {type_input} value", + "details": f"{x}, {val}, {ex}", + "extra_info": { + "input_name": x, + "input_config": info, + "received_value": val, + "exception_message": str(ex) + } + } + errors.append(error) + continue + + if len(info) > 1: + if "min" in info[1] and val < info[1]["min"]: + error = { + "type": "value_smaller_than_min", + "message": "Value {} smaller than min of {}".format(val, info[1]["min"]), + "details": f"{x}", + "extra_info": { + "input_name": x, + "input_config": info, + "received_value": val, + } + } + errors.append(error) + continue + if "max" in info[1] and val > info[1]["max"]: + error = { + "type": "value_bigger_than_max", + "message": "Value {} bigger than max of {}".format(val, info[1]["max"]), + "details": f"{x}", + "extra_info": { + "input_name": x, + "input_config": info, + "received_value": val, + } + } + errors.append(error) + continue + + if x not in validate_function_inputs: + if isinstance(type_input, list): + if val not in type_input: + input_config = info + list_info = "" + + # Don't send back gigantic lists like if they're lots of + # scanned model filepaths + if len(type_input) > 20: + list_info = f"(list of length {len(type_input)})" + input_config = None + else: + list_info = str(type_input) + + error = { + "type": "value_not_in_list", + "message": "Value not in list", + "details": f"{x}: '{val}' not in {list_info}", + "extra_info": { + "input_name": x, + "input_config": input_config, + "received_value": val, + } + } + errors.append(error) + continue + + if len(validate_function_inputs) > 0: + input_data_all = get_input_data(inputs, obj_class, unique_id) + input_filtered = {} + for x in input_data_all: + if x in validate_function_inputs: + input_filtered[x] = input_data_all[x] + + #ret = obj_class.VALIDATE_INPUTS(**input_filtered) + ret = map_node_over_list(obj_class, input_filtered, "VALIDATE_INPUTS") + for x in input_filtered: + for i, r in enumerate(ret): + if r is not True: + details = f"{x}" + if r is not False: + details += f" - {str(r)}" + + error = { + "type": "custom_validation_failed", + "message": "Custom validation failed for node", + "details": details, + "extra_info": { + "input_name": x, + "input_config": info, + "received_value": val, + } + } + errors.append(error) + continue + + if len(errors) > 0 or valid is not True: + ret = (False, errors, unique_id) + else: + ret = (True, [], unique_id) + + validated[unique_id] = ret + return ret + +def full_type_name(klass): + module = klass.__module__ + if module == 'builtins': + return klass.__qualname__ + return module + '.' + klass.__qualname__ + +def validate_prompt(prompt): + outputs = set() + for x in prompt: + class_ = nodes.NODE_CLASS_MAPPINGS[prompt[x]['class_type']] + if hasattr(class_, 'OUTPUT_NODE') and class_.OUTPUT_NODE == True: + outputs.add(x) + + if len(outputs) == 0: + error = { + "type": "prompt_no_outputs", + "message": "Prompt has no outputs", + "details": "", + "extra_info": {} + } + return (False, error, [], []) + + good_outputs = set() + errors = [] + node_errors = {} + validated = {} + for o in outputs: + valid = False + reasons = [] + try: + m = validate_inputs(prompt, o, validated) + valid = m[0] + reasons = m[1] + except Exception as ex: + typ, _, tb = sys.exc_info() + valid = False + exception_type = full_type_name(typ) + reasons = [{ + "type": "exception_during_validation", + "message": "Exception when validating node", + "details": str(ex), + "extra_info": { + "exception_type": exception_type, + "traceback": traceback.format_tb(tb) + } + }] + validated[o] = (False, reasons, o) + + if valid is True: + good_outputs.add(o) + else: + logging.error(f"Failed to validate prompt for output {o}:") + if len(reasons) > 0: + logging.error("* (prompt):") + for reason in reasons: + logging.error(f" - {reason['message']}: {reason['details']}") + errors += [(o, reasons)] + for node_id, result in validated.items(): + valid = result[0] + reasons = result[1] + # If a node upstream has errors, the nodes downstream will also + # be reported as invalid, but there will be no errors attached. + # So don't return those nodes as having errors in the response. + if valid is not True and len(reasons) > 0: + if node_id not in node_errors: + class_type = prompt[node_id]['class_type'] + node_errors[node_id] = { + "errors": reasons, + "dependent_outputs": [], + "class_type": class_type + } + logging.error(f"* {class_type} {node_id}:") + for reason in reasons: + logging.error(f" - {reason['message']}: {reason['details']}") + node_errors[node_id]["dependent_outputs"].append(o) + logging.error("Output will be ignored") + + if len(good_outputs) == 0: + errors_list = [] + for o, errors in errors: + for error in errors: + errors_list.append(f"{error['message']}: {error['details']}") + errors_list = "\n".join(errors_list) + + error = { + "type": "prompt_outputs_failed_validation", + "message": "Prompt outputs failed validation", + "details": errors_list, + "extra_info": {} + } + + return (False, error, list(good_outputs), node_errors) + + return (True, None, list(good_outputs), node_errors) + +MAXIMUM_HISTORY_SIZE = 10000 + +class PromptQueue: + def __init__(self, server): + self.server = server + self.mutex = threading.RLock() + self.not_empty = threading.Condition(self.mutex) + self.task_counter = 0 + self.queue = [] + self.currently_running = {} + self.history = {} + self.flags = {} + server.prompt_queue = self + + def put(self, item): + with self.mutex: + heapq.heappush(self.queue, item) + self.server.queue_updated() + self.not_empty.notify() + + def get(self, timeout=None): + with self.not_empty: + while len(self.queue) == 0: + self.not_empty.wait(timeout=timeout) + if timeout is not None and len(self.queue) == 0: + return None + item = heapq.heappop(self.queue) + i = self.task_counter + self.currently_running[i] = copy.deepcopy(item) + self.task_counter += 1 + self.server.queue_updated() + return (item, i) + + class ExecutionStatus(NamedTuple): + status_str: Literal['success', 'error'] + completed: bool + messages: List[str] + + def task_done(self, item_id, outputs, + status: Optional['PromptQueue.ExecutionStatus']): + with self.mutex: + prompt = self.currently_running.pop(item_id) + if len(self.history) > MAXIMUM_HISTORY_SIZE: + self.history.pop(next(iter(self.history))) + + status_dict: Optional[dict] = None + if status is not None: + status_dict = copy.deepcopy(status._asdict()) + + self.history[prompt[1]] = { + "prompt": prompt, + "outputs": copy.deepcopy(outputs), + 'status': status_dict, + } + self.server.queue_updated() + + def get_current_queue(self): + with self.mutex: + out = [] + for x in self.currently_running.values(): + out += [x] + return (out, copy.deepcopy(self.queue)) + + def get_tasks_remaining(self): + with self.mutex: + return len(self.queue) + len(self.currently_running) + + def wipe_queue(self): + with self.mutex: + self.queue = [] + self.server.queue_updated() + + def delete_queue_item(self, function): + with self.mutex: + for x in range(len(self.queue)): + if function(self.queue[x]): + if len(self.queue) == 1: + self.wipe_queue() + else: + self.queue.pop(x) + heapq.heapify(self.queue) + self.server.queue_updated() + return True + return False + + def get_history(self, prompt_id=None, max_items=None, offset=-1): + with self.mutex: + if prompt_id is None: + out = {} + i = 0 + if offset < 0 and max_items is not None: + offset = len(self.history) - max_items + for k in self.history: + if i >= offset: + out[k] = self.history[k] + if max_items is not None and len(out) >= max_items: + break + i += 1 + return out + elif prompt_id in self.history: + return {prompt_id: copy.deepcopy(self.history[prompt_id])} + else: + return {} + + def wipe_history(self): + with self.mutex: + self.history = {} + + def delete_history_item(self, id_to_delete): + with self.mutex: + self.history.pop(id_to_delete, None) + + def set_flag(self, name, data): + with self.mutex: + self.flags[name] = data + self.not_empty.notify() + + def get_flags(self, reset=True): + with self.mutex: + if reset: + ret = self.flags + self.flags = {} + return ret + else: + return self.flags.copy() diff --git a/extra_model_paths.yaml.example b/extra_model_paths.yaml.example new file mode 100644 index 0000000000000000000000000000000000000000..846d04dbeb43b00bdb08ccb37680eda41beb343e --- /dev/null +++ b/extra_model_paths.yaml.example @@ -0,0 +1,42 @@ +#Rename this to extra_model_paths.yaml and ComfyUI will load it + + +#config for a1111 ui +#all you have to do is change the base_path to where yours is installed +a111: + base_path: path/to/stable-diffusion-webui/ + + checkpoints: models/Stable-diffusion + configs: models/Stable-diffusion + vae: models/VAE + loras: | + models/Lora + models/LyCORIS + upscale_models: | + models/ESRGAN + models/RealESRGAN + models/SwinIR + embeddings: embeddings + hypernetworks: models/hypernetworks + controlnet: models/ControlNet + +#config for comfyui +#your base path should be either an existing comfy install or a central folder where you store all of your models, loras, etc. + +#comfyui: +# base_path: path/to/comfyui/ +# checkpoints: models/checkpoints/ +# clip: models/clip/ +# clip_vision: models/clip_vision/ +# configs: models/configs/ +# controlnet: models/controlnet/ +# embeddings: models/embeddings/ +# loras: models/loras/ +# upscale_models: models/upscale_models/ +# vae: models/vae/ + +#other_ui: +# base_path: path/to/ui +# checkpoints: models/checkpoints +# gligen: models/gligen +# custom_nodes: path/custom_nodes diff --git a/folder_paths.py b/folder_paths.py new file mode 100644 index 0000000000000000000000000000000000000000..f1bf40f8c0435d3eb2ee085550a1cc6ad5aa46f8 --- /dev/null +++ b/folder_paths.py @@ -0,0 +1,262 @@ +import os +import time + +supported_pt_extensions = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors']) + +folder_names_and_paths = {} + +base_path = os.path.dirname(os.path.realpath(__file__)) +models_dir = os.path.join(base_path, "models") +folder_names_and_paths["checkpoints"] = ([os.path.join(models_dir, "checkpoints")], supported_pt_extensions) +folder_names_and_paths["configs"] = ([os.path.join(models_dir, "configs")], [".yaml"]) + +folder_names_and_paths["loras"] = ([os.path.join(models_dir, "loras")], supported_pt_extensions) +folder_names_and_paths["vae"] = ([os.path.join(models_dir, "vae")], supported_pt_extensions) +folder_names_and_paths["clip"] = ([os.path.join(models_dir, "clip")], supported_pt_extensions) +folder_names_and_paths["unet"] = ([os.path.join(models_dir, "unet")], supported_pt_extensions) +folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision")], supported_pt_extensions) +folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions) +folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions) +folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"]) +folder_names_and_paths["vae_approx"] = ([os.path.join(models_dir, "vae_approx")], supported_pt_extensions) + +folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions) +folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions) + +folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions) + +folder_names_and_paths["custom_nodes"] = ([os.path.join(base_path, "custom_nodes")], []) + +folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions) + +folder_names_and_paths["photomaker"] = ([os.path.join(models_dir, "photomaker")], supported_pt_extensions) + +folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""}) + +output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output") +temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp") +input_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input") +user_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "user") + +filename_list_cache = {} + +if not os.path.exists(input_directory): + try: + os.makedirs(input_directory) + except: + print("Failed to create input directory") + +def set_output_directory(output_dir): + global output_directory + output_directory = output_dir + +def set_temp_directory(temp_dir): + global temp_directory + temp_directory = temp_dir + +def set_input_directory(input_dir): + global input_directory + input_directory = input_dir + +def get_output_directory(): + global output_directory + return output_directory + +def get_temp_directory(): + global temp_directory + return temp_directory + +def get_input_directory(): + global input_directory + return input_directory + + +#NOTE: used in http server so don't put folders that should not be accessed remotely +def get_directory_by_type(type_name): + if type_name == "output": + return get_output_directory() + if type_name == "temp": + return get_temp_directory() + if type_name == "input": + return get_input_directory() + return None + + +# determine base_dir rely on annotation if name is 'filename.ext [annotation]' format +# otherwise use default_path as base_dir +def annotated_filepath(name): + if name.endswith("[output]"): + base_dir = get_output_directory() + name = name[:-9] + elif name.endswith("[input]"): + base_dir = get_input_directory() + name = name[:-8] + elif name.endswith("[temp]"): + base_dir = get_temp_directory() + name = name[:-7] + else: + return name, None + + return name, base_dir + + +def get_annotated_filepath(name, default_dir=None): + name, base_dir = annotated_filepath(name) + + if base_dir is None: + if default_dir is not None: + base_dir = default_dir + else: + base_dir = get_input_directory() # fallback path + + return os.path.join(base_dir, name) + + +def exists_annotated_filepath(name): + name, base_dir = annotated_filepath(name) + + if base_dir is None: + base_dir = get_input_directory() # fallback path + + filepath = os.path.join(base_dir, name) + return os.path.exists(filepath) + + +def add_model_folder_path(folder_name, full_folder_path): + global folder_names_and_paths + if folder_name in folder_names_and_paths: + folder_names_and_paths[folder_name][0].append(full_folder_path) + else: + folder_names_and_paths[folder_name] = ([full_folder_path], set()) + +def get_folder_paths(folder_name): + return folder_names_and_paths[folder_name][0][:] + +def recursive_search(directory, excluded_dir_names=None): + if not os.path.isdir(directory): + return [], {} + + if excluded_dir_names is None: + excluded_dir_names = [] + + result = [] + dirs = {} + + # Attempt to add the initial directory to dirs with error handling + try: + dirs[directory] = os.path.getmtime(directory) + except FileNotFoundError: + print(f"Warning: Unable to access {directory}. Skipping this path.") + + for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True): + subdirs[:] = [d for d in subdirs if d not in excluded_dir_names] + for file_name in filenames: + relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory) + result.append(relative_path) + + for d in subdirs: + path = os.path.join(dirpath, d) + try: + dirs[path] = os.path.getmtime(path) + except FileNotFoundError: + print(f"Warning: Unable to access {path}. Skipping this path.") + continue + return result, dirs + +def filter_files_extensions(files, extensions): + return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions or len(extensions) == 0, files))) + + + +def get_full_path(folder_name, filename): + global folder_names_and_paths + if folder_name not in folder_names_and_paths: + return None + folders = folder_names_and_paths[folder_name] + filename = os.path.relpath(os.path.join("/", filename), "/") + for x in folders[0]: + full_path = os.path.join(x, filename) + if os.path.isfile(full_path): + return full_path + + return None + +def get_filename_list_(folder_name): + global folder_names_and_paths + output_list = set() + folders = folder_names_and_paths[folder_name] + output_folders = {} + for x in folders[0]: + files, folders_all = recursive_search(x, excluded_dir_names=[".git"]) + output_list.update(filter_files_extensions(files, folders[1])) + output_folders = {**output_folders, **folders_all} + + return (sorted(list(output_list)), output_folders, time.perf_counter()) + +def cached_filename_list_(folder_name): + global filename_list_cache + global folder_names_and_paths + if folder_name not in filename_list_cache: + return None + out = filename_list_cache[folder_name] + + for x in out[1]: + time_modified = out[1][x] + folder = x + if os.path.getmtime(folder) != time_modified: + return None + + folders = folder_names_and_paths[folder_name] + for x in folders[0]: + if os.path.isdir(x): + if x not in out[1]: + return None + + return out + +def get_filename_list(folder_name): + out = cached_filename_list_(folder_name) + if out is None: + out = get_filename_list_(folder_name) + global filename_list_cache + filename_list_cache[folder_name] = out + return list(out[0]) + +def get_save_image_path(filename_prefix, output_dir, image_width=0, image_height=0): + def map_filename(filename): + prefix_len = len(os.path.basename(filename_prefix)) + prefix = filename[:prefix_len + 1] + try: + digits = int(filename[prefix_len + 1:].split('_')[0]) + except: + digits = 0 + return (digits, prefix) + + def compute_vars(input, image_width, image_height): + input = input.replace("%width%", str(image_width)) + input = input.replace("%height%", str(image_height)) + return input + + filename_prefix = compute_vars(filename_prefix, image_width, image_height) + + subfolder = os.path.dirname(os.path.normpath(filename_prefix)) + filename = os.path.basename(os.path.normpath(filename_prefix)) + + full_output_folder = os.path.join(output_dir, subfolder) + + if os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) != output_dir: + err = "**** ERROR: Saving image outside the output folder is not allowed." + \ + "\n full_output_folder: " + os.path.abspath(full_output_folder) + \ + "\n output_dir: " + output_dir + \ + "\n commonpath: " + os.path.commonpath((output_dir, os.path.abspath(full_output_folder))) + print(err) + raise Exception(err) + + try: + counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1 + except ValueError: + counter = 1 + except FileNotFoundError: + os.makedirs(full_output_folder, exist_ok=True) + counter = 1 + return full_output_folder, filename, counter, subfolder, filename_prefix diff --git a/input/example.png b/input/example.png new file mode 100644 index 0000000000000000000000000000000000000000..7b7f3c9cbbe6d8750c4a9eaf65d6ae4d2f108f79 Binary files /dev/null and b/input/example.png differ diff --git a/latent_preview.py b/latent_preview.py new file mode 100644 index 0000000000000000000000000000000000000000..61754751efee96fb25c18b19ff2032a875ca221a --- /dev/null +++ b/latent_preview.py @@ -0,0 +1,97 @@ +import torch +from PIL import Image +import struct +import numpy as np +from comfy.cli_args import args, LatentPreviewMethod +from comfy.taesd.taesd import TAESD +import folder_paths +import comfy.utils + +MAX_PREVIEW_RESOLUTION = 512 + +class LatentPreviewer: + def decode_latent_to_preview(self, x0): + pass + + def decode_latent_to_preview_image(self, preview_format, x0): + preview_image = self.decode_latent_to_preview(x0) + return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION) + +class TAESDPreviewerImpl(LatentPreviewer): + def __init__(self, taesd): + self.taesd = taesd + + def decode_latent_to_preview(self, x0): + x_sample = self.taesd.decode(x0[:1])[0].detach() + x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) + x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) + x_sample = x_sample.astype(np.uint8) + + preview_image = Image.fromarray(x_sample) + return preview_image + + +class Latent2RGBPreviewer(LatentPreviewer): + def __init__(self, latent_rgb_factors): + self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu") + + def decode_latent_to_preview(self, x0): + latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors + + latents_ubyte = (((latent_image + 1) / 2) + .clamp(0, 1) # change scale from -1..1 to 0..1 + .mul(0xFF) # to 0..255 + .byte()).cpu() + + return Image.fromarray(latents_ubyte.numpy()) + + +def get_previewer(device, latent_format): + previewer = None + method = args.preview_method + if method != LatentPreviewMethod.NoPreviews: + # TODO previewer methods + taesd_decoder_path = None + if latent_format.taesd_decoder_name is not None: + taesd_decoder_path = next( + (fn for fn in folder_paths.get_filename_list("vae_approx") + if fn.startswith(latent_format.taesd_decoder_name)), + "" + ) + taesd_decoder_path = folder_paths.get_full_path("vae_approx", taesd_decoder_path) + + if method == LatentPreviewMethod.Auto: + method = LatentPreviewMethod.Latent2RGB + if taesd_decoder_path: + method = LatentPreviewMethod.TAESD + + if method == LatentPreviewMethod.TAESD: + if taesd_decoder_path: + taesd = TAESD(None, taesd_decoder_path).to(device) + previewer = TAESDPreviewerImpl(taesd) + else: + print("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name)) + + if previewer is None: + if latent_format.latent_rgb_factors is not None: + previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors) + return previewer + +def prepare_callback(model, steps, x0_output_dict=None): + preview_format = "JPEG" + if preview_format not in ["JPEG", "PNG"]: + preview_format = "JPEG" + + previewer = get_previewer(model.load_device, model.model.latent_format) + + pbar = comfy.utils.ProgressBar(steps) + def callback(step, x0, x, total_steps): + if x0_output_dict is not None: + x0_output_dict["x0"] = x0 + + preview_bytes = None + if previewer: + preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) + pbar.update_absolute(step + 1, total_steps, preview_bytes) + return callback + diff --git a/main.py b/main.py new file mode 100644 index 0000000000000000000000000000000000000000..69d9bce6cb7d85cb9ea7858efe05c5deb16734c2 --- /dev/null +++ b/main.py @@ -0,0 +1,250 @@ +import comfy.options +comfy.options.enable_args_parsing() + +import os +import importlib.util +import folder_paths +import time + +def execute_prestartup_script(): + def execute_script(script_path): + module_name = os.path.splitext(script_path)[0] + try: + spec = importlib.util.spec_from_file_location(module_name, script_path) + module = importlib.util.module_from_spec(spec) + spec.loader.exec_module(module) + return True + except Exception as e: + print(f"Failed to execute startup-script: {script_path} / {e}") + return False + + node_paths = folder_paths.get_folder_paths("custom_nodes") + for custom_node_path in node_paths: + possible_modules = os.listdir(custom_node_path) + node_prestartup_times = [] + + for possible_module in possible_modules: + module_path = os.path.join(custom_node_path, possible_module) + if os.path.isfile(module_path) or module_path.endswith(".disabled") or module_path == "__pycache__": + continue + + script_path = os.path.join(module_path, "prestartup_script.py") + if os.path.exists(script_path): + time_before = time.perf_counter() + success = execute_script(script_path) + node_prestartup_times.append((time.perf_counter() - time_before, module_path, success)) + if len(node_prestartup_times) > 0: + print("\nPrestartup times for custom nodes:") + for n in sorted(node_prestartup_times): + if n[2]: + import_message = "" + else: + import_message = " (PRESTARTUP FAILED)" + print("{:6.1f} seconds{}:".format(n[0], import_message), n[1]) + print() + +execute_prestartup_script() + + +# Main code +import asyncio +import itertools +import shutil +import threading +import gc + +from comfy.cli_args import args + +if os.name == "nt": + import logging + logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) + +if __name__ == "__main__": + if args.cuda_device is not None: + os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device) + print("Set cuda device to:", args.cuda_device) + + if args.deterministic: + if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ: + os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8" + + import cuda_malloc + +import comfy.utils +import yaml + +import execution +import server +from server import BinaryEventTypes +from nodes import init_custom_nodes +import comfy.model_management + +def cuda_malloc_warning(): + device = comfy.model_management.get_torch_device() + device_name = comfy.model_management.get_torch_device_name(device) + cuda_malloc_warning = False + if "cudaMallocAsync" in device_name: + for b in cuda_malloc.blacklist: + if b in device_name: + cuda_malloc_warning = True + if cuda_malloc_warning: + print("\nWARNING: this card most likely does not support cuda-malloc, if you get \"CUDA error\" please run ComfyUI with: --disable-cuda-malloc\n") + +def prompt_worker(q, server): + e = execution.PromptExecutor(server) + last_gc_collect = 0 + need_gc = False + gc_collect_interval = 10.0 + + while True: + timeout = 1000.0 + if need_gc: + timeout = max(gc_collect_interval - (current_time - last_gc_collect), 0.0) + + queue_item = q.get(timeout=timeout) + if queue_item is not None: + item, item_id = queue_item + execution_start_time = time.perf_counter() + prompt_id = item[1] + server.last_prompt_id = prompt_id + + e.execute(item[2], prompt_id, item[3], item[4]) + need_gc = True + q.task_done(item_id, + e.outputs_ui, + status=execution.PromptQueue.ExecutionStatus( + status_str='success' if e.success else 'error', + completed=e.success, + messages=e.status_messages)) + if server.client_id is not None: + server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, server.client_id) + + current_time = time.perf_counter() + execution_time = current_time - execution_start_time + print("Prompt executed in {:.2f} seconds".format(execution_time)) + + flags = q.get_flags() + free_memory = flags.get("free_memory", False) + + if flags.get("unload_models", free_memory): + comfy.model_management.unload_all_models() + need_gc = True + last_gc_collect = 0 + + if free_memory: + e.reset() + need_gc = True + last_gc_collect = 0 + + if need_gc: + current_time = time.perf_counter() + if (current_time - last_gc_collect) > gc_collect_interval: + gc.collect() + comfy.model_management.soft_empty_cache() + last_gc_collect = current_time + need_gc = False + +async def run(server, address='', port=8188, verbose=True, call_on_start=None): + await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop()) + + +def hijack_progress(server): + def hook(value, total, preview_image): + comfy.model_management.throw_exception_if_processing_interrupted() + progress = {"value": value, "max": total, "prompt_id": server.last_prompt_id, "node": server.last_node_id} + + server.send_sync("progress", progress, server.client_id) + if preview_image is not None: + server.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server.client_id) + comfy.utils.set_progress_bar_global_hook(hook) + + +def cleanup_temp(): + temp_dir = folder_paths.get_temp_directory() + if os.path.exists(temp_dir): + shutil.rmtree(temp_dir, ignore_errors=True) + + +def load_extra_path_config(yaml_path): + with open(yaml_path, 'r') as stream: + config = yaml.safe_load(stream) + for c in config: + conf = config[c] + if conf is None: + continue + base_path = None + if "base_path" in conf: + base_path = conf.pop("base_path") + for x in conf: + for y in conf[x].split("\n"): + if len(y) == 0: + continue + full_path = y + if base_path is not None: + full_path = os.path.join(base_path, full_path) + print("Adding extra search path", x, full_path) + folder_paths.add_model_folder_path(x, full_path) + + +if __name__ == "__main__": + if args.temp_directory: + temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp") + print(f"Setting temp directory to: {temp_dir}") + folder_paths.set_temp_directory(temp_dir) + cleanup_temp() + + loop = asyncio.new_event_loop() + asyncio.set_event_loop(loop) + server = server.PromptServer(loop) + q = execution.PromptQueue(server) + + extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml") + if os.path.isfile(extra_model_paths_config_path): + load_extra_path_config(extra_model_paths_config_path) + + if args.extra_model_paths_config: + for config_path in itertools.chain(*args.extra_model_paths_config): + load_extra_path_config(config_path) + + init_custom_nodes() + + cuda_malloc_warning() + + server.add_routes() + hijack_progress(server) + + threading.Thread(target=prompt_worker, daemon=True, args=(q, server,)).start() + + if args.output_directory: + output_dir = os.path.abspath(args.output_directory) + print(f"Setting output directory to: {output_dir}") + folder_paths.set_output_directory(output_dir) + + #These are the default folders that checkpoints, clip and vae models will be saved to when using CheckpointSave, etc.. nodes + folder_paths.add_model_folder_path("checkpoints", os.path.join(folder_paths.get_output_directory(), "checkpoints")) + folder_paths.add_model_folder_path("clip", os.path.join(folder_paths.get_output_directory(), "clip")) + folder_paths.add_model_folder_path("vae", os.path.join(folder_paths.get_output_directory(), "vae")) + + if args.input_directory: + input_dir = os.path.abspath(args.input_directory) + print(f"Setting input directory to: {input_dir}") + folder_paths.set_input_directory(input_dir) + + if args.quick_test_for_ci: + exit(0) + + call_on_start = None + if args.auto_launch: + def startup_server(address, port): + import webbrowser + if os.name == 'nt' and address == '0.0.0.0': + address = '127.0.0.1' + webbrowser.open(f"http://{address}:{port}") + call_on_start = startup_server + + try: + loop.run_until_complete(run(server, address=args.listen, port=args.port, verbose=not args.dont_print_server, call_on_start=call_on_start)) + except KeyboardInterrupt: + print("\nStopped server") + + cleanup_temp() diff --git a/models/.DS_Store b/models/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..37259a5fb4c2e78884c1a4ef599d857c53709cdc Binary files /dev/null and b/models/.DS_Store differ diff --git a/models/checkpoints/put_checkpoints_here b/models/checkpoints/put_checkpoints_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/clip/put_clip_or_text_encoder_models_here b/models/clip/put_clip_or_text_encoder_models_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/clip_vision/put_clip_vision_models_here b/models/clip_vision/put_clip_vision_models_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/configs/anything_v3.yaml b/models/configs/anything_v3.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8bcfe584ae73d60e2c7a6f89b3f7befbd487ea34 --- /dev/null +++ b/models/configs/anything_v3.yaml @@ -0,0 +1,73 @@ +model: + base_learning_rate: 1.0e-04 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 10000 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder + params: + layer: "hidden" + layer_idx: -2 diff --git a/models/configs/v1-inference.yaml b/models/configs/v1-inference.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d4effe569e897369918625f9d8be5603a0e6a0d6 --- /dev/null +++ b/models/configs/v1-inference.yaml @@ -0,0 +1,70 @@ +model: + base_learning_rate: 1.0e-04 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 10000 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder diff --git a/models/configs/v1-inference_clip_skip_2.yaml b/models/configs/v1-inference_clip_skip_2.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8bcfe584ae73d60e2c7a6f89b3f7befbd487ea34 --- /dev/null +++ b/models/configs/v1-inference_clip_skip_2.yaml @@ -0,0 +1,73 @@ +model: + base_learning_rate: 1.0e-04 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 10000 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder + params: + layer: "hidden" + layer_idx: -2 diff --git a/models/configs/v1-inference_clip_skip_2_fp16.yaml b/models/configs/v1-inference_clip_skip_2_fp16.yaml new file mode 100644 index 0000000000000000000000000000000000000000..7eca31c7b5e571c2b1348e94ed9d69978ebd2d52 --- /dev/null +++ b/models/configs/v1-inference_clip_skip_2_fp16.yaml @@ -0,0 +1,74 @@ +model: + base_learning_rate: 1.0e-04 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 10000 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + use_fp16: True + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder + params: + layer: "hidden" + layer_idx: -2 diff --git a/models/configs/v1-inference_fp16.yaml b/models/configs/v1-inference_fp16.yaml new file mode 100644 index 0000000000000000000000000000000000000000..147f42b17b835cc839338156f99e8f971df5c1aa --- /dev/null +++ b/models/configs/v1-inference_fp16.yaml @@ -0,0 +1,71 @@ +model: + base_learning_rate: 1.0e-04 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 10000 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + use_fp16: True + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder diff --git a/models/configs/v1-inpainting-inference.yaml b/models/configs/v1-inpainting-inference.yaml new file mode 100644 index 0000000000000000000000000000000000000000..45f3f82d461cd8c6109f26ec3b1da75366eda0b0 --- /dev/null +++ b/models/configs/v1-inpainting-inference.yaml @@ -0,0 +1,71 @@ +model: + base_learning_rate: 7.5e-05 + target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: hybrid # important + monitor: val/loss_simple_ema + scale_factor: 0.18215 + finetune_keys: null + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 9 # 4 data + 4 downscaled image + 1 mask + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder + diff --git a/models/configs/v2-inference-v.yaml b/models/configs/v2-inference-v.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8ec8dfbfefe94ae8522c93017668fea78d580acf --- /dev/null +++ b/models/configs/v2-inference-v.yaml @@ -0,0 +1,68 @@ +model: + base_learning_rate: 1.0e-4 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + parameterization: "v" + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False # we set this to false because this is an inference only config + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + use_checkpoint: True + use_fp16: True + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_head_channels: 64 # need to fix for flash-attn + use_spatial_transformer: True + use_linear_in_transformer: True + transformer_depth: 1 + context_dim: 1024 + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + #attn_type: "vanilla-xformers" + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder + params: + freeze: True + layer: "penultimate" diff --git a/models/configs/v2-inference-v_fp32.yaml b/models/configs/v2-inference-v_fp32.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d5c9b9cb29ca162ade44a7c922f59e75d7d57813 --- /dev/null +++ b/models/configs/v2-inference-v_fp32.yaml @@ -0,0 +1,68 @@ +model: + base_learning_rate: 1.0e-4 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + parameterization: "v" + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False # we set this to false because this is an inference only config + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + use_checkpoint: True + use_fp16: False + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_head_channels: 64 # need to fix for flash-attn + use_spatial_transformer: True + use_linear_in_transformer: True + transformer_depth: 1 + context_dim: 1024 + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + #attn_type: "vanilla-xformers" + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder + params: + freeze: True + layer: "penultimate" diff --git a/models/configs/v2-inference.yaml b/models/configs/v2-inference.yaml new file mode 100644 index 0000000000000000000000000000000000000000..152c4f3c2b36c3b246a9cb10eb8166134b0d2e1c --- /dev/null +++ b/models/configs/v2-inference.yaml @@ -0,0 +1,67 @@ +model: + base_learning_rate: 1.0e-4 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False # we set this to false because this is an inference only config + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + use_checkpoint: True + use_fp16: True + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_head_channels: 64 # need to fix for flash-attn + use_spatial_transformer: True + use_linear_in_transformer: True + transformer_depth: 1 + context_dim: 1024 + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + #attn_type: "vanilla-xformers" + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder + params: + freeze: True + layer: "penultimate" diff --git a/models/configs/v2-inference_fp32.yaml b/models/configs/v2-inference_fp32.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0d03231f3f2c2e8ef8fbe0d781e5f3d65409ef3a --- /dev/null +++ b/models/configs/v2-inference_fp32.yaml @@ -0,0 +1,67 @@ +model: + base_learning_rate: 1.0e-4 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False # we set this to false because this is an inference only config + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + use_checkpoint: True + use_fp16: False + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_head_channels: 64 # need to fix for flash-attn + use_spatial_transformer: True + use_linear_in_transformer: True + transformer_depth: 1 + context_dim: 1024 + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + #attn_type: "vanilla-xformers" + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder + params: + freeze: True + layer: "penultimate" diff --git a/models/configs/v2-inpainting-inference.yaml b/models/configs/v2-inpainting-inference.yaml new file mode 100644 index 0000000000000000000000000000000000000000..32a9471d71b828c51bcbbabfe34c5f6c8282c803 --- /dev/null +++ b/models/configs/v2-inpainting-inference.yaml @@ -0,0 +1,158 @@ +model: + base_learning_rate: 5.0e-05 + target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false + conditioning_key: hybrid + scale_factor: 0.18215 + monitor: val/loss_simple_ema + finetune_keys: null + use_ema: False + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + use_checkpoint: True + image_size: 32 # unused + in_channels: 9 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_head_channels: 64 # need to fix for flash-attn + use_spatial_transformer: True + use_linear_in_transformer: True + transformer_depth: 1 + context_dim: 1024 + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + #attn_type: "vanilla-xformers" + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [ ] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder + params: + freeze: True + layer: "penultimate" + + +data: + target: ldm.data.laion.WebDataModuleFromConfig + params: + tar_base: null # for concat as in LAION-A + p_unsafe_threshold: 0.1 + filter_word_list: "data/filters.yaml" + max_pwatermark: 0.45 + batch_size: 8 + num_workers: 6 + multinode: True + min_size: 512 + train: + shards: + - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -" + - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -" + - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -" + - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -" + - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar" + shuffle: 10000 + image_key: jpg + image_transforms: + - target: torchvision.transforms.Resize + params: + size: 512 + interpolation: 3 + - target: torchvision.transforms.RandomCrop + params: + size: 512 + postprocess: + target: ldm.data.laion.AddMask + params: + mode: "512train-large" + p_drop: 0.25 + # NOTE use enough shards to avoid empty validation loops in workers + validation: + shards: + - "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - " + shuffle: 0 + image_key: jpg + image_transforms: + - target: torchvision.transforms.Resize + params: + size: 512 + interpolation: 3 + - target: torchvision.transforms.CenterCrop + params: + size: 512 + postprocess: + target: ldm.data.laion.AddMask + params: + mode: "512train-large" + p_drop: 0.25 + +lightning: + find_unused_parameters: True + modelcheckpoint: + params: + every_n_train_steps: 5000 + + callbacks: + metrics_over_trainsteps_checkpoint: + params: + every_n_train_steps: 10000 + + image_logger: + target: main.ImageLogger + params: + enable_autocast: False + disabled: False + batch_frequency: 1000 + max_images: 4 + increase_log_steps: False + log_first_step: False + log_images_kwargs: + use_ema_scope: False + inpaint: False + plot_progressive_rows: False + plot_diffusion_rows: False + N: 4 + unconditional_guidance_scale: 5.0 + unconditional_guidance_label: [""] + ddim_steps: 50 # todo check these out for depth2img, + ddim_eta: 0.0 # todo check these out for depth2img, + + trainer: + benchmark: True + val_check_interval: 5000000 + num_sanity_val_steps: 0 + accumulate_grad_batches: 1 diff --git a/models/controlnet/put_controlnets_and_t2i_here b/models/controlnet/put_controlnets_and_t2i_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/diffusers/put_diffusers_models_here b/models/diffusers/put_diffusers_models_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/embeddings/.DS_Store b/models/embeddings/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6 Binary files /dev/null and b/models/embeddings/.DS_Store differ diff --git a/models/embeddings/altman-gstep-200.pt b/models/embeddings/altman-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..0ba733a09767c48cc7dd60ae712945a1f7abf3a5 Binary files /dev/null and b/models/embeddings/altman-gstep-200.pt differ diff --git a/models/embeddings/altman-gstep-400.pt b/models/embeddings/altman-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..5c6cbf7f84c1453f149da8b586a37eec3f8aaad0 Binary files /dev/null and b/models/embeddings/altman-gstep-400.pt differ diff --git a/models/embeddings/altman-gstep-600.pt b/models/embeddings/altman-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..6efd463e216fbcafecbfb03d569a1dc4852d7801 Binary files /dev/null and b/models/embeddings/altman-gstep-600.pt differ diff --git a/models/embeddings/andrew_ng-gstep-200.pt b/models/embeddings/andrew_ng-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..b742d400a68264360d0d733951916a2b0ab53bbe Binary files /dev/null and b/models/embeddings/andrew_ng-gstep-200.pt differ diff --git a/models/embeddings/andrew_ng-gstep-400.pt b/models/embeddings/andrew_ng-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..19b9b81de943a91f9d82aeb58953a3286823c0d9 Binary files /dev/null and b/models/embeddings/andrew_ng-gstep-400.pt differ diff --git a/models/embeddings/andrew_ng-gstep-600.pt b/models/embeddings/andrew_ng-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..d8094cbfddd523d0c35b40f4257089cc50e81b17 Binary files /dev/null and b/models/embeddings/andrew_ng-gstep-600.pt differ diff --git a/models/embeddings/angry512.pt b/models/embeddings/angry512.pt new file mode 100644 index 0000000000000000000000000000000000000000..90357667bbdb028323b05b7da293d8e9c68fcc80 Binary files /dev/null and b/models/embeddings/angry512.pt differ diff --git a/models/embeddings/bengio-gstep-200.pt b/models/embeddings/bengio-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..bbe7e671f91da63ab21e109cfb946ce599315db3 Binary files /dev/null and b/models/embeddings/bengio-gstep-200.pt differ diff --git a/models/embeddings/bengio-gstep-400.pt b/models/embeddings/bengio-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..544110934fd375a68ae379e87ec4fcd9f069b15c Binary files /dev/null and b/models/embeddings/bengio-gstep-400.pt differ diff --git a/models/embeddings/bengio-gstep-600.pt b/models/embeddings/bengio-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..d78d8304adaca3f82c0a96cd3fa2337d4dc17820 Binary files /dev/null and b/models/embeddings/bengio-gstep-600.pt differ diff --git a/models/embeddings/beyonce-gstep-200.pt b/models/embeddings/beyonce-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..7bd27479da8e461d15a4218a0a03eb3cf59e565c Binary files /dev/null and b/models/embeddings/beyonce-gstep-200.pt differ diff --git a/models/embeddings/beyonce-gstep-400.pt b/models/embeddings/beyonce-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..ceb02ed3d631c9294b26020baa8ba18d0b3ee8b0 Binary files /dev/null and b/models/embeddings/beyonce-gstep-400.pt differ diff --git a/models/embeddings/beyonce-gstep-600.pt b/models/embeddings/beyonce-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..32b70109675b6da2df87ff25272158e6bf4d7451 Binary files /dev/null and b/models/embeddings/beyonce-gstep-600.pt differ diff --git a/models/embeddings/biden-gstep-200.pt b/models/embeddings/biden-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..fcb5483e6db2b9536876cc58ec6064f26b5c8c53 Binary files /dev/null and b/models/embeddings/biden-gstep-200.pt differ diff --git a/models/embeddings/biden-gstep-400.pt b/models/embeddings/biden-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..d0a8f5e768123adece29e875a32394f7794bcfe9 Binary files /dev/null and b/models/embeddings/biden-gstep-400.pt differ diff --git a/models/embeddings/biden-gstep-600.pt b/models/embeddings/biden-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..809e1c92351620c02f553c07a063a689a7189f51 Binary files /dev/null and b/models/embeddings/biden-gstep-600.pt differ diff --git a/models/embeddings/defiance512.pt b/models/embeddings/defiance512.pt new file mode 100644 index 0000000000000000000000000000000000000000..fb80fad2c3fb508e3d5cb0380dad6738fd8802dd Binary files /dev/null and b/models/embeddings/defiance512.pt differ diff --git a/models/embeddings/grin512.pt b/models/embeddings/grin512.pt new file mode 100644 index 0000000000000000000000000000000000000000..070465601d4c524370398d5337c78697c3ebd5d8 Binary files /dev/null and b/models/embeddings/grin512.pt differ diff --git a/models/embeddings/happy512.pt b/models/embeddings/happy512.pt new file mode 100644 index 0000000000000000000000000000000000000000..53220f4aac28ec033f551706e6af74e34da51ea4 Binary files /dev/null and b/models/embeddings/happy512.pt differ diff --git a/models/embeddings/harry-gstep-200.pt b/models/embeddings/harry-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..25379f58fc61c85f0e69e1d46cbb77e4b45b6f1e Binary files /dev/null and b/models/embeddings/harry-gstep-200.pt differ diff --git a/models/embeddings/harry-gstep-400.pt b/models/embeddings/harry-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..0f3664e12737fb5d928aa6c6d9e52f9d79134f64 Binary files /dev/null and b/models/embeddings/harry-gstep-400.pt differ diff --git a/models/embeddings/harry-gstep-600.pt b/models/embeddings/harry-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..20ef891f183508b2b9ae567c325217512d9b4f42 Binary files /dev/null and b/models/embeddings/harry-gstep-600.pt differ diff --git a/models/embeddings/hermione-gstep-200.pt b/models/embeddings/hermione-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..b762e88a5d1c44e0b6ece451b53baec68928df6c Binary files /dev/null and b/models/embeddings/hermione-gstep-200.pt differ diff --git a/models/embeddings/hermione-gstep-400.pt b/models/embeddings/hermione-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..9c856dcfb62faa9045c0f39dc251a2dadd03ebc4 Binary files /dev/null and b/models/embeddings/hermione-gstep-400.pt differ diff --git a/models/embeddings/hermione-gstep-600.pt b/models/embeddings/hermione-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..2d05f5fd05a293f8b195dd58bb632c7b5de31f55 Binary files /dev/null and b/models/embeddings/hermione-gstep-600.pt differ diff --git a/models/embeddings/hinton-gstep-200.pt b/models/embeddings/hinton-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..8d4a7032d05b795f740d42a61f4bc8aa1a4b104d Binary files /dev/null and b/models/embeddings/hinton-gstep-200.pt differ diff --git a/models/embeddings/hinton-gstep-400.pt b/models/embeddings/hinton-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..2f029b7b07dd8bbafc8bf46061e3c531945655d7 Binary files /dev/null and b/models/embeddings/hinton-gstep-400.pt differ diff --git a/models/embeddings/hinton-gstep-600.pt b/models/embeddings/hinton-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..adc824d712f81aac86d6684953d1205430173d11 Binary files /dev/null and b/models/embeddings/hinton-gstep-600.pt differ diff --git a/models/embeddings/huang-gstep-1000.pt b/models/embeddings/huang-gstep-1000.pt new file mode 100644 index 0000000000000000000000000000000000000000..0696030889599b30170f48f390e30f5e3aeeda91 Binary files /dev/null and b/models/embeddings/huang-gstep-1000.pt differ diff --git a/models/embeddings/huang-gstep-200.pt b/models/embeddings/huang-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..0436539482ad13229ebbf7b78ab6ec0fde7b55ef Binary files /dev/null and b/models/embeddings/huang-gstep-200.pt differ diff --git a/models/embeddings/huang-gstep-400.pt b/models/embeddings/huang-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..0fc0f777dc1c2512f53124f689793be471f32c2b Binary files /dev/null and b/models/embeddings/huang-gstep-400.pt differ diff --git a/models/embeddings/huang-gstep-600.pt b/models/embeddings/huang-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..628358ad113541416b3584517cbd280a73d072b2 Binary files /dev/null and b/models/embeddings/huang-gstep-600.pt differ diff --git a/models/embeddings/huang-gstep-800.pt b/models/embeddings/huang-gstep-800.pt new file mode 100644 index 0000000000000000000000000000000000000000..747036247bb0d34e53b4fd9b92a7ff8d61941179 Binary files /dev/null and b/models/embeddings/huang-gstep-800.pt differ diff --git a/models/embeddings/ironman-gstep-200.pt b/models/embeddings/ironman-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..72424445aab1ae9da26b6342d786f86b57a27b8f Binary files /dev/null and b/models/embeddings/ironman-gstep-200.pt differ diff --git a/models/embeddings/ironman-gstep-400.pt b/models/embeddings/ironman-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..faa23b9d47d6fb3f8fd86525ddb177168d138f83 Binary files /dev/null and b/models/embeddings/ironman-gstep-400.pt differ diff --git a/models/embeddings/ironman-gstep-600.pt b/models/embeddings/ironman-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..81efdb6f421876b969f88746e8c64333e384ce3b Binary files /dev/null and b/models/embeddings/ironman-gstep-600.pt differ diff --git a/models/embeddings/jack_chen-gstep-1000.pt b/models/embeddings/jack_chen-gstep-1000.pt new file mode 100644 index 0000000000000000000000000000000000000000..3b4d6a10fb89e2cfe579f7d887911c5b3018243b Binary files /dev/null and b/models/embeddings/jack_chen-gstep-1000.pt differ diff --git a/models/embeddings/jack_chen-gstep-200.pt b/models/embeddings/jack_chen-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..e832f916dcff201004fdb54e5a0f48af4f5286d6 Binary files /dev/null and b/models/embeddings/jack_chen-gstep-200.pt differ diff --git a/models/embeddings/jack_chen-gstep-400.pt b/models/embeddings/jack_chen-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..9c66e395febe782a0d202bb2a8832f6b504f143f Binary files /dev/null and b/models/embeddings/jack_chen-gstep-400.pt differ diff --git a/models/embeddings/jack_chen-gstep-600.pt b/models/embeddings/jack_chen-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..c4a50942a0bc69e19cba38a14633fcabf9d7a407 Binary files /dev/null and b/models/embeddings/jack_chen-gstep-600.pt differ diff --git a/models/embeddings/jack_chen-gstep-800.pt b/models/embeddings/jack_chen-gstep-800.pt new file mode 100644 index 0000000000000000000000000000000000000000..dd8c40ca3cf4746e5d2251e631b73317e2f53ad4 Binary files /dev/null and b/models/embeddings/jack_chen-gstep-800.pt differ diff --git a/models/embeddings/johnson-gstep-200.pt b/models/embeddings/johnson-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..3aaa5c11d205cb8bf30a1dd4f4fafb03409d5c92 Binary files /dev/null and b/models/embeddings/johnson-gstep-200.pt differ diff --git a/models/embeddings/johnson-gstep-400.pt b/models/embeddings/johnson-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..82fe3523368fc94e58e111834cc1b41cb7434bef Binary files /dev/null and b/models/embeddings/johnson-gstep-400.pt differ diff --git a/models/embeddings/johnson-gstep-600.pt b/models/embeddings/johnson-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..3b8ed81d42e46da59790e04bd205c9575c88758e Binary files /dev/null and b/models/embeddings/johnson-gstep-600.pt differ diff --git a/models/embeddings/laugh512.pt b/models/embeddings/laugh512.pt new file mode 100644 index 0000000000000000000000000000000000000000..fa7983950d8c1b2bdfdc8d64acecec11b49b234e Binary files /dev/null and b/models/embeddings/laugh512.pt differ diff --git a/models/embeddings/lecun-gstep-200.pt b/models/embeddings/lecun-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..4ce5b46de5f3689f5e39b9eadf2e5a363dbdac84 Binary files /dev/null and b/models/embeddings/lecun-gstep-200.pt differ diff --git a/models/embeddings/lecun-gstep-400.pt b/models/embeddings/lecun-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..6425675f8aa6cf58387cff9fc7d0f01568d3a0be Binary files /dev/null and b/models/embeddings/lecun-gstep-400.pt differ diff --git a/models/embeddings/lecun-gstep-600.pt b/models/embeddings/lecun-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..849f1e67737936026fa1959fa4421b984ef21f27 Binary files /dev/null and b/models/embeddings/lecun-gstep-600.pt differ diff --git a/models/embeddings/lifeifei-gstep-1000.pt b/models/embeddings/lifeifei-gstep-1000.pt new file mode 100644 index 0000000000000000000000000000000000000000..57ba4e497cab0edc5bbb40285a91467b43a0afcc Binary files /dev/null and b/models/embeddings/lifeifei-gstep-1000.pt differ diff --git a/models/embeddings/lifeifei-gstep-200.pt b/models/embeddings/lifeifei-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..4a4bb66edc6dfe9e972c783043692cd7acff3c7b Binary files /dev/null and b/models/embeddings/lifeifei-gstep-200.pt differ diff --git a/models/embeddings/lifeifei-gstep-400.pt b/models/embeddings/lifeifei-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..99f0492ef51d1844ef7f2e773f65babd38857551 Binary files /dev/null and b/models/embeddings/lifeifei-gstep-400.pt differ diff --git a/models/embeddings/lifeifei-gstep-600.pt b/models/embeddings/lifeifei-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..2f2e46e283826a2b7b9a5020ebece870d791f74a Binary files /dev/null and b/models/embeddings/lifeifei-gstep-600.pt differ diff --git a/models/embeddings/lifeifei-gstep-800.pt b/models/embeddings/lifeifei-gstep-800.pt new file mode 100644 index 0000000000000000000000000000000000000000..17a8dae9f834ebc7e5d8ad3fc205b356079e61e3 Binary files /dev/null and b/models/embeddings/lifeifei-gstep-800.pt differ diff --git a/models/embeddings/lisa-gstep-1000.pt b/models/embeddings/lisa-gstep-1000.pt new file mode 100644 index 0000000000000000000000000000000000000000..ccd6b08d9739dd240b39355a84d544dc2b7b373d Binary files /dev/null and b/models/embeddings/lisa-gstep-1000.pt differ diff --git a/models/embeddings/lisa-gstep-200.pt b/models/embeddings/lisa-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..54900bc5e9ada3cc0bef0affa39517b3334ab33b Binary files /dev/null and b/models/embeddings/lisa-gstep-200.pt differ diff --git a/models/embeddings/lisa-gstep-400.pt b/models/embeddings/lisa-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..7b1ec20a1f942b35cb15a881f6f1bbbd3a63d95c Binary files /dev/null and b/models/embeddings/lisa-gstep-400.pt differ diff --git a/models/embeddings/lisa-gstep-600.pt b/models/embeddings/lisa-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..fcef51b61b7b6c9bd7da82ef7820dc01d66533d6 Binary files /dev/null and b/models/embeddings/lisa-gstep-600.pt differ diff --git a/models/embeddings/lisa-gstep-800.pt b/models/embeddings/lisa-gstep-800.pt new file mode 100644 index 0000000000000000000000000000000000000000..1e8a3fa69226eabf148f0b80b3b9611e8c6206e0 Binary files /dev/null and b/models/embeddings/lisa-gstep-800.pt differ diff --git a/models/embeddings/man_1-gstep-200.pt b/models/embeddings/man_1-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..9a4ee8c5b89b162132dd6ef7950b69e9e4b650c2 Binary files /dev/null and b/models/embeddings/man_1-gstep-200.pt differ diff --git a/models/embeddings/man_1-gstep-400.pt b/models/embeddings/man_1-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..40f6b09234bd91eb832b57a50cc03b3fe0a70ff3 Binary files /dev/null and b/models/embeddings/man_1-gstep-400.pt differ diff --git a/models/embeddings/man_1-gstep-600.pt b/models/embeddings/man_1-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..5fcd0e9b83cb51c6df8cc9fd04f105bcf37315e1 Binary files /dev/null and b/models/embeddings/man_1-gstep-600.pt differ diff --git a/models/embeddings/mona-gstep-200.pt b/models/embeddings/mona-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..a3765c35a2454c508e52e1d58ade97be5f1d834d Binary files /dev/null and b/models/embeddings/mona-gstep-200.pt differ diff --git a/models/embeddings/mona-gstep-400.pt b/models/embeddings/mona-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..45b463b52a5695f44cf7a9a21f32c11a3125b0f8 Binary files /dev/null and b/models/embeddings/mona-gstep-400.pt differ diff --git a/models/embeddings/mona-gstep-600.pt b/models/embeddings/mona-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..8ead9c17f0dc64b16e4ce78078fad38fffb07628 Binary files /dev/null and b/models/embeddings/mona-gstep-600.pt differ diff --git a/models/embeddings/monroe-gstep-200.pt b/models/embeddings/monroe-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..d2e356dae69b94f0ef9730b8a2afe71e42722fe4 Binary files /dev/null and b/models/embeddings/monroe-gstep-200.pt differ diff --git a/models/embeddings/monroe-gstep-400.pt b/models/embeddings/monroe-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..1387a544b82893a29926a24c2db3691c268c0804 Binary files /dev/null and b/models/embeddings/monroe-gstep-400.pt differ diff --git a/models/embeddings/monroe-gstep-600.pt b/models/embeddings/monroe-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..2471f86e9d4b0068f8defaccb55f8b757d92e7aa Binary files /dev/null and b/models/embeddings/monroe-gstep-600.pt differ diff --git a/models/embeddings/musk-gstep-200.pt b/models/embeddings/musk-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..0a41f70e861a5e6c02062f5032c7b73a544aa484 Binary files /dev/null and b/models/embeddings/musk-gstep-200.pt differ diff --git a/models/embeddings/musk-gstep-400.pt b/models/embeddings/musk-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..53a77c4c30ea4f76e15c7b5d1c3e107a4e6ca702 Binary files /dev/null and b/models/embeddings/musk-gstep-400.pt differ diff --git a/models/embeddings/musk-gstep-600.pt b/models/embeddings/musk-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..f0ac74b5f640b40b2f1cab055f16a5f0356387da Binary files /dev/null and b/models/embeddings/musk-gstep-600.pt differ diff --git a/models/embeddings/obama-gstep-200.pt b/models/embeddings/obama-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..db5a2d99c005652c2ae40c599ea2f0940b91e8e5 Binary files /dev/null and b/models/embeddings/obama-gstep-200.pt differ diff --git a/models/embeddings/obama-gstep-400.pt b/models/embeddings/obama-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..c1e6e3b235e03b59ed13c7fc8480c4cda4f98861 Binary files /dev/null and b/models/embeddings/obama-gstep-400.pt differ diff --git a/models/embeddings/obama-gstep-600.pt b/models/embeddings/obama-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..9cd8c34a70215d03d84845d74c70b93f23b4c390 Binary files /dev/null and b/models/embeddings/obama-gstep-600.pt differ diff --git a/models/embeddings/put_embeddings_or_textual_inversion_concepts_here b/models/embeddings/put_embeddings_or_textual_inversion_concepts_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/embeddings/sad512.pt b/models/embeddings/sad512.pt new file mode 100644 index 0000000000000000000000000000000000000000..0edb58e79320659bd56b1b77d5d280dda0c49601 Binary files /dev/null and b/models/embeddings/sad512.pt differ diff --git a/models/embeddings/scarlett-gstep-200.pt b/models/embeddings/scarlett-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..a35c4706215ec62fa367e08e2cff28c36bc0d342 Binary files /dev/null and b/models/embeddings/scarlett-gstep-200.pt differ diff --git a/models/embeddings/scarlett-gstep-400.pt b/models/embeddings/scarlett-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..7d8456ebdf1e954af91dca840749035eed066c5d Binary files /dev/null and b/models/embeddings/scarlett-gstep-400.pt differ diff --git a/models/embeddings/scarlett-gstep-600.pt b/models/embeddings/scarlett-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..9a9e719e76b9aa35b982bb95a06256840b17e7a7 Binary files /dev/null and b/models/embeddings/scarlett-gstep-600.pt differ diff --git a/models/embeddings/shock512.pt b/models/embeddings/shock512.pt new file mode 100644 index 0000000000000000000000000000000000000000..3948bbc9573054426a6657f6ac1eea318b3ee87c Binary files /dev/null and b/models/embeddings/shock512.pt differ diff --git a/models/embeddings/shouzi-gstep-1000.pt b/models/embeddings/shouzi-gstep-1000.pt new file mode 100644 index 0000000000000000000000000000000000000000..a433c6ac1eb8eff3ee91373d09819fd6732299c8 Binary files /dev/null and b/models/embeddings/shouzi-gstep-1000.pt differ diff --git a/models/embeddings/shouzi-gstep-200.pt b/models/embeddings/shouzi-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..1eeac5a5a018a5f4b00246e3857a01025b75ac7f Binary files /dev/null and b/models/embeddings/shouzi-gstep-200.pt differ diff --git a/models/embeddings/shouzi-gstep-400.pt b/models/embeddings/shouzi-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..4f97e4a78e23565c9e7373bf5c033dc776dbea10 Binary files /dev/null and b/models/embeddings/shouzi-gstep-400.pt differ diff --git a/models/embeddings/shouzi-gstep-600.pt b/models/embeddings/shouzi-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..e4ae8067c6faa4c3ca7b4abe362708fb4100b560 Binary files /dev/null and b/models/embeddings/shouzi-gstep-600.pt differ diff --git a/models/embeddings/shouzi-gstep-800.pt b/models/embeddings/shouzi-gstep-800.pt new file mode 100644 index 0000000000000000000000000000000000000000..b1624efc7ee45050e91957a282b357e254a927e0 Binary files /dev/null and b/models/embeddings/shouzi-gstep-800.pt differ diff --git a/models/embeddings/smile512.pt b/models/embeddings/smile512.pt new file mode 100644 index 0000000000000000000000000000000000000000..7672d1e01fdf3ecc2c55543cd44f2d1844f16993 Binary files /dev/null and b/models/embeddings/smile512.pt differ diff --git a/models/embeddings/taylor-gstep-200.pt b/models/embeddings/taylor-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..15f47889d72e2dc42f19d50aeb0f9e3c291ffcaa Binary files /dev/null and b/models/embeddings/taylor-gstep-200.pt differ diff --git a/models/embeddings/taylor-gstep-400.pt b/models/embeddings/taylor-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..f22262687a82b773c054ccd7c8f7c9564adc3e43 Binary files /dev/null and b/models/embeddings/taylor-gstep-400.pt differ diff --git a/models/embeddings/taylor-gstep-600.pt b/models/embeddings/taylor-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..7b026618bdd4c541ad97c75c001daa9a1339d73a Binary files /dev/null and b/models/embeddings/taylor-gstep-600.pt differ diff --git a/models/embeddings/trump-gstep-200.pt b/models/embeddings/trump-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..48998b2168fb00cb3ea6ec934e332c5e58c37e3f Binary files /dev/null and b/models/embeddings/trump-gstep-200.pt differ diff --git a/models/embeddings/trump-gstep-400.pt b/models/embeddings/trump-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..0df8cbe4860475c57386ac87c939b875559e9d74 Binary files /dev/null and b/models/embeddings/trump-gstep-400.pt differ diff --git a/models/embeddings/trump-gstep-600.pt b/models/embeddings/trump-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..673676c8623b9603078811b9c6438f074bcd49cc Binary files /dev/null and b/models/embeddings/trump-gstep-600.pt differ diff --git a/models/embeddings/yangmi-gstep-1000.pt b/models/embeddings/yangmi-gstep-1000.pt new file mode 100644 index 0000000000000000000000000000000000000000..ed6d256f44644976dda69d288cf6cf04781dadcd Binary files /dev/null and b/models/embeddings/yangmi-gstep-1000.pt differ diff --git a/models/embeddings/yangmi-gstep-200.pt b/models/embeddings/yangmi-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..3b35351b923881b062faafcf5080a4e3f173c708 Binary files /dev/null and b/models/embeddings/yangmi-gstep-200.pt differ diff --git a/models/embeddings/yangmi-gstep-400.pt b/models/embeddings/yangmi-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..6afab325d6df4dd7460150064808c5a5ea060899 Binary files /dev/null and b/models/embeddings/yangmi-gstep-400.pt differ diff --git a/models/embeddings/yangmi-gstep-600.pt b/models/embeddings/yangmi-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..71de3a9da16bfd6c5cc329986bb0fccfe3326a99 Binary files /dev/null and b/models/embeddings/yangmi-gstep-600.pt differ diff --git a/models/embeddings/yangmi-gstep-800.pt b/models/embeddings/yangmi-gstep-800.pt new file mode 100644 index 0000000000000000000000000000000000000000..3d7d02d02cb03f5cadf2566a00329d1543e04fe1 Binary files /dev/null and b/models/embeddings/yangmi-gstep-800.pt differ diff --git a/models/embeddings/zengxiaoxian-gstep-1000.pt b/models/embeddings/zengxiaoxian-gstep-1000.pt new file mode 100644 index 0000000000000000000000000000000000000000..2d2b054d4f9007e34b80f967f6c18533a44c02ac Binary files /dev/null and b/models/embeddings/zengxiaoxian-gstep-1000.pt differ diff --git a/models/embeddings/zengxiaoxian-gstep-200.pt b/models/embeddings/zengxiaoxian-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..548eee85bb68a71cc15df5b30eab2f991d289b40 Binary files /dev/null and b/models/embeddings/zengxiaoxian-gstep-200.pt differ diff --git a/models/embeddings/zengxiaoxian-gstep-400.pt b/models/embeddings/zengxiaoxian-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..ab2aedc63502b116faf894efed120c8ee2181191 Binary files /dev/null and b/models/embeddings/zengxiaoxian-gstep-400.pt differ diff --git a/models/embeddings/zengxiaoxian-gstep-600.pt b/models/embeddings/zengxiaoxian-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..80e10049b049bb37a024e355b7481f760c70011e Binary files /dev/null and b/models/embeddings/zengxiaoxian-gstep-600.pt differ diff --git a/models/embeddings/zengxiaoxian-gstep-800.pt b/models/embeddings/zengxiaoxian-gstep-800.pt new file mode 100644 index 0000000000000000000000000000000000000000..4780c8256b8a05b431b8dbe14edfdbbf7b3c6c7f Binary files /dev/null and b/models/embeddings/zengxiaoxian-gstep-800.pt differ diff --git a/models/embeddings/zuck-gstep-200.pt b/models/embeddings/zuck-gstep-200.pt new file mode 100644 index 0000000000000000000000000000000000000000..e367b0b1a0484c2a2080f44193b02a1f87355acf Binary files /dev/null and b/models/embeddings/zuck-gstep-200.pt differ diff --git a/models/embeddings/zuck-gstep-400.pt b/models/embeddings/zuck-gstep-400.pt new file mode 100644 index 0000000000000000000000000000000000000000..14bd8e4ef3c88048caed6d8f373ee34aa730419c Binary files /dev/null and b/models/embeddings/zuck-gstep-400.pt differ diff --git a/models/embeddings/zuck-gstep-600.pt b/models/embeddings/zuck-gstep-600.pt new file mode 100644 index 0000000000000000000000000000000000000000..bdb19ae52bb68719e1183be43749cba0850a7b11 Binary files /dev/null and b/models/embeddings/zuck-gstep-600.pt differ diff --git a/models/gligen/put_gligen_models_here b/models/gligen/put_gligen_models_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/hypernetworks/put_hypernetworks_here b/models/hypernetworks/put_hypernetworks_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/loras/put_loras_here b/models/loras/put_loras_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/photomaker/put_photomaker_models_here b/models/photomaker/put_photomaker_models_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/style_models/put_t2i_style_model_here b/models/style_models/put_t2i_style_model_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/unet/put_unet_files_here b/models/unet/put_unet_files_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/upscale_models/put_esrgan_and_other_upscale_models_here b/models/upscale_models/put_esrgan_and_other_upscale_models_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/vae/put_vae_here b/models/vae/put_vae_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/vae_approx/put_taesd_encoder_pth_and_taesd_decoder_pth_here b/models/vae_approx/put_taesd_encoder_pth_and_taesd_decoder_pth_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/nodes.py b/nodes.py new file mode 100644 index 0000000000000000000000000000000000000000..e2ce0e8fe25d7e1afa134bbbf5e49568569ef969 --- /dev/null +++ b/nodes.py @@ -0,0 +1,2009 @@ +import torch + +import os +import sys +import json +import hashlib +import traceback +import math +import time +import random + +from PIL import Image, ImageOps, ImageSequence +from PIL.PngImagePlugin import PngInfo +import numpy as np +import safetensors.torch + +sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy")) + + +import comfy.diffusers_load +import comfy.samplers +import comfy.sample +import comfy.sd +import comfy.utils +import comfy.controlnet + +import comfy.clip_vision + +import comfy.model_management +from comfy.cli_args import args +from einops import rearrange +import importlib + +import folder_paths +import latent_preview + +def before_node_execution(): + comfy.model_management.throw_exception_if_processing_interrupted() + +def interrupt_processing(value=True): + comfy.model_management.interrupt_current_processing(value) + +MAX_RESOLUTION=8192 + +class CLIPTextEncode: + @classmethod + def INPUT_TYPES(s): + return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "encode" + + CATEGORY = "conditioning" + + def encode(self, clip, text): + tokens = clip.tokenize(text) + cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) + return ([[cond, {"pooled_output": pooled}]], ) + +class ConditioningCombine: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "combine" + + CATEGORY = "conditioning" + + def combine(self, conditioning_1, conditioning_2): + return (conditioning_1 + conditioning_2, ) + +class ConditioningAverage : + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ), + "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}) + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "addWeighted" + + CATEGORY = "conditioning" + + def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength): + out = [] + + if len(conditioning_from) > 1: + print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.") + + cond_from = conditioning_from[0][0] + pooled_output_from = conditioning_from[0][1].get("pooled_output", None) + + for i in range(len(conditioning_to)): + t1 = conditioning_to[i][0] + pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from) + t0 = cond_from[:,:t1.shape[1]] + if t0.shape[1] < t1.shape[1]: + t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1) + + tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength)) + t_to = conditioning_to[i][1].copy() + if pooled_output_from is not None and pooled_output_to is not None: + t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength)) + elif pooled_output_from is not None: + t_to["pooled_output"] = pooled_output_from + + n = [tw, t_to] + out.append(n) + return (out, ) + +class ConditioningConcat: + @classmethod + def INPUT_TYPES(s): + return {"required": { + "conditioning_to": ("CONDITIONING",), + "conditioning_from": ("CONDITIONING",), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "concat" + + CATEGORY = "conditioning" + + def concat(self, conditioning_to, conditioning_from): + out = [] + + if len(conditioning_from) > 1: + print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.") + + cond_from = conditioning_from[0][0] + + for i in range(len(conditioning_to)): + t1 = conditioning_to[i][0] + tw = torch.cat((t1, cond_from),1) + n = [tw, conditioning_to[i][1].copy()] + out.append(n) + + return (out, ) + +class ConditioningSetArea: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning": ("CONDITIONING", ), + "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}), + "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "append" + + CATEGORY = "conditioning" + + def append(self, conditioning, width, height, x, y, strength): + c = [] + for t in conditioning: + n = [t[0], t[1].copy()] + n[1]['area'] = (height // 8, width // 8, y // 8, x // 8) + n[1]['strength'] = strength + n[1]['set_area_to_bounds'] = False + c.append(n) + return (c, ) + +class ConditioningSetAreaPercentage: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning": ("CONDITIONING", ), + "width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}), + "height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}), + "x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}), + "y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}), + "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "append" + + CATEGORY = "conditioning" + + def append(self, conditioning, width, height, x, y, strength): + c = [] + for t in conditioning: + n = [t[0], t[1].copy()] + n[1]['area'] = ("percentage", height, width, y, x) + n[1]['strength'] = strength + n[1]['set_area_to_bounds'] = False + c.append(n) + return (c, ) + +class ConditioningSetAreaStrength: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning": ("CONDITIONING", ), + "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "append" + + CATEGORY = "conditioning" + + def append(self, conditioning, strength): + c = [] + for t in conditioning: + n = [t[0], t[1].copy()] + n[1]['strength'] = strength + c.append(n) + return (c, ) + + +class ConditioningSetMask: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning": ("CONDITIONING", ), + "mask": ("MASK", ), + "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), + "set_cond_area": (["default", "mask bounds"],), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "append" + + CATEGORY = "conditioning" + + def append(self, conditioning, mask, set_cond_area, strength): + c = [] + set_area_to_bounds = False + if set_cond_area != "default": + set_area_to_bounds = True + if len(mask.shape) < 3: + mask = mask.unsqueeze(0) + for t in conditioning: + n = [t[0], t[1].copy()] + _, h, w = mask.shape + n[1]['mask'] = mask + n[1]['set_area_to_bounds'] = set_area_to_bounds + n[1]['mask_strength'] = strength + c.append(n) + return (c, ) + +class ConditioningZeroOut: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning": ("CONDITIONING", )}} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "zero_out" + + CATEGORY = "advanced/conditioning" + + def zero_out(self, conditioning): + c = [] + for t in conditioning: + d = t[1].copy() + if "pooled_output" in d: + d["pooled_output"] = torch.zeros_like(d["pooled_output"]) + n = [torch.zeros_like(t[0]), d] + c.append(n) + return (c, ) + +class ConditioningSetTimestepRange: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning": ("CONDITIONING", ), + "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), + "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}) + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "set_range" + + CATEGORY = "advanced/conditioning" + + def set_range(self, conditioning, start, end): + c = [] + for t in conditioning: + d = t[1].copy() + d['start_percent'] = start + d['end_percent'] = end + n = [t[0], d] + c.append(n) + return (c, ) + +class VAEDecode: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "decode" + + CATEGORY = "latent" + + def decode(self, vae, samples): + return (vae.decode(samples["samples"]), ) + +class VAEDecodeTiled: + @classmethod + def INPUT_TYPES(s): + return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ), + "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}) + }} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "decode" + + CATEGORY = "_for_testing" + + def decode(self, vae, samples, tile_size): + return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), ) + +class VAEEncode: + @classmethod + def INPUT_TYPES(s): + return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}} + RETURN_TYPES = ("LATENT",) + FUNCTION = "encode" + + CATEGORY = "latent" + + @staticmethod + def vae_encode_crop_pixels(pixels): + x = (pixels.shape[1] // 8) * 8 + y = (pixels.shape[2] // 8) * 8 + if pixels.shape[1] != x or pixels.shape[2] != y: + x_offset = (pixels.shape[1] % 8) // 2 + y_offset = (pixels.shape[2] % 8) // 2 + pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :] + return pixels + + def encode(self, vae, pixels): + pixels = self.vae_encode_crop_pixels(pixels) + t = vae.encode(pixels[:,:,:,:3]) + return ({"samples":t}, ) + +class VAEEncodeTiled: + @classmethod + def INPUT_TYPES(s): + return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ), + "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}) + }} + RETURN_TYPES = ("LATENT",) + FUNCTION = "encode" + + CATEGORY = "_for_testing" + + def encode(self, vae, pixels, tile_size): + pixels = VAEEncode.vae_encode_crop_pixels(pixels) + t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, ) + return ({"samples":t}, ) + +class VAEEncodeForInpaint: + @classmethod + def INPUT_TYPES(s): + return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}} + RETURN_TYPES = ("LATENT",) + FUNCTION = "encode" + + CATEGORY = "latent/inpaint" + + def encode(self, vae, pixels, mask, grow_mask_by=6): + x = (pixels.shape[1] // 8) * 8 + y = (pixels.shape[2] // 8) * 8 + mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear") + + pixels = pixels.clone() + if pixels.shape[1] != x or pixels.shape[2] != y: + x_offset = (pixels.shape[1] % 8) // 2 + y_offset = (pixels.shape[2] % 8) // 2 + pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:] + mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset] + + #grow mask by a few pixels to keep things seamless in latent space + if grow_mask_by == 0: + mask_erosion = mask + else: + kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by)) + padding = math.ceil((grow_mask_by - 1) / 2) + + mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1) + + m = (1.0 - mask.round()).squeeze(1) + for i in range(3): + pixels[:,:,:,i] -= 0.5 + pixels[:,:,:,i] *= m + pixels[:,:,:,i] += 0.5 + t = vae.encode(pixels) + + return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, ) + + +class InpaintModelConditioning: + @classmethod + def INPUT_TYPES(s): + return {"required": {"positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "vae": ("VAE", ), + "pixels": ("IMAGE", ), + "mask": ("MASK", ), + }} + + RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT") + RETURN_NAMES = ("positive", "negative", "latent") + FUNCTION = "encode" + + CATEGORY = "conditioning/inpaint" + + def encode(self, positive, negative, pixels, vae, mask): + x = (pixels.shape[1] // 8) * 8 + y = (pixels.shape[2] // 8) * 8 + mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear") + + orig_pixels = pixels + pixels = orig_pixels.clone() + if pixels.shape[1] != x or pixels.shape[2] != y: + x_offset = (pixels.shape[1] % 8) // 2 + y_offset = (pixels.shape[2] % 8) // 2 + pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:] + mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset] + + m = (1.0 - mask.round()).squeeze(1) + for i in range(3): + pixels[:,:,:,i] -= 0.5 + pixels[:,:,:,i] *= m + pixels[:,:,:,i] += 0.5 + concat_latent = vae.encode(pixels) + orig_latent = vae.encode(orig_pixels) + + out_latent = {} + + out_latent["samples"] = orig_latent + out_latent["noise_mask"] = mask + + out = [] + for conditioning in [positive, negative]: + c = [] + for t in conditioning: + d = t[1].copy() + d["concat_latent_image"] = concat_latent + d["concat_mask"] = mask + n = [t[0], d] + c.append(n) + out.append(c) + return (out[0], out[1], out_latent) + + +class SaveLatent: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT", ), + "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})}, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, + } + RETURN_TYPES = () + FUNCTION = "save" + + OUTPUT_NODE = True + + CATEGORY = "_for_testing" + + def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) + + # support save metadata for latent sharing + prompt_info = "" + if prompt is not None: + prompt_info = json.dumps(prompt) + + metadata = None + if not args.disable_metadata: + metadata = {"prompt": prompt_info} + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata[x] = json.dumps(extra_pnginfo[x]) + + file = f"{filename}_{counter:05}_.latent" + + results = list() + results.append({ + "filename": file, + "subfolder": subfolder, + "type": "output" + }) + + file = os.path.join(full_output_folder, file) + + output = {} + output["latent_tensor"] = samples["samples"] + output["latent_format_version_0"] = torch.tensor([]) + + comfy.utils.save_torch_file(output, file, metadata=metadata) + return { "ui": { "latents": results } } + + +class LoadLatent: + @classmethod + def INPUT_TYPES(s): + input_dir = folder_paths.get_input_directory() + files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")] + return {"required": {"latent": [sorted(files), ]}, } + + CATEGORY = "_for_testing" + + RETURN_TYPES = ("LATENT", ) + FUNCTION = "load" + + def load(self, latent): + latent_path = folder_paths.get_annotated_filepath(latent) + latent = safetensors.torch.load_file(latent_path, device="cpu") + multiplier = 1.0 + if "latent_format_version_0" not in latent: + multiplier = 1.0 / 0.18215 + samples = {"samples": latent["latent_tensor"].float() * multiplier} + return (samples, ) + + @classmethod + def IS_CHANGED(s, latent): + image_path = folder_paths.get_annotated_filepath(latent) + m = hashlib.sha256() + with open(image_path, 'rb') as f: + m.update(f.read()) + return m.digest().hex() + + @classmethod + def VALIDATE_INPUTS(s, latent): + if not folder_paths.exists_annotated_filepath(latent): + return "Invalid latent file: {}".format(latent) + return True + + +class CheckpointLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ), + "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}} + RETURN_TYPES = ("MODEL", "CLIP", "VAE") + FUNCTION = "load_checkpoint" + + CATEGORY = "advanced/loaders" + + def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True): + config_path = folder_paths.get_full_path("configs", config_name) + ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) + return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) + +class CheckpointLoaderSimple: + @classmethod + def INPUT_TYPES(s): + return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), + }} + RETURN_TYPES = ("MODEL", "CLIP", "VAE") + FUNCTION = "load_checkpoint" + + CATEGORY = "loaders" + + def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): + ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) + out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) + return out[:3] + +class DiffusersLoader: + @classmethod + def INPUT_TYPES(cls): + paths = [] + for search_path in folder_paths.get_folder_paths("diffusers"): + if os.path.exists(search_path): + for root, subdir, files in os.walk(search_path, followlinks=True): + if "model_index.json" in files: + paths.append(os.path.relpath(root, start=search_path)) + + return {"required": {"model_path": (paths,), }} + RETURN_TYPES = ("MODEL", "CLIP", "VAE") + FUNCTION = "load_checkpoint" + + CATEGORY = "advanced/loaders/deprecated" + + def load_checkpoint(self, model_path, output_vae=True, output_clip=True): + for search_path in folder_paths.get_folder_paths("diffusers"): + if os.path.exists(search_path): + path = os.path.join(search_path, model_path) + if os.path.exists(path): + model_path = path + break + + return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings")) + + +class unCLIPCheckpointLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), + }} + RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION") + FUNCTION = "load_checkpoint" + + CATEGORY = "loaders" + + def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): + ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) + out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) + return out + +class CLIPSetLastLayer: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip": ("CLIP", ), + "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}), + }} + RETURN_TYPES = ("CLIP",) + FUNCTION = "set_last_layer" + + CATEGORY = "conditioning" + + def set_last_layer(self, clip, stop_at_clip_layer): + clip = clip.clone() + clip.clip_layer(stop_at_clip_layer) + return (clip,) + +class LoraLoader: + def __init__(self): + self.loaded_lora = None + + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "clip": ("CLIP", ), + "lora_name": (folder_paths.get_filename_list("loras"), ), + "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}), + "strength_clip": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL", "CLIP") + FUNCTION = "load_lora" + + CATEGORY = "loaders" + + def load_lora(self, model, clip, lora_name, strength_model, strength_clip): + if strength_model == 0 and strength_clip == 0: + return (model, clip) + + lora_path = folder_paths.get_full_path("loras", lora_name) + lora = None + if self.loaded_lora is not None: + if self.loaded_lora[0] == lora_path: + lora = self.loaded_lora[1] + else: + temp = self.loaded_lora + self.loaded_lora = None + del temp + + if lora is None: + lora = comfy.utils.load_torch_file(lora_path, safe_load=True) + self.loaded_lora = (lora_path, lora) + + model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip) + return (model_lora, clip_lora) + +class LoraLoaderModelOnly(LoraLoader): + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "lora_name": (folder_paths.get_filename_list("loras"), ), + "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "load_lora_model_only" + + def load_lora_model_only(self, model, lora_name, strength_model): + return (self.load_lora(model, None, lora_name, strength_model, 0)[0],) + +class VAELoader: + @staticmethod + def vae_list(): + vaes = folder_paths.get_filename_list("vae") + approx_vaes = folder_paths.get_filename_list("vae_approx") + sdxl_taesd_enc = False + sdxl_taesd_dec = False + sd1_taesd_enc = False + sd1_taesd_dec = False + + for v in approx_vaes: + if v.startswith("taesd_decoder."): + sd1_taesd_dec = True + elif v.startswith("taesd_encoder."): + sd1_taesd_enc = True + elif v.startswith("taesdxl_decoder."): + sdxl_taesd_dec = True + elif v.startswith("taesdxl_encoder."): + sdxl_taesd_enc = True + if sd1_taesd_dec and sd1_taesd_enc: + vaes.append("taesd") + if sdxl_taesd_dec and sdxl_taesd_enc: + vaes.append("taesdxl") + return vaes + + @staticmethod + def load_taesd(name): + sd = {} + approx_vaes = folder_paths.get_filename_list("vae_approx") + + encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes)) + decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes)) + + enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder)) + for k in enc: + sd["taesd_encoder.{}".format(k)] = enc[k] + + dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder)) + for k in dec: + sd["taesd_decoder.{}".format(k)] = dec[k] + + if name == "taesd": + sd["vae_scale"] = torch.tensor(0.18215) + elif name == "taesdxl": + sd["vae_scale"] = torch.tensor(0.13025) + return sd + + @classmethod + def INPUT_TYPES(s): + return {"required": { "vae_name": (s.vae_list(), )}} + RETURN_TYPES = ("VAE",) + FUNCTION = "load_vae" + + CATEGORY = "loaders" + + #TODO: scale factor? + def load_vae(self, vae_name): + if vae_name in ["taesd", "taesdxl"]: + sd = self.load_taesd(vae_name) + else: + vae_path = folder_paths.get_full_path("vae", vae_name) + sd = comfy.utils.load_torch_file(vae_path) + vae = comfy.sd.VAE(sd=sd) + return (vae,) + +class ControlNetLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}} + + RETURN_TYPES = ("CONTROL_NET",) + FUNCTION = "load_controlnet" + + CATEGORY = "loaders" + + def load_controlnet(self, control_net_name): + controlnet_path = folder_paths.get_full_path("controlnet", control_net_name) + controlnet = comfy.controlnet.load_controlnet(controlnet_path) + return (controlnet,) + +class DiffControlNetLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "control_net_name": (folder_paths.get_filename_list("controlnet"), )}} + + RETURN_TYPES = ("CONTROL_NET",) + FUNCTION = "load_controlnet" + + CATEGORY = "loaders" + + def load_controlnet(self, model, control_net_name): + controlnet_path = folder_paths.get_full_path("controlnet", control_net_name) + controlnet = comfy.controlnet.load_controlnet(controlnet_path, model) + return (controlnet,) + + +class ControlNetApply: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning": ("CONDITIONING", ), + "control_net": ("CONTROL_NET", ), + "image": ("IMAGE", ), + "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}) + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "apply_controlnet" + + CATEGORY = "conditioning" + + def apply_controlnet(self, conditioning, control_net, image, strength): + if strength == 0: + return (conditioning, ) + + c = [] + control_hint = image.movedim(-1,1) + for t in conditioning: + n = [t[0], t[1].copy()] + c_net = control_net.copy().set_cond_hint(control_hint, strength) + if 'control' in t[1]: + c_net.set_previous_controlnet(t[1]['control']) + n[1]['control'] = c_net + n[1]['control_apply_to_uncond'] = True + c.append(n) + return (c, ) + + +class ControlNetApplyAdvanced: + @classmethod + def INPUT_TYPES(s): + return {"required": {"positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "control_net": ("CONTROL_NET", ), + "image": ("IMAGE", ), + "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), + "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), + "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}) + }} + + RETURN_TYPES = ("CONDITIONING","CONDITIONING") + RETURN_NAMES = ("positive", "negative") + FUNCTION = "apply_controlnet" + + CATEGORY = "conditioning" + + def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent): + if strength == 0: + return (positive, negative) + + control_hint = image.movedim(-1,1) + cnets = {} + + out = [] + for conditioning in [positive, negative]: + c = [] + for t in conditioning: + d = t[1].copy() + + prev_cnet = d.get('control', None) + if prev_cnet in cnets: + c_net = cnets[prev_cnet] + else: + c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent)) + c_net.set_previous_controlnet(prev_cnet) + cnets[prev_cnet] = c_net + + d['control'] = c_net + d['control_apply_to_uncond'] = False + n = [t[0], d] + c.append(n) + out.append(c) + return (out[0], out[1]) + + +class UNETLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "load_unet" + + CATEGORY = "advanced/loaders" + + def load_unet(self, unet_name): + unet_path = folder_paths.get_full_path("unet", unet_name) + model = comfy.sd.load_unet(unet_path) + return (model,) + +class CLIPLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ), + }} + RETURN_TYPES = ("CLIP",) + FUNCTION = "load_clip" + + CATEGORY = "advanced/loaders" + + def load_clip(self, clip_name): + clip_path = folder_paths.get_full_path("clip", clip_name) + clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings")) + return (clip,) + +class DualCLIPLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ), + }} + RETURN_TYPES = ("CLIP",) + FUNCTION = "load_clip" + + CATEGORY = "advanced/loaders" + + def load_clip(self, clip_name1, clip_name2): + clip_path1 = folder_paths.get_full_path("clip", clip_name1) + clip_path2 = folder_paths.get_full_path("clip", clip_name2) + clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings")) + return (clip,) + +class CLIPVisionLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ), + }} + RETURN_TYPES = ("CLIP_VISION",) + FUNCTION = "load_clip" + + CATEGORY = "loaders" + + def load_clip(self, clip_name): + clip_path = folder_paths.get_full_path("clip_vision", clip_name) + clip_vision = comfy.clip_vision.load(clip_path) + return (clip_vision,) + +class CLIPVisionEncode: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip_vision": ("CLIP_VISION",), + "image": ("IMAGE",) + }} + RETURN_TYPES = ("CLIP_VISION_OUTPUT",) + FUNCTION = "encode" + + CATEGORY = "conditioning" + + def encode(self, clip_vision, image): + output = clip_vision.encode_image(image) + return (output,) + +class StyleModelLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}} + + RETURN_TYPES = ("STYLE_MODEL",) + FUNCTION = "load_style_model" + + CATEGORY = "loaders" + + def load_style_model(self, style_model_name): + style_model_path = folder_paths.get_full_path("style_models", style_model_name) + style_model = comfy.sd.load_style_model(style_model_path) + return (style_model,) + + +class StyleModelApply: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning": ("CONDITIONING", ), + "style_model": ("STYLE_MODEL", ), + "clip_vision_output": ("CLIP_VISION_OUTPUT", ), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "apply_stylemodel" + + CATEGORY = "conditioning/style_model" + + def apply_stylemodel(self, clip_vision_output, style_model, conditioning): + cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0) + c = [] + for t in conditioning: + n = [torch.cat((t[0], cond), dim=1), t[1].copy()] + c.append(n) + return (c, ) + +class unCLIPConditioning: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning": ("CONDITIONING", ), + "clip_vision_output": ("CLIP_VISION_OUTPUT", ), + "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "apply_adm" + + CATEGORY = "conditioning" + + def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation): + if strength == 0: + return (conditioning, ) + + c = [] + for t in conditioning: + o = t[1].copy() + x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation} + if "unclip_conditioning" in o: + o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x] + else: + o["unclip_conditioning"] = [x] + n = [t[0], o] + c.append(n) + return (c, ) + +class GLIGENLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}} + + RETURN_TYPES = ("GLIGEN",) + FUNCTION = "load_gligen" + + CATEGORY = "loaders" + + def load_gligen(self, gligen_name): + gligen_path = folder_paths.get_full_path("gligen", gligen_name) + gligen = comfy.sd.load_gligen(gligen_path) + return (gligen,) + +class GLIGENTextBoxApply: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning_to": ("CONDITIONING", ), + "clip": ("CLIP", ), + "gligen_textbox_model": ("GLIGEN", ), + "text": ("STRING", {"multiline": True}), + "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}), + "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "append" + + CATEGORY = "conditioning/gligen" + + def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y): + c = [] + cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True) + for t in conditioning_to: + n = [t[0], t[1].copy()] + position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)] + prev = [] + if "gligen" in n[1]: + prev = n[1]['gligen'][2] + + n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params) + c.append(n) + return (c, ) + +class EmptyLatentImage: + def __init__(self): + self.device = comfy.model_management.intermediate_device() + + @classmethod + def INPUT_TYPES(s): + return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}), + "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} + RETURN_TYPES = ("LATENT",) + FUNCTION = "generate" + + CATEGORY = "latent" + + def generate(self, width, height, batch_size=1): + latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device) + return ({"samples":latent}, ) + + +class MagicAlbum3DGaussianNoise: + def __init__(self): + self.device = comfy.model_management.intermediate_device() + @classmethod + def INPUT_TYPES(s): + return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}), + "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "cov_factor": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.05})}} + RETURN_TYPES = ("LATENT",) + FUNCTION = "generate" + + CATEGORY = "latent" + def get_cov_mat(self, f, alpha=0.1): + var = [alpha ** idx for idx in range(f)] + m = torch.cat([torch.Tensor(var), torch.Tensor(var[1::][::-1])]) + x, y = torch.ones(len(var), len(var)).nonzero().T + cov = m[y-x].reshape(len(var), len(var)) + return cov + + + def generate(self, width, height, batch_size=1, seed=0, cov_factor=0.2): + torch.manual_seed(seed) + dist = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(batch_size), self.get_cov_mat(batch_size, alpha=cov_factor)) + shape = (4, height // 8, width // 8) + + cov_latent = dist.sample(shape) + cov_latent = rearrange(cov_latent, 'c h w f -> f c h w') + + latent = cov_latent.to(self.device) + return ({"samples":latent}, ) + + +class LatentFromBatch: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT",), + "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}), + "length": ("INT", {"default": 1, "min": 1, "max": 64}), + }} + RETURN_TYPES = ("LATENT",) + FUNCTION = "frombatch" + + CATEGORY = "latent/batch" + + def frombatch(self, samples, batch_index, length): + s = samples.copy() + s_in = samples["samples"] + batch_index = min(s_in.shape[0] - 1, batch_index) + length = min(s_in.shape[0] - batch_index, length) + s["samples"] = s_in[batch_index:batch_index + length].clone() + if "noise_mask" in samples: + masks = samples["noise_mask"] + if masks.shape[0] == 1: + s["noise_mask"] = masks.clone() + else: + if masks.shape[0] < s_in.shape[0]: + masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]] + s["noise_mask"] = masks[batch_index:batch_index + length].clone() + if "batch_index" not in s: + s["batch_index"] = [x for x in range(batch_index, batch_index+length)] + else: + s["batch_index"] = samples["batch_index"][batch_index:batch_index + length] + return (s,) + +class RepeatLatentBatch: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT",), + "amount": ("INT", {"default": 1, "min": 1, "max": 64}), + }} + RETURN_TYPES = ("LATENT",) + FUNCTION = "repeat" + + CATEGORY = "latent/batch" + + def repeat(self, samples, amount): + s = samples.copy() + s_in = samples["samples"] + + s["samples"] = s_in.repeat((amount, 1,1,1)) + if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1: + masks = samples["noise_mask"] + if masks.shape[0] < s_in.shape[0]: + masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]] + s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1)) + if "batch_index" in s: + offset = max(s["batch_index"]) - min(s["batch_index"]) + 1 + s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]] + return (s,) + +class LatentUpscale: + upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"] + crop_methods = ["disabled", "center"] + + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,), + "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "crop": (s.crop_methods,)}} + RETURN_TYPES = ("LATENT",) + FUNCTION = "upscale" + + CATEGORY = "latent" + + def upscale(self, samples, upscale_method, width, height, crop): + if width == 0 and height == 0: + s = samples + else: + s = samples.copy() + + if width == 0: + height = max(64, height) + width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2])) + elif height == 0: + width = max(64, width) + height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3])) + else: + width = max(64, width) + height = max(64, height) + + s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop) + return (s,) + +class LatentUpscaleBy: + upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"] + + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,), + "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}} + RETURN_TYPES = ("LATENT",) + FUNCTION = "upscale" + + CATEGORY = "latent" + + def upscale(self, samples, upscale_method, scale_by): + s = samples.copy() + width = round(samples["samples"].shape[3] * scale_by) + height = round(samples["samples"].shape[2] * scale_by) + s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled") + return (s,) + +class LatentRotate: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT",), + "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],), + }} + RETURN_TYPES = ("LATENT",) + FUNCTION = "rotate" + + CATEGORY = "latent/transform" + + def rotate(self, samples, rotation): + s = samples.copy() + rotate_by = 0 + if rotation.startswith("90"): + rotate_by = 1 + elif rotation.startswith("180"): + rotate_by = 2 + elif rotation.startswith("270"): + rotate_by = 3 + + s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2]) + return (s,) + +class LatentFlip: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT",), + "flip_method": (["x-axis: vertically", "y-axis: horizontally"],), + }} + RETURN_TYPES = ("LATENT",) + FUNCTION = "flip" + + CATEGORY = "latent/transform" + + def flip(self, samples, flip_method): + s = samples.copy() + if flip_method.startswith("x"): + s["samples"] = torch.flip(samples["samples"], dims=[2]) + elif flip_method.startswith("y"): + s["samples"] = torch.flip(samples["samples"], dims=[3]) + + return (s,) + +class LatentComposite: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples_to": ("LATENT",), + "samples_from": ("LATENT",), + "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + }} + RETURN_TYPES = ("LATENT",) + FUNCTION = "composite" + + CATEGORY = "latent" + + def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0): + x = x // 8 + y = y // 8 + feather = feather // 8 + samples_out = samples_to.copy() + s = samples_to["samples"].clone() + samples_to = samples_to["samples"] + samples_from = samples_from["samples"] + if feather == 0: + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] + else: + samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] + mask = torch.ones_like(samples_from) + for t in range(feather): + if y != 0: + mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1)) + + if y + samples_from.shape[2] < samples_to.shape[2]: + mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1)) + if x != 0: + mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1)) + if x + samples_from.shape[3] < samples_to.shape[3]: + mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1)) + rev_mask = torch.ones_like(mask) - mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask + samples_out["samples"] = s + return (samples_out,) + +class LatentBlend: + @classmethod + def INPUT_TYPES(s): + return {"required": { + "samples1": ("LATENT",), + "samples2": ("LATENT",), + "blend_factor": ("FLOAT", { + "default": 0.5, + "min": 0, + "max": 1, + "step": 0.01 + }), + }} + + RETURN_TYPES = ("LATENT",) + FUNCTION = "blend" + + CATEGORY = "_for_testing" + + def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"): + + samples_out = samples1.copy() + samples1 = samples1["samples"] + samples2 = samples2["samples"] + + if samples1.shape != samples2.shape: + samples2.permute(0, 3, 1, 2) + samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center') + samples2.permute(0, 2, 3, 1) + + samples_blended = self.blend_mode(samples1, samples2, blend_mode) + samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor) + samples_out["samples"] = samples_blended + return (samples_out,) + + def blend_mode(self, img1, img2, mode): + if mode == "normal": + return img2 + else: + raise ValueError(f"Unsupported blend mode: {mode}") + +class LatentCrop: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT",), + "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}), + "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + }} + RETURN_TYPES = ("LATENT",) + FUNCTION = "crop" + + CATEGORY = "latent/transform" + + def crop(self, samples, width, height, x, y): + s = samples.copy() + samples = samples['samples'] + x = x // 8 + y = y // 8 + + #enfonce minimum size of 64 + if x > (samples.shape[3] - 8): + x = samples.shape[3] - 8 + if y > (samples.shape[2] - 8): + y = samples.shape[2] - 8 + + new_height = height // 8 + new_width = width // 8 + to_x = new_width + x + to_y = new_height + y + s['samples'] = samples[:,:,y:to_y, x:to_x] + return (s,) + +class SetLatentNoiseMask: + @classmethod + def INPUT_TYPES(s): + return {"required": { "samples": ("LATENT",), + "mask": ("MASK",), + }} + RETURN_TYPES = ("LATENT",) + FUNCTION = "set_mask" + + CATEGORY = "latent/inpaint" + + def set_mask(self, samples, mask): + s = samples.copy() + s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])) + return (s,) + +def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): + latent_image = latent["samples"] + if disable_noise: + noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") + else: + batch_inds = latent["batch_index"] if "batch_index" in latent else None + noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) + + noise_mask = None + if "noise_mask" in latent: + noise_mask = latent["noise_mask"] + + callback = latent_preview.prepare_callback(model, steps) + disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED + samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, + denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step, + force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) + out = latent.copy() + out["samples"] = samples + return (out, ) + +class KSampler: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"model": ("MODEL",), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), + "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), + "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), + "positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "latent_image": ("LATENT", ), + "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + } + } + + RETURN_TYPES = ("LATENT",) + FUNCTION = "sample" + + CATEGORY = "sampling" + + def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0): + return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise) + +class KSamplerAdvanced: + @classmethod + def INPUT_TYPES(s): + return {"required": + {"model": ("MODEL",), + "add_noise": (["enable", "disable"], ), + "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), + "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), + "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), + "positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "latent_image": ("LATENT", ), + "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), + "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}), + "return_with_leftover_noise": (["disable", "enable"], ), + } + } + + RETURN_TYPES = ("LATENT",) + FUNCTION = "sample" + + CATEGORY = "sampling" + + def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0): + force_full_denoise = True + if return_with_leftover_noise == "enable": + force_full_denoise = False + disable_noise = False + if add_noise == "disable": + disable_noise = True + return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise) + +class SaveImage: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + self.type = "output" + self.prefix_append = "" + self.compress_level = 4 + + @classmethod + def INPUT_TYPES(s): + return {"required": + {"images": ("IMAGE", ), + "filename_prefix": ("STRING", {"default": "ComfyUI"})}, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, + } + + RETURN_TYPES = () + FUNCTION = "save_images" + + OUTPUT_NODE = True + + CATEGORY = "image" + + def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): + filename_prefix += self.prefix_append + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) + results = list() + for image in images: + i = 255. * image.cpu().numpy() + img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) + metadata = None + if not args.disable_metadata: + metadata = PngInfo() + if prompt is not None: + metadata.add_text("prompt", json.dumps(prompt)) + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata.add_text(x, json.dumps(extra_pnginfo[x])) + + file = f"{filename}_{counter:05}_.png" + img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level) + results.append({ + "filename": file, + "subfolder": subfolder, + "type": self.type + }) + counter += 1 + + return { "ui": { "images": results } } + +class PreviewImage(SaveImage): + def __init__(self): + self.output_dir = folder_paths.get_temp_directory() + self.type = "temp" + self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) + self.compress_level = 1 + + @classmethod + def INPUT_TYPES(s): + return {"required": + {"images": ("IMAGE", ), }, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, + } + +class LoadImage: + @classmethod + def INPUT_TYPES(s): + input_dir = folder_paths.get_input_directory() + files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))] + return {"required": + {"image": (sorted(files), {"image_upload": True})}, + } + + CATEGORY = "image" + + RETURN_TYPES = ("IMAGE", "MASK") + FUNCTION = "load_image" + def load_image(self, image): + image_path = folder_paths.get_annotated_filepath(image) + img = Image.open(image_path) + output_images = [] + output_masks = [] + for i in ImageSequence.Iterator(img): + i = ImageOps.exif_transpose(i) + if i.mode == 'I': + i = i.point(lambda i: i * (1 / 255)) + image = i.convert("RGB") + image = np.array(image).astype(np.float32) / 255.0 + image = torch.from_numpy(image)[None,] + if 'A' in i.getbands(): + mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 + mask = 1. - torch.from_numpy(mask) + else: + mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") + output_images.append(image) + output_masks.append(mask.unsqueeze(0)) + + if len(output_images) > 1: + output_image = torch.cat(output_images, dim=0) + output_mask = torch.cat(output_masks, dim=0) + else: + output_image = output_images[0] + output_mask = output_masks[0] + + return (output_image, output_mask) + + @classmethod + def IS_CHANGED(s, image): + image_path = folder_paths.get_annotated_filepath(image) + m = hashlib.sha256() + with open(image_path, 'rb') as f: + m.update(f.read()) + return m.digest().hex() + + @classmethod + def VALIDATE_INPUTS(s, image): + if not folder_paths.exists_annotated_filepath(image): + return "Invalid image file: {}".format(image) + + return True + +class LoadImageMask: + _color_channels = ["alpha", "red", "green", "blue"] + @classmethod + def INPUT_TYPES(s): + input_dir = folder_paths.get_input_directory() + files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))] + return {"required": + {"image": (sorted(files), {"image_upload": True}), + "channel": (s._color_channels, ), } + } + + CATEGORY = "mask" + + RETURN_TYPES = ("MASK",) + FUNCTION = "load_image" + def load_image(self, image, channel): + image_path = folder_paths.get_annotated_filepath(image) + i = Image.open(image_path) + i = ImageOps.exif_transpose(i) + if i.getbands() != ("R", "G", "B", "A"): + if i.mode == 'I': + i = i.point(lambda i: i * (1 / 255)) + i = i.convert("RGBA") + mask = None + c = channel[0].upper() + if c in i.getbands(): + mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0 + mask = torch.from_numpy(mask) + if c == 'A': + mask = 1. - mask + else: + mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") + return (mask.unsqueeze(0),) + + @classmethod + def IS_CHANGED(s, image, channel): + image_path = folder_paths.get_annotated_filepath(image) + m = hashlib.sha256() + with open(image_path, 'rb') as f: + m.update(f.read()) + return m.digest().hex() + + @classmethod + def VALIDATE_INPUTS(s, image): + if not folder_paths.exists_annotated_filepath(image): + return "Invalid image file: {}".format(image) + + return True + +class ImageScale: + upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + crop_methods = ["disabled", "center"] + + @classmethod + def INPUT_TYPES(s): + return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,), + "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + "crop": (s.crop_methods,)}} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "upscale" + + CATEGORY = "image/upscaling" + + def upscale(self, image, upscale_method, width, height, crop): + if width == 0 and height == 0: + s = image + else: + samples = image.movedim(-1,1) + + if width == 0: + width = max(1, round(samples.shape[3] * height / samples.shape[2])) + elif height == 0: + height = max(1, round(samples.shape[2] * width / samples.shape[3])) + + s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop) + s = s.movedim(1,-1) + return (s,) + +class ImageScaleBy: + upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + + @classmethod + def INPUT_TYPES(s): + return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,), + "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "upscale" + + CATEGORY = "image/upscaling" + + def upscale(self, image, upscale_method, scale_by): + samples = image.movedim(-1,1) + width = round(samples.shape[3] * scale_by) + height = round(samples.shape[2] * scale_by) + s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") + s = s.movedim(1,-1) + return (s,) + +class ImageInvert: + + @classmethod + def INPUT_TYPES(s): + return {"required": { "image": ("IMAGE",)}} + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "invert" + + CATEGORY = "image" + + def invert(self, image): + s = 1.0 - image + return (s,) + +class ImageBatch: + + @classmethod + def INPUT_TYPES(s): + return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}} + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "batch" + + CATEGORY = "image" + + def batch(self, image1, image2): + if image1.shape[1:] != image2.shape[1:]: + image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1) + s = torch.cat((image1, image2), dim=0) + return (s,) + +class EmptyImage: + def __init__(self, device="cpu"): + self.device = device + + @classmethod + def INPUT_TYPES(s): + return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), + "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), + "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), + "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}), + }} + RETURN_TYPES = ("IMAGE",) + FUNCTION = "generate" + + CATEGORY = "image" + + def generate(self, width, height, batch_size=1, color=0): + r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF) + g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF) + b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF) + return (torch.cat((r, g, b), dim=-1), ) + +class ImagePadForOutpaint: + + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image": ("IMAGE",), + "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), + "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}), + } + } + + RETURN_TYPES = ("IMAGE", "MASK") + FUNCTION = "expand_image" + + CATEGORY = "image" + + def expand_image(self, image, left, top, right, bottom, feathering): + d1, d2, d3, d4 = image.size() + + new_image = torch.ones( + (d1, d2 + top + bottom, d3 + left + right, d4), + dtype=torch.float32, + ) * 0.5 + + new_image[:, top:top + d2, left:left + d3, :] = image + + mask = torch.ones( + (d2 + top + bottom, d3 + left + right), + dtype=torch.float32, + ) + + t = torch.zeros( + (d2, d3), + dtype=torch.float32 + ) + + if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3: + + for i in range(d2): + for j in range(d3): + dt = i if top != 0 else d2 + db = d2 - i if bottom != 0 else d2 + + dl = j if left != 0 else d3 + dr = d3 - j if right != 0 else d3 + + d = min(dt, db, dl, dr) + + if d >= feathering: + continue + + v = (feathering - d) / feathering + + t[i, j] = v * v + + mask[top:top + d2, left:left + d3] = t + + return (new_image, mask) + + +NODE_CLASS_MAPPINGS = { + "KSampler": KSampler, + "CheckpointLoaderSimple": CheckpointLoaderSimple, + "CLIPTextEncode": CLIPTextEncode, + "CLIPSetLastLayer": CLIPSetLastLayer, + "VAEDecode": VAEDecode, + "VAEEncode": VAEEncode, + "VAEEncodeForInpaint": VAEEncodeForInpaint, + "VAELoader": VAELoader, + "EmptyLatentImage": EmptyLatentImage, + "MagicAlbum3DGaussianNoise": MagicAlbum3DGaussianNoise, + "LatentUpscale": LatentUpscale, + "LatentUpscaleBy": LatentUpscaleBy, + "LatentFromBatch": LatentFromBatch, + "RepeatLatentBatch": RepeatLatentBatch, + "SaveImage": SaveImage, + "PreviewImage": PreviewImage, + "LoadImage": LoadImage, + "LoadImageMask": LoadImageMask, + "ImageScale": ImageScale, + "ImageScaleBy": ImageScaleBy, + "ImageInvert": ImageInvert, + "ImageBatch": ImageBatch, + "ImagePadForOutpaint": ImagePadForOutpaint, + "EmptyImage": EmptyImage, + "ConditioningAverage": ConditioningAverage , + "ConditioningCombine": ConditioningCombine, + "ConditioningConcat": ConditioningConcat, + "ConditioningSetArea": ConditioningSetArea, + "ConditioningSetAreaPercentage": ConditioningSetAreaPercentage, + "ConditioningSetAreaStrength": ConditioningSetAreaStrength, + "ConditioningSetMask": ConditioningSetMask, + "KSamplerAdvanced": KSamplerAdvanced, + "SetLatentNoiseMask": SetLatentNoiseMask, + "LatentComposite": LatentComposite, + "LatentBlend": LatentBlend, + "LatentRotate": LatentRotate, + "LatentFlip": LatentFlip, + "LatentCrop": LatentCrop, + "LoraLoader": LoraLoader, + "CLIPLoader": CLIPLoader, + "UNETLoader": UNETLoader, + "DualCLIPLoader": DualCLIPLoader, + "CLIPVisionEncode": CLIPVisionEncode, + "StyleModelApply": StyleModelApply, + "unCLIPConditioning": unCLIPConditioning, + "ControlNetApply": ControlNetApply, + "ControlNetApplyAdvanced": ControlNetApplyAdvanced, + "ControlNetLoader": ControlNetLoader, + "DiffControlNetLoader": DiffControlNetLoader, + "StyleModelLoader": StyleModelLoader, + "CLIPVisionLoader": CLIPVisionLoader, + "VAEDecodeTiled": VAEDecodeTiled, + "VAEEncodeTiled": VAEEncodeTiled, + "unCLIPCheckpointLoader": unCLIPCheckpointLoader, + "GLIGENLoader": GLIGENLoader, + "GLIGENTextBoxApply": GLIGENTextBoxApply, + "InpaintModelConditioning": InpaintModelConditioning, + + "CheckpointLoader": CheckpointLoader, + "DiffusersLoader": DiffusersLoader, + + "LoadLatent": LoadLatent, + "SaveLatent": SaveLatent, + + "ConditioningZeroOut": ConditioningZeroOut, + "ConditioningSetTimestepRange": ConditioningSetTimestepRange, + "LoraLoaderModelOnly": LoraLoaderModelOnly, +} + +NODE_DISPLAY_NAME_MAPPINGS = { + # Sampling + "KSampler": "KSampler", + "KSamplerAdvanced": "KSampler (Advanced)", + # Loaders + "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)", + "CheckpointLoaderSimple": "Load Checkpoint", + "VAELoader": "Load VAE", + "LoraLoader": "Load LoRA", + "CLIPLoader": "Load CLIP", + "ControlNetLoader": "Load ControlNet Model", + "DiffControlNetLoader": "Load ControlNet Model (diff)", + "StyleModelLoader": "Load Style Model", + "CLIPVisionLoader": "Load CLIP Vision", + "UpscaleModelLoader": "Load Upscale Model", + # Conditioning + "CLIPVisionEncode": "CLIP Vision Encode", + "StyleModelApply": "Apply Style Model", + "CLIPTextEncode": "CLIP Text Encode (Prompt)", + "CLIPSetLastLayer": "CLIP Set Last Layer", + "ConditioningCombine": "Conditioning (Combine)", + "ConditioningAverage ": "Conditioning (Average)", + "ConditioningConcat": "Conditioning (Concat)", + "ConditioningSetArea": "Conditioning (Set Area)", + "ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)", + "ConditioningSetMask": "Conditioning (Set Mask)", + "ControlNetApply": "Apply ControlNet", + "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)", + # Latent + "VAEEncodeForInpaint": "VAE Encode (for Inpainting)", + "SetLatentNoiseMask": "Set Latent Noise Mask", + "VAEDecode": "VAE Decode", + "VAEEncode": "VAE Encode", + "LatentRotate": "Rotate Latent", + "LatentFlip": "Flip Latent", + "LatentCrop": "Crop Latent", + "EmptyLatentImage": "Empty Latent Image", + "MagicAlbum3DGaussianNoise": "Magic Album 3D Gaussian Noise", + "LatentUpscale": "Upscale Latent", + "LatentUpscaleBy": "Upscale Latent By", + "LatentComposite": "Latent Composite", + "LatentBlend": "Latent Blend", + "LatentFromBatch" : "Latent From Batch", + "RepeatLatentBatch": "Repeat Latent Batch", + # Image + "SaveImage": "Save Image", + "PreviewImage": "Preview Image", + "LoadImage": "Load Image", + "LoadImageMask": "Load Image (as Mask)", + "ImageScale": "Upscale Image", + "ImageScaleBy": "Upscale Image By", + "ImageUpscaleWithModel": "Upscale Image (using Model)", + "ImageInvert": "Invert Image", + "ImagePadForOutpaint": "Pad Image for Outpainting", + "ImageBatch": "Batch Images", + # _for_testing + "VAEDecodeTiled": "VAE Decode (Tiled)", + "VAEEncodeTiled": "VAE Encode (Tiled)", +} + +EXTENSION_WEB_DIRS = {} + +def load_custom_node(module_path, ignore=set()): + module_name = os.path.basename(module_path) + if os.path.isfile(module_path): + sp = os.path.splitext(module_path) + module_name = sp[0] + try: + if os.path.isfile(module_path): + module_spec = importlib.util.spec_from_file_location(module_name, module_path) + module_dir = os.path.split(module_path)[0] + else: + module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py")) + module_dir = module_path + + module = importlib.util.module_from_spec(module_spec) + sys.modules[module_name] = module + module_spec.loader.exec_module(module) + + if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None: + web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY"))) + if os.path.isdir(web_dir): + EXTENSION_WEB_DIRS[module_name] = web_dir + + if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None: + for name in module.NODE_CLASS_MAPPINGS: + if name not in ignore: + NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name] + if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None: + NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS) + return True + else: + print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.") + return False + except Exception as e: + print(traceback.format_exc()) + print(f"Cannot import {module_path} module for custom nodes:", e) + return False + +def load_custom_nodes(): + base_node_names = set(NODE_CLASS_MAPPINGS.keys()) + node_paths = folder_paths.get_folder_paths("custom_nodes") + node_import_times = [] + for custom_node_path in node_paths: + possible_modules = os.listdir(os.path.realpath(custom_node_path)) + if "__pycache__" in possible_modules: + possible_modules.remove("__pycache__") + + for possible_module in possible_modules: + module_path = os.path.join(custom_node_path, possible_module) + if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue + if module_path.endswith(".disabled"): continue + time_before = time.perf_counter() + success = load_custom_node(module_path, base_node_names) + node_import_times.append((time.perf_counter() - time_before, module_path, success)) + + if len(node_import_times) > 0: + print("\nImport times for custom nodes:") + for n in sorted(node_import_times): + if n[2]: + import_message = "" + else: + import_message = " (IMPORT FAILED)" + print("{:6.1f} seconds{}:".format(n[0], import_message), n[1]) + print() + +def init_custom_nodes(): + extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras") + extras_files = [ + "nodes_latent.py", + "nodes_hypernetwork.py", + "nodes_upscale_model.py", + "nodes_post_processing.py", + "nodes_mask.py", + "nodes_compositing.py", + "nodes_rebatch.py", + "nodes_model_merging.py", + "nodes_tomesd.py", + "nodes_clip_sdxl.py", + "nodes_canny.py", + "nodes_freelunch.py", + "nodes_custom_sampler.py", + "nodes_hypertile.py", + "nodes_model_advanced.py", + "nodes_model_downscale.py", + "nodes_images.py", + "nodes_video_model.py", + "nodes_sag.py", + "nodes_perpneg.py", + "nodes_stable3d.py", + "nodes_sdupscale.py", + "nodes_photomaker.py", + ] + + for node_file in extras_files: + load_custom_node(os.path.join(extras_dir, node_file)) + + load_custom_nodes() diff --git a/notebooks/comfyui_colab.ipynb b/notebooks/comfyui_colab.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..ec83265b42cf88125c0c6c646df5986395a96c77 --- /dev/null +++ b/notebooks/comfyui_colab.ipynb @@ -0,0 +1,329 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "aaaaaaaaaa" + }, + "source": [ + "Git clone the repo and install the requirements. (ignore the pip errors about protobuf)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bbbbbbbbbb" + }, + "outputs": [], + "source": [ + "#@title Environment Setup\n", + "\n", + "from pathlib import Path\n", + "\n", + "OPTIONS = {}\n", + "\n", + "USE_GOOGLE_DRIVE = False #@param {type:\"boolean\"}\n", + "UPDATE_COMFY_UI = True #@param {type:\"boolean\"}\n", + "WORKSPACE = 'ComfyUI'\n", + "OPTIONS['USE_GOOGLE_DRIVE'] = USE_GOOGLE_DRIVE\n", + "OPTIONS['UPDATE_COMFY_UI'] = UPDATE_COMFY_UI\n", + "\n", + "if OPTIONS['USE_GOOGLE_DRIVE']:\n", + " !echo \"Mounting Google Drive...\"\n", + " %cd /\n", + " \n", + " from google.colab import drive\n", + " drive.mount('/content/drive')\n", + "\n", + " WORKSPACE = \"/content/drive/MyDrive/ComfyUI\"\n", + " %cd /content/drive/MyDrive\n", + "\n", + "![ ! -d $WORKSPACE ] && echo -= Initial setup ComfyUI =- && git clone https://github.com/comfyanonymous/ComfyUI\n", + "%cd $WORKSPACE\n", + "\n", + "if OPTIONS['UPDATE_COMFY_UI']:\n", + " !echo -= Updating ComfyUI =-\n", + " !git pull\n", + "\n", + "!echo -= Install dependencies =-\n", + "!pip install xformers!=0.0.18 -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu121 --extra-index-url https://download.pytorch.org/whl/cu118 --extra-index-url https://download.pytorch.org/whl/cu117" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cccccccccc" + }, + "source": [ + "Download some models/checkpoints/vae or custom comfyui nodes (uncomment the commands for the ones you want)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dddddddddd" + }, + "outputs": [], + "source": [ + "# Checkpoints\n", + "\n", + "### SDXL\n", + "### I recommend these workflow examples: https://comfyanonymous.github.io/ComfyUI_examples/sdxl/\n", + "\n", + "#!wget -c https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors -P ./models/checkpoints/\n", + "#!wget -c https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0.safetensors -P ./models/checkpoints/\n", + "\n", + "# SDXL ReVision\n", + "#!wget -c https://huggingface.co/comfyanonymous/clip_vision_g/resolve/main/clip_vision_g.safetensors -P ./models/clip_vision/\n", + "\n", + "# SD1.5\n", + "!wget -c https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -P ./models/checkpoints/\n", + "\n", + "# SD2\n", + "#!wget -c https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.safetensors -P ./models/checkpoints/\n", + "#!wget -c https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.safetensors -P ./models/checkpoints/\n", + "\n", + "# Some SD1.5 anime style\n", + "#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix2/AbyssOrangeMix2_hard.safetensors -P ./models/checkpoints/\n", + "#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A1_orangemixs.safetensors -P ./models/checkpoints/\n", + "#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A3_orangemixs.safetensors -P ./models/checkpoints/\n", + "#!wget -c https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/anything-v3-fp16-pruned.safetensors -P ./models/checkpoints/\n", + "\n", + "# Waifu Diffusion 1.5 (anime style SD2.x 768-v)\n", + "#!wget -c https://huggingface.co/waifu-diffusion/wd-1-5-beta3/resolve/main/wd-illusion-fp16.safetensors -P ./models/checkpoints/\n", + "\n", + "\n", + "# unCLIP models\n", + "#!wget -c https://huggingface.co/comfyanonymous/illuminatiDiffusionV1_v11_unCLIP/resolve/main/illuminatiDiffusionV1_v11-unclip-h-fp16.safetensors -P ./models/checkpoints/\n", + "#!wget -c https://huggingface.co/comfyanonymous/wd-1.5-beta2_unCLIP/resolve/main/wd-1-5-beta2-aesthetic-unclip-h-fp16.safetensors -P ./models/checkpoints/\n", + "\n", + "\n", + "# VAE\n", + "!wget -c https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors -P ./models/vae/\n", + "#!wget -c https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/VAEs/orangemix.vae.pt -P ./models/vae/\n", + "#!wget -c https://huggingface.co/hakurei/waifu-diffusion-v1-4/resolve/main/vae/kl-f8-anime2.ckpt -P ./models/vae/\n", + "\n", + "\n", + "# Loras\n", + "#!wget -c https://civitai.com/api/download/models/10350 -O ./models/loras/theovercomer8sContrastFix_sd21768.safetensors #theovercomer8sContrastFix SD2.x 768-v\n", + "#!wget -c https://civitai.com/api/download/models/10638 -O ./models/loras/theovercomer8sContrastFix_sd15.safetensors #theovercomer8sContrastFix SD1.x\n", + "#!wget -c https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_offset_example-lora_1.0.safetensors -P ./models/loras/ #SDXL offset noise lora\n", + "\n", + "\n", + "# T2I-Adapter\n", + "#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_depth_sd14v1.pth -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_seg_sd14v1.pth -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_sketch_sd14v1.pth -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_keypose_sd14v1.pth -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_openpose_sd14v1.pth -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_color_sd14v1.pth -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_canny_sd14v1.pth -P ./models/controlnet/\n", + "\n", + "# T2I Styles Model\n", + "#!wget -c https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_style_sd14v1.pth -P ./models/style_models/\n", + "\n", + "# CLIPVision model (needed for styles model)\n", + "#!wget -c https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/pytorch_model.bin -O ./models/clip_vision/clip_vit14.bin\n", + "\n", + "\n", + "# ControlNet\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11e_sd15_ip2p_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11e_sd15_shuffle_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15_canny_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11f1p_sd15_depth_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15_inpaint_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15_lineart_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15_mlsd_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15_normalbae_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15_openpose_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15_scribble_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15_seg_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15_softedge_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15s2_lineart_anime_fp16.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11u_sd15_tile_fp16.safetensors -P ./models/controlnet/\n", + "\n", + "# ControlNet SDXL\n", + "#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-canny-rank256.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-depth-rank256.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-recolor-rank256.safetensors -P ./models/controlnet/\n", + "#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-sketch-rank256.safetensors -P ./models/controlnet/\n", + "\n", + "# Controlnet Preprocessor nodes by Fannovel16\n", + "#!cd custom_nodes && git clone https://github.com/Fannovel16/comfy_controlnet_preprocessors; cd comfy_controlnet_preprocessors && python install.py\n", + "\n", + "\n", + "# GLIGEN\n", + "#!wget -c https://huggingface.co/comfyanonymous/GLIGEN_pruned_safetensors/resolve/main/gligen_sd14_textbox_pruned_fp16.safetensors -P ./models/gligen/\n", + "\n", + "\n", + "# ESRGAN upscale model\n", + "#!wget -c https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./models/upscale_models/\n", + "#!wget -c https://huggingface.co/sberbank-ai/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth -P ./models/upscale_models/\n", + "#!wget -c https://huggingface.co/sberbank-ai/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth -P ./models/upscale_models/\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kkkkkkkkkkkkkkk" + }, + "source": [ + "### Run ComfyUI with cloudflared (Recommended Way)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jjjjjjjjjjjjjj" + }, + "outputs": [], + "source": [ + "!wget https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64.deb\n", + "!dpkg -i cloudflared-linux-amd64.deb\n", + "\n", + "import subprocess\n", + "import threading\n", + "import time\n", + "import socket\n", + "import urllib.request\n", + "\n", + "def iframe_thread(port):\n", + " while True:\n", + " time.sleep(0.5)\n", + " sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n", + " result = sock.connect_ex(('127.0.0.1', port))\n", + " if result == 0:\n", + " break\n", + " sock.close()\n", + " print(\"\\nComfyUI finished loading, trying to launch cloudflared (if it gets stuck here cloudflared is having issues)\\n\")\n", + "\n", + " p = subprocess.Popen([\"cloudflared\", \"tunnel\", \"--url\", \"http://127.0.0.1:{}\".format(port)], stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", + " for line in p.stderr:\n", + " l = line.decode()\n", + " if \"trycloudflare.com \" in l:\n", + " print(\"This is the URL to access ComfyUI:\", l[l.find(\"http\"):], end='')\n", + " #print(l, end='')\n", + "\n", + "\n", + "threading.Thread(target=iframe_thread, daemon=True, args=(8188,)).start()\n", + "\n", + "!python main.py --dont-print-server" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kkkkkkkkkkkkkk" + }, + "source": [ + "### Run ComfyUI with localtunnel\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jjjjjjjjjjjjj" + }, + "outputs": [], + "source": [ + "!npm install -g localtunnel\n", + "\n", + "import subprocess\n", + "import threading\n", + "import time\n", + "import socket\n", + "import urllib.request\n", + "\n", + "def iframe_thread(port):\n", + " while True:\n", + " time.sleep(0.5)\n", + " sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n", + " result = sock.connect_ex(('127.0.0.1', port))\n", + " if result == 0:\n", + " break\n", + " sock.close()\n", + " print(\"\\nComfyUI finished loading, trying to launch localtunnel (if it gets stuck here localtunnel is having issues)\\n\")\n", + "\n", + " print(\"The password/enpoint ip for localtunnel is:\", urllib.request.urlopen('https://ipv4.icanhazip.com').read().decode('utf8').strip(\"\\n\"))\n", + " p = subprocess.Popen([\"lt\", \"--port\", \"{}\".format(port)], stdout=subprocess.PIPE)\n", + " for line in p.stdout:\n", + " print(line.decode(), end='')\n", + "\n", + "\n", + "threading.Thread(target=iframe_thread, daemon=True, args=(8188,)).start()\n", + "\n", + "!python main.py --dont-print-server" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gggggggggg" + }, + "source": [ + "### Run ComfyUI with colab iframe (use only in case the previous way with localtunnel doesn't work)\n", + "\n", + "You should see the ui appear in an iframe. If you get a 403 error, it's your firefox settings or an extension that's messing things up.\n", + "\n", + "If you want to open it in another window use the link.\n", + "\n", + "Note that some UI features like live image previews won't work because the colab iframe blocks websockets." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hhhhhhhhhh" + }, + "outputs": [], + "source": [ + "import threading\n", + "import time\n", + "import socket\n", + "def iframe_thread(port):\n", + " while True:\n", + " time.sleep(0.5)\n", + " sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n", + " result = sock.connect_ex(('127.0.0.1', port))\n", + " if result == 0:\n", + " break\n", + " sock.close()\n", + " from google.colab import output\n", + " output.serve_kernel_port_as_iframe(port, height=1024)\n", + " print(\"to open it in a window you can open this link here:\")\n", + " output.serve_kernel_port_as_window(port)\n", + "\n", + "threading.Thread(target=iframe_thread, daemon=True, args=(8188,)).start()\n", + "\n", + "!python main.py --dont-print-server" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [] + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/output/_output_images_will_be_put_here b/output/_output_images_will_be_put_here new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/pytest.ini b/pytest.ini new file mode 100644 index 0000000000000000000000000000000000000000..b5a68e0f12fe5bb51dc66310abe0237f5b0ff5c3 --- /dev/null +++ b/pytest.ini @@ -0,0 +1,5 @@ +[pytest] +markers = + inference: mark as inference test (deselect with '-m "not inference"') +testpaths = tests +addopts = -s \ No newline at end of file diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..e804618e7156cf66e1c5437854358d0c652d9f14 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,12 @@ +torch +torchsde +torchvision +einops +transformers>=4.25.1 +safetensors>=0.3.0 +aiohttp +pyyaml +Pillow +scipy +tqdm +psutil diff --git a/script_examples/basic_api_example.py b/script_examples/basic_api_example.py new file mode 100644 index 0000000000000000000000000000000000000000..242d3175f2eecceeae70ed54d7b0d4f02ae5cfb7 --- /dev/null +++ b/script_examples/basic_api_example.py @@ -0,0 +1,120 @@ +import json +from urllib import request, parse +import random + +#This is the ComfyUI api prompt format. + +#If you want it for a specific workflow you can "enable dev mode options" +#in the settings of the UI (gear beside the "Queue Size: ") this will enable +#a button on the UI to save workflows in api format. + +#keep in mind ComfyUI is pre alpha software so this format will change a bit. + +#this is the one for the default workflow +prompt_text = """ +{ + "3": { + "class_type": "KSampler", + "inputs": { + "cfg": 8, + "denoise": 1, + "latent_image": [ + "5", + 0 + ], + "model": [ + "4", + 0 + ], + "negative": [ + "7", + 0 + ], + "positive": [ + "6", + 0 + ], + "sampler_name": "euler", + "scheduler": "normal", + "seed": 8566257, + "steps": 20 + } + }, + "4": { + "class_type": "CheckpointLoaderSimple", + "inputs": { + "ckpt_name": "v1-5-pruned-emaonly.ckpt" + } + }, + "5": { + "class_type": "EmptyLatentImage", + "inputs": { + "batch_size": 1, + "height": 512, + "width": 512 + } + }, + "6": { + "class_type": "CLIPTextEncode", + "inputs": { + "clip": [ + "4", + 1 + ], + "text": "masterpiece best quality girl" + } + }, + "7": { + "class_type": "CLIPTextEncode", + "inputs": { + "clip": [ + "4", + 1 + ], + "text": "bad hands" + } + }, + "8": { + "class_type": "VAEDecode", + "inputs": { + "samples": [ + "3", + 0 + ], + "vae": [ + "4", + 2 + ] + } + }, + "9": { + "class_type": "SaveImage", + "inputs": { + "filename_prefix": "ComfyUI", + "images": [ + "8", + 0 + ] + } + } +} +""" + +def queue_prompt(prompt): + p = {"prompt": prompt} + data = json.dumps(p).encode('utf-8') + req = request.Request("http://127.0.0.1:8188/prompt", data=data) + request.urlopen(req) + + +prompt = json.loads(prompt_text) +#set the text prompt for our positive CLIPTextEncode +prompt["6"]["inputs"]["text"] = "masterpiece best quality man" + +#set the seed for our KSampler node +prompt["3"]["inputs"]["seed"] = 5 + + +queue_prompt(prompt) + + diff --git a/script_examples/websockets_api_example.py b/script_examples/websockets_api_example.py new file mode 100644 index 0000000000000000000000000000000000000000..57a6cbd9bad181e547146e159a7969235dc9a945 --- /dev/null +++ b/script_examples/websockets_api_example.py @@ -0,0 +1,164 @@ +#This is an example that uses the websockets api to know when a prompt execution is done +#Once the prompt execution is done it downloads the images using the /history endpoint + +import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client) +import uuid +import json +import urllib.request +import urllib.parse + +server_address = "127.0.0.1:8188" +client_id = str(uuid.uuid4()) + +def queue_prompt(prompt): + p = {"prompt": prompt, "client_id": client_id} + data = json.dumps(p).encode('utf-8') + req = urllib.request.Request("http://{}/prompt".format(server_address), data=data) + return json.loads(urllib.request.urlopen(req).read()) + +def get_image(filename, subfolder, folder_type): + data = {"filename": filename, "subfolder": subfolder, "type": folder_type} + url_values = urllib.parse.urlencode(data) + with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response: + return response.read() + +def get_history(prompt_id): + with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response: + return json.loads(response.read()) + +def get_images(ws, prompt): + prompt_id = queue_prompt(prompt)['prompt_id'] + output_images = {} + while True: + out = ws.recv() + if isinstance(out, str): + message = json.loads(out) + if message['type'] == 'executing': + data = message['data'] + if data['node'] is None and data['prompt_id'] == prompt_id: + break #Execution is done + else: + continue #previews are binary data + + history = get_history(prompt_id)[prompt_id] + for o in history['outputs']: + for node_id in history['outputs']: + node_output = history['outputs'][node_id] + if 'images' in node_output: + images_output = [] + for image in node_output['images']: + image_data = get_image(image['filename'], image['subfolder'], image['type']) + images_output.append(image_data) + output_images[node_id] = images_output + + return output_images + +prompt_text = """ +{ + "3": { + "class_type": "KSampler", + "inputs": { + "cfg": 8, + "denoise": 1, + "latent_image": [ + "5", + 0 + ], + "model": [ + "4", + 0 + ], + "negative": [ + "7", + 0 + ], + "positive": [ + "6", + 0 + ], + "sampler_name": "euler", + "scheduler": "normal", + "seed": 8566257, + "steps": 20 + } + }, + "4": { + "class_type": "CheckpointLoaderSimple", + "inputs": { + "ckpt_name": "v1-5-pruned-emaonly.ckpt" + } + }, + "5": { + "class_type": "EmptyLatentImage", + "inputs": { + "batch_size": 1, + "height": 512, + "width": 512 + } + }, + "6": { + "class_type": "CLIPTextEncode", + "inputs": { + "clip": [ + "4", + 1 + ], + "text": "masterpiece best quality girl" + } + }, + "7": { + "class_type": "CLIPTextEncode", + "inputs": { + "clip": [ + "4", + 1 + ], + "text": "bad hands" + } + }, + "8": { + "class_type": "VAEDecode", + "inputs": { + "samples": [ + "3", + 0 + ], + "vae": [ + "4", + 2 + ] + } + }, + "9": { + "class_type": "SaveImage", + "inputs": { + "filename_prefix": "ComfyUI", + "images": [ + "8", + 0 + ] + } + } +} +""" + +prompt = json.loads(prompt_text) +#set the text prompt for our positive CLIPTextEncode +prompt["6"]["inputs"]["text"] = "masterpiece best quality man" + +#set the seed for our KSampler node +prompt["3"]["inputs"]["seed"] = 5 + +ws = websocket.WebSocket() +ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id)) +images = get_images(ws, prompt) + +#Commented out code to display the output images: + +# for node_id in images: +# for image_data in images[node_id]: +# from PIL import Image +# import io +# image = Image.open(io.BytesIO(image_data)) +# image.show() + diff --git a/server.py b/server.py new file mode 100644 index 0000000000000000000000000000000000000000..dca06f6fc32cace028b7efc2098ade9f3c8fdaf6 --- /dev/null +++ b/server.py @@ -0,0 +1,652 @@ +import os +import sys +import asyncio +import traceback + +import nodes +import folder_paths +import execution +import uuid +import urllib +import json +import glob +import struct +from PIL import Image, ImageOps +from PIL.PngImagePlugin import PngInfo +from io import BytesIO + +try: + import aiohttp + from aiohttp import web +except ImportError: + print("Module 'aiohttp' not installed. Please install it via:") + print("pip install aiohttp") + print("or") + print("pip install -r requirements.txt") + sys.exit() + +import mimetypes +from comfy.cli_args import args +import comfy.utils +import comfy.model_management + +from app.user_manager import UserManager + +class BinaryEventTypes: + PREVIEW_IMAGE = 1 + UNENCODED_PREVIEW_IMAGE = 2 + +async def send_socket_catch_exception(function, message): + try: + await function(message) + except (aiohttp.ClientError, aiohttp.ClientPayloadError, ConnectionResetError) as err: + print("send error:", err) + +@web.middleware +async def cache_control(request: web.Request, handler): + response: web.Response = await handler(request) + if request.path.endswith('.js') or request.path.endswith('.css'): + response.headers.setdefault('Cache-Control', 'no-cache') + return response + +def create_cors_middleware(allowed_origin: str): + @web.middleware + async def cors_middleware(request: web.Request, handler): + if request.method == "OPTIONS": + # Pre-flight request. Reply successfully: + response = web.Response() + else: + response = await handler(request) + + response.headers['Access-Control-Allow-Origin'] = allowed_origin + response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, PUT, OPTIONS' + response.headers['Access-Control-Allow-Headers'] = 'Content-Type, Authorization' + response.headers['Access-Control-Allow-Credentials'] = 'true' + return response + + return cors_middleware + +class PromptServer(): + def __init__(self, loop): + PromptServer.instance = self + + mimetypes.init() + mimetypes.types_map['.js'] = 'application/javascript; charset=utf-8' + + self.user_manager = UserManager() + self.supports = ["custom_nodes_from_web"] + self.prompt_queue = None + self.loop = loop + self.messages = asyncio.Queue() + self.number = 0 + + middlewares = [cache_control] + if args.enable_cors_header: + middlewares.append(create_cors_middleware(args.enable_cors_header)) + + max_upload_size = round(args.max_upload_size * 1024 * 1024) + self.app = web.Application(client_max_size=max_upload_size, middlewares=middlewares) + self.sockets = dict() + self.web_root = os.path.join(os.path.dirname( + os.path.realpath(__file__)), "web") + routes = web.RouteTableDef() + self.routes = routes + self.last_node_id = None + self.client_id = None + + self.on_prompt_handlers = [] + + @routes.get('/ws') + async def websocket_handler(request): + ws = web.WebSocketResponse() + await ws.prepare(request) + sid = request.rel_url.query.get('clientId', '') + if sid: + # Reusing existing session, remove old + self.sockets.pop(sid, None) + else: + sid = uuid.uuid4().hex + + self.sockets[sid] = ws + + try: + # Send initial state to the new client + await self.send("status", { "status": self.get_queue_info(), 'sid': sid }, sid) + # On reconnect if we are the currently executing client send the current node + if self.client_id == sid and self.last_node_id is not None: + await self.send("executing", { "node": self.last_node_id }, sid) + + async for msg in ws: + if msg.type == aiohttp.WSMsgType.ERROR: + print('ws connection closed with exception %s' % ws.exception()) + finally: + self.sockets.pop(sid, None) + return ws + + @routes.get("/") + async def get_root(request): + return web.FileResponse(os.path.join(self.web_root, "index.html")) + + @routes.get("/embeddings") + def get_embeddings(self): + embeddings = folder_paths.get_filename_list("embeddings") + return web.json_response(list(map(lambda a: os.path.splitext(a)[0], embeddings))) + + @routes.get("/extensions") + async def get_extensions(request): + files = glob.glob(os.path.join( + glob.escape(self.web_root), 'extensions/**/*.js'), recursive=True) + + extensions = list(map(lambda f: "/" + os.path.relpath(f, self.web_root).replace("\\", "/"), files)) + + for name, dir in nodes.EXTENSION_WEB_DIRS.items(): + files = glob.glob(os.path.join(glob.escape(dir), '**/*.js'), recursive=True) + extensions.extend(list(map(lambda f: "/extensions/" + urllib.parse.quote( + name) + "/" + os.path.relpath(f, dir).replace("\\", "/"), files))) + + return web.json_response(extensions) + + def get_dir_by_type(dir_type): + if dir_type is None: + dir_type = "input" + + if dir_type == "input": + type_dir = folder_paths.get_input_directory() + elif dir_type == "temp": + type_dir = folder_paths.get_temp_directory() + elif dir_type == "output": + type_dir = folder_paths.get_output_directory() + + return type_dir, dir_type + + def image_upload(post, image_save_function=None): + image = post.get("image") + overwrite = post.get("overwrite") + + image_upload_type = post.get("type") + upload_dir, image_upload_type = get_dir_by_type(image_upload_type) + + if image and image.file: + filename = image.filename + if not filename: + return web.Response(status=400) + + subfolder = post.get("subfolder", "") + full_output_folder = os.path.join(upload_dir, os.path.normpath(subfolder)) + filepath = os.path.abspath(os.path.join(full_output_folder, filename)) + + if os.path.commonpath((upload_dir, filepath)) != upload_dir: + return web.Response(status=400) + + if not os.path.exists(full_output_folder): + os.makedirs(full_output_folder) + + split = os.path.splitext(filename) + + if overwrite is not None and (overwrite == "true" or overwrite == "1"): + pass + else: + i = 1 + while os.path.exists(filepath): + filename = f"{split[0]} ({i}){split[1]}" + filepath = os.path.join(full_output_folder, filename) + i += 1 + + if image_save_function is not None: + image_save_function(image, post, filepath) + else: + with open(filepath, "wb") as f: + f.write(image.file.read()) + + return web.json_response({"name" : filename, "subfolder": subfolder, "type": image_upload_type}) + else: + return web.Response(status=400) + + @routes.post("/upload/image") + async def upload_image(request): + post = await request.post() + return image_upload(post) + + + @routes.post("/upload/mask") + async def upload_mask(request): + post = await request.post() + + def image_save_function(image, post, filepath): + original_ref = json.loads(post.get("original_ref")) + filename, output_dir = folder_paths.annotated_filepath(original_ref['filename']) + + # validation for security: prevent accessing arbitrary path + if filename[0] == '/' or '..' in filename: + return web.Response(status=400) + + if output_dir is None: + type = original_ref.get("type", "output") + output_dir = folder_paths.get_directory_by_type(type) + + if output_dir is None: + return web.Response(status=400) + + if original_ref.get("subfolder", "") != "": + full_output_dir = os.path.join(output_dir, original_ref["subfolder"]) + if os.path.commonpath((os.path.abspath(full_output_dir), output_dir)) != output_dir: + return web.Response(status=403) + output_dir = full_output_dir + + file = os.path.join(output_dir, filename) + + if os.path.isfile(file): + with Image.open(file) as original_pil: + metadata = PngInfo() + if hasattr(original_pil,'text'): + for key in original_pil.text: + metadata.add_text(key, original_pil.text[key]) + original_pil = original_pil.convert('RGBA') + mask_pil = Image.open(image.file).convert('RGBA') + + # alpha copy + new_alpha = mask_pil.getchannel('A') + original_pil.putalpha(new_alpha) + original_pil.save(filepath, compress_level=4, pnginfo=metadata) + + return image_upload(post, image_save_function) + + @routes.get("/view") + async def view_image(request): + if "filename" in request.rel_url.query: + filename = request.rel_url.query["filename"] + filename,output_dir = folder_paths.annotated_filepath(filename) + + # validation for security: prevent accessing arbitrary path + if filename[0] == '/' or '..' in filename: + return web.Response(status=400) + + if output_dir is None: + type = request.rel_url.query.get("type", "output") + output_dir = folder_paths.get_directory_by_type(type) + + if output_dir is None: + return web.Response(status=400) + + if "subfolder" in request.rel_url.query: + full_output_dir = os.path.join(output_dir, request.rel_url.query["subfolder"]) + if os.path.commonpath((os.path.abspath(full_output_dir), output_dir)) != output_dir: + return web.Response(status=403) + output_dir = full_output_dir + + filename = os.path.basename(filename) + file = os.path.join(output_dir, filename) + + if os.path.isfile(file): + if 'preview' in request.rel_url.query: + with Image.open(file) as img: + preview_info = request.rel_url.query['preview'].split(';') + image_format = preview_info[0] + if image_format not in ['webp', 'jpeg'] or 'a' in request.rel_url.query.get('channel', ''): + image_format = 'webp' + + quality = 90 + if preview_info[-1].isdigit(): + quality = int(preview_info[-1]) + + buffer = BytesIO() + if image_format in ['jpeg'] or request.rel_url.query.get('channel', '') == 'rgb': + img = img.convert("RGB") + img.save(buffer, format=image_format, quality=quality) + buffer.seek(0) + + return web.Response(body=buffer.read(), content_type=f'image/{image_format}', + headers={"Content-Disposition": f"filename=\"{filename}\""}) + + if 'channel' not in request.rel_url.query: + channel = 'rgba' + else: + channel = request.rel_url.query["channel"] + + if channel == 'rgb': + with Image.open(file) as img: + if img.mode == "RGBA": + r, g, b, a = img.split() + new_img = Image.merge('RGB', (r, g, b)) + else: + new_img = img.convert("RGB") + + buffer = BytesIO() + new_img.save(buffer, format='PNG') + buffer.seek(0) + + return web.Response(body=buffer.read(), content_type='image/png', + headers={"Content-Disposition": f"filename=\"{filename}\""}) + + elif channel == 'a': + with Image.open(file) as img: + if img.mode == "RGBA": + _, _, _, a = img.split() + else: + a = Image.new('L', img.size, 255) + + # alpha img + alpha_img = Image.new('RGBA', img.size) + alpha_img.putalpha(a) + alpha_buffer = BytesIO() + alpha_img.save(alpha_buffer, format='PNG') + alpha_buffer.seek(0) + + return web.Response(body=alpha_buffer.read(), content_type='image/png', + headers={"Content-Disposition": f"filename=\"{filename}\""}) + else: + return web.FileResponse(file, headers={"Content-Disposition": f"filename=\"{filename}\""}) + + return web.Response(status=404) + + @routes.get("/view_metadata/{folder_name}") + async def view_metadata(request): + folder_name = request.match_info.get("folder_name", None) + if folder_name is None: + return web.Response(status=404) + if not "filename" in request.rel_url.query: + return web.Response(status=404) + + filename = request.rel_url.query["filename"] + if not filename.endswith(".safetensors"): + return web.Response(status=404) + + safetensors_path = folder_paths.get_full_path(folder_name, filename) + if safetensors_path is None: + return web.Response(status=404) + out = comfy.utils.safetensors_header(safetensors_path, max_size=1024*1024) + if out is None: + return web.Response(status=404) + dt = json.loads(out) + if not "__metadata__" in dt: + return web.Response(status=404) + return web.json_response(dt["__metadata__"]) + + @routes.get("/system_stats") + async def get_queue(request): + device = comfy.model_management.get_torch_device() + device_name = comfy.model_management.get_torch_device_name(device) + vram_total, torch_vram_total = comfy.model_management.get_total_memory(device, torch_total_too=True) + vram_free, torch_vram_free = comfy.model_management.get_free_memory(device, torch_free_too=True) + system_stats = { + "system": { + "os": os.name, + "python_version": sys.version, + "embedded_python": os.path.split(os.path.split(sys.executable)[0])[1] == "python_embeded" + }, + "devices": [ + { + "name": device_name, + "type": device.type, + "index": device.index, + "vram_total": vram_total, + "vram_free": vram_free, + "torch_vram_total": torch_vram_total, + "torch_vram_free": torch_vram_free, + } + ] + } + return web.json_response(system_stats) + + @routes.get("/prompt") + async def get_prompt(request): + return web.json_response(self.get_queue_info()) + + def node_info(node_class): + obj_class = nodes.NODE_CLASS_MAPPINGS[node_class] + info = {} + info['input'] = obj_class.INPUT_TYPES() + info['output'] = obj_class.RETURN_TYPES + info['output_is_list'] = obj_class.OUTPUT_IS_LIST if hasattr(obj_class, 'OUTPUT_IS_LIST') else [False] * len(obj_class.RETURN_TYPES) + info['output_name'] = obj_class.RETURN_NAMES if hasattr(obj_class, 'RETURN_NAMES') else info['output'] + info['name'] = node_class + info['display_name'] = nodes.NODE_DISPLAY_NAME_MAPPINGS[node_class] if node_class in nodes.NODE_DISPLAY_NAME_MAPPINGS.keys() else node_class + info['description'] = obj_class.DESCRIPTION if hasattr(obj_class,'DESCRIPTION') else '' + info['category'] = 'sd' + if hasattr(obj_class, 'OUTPUT_NODE') and obj_class.OUTPUT_NODE == True: + info['output_node'] = True + else: + info['output_node'] = False + + if hasattr(obj_class, 'CATEGORY'): + info['category'] = obj_class.CATEGORY + return info + + @routes.get("/object_info") + async def get_object_info(request): + out = {} + for x in nodes.NODE_CLASS_MAPPINGS: + try: + out[x] = node_info(x) + except Exception as e: + print(f"[ERROR] An error occurred while retrieving information for the '{x}' node.", file=sys.stderr) + traceback.print_exc() + return web.json_response(out) + + @routes.get("/object_info/{node_class}") + async def get_object_info_node(request): + node_class = request.match_info.get("node_class", None) + out = {} + if (node_class is not None) and (node_class in nodes.NODE_CLASS_MAPPINGS): + out[node_class] = node_info(node_class) + return web.json_response(out) + + @routes.get("/history") + async def get_history(request): + max_items = request.rel_url.query.get("max_items", None) + if max_items is not None: + max_items = int(max_items) + return web.json_response(self.prompt_queue.get_history(max_items=max_items)) + + @routes.get("/history/{prompt_id}") + async def get_history(request): + prompt_id = request.match_info.get("prompt_id", None) + return web.json_response(self.prompt_queue.get_history(prompt_id=prompt_id)) + + @routes.get("/queue") + async def get_queue(request): + queue_info = {} + current_queue = self.prompt_queue.get_current_queue() + queue_info['queue_running'] = current_queue[0] + queue_info['queue_pending'] = current_queue[1] + return web.json_response(queue_info) + + @routes.post("/prompt") + async def post_prompt(request): + print("got prompt") + resp_code = 200 + out_string = "" + json_data = await request.json() + json_data = self.trigger_on_prompt(json_data) + + if "number" in json_data: + number = float(json_data['number']) + else: + number = self.number + if "front" in json_data: + if json_data['front']: + number = -number + + self.number += 1 + + if "prompt" in json_data: + prompt = json_data["prompt"] + valid = execution.validate_prompt(prompt) + extra_data = {} + if "extra_data" in json_data: + extra_data = json_data["extra_data"] + + if "client_id" in json_data: + extra_data["client_id"] = json_data["client_id"] + if valid[0]: + prompt_id = str(uuid.uuid4()) + outputs_to_execute = valid[2] + self.prompt_queue.put((number, prompt_id, prompt, extra_data, outputs_to_execute)) + response = {"prompt_id": prompt_id, "number": number, "node_errors": valid[3]} + return web.json_response(response) + else: + print("invalid prompt:", valid[1]) + return web.json_response({"error": valid[1], "node_errors": valid[3]}, status=400) + else: + return web.json_response({"error": "no prompt", "node_errors": []}, status=400) + + @routes.post("/queue") + async def post_queue(request): + json_data = await request.json() + if "clear" in json_data: + if json_data["clear"]: + self.prompt_queue.wipe_queue() + if "delete" in json_data: + to_delete = json_data['delete'] + for id_to_delete in to_delete: + delete_func = lambda a: a[1] == id_to_delete + self.prompt_queue.delete_queue_item(delete_func) + + return web.Response(status=200) + + @routes.post("/interrupt") + async def post_interrupt(request): + nodes.interrupt_processing() + return web.Response(status=200) + + @routes.post("/free") + async def post_free(request): + json_data = await request.json() + unload_models = json_data.get("unload_models", False) + free_memory = json_data.get("free_memory", False) + if unload_models: + self.prompt_queue.set_flag("unload_models", unload_models) + if free_memory: + self.prompt_queue.set_flag("free_memory", free_memory) + return web.Response(status=200) + + @routes.post("/history") + async def post_history(request): + json_data = await request.json() + if "clear" in json_data: + if json_data["clear"]: + self.prompt_queue.wipe_history() + if "delete" in json_data: + to_delete = json_data['delete'] + for id_to_delete in to_delete: + self.prompt_queue.delete_history_item(id_to_delete) + + return web.Response(status=200) + + def add_routes(self): + self.user_manager.add_routes(self.routes) + self.app.add_routes(self.routes) + + for name, dir in nodes.EXTENSION_WEB_DIRS.items(): + self.app.add_routes([ + web.static('/extensions/' + urllib.parse.quote(name), dir, follow_symlinks=True), + ]) + + self.app.add_routes([ + web.static('/', self.web_root, follow_symlinks=True), + ]) + + def get_queue_info(self): + prompt_info = {} + exec_info = {} + exec_info['queue_remaining'] = self.prompt_queue.get_tasks_remaining() + prompt_info['exec_info'] = exec_info + return prompt_info + + async def send(self, event, data, sid=None): + if event == BinaryEventTypes.UNENCODED_PREVIEW_IMAGE: + await self.send_image(data, sid=sid) + elif isinstance(data, (bytes, bytearray)): + await self.send_bytes(event, data, sid) + else: + await self.send_json(event, data, sid) + + def encode_bytes(self, event, data): + if not isinstance(event, int): + raise RuntimeError(f"Binary event types must be integers, got {event}") + + packed = struct.pack(">I", event) + message = bytearray(packed) + message.extend(data) + return message + + async def send_image(self, image_data, sid=None): + image_type = image_data[0] + image = image_data[1] + max_size = image_data[2] + if max_size is not None: + if hasattr(Image, 'Resampling'): + resampling = Image.Resampling.BILINEAR + else: + resampling = Image.ANTIALIAS + + image = ImageOps.contain(image, (max_size, max_size), resampling) + type_num = 1 + if image_type == "JPEG": + type_num = 1 + elif image_type == "PNG": + type_num = 2 + + bytesIO = BytesIO() + header = struct.pack(">I", type_num) + bytesIO.write(header) + image.save(bytesIO, format=image_type, quality=95, compress_level=1) + preview_bytes = bytesIO.getvalue() + await self.send_bytes(BinaryEventTypes.PREVIEW_IMAGE, preview_bytes, sid=sid) + + async def send_bytes(self, event, data, sid=None): + message = self.encode_bytes(event, data) + + if sid is None: + sockets = list(self.sockets.values()) + for ws in sockets: + await send_socket_catch_exception(ws.send_bytes, message) + elif sid in self.sockets: + await send_socket_catch_exception(self.sockets[sid].send_bytes, message) + + async def send_json(self, event, data, sid=None): + message = {"type": event, "data": data} + + if sid is None: + sockets = list(self.sockets.values()) + for ws in sockets: + await send_socket_catch_exception(ws.send_json, message) + elif sid in self.sockets: + await send_socket_catch_exception(self.sockets[sid].send_json, message) + + def send_sync(self, event, data, sid=None): + self.loop.call_soon_threadsafe( + self.messages.put_nowait, (event, data, sid)) + + def queue_updated(self): + self.send_sync("status", { "status": self.get_queue_info() }) + + async def publish_loop(self): + while True: + msg = await self.messages.get() + await self.send(*msg) + + async def start(self, address, port, verbose=True, call_on_start=None): + runner = web.AppRunner(self.app, access_log=None) + await runner.setup() + site = web.TCPSite(runner, address, port) + await site.start() + + if verbose: + print("Starting server\n") + print("To see the GUI go to: http://{}:{}".format(address, port)) + if call_on_start is not None: + call_on_start(address, port) + + def add_on_prompt_handler(self, handler): + self.on_prompt_handlers.append(handler) + + def trigger_on_prompt(self, json_data): + for handler in self.on_prompt_handlers: + try: + json_data = handler(json_data) + except Exception as e: + print(f"[ERROR] An error occurred during the on_prompt_handler processing") + traceback.print_exc() + + return json_data diff --git a/tests-ui/.DS_Store b/tests-ui/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..762860f311278130e0b53a249367510d3f6fc0bd Binary files /dev/null and b/tests-ui/.DS_Store differ diff --git a/tests-ui/.gitignore b/tests-ui/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..b512c09d476623ff4bf8d0d63c29b784925dbdf8 --- /dev/null +++ b/tests-ui/.gitignore @@ -0,0 +1 @@ +node_modules \ No newline at end of file diff --git a/tests-ui/afterSetup.js b/tests-ui/afterSetup.js new file mode 100644 index 0000000000000000000000000000000000000000..983f3af643cda02096668e4ac092c3f252214ab8 --- /dev/null +++ b/tests-ui/afterSetup.js @@ -0,0 +1,9 @@ +const { start } = require("./utils"); +const lg = require("./utils/litegraph"); + +// Load things once per test file before to ensure its all warmed up for the tests +beforeAll(async () => { + lg.setup(global); + await start({ resetEnv: true }); + lg.teardown(global); +}); diff --git a/tests-ui/babel.config.json b/tests-ui/babel.config.json new file mode 100644 index 0000000000000000000000000000000000000000..f27d6c397e56f6f6c9745d1e98c0a98c060e4f72 --- /dev/null +++ b/tests-ui/babel.config.json @@ -0,0 +1,4 @@ +{ + "presets": ["@babel/preset-env"], + "plugins": ["babel-plugin-transform-import-meta"] +} diff --git a/tests-ui/globalSetup.js b/tests-ui/globalSetup.js new file mode 100644 index 0000000000000000000000000000000000000000..b9d97f58a96f90b3b7f7fc66b15183edcc0837ab --- /dev/null +++ b/tests-ui/globalSetup.js @@ -0,0 +1,14 @@ +module.exports = async function () { + global.ResizeObserver = class ResizeObserver { + observe() {} + unobserve() {} + disconnect() {} + }; + + const { nop } = require("./utils/nopProxy"); + global.enableWebGLCanvas = nop; + + HTMLCanvasElement.prototype.getContext = nop; + + localStorage["Comfy.Settings.Comfy.Logging.Enabled"] = "false"; +}; diff --git a/tests-ui/jest.config.js b/tests-ui/jest.config.js new file mode 100644 index 0000000000000000000000000000000000000000..86fff50574b099dca3365e19e4e5bb48454ed80d --- /dev/null +++ b/tests-ui/jest.config.js @@ -0,0 +1,11 @@ +/** @type {import('jest').Config} */ +const config = { + testEnvironment: "jsdom", + setupFiles: ["./globalSetup.js"], + setupFilesAfterEnv: ["./afterSetup.js"], + clearMocks: true, + resetModules: true, + testTimeout: 10000 +}; + +module.exports = config; diff --git a/tests-ui/package-lock.json b/tests-ui/package-lock.json new file mode 100644 index 0000000000000000000000000000000000000000..0f409ca2484f0f985620634e795fbabdac2a09b9 --- /dev/null +++ b/tests-ui/package-lock.json @@ -0,0 +1,5586 @@ +{ + "name": "comfui-tests", + "version": "1.0.0", + "lockfileVersion": 3, + "requires": true, + "packages": { + "": { + "name": "comfui-tests", + "version": "1.0.0", + "license": "GPL-3.0", + "devDependencies": { + "@babel/preset-env": "^7.22.20", + "@types/jest": "^29.5.5", + "babel-plugin-transform-import-meta": "^2.2.1", + "jest": "^29.7.0", + "jest-environment-jsdom": "^29.7.0" + } + }, + "node_modules/@ampproject/remapping": { + "version": "2.2.1", + "resolved": "https://registry.npmjs.org/@ampproject/remapping/-/remapping-2.2.1.tgz", + "integrity": "sha512-lFMjJTrFL3j7L9yBxwYfCq2k6qqwHyzuUl/XBnif78PWTJYyL/dfowQHWE3sp6U6ZzqWiiIZnpTMO96zhkjwtg==", + "dev": true, + "dependencies": { + "@jridgewell/gen-mapping": "^0.3.0", + "@jridgewell/trace-mapping": "^0.3.9" + }, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@babel/code-frame": { + "version": "7.22.13", + "resolved": "https://registry.npmjs.org/@babel/code-frame/-/code-frame-7.22.13.tgz", + "integrity": "sha512-XktuhWlJ5g+3TJXc5upd9Ks1HutSArik6jf2eAjYFyIOf4ej3RN+184cZbzDvbPnuTJIUhPKKJE3cIsYTiAT3w==", + "dev": true, + "dependencies": { + "@babel/highlight": "^7.22.13", + "chalk": "^2.4.2" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/code-frame/node_modules/ansi-styles": { + "version": "3.2.1", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz", + "integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==", + "dev": true, + "dependencies": { + "color-convert": "^1.9.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/code-frame/node_modules/chalk": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz", + "integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==", + "dev": true, + "dependencies": { + "ansi-styles": "^3.2.1", + "escape-string-regexp": "^1.0.5", + "supports-color": "^5.3.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/code-frame/node_modules/color-convert": { + "version": "1.9.3", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz", + "integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==", + "dev": true, + "dependencies": { + "color-name": "1.1.3" + } + }, + "node_modules/@babel/code-frame/node_modules/color-name": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz", + "integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw==", + "dev": true + }, + "node_modules/@babel/code-frame/node_modules/escape-string-regexp": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz", + "integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==", + "dev": true, + "engines": { + "node": ">=0.8.0" + } + }, + "node_modules/@babel/code-frame/node_modules/has-flag": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz", + "integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/code-frame/node_modules/supports-color": { + "version": "5.5.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz", + "integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==", + "dev": true, + "dependencies": { + "has-flag": "^3.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/compat-data": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/compat-data/-/compat-data-7.22.20.tgz", + "integrity": "sha512-BQYjKbpXjoXwFW5jGqiizJQQT/aC7pFm9Ok1OWssonuguICi264lbgMzRp2ZMmRSlfkX6DsWDDcsrctK8Rwfiw==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/core": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/core/-/core-7.23.0.tgz", + "integrity": "sha512-97z/ju/Jy1rZmDxybphrBuI+jtJjFVoz7Mr9yUQVVVi+DNZE333uFQeMOqcCIy1x3WYBIbWftUSLmbNXNT7qFQ==", + "dev": true, + "dependencies": { + "@ampproject/remapping": "^2.2.0", + "@babel/code-frame": "^7.22.13", + "@babel/generator": "^7.23.0", + "@babel/helper-compilation-targets": "^7.22.15", + "@babel/helper-module-transforms": "^7.23.0", + "@babel/helpers": "^7.23.0", + "@babel/parser": "^7.23.0", + "@babel/template": "^7.22.15", + "@babel/traverse": "^7.23.0", + "@babel/types": "^7.23.0", + "convert-source-map": "^2.0.0", + "debug": "^4.1.0", + "gensync": "^1.0.0-beta.2", + "json5": "^2.2.3", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/babel" + } + }, + "node_modules/@babel/generator": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/generator/-/generator-7.23.0.tgz", + "integrity": "sha512-lN85QRR+5IbYrMWM6Y4pE/noaQtg4pNiqeNGX60eqOfo6gtEj6uw/JagelB8vVztSd7R6M5n1+PQkDbHbBRU4g==", + "dev": true, + "dependencies": { + "@babel/types": "^7.23.0", + "@jridgewell/gen-mapping": "^0.3.2", + "@jridgewell/trace-mapping": "^0.3.17", + "jsesc": "^2.5.1" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-annotate-as-pure": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-annotate-as-pure/-/helper-annotate-as-pure-7.22.5.tgz", + "integrity": "sha512-LvBTxu8bQSQkcyKOU+a1btnNFQ1dMAd0R6PyW3arXes06F6QLWLIrd681bxRPIXlrMGR3XYnW9JyML7dP3qgxg==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-builder-binary-assignment-operator-visitor": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-builder-binary-assignment-operator-visitor/-/helper-builder-binary-assignment-operator-visitor-7.22.15.tgz", + "integrity": "sha512-QkBXwGgaoC2GtGZRoma6kv7Szfv06khvhFav67ZExau2RaXzy8MpHSMO2PNoP2XtmQphJQRHFfg77Bq731Yizw==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.15" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-compilation-targets": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-compilation-targets/-/helper-compilation-targets-7.22.15.tgz", + "integrity": "sha512-y6EEzULok0Qvz8yyLkCvVX+02ic+By2UdOhylwUOvOn9dvYc9mKICJuuU1n1XBI02YWsNsnrY1kc6DVbjcXbtw==", + "dev": true, + "dependencies": { + "@babel/compat-data": "^7.22.9", + "@babel/helper-validator-option": "^7.22.15", + "browserslist": "^4.21.9", + "lru-cache": "^5.1.1", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-create-class-features-plugin": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-create-class-features-plugin/-/helper-create-class-features-plugin-7.22.15.tgz", + "integrity": "sha512-jKkwA59IXcvSaiK2UN45kKwSC9o+KuoXsBDvHvU/7BecYIp8GQ2UwrVvFgJASUT+hBnwJx6MhvMCuMzwZZ7jlg==", + "dev": true, + "dependencies": { + "@babel/helper-annotate-as-pure": "^7.22.5", + "@babel/helper-environment-visitor": "^7.22.5", + "@babel/helper-function-name": "^7.22.5", + "@babel/helper-member-expression-to-functions": "^7.22.15", + "@babel/helper-optimise-call-expression": "^7.22.5", + "@babel/helper-replace-supers": "^7.22.9", + "@babel/helper-skip-transparent-expression-wrappers": "^7.22.5", + "@babel/helper-split-export-declaration": "^7.22.6", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-create-regexp-features-plugin": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-create-regexp-features-plugin/-/helper-create-regexp-features-plugin-7.22.15.tgz", + "integrity": "sha512-29FkPLFjn4TPEa3RE7GpW+qbE8tlsu3jntNYNfcGsc49LphF1PQIiD+vMZ1z1xVOKt+93khA9tc2JBs3kBjA7w==", + "dev": true, + "dependencies": { + "@babel/helper-annotate-as-pure": "^7.22.5", + "regexpu-core": "^5.3.1", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-define-polyfill-provider": { + "version": "0.4.2", + "resolved": "https://registry.npmjs.org/@babel/helper-define-polyfill-provider/-/helper-define-polyfill-provider-0.4.2.tgz", + "integrity": "sha512-k0qnnOqHn5dK9pZpfD5XXZ9SojAITdCKRn2Lp6rnDGzIbaP0rHyMPk/4wsSxVBVz4RfN0q6VpXWP2pDGIoQ7hw==", + "dev": true, + "dependencies": { + "@babel/helper-compilation-targets": "^7.22.6", + "@babel/helper-plugin-utils": "^7.22.5", + "debug": "^4.1.1", + "lodash.debounce": "^4.0.8", + "resolve": "^1.14.2" + }, + "peerDependencies": { + "@babel/core": "^7.4.0 || ^8.0.0-0 <8.0.0" + } + }, + "node_modules/@babel/helper-environment-visitor": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/helper-environment-visitor/-/helper-environment-visitor-7.22.20.tgz", + "integrity": "sha512-zfedSIzFhat/gFhWfHtgWvlec0nqB9YEIVrpuwjruLlXfUSnA8cJB0miHKwqDnQ7d32aKo2xt88/xZptwxbfhA==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-function-name": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/helper-function-name/-/helper-function-name-7.23.0.tgz", + "integrity": "sha512-OErEqsrxjZTJciZ4Oo+eoZqeW9UIiOcuYKRJA4ZAgV9myA+pOXhhmpfNCKjEH/auVfEYVFJ6y1Tc4r0eIApqiw==", + "dev": true, + "dependencies": { + "@babel/template": "^7.22.15", + "@babel/types": "^7.23.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-hoist-variables": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-hoist-variables/-/helper-hoist-variables-7.22.5.tgz", + "integrity": "sha512-wGjk9QZVzvknA6yKIUURb8zY3grXCcOZt+/7Wcy8O2uctxhplmUPkOdlgoNhmdVee2c92JXbf1xpMtVNbfoxRw==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-member-expression-to-functions": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/helper-member-expression-to-functions/-/helper-member-expression-to-functions-7.23.0.tgz", + "integrity": "sha512-6gfrPwh7OuT6gZyJZvd6WbTfrqAo7vm4xCzAXOusKqq/vWdKXphTpj5klHKNmRUU6/QRGlBsyU9mAIPaWHlqJA==", + "dev": true, + "dependencies": { + "@babel/types": "^7.23.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-module-imports": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-module-imports/-/helper-module-imports-7.22.15.tgz", + "integrity": "sha512-0pYVBnDKZO2fnSPCrgM/6WMc7eS20Fbok+0r88fp+YtWVLZrp4CkafFGIp+W0VKw4a22sgebPT99y+FDNMdP4w==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.15" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-module-transforms": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/helper-module-transforms/-/helper-module-transforms-7.23.0.tgz", + "integrity": "sha512-WhDWw1tdrlT0gMgUJSlX0IQvoO1eN279zrAUbVB+KpV2c3Tylz8+GnKOLllCS6Z/iZQEyVYxhZVUdPTqs2YYPw==", + "dev": true, + "dependencies": { + "@babel/helper-environment-visitor": "^7.22.20", + "@babel/helper-module-imports": "^7.22.15", + "@babel/helper-simple-access": "^7.22.5", + "@babel/helper-split-export-declaration": "^7.22.6", + "@babel/helper-validator-identifier": "^7.22.20" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-optimise-call-expression": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-optimise-call-expression/-/helper-optimise-call-expression-7.22.5.tgz", + "integrity": "sha512-HBwaojN0xFRx4yIvpwGqxiV2tUfl7401jlok564NgB9EHS1y6QT17FmKWm4ztqjeVdXLuC4fSvHc5ePpQjoTbw==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-plugin-utils": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-plugin-utils/-/helper-plugin-utils-7.22.5.tgz", + "integrity": "sha512-uLls06UVKgFG9QD4OeFYLEGteMIAa5kpTPcFL28yuCIIzsf6ZyKZMllKVOCZFhiZ5ptnwX4mtKdWCBE/uT4amg==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-remap-async-to-generator": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/helper-remap-async-to-generator/-/helper-remap-async-to-generator-7.22.20.tgz", + "integrity": "sha512-pBGyV4uBqOns+0UvhsTO8qgl8hO89PmiDYv+/COyp1aeMcmfrfruz+/nCMFiYyFF/Knn0yfrC85ZzNFjembFTw==", + "dev": true, + "dependencies": { + "@babel/helper-annotate-as-pure": "^7.22.5", + "@babel/helper-environment-visitor": "^7.22.20", + "@babel/helper-wrap-function": "^7.22.20" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-replace-supers": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/helper-replace-supers/-/helper-replace-supers-7.22.20.tgz", + "integrity": "sha512-qsW0In3dbwQUbK8kejJ4R7IHVGwHJlV6lpG6UA7a9hSa2YEiAib+N1T2kr6PEeUT+Fl7najmSOS6SmAwCHK6Tw==", + "dev": true, + "dependencies": { + "@babel/helper-environment-visitor": "^7.22.20", + "@babel/helper-member-expression-to-functions": "^7.22.15", + "@babel/helper-optimise-call-expression": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-simple-access": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-simple-access/-/helper-simple-access-7.22.5.tgz", + "integrity": "sha512-n0H99E/K+Bika3++WNL17POvo4rKWZ7lZEp1Q+fStVbUi8nxPQEBOlTmCOxW/0JsS56SKKQ+ojAe2pHKJHN35w==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-skip-transparent-expression-wrappers": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-skip-transparent-expression-wrappers/-/helper-skip-transparent-expression-wrappers-7.22.5.tgz", + "integrity": "sha512-tK14r66JZKiC43p8Ki33yLBVJKlQDFoA8GYN67lWCDCqoL6EMMSuM9b+Iff2jHaM/RRFYl7K+iiru7hbRqNx8Q==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-split-export-declaration": { + "version": "7.22.6", + "resolved": "https://registry.npmjs.org/@babel/helper-split-export-declaration/-/helper-split-export-declaration-7.22.6.tgz", + "integrity": "sha512-AsUnxuLhRYsisFiaJwvp1QF+I3KjD5FOxut14q/GzovUe6orHLesW2C7d754kRm53h5gqrz6sFl6sxc4BVtE/g==", + "dev": true, + "dependencies": { + "@babel/types": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-string-parser": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/helper-string-parser/-/helper-string-parser-7.22.5.tgz", + "integrity": "sha512-mM4COjgZox8U+JcXQwPijIZLElkgEpO5rsERVDJTc2qfCDfERyob6k5WegS14SX18IIjv+XD+GrqNumY5JRCDw==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-validator-identifier": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/helper-validator-identifier/-/helper-validator-identifier-7.22.20.tgz", + "integrity": "sha512-Y4OZ+ytlatR8AI+8KZfKuL5urKp7qey08ha31L8b3BwewJAoJamTzyvxPR/5D+KkdJCGPq/+8TukHBlY10FX9A==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-validator-option": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/helper-validator-option/-/helper-validator-option-7.22.15.tgz", + "integrity": "sha512-bMn7RmyFjY/mdECUbgn9eoSY4vqvacUnS9i9vGAGttgFWesO6B4CYWA7XlpbWgBt71iv/hfbPlynohStqnu5hA==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-wrap-function": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/helper-wrap-function/-/helper-wrap-function-7.22.20.tgz", + "integrity": "sha512-pms/UwkOpnQe/PDAEdV/d7dVCoBbB+R4FvYoHGZz+4VPcg7RtYy2KP7S2lbuWM6FCSgob5wshfGESbC/hzNXZw==", + "dev": true, + "dependencies": { + "@babel/helper-function-name": "^7.22.5", + "@babel/template": "^7.22.15", + "@babel/types": "^7.22.19" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helpers": { + "version": "7.23.1", + "resolved": "https://registry.npmjs.org/@babel/helpers/-/helpers-7.23.1.tgz", + "integrity": "sha512-chNpneuK18yW5Oxsr+t553UZzzAs3aZnFm4bxhebsNTeshrC95yA7l5yl7GBAG+JG1rF0F7zzD2EixK9mWSDoA==", + "dev": true, + "dependencies": { + "@babel/template": "^7.22.15", + "@babel/traverse": "^7.23.0", + "@babel/types": "^7.23.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/highlight": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/highlight/-/highlight-7.22.20.tgz", + "integrity": "sha512-dkdMCN3py0+ksCgYmGG8jKeGA/8Tk+gJwSYYlFGxG5lmhfKNoAy004YpLxpS1W2J8m/EK2Ew+yOs9pVRwO89mg==", + "dev": true, + "dependencies": { + "@babel/helper-validator-identifier": "^7.22.20", + "chalk": "^2.4.2", + "js-tokens": "^4.0.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/highlight/node_modules/ansi-styles": { + "version": "3.2.1", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz", + "integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==", + "dev": true, + "dependencies": { + "color-convert": "^1.9.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/highlight/node_modules/chalk": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz", + "integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==", + "dev": true, + "dependencies": { + "ansi-styles": "^3.2.1", + "escape-string-regexp": "^1.0.5", + "supports-color": "^5.3.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/highlight/node_modules/color-convert": { + "version": "1.9.3", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz", + "integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==", + "dev": true, + "dependencies": { + "color-name": "1.1.3" + } + }, + "node_modules/@babel/highlight/node_modules/color-name": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz", + "integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw==", + "dev": true + }, + "node_modules/@babel/highlight/node_modules/escape-string-regexp": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz", + "integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==", + "dev": true, + "engines": { + "node": ">=0.8.0" + } + }, + "node_modules/@babel/highlight/node_modules/has-flag": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz", + "integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/highlight/node_modules/supports-color": { + "version": "5.5.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz", + "integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==", + "dev": true, + "dependencies": { + "has-flag": "^3.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/parser": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/parser/-/parser-7.23.0.tgz", + "integrity": "sha512-vvPKKdMemU85V9WE/l5wZEmImpCtLqbnTvqDS2U1fJ96KrxoW7KrXhNsNCblQlg8Ck4b85yxdTyelsMUgFUXiw==", + "dev": true, + "bin": { + "parser": "bin/babel-parser.js" + }, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression/-/plugin-bugfix-safari-id-destructuring-collision-in-function-expression-7.22.15.tgz", + "integrity": "sha512-FB9iYlz7rURmRJyXRKEnalYPPdn87H5no108cyuQQyMwlpJ2SJtpIUBI27kdTin956pz+LPypkPVPUTlxOmrsg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining/-/plugin-bugfix-v8-spread-parameters-in-optional-chaining-7.22.15.tgz", + "integrity": "sha512-Hyph9LseGvAeeXzikV88bczhsrLrIZqDPxO+sSmAunMPaGrBGhfMWzCPYTtiW9t+HzSE2wtV8e5cc5P6r1xMDQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-skip-transparent-expression-wrappers": "^7.22.5", + "@babel/plugin-transform-optional-chaining": "^7.22.15" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.13.0" + } + }, + "node_modules/@babel/plugin-proposal-private-property-in-object": { + "version": "7.21.0-placeholder-for-preset-env.2", + "resolved": "https://registry.npmjs.org/@babel/plugin-proposal-private-property-in-object/-/plugin-proposal-private-property-in-object-7.21.0-placeholder-for-preset-env.2.tgz", + "integrity": "sha512-SOSkfJDddaM7mak6cPEpswyTRnuRltl429hMraQEglW+OkovnCzsiszTmsrlY//qLFjCpQDFRvjdm2wA5pPm9w==", + "dev": true, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-async-generators": { + "version": "7.8.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-async-generators/-/plugin-syntax-async-generators-7.8.4.tgz", + "integrity": "sha512-tycmZxkGfZaxhMRbXlPXuVFpdWlXpir2W4AMhSJgRKzk/eDlIXOhb2LHWoLpDF7TEHylV5zNhykX6KAgHJmTNw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-bigint": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-bigint/-/plugin-syntax-bigint-7.8.3.tgz", + "integrity": "sha512-wnTnFlG+YxQm3vDxpGE57Pj0srRU4sHE/mDkt1qv2YJJSeUAec2ma4WLUnUPeKjyrfntVwe/N6dCXpU+zL3Npg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-class-properties": { + "version": "7.12.13", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-class-properties/-/plugin-syntax-class-properties-7.12.13.tgz", + "integrity": "sha512-fm4idjKla0YahUNgFNLCB0qySdsoPiZP3iQE3rky0mBUtMZ23yDJ9SJdg6dXTSDnulOVqiF3Hgr9nbXvXTQZYA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.12.13" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-class-static-block": { + "version": "7.14.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-class-static-block/-/plugin-syntax-class-static-block-7.14.5.tgz", + "integrity": "sha512-b+YyPmr6ldyNnM6sqYeMWE+bgJcJpO6yS4QD7ymxgH34GBPNDM/THBh8iunyvKIZztiwLH4CJZ0RxTk9emgpjw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-dynamic-import": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-dynamic-import/-/plugin-syntax-dynamic-import-7.8.3.tgz", + "integrity": "sha512-5gdGbFon+PszYzqs83S3E5mpi7/y/8M9eC90MRTZfduQOYW76ig6SOSPNe41IG5LoP3FGBn2N0RjVDSQiS94kQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-export-namespace-from": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-export-namespace-from/-/plugin-syntax-export-namespace-from-7.8.3.tgz", + "integrity": "sha512-MXf5laXo6c1IbEbegDmzGPwGNTsHZmEy6QGznu5Sh2UCWvueywb2ee+CCE4zQiZstxU9BMoQO9i6zUFSY0Kj0Q==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.3" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-import-assertions": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-import-assertions/-/plugin-syntax-import-assertions-7.22.5.tgz", + "integrity": "sha512-rdV97N7KqsRzeNGoWUOK6yUsWarLjE5Su/Snk9IYPU9CwkWHs4t+rTGOvffTR8XGkJMTAdLfO0xVnXm8wugIJg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-import-attributes": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-import-attributes/-/plugin-syntax-import-attributes-7.22.5.tgz", + "integrity": "sha512-KwvoWDeNKPETmozyFE0P2rOLqh39EoQHNjqizrI5B8Vt0ZNS7M56s7dAiAqbYfiAYOuIzIh96z3iR2ktgu3tEg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-import-meta": { + "version": "7.10.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-import-meta/-/plugin-syntax-import-meta-7.10.4.tgz", + "integrity": "sha512-Yqfm+XDx0+Prh3VSeEQCPU81yC+JWZ2pDPFSS4ZdpfZhp4MkFMaDC1UqseovEKwSUpnIL7+vK+Clp7bfh0iD7g==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.10.4" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-json-strings": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-json-strings/-/plugin-syntax-json-strings-7.8.3.tgz", + "integrity": "sha512-lY6kdGpWHvjoe2vk4WrAapEuBR69EMxZl+RoGRhrFGNYVK8mOPAW8VfbT/ZgrFbXlDNiiaxQnAtgVCZ6jv30EA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-jsx": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-jsx/-/plugin-syntax-jsx-7.22.5.tgz", + "integrity": "sha512-gvyP4hZrgrs/wWMaocvxZ44Hw0b3W8Pe+cMxc8V1ULQ07oh8VNbIRaoD1LRZVTvD+0nieDKjfgKg89sD7rrKrg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-logical-assignment-operators": { + "version": "7.10.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-logical-assignment-operators/-/plugin-syntax-logical-assignment-operators-7.10.4.tgz", + "integrity": "sha512-d8waShlpFDinQ5MtvGU9xDAOzKH47+FFoney2baFIoMr952hKOLp1HR7VszoZvOsV/4+RRszNY7D17ba0te0ig==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.10.4" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-nullish-coalescing-operator": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-nullish-coalescing-operator/-/plugin-syntax-nullish-coalescing-operator-7.8.3.tgz", + "integrity": "sha512-aSff4zPII1u2QD7y+F8oDsz19ew4IGEJg9SVW+bqwpwtfFleiQDMdzA/R+UlWDzfnHFCxxleFT0PMIrR36XLNQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-numeric-separator": { + "version": "7.10.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-numeric-separator/-/plugin-syntax-numeric-separator-7.10.4.tgz", + "integrity": "sha512-9H6YdfkcK/uOnY/K7/aA2xpzaAgkQn37yzWUMRK7OaPOqOpGS1+n0H5hxT9AUw9EsSjPW8SVyMJwYRtWs3X3ug==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.10.4" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-object-rest-spread": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-object-rest-spread/-/plugin-syntax-object-rest-spread-7.8.3.tgz", + "integrity": "sha512-XoqMijGZb9y3y2XskN+P1wUGiVwWZ5JmoDRwx5+3GmEplNyVM2s2Dg8ILFQm8rWM48orGy5YpI5Bl8U1y7ydlA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-optional-catch-binding": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-optional-catch-binding/-/plugin-syntax-optional-catch-binding-7.8.3.tgz", + "integrity": "sha512-6VPD0Pc1lpTqw0aKoeRTMiB+kWhAoT24PA+ksWSBrFtl5SIRVpZlwN3NNPQjehA2E/91FV3RjLWoVTglWcSV3Q==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-optional-chaining": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-optional-chaining/-/plugin-syntax-optional-chaining-7.8.3.tgz", + "integrity": "sha512-KoK9ErH1MBlCPxV0VANkXW2/dw4vlbGDrFgz8bmUsBGYkFRcbRwMh6cIJubdPrkxRwuGdtCk0v/wPTKbQgBjkg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-private-property-in-object": { + "version": "7.14.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-private-property-in-object/-/plugin-syntax-private-property-in-object-7.14.5.tgz", + "integrity": "sha512-0wVnp9dxJ72ZUJDV27ZfbSj6iHLoytYZmh3rFcxNnvsJF3ktkzLDZPy/mA17HGsaQT3/DQsWYX1f1QGWkCoVUg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-top-level-await": { + "version": "7.14.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-top-level-await/-/plugin-syntax-top-level-await-7.14.5.tgz", + "integrity": "sha512-hx++upLv5U1rgYfwe1xBQUhRmU41NEvpUvrp8jkrSCdvGSnM5/qdRMtylJ6PG5OFkBaHkbTAKTnd3/YyESRHFw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-typescript": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-typescript/-/plugin-syntax-typescript-7.22.5.tgz", + "integrity": "sha512-1mS2o03i7t1c6VzH6fdQ3OA8tcEIxwG18zIPRp+UY1Ihv6W+XZzBCVxExF9upussPXJ0xE9XRHwMoNs1ep/nRQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-unicode-sets-regex": { + "version": "7.18.6", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-unicode-sets-regex/-/plugin-syntax-unicode-sets-regex-7.18.6.tgz", + "integrity": "sha512-727YkEAPwSIQTv5im8QHz3upqp92JTWhidIC81Tdx4VJYIte/VndKf1qKrfnnhPLiPghStWfvC/iFaMCQu7Nqg==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.18.6", + "@babel/helper-plugin-utils": "^7.18.6" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/plugin-transform-arrow-functions": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-arrow-functions/-/plugin-transform-arrow-functions-7.22.5.tgz", + "integrity": "sha512-26lTNXoVRdAnsaDXPpvCNUq+OVWEVC6bx7Vvz9rC53F2bagUWW4u4ii2+h8Fejfh7RYqPxn+libeFBBck9muEw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-async-generator-functions": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-async-generator-functions/-/plugin-transform-async-generator-functions-7.22.15.tgz", + "integrity": "sha512-jBm1Es25Y+tVoTi5rfd5t1KLmL8ogLKpXszboWOTTtGFGz2RKnQe2yn7HbZ+kb/B8N0FVSGQo874NSlOU1T4+w==", + "dev": true, + "dependencies": { + "@babel/helper-environment-visitor": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-remap-async-to-generator": "^7.22.9", + "@babel/plugin-syntax-async-generators": "^7.8.4" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-async-to-generator": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-async-to-generator/-/plugin-transform-async-to-generator-7.22.5.tgz", + "integrity": "sha512-b1A8D8ZzE/VhNDoV1MSJTnpKkCG5bJo+19R4o4oy03zM7ws8yEMK755j61Dc3EyvdysbqH5BOOTquJ7ZX9C6vQ==", + "dev": true, + "dependencies": { + "@babel/helper-module-imports": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-remap-async-to-generator": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-block-scoped-functions": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-block-scoped-functions/-/plugin-transform-block-scoped-functions-7.22.5.tgz", + "integrity": "sha512-tdXZ2UdknEKQWKJP1KMNmuF5Lx3MymtMN/pvA+p/VEkhK8jVcQ1fzSy8KM9qRYhAf2/lV33hoMPKI/xaI9sADA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-block-scoping": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-block-scoping/-/plugin-transform-block-scoping-7.23.0.tgz", + "integrity": "sha512-cOsrbmIOXmf+5YbL99/S49Y3j46k/T16b9ml8bm9lP6N9US5iQ2yBK7gpui1pg0V/WMcXdkfKbTb7HXq9u+v4g==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-class-properties": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-class-properties/-/plugin-transform-class-properties-7.22.5.tgz", + "integrity": "sha512-nDkQ0NfkOhPTq8YCLiWNxp1+f9fCobEjCb0n8WdbNUBc4IB5V7P1QnX9IjpSoquKrXF5SKojHleVNs2vGeHCHQ==", + "dev": true, + "dependencies": { + "@babel/helper-create-class-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-class-static-block": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-class-static-block/-/plugin-transform-class-static-block-7.22.11.tgz", + "integrity": "sha512-GMM8gGmqI7guS/llMFk1bJDkKfn3v3C4KHK9Yg1ey5qcHcOlKb0QvcMrgzvxo+T03/4szNh5lghY+fEC98Kq9g==", + "dev": true, + "dependencies": { + "@babel/helper-create-class-features-plugin": "^7.22.11", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-class-static-block": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.12.0" + } + }, + "node_modules/@babel/plugin-transform-classes": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-classes/-/plugin-transform-classes-7.22.15.tgz", + "integrity": "sha512-VbbC3PGjBdE0wAWDdHM9G8Gm977pnYI0XpqMd6LrKISj8/DJXEsWqgRuTYaNE9Bv0JGhTZUzHDlMk18IpOuoqw==", + "dev": true, + "dependencies": { + "@babel/helper-annotate-as-pure": "^7.22.5", + "@babel/helper-compilation-targets": "^7.22.15", + "@babel/helper-environment-visitor": "^7.22.5", + "@babel/helper-function-name": "^7.22.5", + "@babel/helper-optimise-call-expression": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-replace-supers": "^7.22.9", + "@babel/helper-split-export-declaration": "^7.22.6", + "globals": "^11.1.0" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-computed-properties": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-computed-properties/-/plugin-transform-computed-properties-7.22.5.tgz", + "integrity": "sha512-4GHWBgRf0krxPX+AaPtgBAlTgTeZmqDynokHOX7aqqAB4tHs3U2Y02zH6ETFdLZGcg9UQSD1WCmkVrE9ErHeOg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/template": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-destructuring": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-destructuring/-/plugin-transform-destructuring-7.23.0.tgz", + "integrity": "sha512-vaMdgNXFkYrB+8lbgniSYWHsgqK5gjaMNcc84bMIOMRLH0L9AqYq3hwMdvnyqj1OPqea8UtjPEuS/DCenah1wg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-dotall-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-dotall-regex/-/plugin-transform-dotall-regex-7.22.5.tgz", + "integrity": "sha512-5/Yk9QxCQCl+sOIB1WelKnVRxTJDSAIxtJLL2/pqL14ZVlbH0fUQUZa/T5/UnQtBNgghR7mfB8ERBKyKPCi7Vw==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-duplicate-keys": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-duplicate-keys/-/plugin-transform-duplicate-keys-7.22.5.tgz", + "integrity": "sha512-dEnYD+9BBgld5VBXHnF/DbYGp3fqGMsyxKbtD1mDyIA7AkTSpKXFhCVuj/oQVOoALfBs77DudA0BE4d5mcpmqw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-dynamic-import": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-dynamic-import/-/plugin-transform-dynamic-import-7.22.11.tgz", + "integrity": "sha512-g/21plo58sfteWjaO0ZNVb+uEOkJNjAaHhbejrnBmu011l/eNDScmkbjCC3l4FKb10ViaGU4aOkFznSu2zRHgA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-dynamic-import": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-exponentiation-operator": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-exponentiation-operator/-/plugin-transform-exponentiation-operator-7.22.5.tgz", + "integrity": "sha512-vIpJFNM/FjZ4rh1myqIya9jXwrwwgFRHPjT3DkUA9ZLHuzox8jiXkOLvwm1H+PQIP3CqfC++WPKeuDi0Sjdj1g==", + "dev": true, + "dependencies": { + "@babel/helper-builder-binary-assignment-operator-visitor": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-export-namespace-from": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-export-namespace-from/-/plugin-transform-export-namespace-from-7.22.11.tgz", + "integrity": "sha512-xa7aad7q7OiT8oNZ1mU7NrISjlSkVdMbNxn9IuLZyL9AJEhs1Apba3I+u5riX1dIkdptP5EKDG5XDPByWxtehw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-export-namespace-from": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-for-of": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-for-of/-/plugin-transform-for-of-7.22.15.tgz", + "integrity": "sha512-me6VGeHsx30+xh9fbDLLPi0J1HzmeIIyenoOQHuw2D4m2SAU3NrspX5XxJLBpqn5yrLzrlw2Iy3RA//Bx27iOA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-function-name": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-function-name/-/plugin-transform-function-name-7.22.5.tgz", + "integrity": "sha512-UIzQNMS0p0HHiQm3oelztj+ECwFnj+ZRV4KnguvlsD2of1whUeM6o7wGNj6oLwcDoAXQ8gEqfgC24D+VdIcevg==", + "dev": true, + "dependencies": { + "@babel/helper-compilation-targets": "^7.22.5", + "@babel/helper-function-name": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-json-strings": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-json-strings/-/plugin-transform-json-strings-7.22.11.tgz", + "integrity": "sha512-CxT5tCqpA9/jXFlme9xIBCc5RPtdDq3JpkkhgHQqtDdiTnTI0jtZ0QzXhr5DILeYifDPp2wvY2ad+7+hLMW5Pw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-json-strings": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-literals": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-literals/-/plugin-transform-literals-7.22.5.tgz", + "integrity": "sha512-fTLj4D79M+mepcw3dgFBTIDYpbcB9Sm0bpm4ppXPaO+U+PKFFyV9MGRvS0gvGw62sd10kT5lRMKXAADb9pWy8g==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-logical-assignment-operators": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-logical-assignment-operators/-/plugin-transform-logical-assignment-operators-7.22.11.tgz", + "integrity": "sha512-qQwRTP4+6xFCDV5k7gZBF3C31K34ut0tbEcTKxlX/0KXxm9GLcO14p570aWxFvVzx6QAfPgq7gaeIHXJC8LswQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-logical-assignment-operators": "^7.10.4" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-member-expression-literals": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-member-expression-literals/-/plugin-transform-member-expression-literals-7.22.5.tgz", + "integrity": "sha512-RZEdkNtzzYCFl9SE9ATaUMTj2hqMb4StarOJLrZRbqqU4HSBE7UlBw9WBWQiDzrJZJdUWiMTVDI6Gv/8DPvfew==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-modules-amd": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-modules-amd/-/plugin-transform-modules-amd-7.23.0.tgz", + "integrity": "sha512-xWT5gefv2HGSm4QHtgc1sYPbseOyf+FFDo2JbpE25GWl5BqTGO9IMwTYJRoIdjsF85GE+VegHxSCUt5EvoYTAw==", + "dev": true, + "dependencies": { + "@babel/helper-module-transforms": "^7.23.0", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-modules-commonjs": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-modules-commonjs/-/plugin-transform-modules-commonjs-7.23.0.tgz", + "integrity": "sha512-32Xzss14/UVc7k9g775yMIvkVK8xwKE0DPdP5JTapr3+Z9w4tzeOuLNY6BXDQR6BdnzIlXnCGAzsk/ICHBLVWQ==", + "dev": true, + "dependencies": { + "@babel/helper-module-transforms": "^7.23.0", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-simple-access": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-modules-systemjs": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-modules-systemjs/-/plugin-transform-modules-systemjs-7.23.0.tgz", + "integrity": "sha512-qBej6ctXZD2f+DhlOC9yO47yEYgUh5CZNz/aBoH4j/3NOlRfJXJbY7xDQCqQVf9KbrqGzIWER1f23doHGrIHFg==", + "dev": true, + "dependencies": { + "@babel/helper-hoist-variables": "^7.22.5", + "@babel/helper-module-transforms": "^7.23.0", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-validator-identifier": "^7.22.20" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-modules-umd": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-modules-umd/-/plugin-transform-modules-umd-7.22.5.tgz", + "integrity": "sha512-+S6kzefN/E1vkSsKx8kmQuqeQsvCKCd1fraCM7zXm4SFoggI099Tr4G8U81+5gtMdUeMQ4ipdQffbKLX0/7dBQ==", + "dev": true, + "dependencies": { + "@babel/helper-module-transforms": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-named-capturing-groups-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-named-capturing-groups-regex/-/plugin-transform-named-capturing-groups-regex-7.22.5.tgz", + "integrity": "sha512-YgLLKmS3aUBhHaxp5hi1WJTgOUb/NCuDHzGT9z9WTt3YG+CPRhJs6nprbStx6DnWM4dh6gt7SU3sZodbZ08adQ==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/plugin-transform-new-target": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-new-target/-/plugin-transform-new-target-7.22.5.tgz", + "integrity": "sha512-AsF7K0Fx/cNKVyk3a+DW0JLo+Ua598/NxMRvxDnkpCIGFh43+h/v2xyhRUYf6oD8gE4QtL83C7zZVghMjHd+iw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-nullish-coalescing-operator": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-nullish-coalescing-operator/-/plugin-transform-nullish-coalescing-operator-7.22.11.tgz", + "integrity": "sha512-YZWOw4HxXrotb5xsjMJUDlLgcDXSfO9eCmdl1bgW4+/lAGdkjaEvOnQ4p5WKKdUgSzO39dgPl0pTnfxm0OAXcg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-nullish-coalescing-operator": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-numeric-separator": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-numeric-separator/-/plugin-transform-numeric-separator-7.22.11.tgz", + "integrity": "sha512-3dzU4QGPsILdJbASKhF/V2TVP+gJya1PsueQCxIPCEcerqF21oEcrob4mzjsp2Py/1nLfF5m+xYNMDpmA8vffg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-numeric-separator": "^7.10.4" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-object-rest-spread": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-object-rest-spread/-/plugin-transform-object-rest-spread-7.22.15.tgz", + "integrity": "sha512-fEB+I1+gAmfAyxZcX1+ZUwLeAuuf8VIg67CTznZE0MqVFumWkh8xWtn58I4dxdVf080wn7gzWoF8vndOViJe9Q==", + "dev": true, + "dependencies": { + "@babel/compat-data": "^7.22.9", + "@babel/helper-compilation-targets": "^7.22.15", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-object-rest-spread": "^7.8.3", + "@babel/plugin-transform-parameters": "^7.22.15" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-object-super": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-object-super/-/plugin-transform-object-super-7.22.5.tgz", + "integrity": "sha512-klXqyaT9trSjIUrcsYIfETAzmOEZL3cBYqOYLJxBHfMFFggmXOv+NYSX/Jbs9mzMVESw/WycLFPRx8ba/b2Ipw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-replace-supers": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-optional-catch-binding": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-optional-catch-binding/-/plugin-transform-optional-catch-binding-7.22.11.tgz", + "integrity": "sha512-rli0WxesXUeCJnMYhzAglEjLWVDF6ahb45HuprcmQuLidBJFWjNnOzssk2kuc6e33FlLaiZhG/kUIzUMWdBKaQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-optional-catch-binding": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-optional-chaining": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-optional-chaining/-/plugin-transform-optional-chaining-7.23.0.tgz", + "integrity": "sha512-sBBGXbLJjxTzLBF5rFWaikMnOGOk/BmK6vVByIdEggZ7Vn6CvWXZyRkkLFK6WE0IF8jSliyOkUN6SScFgzCM0g==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-skip-transparent-expression-wrappers": "^7.22.5", + "@babel/plugin-syntax-optional-chaining": "^7.8.3" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-parameters": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-parameters/-/plugin-transform-parameters-7.22.15.tgz", + "integrity": "sha512-hjk7qKIqhyzhhUvRT683TYQOFa/4cQKwQy7ALvTpODswN40MljzNDa0YldevS6tGbxwaEKVn502JmY0dP7qEtQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-private-methods": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-private-methods/-/plugin-transform-private-methods-7.22.5.tgz", + "integrity": "sha512-PPjh4gyrQnGe97JTalgRGMuU4icsZFnWkzicB/fUtzlKUqvsWBKEpPPfr5a2JiyirZkHxnAqkQMO5Z5B2kK3fA==", + "dev": true, + "dependencies": { + "@babel/helper-create-class-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-private-property-in-object": { + "version": "7.22.11", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-private-property-in-object/-/plugin-transform-private-property-in-object-7.22.11.tgz", + "integrity": "sha512-sSCbqZDBKHetvjSwpyWzhuHkmW5RummxJBVbYLkGkaiTOWGxml7SXt0iWa03bzxFIx7wOj3g/ILRd0RcJKBeSQ==", + "dev": true, + "dependencies": { + "@babel/helper-annotate-as-pure": "^7.22.5", + "@babel/helper-create-class-features-plugin": "^7.22.11", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/plugin-syntax-private-property-in-object": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-property-literals": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-property-literals/-/plugin-transform-property-literals-7.22.5.tgz", + "integrity": "sha512-TiOArgddK3mK/x1Qwf5hay2pxI6wCZnvQqrFSqbtg1GLl2JcNMitVH/YnqjP+M31pLUeTfzY1HAXFDnUBV30rQ==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-regenerator": { + "version": "7.22.10", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-regenerator/-/plugin-transform-regenerator-7.22.10.tgz", + "integrity": "sha512-F28b1mDt8KcT5bUyJc/U9nwzw6cV+UmTeRlXYIl2TNqMMJif0Jeey9/RQ3C4NOd2zp0/TRsDns9ttj2L523rsw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "regenerator-transform": "^0.15.2" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-reserved-words": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-reserved-words/-/plugin-transform-reserved-words-7.22.5.tgz", + "integrity": "sha512-DTtGKFRQUDm8svigJzZHzb/2xatPc6TzNvAIJ5GqOKDsGFYgAskjRulbR/vGsPKq3OPqtexnz327qYpP57RFyA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-shorthand-properties": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-shorthand-properties/-/plugin-transform-shorthand-properties-7.22.5.tgz", + "integrity": "sha512-vM4fq9IXHscXVKzDv5itkO1X52SmdFBFcMIBZ2FRn2nqVYqw6dBexUgMvAjHW+KXpPPViD/Yo3GrDEBaRC0QYA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-spread": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-spread/-/plugin-transform-spread-7.22.5.tgz", + "integrity": "sha512-5ZzDQIGyvN4w8+dMmpohL6MBo+l2G7tfC/O2Dg7/hjpgeWvUx8FzfeOKxGog9IimPa4YekaQ9PlDqTLOljkcxg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-skip-transparent-expression-wrappers": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-sticky-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-sticky-regex/-/plugin-transform-sticky-regex-7.22.5.tgz", + "integrity": "sha512-zf7LuNpHG0iEeiyCNwX4j3gDg1jgt1k3ZdXBKbZSoA3BbGQGvMiSvfbZRR3Dr3aeJe3ooWFZxOOG3IRStYp2Bw==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-template-literals": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-template-literals/-/plugin-transform-template-literals-7.22.5.tgz", + "integrity": "sha512-5ciOehRNf+EyUeewo8NkbQiUs4d6ZxiHo6BcBcnFlgiJfu16q0bQUw9Jvo0b0gBKFG1SMhDSjeKXSYuJLeFSMA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-typeof-symbol": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-typeof-symbol/-/plugin-transform-typeof-symbol-7.22.5.tgz", + "integrity": "sha512-bYkI5lMzL4kPii4HHEEChkD0rkc+nvnlR6+o/qdqR6zrm0Sv/nodmyLhlq2DO0YKLUNd2VePmPRjJXSBh9OIdA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-unicode-escapes": { + "version": "7.22.10", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-unicode-escapes/-/plugin-transform-unicode-escapes-7.22.10.tgz", + "integrity": "sha512-lRfaRKGZCBqDlRU3UIFovdp9c9mEvlylmpod0/OatICsSfuQ9YFthRo1tpTkGsklEefZdqlEFdY4A2dwTb6ohg==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-unicode-property-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-unicode-property-regex/-/plugin-transform-unicode-property-regex-7.22.5.tgz", + "integrity": "sha512-HCCIb+CbJIAE6sXn5CjFQXMwkCClcOfPCzTlilJ8cUatfzwHlWQkbtV0zD338u9dZskwvuOYTuuaMaA8J5EI5A==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-unicode-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-unicode-regex/-/plugin-transform-unicode-regex-7.22.5.tgz", + "integrity": "sha512-028laaOKptN5vHJf9/Arr/HiJekMd41hOEZYvNsrsXqJ7YPYuX2bQxh31fkZzGmq3YqHRJzYFFAVYvKfMPKqyg==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-transform-unicode-sets-regex": { + "version": "7.22.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-transform-unicode-sets-regex/-/plugin-transform-unicode-sets-regex-7.22.5.tgz", + "integrity": "sha512-lhMfi4FC15j13eKrh3DnYHjpGj6UKQHtNKTbtc1igvAhRy4+kLhV07OpLcsN0VgDEw/MjAvJO4BdMJsHwMhzCg==", + "dev": true, + "dependencies": { + "@babel/helper-create-regexp-features-plugin": "^7.22.5", + "@babel/helper-plugin-utils": "^7.22.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/preset-env": { + "version": "7.22.20", + "resolved": "https://registry.npmjs.org/@babel/preset-env/-/preset-env-7.22.20.tgz", + "integrity": "sha512-11MY04gGC4kSzlPHRfvVkNAZhUxOvm7DCJ37hPDnUENwe06npjIRAfInEMTGSb4LZK5ZgDFkv5hw0lGebHeTyg==", + "dev": true, + "dependencies": { + "@babel/compat-data": "^7.22.20", + "@babel/helper-compilation-targets": "^7.22.15", + "@babel/helper-plugin-utils": "^7.22.5", + "@babel/helper-validator-option": "^7.22.15", + "@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression": "^7.22.15", + "@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining": "^7.22.15", + "@babel/plugin-proposal-private-property-in-object": "7.21.0-placeholder-for-preset-env.2", + "@babel/plugin-syntax-async-generators": "^7.8.4", + "@babel/plugin-syntax-class-properties": "^7.12.13", + "@babel/plugin-syntax-class-static-block": "^7.14.5", + "@babel/plugin-syntax-dynamic-import": "^7.8.3", + "@babel/plugin-syntax-export-namespace-from": "^7.8.3", + "@babel/plugin-syntax-import-assertions": "^7.22.5", + "@babel/plugin-syntax-import-attributes": "^7.22.5", + "@babel/plugin-syntax-import-meta": "^7.10.4", + "@babel/plugin-syntax-json-strings": "^7.8.3", + "@babel/plugin-syntax-logical-assignment-operators": "^7.10.4", + "@babel/plugin-syntax-nullish-coalescing-operator": "^7.8.3", + "@babel/plugin-syntax-numeric-separator": "^7.10.4", + "@babel/plugin-syntax-object-rest-spread": "^7.8.3", + "@babel/plugin-syntax-optional-catch-binding": "^7.8.3", + "@babel/plugin-syntax-optional-chaining": "^7.8.3", + "@babel/plugin-syntax-private-property-in-object": "^7.14.5", + "@babel/plugin-syntax-top-level-await": "^7.14.5", + "@babel/plugin-syntax-unicode-sets-regex": "^7.18.6", + "@babel/plugin-transform-arrow-functions": "^7.22.5", + "@babel/plugin-transform-async-generator-functions": "^7.22.15", + "@babel/plugin-transform-async-to-generator": "^7.22.5", + "@babel/plugin-transform-block-scoped-functions": "^7.22.5", + "@babel/plugin-transform-block-scoping": "^7.22.15", + "@babel/plugin-transform-class-properties": "^7.22.5", + "@babel/plugin-transform-class-static-block": "^7.22.11", + "@babel/plugin-transform-classes": "^7.22.15", + "@babel/plugin-transform-computed-properties": "^7.22.5", + "@babel/plugin-transform-destructuring": "^7.22.15", + "@babel/plugin-transform-dotall-regex": "^7.22.5", + "@babel/plugin-transform-duplicate-keys": "^7.22.5", + "@babel/plugin-transform-dynamic-import": "^7.22.11", + "@babel/plugin-transform-exponentiation-operator": "^7.22.5", + "@babel/plugin-transform-export-namespace-from": "^7.22.11", + "@babel/plugin-transform-for-of": "^7.22.15", + "@babel/plugin-transform-function-name": "^7.22.5", + "@babel/plugin-transform-json-strings": "^7.22.11", + "@babel/plugin-transform-literals": "^7.22.5", + "@babel/plugin-transform-logical-assignment-operators": "^7.22.11", + "@babel/plugin-transform-member-expression-literals": "^7.22.5", + "@babel/plugin-transform-modules-amd": "^7.22.5", + "@babel/plugin-transform-modules-commonjs": "^7.22.15", + "@babel/plugin-transform-modules-systemjs": "^7.22.11", + "@babel/plugin-transform-modules-umd": "^7.22.5", + "@babel/plugin-transform-named-capturing-groups-regex": "^7.22.5", + "@babel/plugin-transform-new-target": "^7.22.5", + "@babel/plugin-transform-nullish-coalescing-operator": "^7.22.11", + "@babel/plugin-transform-numeric-separator": "^7.22.11", + "@babel/plugin-transform-object-rest-spread": "^7.22.15", + "@babel/plugin-transform-object-super": "^7.22.5", + "@babel/plugin-transform-optional-catch-binding": "^7.22.11", + "@babel/plugin-transform-optional-chaining": "^7.22.15", + "@babel/plugin-transform-parameters": "^7.22.15", + "@babel/plugin-transform-private-methods": "^7.22.5", + "@babel/plugin-transform-private-property-in-object": "^7.22.11", + "@babel/plugin-transform-property-literals": "^7.22.5", + "@babel/plugin-transform-regenerator": "^7.22.10", + "@babel/plugin-transform-reserved-words": "^7.22.5", + "@babel/plugin-transform-shorthand-properties": "^7.22.5", + "@babel/plugin-transform-spread": "^7.22.5", + "@babel/plugin-transform-sticky-regex": "^7.22.5", + "@babel/plugin-transform-template-literals": "^7.22.5", + "@babel/plugin-transform-typeof-symbol": "^7.22.5", + "@babel/plugin-transform-unicode-escapes": "^7.22.10", + "@babel/plugin-transform-unicode-property-regex": "^7.22.5", + "@babel/plugin-transform-unicode-regex": "^7.22.5", + "@babel/plugin-transform-unicode-sets-regex": "^7.22.5", + "@babel/preset-modules": "0.1.6-no-external-plugins", + "@babel/types": "^7.22.19", + "babel-plugin-polyfill-corejs2": "^0.4.5", + "babel-plugin-polyfill-corejs3": "^0.8.3", + "babel-plugin-polyfill-regenerator": "^0.5.2", + "core-js-compat": "^3.31.0", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/preset-modules": { + "version": "0.1.6-no-external-plugins", + "resolved": "https://registry.npmjs.org/@babel/preset-modules/-/preset-modules-0.1.6-no-external-plugins.tgz", + "integrity": "sha512-HrcgcIESLm9aIR842yhJ5RWan/gebQUJ6E/E5+rf0y9o6oj7w0Br+sWuL6kEQ/o/AdfvR1Je9jG18/gnpwjEyA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.0.0", + "@babel/types": "^7.4.4", + "esutils": "^2.0.2" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0 || ^8.0.0-0 <8.0.0" + } + }, + "node_modules/@babel/regjsgen": { + "version": "0.8.0", + "resolved": "https://registry.npmjs.org/@babel/regjsgen/-/regjsgen-0.8.0.tgz", + "integrity": "sha512-x/rqGMdzj+fWZvCOYForTghzbtqPDZ5gPwaoNGHdgDfF2QA/XZbCBp4Moo5scrkAMPhB7z26XM/AaHuIJdgauA==", + "dev": true + }, + "node_modules/@babel/runtime": { + "version": "7.23.1", + "resolved": "https://registry.npmjs.org/@babel/runtime/-/runtime-7.23.1.tgz", + "integrity": "sha512-hC2v6p8ZSI/W0HUzh3V8C5g+NwSKzKPtJwSpTjwl0o297GP9+ZLQSkdvHz46CM3LqyoXxq+5G9komY+eSqSO0g==", + "dev": true, + "dependencies": { + "regenerator-runtime": "^0.14.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/template": { + "version": "7.22.15", + "resolved": "https://registry.npmjs.org/@babel/template/-/template-7.22.15.tgz", + "integrity": "sha512-QPErUVm4uyJa60rkI73qneDacvdvzxshT3kksGqlGWYdOTIUOwJ7RDUL8sGqslY1uXWSL6xMFKEXDS3ox2uF0w==", + "dev": true, + "dependencies": { + "@babel/code-frame": "^7.22.13", + "@babel/parser": "^7.22.15", + "@babel/types": "^7.22.15" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/traverse": { + "version": "7.23.2", + "resolved": "https://registry.npmjs.org/@babel/traverse/-/traverse-7.23.2.tgz", + "integrity": "sha512-azpe59SQ48qG6nu2CzcMLbxUudtN+dOM9kDbUqGq3HXUJRlo7i8fvPoxQUzYgLZ4cMVmuZgm8vvBpNeRhd6XSw==", + "dev": true, + "dependencies": { + "@babel/code-frame": "^7.22.13", + "@babel/generator": "^7.23.0", + "@babel/helper-environment-visitor": "^7.22.20", + "@babel/helper-function-name": "^7.23.0", + "@babel/helper-hoist-variables": "^7.22.5", + "@babel/helper-split-export-declaration": "^7.22.6", + "@babel/parser": "^7.23.0", + "@babel/types": "^7.23.0", + "debug": "^4.1.0", + "globals": "^11.1.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/types": { + "version": "7.23.0", + "resolved": "https://registry.npmjs.org/@babel/types/-/types-7.23.0.tgz", + "integrity": "sha512-0oIyUfKoI3mSqMvsxBdclDwxXKXAUA8v/apZbc+iSyARYou1o8ZGDxbUYyLFoW2arqS2jDGqJuZvv1d/io1axg==", + "dev": true, + "dependencies": { + "@babel/helper-string-parser": "^7.22.5", + "@babel/helper-validator-identifier": "^7.22.20", + "to-fast-properties": "^2.0.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@bcoe/v8-coverage": { + "version": "0.2.3", + "resolved": "https://registry.npmjs.org/@bcoe/v8-coverage/-/v8-coverage-0.2.3.tgz", + "integrity": "sha512-0hYQ8SB4Db5zvZB4axdMHGwEaQjkZzFjQiN9LVYvIFB2nSUHW9tYpxWriPrWDASIxiaXax83REcLxuSdnGPZtw==", + "dev": true + }, + "node_modules/@istanbuljs/load-nyc-config": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/@istanbuljs/load-nyc-config/-/load-nyc-config-1.1.0.tgz", + "integrity": "sha512-VjeHSlIzpv/NyD3N0YuHfXOPDIixcA1q2ZV98wsMqcYlPmv2n3Yb2lYP9XMElnaFVXg5A7YLTeLu6V84uQDjmQ==", + "dev": true, + "dependencies": { + "camelcase": "^5.3.1", + "find-up": "^4.1.0", + "get-package-type": "^0.1.0", + "js-yaml": "^3.13.1", + "resolve-from": "^5.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/@istanbuljs/schema": { + "version": "0.1.3", + "resolved": "https://registry.npmjs.org/@istanbuljs/schema/-/schema-0.1.3.tgz", + "integrity": "sha512-ZXRY4jNvVgSVQ8DL3LTcakaAtXwTVUxE81hslsyD2AtoXW/wVob10HkOJ1X/pAlcI7D+2YoZKg5do8G/w6RYgA==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/@jest/console": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/console/-/console-29.7.0.tgz", + "integrity": "sha512-5Ni4CU7XHQi32IJ398EEP4RrB8eV09sXP2ROqD4bksHrnTree52PsxvX8tpL8LvTZ3pFzXyPbNQReSN41CAhOg==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/core": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/core/-/core-29.7.0.tgz", + "integrity": "sha512-n7aeXWKMnGtDA48y8TLWJPJmLmmZ642Ceo78cYWEpiD7FzDgmNDV/GCVRorPABdXLJZ/9wzzgZAlHjXjxDHGsg==", + "dev": true, + "dependencies": { + "@jest/console": "^29.7.0", + "@jest/reporters": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "ansi-escapes": "^4.2.1", + "chalk": "^4.0.0", + "ci-info": "^3.2.0", + "exit": "^0.1.2", + "graceful-fs": "^4.2.9", + "jest-changed-files": "^29.7.0", + "jest-config": "^29.7.0", + "jest-haste-map": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-regex-util": "^29.6.3", + "jest-resolve": "^29.7.0", + "jest-resolve-dependencies": "^29.7.0", + "jest-runner": "^29.7.0", + "jest-runtime": "^29.7.0", + "jest-snapshot": "^29.7.0", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "jest-watcher": "^29.7.0", + "micromatch": "^4.0.4", + "pretty-format": "^29.7.0", + "slash": "^3.0.0", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/@jest/environment": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-29.7.0.tgz", + "integrity": "sha512-aQIfHDq33ExsN4jP1NWGXhxgQ/wixs60gDiKO+XVMd8Mn0NWPWgc34ZQDTb2jKaUWQ7MuwoitXAsN2XVXNMpAw==", + "dev": true, + "dependencies": { + "@jest/fake-timers": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "jest-mock": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/expect": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/expect/-/expect-29.7.0.tgz", + "integrity": "sha512-8uMeAMycttpva3P1lBHB8VciS9V0XAr3GymPpipdyQXbBcuhkLQOSe8E/p92RyAdToS6ZD1tFkX+CkhoECE0dQ==", + "dev": true, + "dependencies": { + "expect": "^29.7.0", + "jest-snapshot": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/expect-utils": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/expect-utils/-/expect-utils-29.7.0.tgz", + "integrity": "sha512-GlsNBWiFQFCVi9QVSx7f5AgMeLxe9YCCs5PuP2O2LdjDAA8Jh9eX7lA1Jq/xdXw3Wb3hyvlFNfZIfcRetSzYcA==", + "dev": true, + "dependencies": { + "jest-get-type": "^29.6.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/fake-timers": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/fake-timers/-/fake-timers-29.7.0.tgz", + "integrity": "sha512-q4DH1Ha4TTFPdxLsqDXK1d3+ioSL7yL5oCMJZgDYm6i+6CygW5E5xVr/D1HdsGxjt1ZWSfUAs9OxSB/BNelWrQ==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "@sinonjs/fake-timers": "^10.0.2", + "@types/node": "*", + "jest-message-util": "^29.7.0", + "jest-mock": "^29.7.0", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/globals": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/globals/-/globals-29.7.0.tgz", + "integrity": "sha512-mpiz3dutLbkW2MNFubUGUEVLkTGiqW6yLVTA+JbP6fI6J5iL9Y0Nlg8k95pcF8ctKwCS7WVxteBs29hhfAotzQ==", + "dev": true, + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/expect": "^29.7.0", + "@jest/types": "^29.6.3", + "jest-mock": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/reporters": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/reporters/-/reporters-29.7.0.tgz", + "integrity": "sha512-DApq0KJbJOEzAFYjHADNNxAE3KbhxQB1y5Kplb5Waqw6zVbuWatSnMjE5gs8FUgEPmNsnZA3NCWl9NG0ia04Pg==", + "dev": true, + "dependencies": { + "@bcoe/v8-coverage": "^0.2.3", + "@jest/console": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@jridgewell/trace-mapping": "^0.3.18", + "@types/node": "*", + "chalk": "^4.0.0", + "collect-v8-coverage": "^1.0.0", + "exit": "^0.1.2", + "glob": "^7.1.3", + "graceful-fs": "^4.2.9", + "istanbul-lib-coverage": "^3.0.0", + "istanbul-lib-instrument": "^6.0.0", + "istanbul-lib-report": "^3.0.0", + "istanbul-lib-source-maps": "^4.0.0", + "istanbul-reports": "^3.1.3", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0", + "jest-worker": "^29.7.0", + "slash": "^3.0.0", + "string-length": "^4.0.1", + "strip-ansi": "^6.0.0", + "v8-to-istanbul": "^9.0.1" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/@jest/schemas": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/@jest/schemas/-/schemas-29.6.3.tgz", + "integrity": "sha512-mo5j5X+jIZmJQveBKeS/clAueipV7KgiX1vMgCxam1RNYiqE1w62n0/tJJnHtjW8ZHcQco5gY85jA3mi0L+nSA==", + "dev": true, + "dependencies": { + "@sinclair/typebox": "^0.27.8" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/source-map": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/@jest/source-map/-/source-map-29.6.3.tgz", + "integrity": "sha512-MHjT95QuipcPrpLM+8JMSzFx6eHp5Bm+4XeFDJlwsvVBjmKNiIAvasGK2fxz2WbGRlnvqehFbh07MMa7n3YJnw==", + "dev": true, + "dependencies": { + "@jridgewell/trace-mapping": "^0.3.18", + "callsites": "^3.0.0", + "graceful-fs": "^4.2.9" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/test-result": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/test-result/-/test-result-29.7.0.tgz", + "integrity": "sha512-Fdx+tv6x1zlkJPcWXmMDAG2HBnaR9XPSd5aDWQVsfrZmLVT3lU1cwyxLgRmXR9yrq4NBoEm9BMsfgFzTQAbJYA==", + "dev": true, + "dependencies": { + "@jest/console": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/istanbul-lib-coverage": "^2.0.0", + "collect-v8-coverage": "^1.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/test-sequencer": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/test-sequencer/-/test-sequencer-29.7.0.tgz", + "integrity": "sha512-GQwJ5WZVrKnOJuiYiAF52UNUJXgTZx1NHjFSEB0qEMmSZKAkdMoIzw/Cj6x6NF4AvV23AUqDpFzQkN/eYCYTxw==", + "dev": true, + "dependencies": { + "@jest/test-result": "^29.7.0", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/transform": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/transform/-/transform-29.7.0.tgz", + "integrity": "sha512-ok/BTPFzFKVMwO5eOHRrvnBVHdRy9IrsrW1GpMaQ9MCnilNLXQKmAX8s1YXDFaai9xJpac2ySzV0YeRRECr2Vw==", + "dev": true, + "dependencies": { + "@babel/core": "^7.11.6", + "@jest/types": "^29.6.3", + "@jridgewell/trace-mapping": "^0.3.18", + "babel-plugin-istanbul": "^6.1.1", + "chalk": "^4.0.0", + "convert-source-map": "^2.0.0", + "fast-json-stable-stringify": "^2.1.0", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "jest-regex-util": "^29.6.3", + "jest-util": "^29.7.0", + "micromatch": "^4.0.4", + "pirates": "^4.0.4", + "slash": "^3.0.0", + "write-file-atomic": "^4.0.2" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/types": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/@jest/types/-/types-29.6.3.tgz", + "integrity": "sha512-u3UPsIilWKOM3F9CXtrG8LEJmNxwoCQC/XVj4IKYXvvpx7QIi/Kg1LI5uDmDpKlac62NUtX7eLjRh+jVZcLOzw==", + "dev": true, + "dependencies": { + "@jest/schemas": "^29.6.3", + "@types/istanbul-lib-coverage": "^2.0.0", + "@types/istanbul-reports": "^3.0.0", + "@types/node": "*", + "@types/yargs": "^17.0.8", + "chalk": "^4.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jridgewell/gen-mapping": { + "version": "0.3.3", + "resolved": "https://registry.npmjs.org/@jridgewell/gen-mapping/-/gen-mapping-0.3.3.tgz", + "integrity": "sha512-HLhSWOLRi875zjjMG/r+Nv0oCW8umGb0BgEhyX3dDX3egwZtB8PqLnjz3yedt8R5StBrzcg4aBpnh8UA9D1BoQ==", + "dev": true, + "dependencies": { + "@jridgewell/set-array": "^1.0.1", + "@jridgewell/sourcemap-codec": "^1.4.10", + "@jridgewell/trace-mapping": "^0.3.9" + }, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@jridgewell/resolve-uri": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/@jridgewell/resolve-uri/-/resolve-uri-3.1.1.tgz", + "integrity": "sha512-dSYZh7HhCDtCKm4QakX0xFpsRDqjjtZf/kjI/v3T3Nwt5r8/qz/M19F9ySyOqU94SXBmeG9ttTul+YnR4LOxFA==", + "dev": true, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@jridgewell/set-array": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/@jridgewell/set-array/-/set-array-1.1.2.tgz", + "integrity": "sha512-xnkseuNADM0gt2bs+BvhO0p78Mk762YnZdsuzFV018NoG1Sj1SCQvpSqa7XUaTam5vAGasABV9qXASMKnFMwMw==", + "dev": true, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@jridgewell/sourcemap-codec": { + "version": "1.4.15", + "resolved": "https://registry.npmjs.org/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.4.15.tgz", + "integrity": "sha512-eF2rxCRulEKXHTRiDrDy6erMYWqNw4LPdQ8UQA4huuxaQsVeRPFl2oM8oDGxMFhJUWZf9McpLtJasDDZb/Bpeg==", + "dev": true + }, + "node_modules/@jridgewell/trace-mapping": { + "version": "0.3.19", + "resolved": "https://registry.npmjs.org/@jridgewell/trace-mapping/-/trace-mapping-0.3.19.tgz", + "integrity": "sha512-kf37QtfW+Hwx/buWGMPcR60iF9ziHa6r/CZJIHbmcm4+0qrXiVdxegAH0F6yddEVQ7zdkjcGCgCzUu+BcbhQxw==", + "dev": true, + "dependencies": { + "@jridgewell/resolve-uri": "^3.1.0", + "@jridgewell/sourcemap-codec": "^1.4.14" + } + }, + "node_modules/@sinclair/typebox": { + "version": "0.27.8", + "resolved": "https://registry.npmjs.org/@sinclair/typebox/-/typebox-0.27.8.tgz", + "integrity": "sha512-+Fj43pSMwJs4KRrH/938Uf+uAELIgVBmQzg/q1YG10djyfA3TnrU8N8XzqCh/okZdszqBQTZf96idMfE5lnwTA==", + "dev": true + }, + "node_modules/@sinonjs/commons": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-3.0.0.tgz", + "integrity": "sha512-jXBtWAF4vmdNmZgD5FoKsVLv3rPgDnLgPbU84LIJ3otV44vJlDRokVng5v8NFJdCf/da9legHcKaRuZs4L7faA==", + "dev": true, + "dependencies": { + "type-detect": "4.0.8" + } + }, + "node_modules/@sinonjs/fake-timers": { + "version": "10.3.0", + "resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-10.3.0.tgz", + "integrity": "sha512-V4BG07kuYSUkTCSBHG8G8TNhM+F19jXFWnQtzj+we8DrkpSBCee9Z3Ms8yiGer/dlmhe35/Xdgyo3/0rQKg7YA==", + "dev": true, + "dependencies": { + "@sinonjs/commons": "^3.0.0" + } + }, + "node_modules/@tootallnate/once": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/@tootallnate/once/-/once-2.0.0.tgz", + "integrity": "sha512-XCuKFP5PS55gnMVu3dty8KPatLqUoy/ZYzDzAGCQ8JNFCkLXzmI7vNHCR+XpbZaMWQK/vQubr7PkYq8g470J/A==", + "dev": true, + "engines": { + "node": ">= 10" + } + }, + "node_modules/@types/babel__core": { + "version": "7.20.2", + "resolved": "https://registry.npmjs.org/@types/babel__core/-/babel__core-7.20.2.tgz", + "integrity": "sha512-pNpr1T1xLUc2l3xJKuPtsEky3ybxN3m4fJkknfIpTCTfIZCDW57oAg+EfCgIIp2rvCe0Wn++/FfodDS4YXxBwA==", + "dev": true, + "dependencies": { + "@babel/parser": "^7.20.7", + "@babel/types": "^7.20.7", + "@types/babel__generator": "*", + "@types/babel__template": "*", + "@types/babel__traverse": "*" + } + }, + "node_modules/@types/babel__generator": { + "version": "7.6.5", + "resolved": "https://registry.npmjs.org/@types/babel__generator/-/babel__generator-7.6.5.tgz", + "integrity": "sha512-h9yIuWbJKdOPLJTbmSpPzkF67e659PbQDba7ifWm5BJ8xTv+sDmS7rFmywkWOvXedGTivCdeGSIIX8WLcRTz8w==", + "dev": true, + "dependencies": { + "@babel/types": "^7.0.0" + } + }, + "node_modules/@types/babel__template": { + "version": "7.4.2", + "resolved": "https://registry.npmjs.org/@types/babel__template/-/babel__template-7.4.2.tgz", + "integrity": "sha512-/AVzPICMhMOMYoSx9MoKpGDKdBRsIXMNByh1PXSZoa+v6ZoLa8xxtsT/uLQ/NJm0XVAWl/BvId4MlDeXJaeIZQ==", + "dev": true, + "dependencies": { + "@babel/parser": "^7.1.0", + "@babel/types": "^7.0.0" + } + }, + "node_modules/@types/babel__traverse": { + "version": "7.20.2", + "resolved": "https://registry.npmjs.org/@types/babel__traverse/-/babel__traverse-7.20.2.tgz", + "integrity": "sha512-ojlGK1Hsfce93J0+kn3H5R73elidKUaZonirN33GSmgTUMpzI/MIFfSpF3haANe3G1bEBS9/9/QEqwTzwqFsKw==", + "dev": true, + "dependencies": { + "@babel/types": "^7.20.7" + } + }, + "node_modules/@types/graceful-fs": { + "version": "4.1.7", + "resolved": "https://registry.npmjs.org/@types/graceful-fs/-/graceful-fs-4.1.7.tgz", + "integrity": "sha512-MhzcwU8aUygZroVwL2jeYk6JisJrPl/oov/gsgGCue9mkgl9wjGbzReYQClxiUgFDnib9FuHqTndccKeZKxTRw==", + "dev": true, + "dependencies": { + "@types/node": "*" + } + }, + "node_modules/@types/istanbul-lib-coverage": { + "version": "2.0.4", + "resolved": "https://registry.npmjs.org/@types/istanbul-lib-coverage/-/istanbul-lib-coverage-2.0.4.tgz", + "integrity": "sha512-z/QT1XN4K4KYuslS23k62yDIDLwLFkzxOuMplDtObz0+y7VqJCaO2o+SPwHCvLFZh7xazvvoor2tA/hPz9ee7g==", + "dev": true + }, + "node_modules/@types/istanbul-lib-report": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/@types/istanbul-lib-report/-/istanbul-lib-report-3.0.1.tgz", + "integrity": "sha512-gPQuzaPR5h/djlAv2apEG1HVOyj1IUs7GpfMZixU0/0KXT3pm64ylHuMUI1/Akh+sq/iikxg6Z2j+fcMDXaaTQ==", + "dev": true, + "dependencies": { + "@types/istanbul-lib-coverage": "*" + } + }, + "node_modules/@types/istanbul-reports": { + "version": "3.0.2", + "resolved": "https://registry.npmjs.org/@types/istanbul-reports/-/istanbul-reports-3.0.2.tgz", + "integrity": "sha512-kv43F9eb3Lhj+lr/Hn6OcLCs/sSM8bt+fIaP11rCYngfV6NVjzWXJ17owQtDQTL9tQ8WSLUrGsSJ6rJz0F1w1A==", + "dev": true, + "dependencies": { + "@types/istanbul-lib-report": "*" + } + }, + "node_modules/@types/jest": { + "version": "29.5.5", + "resolved": "https://registry.npmjs.org/@types/jest/-/jest-29.5.5.tgz", + "integrity": "sha512-ebylz2hnsWR9mYvmBFbXJXr+33UPc4+ZdxyDXh5w0FlPBTfCVN3wPL+kuOiQt3xvrK419v7XWeAs+AeOksafXg==", + "dev": true, + "dependencies": { + "expect": "^29.0.0", + "pretty-format": "^29.0.0" + } + }, + "node_modules/@types/jsdom": { + "version": "20.0.1", + "resolved": "https://registry.npmjs.org/@types/jsdom/-/jsdom-20.0.1.tgz", + "integrity": "sha512-d0r18sZPmMQr1eG35u12FZfhIXNrnsPU/g5wvRKCUf/tOGilKKwYMYGqh33BNR6ba+2gkHw1EUiHoN3mn7E5IQ==", + "dev": true, + "dependencies": { + "@types/node": "*", + "@types/tough-cookie": "*", + "parse5": "^7.0.0" + } + }, + "node_modules/@types/node": { + "version": "20.8.3", + "resolved": "https://registry.npmjs.org/@types/node/-/node-20.8.3.tgz", + "integrity": "sha512-jxiZQFpb+NlH5kjW49vXxvxTjeeqlbsnTAdBTKpzEdPs9itay7MscYXz3Fo9VYFEsfQ6LJFitHad3faerLAjCw==", + "dev": true + }, + "node_modules/@types/stack-utils": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/@types/stack-utils/-/stack-utils-2.0.1.tgz", + "integrity": "sha512-Hl219/BT5fLAaz6NDkSuhzasy49dwQS/DSdu4MdggFB8zcXv7vflBI3xp7FEmkmdDkBUI2bPUNeMttp2knYdxw==", + "dev": true + }, + "node_modules/@types/tough-cookie": { + "version": "4.0.3", + "resolved": "https://registry.npmjs.org/@types/tough-cookie/-/tough-cookie-4.0.3.tgz", + "integrity": "sha512-THo502dA5PzG/sfQH+42Lw3fvmYkceefOspdCwpHRul8ik2Jv1K8I5OZz1AT3/rs46kwgMCe9bSBmDLYkkOMGg==", + "dev": true + }, + "node_modules/@types/yargs": { + "version": "17.0.28", + "resolved": "https://registry.npmjs.org/@types/yargs/-/yargs-17.0.28.tgz", + "integrity": "sha512-N3e3fkS86hNhtk6BEnc0rj3zcehaxx8QWhCROJkqpl5Zaoi7nAic3jH8q94jVD3zu5LGk+PUB6KAiDmimYOEQw==", + "dev": true, + "dependencies": { + "@types/yargs-parser": "*" + } + }, + "node_modules/@types/yargs-parser": { + "version": "21.0.1", + "resolved": "https://registry.npmjs.org/@types/yargs-parser/-/yargs-parser-21.0.1.tgz", + "integrity": "sha512-axdPBuLuEJt0c4yI5OZssC19K2Mq1uKdrfZBzuxLvaztgqUtFYZUNw7lETExPYJR9jdEoIg4mb7RQKRQzOkeGQ==", + "dev": true + }, + "node_modules/abab": { + "version": "2.0.6", + "resolved": "https://registry.npmjs.org/abab/-/abab-2.0.6.tgz", + "integrity": "sha512-j2afSsaIENvHZN2B8GOpF566vZ5WVk5opAiMTvWgaQT8DkbOqsTfvNAvHoRGU2zzP8cPoqys+xHTRDWW8L+/BA==", + "dev": true + }, + "node_modules/acorn": { + "version": "8.10.0", + "resolved": "https://registry.npmjs.org/acorn/-/acorn-8.10.0.tgz", + "integrity": "sha512-F0SAmZ8iUtS//m8DmCTA0jlh6TDKkHQyK6xc6V4KDTyZKA9dnvX9/3sRTVQrWm79glUAZbnmmNcdYwUIHWVybw==", + "dev": true, + "bin": { + "acorn": "bin/acorn" + }, + "engines": { + "node": ">=0.4.0" + } + }, + "node_modules/acorn-globals": { + "version": "7.0.1", + "resolved": "https://registry.npmjs.org/acorn-globals/-/acorn-globals-7.0.1.tgz", + "integrity": "sha512-umOSDSDrfHbTNPuNpC2NSnnA3LUrqpevPb4T9jRx4MagXNS0rs+gwiTcAvqCRmsD6utzsrzNt+ebm00SNWiC3Q==", + "dev": true, + "dependencies": { + "acorn": "^8.1.0", + "acorn-walk": "^8.0.2" + } + }, + "node_modules/acorn-walk": { + "version": "8.2.0", + "resolved": "https://registry.npmjs.org/acorn-walk/-/acorn-walk-8.2.0.tgz", + "integrity": "sha512-k+iyHEuPgSw6SbuDpGQM+06HQUa04DZ3o+F6CSzXMvvI5KMvnaEqXe+YVe555R9nn6GPt404fos4wcgpw12SDA==", + "dev": true, + "engines": { + "node": ">=0.4.0" + } + }, + "node_modules/agent-base": { + "version": "6.0.2", + "resolved": "https://registry.npmjs.org/agent-base/-/agent-base-6.0.2.tgz", + "integrity": "sha512-RZNwNclF7+MS/8bDg70amg32dyeZGZxiDuQmZxKLAlQjr3jGyLx+4Kkk58UO7D2QdgFIQCovuSuZESne6RG6XQ==", + "dev": true, + "dependencies": { + "debug": "4" + }, + "engines": { + "node": ">= 6.0.0" + } + }, + "node_modules/ansi-escapes": { + "version": "4.3.2", + "resolved": "https://registry.npmjs.org/ansi-escapes/-/ansi-escapes-4.3.2.tgz", + "integrity": "sha512-gKXj5ALrKWQLsYG9jlTRmR/xKluxHV+Z9QEwNIgCfM1/uwPMCuzVVnh5mwTd+OuBZcwSIMbqssNWRm1lE51QaQ==", + "dev": true, + "dependencies": { + "type-fest": "^0.21.3" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/ansi-regex": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-5.0.1.tgz", + "integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/ansi-styles": { + "version": "4.3.0", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", + "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", + "dev": true, + "dependencies": { + "color-convert": "^2.0.1" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, + "node_modules/anymatch": { + "version": "3.1.3", + "resolved": "https://registry.npmjs.org/anymatch/-/anymatch-3.1.3.tgz", + "integrity": "sha512-KMReFUr0B4t+D+OBkjR3KYqvocp2XaSzO55UcB6mgQMd3KbcE+mWTyvVV7D/zsdEbNnV6acZUutkiHQXvTr1Rw==", + "dev": true, + "dependencies": { + "normalize-path": "^3.0.0", + "picomatch": "^2.0.4" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/argparse": { + "version": "1.0.10", + "resolved": "https://registry.npmjs.org/argparse/-/argparse-1.0.10.tgz", + "integrity": "sha512-o5Roy6tNG4SL/FOkCAN6RzjiakZS25RLYFrcMttJqbdd8BWrnA+fGz57iN5Pb06pvBGvl5gQ0B48dJlslXvoTg==", + "dev": true, + "dependencies": { + "sprintf-js": "~1.0.2" + } + }, + "node_modules/asynckit": { + "version": "0.4.0", + "resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz", + "integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==", + "dev": true + }, + "node_modules/babel-jest": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/babel-jest/-/babel-jest-29.7.0.tgz", + "integrity": "sha512-BrvGY3xZSwEcCzKvKsCi2GgHqDqsYkOP4/by5xCgIwGXQxIEh+8ew3gmrE1y7XRR6LHZIj6yLYnUi/mm2KXKBg==", + "dev": true, + "dependencies": { + "@jest/transform": "^29.7.0", + "@types/babel__core": "^7.1.14", + "babel-plugin-istanbul": "^6.1.1", + "babel-preset-jest": "^29.6.3", + "chalk": "^4.0.0", + "graceful-fs": "^4.2.9", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "@babel/core": "^7.8.0" + } + }, + "node_modules/babel-plugin-istanbul": { + "version": "6.1.1", + "resolved": "https://registry.npmjs.org/babel-plugin-istanbul/-/babel-plugin-istanbul-6.1.1.tgz", + "integrity": "sha512-Y1IQok9821cC9onCx5otgFfRm7Lm+I+wwxOx738M/WLPZ9Q42m4IG5W0FNX8WLL2gYMZo3JkuXIH2DOpWM+qwA==", + "dev": true, + "dependencies": { + "@babel/helper-plugin-utils": "^7.0.0", + "@istanbuljs/load-nyc-config": "^1.0.0", + "@istanbuljs/schema": "^0.1.2", + "istanbul-lib-instrument": "^5.0.4", + "test-exclude": "^6.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/babel-plugin-istanbul/node_modules/istanbul-lib-instrument": { + "version": "5.2.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-instrument/-/istanbul-lib-instrument-5.2.1.tgz", + "integrity": "sha512-pzqtp31nLv/XFOzXGuvhCb8qhjmTVo5vjVk19XE4CRlSWz0KoeJ3bw9XsA7nOp9YBf4qHjwBxkDzKcME/J29Yg==", + "dev": true, + "dependencies": { + "@babel/core": "^7.12.3", + "@babel/parser": "^7.14.7", + "@istanbuljs/schema": "^0.1.2", + "istanbul-lib-coverage": "^3.2.0", + "semver": "^6.3.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/babel-plugin-jest-hoist": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/babel-plugin-jest-hoist/-/babel-plugin-jest-hoist-29.6.3.tgz", + "integrity": "sha512-ESAc/RJvGTFEzRwOTT4+lNDk/GNHMkKbNzsvT0qKRfDyyYTskxB5rnU2njIDYVxXCBHHEI1c0YwHob3WaYujOg==", + "dev": true, + "dependencies": { + "@babel/template": "^7.3.3", + "@babel/types": "^7.3.3", + "@types/babel__core": "^7.1.14", + "@types/babel__traverse": "^7.0.6" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/babel-plugin-polyfill-corejs2": { + "version": "0.4.5", + "resolved": "https://registry.npmjs.org/babel-plugin-polyfill-corejs2/-/babel-plugin-polyfill-corejs2-0.4.5.tgz", + "integrity": "sha512-19hwUH5FKl49JEsvyTcoHakh6BE0wgXLLptIyKZ3PijHc/Ci521wygORCUCCred+E/twuqRyAkE02BAWPmsHOg==", + "dev": true, + "dependencies": { + "@babel/compat-data": "^7.22.6", + "@babel/helper-define-polyfill-provider": "^0.4.2", + "semver": "^6.3.1" + }, + "peerDependencies": { + "@babel/core": "^7.4.0 || ^8.0.0-0 <8.0.0" + } + }, + "node_modules/babel-plugin-polyfill-corejs3": { + "version": "0.8.4", + "resolved": "https://registry.npmjs.org/babel-plugin-polyfill-corejs3/-/babel-plugin-polyfill-corejs3-0.8.4.tgz", + "integrity": "sha512-9l//BZZsPR+5XjyJMPtZSK4jv0BsTO1zDac2GC6ygx9WLGlcsnRd1Co0B2zT5fF5Ic6BZy+9m3HNZ3QcOeDKfg==", + "dev": true, + "dependencies": { + "@babel/helper-define-polyfill-provider": "^0.4.2", + "core-js-compat": "^3.32.2" + }, + "peerDependencies": { + "@babel/core": "^7.4.0 || ^8.0.0-0 <8.0.0" + } + }, + "node_modules/babel-plugin-polyfill-regenerator": { + "version": "0.5.2", + "resolved": "https://registry.npmjs.org/babel-plugin-polyfill-regenerator/-/babel-plugin-polyfill-regenerator-0.5.2.tgz", + "integrity": "sha512-tAlOptU0Xj34V1Y2PNTL4Y0FOJMDB6bZmoW39FeCQIhigGLkqu3Fj6uiXpxIf6Ij274ENdYx64y6Au+ZKlb1IA==", + "dev": true, + "dependencies": { + "@babel/helper-define-polyfill-provider": "^0.4.2" + }, + "peerDependencies": { + "@babel/core": "^7.4.0 || ^8.0.0-0 <8.0.0" + } + }, + "node_modules/babel-plugin-transform-import-meta": { + "version": "2.2.1", + "resolved": "https://registry.npmjs.org/babel-plugin-transform-import-meta/-/babel-plugin-transform-import-meta-2.2.1.tgz", + "integrity": "sha512-AxNh27Pcg8Kt112RGa3Vod2QS2YXKKJ6+nSvRtv7qQTJAdx0MZa4UHZ4lnxHUWA2MNbLuZQv5FVab4P1CoLOWw==", + "dev": true, + "dependencies": { + "@babel/template": "^7.4.4", + "tslib": "^2.4.0" + }, + "peerDependencies": { + "@babel/core": "^7.10.0" + } + }, + "node_modules/babel-preset-current-node-syntax": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/babel-preset-current-node-syntax/-/babel-preset-current-node-syntax-1.0.1.tgz", + "integrity": "sha512-M7LQ0bxarkxQoN+vz5aJPsLBn77n8QgTFmo8WK0/44auK2xlCXrYcUxHFxgU7qW5Yzw/CjmLRK2uJzaCd7LvqQ==", + "dev": true, + "dependencies": { + "@babel/plugin-syntax-async-generators": "^7.8.4", + "@babel/plugin-syntax-bigint": "^7.8.3", + "@babel/plugin-syntax-class-properties": "^7.8.3", + "@babel/plugin-syntax-import-meta": "^7.8.3", + "@babel/plugin-syntax-json-strings": "^7.8.3", + "@babel/plugin-syntax-logical-assignment-operators": "^7.8.3", + "@babel/plugin-syntax-nullish-coalescing-operator": "^7.8.3", + "@babel/plugin-syntax-numeric-separator": "^7.8.3", + "@babel/plugin-syntax-object-rest-spread": "^7.8.3", + "@babel/plugin-syntax-optional-catch-binding": "^7.8.3", + "@babel/plugin-syntax-optional-chaining": "^7.8.3", + "@babel/plugin-syntax-top-level-await": "^7.8.3" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/babel-preset-jest": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/babel-preset-jest/-/babel-preset-jest-29.6.3.tgz", + "integrity": "sha512-0B3bhxR6snWXJZtR/RliHTDPRgn1sNHOR0yVtq/IiQFyuOVjFS+wuio/R4gSNkyYmKmJB4wGZv2NZanmKmTnNA==", + "dev": true, + "dependencies": { + "babel-plugin-jest-hoist": "^29.6.3", + "babel-preset-current-node-syntax": "^1.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/balanced-match": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz", + "integrity": "sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==", + "dev": true + }, + "node_modules/brace-expansion": { + "version": "1.1.11", + "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz", + "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==", + "dev": true, + "dependencies": { + "balanced-match": "^1.0.0", + "concat-map": "0.0.1" + } + }, + "node_modules/braces": { + "version": "3.0.2", + "resolved": "https://registry.npmjs.org/braces/-/braces-3.0.2.tgz", + "integrity": "sha512-b8um+L1RzM3WDSzvhm6gIz1yfTbBt6YTlcEKAvsmqCZZFw46z626lVj9j1yEPW33H5H+lBQpZMP1k8l+78Ha0A==", + "dev": true, + "dependencies": { + "fill-range": "^7.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/browserslist": { + "version": "4.22.1", + "resolved": "https://registry.npmjs.org/browserslist/-/browserslist-4.22.1.tgz", + "integrity": "sha512-FEVc202+2iuClEhZhrWy6ZiAcRLvNMyYcxZ8raemul1DYVOVdFsbqckWLdsixQZCpJlwe77Z3UTalE7jsjnKfQ==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/browserslist" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "dependencies": { + "caniuse-lite": "^1.0.30001541", + "electron-to-chromium": "^1.4.535", + "node-releases": "^2.0.13", + "update-browserslist-db": "^1.0.13" + }, + "bin": { + "browserslist": "cli.js" + }, + "engines": { + "node": "^6 || ^7 || ^8 || ^9 || ^10 || ^11 || ^12 || >=13.7" + } + }, + "node_modules/bser": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/bser/-/bser-2.1.1.tgz", + "integrity": "sha512-gQxTNE/GAfIIrmHLUE3oJyp5FO6HRBfhjnw4/wMmA63ZGDJnWBmgY/lyQBpnDUkGmAhbSe39tx2d/iTOAfglwQ==", + "dev": true, + "dependencies": { + "node-int64": "^0.4.0" + } + }, + "node_modules/buffer-from": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/buffer-from/-/buffer-from-1.1.2.tgz", + "integrity": "sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ==", + "dev": true + }, + "node_modules/callsites": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz", + "integrity": "sha512-P8BjAsXvZS+VIDUI11hHCQEv74YT67YUi5JJFNWIqL235sBmjX4+qx9Muvls5ivyNENctx46xQLQ3aTuE7ssaQ==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/camelcase": { + "version": "5.3.1", + "resolved": "https://registry.npmjs.org/camelcase/-/camelcase-5.3.1.tgz", + "integrity": "sha512-L28STB170nwWS63UjtlEOE3dldQApaJXZkOI1uMFfzf3rRuPegHaHesyee+YxQ+W6SvRDQV6UrdOdRiR153wJg==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/caniuse-lite": { + "version": "1.0.30001546", + "resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001546.tgz", + "integrity": "sha512-zvtSJwuQFpewSyRrI3AsftF6rM0X80mZkChIt1spBGEvRglCrjTniXvinc8JKRoqTwXAgvqTImaN9igfSMtUBw==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/caniuse-lite" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ] + }, + "node_modules/chalk": { + "version": "4.1.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz", + "integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==", + "dev": true, + "dependencies": { + "ansi-styles": "^4.1.0", + "supports-color": "^7.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/chalk?sponsor=1" + } + }, + "node_modules/char-regex": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/char-regex/-/char-regex-1.0.2.tgz", + "integrity": "sha512-kWWXztvZ5SBQV+eRgKFeh8q5sLuZY2+8WUIzlxWVTg+oGwY14qylx1KbKzHd8P6ZYkAg0xyIDU9JMHhyJMZ1jw==", + "dev": true, + "engines": { + "node": ">=10" + } + }, + "node_modules/ci-info": { + "version": "3.9.0", + "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-3.9.0.tgz", + "integrity": "sha512-NIxF55hv4nSqQswkAeiOi1r83xy8JldOFDTWiug55KBu9Jnblncd2U6ViHmYgHf01TPZS77NJBhBMKdWj9HQMQ==", + "dev": true, + "funding": [ + { + "type": "github", + "url": "https://github.com/sponsors/sibiraj-s" + } + ], + "engines": { + "node": ">=8" + } + }, + "node_modules/cjs-module-lexer": { + "version": "1.2.3", + "resolved": "https://registry.npmjs.org/cjs-module-lexer/-/cjs-module-lexer-1.2.3.tgz", + "integrity": "sha512-0TNiGstbQmCFwt4akjjBg5pLRTSyj/PkWQ1ZoO2zntmg9yLqSRxwEa4iCfQLGjqhiqBfOJa7W/E8wfGrTDmlZQ==", + "dev": true + }, + "node_modules/cliui": { + "version": "8.0.1", + "resolved": "https://registry.npmjs.org/cliui/-/cliui-8.0.1.tgz", + "integrity": "sha512-BSeNnyus75C4//NQ9gQt1/csTXyo/8Sb+afLAkzAptFuMsod9HFokGNudZpi/oQV73hnVK+sR+5PVRMd+Dr7YQ==", + "dev": true, + "dependencies": { + "string-width": "^4.2.0", + "strip-ansi": "^6.0.1", + "wrap-ansi": "^7.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/co": { + "version": "4.6.0", + "resolved": "https://registry.npmjs.org/co/-/co-4.6.0.tgz", + "integrity": "sha512-QVb0dM5HvG+uaxitm8wONl7jltx8dqhfU33DcqtOZcLSVIKSDDLDi7+0LbAKiyI8hD9u42m2YxXSkMGWThaecQ==", + "dev": true, + "engines": { + "iojs": ">= 1.0.0", + "node": ">= 0.12.0" + } + }, + "node_modules/collect-v8-coverage": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/collect-v8-coverage/-/collect-v8-coverage-1.0.2.tgz", + "integrity": "sha512-lHl4d5/ONEbLlJvaJNtsF/Lz+WvB07u2ycqTYbdrq7UypDXailES4valYb2eWiJFxZlVmpGekfqoxQhzyFdT4Q==", + "dev": true + }, + "node_modules/color-convert": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", + "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", + "dev": true, + "dependencies": { + "color-name": "~1.1.4" + }, + "engines": { + "node": ">=7.0.0" + } + }, + "node_modules/color-name": { + "version": "1.1.4", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", + "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", + "dev": true + }, + "node_modules/combined-stream": { + "version": "1.0.8", + "resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz", + "integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==", + "dev": true, + "dependencies": { + "delayed-stream": "~1.0.0" + }, + "engines": { + "node": ">= 0.8" + } + }, + "node_modules/concat-map": { + "version": "0.0.1", + "resolved": "https://registry.npmjs.org/concat-map/-/concat-map-0.0.1.tgz", + "integrity": "sha512-/Srv4dswyQNBfohGpz9o6Yb3Gz3SrUDqBH5rTuhGR7ahtlbYKnVxw2bCFMRljaA7EXHaXZ8wsHdodFvbkhKmqg==", + "dev": true + }, + "node_modules/convert-source-map": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/convert-source-map/-/convert-source-map-2.0.0.tgz", + "integrity": "sha512-Kvp459HrV2FEJ1CAsi1Ku+MY3kasH19TFykTz2xWmMeq6bk2NU3XXvfJ+Q61m0xktWwt+1HSYf3JZsTms3aRJg==", + "dev": true + }, + "node_modules/core-js-compat": { + "version": "3.33.0", + "resolved": "https://registry.npmjs.org/core-js-compat/-/core-js-compat-3.33.0.tgz", + "integrity": "sha512-0w4LcLXsVEuNkIqwjjf9rjCoPhK8uqA4tMRh4Ge26vfLtUutshn+aRJU21I9LCJlh2QQHfisNToLjw1XEJLTWw==", + "dev": true, + "dependencies": { + "browserslist": "^4.22.1" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/core-js" + } + }, + "node_modules/create-jest": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/create-jest/-/create-jest-29.7.0.tgz", + "integrity": "sha512-Adz2bdH0Vq3F53KEMJOoftQFutWCukm6J24wbPWRO4k1kMY7gS7ds/uoJkNuV8wDCtWWnuwGcJwpWcih+zEW1Q==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "chalk": "^4.0.0", + "exit": "^0.1.2", + "graceful-fs": "^4.2.9", + "jest-config": "^29.7.0", + "jest-util": "^29.7.0", + "prompts": "^2.0.1" + }, + "bin": { + "create-jest": "bin/create-jest.js" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/cross-spawn": { + "version": "7.0.3", + "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz", + "integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==", + "dev": true, + "dependencies": { + "path-key": "^3.1.0", + "shebang-command": "^2.0.0", + "which": "^2.0.1" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/cssom": { + "version": "0.5.0", + "resolved": "https://registry.npmjs.org/cssom/-/cssom-0.5.0.tgz", + "integrity": "sha512-iKuQcq+NdHqlAcwUY0o/HL69XQrUaQdMjmStJ8JFmUaiiQErlhrmuigkg/CU4E2J0IyUKUrMAgl36TvN67MqTw==", + "dev": true + }, + "node_modules/cssstyle": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/cssstyle/-/cssstyle-2.3.0.tgz", + "integrity": "sha512-AZL67abkUzIuvcHqk7c09cezpGNcxUxU4Ioi/05xHk4DQeTkWmGYftIE6ctU6AEt+Gn4n1lDStOtj7FKycP71A==", + "dev": true, + "dependencies": { + "cssom": "~0.3.6" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/cssstyle/node_modules/cssom": { + "version": "0.3.8", + "resolved": "https://registry.npmjs.org/cssom/-/cssom-0.3.8.tgz", + "integrity": "sha512-b0tGHbfegbhPJpxpiBPU2sCkigAqtM9O121le6bbOlgyV+NyGyCmVfJ6QW9eRjz8CpNfWEOYBIMIGRYkLwsIYg==", + "dev": true + }, + "node_modules/data-urls": { + "version": "3.0.2", + "resolved": "https://registry.npmjs.org/data-urls/-/data-urls-3.0.2.tgz", + "integrity": "sha512-Jy/tj3ldjZJo63sVAvg6LHt2mHvl4V6AgRAmNDtLdm7faqtsx+aJG42rsyCo9JCoRVKwPFzKlIPx3DIibwSIaQ==", + "dev": true, + "dependencies": { + "abab": "^2.0.6", + "whatwg-mimetype": "^3.0.0", + "whatwg-url": "^11.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/debug": { + "version": "4.3.4", + "resolved": "https://registry.npmjs.org/debug/-/debug-4.3.4.tgz", + "integrity": "sha512-PRWFHuSU3eDtQJPvnNY7Jcket1j0t5OuOsFzPPzsekD52Zl8qUfFIPEiswXqIvHWGVHOgX+7G/vCNNhehwxfkQ==", + "dev": true, + "dependencies": { + "ms": "2.1.2" + }, + "engines": { + "node": ">=6.0" + }, + "peerDependenciesMeta": { + "supports-color": { + "optional": true + } + } + }, + "node_modules/decimal.js": { + "version": "10.4.3", + "resolved": "https://registry.npmjs.org/decimal.js/-/decimal.js-10.4.3.tgz", + "integrity": "sha512-VBBaLc1MgL5XpzgIP7ny5Z6Nx3UrRkIViUkPUdtl9aya5amy3De1gsUUSB1g3+3sExYNjCAsAznmukyxCb1GRA==", + "dev": true + }, + "node_modules/dedent": { + "version": "1.5.1", + "resolved": "https://registry.npmjs.org/dedent/-/dedent-1.5.1.tgz", + "integrity": "sha512-+LxW+KLWxu3HW3M2w2ympwtqPrqYRzU8fqi6Fhd18fBALe15blJPI/I4+UHveMVG6lJqB4JNd4UG0S5cnVHwIg==", + "dev": true, + "peerDependencies": { + "babel-plugin-macros": "^3.1.0" + }, + "peerDependenciesMeta": { + "babel-plugin-macros": { + "optional": true + } + } + }, + "node_modules/deepmerge": { + "version": "4.3.1", + "resolved": "https://registry.npmjs.org/deepmerge/-/deepmerge-4.3.1.tgz", + "integrity": "sha512-3sUqbMEc77XqpdNO7FRyRog+eW3ph+GYCbj+rK+uYyRMuwsVy0rMiVtPn+QJlKFvWP/1PYpapqYn0Me2knFn+A==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/delayed-stream": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz", + "integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==", + "dev": true, + "engines": { + "node": ">=0.4.0" + } + }, + "node_modules/detect-newline": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/detect-newline/-/detect-newline-3.1.0.tgz", + "integrity": "sha512-TLz+x/vEXm/Y7P7wn1EJFNLxYpUD4TgMosxY6fAVJUnJMbupHBOncxyWUG9OpTaH9EBD7uFI5LfEgmMOc54DsA==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/diff-sequences": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/diff-sequences/-/diff-sequences-29.6.3.tgz", + "integrity": "sha512-EjePK1srD3P08o2j4f0ExnylqRs5B9tJjcp9t1krH2qRi8CCdsYfwe9JgSLurFBWwq4uOlipzfk5fHNvwFKr8Q==", + "dev": true, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/domexception": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/domexception/-/domexception-4.0.0.tgz", + "integrity": "sha512-A2is4PLG+eeSfoTMA95/s4pvAoSo2mKtiM5jlHkAVewmiO8ISFTFKZjH7UAM1Atli/OT/7JHOrJRJiMKUZKYBw==", + "dev": true, + "dependencies": { + "webidl-conversions": "^7.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/electron-to-chromium": { + "version": "1.4.544", + "resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.4.544.tgz", + "integrity": "sha512-54z7squS1FyFRSUqq/knOFSptjjogLZXbKcYk3B0qkE1KZzvqASwRZnY2KzZQJqIYLVD38XZeoiMRflYSwyO4w==", + "dev": true + }, + "node_modules/emittery": { + "version": "0.13.1", + "resolved": "https://registry.npmjs.org/emittery/-/emittery-0.13.1.tgz", + "integrity": "sha512-DeWwawk6r5yR9jFgnDKYt4sLS0LmHJJi3ZOnb5/JdbYwj3nW+FxQnHIjhBKz8YLC7oRNPVM9NQ47I3CVx34eqQ==", + "dev": true, + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/sindresorhus/emittery?sponsor=1" + } + }, + "node_modules/emoji-regex": { + "version": "8.0.0", + "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz", + "integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==", + "dev": true + }, + "node_modules/entities": { + "version": "4.5.0", + "resolved": "https://registry.npmjs.org/entities/-/entities-4.5.0.tgz", + "integrity": "sha512-V0hjH4dGPh9Ao5p0MoRY6BVqtwCjhz6vI5LT8AJ55H+4g9/4vbHx1I54fS0XuclLhDHArPQCiMjDxjaL8fPxhw==", + "dev": true, + "engines": { + "node": ">=0.12" + }, + "funding": { + "url": "https://github.com/fb55/entities?sponsor=1" + } + }, + "node_modules/error-ex": { + "version": "1.3.2", + "resolved": "https://registry.npmjs.org/error-ex/-/error-ex-1.3.2.tgz", + "integrity": "sha512-7dFHNmqeFSEt2ZBsCriorKnn3Z2pj+fd9kmI6QoWw4//DL+icEBfc0U7qJCisqrTsKTjw4fNFy2pW9OqStD84g==", + "dev": true, + "dependencies": { + "is-arrayish": "^0.2.1" + } + }, + "node_modules/escalade": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/escalade/-/escalade-3.1.1.tgz", + "integrity": "sha512-k0er2gUkLf8O0zKJiAhmkTnJlTvINGv7ygDNPbeIsX/TJjGJZHuh9B2UxbsaEkmlEo9MfhrSzmhIlhRlI2GXnw==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/escape-string-regexp": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-2.0.0.tgz", + "integrity": "sha512-UpzcLCXolUWcNu5HtVMHYdXJjArjsF9C0aNnquZYY4uW/Vu0miy5YoWvbV345HauVvcAUnpRuhMMcqTcGOY2+w==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/escodegen": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/escodegen/-/escodegen-2.1.0.tgz", + "integrity": "sha512-2NlIDTwUWJN0mRPQOdtQBzbUHvdGY2P1VXSyU83Q3xKxM7WHX2Ql8dKq782Q9TgQUNOLEzEYu9bzLNj1q88I5w==", + "dev": true, + "dependencies": { + "esprima": "^4.0.1", + "estraverse": "^5.2.0", + "esutils": "^2.0.2" + }, + "bin": { + "escodegen": "bin/escodegen.js", + "esgenerate": "bin/esgenerate.js" + }, + "engines": { + "node": ">=6.0" + }, + "optionalDependencies": { + "source-map": "~0.6.1" + } + }, + "node_modules/esprima": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/esprima/-/esprima-4.0.1.tgz", + "integrity": "sha512-eGuFFw7Upda+g4p+QHvnW0RyTX/SVeJBDM/gCtMARO0cLuT2HcEKnTPvhjV6aGeqrCB/sbNop0Kszm0jsaWU4A==", + "dev": true, + "bin": { + "esparse": "bin/esparse.js", + "esvalidate": "bin/esvalidate.js" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/estraverse": { + "version": "5.3.0", + "resolved": "https://registry.npmjs.org/estraverse/-/estraverse-5.3.0.tgz", + "integrity": "sha512-MMdARuVEQziNTeJD8DgMqmhwR11BRQ/cBP+pLtYdSTnf3MIO8fFeiINEbX36ZdNlfU/7A9f3gUw49B3oQsvwBA==", + "dev": true, + "engines": { + "node": ">=4.0" + } + }, + "node_modules/esutils": { + "version": "2.0.3", + "resolved": "https://registry.npmjs.org/esutils/-/esutils-2.0.3.tgz", + "integrity": "sha512-kVscqXk4OCp68SZ0dkgEKVi6/8ij300KBWTJq32P/dYeWTSwK41WyTxalN1eRmA5Z9UU/LX9D7FWSmV9SAYx6g==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/execa": { + "version": "5.1.1", + "resolved": "https://registry.npmjs.org/execa/-/execa-5.1.1.tgz", + "integrity": "sha512-8uSpZZocAZRBAPIEINJj3Lo9HyGitllczc27Eh5YYojjMFMn8yHMDMaUHE2Jqfq05D/wucwI4JGURyXt1vchyg==", + "dev": true, + "dependencies": { + "cross-spawn": "^7.0.3", + "get-stream": "^6.0.0", + "human-signals": "^2.1.0", + "is-stream": "^2.0.0", + "merge-stream": "^2.0.0", + "npm-run-path": "^4.0.1", + "onetime": "^5.1.2", + "signal-exit": "^3.0.3", + "strip-final-newline": "^2.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sindresorhus/execa?sponsor=1" + } + }, + "node_modules/exit": { + "version": "0.1.2", + "resolved": "https://registry.npmjs.org/exit/-/exit-0.1.2.tgz", + "integrity": "sha512-Zk/eNKV2zbjpKzrsQ+n1G6poVbErQxJ0LBOJXaKZ1EViLzH+hrLu9cdXI4zw9dBQJslwBEpbQ2P1oS7nDxs6jQ==", + "dev": true, + "engines": { + "node": ">= 0.8.0" + } + }, + "node_modules/expect": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/expect/-/expect-29.7.0.tgz", + "integrity": "sha512-2Zks0hf1VLFYI1kbh0I5jP3KHHyCHpkfyHBzsSXRFgl/Bg9mWYfMW8oD+PdMPlEwy5HNsR9JutYy6pMeOh61nw==", + "dev": true, + "dependencies": { + "@jest/expect-utils": "^29.7.0", + "jest-get-type": "^29.6.3", + "jest-matcher-utils": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/fast-json-stable-stringify": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/fast-json-stable-stringify/-/fast-json-stable-stringify-2.1.0.tgz", + "integrity": "sha512-lhd/wF+Lk98HZoTCtlVraHtfh5XYijIjalXck7saUtuanSDyLMxnHhSXEDJqHxD7msR8D0uCmqlkwjCV8xvwHw==", + "dev": true + }, + "node_modules/fb-watchman": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/fb-watchman/-/fb-watchman-2.0.2.tgz", + "integrity": "sha512-p5161BqbuCaSnB8jIbzQHOlpgsPmK5rJVDfDKO91Axs5NC1uu3HRQm6wt9cd9/+GtQQIO53JdGXXoyDpTAsgYA==", + "dev": true, + "dependencies": { + "bser": "2.1.1" + } + }, + "node_modules/fill-range": { + "version": "7.0.1", + "resolved": "https://registry.npmjs.org/fill-range/-/fill-range-7.0.1.tgz", + "integrity": "sha512-qOo9F+dMUmC2Lcb4BbVvnKJxTPjCm+RRpe4gDuGrzkL7mEVl/djYSu2OdQ2Pa302N4oqkSg9ir6jaLWJ2USVpQ==", + "dev": true, + "dependencies": { + "to-regex-range": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/find-up": { + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/find-up/-/find-up-4.1.0.tgz", + "integrity": "sha512-PpOwAdQ/YlXQ2vj8a3h8IipDuYRi3wceVQQGYWxNINccq40Anw7BlsEXCMbt1Zt+OLA6Fq9suIpIWD0OsnISlw==", + "dev": true, + "dependencies": { + "locate-path": "^5.0.0", + "path-exists": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/form-data": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz", + "integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==", + "dev": true, + "dependencies": { + "asynckit": "^0.4.0", + "combined-stream": "^1.0.8", + "mime-types": "^2.1.12" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/fs.realpath": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/fs.realpath/-/fs.realpath-1.0.0.tgz", + "integrity": "sha512-OO0pH2lK6a0hZnAdau5ItzHPI6pUlvI7jMVnxUQRtw4owF2wk8lOSabtGDCTP4Ggrg2MbGnWO9X8K1t4+fGMDw==", + "dev": true + }, + "node_modules/fsevents": { + "version": "2.3.3", + "resolved": "https://registry.npmjs.org/fsevents/-/fsevents-2.3.3.tgz", + "integrity": "sha512-5xoDfX+fL7faATnagmWPpbFtwh/R77WmMMqqHGS65C3vvB0YHrgF+B1YmZ3441tMj5n63k0212XNoJwzlhffQw==", + "dev": true, + "hasInstallScript": true, + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": "^8.16.0 || ^10.6.0 || >=11.0.0" + } + }, + "node_modules/gensync": { + "version": "1.0.0-beta.2", + "resolved": "https://registry.npmjs.org/gensync/-/gensync-1.0.0-beta.2.tgz", + "integrity": "sha512-3hN7NaskYvMDLQY55gnW3NQ+mesEAepTqlg+VEbj7zzqEMBVNhzcGYYeqFo/TlYz6eQiFcp1HcsCZO+nGgS8zg==", + "dev": true, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/get-caller-file": { + "version": "2.0.5", + "resolved": "https://registry.npmjs.org/get-caller-file/-/get-caller-file-2.0.5.tgz", + "integrity": "sha512-DyFP3BM/3YHTQOCUL/w0OZHR0lpKeGrxotcHWcqNEdnltqFwXVfhEBQ94eIo34AfQpo0rGki4cyIiftY06h2Fg==", + "dev": true, + "engines": { + "node": "6.* || 8.* || >= 10.*" + } + }, + "node_modules/get-package-type": { + "version": "0.1.0", + "resolved": "https://registry.npmjs.org/get-package-type/-/get-package-type-0.1.0.tgz", + "integrity": "sha512-pjzuKtY64GYfWizNAJ0fr9VqttZkNiK2iS430LtIHzjBEr6bX8Am2zm4sW4Ro5wjWW5cAlRL1qAMTcXbjNAO2Q==", + "dev": true, + "engines": { + "node": ">=8.0.0" + } + }, + "node_modules/get-stream": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/get-stream/-/get-stream-6.0.1.tgz", + "integrity": "sha512-ts6Wi+2j3jQjqi70w5AlN8DFnkSwC+MqmxEzdEALB2qXZYV3X/b1CTfgPLGJNMeAWxdPfU8FO1ms3NUfaHCPYg==", + "dev": true, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/glob": { + "version": "7.2.3", + "resolved": "https://registry.npmjs.org/glob/-/glob-7.2.3.tgz", + "integrity": "sha512-nFR0zLpU2YCaRxwoCJvL6UvCH2JFyFVIvwTLsIf21AuHlMskA1hhTdk+LlYJtOlYt9v6dvszD2BGRqBL+iQK9Q==", + "dev": true, + "dependencies": { + "fs.realpath": "^1.0.0", + "inflight": "^1.0.4", + "inherits": "2", + "minimatch": "^3.1.1", + "once": "^1.3.0", + "path-is-absolute": "^1.0.0" + }, + "engines": { + "node": "*" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, + "node_modules/globals": { + "version": "11.12.0", + "resolved": "https://registry.npmjs.org/globals/-/globals-11.12.0.tgz", + "integrity": "sha512-WOBp/EEGUiIsJSp7wcv/y6MO+lV9UoncWqxuFfm8eBwzWNgyfBd6Gz+IeKQ9jCmyhoH99g15M3T+QaVHFjizVA==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/graceful-fs": { + "version": "4.2.11", + "resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.11.tgz", + "integrity": "sha512-RbJ5/jmFcNNCcDV5o9eTnBLJ/HszWV0P73bc+Ff4nS/rJj+YaS6IGyiOL0VoBYX+l1Wrl3k63h/KrH+nhJ0XvQ==", + "dev": true + }, + "node_modules/has": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/has/-/has-1.0.4.tgz", + "integrity": "sha512-qdSAmqLF6209RFj4VVItywPMbm3vWylknmB3nvNiUIs72xAimcM8nVYxYr7ncvZq5qzk9MKIZR8ijqD/1QuYjQ==", + "dev": true, + "engines": { + "node": ">= 0.4.0" + } + }, + "node_modules/has-flag": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", + "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/html-encoding-sniffer": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/html-encoding-sniffer/-/html-encoding-sniffer-3.0.0.tgz", + "integrity": "sha512-oWv4T4yJ52iKrufjnyZPkrN0CH3QnrUqdB6In1g5Fe1mia8GmF36gnfNySxoZtxD5+NmYw1EElVXiBk93UeskA==", + "dev": true, + "dependencies": { + "whatwg-encoding": "^2.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/html-escaper": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/html-escaper/-/html-escaper-2.0.2.tgz", + "integrity": "sha512-H2iMtd0I4Mt5eYiapRdIDjp+XzelXQ0tFE4JS7YFwFevXXMmOp9myNrUvCg0D6ws8iqkRPBfKHgbwig1SmlLfg==", + "dev": true + }, + "node_modules/http-proxy-agent": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/http-proxy-agent/-/http-proxy-agent-5.0.0.tgz", + "integrity": "sha512-n2hY8YdoRE1i7r6M0w9DIw5GgZN0G25P8zLCRQ8rjXtTU3vsNFBI/vWK/UIeE6g5MUUz6avwAPXmL6Fy9D/90w==", + "dev": true, + "dependencies": { + "@tootallnate/once": "2", + "agent-base": "6", + "debug": "4" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/https-proxy-agent": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/https-proxy-agent/-/https-proxy-agent-5.0.1.tgz", + "integrity": "sha512-dFcAjpTQFgoLMzC2VwU+C/CbS7uRL0lWmxDITmqm7C+7F0Odmj6s9l6alZc6AELXhrnggM2CeWSXHGOdX2YtwA==", + "dev": true, + "dependencies": { + "agent-base": "6", + "debug": "4" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/human-signals": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/human-signals/-/human-signals-2.1.0.tgz", + "integrity": "sha512-B4FFZ6q/T2jhhksgkbEW3HBvWIfDW85snkQgawt07S7J5QXTk6BkNV+0yAeZrM5QpMAdYlocGoljn0sJ/WQkFw==", + "dev": true, + "engines": { + "node": ">=10.17.0" + } + }, + "node_modules/iconv-lite": { + "version": "0.6.3", + "resolved": "https://registry.npmjs.org/iconv-lite/-/iconv-lite-0.6.3.tgz", + "integrity": "sha512-4fCk79wshMdzMp2rH06qWrJE4iolqLhCUH+OiuIgU++RB0+94NlDL81atO7GX55uUKueo0txHNtvEyI6D7WdMw==", + "dev": true, + "dependencies": { + "safer-buffer": ">= 2.1.2 < 3.0.0" + }, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/import-local": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/import-local/-/import-local-3.1.0.tgz", + "integrity": "sha512-ASB07uLtnDs1o6EHjKpX34BKYDSqnFerfTOJL2HvMqF70LnxpjkzDB8J44oT9pu4AMPkQwf8jl6szgvNd2tRIg==", + "dev": true, + "dependencies": { + "pkg-dir": "^4.2.0", + "resolve-cwd": "^3.0.0" + }, + "bin": { + "import-local-fixture": "fixtures/cli.js" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/imurmurhash": { + "version": "0.1.4", + "resolved": "https://registry.npmjs.org/imurmurhash/-/imurmurhash-0.1.4.tgz", + "integrity": "sha512-JmXMZ6wuvDmLiHEml9ykzqO6lwFbof0GG4IkcGaENdCRDDmMVnny7s5HsIgHCbaq0w2MyPhDqkhTUgS2LU2PHA==", + "dev": true, + "engines": { + "node": ">=0.8.19" + } + }, + "node_modules/inflight": { + "version": "1.0.6", + "resolved": "https://registry.npmjs.org/inflight/-/inflight-1.0.6.tgz", + "integrity": "sha512-k92I/b08q4wvFscXCLvqfsHCrjrF7yiXsQuIVvVE7N82W3+aqpzuUdBbfhWcy/FZR3/4IgflMgKLOsvPDrGCJA==", + "dev": true, + "dependencies": { + "once": "^1.3.0", + "wrappy": "1" + } + }, + "node_modules/inherits": { + "version": "2.0.4", + "resolved": "https://registry.npmjs.org/inherits/-/inherits-2.0.4.tgz", + "integrity": "sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==", + "dev": true + }, + "node_modules/is-arrayish": { + "version": "0.2.1", + "resolved": "https://registry.npmjs.org/is-arrayish/-/is-arrayish-0.2.1.tgz", + "integrity": "sha512-zz06S8t0ozoDXMG+ube26zeCTNXcKIPJZJi8hBrF4idCLms4CG9QtK7qBl1boi5ODzFpjswb5JPmHCbMpjaYzg==", + "dev": true + }, + "node_modules/is-core-module": { + "version": "2.13.0", + "resolved": "https://registry.npmjs.org/is-core-module/-/is-core-module-2.13.0.tgz", + "integrity": "sha512-Z7dk6Qo8pOCp3l4tsX2C5ZVas4V+UxwQodwZhLopL91TX8UyyHEXafPcyoeeWuLrwzHcr3igO78wNLwHJHsMCQ==", + "dev": true, + "dependencies": { + "has": "^1.0.3" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-fullwidth-code-point": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/is-fullwidth-code-point/-/is-fullwidth-code-point-3.0.0.tgz", + "integrity": "sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/is-generator-fn": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/is-generator-fn/-/is-generator-fn-2.1.0.tgz", + "integrity": "sha512-cTIB4yPYL/Grw0EaSzASzg6bBy9gqCofvWN8okThAYIxKJZC+udlRAmGbM0XLeniEJSs8uEgHPGuHSe1XsOLSQ==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/is-number": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/is-number/-/is-number-7.0.0.tgz", + "integrity": "sha512-41Cifkg6e8TylSpdtTpeLVMqvSBEVzTttHvERD741+pnZ8ANv0004MRL43QKPDlK9cGvNp6NZWZUBlbGXYxxng==", + "dev": true, + "engines": { + "node": ">=0.12.0" + } + }, + "node_modules/is-potential-custom-element-name": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/is-potential-custom-element-name/-/is-potential-custom-element-name-1.0.1.tgz", + "integrity": "sha512-bCYeRA2rVibKZd+s2625gGnGF/t7DSqDs4dP7CrLA1m7jKWz6pps0LpYLJN8Q64HtmPKJ1hrN3nzPNKFEKOUiQ==", + "dev": true + }, + "node_modules/is-stream": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/is-stream/-/is-stream-2.0.1.tgz", + "integrity": "sha512-hFoiJiTl63nn+kstHGBtewWSKnQLpyb155KHheA1l39uvtO9nWIop1p3udqPcUd/xbF1VLMO4n7OI6p7RbngDg==", + "dev": true, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/isexe": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz", + "integrity": "sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw==", + "dev": true + }, + "node_modules/istanbul-lib-coverage": { + "version": "3.2.0", + "resolved": "https://registry.npmjs.org/istanbul-lib-coverage/-/istanbul-lib-coverage-3.2.0.tgz", + "integrity": "sha512-eOeJ5BHCmHYvQK7xt9GkdHuzuCGS1Y6g9Gvnx3Ym33fz/HpLRYxiS0wHNr+m/MBC8B647Xt608vCDEvhl9c6Mw==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/istanbul-lib-instrument": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-instrument/-/istanbul-lib-instrument-6.0.1.tgz", + "integrity": "sha512-EAMEJBsYuyyztxMxW3g7ugGPkrZsV57v0Hmv3mm1uQsmB+QnZuepg731CRaIgeUVSdmsTngOkSnauNF8p7FIhA==", + "dev": true, + "dependencies": { + "@babel/core": "^7.12.3", + "@babel/parser": "^7.14.7", + "@istanbuljs/schema": "^0.1.2", + "istanbul-lib-coverage": "^3.2.0", + "semver": "^7.5.4" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-instrument/node_modules/lru-cache": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-6.0.0.tgz", + "integrity": "sha512-Jo6dJ04CmSjuznwJSS3pUeWmd/H0ffTlkXXgwZi+eq1UCmqQwCh+eLsYOYCwY991i2Fah4h1BEMCx4qThGbsiA==", + "dev": true, + "dependencies": { + "yallist": "^4.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-instrument/node_modules/semver": { + "version": "7.5.4", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz", + "integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==", + "dev": true, + "dependencies": { + "lru-cache": "^6.0.0" + }, + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-instrument/node_modules/yallist": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/yallist/-/yallist-4.0.0.tgz", + "integrity": "sha512-3wdGidZyq5PB084XLES5TpOSRA3wjXAlIWMhum2kRcv/41Sn2emQ0dycQW4uZXLejwKvg6EsvbdlVL+FYEct7A==", + "dev": true + }, + "node_modules/istanbul-lib-report": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-report/-/istanbul-lib-report-3.0.1.tgz", + "integrity": "sha512-GCfE1mtsHGOELCU8e/Z7YWzpmybrx/+dSTfLrvY8qRmaY6zXTKWn6WQIjaAFw069icm6GVMNkgu0NzI4iPZUNw==", + "dev": true, + "dependencies": { + "istanbul-lib-coverage": "^3.0.0", + "make-dir": "^4.0.0", + "supports-color": "^7.1.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-source-maps": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-source-maps/-/istanbul-lib-source-maps-4.0.1.tgz", + "integrity": "sha512-n3s8EwkdFIJCG3BPKBYvskgXGoy88ARzvegkitk60NxRdwltLOTaH7CUiMRXvwYorl0Q712iEjcWB+fK/MrWVw==", + "dev": true, + "dependencies": { + "debug": "^4.1.1", + "istanbul-lib-coverage": "^3.0.0", + "source-map": "^0.6.1" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-reports": { + "version": "3.1.6", + "resolved": "https://registry.npmjs.org/istanbul-reports/-/istanbul-reports-3.1.6.tgz", + "integrity": "sha512-TLgnMkKg3iTDsQ9PbPTdpfAK2DzjF9mqUG7RMgcQl8oFjad8ob4laGxv5XV5U9MAfx8D6tSJiUyuAwzLicaxlg==", + "dev": true, + "dependencies": { + "html-escaper": "^2.0.0", + "istanbul-lib-report": "^3.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/jest": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest/-/jest-29.7.0.tgz", + "integrity": "sha512-NIy3oAFp9shda19hy4HK0HRTWKtPJmGdnvywu01nOqNC2vZg+Z+fvJDxpMQA88eb2I9EcafcdjYgsDthnYTvGw==", + "dev": true, + "dependencies": { + "@jest/core": "^29.7.0", + "@jest/types": "^29.6.3", + "import-local": "^3.0.2", + "jest-cli": "^29.7.0" + }, + "bin": { + "jest": "bin/jest.js" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/jest-changed-files": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-changed-files/-/jest-changed-files-29.7.0.tgz", + "integrity": "sha512-fEArFiwf1BpQ+4bXSprcDc3/x4HSzL4al2tozwVpDFpsxALjLYdyiIK4e5Vz66GQJIbXJ82+35PtysofptNX2w==", + "dev": true, + "dependencies": { + "execa": "^5.0.0", + "jest-util": "^29.7.0", + "p-limit": "^3.1.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-circus": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-circus/-/jest-circus-29.7.0.tgz", + "integrity": "sha512-3E1nCMgipcTkCocFwM90XXQab9bS+GMsjdpmPrlelaxwD93Ad8iVEjX/vvHPdLPnFf+L40u+5+iutRdA1N9myw==", + "dev": true, + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/expect": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "co": "^4.6.0", + "dedent": "^1.0.0", + "is-generator-fn": "^2.0.0", + "jest-each": "^29.7.0", + "jest-matcher-utils": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-runtime": "^29.7.0", + "jest-snapshot": "^29.7.0", + "jest-util": "^29.7.0", + "p-limit": "^3.1.0", + "pretty-format": "^29.7.0", + "pure-rand": "^6.0.0", + "slash": "^3.0.0", + "stack-utils": "^2.0.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-cli": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-cli/-/jest-cli-29.7.0.tgz", + "integrity": "sha512-OVVobw2IubN/GSYsxETi+gOe7Ka59EFMR/twOU3Jb2GnKKeMGJB5SGUUrEz3SFVmJASUdZUzy83sLNNQ2gZslg==", + "dev": true, + "dependencies": { + "@jest/core": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/types": "^29.6.3", + "chalk": "^4.0.0", + "create-jest": "^29.7.0", + "exit": "^0.1.2", + "import-local": "^3.0.2", + "jest-config": "^29.7.0", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "yargs": "^17.3.1" + }, + "bin": { + "jest": "bin/jest.js" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/jest-config": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-config/-/jest-config-29.7.0.tgz", + "integrity": "sha512-uXbpfeQ7R6TZBqI3/TxCU4q4ttk3u0PJeC+E0zbfSoSjq6bJ7buBPxzQPL0ifrkY4DNu4JUdk0ImlBUYi840eQ==", + "dev": true, + "dependencies": { + "@babel/core": "^7.11.6", + "@jest/test-sequencer": "^29.7.0", + "@jest/types": "^29.6.3", + "babel-jest": "^29.7.0", + "chalk": "^4.0.0", + "ci-info": "^3.2.0", + "deepmerge": "^4.2.2", + "glob": "^7.1.3", + "graceful-fs": "^4.2.9", + "jest-circus": "^29.7.0", + "jest-environment-node": "^29.7.0", + "jest-get-type": "^29.6.3", + "jest-regex-util": "^29.6.3", + "jest-resolve": "^29.7.0", + "jest-runner": "^29.7.0", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "micromatch": "^4.0.4", + "parse-json": "^5.2.0", + "pretty-format": "^29.7.0", + "slash": "^3.0.0", + "strip-json-comments": "^3.1.1" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "@types/node": "*", + "ts-node": ">=9.0.0" + }, + "peerDependenciesMeta": { + "@types/node": { + "optional": true + }, + "ts-node": { + "optional": true + } + } + }, + "node_modules/jest-diff": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-diff/-/jest-diff-29.7.0.tgz", + "integrity": "sha512-LMIgiIrhigmPrs03JHpxUh2yISK3vLFPkAodPeo0+BuF7wA2FoQbkEg1u8gBYBThncu7e1oEDUfIXVuTqLRUjw==", + "dev": true, + "dependencies": { + "chalk": "^4.0.0", + "diff-sequences": "^29.6.3", + "jest-get-type": "^29.6.3", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-docblock": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-docblock/-/jest-docblock-29.7.0.tgz", + "integrity": "sha512-q617Auw3A612guyaFgsbFeYpNP5t2aoUNLwBUbc/0kD1R4t9ixDbyFTHd1nok4epoVFpr7PmeWHrhvuV3XaJ4g==", + "dev": true, + "dependencies": { + "detect-newline": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-each": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-each/-/jest-each-29.7.0.tgz", + "integrity": "sha512-gns+Er14+ZrEoC5fhOfYCY1LOHHr0TI+rQUHZS8Ttw2l7gl+80eHc/gFf2Ktkw0+SIACDTeWvpFcv3B04VembQ==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "chalk": "^4.0.0", + "jest-get-type": "^29.6.3", + "jest-util": "^29.7.0", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-environment-jsdom": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-environment-jsdom/-/jest-environment-jsdom-29.7.0.tgz", + "integrity": "sha512-k9iQbsf9OyOfdzWH8HDmrRT0gSIcX+FLNW7IQq94tFX0gynPwqDTW0Ho6iMVNjGz/nb+l/vW3dWM2bbLLpkbXA==", + "dev": true, + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/fake-timers": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/jsdom": "^20.0.0", + "@types/node": "*", + "jest-mock": "^29.7.0", + "jest-util": "^29.7.0", + "jsdom": "^20.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "canvas": "^2.5.0" + }, + "peerDependenciesMeta": { + "canvas": { + "optional": true + } + } + }, + "node_modules/jest-environment-node": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-environment-node/-/jest-environment-node-29.7.0.tgz", + "integrity": "sha512-DOSwCRqXirTOyheM+4d5YZOrWcdu0LNZ87ewUoywbcb2XR4wKgqiG8vNeYwhjFMbEkfju7wx2GYH0P2gevGvFw==", + "dev": true, + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/fake-timers": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "jest-mock": "^29.7.0", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-get-type": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/jest-get-type/-/jest-get-type-29.6.3.tgz", + "integrity": "sha512-zrteXnqYxfQh7l5FHyL38jL39di8H8rHoecLH3JNxH3BwOrBsNeabdap5e0I23lD4HHI8W5VFBZqG4Eaq5LNcw==", + "dev": true, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-haste-map": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-haste-map/-/jest-haste-map-29.7.0.tgz", + "integrity": "sha512-fP8u2pyfqx0K1rGn1R9pyE0/KTn+G7PxktWidOBTqFPLYX0b9ksaMFkhK5vrS3DVun09pckLdlx90QthlW7AmA==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "@types/graceful-fs": "^4.1.3", + "@types/node": "*", + "anymatch": "^3.0.3", + "fb-watchman": "^2.0.0", + "graceful-fs": "^4.2.9", + "jest-regex-util": "^29.6.3", + "jest-util": "^29.7.0", + "jest-worker": "^29.7.0", + "micromatch": "^4.0.4", + "walker": "^1.0.8" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "optionalDependencies": { + "fsevents": "^2.3.2" + } + }, + "node_modules/jest-leak-detector": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-leak-detector/-/jest-leak-detector-29.7.0.tgz", + "integrity": "sha512-kYA8IJcSYtST2BY9I+SMC32nDpBT3J2NvWJx8+JCuCdl/CR1I4EKUJROiP8XtCcxqgTTBGJNdbB1A8XRKbTetw==", + "dev": true, + "dependencies": { + "jest-get-type": "^29.6.3", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-matcher-utils": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-matcher-utils/-/jest-matcher-utils-29.7.0.tgz", + "integrity": "sha512-sBkD+Xi9DtcChsI3L3u0+N0opgPYnCRPtGcQYrgXmR+hmt/fYfWAL0xRXYU8eWOdfuLgBe0YCW3AFtnRLagq/g==", + "dev": true, + "dependencies": { + "chalk": "^4.0.0", + "jest-diff": "^29.7.0", + "jest-get-type": "^29.6.3", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-message-util": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-message-util/-/jest-message-util-29.7.0.tgz", + "integrity": "sha512-GBEV4GRADeP+qtB2+6u61stea8mGcOT4mCtrYISZwfu9/ISHFJ/5zOMXYbpBE9RsS5+Gb63DW4FgmnKJ79Kf6w==", + "dev": true, + "dependencies": { + "@babel/code-frame": "^7.12.13", + "@jest/types": "^29.6.3", + "@types/stack-utils": "^2.0.0", + "chalk": "^4.0.0", + "graceful-fs": "^4.2.9", + "micromatch": "^4.0.4", + "pretty-format": "^29.7.0", + "slash": "^3.0.0", + "stack-utils": "^2.0.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-mock": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-29.7.0.tgz", + "integrity": "sha512-ITOMZn+UkYS4ZFh83xYAOzWStloNzJFO2s8DWrE4lhtGD+AorgnbkiKERe4wQVBydIGPx059g6riW5Btp6Llnw==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "@types/node": "*", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-pnp-resolver": { + "version": "1.2.3", + "resolved": "https://registry.npmjs.org/jest-pnp-resolver/-/jest-pnp-resolver-1.2.3.tgz", + "integrity": "sha512-+3NpwQEnRoIBtx4fyhblQDPgJI0H1IEIkX7ShLUjPGA7TtUTvI1oiKi3SR4oBR0hQhQR80l4WAe5RrXBwWMA8w==", + "dev": true, + "engines": { + "node": ">=6" + }, + "peerDependencies": { + "jest-resolve": "*" + }, + "peerDependenciesMeta": { + "jest-resolve": { + "optional": true + } + } + }, + "node_modules/jest-regex-util": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/jest-regex-util/-/jest-regex-util-29.6.3.tgz", + "integrity": "sha512-KJJBsRCyyLNWCNBOvZyRDnAIfUiRJ8v+hOBQYGn8gDyF3UegwiP4gwRR3/SDa42g1YbVycTidUF3rKjyLFDWbg==", + "dev": true, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-resolve": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-resolve/-/jest-resolve-29.7.0.tgz", + "integrity": "sha512-IOVhZSrg+UvVAshDSDtHyFCCBUl/Q3AAJv8iZ6ZjnZ74xzvwuzLXid9IIIPgTnY62SJjfuupMKZsZQRsCvxEgA==", + "dev": true, + "dependencies": { + "chalk": "^4.0.0", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "jest-pnp-resolver": "^1.2.2", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "resolve": "^1.20.0", + "resolve.exports": "^2.0.0", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-resolve-dependencies": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-resolve-dependencies/-/jest-resolve-dependencies-29.7.0.tgz", + "integrity": "sha512-un0zD/6qxJ+S0et7WxeI3H5XSe9lTBBR7bOHCHXkKR6luG5mwDDlIzVQ0V5cZCuoTgEdcdwzTghYkTWfubi+nA==", + "dev": true, + "dependencies": { + "jest-regex-util": "^29.6.3", + "jest-snapshot": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-runner": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-runner/-/jest-runner-29.7.0.tgz", + "integrity": "sha512-fsc4N6cPCAahybGBfTRcq5wFR6fpLznMg47sY5aDpsoejOcVYFb07AHuSnR0liMcPTgBsA3ZJL6kFOjPdoNipQ==", + "dev": true, + "dependencies": { + "@jest/console": "^29.7.0", + "@jest/environment": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "emittery": "^0.13.1", + "graceful-fs": "^4.2.9", + "jest-docblock": "^29.7.0", + "jest-environment-node": "^29.7.0", + "jest-haste-map": "^29.7.0", + "jest-leak-detector": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-resolve": "^29.7.0", + "jest-runtime": "^29.7.0", + "jest-util": "^29.7.0", + "jest-watcher": "^29.7.0", + "jest-worker": "^29.7.0", + "p-limit": "^3.1.0", + "source-map-support": "0.5.13" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-runtime": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-runtime/-/jest-runtime-29.7.0.tgz", + "integrity": "sha512-gUnLjgwdGqW7B4LvOIkbKs9WGbn+QLqRQQ9juC6HndeDiezIwhDP+mhMwHWCEcfQ5RUXa6OPnFF8BJh5xegwwQ==", + "dev": true, + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/fake-timers": "^29.7.0", + "@jest/globals": "^29.7.0", + "@jest/source-map": "^29.6.3", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "cjs-module-lexer": "^1.0.0", + "collect-v8-coverage": "^1.0.0", + "glob": "^7.1.3", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-mock": "^29.7.0", + "jest-regex-util": "^29.6.3", + "jest-resolve": "^29.7.0", + "jest-snapshot": "^29.7.0", + "jest-util": "^29.7.0", + "slash": "^3.0.0", + "strip-bom": "^4.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-snapshot": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-snapshot/-/jest-snapshot-29.7.0.tgz", + "integrity": "sha512-Rm0BMWtxBcioHr1/OX5YCP8Uov4riHvKPknOGs804Zg9JGZgmIBkbtlxJC/7Z4msKYVbIJtfU+tKb8xlYNfdkw==", + "dev": true, + "dependencies": { + "@babel/core": "^7.11.6", + "@babel/generator": "^7.7.2", + "@babel/plugin-syntax-jsx": "^7.7.2", + "@babel/plugin-syntax-typescript": "^7.7.2", + "@babel/types": "^7.3.3", + "@jest/expect-utils": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "babel-preset-current-node-syntax": "^1.0.0", + "chalk": "^4.0.0", + "expect": "^29.7.0", + "graceful-fs": "^4.2.9", + "jest-diff": "^29.7.0", + "jest-get-type": "^29.6.3", + "jest-matcher-utils": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0", + "natural-compare": "^1.4.0", + "pretty-format": "^29.7.0", + "semver": "^7.5.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-snapshot/node_modules/lru-cache": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-6.0.0.tgz", + "integrity": "sha512-Jo6dJ04CmSjuznwJSS3pUeWmd/H0ffTlkXXgwZi+eq1UCmqQwCh+eLsYOYCwY991i2Fah4h1BEMCx4qThGbsiA==", + "dev": true, + "dependencies": { + "yallist": "^4.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/jest-snapshot/node_modules/semver": { + "version": "7.5.4", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz", + "integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==", + "dev": true, + "dependencies": { + "lru-cache": "^6.0.0" + }, + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/jest-snapshot/node_modules/yallist": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/yallist/-/yallist-4.0.0.tgz", + "integrity": "sha512-3wdGidZyq5PB084XLES5TpOSRA3wjXAlIWMhum2kRcv/41Sn2emQ0dycQW4uZXLejwKvg6EsvbdlVL+FYEct7A==", + "dev": true + }, + "node_modules/jest-util": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-29.7.0.tgz", + "integrity": "sha512-z6EbKajIpqGKU56y5KBUgy1dt1ihhQJgWzUlZHArA/+X2ad7Cb5iF+AK1EWVL/Bo7Rz9uurpqw6SiBCefUbCGA==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "ci-info": "^3.2.0", + "graceful-fs": "^4.2.9", + "picomatch": "^2.2.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-validate": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-validate/-/jest-validate-29.7.0.tgz", + "integrity": "sha512-ZB7wHqaRGVw/9hST/OuFUReG7M8vKeq0/J2egIGLdvjHCmYqGARhzXmtgi+gVeZ5uXFF219aOc3Ls2yLg27tkw==", + "dev": true, + "dependencies": { + "@jest/types": "^29.6.3", + "camelcase": "^6.2.0", + "chalk": "^4.0.0", + "jest-get-type": "^29.6.3", + "leven": "^3.1.0", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-validate/node_modules/camelcase": { + "version": "6.3.0", + "resolved": "https://registry.npmjs.org/camelcase/-/camelcase-6.3.0.tgz", + "integrity": "sha512-Gmy6FhYlCY7uOElZUSbxo2UCDH8owEk996gkbrpsgGtrJLM3J7jGxl9Ic7Qwwj4ivOE5AWZWRMecDdF7hqGjFA==", + "dev": true, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/jest-watcher": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-watcher/-/jest-watcher-29.7.0.tgz", + "integrity": "sha512-49Fg7WXkU3Vl2h6LbLtMQ/HyB6rXSIX7SqvBLQmssRBGN9I0PNvPmAmCWSOY6SOvrjhI/F7/bGAv9RtnsPA03g==", + "dev": true, + "dependencies": { + "@jest/test-result": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "ansi-escapes": "^4.2.1", + "chalk": "^4.0.0", + "emittery": "^0.13.1", + "jest-util": "^29.7.0", + "string-length": "^4.0.1" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-worker": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-worker/-/jest-worker-29.7.0.tgz", + "integrity": "sha512-eIz2msL/EzL9UFTFFx7jBTkeZfku0yUAyZZZmJ93H2TYEiroIx2PQjEXcwYtYl8zXCxb+PAmA2hLIt/6ZEkPHw==", + "dev": true, + "dependencies": { + "@types/node": "*", + "jest-util": "^29.7.0", + "merge-stream": "^2.0.0", + "supports-color": "^8.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-worker/node_modules/supports-color": { + "version": "8.1.1", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-8.1.1.tgz", + "integrity": "sha512-MpUEN2OodtUzxvKQl72cUF7RQ5EiHsGvSsVG0ia9c5RbWGL2CI4C7EpPS8UTBIplnlzZiNuV56w+FuNxy3ty2Q==", + "dev": true, + "dependencies": { + "has-flag": "^4.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/supports-color?sponsor=1" + } + }, + "node_modules/js-tokens": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/js-tokens/-/js-tokens-4.0.0.tgz", + "integrity": "sha512-RdJUflcE3cUzKiMqQgsCu06FPu9UdIJO0beYbPhHN4k6apgJtifcoCtT9bcxOpYBtpD2kCM6Sbzg4CausW/PKQ==", + "dev": true + }, + "node_modules/js-yaml": { + "version": "3.14.1", + "resolved": "https://registry.npmjs.org/js-yaml/-/js-yaml-3.14.1.tgz", + "integrity": "sha512-okMH7OXXJ7YrN9Ok3/SXrnu4iX9yOk+25nqX4imS2npuvTYDmo/QEZoqwZkYaIDk3jVvBOTOIEgEhaLOynBS9g==", + "dev": true, + "dependencies": { + "argparse": "^1.0.7", + "esprima": "^4.0.0" + }, + "bin": { + "js-yaml": "bin/js-yaml.js" + } + }, + "node_modules/jsdom": { + "version": "20.0.3", + "resolved": "https://registry.npmjs.org/jsdom/-/jsdom-20.0.3.tgz", + "integrity": "sha512-SYhBvTh89tTfCD/CRdSOm13mOBa42iTaTyfyEWBdKcGdPxPtLFBXuHR8XHb33YNYaP+lLbmSvBTsnoesCNJEsQ==", + "dev": true, + "dependencies": { + "abab": "^2.0.6", + "acorn": "^8.8.1", + "acorn-globals": "^7.0.0", + "cssom": "^0.5.0", + "cssstyle": "^2.3.0", + "data-urls": "^3.0.2", + "decimal.js": "^10.4.2", + "domexception": "^4.0.0", + "escodegen": "^2.0.0", + "form-data": "^4.0.0", + "html-encoding-sniffer": "^3.0.0", + "http-proxy-agent": "^5.0.0", + "https-proxy-agent": "^5.0.1", + "is-potential-custom-element-name": "^1.0.1", + "nwsapi": "^2.2.2", + "parse5": "^7.1.1", + "saxes": "^6.0.0", + "symbol-tree": "^3.2.4", + "tough-cookie": "^4.1.2", + "w3c-xmlserializer": "^4.0.0", + "webidl-conversions": "^7.0.0", + "whatwg-encoding": "^2.0.0", + "whatwg-mimetype": "^3.0.0", + "whatwg-url": "^11.0.0", + "ws": "^8.11.0", + "xml-name-validator": "^4.0.0" + }, + "engines": { + "node": ">=14" + }, + "peerDependencies": { + "canvas": "^2.5.0" + }, + "peerDependenciesMeta": { + "canvas": { + "optional": true + } + } + }, + "node_modules/jsesc": { + "version": "2.5.2", + "resolved": "https://registry.npmjs.org/jsesc/-/jsesc-2.5.2.tgz", + "integrity": "sha512-OYu7XEzjkCQ3C5Ps3QIZsQfNpqoJyZZA99wd9aWd05NCtC5pWOkShK2mkL6HXQR6/Cy2lbNdPlZBpuQHXE63gA==", + "dev": true, + "bin": { + "jsesc": "bin/jsesc" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/json-parse-even-better-errors": { + "version": "2.3.1", + "resolved": "https://registry.npmjs.org/json-parse-even-better-errors/-/json-parse-even-better-errors-2.3.1.tgz", + "integrity": "sha512-xyFwyhro/JEof6Ghe2iz2NcXoj2sloNsWr/XsERDK/oiPCfaNhl5ONfp+jQdAZRQQ0IJWNzH9zIZF7li91kh2w==", + "dev": true + }, + "node_modules/json5": { + "version": "2.2.3", + "resolved": "https://registry.npmjs.org/json5/-/json5-2.2.3.tgz", + "integrity": "sha512-XmOWe7eyHYH14cLdVPoyg+GOH3rYX++KpzrylJwSW98t3Nk+U8XOl8FWKOgwtzdb8lXGf6zYwDUzeHMWfxasyg==", + "dev": true, + "bin": { + "json5": "lib/cli.js" + }, + "engines": { + "node": ">=6" + } + }, + "node_modules/kleur": { + "version": "3.0.3", + "resolved": "https://registry.npmjs.org/kleur/-/kleur-3.0.3.tgz", + "integrity": "sha512-eTIzlVOSUR+JxdDFepEYcBMtZ9Qqdef+rnzWdRZuMbOywu5tO2w2N7rqjoANZ5k9vywhL6Br1VRjUIgTQx4E8w==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/leven": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/leven/-/leven-3.1.0.tgz", + "integrity": "sha512-qsda+H8jTaUaN/x5vzW2rzc+8Rw4TAQ/4KjB46IwK5VH+IlVeeeje/EoZRpiXvIqjFgK84QffqPztGI3VBLG1A==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/lines-and-columns": { + "version": "1.2.4", + "resolved": "https://registry.npmjs.org/lines-and-columns/-/lines-and-columns-1.2.4.tgz", + "integrity": "sha512-7ylylesZQ/PV29jhEDl3Ufjo6ZX7gCqJr5F7PKrqc93v7fzSymt1BpwEU8nAUXs8qzzvqhbjhK5QZg6Mt/HkBg==", + "dev": true + }, + "node_modules/locate-path": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/locate-path/-/locate-path-5.0.0.tgz", + "integrity": "sha512-t7hw9pI+WvuwNJXwk5zVHpyhIqzg2qTlklJOf0mVxGSbe3Fp2VieZcduNYjaLDoy6p9uGpQEGWG87WpMKlNq8g==", + "dev": true, + "dependencies": { + "p-locate": "^4.1.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/lodash.debounce": { + "version": "4.0.8", + "resolved": "https://registry.npmjs.org/lodash.debounce/-/lodash.debounce-4.0.8.tgz", + "integrity": "sha512-FT1yDzDYEoYWhnSGnpE/4Kj1fLZkDFyqRb7fNt6FdYOSxlUWAtp42Eh6Wb0rGIv/m9Bgo7x4GhQbm5Ys4SG5ow==", + "dev": true + }, + "node_modules/lru-cache": { + "version": "5.1.1", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-5.1.1.tgz", + "integrity": "sha512-KpNARQA3Iwv+jTA0utUVVbrh+Jlrr1Fv0e56GGzAFOXN7dk/FviaDW8LHmK52DlcH4WP2n6gI8vN1aesBFgo9w==", + "dev": true, + "dependencies": { + "yallist": "^3.0.2" + } + }, + "node_modules/make-dir": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/make-dir/-/make-dir-4.0.0.tgz", + "integrity": "sha512-hXdUTZYIVOt1Ex//jAQi+wTZZpUpwBj/0QsOzqegb3rGMMeJiSEu5xLHnYfBrRV4RH2+OCSOO95Is/7x1WJ4bw==", + "dev": true, + "dependencies": { + "semver": "^7.5.3" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/make-dir/node_modules/lru-cache": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-6.0.0.tgz", + "integrity": "sha512-Jo6dJ04CmSjuznwJSS3pUeWmd/H0ffTlkXXgwZi+eq1UCmqQwCh+eLsYOYCwY991i2Fah4h1BEMCx4qThGbsiA==", + "dev": true, + "dependencies": { + "yallist": "^4.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/make-dir/node_modules/semver": { + "version": "7.5.4", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz", + "integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==", + "dev": true, + "dependencies": { + "lru-cache": "^6.0.0" + }, + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/make-dir/node_modules/yallist": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/yallist/-/yallist-4.0.0.tgz", + "integrity": "sha512-3wdGidZyq5PB084XLES5TpOSRA3wjXAlIWMhum2kRcv/41Sn2emQ0dycQW4uZXLejwKvg6EsvbdlVL+FYEct7A==", + "dev": true + }, + "node_modules/makeerror": { + "version": "1.0.12", + "resolved": "https://registry.npmjs.org/makeerror/-/makeerror-1.0.12.tgz", + "integrity": "sha512-JmqCvUhmt43madlpFzG4BQzG2Z3m6tvQDNKdClZnO3VbIudJYmxsT0FNJMeiB2+JTSlTQTSbU8QdesVmwJcmLg==", + "dev": true, + "dependencies": { + "tmpl": "1.0.5" + } + }, + "node_modules/merge-stream": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/merge-stream/-/merge-stream-2.0.0.tgz", + "integrity": "sha512-abv/qOcuPfk3URPfDzmZU1LKmuw8kT+0nIHvKrKgFrwifol/doWcdA4ZqsWQ8ENrFKkd67Mfpo/LovbIUsbt3w==", + "dev": true + }, + "node_modules/micromatch": { + "version": "4.0.5", + "resolved": "https://registry.npmjs.org/micromatch/-/micromatch-4.0.5.tgz", + "integrity": "sha512-DMy+ERcEW2q8Z2Po+WNXuw3c5YaUSFjAO5GsJqfEl7UjvtIuFKO6ZrKvcItdy98dwFI2N1tg3zNIdKaQT+aNdA==", + "dev": true, + "dependencies": { + "braces": "^3.0.2", + "picomatch": "^2.3.1" + }, + "engines": { + "node": ">=8.6" + } + }, + "node_modules/mime-db": { + "version": "1.52.0", + "resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz", + "integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==", + "dev": true, + "engines": { + "node": ">= 0.6" + } + }, + "node_modules/mime-types": { + "version": "2.1.35", + "resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz", + "integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==", + "dev": true, + "dependencies": { + "mime-db": "1.52.0" + }, + "engines": { + "node": ">= 0.6" + } + }, + "node_modules/mimic-fn": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/mimic-fn/-/mimic-fn-2.1.0.tgz", + "integrity": "sha512-OqbOk5oEQeAZ8WXWydlu9HJjz9WVdEIvamMCcXmuqUYjTknH/sqsWvhQ3vgwKFRR1HpjvNBKQ37nbJgYzGqGcg==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/minimatch": { + "version": "3.1.2", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz", + "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==", + "dev": true, + "dependencies": { + "brace-expansion": "^1.1.7" + }, + "engines": { + "node": "*" + } + }, + "node_modules/ms": { + "version": "2.1.2", + "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.2.tgz", + "integrity": "sha512-sGkPx+VjMtmA6MX27oA4FBFELFCZZ4S4XqeGOXCv68tT+jb3vk/RyaKWP0PTKyWtmLSM0b+adUTEvbs1PEaH2w==", + "dev": true + }, + "node_modules/natural-compare": { + "version": "1.4.0", + "resolved": "https://registry.npmjs.org/natural-compare/-/natural-compare-1.4.0.tgz", + "integrity": "sha512-OWND8ei3VtNC9h7V60qff3SVobHr996CTwgxubgyQYEpg290h9J0buyECNNJexkFm5sOajh5G116RYA1c8ZMSw==", + "dev": true + }, + "node_modules/node-int64": { + "version": "0.4.0", + "resolved": "https://registry.npmjs.org/node-int64/-/node-int64-0.4.0.tgz", + "integrity": "sha512-O5lz91xSOeoXP6DulyHfllpq+Eg00MWitZIbtPfoSEvqIHdl5gfcY6hYzDWnj0qD5tz52PI08u9qUvSVeUBeHw==", + "dev": true + }, + "node_modules/node-releases": { + "version": "2.0.13", + "resolved": "https://registry.npmjs.org/node-releases/-/node-releases-2.0.13.tgz", + "integrity": "sha512-uYr7J37ae/ORWdZeQ1xxMJe3NtdmqMC/JZK+geofDrkLUApKRHPd18/TxtBOJ4A0/+uUIliorNrfYV6s1b02eQ==", + "dev": true + }, + "node_modules/normalize-path": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz", + "integrity": "sha512-6eZs5Ls3WtCisHWp9S2GUy8dqkpGi4BVSz3GaqiE6ezub0512ESztXUwUB6C6IKbQkY2Pnb/mD4WYojCRwcwLA==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/npm-run-path": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/npm-run-path/-/npm-run-path-4.0.1.tgz", + "integrity": "sha512-S48WzZW777zhNIrn7gxOlISNAqi9ZC/uQFnRdbeIHhZhCA6UqpkOT8T1G7BvfdgP4Er8gF4sUbaS0i7QvIfCWw==", + "dev": true, + "dependencies": { + "path-key": "^3.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/nwsapi": { + "version": "2.2.7", + "resolved": "https://registry.npmjs.org/nwsapi/-/nwsapi-2.2.7.tgz", + "integrity": "sha512-ub5E4+FBPKwAZx0UwIQOjYWGHTEq5sPqHQNRN8Z9e4A7u3Tj1weLJsL59yH9vmvqEtBHaOmT6cYQKIZOxp35FQ==", + "dev": true + }, + "node_modules/once": { + "version": "1.4.0", + "resolved": "https://registry.npmjs.org/once/-/once-1.4.0.tgz", + "integrity": "sha512-lNaJgI+2Q5URQBkccEKHTQOPaXdUxnZZElQTZY0MFUAuaEqe1E+Nyvgdz/aIyNi6Z9MzO5dv1H8n58/GELp3+w==", + "dev": true, + "dependencies": { + "wrappy": "1" + } + }, + "node_modules/onetime": { + "version": "5.1.2", + "resolved": "https://registry.npmjs.org/onetime/-/onetime-5.1.2.tgz", + "integrity": "sha512-kbpaSSGJTWdAY5KPVeMOKXSrPtr8C8C7wodJbcsd51jRnmD+GZu8Y0VoU6Dm5Z4vWr0Ig/1NKuWRKf7j5aaYSg==", + "dev": true, + "dependencies": { + "mimic-fn": "^2.1.0" + }, + "engines": { + "node": ">=6" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/p-limit": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/p-limit/-/p-limit-3.1.0.tgz", + "integrity": "sha512-TYOanM3wGwNGsZN2cVTYPArw454xnXj5qmWF1bEoAc4+cU/ol7GVh7odevjp1FNHduHc3KZMcFduxU5Xc6uJRQ==", + "dev": true, + "dependencies": { + "yocto-queue": "^0.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/p-locate": { + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/p-locate/-/p-locate-4.1.0.tgz", + "integrity": "sha512-R79ZZ/0wAxKGu3oYMlz8jy/kbhsNrS7SKZ7PxEHBgJ5+F2mtFW2fK2cOtBh1cHYkQsbzFV7I+EoRKe6Yt0oK7A==", + "dev": true, + "dependencies": { + "p-limit": "^2.2.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/p-locate/node_modules/p-limit": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/p-limit/-/p-limit-2.3.0.tgz", + "integrity": "sha512-//88mFWSJx8lxCzwdAABTJL2MyWB12+eIY7MDL2SqLmAkeKU9qxRvWuSyTjm3FUmpBEMuFfckAIqEaVGUDxb6w==", + "dev": true, + "dependencies": { + "p-try": "^2.0.0" + }, + "engines": { + "node": ">=6" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/p-try": { + "version": "2.2.0", + "resolved": "https://registry.npmjs.org/p-try/-/p-try-2.2.0.tgz", + "integrity": "sha512-R4nPAVTAU0B9D35/Gk3uJf/7XYbQcyohSKdvAxIRSNghFl4e71hVoGnBNQz9cWaXxO2I10KTC+3jMdvvoKw6dQ==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/parse-json": { + "version": "5.2.0", + "resolved": "https://registry.npmjs.org/parse-json/-/parse-json-5.2.0.tgz", + "integrity": "sha512-ayCKvm/phCGxOkYRSCM82iDwct8/EonSEgCSxWxD7ve6jHggsFl4fZVQBPRNgQoKiuV/odhFrGzQXZwbifC8Rg==", + "dev": true, + "dependencies": { + "@babel/code-frame": "^7.0.0", + "error-ex": "^1.3.1", + "json-parse-even-better-errors": "^2.3.0", + "lines-and-columns": "^1.1.6" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/parse5": { + "version": "7.1.2", + "resolved": "https://registry.npmjs.org/parse5/-/parse5-7.1.2.tgz", + "integrity": "sha512-Czj1WaSVpaoj0wbhMzLmWD69anp2WH7FXMB9n1Sy8/ZFF9jolSQVMu1Ij5WIyGmcBmhk7EOndpO4mIpihVqAXw==", + "dev": true, + "dependencies": { + "entities": "^4.4.0" + }, + "funding": { + "url": "https://github.com/inikulin/parse5?sponsor=1" + } + }, + "node_modules/path-exists": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/path-exists/-/path-exists-4.0.0.tgz", + "integrity": "sha512-ak9Qy5Q7jYb2Wwcey5Fpvg2KoAc/ZIhLSLOSBmRmygPsGwkVVt0fZa0qrtMz+m6tJTAHfZQ8FnmB4MG4LWy7/w==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/path-is-absolute": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/path-is-absolute/-/path-is-absolute-1.0.1.tgz", + "integrity": "sha512-AVbw3UJ2e9bq64vSaS9Am0fje1Pa8pbGqTTsmXfaIiMpnr5DlDhfJOuLj9Sf95ZPVDAUerDfEk88MPmPe7UCQg==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/path-key": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/path-key/-/path-key-3.1.1.tgz", + "integrity": "sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/path-parse": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/path-parse/-/path-parse-1.0.7.tgz", + "integrity": "sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==", + "dev": true + }, + "node_modules/picocolors": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/picocolors/-/picocolors-1.0.0.tgz", + "integrity": "sha512-1fygroTLlHu66zi26VoTDv8yRgm0Fccecssto+MhsZ0D/DGW2sm8E8AjW7NU5VVTRt5GxbeZ5qBuJr+HyLYkjQ==", + "dev": true + }, + "node_modules/picomatch": { + "version": "2.3.1", + "resolved": "https://registry.npmjs.org/picomatch/-/picomatch-2.3.1.tgz", + "integrity": "sha512-JU3teHTNjmE2VCGFzuY8EXzCDVwEqB2a8fsIvwaStHhAWJEeVd1o1QD80CU6+ZdEXXSLbSsuLwJjkCBWqRQUVA==", + "dev": true, + "engines": { + "node": ">=8.6" + }, + "funding": { + "url": "https://github.com/sponsors/jonschlinkert" + } + }, + "node_modules/pirates": { + "version": "4.0.6", + "resolved": "https://registry.npmjs.org/pirates/-/pirates-4.0.6.tgz", + "integrity": "sha512-saLsH7WeYYPiD25LDuLRRY/i+6HaPYr6G1OUlN39otzkSTxKnubR9RTxS3/Kk50s1g2JTgFwWQDQyplC5/SHZg==", + "dev": true, + "engines": { + "node": ">= 6" + } + }, + "node_modules/pkg-dir": { + "version": "4.2.0", + "resolved": "https://registry.npmjs.org/pkg-dir/-/pkg-dir-4.2.0.tgz", + "integrity": "sha512-HRDzbaKjC+AOWVXxAU/x54COGeIv9eb+6CkDSQoNTt4XyWoIJvuPsXizxu/Fr23EiekbtZwmh1IcIG/l/a10GQ==", + "dev": true, + "dependencies": { + "find-up": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/pretty-format": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", + "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "dev": true, + "dependencies": { + "@jest/schemas": "^29.6.3", + "ansi-styles": "^5.0.0", + "react-is": "^18.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/pretty-format/node_modules/ansi-styles": { + "version": "5.2.0", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz", + "integrity": "sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==", + "dev": true, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, + "node_modules/prompts": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/prompts/-/prompts-2.4.2.tgz", + "integrity": "sha512-NxNv/kLguCA7p3jE8oL2aEBsrJWgAakBpgmgK6lpPWV+WuOmY6r2/zbAVnP+T8bQlA0nzHXSJSJW0Hq7ylaD2Q==", + "dev": true, + "dependencies": { + "kleur": "^3.0.3", + "sisteransi": "^1.0.5" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/psl": { + "version": "1.9.0", + "resolved": "https://registry.npmjs.org/psl/-/psl-1.9.0.tgz", + "integrity": "sha512-E/ZsdU4HLs/68gYzgGTkMicWTLPdAftJLfJFlLUAAKZGkStNU72sZjT66SnMDVOfOWY/YAoiD7Jxa9iHvngcag==", + "dev": true + }, + "node_modules/punycode": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz", + "integrity": "sha512-rRV+zQD8tVFys26lAGR9WUuS4iUAngJScM+ZRSKtvl5tKeZ2t5bvdNFdNHBW9FWR4guGHlgmsZ1G7BSm2wTbuA==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/pure-rand": { + "version": "6.0.4", + "resolved": "https://registry.npmjs.org/pure-rand/-/pure-rand-6.0.4.tgz", + "integrity": "sha512-LA0Y9kxMYv47GIPJy6MI84fqTd2HmYZI83W/kM/SkKfDlajnZYfmXFTxkbY+xSBPkLJxltMa9hIkmdc29eguMA==", + "dev": true, + "funding": [ + { + "type": "individual", + "url": "https://github.com/sponsors/dubzzz" + }, + { + "type": "opencollective", + "url": "https://opencollective.com/fast-check" + } + ] + }, + "node_modules/querystringify": { + "version": "2.2.0", + "resolved": "https://registry.npmjs.org/querystringify/-/querystringify-2.2.0.tgz", + "integrity": "sha512-FIqgj2EUvTa7R50u0rGsyTftzjYmv/a3hO345bZNrqabNqjtgiDMgmo4mkUjd+nzU5oF3dClKqFIPUKybUyqoQ==", + "dev": true + }, + "node_modules/react-is": { + "version": "18.2.0", + "resolved": "https://registry.npmjs.org/react-is/-/react-is-18.2.0.tgz", + "integrity": "sha512-xWGDIW6x921xtzPkhiULtthJHoJvBbF3q26fzloPCK0hsvxtPVelvftw3zjbHWSkR2km9Z+4uxbDDK/6Zw9B8w==", + "dev": true + }, + "node_modules/regenerate": { + "version": "1.4.2", + "resolved": "https://registry.npmjs.org/regenerate/-/regenerate-1.4.2.tgz", + "integrity": "sha512-zrceR/XhGYU/d/opr2EKO7aRHUeiBI8qjtfHqADTwZd6Szfy16la6kqD0MIUs5z5hx6AaKa+PixpPrR289+I0A==", + "dev": true + }, + "node_modules/regenerate-unicode-properties": { + "version": "10.1.1", + "resolved": "https://registry.npmjs.org/regenerate-unicode-properties/-/regenerate-unicode-properties-10.1.1.tgz", + "integrity": "sha512-X007RyZLsCJVVrjgEFVpLUTZwyOZk3oiL75ZcuYjlIWd6rNJtOjkBwQc5AsRrpbKVkxN6sklw/k/9m2jJYOf8Q==", + "dev": true, + "dependencies": { + "regenerate": "^1.4.2" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/regenerator-runtime": { + "version": "0.14.0", + "resolved": "https://registry.npmjs.org/regenerator-runtime/-/regenerator-runtime-0.14.0.tgz", + "integrity": "sha512-srw17NI0TUWHuGa5CFGGmhfNIeja30WMBfbslPNhf6JrqQlLN5gcrvig1oqPxiVaXb0oW0XRKtH6Nngs5lKCIA==", + "dev": true + }, + "node_modules/regenerator-transform": { + "version": "0.15.2", + "resolved": "https://registry.npmjs.org/regenerator-transform/-/regenerator-transform-0.15.2.tgz", + "integrity": "sha512-hfMp2BoF0qOk3uc5V20ALGDS2ddjQaLrdl7xrGXvAIow7qeWRM2VA2HuCHkUKk9slq3VwEwLNK3DFBqDfPGYtg==", + "dev": true, + "dependencies": { + "@babel/runtime": "^7.8.4" + } + }, + "node_modules/regexpu-core": { + "version": "5.3.2", + "resolved": "https://registry.npmjs.org/regexpu-core/-/regexpu-core-5.3.2.tgz", + "integrity": "sha512-RAM5FlZz+Lhmo7db9L298p2vHP5ZywrVXmVXpmAD9GuL5MPH6t9ROw1iA/wfHkQ76Qe7AaPF0nGuim96/IrQMQ==", + "dev": true, + "dependencies": { + "@babel/regjsgen": "^0.8.0", + "regenerate": "^1.4.2", + "regenerate-unicode-properties": "^10.1.0", + "regjsparser": "^0.9.1", + "unicode-match-property-ecmascript": "^2.0.0", + "unicode-match-property-value-ecmascript": "^2.1.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/regjsparser": { + "version": "0.9.1", + "resolved": "https://registry.npmjs.org/regjsparser/-/regjsparser-0.9.1.tgz", + "integrity": "sha512-dQUtn90WanSNl+7mQKcXAgZxvUe7Z0SqXlgzv0za4LwiUhyzBC58yQO3liFoUgu8GiJVInAhJjkj1N0EtQ5nkQ==", + "dev": true, + "dependencies": { + "jsesc": "~0.5.0" + }, + "bin": { + "regjsparser": "bin/parser" + } + }, + "node_modules/regjsparser/node_modules/jsesc": { + "version": "0.5.0", + "resolved": "https://registry.npmjs.org/jsesc/-/jsesc-0.5.0.tgz", + "integrity": "sha512-uZz5UnB7u4T9LvwmFqXii7pZSouaRPorGs5who1Ip7VO0wxanFvBL7GkM6dTHlgX+jhBApRetaWpnDabOeTcnA==", + "dev": true, + "bin": { + "jsesc": "bin/jsesc" + } + }, + "node_modules/require-directory": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/require-directory/-/require-directory-2.1.1.tgz", + "integrity": "sha512-fGxEI7+wsG9xrvdjsrlmL22OMTTiHRwAMroiEeMgq8gzoLC/PQr7RsRDSTLUg/bZAZtF+TVIkHc6/4RIKrui+Q==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/requires-port": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/requires-port/-/requires-port-1.0.0.tgz", + "integrity": "sha512-KigOCHcocU3XODJxsu8i/j8T9tzT4adHiecwORRQ0ZZFcp7ahwXuRU1m+yuO90C5ZUyGeGfocHDI14M3L3yDAQ==", + "dev": true + }, + "node_modules/resolve": { + "version": "1.22.6", + "resolved": "https://registry.npmjs.org/resolve/-/resolve-1.22.6.tgz", + "integrity": "sha512-njhxM7mV12JfufShqGy3Rz8j11RPdLy4xi15UurGJeoHLfJpVXKdh3ueuOqbYUcDZnffr6X739JBo5LzyahEsw==", + "dev": true, + "dependencies": { + "is-core-module": "^2.13.0", + "path-parse": "^1.0.7", + "supports-preserve-symlinks-flag": "^1.0.0" + }, + "bin": { + "resolve": "bin/resolve" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/resolve-cwd": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/resolve-cwd/-/resolve-cwd-3.0.0.tgz", + "integrity": "sha512-OrZaX2Mb+rJCpH/6CpSqt9xFVpN++x01XnN2ie9g6P5/3xelLAkXWVADpdz1IHD/KFfEXyE6V0U01OQ3UO2rEg==", + "dev": true, + "dependencies": { + "resolve-from": "^5.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/resolve-from": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/resolve-from/-/resolve-from-5.0.0.tgz", + "integrity": "sha512-qYg9KP24dD5qka9J47d0aVky0N+b4fTU89LN9iDnjB5waksiC49rvMB0PrUJQGoTmH50XPiqOvAjDfaijGxYZw==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/resolve.exports": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/resolve.exports/-/resolve.exports-2.0.2.tgz", + "integrity": "sha512-X2UW6Nw3n/aMgDVy+0rSqgHlv39WZAlZrXCdnbyEiKm17DSqHX4MmQMaST3FbeWR5FTuRcUwYAziZajji0Y7mg==", + "dev": true, + "engines": { + "node": ">=10" + } + }, + "node_modules/safer-buffer": { + "version": "2.1.2", + "resolved": "https://registry.npmjs.org/safer-buffer/-/safer-buffer-2.1.2.tgz", + "integrity": "sha512-YZo3K82SD7Riyi0E1EQPojLz7kpepnSQI9IyPbHHg1XXXevb5dJI7tpyN2ADxGcQbHG7vcyRHk0cbwqcQriUtg==", + "dev": true + }, + "node_modules/saxes": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/saxes/-/saxes-6.0.0.tgz", + "integrity": "sha512-xAg7SOnEhrm5zI3puOOKyy1OMcMlIJZYNJY7xLBwSze0UjhPLnWfj2GF2EpT0jmzaJKIWKHLsaSSajf35bcYnA==", + "dev": true, + "dependencies": { + "xmlchars": "^2.2.0" + }, + "engines": { + "node": ">=v12.22.7" + } + }, + "node_modules/semver": { + "version": "6.3.1", + "resolved": "https://registry.npmjs.org/semver/-/semver-6.3.1.tgz", + "integrity": "sha512-BR7VvDCVHO+q2xBEWskxS6DJE1qRnb7DxzUrogb71CWoSficBxYsiAGd+Kl0mmq/MprG9yArRkyrQxTO6XjMzA==", + "dev": true, + "bin": { + "semver": "bin/semver.js" + } + }, + "node_modules/shebang-command": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/shebang-command/-/shebang-command-2.0.0.tgz", + "integrity": "sha512-kHxr2zZpYtdmrN1qDjrrX/Z1rR1kG8Dx+gkpK1G4eXmvXswmcE1hTWBWYUzlraYw1/yZp6YuDY77YtvbN0dmDA==", + "dev": true, + "dependencies": { + "shebang-regex": "^3.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/shebang-regex": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/shebang-regex/-/shebang-regex-3.0.0.tgz", + "integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/signal-exit": { + "version": "3.0.7", + "resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-3.0.7.tgz", + "integrity": "sha512-wnD2ZE+l+SPC/uoS0vXeE9L1+0wuaMqKlfz9AMUo38JsyLSBWSFcHR1Rri62LZc12vLr1gb3jl7iwQhgwpAbGQ==", + "dev": true + }, + "node_modules/sisteransi": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/sisteransi/-/sisteransi-1.0.5.tgz", + "integrity": "sha512-bLGGlR1QxBcynn2d5YmDX4MGjlZvy2MRBDRNHLJ8VI6l6+9FUiyTFNJ0IveOSP0bcXgVDPRcfGqA0pjaqUpfVg==", + "dev": true + }, + "node_modules/slash": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/slash/-/slash-3.0.0.tgz", + "integrity": "sha512-g9Q1haeby36OSStwb4ntCGGGaKsaVSjQ68fBxoQcutl5fS1vuY18H3wSt3jFyFtrkx+Kz0V1G85A4MyAdDMi2Q==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/source-map": { + "version": "0.6.1", + "resolved": "https://registry.npmjs.org/source-map/-/source-map-0.6.1.tgz", + "integrity": "sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g==", + "dev": true, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/source-map-support": { + "version": "0.5.13", + "resolved": "https://registry.npmjs.org/source-map-support/-/source-map-support-0.5.13.tgz", + "integrity": "sha512-SHSKFHadjVA5oR4PPqhtAVdcBWwRYVd6g6cAXnIbRiIwc2EhPrTuKUBdSLvlEKyIP3GCf89fltvcZiP9MMFA1w==", + "dev": true, + "dependencies": { + "buffer-from": "^1.0.0", + "source-map": "^0.6.0" + } + }, + "node_modules/sprintf-js": { + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/sprintf-js/-/sprintf-js-1.0.3.tgz", + "integrity": "sha512-D9cPgkvLlV3t3IzL0D0YLvGA9Ahk4PcvVwUbN0dSGr1aP0Nrt4AEnTUbuGvquEC0mA64Gqt1fzirlRs5ibXx8g==", + "dev": true + }, + "node_modules/stack-utils": { + "version": "2.0.6", + "resolved": "https://registry.npmjs.org/stack-utils/-/stack-utils-2.0.6.tgz", + "integrity": "sha512-XlkWvfIm6RmsWtNJx+uqtKLS8eqFbxUg0ZzLXqY0caEy9l7hruX8IpiDnjsLavoBgqCCR71TqWO8MaXYheJ3RQ==", + "dev": true, + "dependencies": { + "escape-string-regexp": "^2.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/string-length": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/string-length/-/string-length-4.0.2.tgz", + "integrity": "sha512-+l6rNN5fYHNhZZy41RXsYptCjA2Igmq4EG7kZAYFQI1E1VTXarr6ZPXBg6eq7Y6eK4FEhY6AJlyuFIb/v/S0VQ==", + "dev": true, + "dependencies": { + "char-regex": "^1.0.2", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/string-width": { + "version": "4.2.3", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz", + "integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==", + "dev": true, + "dependencies": { + "emoji-regex": "^8.0.0", + "is-fullwidth-code-point": "^3.0.0", + "strip-ansi": "^6.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "dev": true, + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-bom": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/strip-bom/-/strip-bom-4.0.0.tgz", + "integrity": "sha512-3xurFv5tEgii33Zi8Jtp55wEIILR9eh34FAW00PZf+JnSsTmV/ioewSgQl97JHvgjoRGwPShsWm+IdrxB35d0w==", + "dev": true, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-final-newline": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/strip-final-newline/-/strip-final-newline-2.0.0.tgz", + "integrity": "sha512-BrpvfNAE3dcvq7ll3xVumzjKjZQ5tI1sEUIKr3Uoks0XUl45St3FlatVqef9prk4jRDzhW6WZg+3bk93y6pLjA==", + "dev": true, + "engines": { + "node": ">=6" + } + }, + "node_modules/strip-json-comments": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/strip-json-comments/-/strip-json-comments-3.1.1.tgz", + "integrity": "sha512-6fPc+R4ihwqP6N/aIv2f1gMH8lOVtWQHoqC4yK6oSDVVocumAsfCqjkXnqiYMhmMwS/mEHLp7Vehlt3ql6lEig==", + "dev": true, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/supports-color": { + "version": "7.2.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", + "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", + "dev": true, + "dependencies": { + "has-flag": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/supports-preserve-symlinks-flag": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/supports-preserve-symlinks-flag/-/supports-preserve-symlinks-flag-1.0.0.tgz", + "integrity": "sha512-ot0WnXS9fgdkgIcePe6RHNk1WA8+muPa6cSjeR3V8K27q9BB1rTE3R1p7Hv0z1ZyAc8s6Vvv8DIyWf681MAt0w==", + "dev": true, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/symbol-tree": { + "version": "3.2.4", + "resolved": "https://registry.npmjs.org/symbol-tree/-/symbol-tree-3.2.4.tgz", + "integrity": "sha512-9QNk5KwDF+Bvz+PyObkmSYjI5ksVUYtjW7AU22r2NKcfLJcXp96hkDWU3+XndOsUb+AQ9QhfzfCT2O+CNWT5Tw==", + "dev": true + }, + "node_modules/test-exclude": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/test-exclude/-/test-exclude-6.0.0.tgz", + "integrity": "sha512-cAGWPIyOHU6zlmg88jwm7VRyXnMN7iV68OGAbYDk/Mh/xC/pzVPlQtY6ngoIH/5/tciuhGfvESU8GrHrcxD56w==", + "dev": true, + "dependencies": { + "@istanbuljs/schema": "^0.1.2", + "glob": "^7.1.4", + "minimatch": "^3.0.4" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/tmpl": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/tmpl/-/tmpl-1.0.5.tgz", + "integrity": "sha512-3f0uOEAQwIqGuWW2MVzYg8fV/QNnc/IpuJNG837rLuczAaLVHslWHZQj4IGiEl5Hs3kkbhwL9Ab7Hrsmuj+Smw==", + "dev": true + }, + "node_modules/to-fast-properties": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/to-fast-properties/-/to-fast-properties-2.0.0.tgz", + "integrity": "sha512-/OaKK0xYrs3DmxRYqL/yDc+FxFUVYhDlXMhRmv3z915w2HF1tnN1omB354j8VUGO/hbRzyD6Y3sA7v7GS/ceog==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/to-regex-range": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/to-regex-range/-/to-regex-range-5.0.1.tgz", + "integrity": "sha512-65P7iz6X5yEr1cwcgvQxbbIw7Uk3gOy5dIdtZ4rDveLqhrdJP+Li/Hx6tyK0NEb+2GCyneCMJiGqrADCSNk8sQ==", + "dev": true, + "dependencies": { + "is-number": "^7.0.0" + }, + "engines": { + "node": ">=8.0" + } + }, + "node_modules/tough-cookie": { + "version": "4.1.3", + "resolved": "https://registry.npmjs.org/tough-cookie/-/tough-cookie-4.1.3.tgz", + "integrity": "sha512-aX/y5pVRkfRnfmuX+OdbSdXvPe6ieKX/G2s7e98f4poJHnqH3281gDPm/metm6E/WRamfx7WC4HUqkWHfQHprw==", + "dev": true, + "dependencies": { + "psl": "^1.1.33", + "punycode": "^2.1.1", + "universalify": "^0.2.0", + "url-parse": "^1.5.3" + }, + "engines": { + "node": ">=6" + } + }, + "node_modules/tr46": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/tr46/-/tr46-3.0.0.tgz", + "integrity": "sha512-l7FvfAHlcmulp8kr+flpQZmVwtu7nfRV7NZujtN0OqES8EL4O4e0qqzL0DC5gAvx/ZC/9lk6rhcUwYvkBnBnYA==", + "dev": true, + "dependencies": { + "punycode": "^2.1.1" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/tslib": { + "version": "2.6.2", + "resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz", + "integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q==", + "dev": true + }, + "node_modules/type-detect": { + "version": "4.0.8", + "resolved": "https://registry.npmjs.org/type-detect/-/type-detect-4.0.8.tgz", + "integrity": "sha512-0fr/mIH1dlO+x7TlcMy+bIDqKPsw/70tVyeHW787goQjhmqaZe10uwLujubK9q9Lg6Fiho1KUKDYz0Z7k7g5/g==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/type-fest": { + "version": "0.21.3", + "resolved": "https://registry.npmjs.org/type-fest/-/type-fest-0.21.3.tgz", + "integrity": "sha512-t0rzBq87m3fVcduHDUFhKmyyX+9eo6WQjZvf51Ea/M0Q7+T374Jp1aUiyUl0GKxp8M/OETVHSDvmkyPgvX+X2w==", + "dev": true, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/unicode-canonical-property-names-ecmascript": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/unicode-canonical-property-names-ecmascript/-/unicode-canonical-property-names-ecmascript-2.0.0.tgz", + "integrity": "sha512-yY5PpDlfVIU5+y/BSCxAJRBIS1Zc2dDG3Ujq+sR0U+JjUevW2JhocOF+soROYDSaAezOzOKuyyixhD6mBknSmQ==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/unicode-match-property-ecmascript": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/unicode-match-property-ecmascript/-/unicode-match-property-ecmascript-2.0.0.tgz", + "integrity": "sha512-5kaZCrbp5mmbz5ulBkDkbY0SsPOjKqVS35VpL9ulMPfSl0J0Xsm+9Evphv9CoIZFwre7aJoa94AY6seMKGVN5Q==", + "dev": true, + "dependencies": { + "unicode-canonical-property-names-ecmascript": "^2.0.0", + "unicode-property-aliases-ecmascript": "^2.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/unicode-match-property-value-ecmascript": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/unicode-match-property-value-ecmascript/-/unicode-match-property-value-ecmascript-2.1.0.tgz", + "integrity": "sha512-qxkjQt6qjg/mYscYMC0XKRn3Rh0wFPlfxB0xkt9CfyTvpX1Ra0+rAmdX2QyAobptSEvuy4RtpPRui6XkV+8wjA==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/unicode-property-aliases-ecmascript": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/unicode-property-aliases-ecmascript/-/unicode-property-aliases-ecmascript-2.1.0.tgz", + "integrity": "sha512-6t3foTQI9qne+OZoVQB/8x8rk2k1eVy1gRXhV3oFQ5T6R1dqQ1xtin3XqSlx3+ATBkliTaR/hHyJBm+LVPNM8w==", + "dev": true, + "engines": { + "node": ">=4" + } + }, + "node_modules/universalify": { + "version": "0.2.0", + "resolved": "https://registry.npmjs.org/universalify/-/universalify-0.2.0.tgz", + "integrity": "sha512-CJ1QgKmNg3CwvAv/kOFmtnEN05f0D/cn9QntgNOQlQF9dgvVTHj3t+8JPdjqawCHk7V/KA+fbUqzZ9XWhcqPUg==", + "dev": true, + "engines": { + "node": ">= 4.0.0" + } + }, + "node_modules/update-browserslist-db": { + "version": "1.0.13", + "resolved": "https://registry.npmjs.org/update-browserslist-db/-/update-browserslist-db-1.0.13.tgz", + "integrity": "sha512-xebP81SNcPuNpPP3uzeW1NYXxI3rxyJzF3pD6sH4jE7o/IX+WtSpwnVU+qIsDPyk0d3hmFQ7mjqc6AtV604hbg==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/browserslist" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "dependencies": { + "escalade": "^3.1.1", + "picocolors": "^1.0.0" + }, + "bin": { + "update-browserslist-db": "cli.js" + }, + "peerDependencies": { + "browserslist": ">= 4.21.0" + } + }, + "node_modules/url-parse": { + "version": "1.5.10", + "resolved": "https://registry.npmjs.org/url-parse/-/url-parse-1.5.10.tgz", + "integrity": "sha512-WypcfiRhfeUP9vvF0j6rw0J3hrWrw6iZv3+22h6iRMJ/8z1Tj6XfLP4DsUix5MhMPnXpiHDoKyoZ/bdCkwBCiQ==", + "dev": true, + "dependencies": { + "querystringify": "^2.1.1", + "requires-port": "^1.0.0" + } + }, + "node_modules/v8-to-istanbul": { + "version": "9.1.3", + "resolved": "https://registry.npmjs.org/v8-to-istanbul/-/v8-to-istanbul-9.1.3.tgz", + "integrity": "sha512-9lDD+EVI2fjFsMWXc6dy5JJzBsVTcQ2fVkfBvncZ6xJWG9wtBhOldG+mHkSL0+V1K/xgZz0JDO5UT5hFwHUghg==", + "dev": true, + "dependencies": { + "@jridgewell/trace-mapping": "^0.3.12", + "@types/istanbul-lib-coverage": "^2.0.1", + "convert-source-map": "^2.0.0" + }, + "engines": { + "node": ">=10.12.0" + } + }, + "node_modules/w3c-xmlserializer": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/w3c-xmlserializer/-/w3c-xmlserializer-4.0.0.tgz", + "integrity": "sha512-d+BFHzbiCx6zGfz0HyQ6Rg69w9k19nviJspaj4yNscGjrHu94sVP+aRm75yEbCh+r2/yR+7q6hux9LVtbuTGBw==", + "dev": true, + "dependencies": { + "xml-name-validator": "^4.0.0" + }, + "engines": { + "node": ">=14" + } + }, + "node_modules/walker": { + "version": "1.0.8", + "resolved": "https://registry.npmjs.org/walker/-/walker-1.0.8.tgz", + "integrity": "sha512-ts/8E8l5b7kY0vlWLewOkDXMmPdLcVV4GmOQLyxuSswIJsweeFZtAsMF7k1Nszz+TYBQrlYRmzOnr398y1JemQ==", + "dev": true, + "dependencies": { + "makeerror": "1.0.12" + } + }, + "node_modules/webidl-conversions": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-7.0.0.tgz", + "integrity": "sha512-VwddBukDzu71offAQR975unBIGqfKZpM+8ZX6ySk8nYhVoo5CYaZyzt3YBvYtRtO+aoGlqxPg/B87NGVZ/fu6g==", + "dev": true, + "engines": { + "node": ">=12" + } + }, + "node_modules/whatwg-encoding": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/whatwg-encoding/-/whatwg-encoding-2.0.0.tgz", + "integrity": "sha512-p41ogyeMUrw3jWclHWTQg1k05DSVXPLcVxRTYsXUk+ZooOCZLcoYgPZ/HL/D/N+uQPOtcp1me1WhBEaX02mhWg==", + "dev": true, + "dependencies": { + "iconv-lite": "0.6.3" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/whatwg-mimetype": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/whatwg-mimetype/-/whatwg-mimetype-3.0.0.tgz", + "integrity": "sha512-nt+N2dzIutVRxARx1nghPKGv1xHikU7HKdfafKkLNLindmPU/ch3U31NOCGGA/dmPcmb1VlofO0vnKAcsm0o/Q==", + "dev": true, + "engines": { + "node": ">=12" + } + }, + "node_modules/whatwg-url": { + "version": "11.0.0", + "resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-11.0.0.tgz", + "integrity": "sha512-RKT8HExMpoYx4igMiVMY83lN6UeITKJlBQ+vR/8ZJ8OCdSiN3RwCq+9gH0+Xzj0+5IrM6i4j/6LuvzbZIQgEcQ==", + "dev": true, + "dependencies": { + "tr46": "^3.0.0", + "webidl-conversions": "^7.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/which": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz", + "integrity": "sha512-BLI3Tl1TW3Pvl70l3yq3Y64i+awpwXqsGBYWkkqMtnbXgrMD+yj7rhW0kuEDxzJaYXGjEW5ogapKNMEKNMjibA==", + "dev": true, + "dependencies": { + "isexe": "^2.0.0" + }, + "bin": { + "node-which": "bin/node-which" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/wrap-ansi": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-7.0.0.tgz", + "integrity": "sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==", + "dev": true, + "dependencies": { + "ansi-styles": "^4.0.0", + "string-width": "^4.1.0", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/wrap-ansi?sponsor=1" + } + }, + "node_modules/wrappy": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/wrappy/-/wrappy-1.0.2.tgz", + "integrity": "sha512-l4Sp/DRseor9wL6EvV2+TuQn63dMkPjZ/sp9XkghTEbV9KlPS1xUsZ3u7/IQO4wxtcFB4bgpQPRcR3QCvezPcQ==", + "dev": true + }, + "node_modules/write-file-atomic": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/write-file-atomic/-/write-file-atomic-4.0.2.tgz", + "integrity": "sha512-7KxauUdBmSdWnmpaGFg+ppNjKF8uNLry8LyzjauQDOVONfFLNKrKvQOxZ/VuTIcS/gge/YNahf5RIIQWTSarlg==", + "dev": true, + "dependencies": { + "imurmurhash": "^0.1.4", + "signal-exit": "^3.0.7" + }, + "engines": { + "node": "^12.13.0 || ^14.15.0 || >=16.0.0" + } + }, + "node_modules/ws": { + "version": "8.14.2", + "resolved": "https://registry.npmjs.org/ws/-/ws-8.14.2.tgz", + "integrity": "sha512-wEBG1ftX4jcglPxgFCMJmZ2PLtSbJ2Peg6TmpJFTbe9GZYOQCDPdMYu/Tm0/bGZkw8paZnJY45J4K2PZrLYq8g==", + "dev": true, + "engines": { + "node": ">=10.0.0" + }, + "peerDependencies": { + "bufferutil": "^4.0.1", + "utf-8-validate": ">=5.0.2" + }, + "peerDependenciesMeta": { + "bufferutil": { + "optional": true + }, + "utf-8-validate": { + "optional": true + } + } + }, + "node_modules/xml-name-validator": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/xml-name-validator/-/xml-name-validator-4.0.0.tgz", + "integrity": "sha512-ICP2e+jsHvAj2E2lIHxa5tjXRlKDJo4IdvPvCXbXQGdzSfmSpNVyIKMvoZHjDY9DP0zV17iI85o90vRFXNccRw==", + "dev": true, + "engines": { + "node": ">=12" + } + }, + "node_modules/xmlchars": { + "version": "2.2.0", + "resolved": "https://registry.npmjs.org/xmlchars/-/xmlchars-2.2.0.tgz", + "integrity": "sha512-JZnDKK8B0RCDw84FNdDAIpZK+JuJw+s7Lz8nksI7SIuU3UXJJslUthsi+uWBUYOwPFwW7W7PRLRfUKpxjtjFCw==", + "dev": true + }, + "node_modules/y18n": { + "version": "5.0.8", + "resolved": "https://registry.npmjs.org/y18n/-/y18n-5.0.8.tgz", + "integrity": "sha512-0pfFzegeDWJHJIAmTLRP2DwHjdF5s7jo9tuztdQxAhINCdvS+3nGINqPd00AphqJR/0LhANUS6/+7SCb98YOfA==", + "dev": true, + "engines": { + "node": ">=10" + } + }, + "node_modules/yallist": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/yallist/-/yallist-3.1.1.tgz", + "integrity": "sha512-a4UGQaWPH59mOXUYnAG2ewncQS4i4F43Tv3JoAM+s2VDAmS9NsK8GpDMLrCHPksFT7h3K6TOoUNn2pb7RoXx4g==", + "dev": true + }, + "node_modules/yargs": { + "version": "17.7.2", + "resolved": "https://registry.npmjs.org/yargs/-/yargs-17.7.2.tgz", + "integrity": "sha512-7dSzzRQ++CKnNI/krKnYRV7JKKPUXMEh61soaHKg9mrWEhzFWhFnxPxGl+69cD1Ou63C13NUPCnmIcrvqCuM6w==", + "dev": true, + "dependencies": { + "cliui": "^8.0.1", + "escalade": "^3.1.1", + "get-caller-file": "^2.0.5", + "require-directory": "^2.1.1", + "string-width": "^4.2.3", + "y18n": "^5.0.5", + "yargs-parser": "^21.1.1" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/yargs-parser": { + "version": "21.1.1", + "resolved": "https://registry.npmjs.org/yargs-parser/-/yargs-parser-21.1.1.tgz", + "integrity": "sha512-tVpsJW7DdjecAiFpbIB1e3qxIQsE6NoPc5/eTdrbbIC4h0LVsWhnoa3g+m2HclBIujHzsxZ4VJVA+GUuc2/LBw==", + "dev": true, + "engines": { + "node": ">=12" + } + }, + "node_modules/yocto-queue": { + "version": "0.1.0", + "resolved": "https://registry.npmjs.org/yocto-queue/-/yocto-queue-0.1.0.tgz", + "integrity": "sha512-rVksvsnNCdJ/ohGc6xgPwyN8eheCxsiLM8mxuE/t/mOVqJewPuO1miLpTHQiRgTKCLexL4MeAFVagts7HmNZ2Q==", + "dev": true, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + } + } +} diff --git a/tests-ui/package.json b/tests-ui/package.json new file mode 100644 index 0000000000000000000000000000000000000000..ae7e490843aeb03ccccbe8b38b867423a5ba9fa1 --- /dev/null +++ b/tests-ui/package.json @@ -0,0 +1,31 @@ +{ + "name": "comfui-tests", + "version": "1.0.0", + "description": "UI tests", + "main": "index.js", + "scripts": { + "test": "jest", + "test:generate": "node setup.js" + }, + "repository": { + "type": "git", + "url": "git+https://github.com/comfyanonymous/ComfyUI.git" + }, + "keywords": [ + "comfyui", + "test" + ], + "author": "comfyanonymous", + "license": "GPL-3.0", + "bugs": { + "url": "https://github.com/comfyanonymous/ComfyUI/issues" + }, + "homepage": "https://github.com/comfyanonymous/ComfyUI#readme", + "devDependencies": { + "@babel/preset-env": "^7.22.20", + "@types/jest": "^29.5.5", + "babel-plugin-transform-import-meta": "^2.2.1", + "jest": "^29.7.0", + "jest-environment-jsdom": "^29.7.0" + } +} diff --git a/tests-ui/setup.js b/tests-ui/setup.js new file mode 100644 index 0000000000000000000000000000000000000000..8bbd9dcdf20cde46f1f2c10591d9c9415a71391a --- /dev/null +++ b/tests-ui/setup.js @@ -0,0 +1,88 @@ +const { spawn } = require("child_process"); +const { resolve } = require("path"); +const { existsSync, mkdirSync, writeFileSync } = require("fs"); +const http = require("http"); + +async function setup() { + // Wait up to 30s for it to start + let success = false; + let child; + for (let i = 0; i < 30; i++) { + try { + await new Promise((res, rej) => { + http + .get("http://127.0.0.1:8188/object_info", (resp) => { + let data = ""; + resp.on("data", (chunk) => { + data += chunk; + }); + resp.on("end", () => { + // Modify the response data to add some checkpoints + const objectInfo = JSON.parse(data); + objectInfo.CheckpointLoaderSimple.input.required.ckpt_name[0] = ["model1.safetensors", "model2.ckpt"]; + objectInfo.VAELoader.input.required.vae_name[0] = ["vae1.safetensors", "vae2.ckpt"]; + + data = JSON.stringify(objectInfo, undefined, "\t"); + + const outDir = resolve("./data"); + if (!existsSync(outDir)) { + mkdirSync(outDir); + } + + const outPath = resolve(outDir, "object_info.json"); + console.log(`Writing ${Object.keys(objectInfo).length} nodes to ${outPath}`); + writeFileSync(outPath, data, { + encoding: "utf8", + }); + res(); + }); + }) + .on("error", rej); + }); + success = true; + break; + } catch (error) { + console.log(i + "/30", error); + if (i === 0) { + // Start the server on first iteration if it fails to connect + console.log("Starting ComfyUI server..."); + + let python = resolve("../../python_embeded/python.exe"); + let args; + let cwd; + if (existsSync(python)) { + args = ["-s", "ComfyUI/main.py"]; + cwd = "../.."; + } else { + python = "python"; + args = ["main.py"]; + cwd = ".."; + } + args.push("--cpu"); + console.log(python, ...args); + child = spawn(python, args, { cwd }); + child.on("error", (err) => { + console.log(`Server error (${err})`); + i = 30; + }); + child.on("exit", (code) => { + if (!success) { + console.log(`Server exited (${code})`); + i = 30; + } + }); + } + await new Promise((r) => { + setTimeout(r, 1000); + }); + } + } + + child?.kill(); + + if (!success) { + throw new Error("Waiting for server failed..."); + } +} + + setup(); \ No newline at end of file diff --git a/tests-ui/tests/extensions.test.js b/tests-ui/tests/extensions.test.js new file mode 100644 index 0000000000000000000000000000000000000000..159e5113a293695532b7a73c1d3add754b364039 --- /dev/null +++ b/tests-ui/tests/extensions.test.js @@ -0,0 +1,196 @@ +// @ts-check +/// +const { start } = require("../utils"); +const lg = require("../utils/litegraph"); + +describe("extensions", () => { + beforeEach(() => { + lg.setup(global); + }); + + afterEach(() => { + lg.teardown(global); + }); + + it("calls each extension hook", async () => { + const mockExtension = { + name: "TestExtension", + init: jest.fn(), + setup: jest.fn(), + addCustomNodeDefs: jest.fn(), + getCustomWidgets: jest.fn(), + beforeRegisterNodeDef: jest.fn(), + registerCustomNodes: jest.fn(), + loadedGraphNode: jest.fn(), + nodeCreated: jest.fn(), + beforeConfigureGraph: jest.fn(), + afterConfigureGraph: jest.fn(), + }; + + const { app, ez, graph } = await start({ + async preSetup(app) { + app.registerExtension(mockExtension); + }, + }); + + // Basic initialisation hooks should be called once, with app + expect(mockExtension.init).toHaveBeenCalledTimes(1); + expect(mockExtension.init).toHaveBeenCalledWith(app); + + // Adding custom node defs should be passed the full list of nodes + expect(mockExtension.addCustomNodeDefs).toHaveBeenCalledTimes(1); + expect(mockExtension.addCustomNodeDefs.mock.calls[0][1]).toStrictEqual(app); + const defs = mockExtension.addCustomNodeDefs.mock.calls[0][0]; + expect(defs).toHaveProperty("KSampler"); + expect(defs).toHaveProperty("LoadImage"); + + // Get custom widgets is called once and should return new widget types + expect(mockExtension.getCustomWidgets).toHaveBeenCalledTimes(1); + expect(mockExtension.getCustomWidgets).toHaveBeenCalledWith(app); + + // Before register node def will be called once per node type + const nodeNames = Object.keys(defs); + const nodeCount = nodeNames.length; + expect(mockExtension.beforeRegisterNodeDef).toHaveBeenCalledTimes(nodeCount); + for (let i = 0; i < 10; i++) { + // It should be send the JS class and the original JSON definition + const nodeClass = mockExtension.beforeRegisterNodeDef.mock.calls[i][0]; + const nodeDef = mockExtension.beforeRegisterNodeDef.mock.calls[i][1]; + + expect(nodeClass.name).toBe("ComfyNode"); + expect(nodeClass.comfyClass).toBe(nodeNames[i]); + expect(nodeDef.name).toBe(nodeNames[i]); + expect(nodeDef).toHaveProperty("input"); + expect(nodeDef).toHaveProperty("output"); + } + + // Register custom nodes is called once after registerNode defs to allow adding other frontend nodes + expect(mockExtension.registerCustomNodes).toHaveBeenCalledTimes(1); + + // Before configure graph will be called here as the default graph is being loaded + expect(mockExtension.beforeConfigureGraph).toHaveBeenCalledTimes(1); + // it gets sent the graph data that is going to be loaded + const graphData = mockExtension.beforeConfigureGraph.mock.calls[0][0]; + + // A node created is fired for each node constructor that is called + expect(mockExtension.nodeCreated).toHaveBeenCalledTimes(graphData.nodes.length); + for (let i = 0; i < graphData.nodes.length; i++) { + expect(mockExtension.nodeCreated.mock.calls[i][0].type).toBe(graphData.nodes[i].type); + } + + // Each node then calls loadedGraphNode to allow them to be updated + expect(mockExtension.loadedGraphNode).toHaveBeenCalledTimes(graphData.nodes.length); + for (let i = 0; i < graphData.nodes.length; i++) { + expect(mockExtension.loadedGraphNode.mock.calls[i][0].type).toBe(graphData.nodes[i].type); + } + + // After configure is then called once all the setup is done + expect(mockExtension.afterConfigureGraph).toHaveBeenCalledTimes(1); + + expect(mockExtension.setup).toHaveBeenCalledTimes(1); + expect(mockExtension.setup).toHaveBeenCalledWith(app); + + // Ensure hooks are called in the correct order + const callOrder = [ + "init", + "addCustomNodeDefs", + "getCustomWidgets", + "beforeRegisterNodeDef", + "registerCustomNodes", + "beforeConfigureGraph", + "nodeCreated", + "loadedGraphNode", + "afterConfigureGraph", + "setup", + ]; + for (let i = 1; i < callOrder.length; i++) { + const fn1 = mockExtension[callOrder[i - 1]]; + const fn2 = mockExtension[callOrder[i]]; + expect(fn1.mock.invocationCallOrder[0]).toBeLessThan(fn2.mock.invocationCallOrder[0]); + } + + graph.clear(); + + // Ensure adding a new node calls the correct callback + ez.LoadImage(); + expect(mockExtension.loadedGraphNode).toHaveBeenCalledTimes(graphData.nodes.length); + expect(mockExtension.nodeCreated).toHaveBeenCalledTimes(graphData.nodes.length + 1); + expect(mockExtension.nodeCreated.mock.lastCall[0].type).toBe("LoadImage"); + + // Reload the graph to ensure correct hooks are fired + await graph.reload(); + + // These hooks should not be fired again + expect(mockExtension.init).toHaveBeenCalledTimes(1); + expect(mockExtension.addCustomNodeDefs).toHaveBeenCalledTimes(1); + expect(mockExtension.getCustomWidgets).toHaveBeenCalledTimes(1); + expect(mockExtension.registerCustomNodes).toHaveBeenCalledTimes(1); + expect(mockExtension.beforeRegisterNodeDef).toHaveBeenCalledTimes(nodeCount); + expect(mockExtension.setup).toHaveBeenCalledTimes(1); + + // These should be called again + expect(mockExtension.beforeConfigureGraph).toHaveBeenCalledTimes(2); + expect(mockExtension.nodeCreated).toHaveBeenCalledTimes(graphData.nodes.length + 2); + expect(mockExtension.loadedGraphNode).toHaveBeenCalledTimes(graphData.nodes.length + 1); + expect(mockExtension.afterConfigureGraph).toHaveBeenCalledTimes(2); + }, 15000); + + it("allows custom nodeDefs and widgets to be registered", async () => { + const widgetMock = jest.fn((node, inputName, inputData, app) => { + expect(node.constructor.comfyClass).toBe("TestNode"); + expect(inputName).toBe("test_input"); + expect(inputData[0]).toBe("CUSTOMWIDGET"); + expect(inputData[1]?.hello).toBe("world"); + expect(app).toStrictEqual(app); + + return { + widget: node.addWidget("button", inputName, "hello", () => {}), + }; + }); + + // Register our extension that adds a custom node + widget type + const mockExtension = { + name: "TestExtension", + addCustomNodeDefs: (nodeDefs) => { + nodeDefs["TestNode"] = { + output: [], + output_name: [], + output_is_list: [], + name: "TestNode", + display_name: "TestNode", + category: "Test", + input: { + required: { + test_input: ["CUSTOMWIDGET", { hello: "world" }], + }, + }, + }; + }, + getCustomWidgets: jest.fn(() => { + return { + CUSTOMWIDGET: widgetMock, + }; + }), + }; + + const { graph, ez } = await start({ + async preSetup(app) { + app.registerExtension(mockExtension); + }, + }); + + expect(mockExtension.getCustomWidgets).toBeCalledTimes(1); + + graph.clear(); + expect(widgetMock).toBeCalledTimes(0); + const node = ez.TestNode(); + expect(widgetMock).toBeCalledTimes(1); + + // Ensure our custom widget is created + expect(node.inputs.length).toBe(0); + expect(node.widgets.length).toBe(1); + const w = node.widgets[0].widget; + expect(w.name).toBe("test_input"); + expect(w.type).toBe("button"); + }); +}); diff --git a/tests-ui/tests/groupNode.test.js b/tests-ui/tests/groupNode.test.js new file mode 100644 index 0000000000000000000000000000000000000000..e6ebedd9150a2d0ea0ef4b4a522e1a3a85ddbc57 --- /dev/null +++ b/tests-ui/tests/groupNode.test.js @@ -0,0 +1,1005 @@ +// @ts-check +/// + +const { start, createDefaultWorkflow, getNodeDef, checkBeforeAndAfterReload } = require("../utils"); +const lg = require("../utils/litegraph"); + +describe("group node", () => { + beforeEach(() => { + lg.setup(global); + }); + + afterEach(() => { + lg.teardown(global); + }); + + /** + * + * @param {*} app + * @param {*} graph + * @param {*} name + * @param {*} nodes + * @returns { Promise> } + */ + async function convertToGroup(app, graph, name, nodes) { + // Select the nodes we are converting + for (const n of nodes) { + n.select(true); + } + + expect(Object.keys(app.canvas.selected_nodes).sort((a, b) => +a - +b)).toEqual( + nodes.map((n) => n.id + "").sort((a, b) => +a - +b) + ); + + global.prompt = jest.fn().mockImplementation(() => name); + const groupNode = await nodes[0].menu["Convert to Group Node"].call(false); + + // Check group name was requested + expect(window.prompt).toHaveBeenCalled(); + + // Ensure old nodes are removed + for (const n of nodes) { + expect(n.isRemoved).toBeTruthy(); + } + + expect(groupNode.type).toEqual("workflow/" + name); + + return graph.find(groupNode); + } + + /** + * @param { Record | number[] } idMap + * @param { Record> } valueMap + */ + function getOutput(idMap = {}, valueMap = {}) { + if (idMap instanceof Array) { + idMap = idMap.reduce((p, n) => { + p[n] = n + ""; + return p; + }, {}); + } + const expected = { + 1: { inputs: { ckpt_name: "model1.safetensors", ...valueMap?.[1] }, class_type: "CheckpointLoaderSimple" }, + 2: { inputs: { text: "positive", clip: ["1", 1], ...valueMap?.[2] }, class_type: "CLIPTextEncode" }, + 3: { inputs: { text: "negative", clip: ["1", 1], ...valueMap?.[3] }, class_type: "CLIPTextEncode" }, + 4: { inputs: { width: 512, height: 512, batch_size: 1, ...valueMap?.[4] }, class_type: "EmptyLatentImage" }, + 5: { + inputs: { + seed: 0, + steps: 20, + cfg: 8, + sampler_name: "euler", + scheduler: "normal", + denoise: 1, + model: ["1", 0], + positive: ["2", 0], + negative: ["3", 0], + latent_image: ["4", 0], + ...valueMap?.[5], + }, + class_type: "KSampler", + }, + 6: { inputs: { samples: ["5", 0], vae: ["1", 2], ...valueMap?.[6] }, class_type: "VAEDecode" }, + 7: { inputs: { filename_prefix: "ComfyUI", images: ["6", 0], ...valueMap?.[7] }, class_type: "SaveImage" }, + }; + + // Map old IDs to new at the top level + const mapped = {}; + for (const oldId in idMap) { + mapped[idMap[oldId]] = expected[oldId]; + delete expected[oldId]; + } + Object.assign(mapped, expected); + + // Map old IDs to new inside links + for (const k in mapped) { + for (const input in mapped[k].inputs) { + const v = mapped[k].inputs[input]; + if (v instanceof Array) { + if (v[0] in idMap) { + v[0] = idMap[v[0]] + ""; + } + } + } + } + + return mapped; + } + + test("can be created from selected nodes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg, nodes.empty]); + + // Ensure links are now to the group node + expect(group.inputs).toHaveLength(2); + expect(group.outputs).toHaveLength(3); + + expect(group.inputs.map((i) => i.input.name)).toEqual(["clip", "CLIPTextEncode clip"]); + expect(group.outputs.map((i) => i.output.name)).toEqual(["LATENT", "CONDITIONING", "CLIPTextEncode CONDITIONING"]); + + // ckpt clip to both clip inputs on the group + expect(nodes.ckpt.outputs.CLIP.connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [group.id, 0], + [group.id, 1], + ]); + + // group conditioning to sampler + expect(group.outputs["CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [nodes.sampler.id, 1], + ]); + // group conditioning 2 to sampler + expect( + group.outputs["CLIPTextEncode CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index]) + ).toEqual([[nodes.sampler.id, 2]]); + // group latent to sampler + expect(group.outputs["LATENT"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [nodes.sampler.id, 3], + ]); + }); + + test("maintains all output links on conversion", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const save2 = ez.SaveImage(...nodes.decode.outputs); + const save3 = ez.SaveImage(...nodes.decode.outputs); + // Ensure an output with multiple links maintains them on convert to group + const group = await convertToGroup(app, graph, "test", [nodes.sampler, nodes.decode]); + expect(group.outputs[0].connections.length).toBe(3); + expect(group.outputs[0].connections[0].targetNode.id).toBe(nodes.save.id); + expect(group.outputs[0].connections[1].targetNode.id).toBe(save2.id); + expect(group.outputs[0].connections[2].targetNode.id).toBe(save3.id); + + // and they're still linked when converting back to nodes + const newNodes = group.menu["Convert to nodes"].call(); + const decode = graph.find(newNodes.find((n) => n.type === "VAEDecode")); + expect(decode.outputs[0].connections.length).toBe(3); + expect(decode.outputs[0].connections[0].targetNode.id).toBe(nodes.save.id); + expect(decode.outputs[0].connections[1].targetNode.id).toBe(save2.id); + expect(decode.outputs[0].connections[2].targetNode.id).toBe(save3.id); + }); + test("can be be converted back to nodes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const toConvert = [nodes.pos, nodes.neg, nodes.empty, nodes.sampler]; + const group = await convertToGroup(app, graph, "test", toConvert); + + // Edit some values to ensure they are set back onto the converted nodes + expect(group.widgets["text"].value).toBe("positive"); + group.widgets["text"].value = "pos"; + expect(group.widgets["CLIPTextEncode text"].value).toBe("negative"); + group.widgets["CLIPTextEncode text"].value = "neg"; + expect(group.widgets["width"].value).toBe(512); + group.widgets["width"].value = 1024; + expect(group.widgets["sampler_name"].value).toBe("euler"); + group.widgets["sampler_name"].value = "ddim"; + expect(group.widgets["control_after_generate"].value).toBe("randomize"); + group.widgets["control_after_generate"].value = "fixed"; + + /** @type { Array } */ + group.menu["Convert to nodes"].call(); + + // ensure widget values are set + const pos = graph.find(nodes.pos.id); + expect(pos.node.type).toBe("CLIPTextEncode"); + expect(pos.widgets["text"].value).toBe("pos"); + const neg = graph.find(nodes.neg.id); + expect(neg.node.type).toBe("CLIPTextEncode"); + expect(neg.widgets["text"].value).toBe("neg"); + const empty = graph.find(nodes.empty.id); + expect(empty.node.type).toBe("EmptyLatentImage"); + expect(empty.widgets["width"].value).toBe(1024); + const sampler = graph.find(nodes.sampler.id); + expect(sampler.node.type).toBe("KSampler"); + expect(sampler.widgets["sampler_name"].value).toBe("ddim"); + expect(sampler.widgets["control_after_generate"].value).toBe("fixed"); + + // validate links + expect(nodes.ckpt.outputs.CLIP.connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [pos.id, 0], + [neg.id, 0], + ]); + + expect(pos.outputs["CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [nodes.sampler.id, 1], + ]); + + expect(neg.outputs["CONDITIONING"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [nodes.sampler.id, 2], + ]); + + expect(empty.outputs["LATENT"].connections.map((t) => [t.targetNode.id, t.targetInput.index])).toEqual([ + [nodes.sampler.id, 3], + ]); + }); + test("it can embed reroutes as inputs", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + // Add and connect a reroute to the clip text encodes + const reroute = ez.Reroute(); + nodes.ckpt.outputs.CLIP.connectTo(reroute.inputs[0]); + reroute.outputs[0].connectTo(nodes.pos.inputs[0]); + reroute.outputs[0].connectTo(nodes.neg.inputs[0]); + + // Convert to group and ensure we only have 1 input of the correct type + const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg, nodes.empty, reroute]); + expect(group.inputs).toHaveLength(1); + expect(group.inputs[0].input.type).toEqual("CLIP"); + + expect((await graph.toPrompt()).output).toEqual(getOutput()); + }); + test("it can embed reroutes as outputs", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + // Add a reroute with no output so we output IMAGE even though its used internally + const reroute = ez.Reroute(); + nodes.decode.outputs.IMAGE.connectTo(reroute.inputs[0]); + + // Convert to group and ensure there is an IMAGE output + const group = await convertToGroup(app, graph, "test", [nodes.decode, nodes.save, reroute]); + expect(group.outputs).toHaveLength(1); + expect(group.outputs[0].output.type).toEqual("IMAGE"); + expect((await graph.toPrompt()).output).toEqual(getOutput([nodes.decode.id, nodes.save.id])); + }); + test("it can embed reroutes as pipes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + // Use reroutes as a pipe + const rerouteModel = ez.Reroute(); + const rerouteClip = ez.Reroute(); + const rerouteVae = ez.Reroute(); + nodes.ckpt.outputs.MODEL.connectTo(rerouteModel.inputs[0]); + nodes.ckpt.outputs.CLIP.connectTo(rerouteClip.inputs[0]); + nodes.ckpt.outputs.VAE.connectTo(rerouteVae.inputs[0]); + + const group = await convertToGroup(app, graph, "test", [rerouteModel, rerouteClip, rerouteVae]); + + expect(group.outputs).toHaveLength(3); + expect(group.outputs.map((o) => o.output.type)).toEqual(["MODEL", "CLIP", "VAE"]); + + expect(group.outputs).toHaveLength(3); + expect(group.outputs.map((o) => o.output.type)).toEqual(["MODEL", "CLIP", "VAE"]); + + group.outputs[0].connectTo(nodes.sampler.inputs.model); + group.outputs[1].connectTo(nodes.pos.inputs.clip); + group.outputs[1].connectTo(nodes.neg.inputs.clip); + }); + test("can handle reroutes used internally", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + let reroutes = []; + let prevNode = nodes.ckpt; + for (let i = 0; i < 5; i++) { + const reroute = ez.Reroute(); + prevNode.outputs[0].connectTo(reroute.inputs[0]); + prevNode = reroute; + reroutes.push(reroute); + } + prevNode.outputs[0].connectTo(nodes.sampler.inputs.model); + + const group = await convertToGroup(app, graph, "test", [...reroutes, ...Object.values(nodes)]); + expect((await graph.toPrompt()).output).toEqual(getOutput()); + + group.menu["Convert to nodes"].call(); + expect((await graph.toPrompt()).output).toEqual(getOutput()); + }); + test("creates with widget values from inner nodes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + nodes.ckpt.widgets.ckpt_name.value = "model2.ckpt"; + nodes.pos.widgets.text.value = "hello"; + nodes.neg.widgets.text.value = "world"; + nodes.empty.widgets.width.value = 256; + nodes.empty.widgets.height.value = 1024; + nodes.sampler.widgets.seed.value = 1; + nodes.sampler.widgets.control_after_generate.value = "increment"; + nodes.sampler.widgets.steps.value = 8; + nodes.sampler.widgets.cfg.value = 4.5; + nodes.sampler.widgets.sampler_name.value = "uni_pc"; + nodes.sampler.widgets.scheduler.value = "karras"; + nodes.sampler.widgets.denoise.value = 0.9; + + const group = await convertToGroup(app, graph, "test", [ + nodes.ckpt, + nodes.pos, + nodes.neg, + nodes.empty, + nodes.sampler, + ]); + + expect(group.widgets["ckpt_name"].value).toEqual("model2.ckpt"); + expect(group.widgets["text"].value).toEqual("hello"); + expect(group.widgets["CLIPTextEncode text"].value).toEqual("world"); + expect(group.widgets["width"].value).toEqual(256); + expect(group.widgets["height"].value).toEqual(1024); + expect(group.widgets["seed"].value).toEqual(1); + expect(group.widgets["control_after_generate"].value).toEqual("increment"); + expect(group.widgets["steps"].value).toEqual(8); + expect(group.widgets["cfg"].value).toEqual(4.5); + expect(group.widgets["sampler_name"].value).toEqual("uni_pc"); + expect(group.widgets["scheduler"].value).toEqual("karras"); + expect(group.widgets["denoise"].value).toEqual(0.9); + + expect((await graph.toPrompt()).output).toEqual( + getOutput([nodes.ckpt.id, nodes.pos.id, nodes.neg.id, nodes.empty.id, nodes.sampler.id], { + [nodes.ckpt.id]: { ckpt_name: "model2.ckpt" }, + [nodes.pos.id]: { text: "hello" }, + [nodes.neg.id]: { text: "world" }, + [nodes.empty.id]: { width: 256, height: 1024 }, + [nodes.sampler.id]: { + seed: 1, + steps: 8, + cfg: 4.5, + sampler_name: "uni_pc", + scheduler: "karras", + denoise: 0.9, + }, + }) + ); + }); + test("group inputs can be reroutes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]); + + const reroute = ez.Reroute(); + nodes.ckpt.outputs.CLIP.connectTo(reroute.inputs[0]); + + reroute.outputs[0].connectTo(group.inputs[0]); + reroute.outputs[0].connectTo(group.inputs[1]); + + expect((await graph.toPrompt()).output).toEqual(getOutput([nodes.pos.id, nodes.neg.id])); + }); + test("group outputs can be reroutes", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]); + + const reroute1 = ez.Reroute(); + const reroute2 = ez.Reroute(); + group.outputs[0].connectTo(reroute1.inputs[0]); + group.outputs[1].connectTo(reroute2.inputs[0]); + + reroute1.outputs[0].connectTo(nodes.sampler.inputs.positive); + reroute2.outputs[0].connectTo(nodes.sampler.inputs.negative); + + expect((await graph.toPrompt()).output).toEqual(getOutput([nodes.pos.id, nodes.neg.id])); + }); + test("groups can connect to each other", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const group1 = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]); + const group2 = await convertToGroup(app, graph, "test2", [nodes.empty, nodes.sampler]); + + group1.outputs[0].connectTo(group2.inputs["positive"]); + group1.outputs[1].connectTo(group2.inputs["negative"]); + + expect((await graph.toPrompt()).output).toEqual( + getOutput([nodes.pos.id, nodes.neg.id, nodes.empty.id, nodes.sampler.id]) + ); + }); + test("groups can connect to each other via internal reroutes", async () => { + const { ez, graph, app } = await start(); + + const latent = ez.EmptyLatentImage(); + const vae = ez.VAELoader(); + const latentReroute = ez.Reroute(); + const vaeReroute = ez.Reroute(); + + latent.outputs[0].connectTo(latentReroute.inputs[0]); + vae.outputs[0].connectTo(vaeReroute.inputs[0]); + + const group1 = await convertToGroup(app, graph, "test", [latentReroute, vaeReroute]); + group1.menu.Clone.call(); + expect(app.graph._nodes).toHaveLength(4); + const group2 = graph.find(app.graph._nodes[3]); + expect(group2.node.type).toEqual("workflow/test"); + expect(group2.id).not.toEqual(group1.id); + + group1.outputs.VAE.connectTo(group2.inputs.VAE); + group1.outputs.LATENT.connectTo(group2.inputs.LATENT); + + const decode = ez.VAEDecode(group2.outputs.LATENT, group2.outputs.VAE); + const preview = ez.PreviewImage(decode.outputs[0]); + + const output = { + [latent.id]: { inputs: { width: 512, height: 512, batch_size: 1 }, class_type: "EmptyLatentImage" }, + [vae.id]: { inputs: { vae_name: "vae1.safetensors" }, class_type: "VAELoader" }, + [decode.id]: { inputs: { samples: [latent.id + "", 0], vae: [vae.id + "", 0] }, class_type: "VAEDecode" }, + [preview.id]: { inputs: { images: [decode.id + "", 0] }, class_type: "PreviewImage" }, + }; + expect((await graph.toPrompt()).output).toEqual(output); + + // Ensure missing connections dont cause errors + group2.inputs.VAE.disconnect(); + delete output[decode.id].inputs.vae; + expect((await graph.toPrompt()).output).toEqual(output); + }); + test("displays generated image on group node", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + let group = await convertToGroup(app, graph, "test", [ + nodes.pos, + nodes.neg, + nodes.empty, + nodes.sampler, + nodes.decode, + nodes.save, + ]); + + const { api } = require("../../web/scripts/api"); + + api.dispatchEvent(new CustomEvent("execution_start", {})); + api.dispatchEvent(new CustomEvent("executing", { detail: `${nodes.save.id}` })); + // Event should be forwarded to group node id + expect(+app.runningNodeId).toEqual(group.id); + expect(group.node["imgs"]).toBeFalsy(); + api.dispatchEvent( + new CustomEvent("executed", { + detail: { + node: `${nodes.save.id}`, + output: { + images: [ + { + filename: "test.png", + type: "output", + }, + ], + }, + }, + }) + ); + + // Trigger paint + group.node.onDrawBackground?.(app.canvas.ctx, app.canvas.canvas); + + expect(group.node["images"]).toEqual([ + { + filename: "test.png", + type: "output", + }, + ]); + + // Reload + const workflow = JSON.stringify((await graph.toPrompt()).workflow); + await app.loadGraphData(JSON.parse(workflow)); + group = graph.find(group); + + // Trigger inner nodes to get created + group.node["getInnerNodes"](); + + // Check it works for internal node ids + api.dispatchEvent(new CustomEvent("execution_start", {})); + api.dispatchEvent(new CustomEvent("executing", { detail: `${group.id}:5` })); + // Event should be forwarded to group node id + expect(+app.runningNodeId).toEqual(group.id); + expect(group.node["imgs"]).toBeFalsy(); + api.dispatchEvent( + new CustomEvent("executed", { + detail: { + node: `${group.id}:5`, + output: { + images: [ + { + filename: "test2.png", + type: "output", + }, + ], + }, + }, + }) + ); + + // Trigger paint + group.node.onDrawBackground?.(app.canvas.ctx, app.canvas.canvas); + + expect(group.node["images"]).toEqual([ + { + filename: "test2.png", + type: "output", + }, + ]); + }); + test("allows widgets to be converted to inputs", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + const group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]); + group.widgets[0].convertToInput(); + + const primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(group.inputs["text"]); + primitive.widgets[0].value = "hello"; + + expect((await graph.toPrompt()).output).toEqual( + getOutput([nodes.pos.id, nodes.neg.id], { + [nodes.pos.id]: { text: "hello" }, + }) + ); + }); + test("can be copied", async () => { + const { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + const group1 = await convertToGroup(app, graph, "test", [ + nodes.pos, + nodes.neg, + nodes.empty, + nodes.sampler, + nodes.decode, + nodes.save, + ]); + + group1.widgets["text"].value = "hello"; + group1.widgets["width"].value = 256; + group1.widgets["seed"].value = 1; + + // Clone the node + group1.menu.Clone.call(); + expect(app.graph._nodes).toHaveLength(3); + const group2 = graph.find(app.graph._nodes[2]); + expect(group2.node.type).toEqual("workflow/test"); + expect(group2.id).not.toEqual(group1.id); + + // Reconnect ckpt + nodes.ckpt.outputs.MODEL.connectTo(group2.inputs["model"]); + nodes.ckpt.outputs.CLIP.connectTo(group2.inputs["clip"]); + nodes.ckpt.outputs.CLIP.connectTo(group2.inputs["CLIPTextEncode clip"]); + nodes.ckpt.outputs.VAE.connectTo(group2.inputs["vae"]); + + group2.widgets["text"].value = "world"; + group2.widgets["width"].value = 1024; + group2.widgets["seed"].value = 100; + + let i = 0; + expect((await graph.toPrompt()).output).toEqual({ + ...getOutput([nodes.empty.id, nodes.pos.id, nodes.neg.id, nodes.sampler.id, nodes.decode.id, nodes.save.id], { + [nodes.empty.id]: { width: 256 }, + [nodes.pos.id]: { text: "hello" }, + [nodes.sampler.id]: { seed: 1 }, + }), + ...getOutput( + { + [nodes.empty.id]: `${group2.id}:${i++}`, + [nodes.pos.id]: `${group2.id}:${i++}`, + [nodes.neg.id]: `${group2.id}:${i++}`, + [nodes.sampler.id]: `${group2.id}:${i++}`, + [nodes.decode.id]: `${group2.id}:${i++}`, + [nodes.save.id]: `${group2.id}:${i++}`, + }, + { + [nodes.empty.id]: { width: 1024 }, + [nodes.pos.id]: { text: "world" }, + [nodes.sampler.id]: { seed: 100 }, + } + ), + }); + + graph.arrange(); + }); + test("is embedded in workflow", async () => { + let { ez, graph, app } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + let group = await convertToGroup(app, graph, "test", [nodes.pos, nodes.neg]); + const workflow = JSON.stringify((await graph.toPrompt()).workflow); + + // Clear the environment + ({ ez, graph, app } = await start({ + resetEnv: true, + })); + // Ensure the node isnt registered + expect(() => ez["workflow/test"]).toThrow(); + + // Reload the workflow + await app.loadGraphData(JSON.parse(workflow)); + + // Ensure the node is found + group = graph.find(group); + + // Generate prompt and ensure it is as expected + expect((await graph.toPrompt()).output).toEqual( + getOutput({ + [nodes.pos.id]: `${group.id}:0`, + [nodes.neg.id]: `${group.id}:1`, + }) + ); + }); + test("shows missing node error on missing internal node when loading graph data", async () => { + const { graph } = await start(); + + const dialogShow = jest.spyOn(graph.app.ui.dialog, "show"); + await graph.app.loadGraphData({ + last_node_id: 3, + last_link_id: 1, + nodes: [ + { + id: 3, + type: "workflow/testerror", + }, + ], + links: [], + groups: [], + config: {}, + extra: { + groupNodes: { + testerror: { + nodes: [ + { + type: "NotKSampler", + }, + { + type: "NotVAEDecode", + }, + ], + }, + }, + }, + }); + + expect(dialogShow).toBeCalledTimes(1); + const call = dialogShow.mock.calls[0][0].innerHTML; + expect(call).toContain("the following node types were not found"); + expect(call).toContain("NotKSampler"); + expect(call).toContain("NotVAEDecode"); + expect(call).toContain("workflow/testerror"); + }); + test("maintains widget inputs on conversion back to nodes", async () => { + const { ez, graph, app } = await start(); + let pos = ez.CLIPTextEncode({ text: "positive" }); + pos.node.title = "Positive"; + let neg = ez.CLIPTextEncode({ text: "negative" }); + neg.node.title = "Negative"; + pos.widgets.text.convertToInput(); + neg.widgets.text.convertToInput(); + + let primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(pos.inputs.text); + primitive.outputs[0].connectTo(neg.inputs.text); + + const group = await convertToGroup(app, graph, "test", [pos, neg, primitive]); + // This will use a primitive widget named 'value' + expect(group.widgets.length).toBe(1); + expect(group.widgets["value"].value).toBe("positive"); + + const newNodes = group.menu["Convert to nodes"].call(); + pos = graph.find(newNodes.find((n) => n.title === "Positive")); + neg = graph.find(newNodes.find((n) => n.title === "Negative")); + primitive = graph.find(newNodes.find((n) => n.type === "PrimitiveNode")); + + expect(pos.inputs).toHaveLength(2); + expect(neg.inputs).toHaveLength(2); + expect(primitive.outputs[0].connections).toHaveLength(2); + + expect((await graph.toPrompt()).output).toEqual({ + 1: { inputs: { text: "positive" }, class_type: "CLIPTextEncode" }, + 2: { inputs: { text: "positive" }, class_type: "CLIPTextEncode" }, + }); + }); + test("correctly handles widget inputs", async () => { + const { ez, graph, app } = await start(); + const upscaleMethods = (await getNodeDef("ImageScaleBy")).input.required["upscale_method"][0]; + + const image = ez.LoadImage(); + const scale1 = ez.ImageScaleBy(image.outputs[0]); + const scale2 = ez.ImageScaleBy(image.outputs[0]); + const preview1 = ez.PreviewImage(scale1.outputs[0]); + const preview2 = ez.PreviewImage(scale2.outputs[0]); + scale1.widgets.upscale_method.value = upscaleMethods[1]; + scale1.widgets.upscale_method.convertToInput(); + + const group = await convertToGroup(app, graph, "test", [scale1, scale2]); + expect(group.inputs.length).toBe(3); + expect(group.inputs[0].input.type).toBe("IMAGE"); + expect(group.inputs[1].input.type).toBe("IMAGE"); + expect(group.inputs[2].input.type).toBe("COMBO"); + + // Ensure links are maintained + expect(group.inputs[0].connection?.originNode?.id).toBe(image.id); + expect(group.inputs[1].connection?.originNode?.id).toBe(image.id); + expect(group.inputs[2].connection).toBeFalsy(); + + // Ensure primitive gets correct type + const primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(group.inputs[2]); + expect(primitive.widgets.value.widget.options.values).toBe(upscaleMethods); + expect(primitive.widgets.value.value).toBe(upscaleMethods[1]); // Ensure value is copied + primitive.widgets.value.value = upscaleMethods[1]; + + await checkBeforeAndAfterReload(graph, async (r) => { + const scale1id = r ? `${group.id}:0` : scale1.id; + const scale2id = r ? `${group.id}:1` : scale2.id; + // Ensure widget value is applied to prompt + expect((await graph.toPrompt()).output).toStrictEqual({ + [image.id]: { inputs: { image: "example.png", upload: "image" }, class_type: "LoadImage" }, + [scale1id]: { + inputs: { upscale_method: upscaleMethods[1], scale_by: 1, image: [`${image.id}`, 0] }, + class_type: "ImageScaleBy", + }, + [scale2id]: { + inputs: { upscale_method: "nearest-exact", scale_by: 1, image: [`${image.id}`, 0] }, + class_type: "ImageScaleBy", + }, + [preview1.id]: { inputs: { images: [`${scale1id}`, 0] }, class_type: "PreviewImage" }, + [preview2.id]: { inputs: { images: [`${scale2id}`, 0] }, class_type: "PreviewImage" }, + }); + }); + }); + test("adds widgets in node execution order", async () => { + const { ez, graph, app } = await start(); + const scale = ez.LatentUpscale(); + const save = ez.SaveImage(); + const empty = ez.EmptyLatentImage(); + const decode = ez.VAEDecode(); + + scale.outputs.LATENT.connectTo(decode.inputs.samples); + decode.outputs.IMAGE.connectTo(save.inputs.images); + empty.outputs.LATENT.connectTo(scale.inputs.samples); + + const group = await convertToGroup(app, graph, "test", [scale, save, empty, decode]); + const widgets = group.widgets.map((w) => w.widget.name); + expect(widgets).toStrictEqual([ + "width", + "height", + "batch_size", + "upscale_method", + "LatentUpscale width", + "LatentUpscale height", + "crop", + "filename_prefix", + ]); + }); + test("adds output for external links when converting to group", async () => { + const { ez, graph, app } = await start(); + const img = ez.EmptyLatentImage(); + let decode = ez.VAEDecode(...img.outputs); + const preview1 = ez.PreviewImage(...decode.outputs); + const preview2 = ez.PreviewImage(...decode.outputs); + + const group = await convertToGroup(app, graph, "test", [img, decode, preview1]); + + // Ensure we have an output connected to the 2nd preview node + expect(group.outputs.length).toBe(1); + expect(group.outputs[0].connections.length).toBe(1); + expect(group.outputs[0].connections[0].targetNode.id).toBe(preview2.id); + + // Convert back and ensure bothe previews are still connected + group.menu["Convert to nodes"].call(); + decode = graph.find(decode); + expect(decode.outputs[0].connections.length).toBe(2); + expect(decode.outputs[0].connections[0].targetNode.id).toBe(preview1.id); + expect(decode.outputs[0].connections[1].targetNode.id).toBe(preview2.id); + }); + test("adds output for external links when converting to group when nodes are not in execution order", async () => { + const { ez, graph, app } = await start(); + const sampler = ez.KSampler(); + const ckpt = ez.CheckpointLoaderSimple(); + const empty = ez.EmptyLatentImage(); + const pos = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "positive" }); + const neg = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "negative" }); + const decode1 = ez.VAEDecode(sampler.outputs.LATENT, ckpt.outputs.VAE); + const save = ez.SaveImage(decode1.outputs.IMAGE); + ckpt.outputs.MODEL.connectTo(sampler.inputs.model); + pos.outputs.CONDITIONING.connectTo(sampler.inputs.positive); + neg.outputs.CONDITIONING.connectTo(sampler.inputs.negative); + empty.outputs.LATENT.connectTo(sampler.inputs.latent_image); + + const encode = ez.VAEEncode(decode1.outputs.IMAGE); + const vae = ez.VAELoader(); + const decode2 = ez.VAEDecode(encode.outputs.LATENT, vae.outputs.VAE); + const preview = ez.PreviewImage(decode2.outputs.IMAGE); + vae.outputs.VAE.connectTo(encode.inputs.vae); + + const group = await convertToGroup(app, graph, "test", [vae, decode1, encode, sampler]); + + expect(group.outputs.length).toBe(3); + expect(group.outputs[0].output.name).toBe("VAE"); + expect(group.outputs[0].output.type).toBe("VAE"); + expect(group.outputs[1].output.name).toBe("IMAGE"); + expect(group.outputs[1].output.type).toBe("IMAGE"); + expect(group.outputs[2].output.name).toBe("LATENT"); + expect(group.outputs[2].output.type).toBe("LATENT"); + + expect(group.outputs[0].connections.length).toBe(1); + expect(group.outputs[0].connections[0].targetNode.id).toBe(decode2.id); + expect(group.outputs[0].connections[0].targetInput.index).toBe(1); + + expect(group.outputs[1].connections.length).toBe(1); + expect(group.outputs[1].connections[0].targetNode.id).toBe(save.id); + expect(group.outputs[1].connections[0].targetInput.index).toBe(0); + + expect(group.outputs[2].connections.length).toBe(1); + expect(group.outputs[2].connections[0].targetNode.id).toBe(decode2.id); + expect(group.outputs[2].connections[0].targetInput.index).toBe(0); + + expect((await graph.toPrompt()).output).toEqual({ + ...getOutput({ 1: ckpt.id, 2: pos.id, 3: neg.id, 4: empty.id, 5: sampler.id, 6: decode1.id, 7: save.id }), + [vae.id]: { inputs: { vae_name: "vae1.safetensors" }, class_type: vae.node.type }, + [encode.id]: { inputs: { pixels: ["6", 0], vae: [vae.id + "", 0] }, class_type: encode.node.type }, + [decode2.id]: { inputs: { samples: [encode.id + "", 0], vae: [vae.id + "", 0] }, class_type: decode2.node.type }, + [preview.id]: { inputs: { images: [decode2.id + "", 0] }, class_type: preview.node.type }, + }); + }); + test("works with IMAGEUPLOAD widget", async () => { + const { ez, graph, app } = await start(); + const img = ez.LoadImage(); + const preview1 = ez.PreviewImage(img.outputs[0]); + + const group = await convertToGroup(app, graph, "test", [img, preview1]); + const widget = group.widgets["upload"]; + expect(widget).toBeTruthy(); + expect(widget.widget.type).toBe("button"); + }); + test("internal primitive populates widgets for all linked inputs", async () => { + const { ez, graph, app } = await start(); + const img = ez.LoadImage(); + const scale1 = ez.ImageScale(img.outputs[0]); + const scale2 = ez.ImageScale(img.outputs[0]); + ez.PreviewImage(scale1.outputs[0]); + ez.PreviewImage(scale2.outputs[0]); + + scale1.widgets.width.convertToInput(); + scale2.widgets.height.convertToInput(); + + const primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(scale1.inputs.width); + primitive.outputs[0].connectTo(scale2.inputs.height); + + const group = await convertToGroup(app, graph, "test", [img, primitive, scale1, scale2]); + group.widgets.value.value = 100; + expect((await graph.toPrompt()).output).toEqual({ + 1: { + inputs: { image: img.widgets.image.value, upload: "image" }, + class_type: "LoadImage", + }, + 2: { + inputs: { upscale_method: "nearest-exact", width: 100, height: 512, crop: "disabled", image: ["1", 0] }, + class_type: "ImageScale", + }, + 3: { + inputs: { upscale_method: "nearest-exact", width: 512, height: 100, crop: "disabled", image: ["1", 0] }, + class_type: "ImageScale", + }, + 4: { inputs: { images: ["2", 0] }, class_type: "PreviewImage" }, + 5: { inputs: { images: ["3", 0] }, class_type: "PreviewImage" }, + }); + }); + test("primitive control widgets values are copied on convert", async () => { + const { ez, graph, app } = await start(); + const sampler = ez.KSampler(); + sampler.widgets.seed.convertToInput(); + sampler.widgets.sampler_name.convertToInput(); + + let p1 = ez.PrimitiveNode(); + let p2 = ez.PrimitiveNode(); + p1.outputs[0].connectTo(sampler.inputs.seed); + p2.outputs[0].connectTo(sampler.inputs.sampler_name); + + p1.widgets.control_after_generate.value = "increment"; + p2.widgets.control_after_generate.value = "decrement"; + p2.widgets.control_filter_list.value = "/.*/"; + + p2.node.title = "p2"; + + const group = await convertToGroup(app, graph, "test", [sampler, p1, p2]); + expect(group.widgets.control_after_generate.value).toBe("increment"); + expect(group.widgets["p2 control_after_generate"].value).toBe("decrement"); + expect(group.widgets["p2 control_filter_list"].value).toBe("/.*/"); + + group.widgets.control_after_generate.value = "fixed"; + group.widgets["p2 control_after_generate"].value = "randomize"; + group.widgets["p2 control_filter_list"].value = "/.+/"; + + group.menu["Convert to nodes"].call(); + p1 = graph.find(p1); + p2 = graph.find(p2); + + expect(p1.widgets.control_after_generate.value).toBe("fixed"); + expect(p2.widgets.control_after_generate.value).toBe("randomize"); + expect(p2.widgets.control_filter_list.value).toBe("/.+/"); + }); + test("internal reroutes work with converted inputs and merge options", async () => { + const { ez, graph, app } = await start(); + const vae = ez.VAELoader(); + const latent = ez.EmptyLatentImage(); + const decode = ez.VAEDecode(latent.outputs.LATENT, vae.outputs.VAE); + const scale = ez.ImageScale(decode.outputs.IMAGE); + ez.PreviewImage(scale.outputs.IMAGE); + + const r1 = ez.Reroute(); + const r2 = ez.Reroute(); + + latent.widgets.width.value = 64; + latent.widgets.height.value = 128; + + latent.widgets.width.convertToInput(); + latent.widgets.height.convertToInput(); + latent.widgets.batch_size.convertToInput(); + + scale.widgets.width.convertToInput(); + scale.widgets.height.convertToInput(); + + r1.inputs[0].input.label = "hbw"; + r1.outputs[0].connectTo(latent.inputs.height); + r1.outputs[0].connectTo(latent.inputs.batch_size); + r1.outputs[0].connectTo(scale.inputs.width); + + r2.inputs[0].input.label = "wh"; + r2.outputs[0].connectTo(latent.inputs.width); + r2.outputs[0].connectTo(scale.inputs.height); + + const group = await convertToGroup(app, graph, "test", [r1, r2, latent, decode, scale]); + + expect(group.inputs[0].input.type).toBe("VAE"); + expect(group.inputs[1].input.type).toBe("INT"); + expect(group.inputs[2].input.type).toBe("INT"); + + const p1 = ez.PrimitiveNode(); + const p2 = ez.PrimitiveNode(); + p1.outputs[0].connectTo(group.inputs[1]); + p2.outputs[0].connectTo(group.inputs[2]); + + expect(p1.widgets.value.widget.options?.min).toBe(16); // width/height min + expect(p1.widgets.value.widget.options?.max).toBe(4096); // batch max + expect(p1.widgets.value.widget.options?.step).toBe(80); // width/height step * 10 + + expect(p2.widgets.value.widget.options?.min).toBe(16); // width/height min + expect(p2.widgets.value.widget.options?.max).toBe(8192); // width/height max + expect(p2.widgets.value.widget.options?.step).toBe(80); // width/height step * 10 + + expect(p1.widgets.value.value).toBe(128); + expect(p2.widgets.value.value).toBe(64); + + p1.widgets.value.value = 16; + p2.widgets.value.value = 32; + + await checkBeforeAndAfterReload(graph, async (r) => { + const id = (v) => (r ? `${group.id}:` : "") + v; + expect((await graph.toPrompt()).output).toStrictEqual({ + 1: { inputs: { vae_name: "vae1.safetensors" }, class_type: "VAELoader" }, + [id(2)]: { inputs: { width: 32, height: 16, batch_size: 16 }, class_type: "EmptyLatentImage" }, + [id(3)]: { inputs: { samples: [id(2), 0], vae: ["1", 0] }, class_type: "VAEDecode" }, + [id(4)]: { + inputs: { upscale_method: "nearest-exact", width: 16, height: 32, crop: "disabled", image: [id(3), 0] }, + class_type: "ImageScale", + }, + 5: { inputs: { images: [id(4), 0] }, class_type: "PreviewImage" }, + }); + }); + }); + test("converted inputs with linked widgets map values correctly on creation", async () => { + const { ez, graph, app } = await start(); + const k1 = ez.KSampler(); + const k2 = ez.KSampler(); + k1.widgets.seed.convertToInput(); + k2.widgets.seed.convertToInput(); + + const rr = ez.Reroute(); + rr.outputs[0].connectTo(k1.inputs.seed); + rr.outputs[0].connectTo(k2.inputs.seed); + + const group = await convertToGroup(app, graph, "test", [k1, k2, rr]); + expect(group.widgets.steps.value).toBe(20); + expect(group.widgets.cfg.value).toBe(8); + expect(group.widgets.scheduler.value).toBe("normal"); + expect(group.widgets["KSampler steps"].value).toBe(20); + expect(group.widgets["KSampler cfg"].value).toBe(8); + expect(group.widgets["KSampler scheduler"].value).toBe("normal"); + }); + test("allow multiple of the same node type to be added", async () => { + const { ez, graph, app } = await start(); + const nodes = [...Array(10)].map(() => ez.ImageScaleBy()); + const group = await convertToGroup(app, graph, "test", nodes); + expect(group.inputs.length).toBe(10); + expect(group.outputs.length).toBe(10); + expect(group.widgets.length).toBe(20); + expect(group.widgets.map((w) => w.widget.name)).toStrictEqual( + [...Array(10)] + .map((_, i) => `${i > 0 ? "ImageScaleBy " : ""}${i > 1 ? i + " " : ""}`) + .flatMap((p) => [`${p}upscale_method`, `${p}scale_by`]) + ); + }); +}); diff --git a/tests-ui/tests/users.test.js b/tests-ui/tests/users.test.js new file mode 100644 index 0000000000000000000000000000000000000000..5e07307306e8130e4752199e0ca1adb6011b53ff --- /dev/null +++ b/tests-ui/tests/users.test.js @@ -0,0 +1,295 @@ +// @ts-check +/// +const { start } = require("../utils"); +const lg = require("../utils/litegraph"); + +describe("users", () => { + beforeEach(() => { + lg.setup(global); + }); + + afterEach(() => { + lg.teardown(global); + }); + + function expectNoUserScreen() { + // Ensure login isnt visible + const selection = document.querySelectorAll("#comfy-user-selection")?.[0]; + expect(selection["style"].display).toBe("none"); + const menu = document.querySelectorAll(".comfy-menu")?.[0]; + expect(window.getComputedStyle(menu)?.display).not.toBe("none"); + } + + describe("multi-user", () => { + function mockAddStylesheet() { + const utils = require("../../web/scripts/utils"); + utils.addStylesheet = jest.fn().mockReturnValue(Promise.resolve()); + } + + async function waitForUserScreenShow() { + mockAddStylesheet(); + + // Wait for "show" to be called + const { UserSelectionScreen } = require("../../web/scripts/ui/userSelection"); + let resolve, reject; + const fn = UserSelectionScreen.prototype.show; + const p = new Promise((res, rej) => { + resolve = res; + reject = rej; + }); + jest.spyOn(UserSelectionScreen.prototype, "show").mockImplementation(async (...args) => { + const res = fn(...args); + await new Promise(process.nextTick); // wait for promises to resolve + resolve(); + return res; + }); + // @ts-ignore + setTimeout(() => reject("timeout waiting for UserSelectionScreen to be shown."), 500); + await p; + await new Promise(process.nextTick); // wait for promises to resolve + } + + async function testUserScreen(onShown, users) { + if (!users) { + users = {}; + } + const starting = start({ + resetEnv: true, + userConfig: { storage: "server", users }, + }); + + // Ensure no current user + expect(localStorage["Comfy.userId"]).toBeFalsy(); + expect(localStorage["Comfy.userName"]).toBeFalsy(); + + await waitForUserScreenShow(); + + const selection = document.querySelectorAll("#comfy-user-selection")?.[0]; + expect(selection).toBeTruthy(); + + // Ensure login is visible + expect(window.getComputedStyle(selection)?.display).not.toBe("none"); + // Ensure menu is hidden + const menu = document.querySelectorAll(".comfy-menu")?.[0]; + expect(window.getComputedStyle(menu)?.display).toBe("none"); + + const isCreate = await onShown(selection); + + // Submit form + selection.querySelectorAll("form")[0].submit(); + await new Promise(process.nextTick); // wait for promises to resolve + + // Wait for start + const s = await starting; + + // Ensure login is removed + expect(document.querySelectorAll("#comfy-user-selection")).toHaveLength(0); + expect(window.getComputedStyle(menu)?.display).not.toBe("none"); + + // Ensure settings + templates are saved + const { api } = require("../../web/scripts/api"); + expect(api.createUser).toHaveBeenCalledTimes(+isCreate); + expect(api.storeSettings).toHaveBeenCalledTimes(+isCreate); + expect(api.storeUserData).toHaveBeenCalledTimes(+isCreate); + if (isCreate) { + expect(api.storeUserData).toHaveBeenCalledWith("comfy.templates.json", null, { stringify: false }); + expect(s.app.isNewUserSession).toBeTruthy(); + } else { + expect(s.app.isNewUserSession).toBeFalsy(); + } + + return { users, selection, ...s }; + } + + it("allows user creation if no users", async () => { + const { users } = await testUserScreen((selection) => { + // Ensure we have no users flag added + expect(selection.classList.contains("no-users")).toBeTruthy(); + + // Enter a username + const input = selection.getElementsByTagName("input")[0]; + input.focus(); + input.value = "Test User"; + + return true; + }); + + expect(users).toStrictEqual({ + "Test User!": "Test User", + }); + + expect(localStorage["Comfy.userId"]).toBe("Test User!"); + expect(localStorage["Comfy.userName"]).toBe("Test User"); + }); + it("allows user creation if no current user but other users", async () => { + const users = { + "Test User 2!": "Test User 2", + }; + + await testUserScreen((selection) => { + expect(selection.classList.contains("no-users")).toBeFalsy(); + + // Enter a username + const input = selection.getElementsByTagName("input")[0]; + input.focus(); + input.value = "Test User 3"; + return true; + }, users); + + expect(users).toStrictEqual({ + "Test User 2!": "Test User 2", + "Test User 3!": "Test User 3", + }); + + expect(localStorage["Comfy.userId"]).toBe("Test User 3!"); + expect(localStorage["Comfy.userName"]).toBe("Test User 3"); + }); + it("allows user selection if no current user but other users", async () => { + const users = { + "A!": "A", + "B!": "B", + "C!": "C", + }; + + await testUserScreen((selection) => { + expect(selection.classList.contains("no-users")).toBeFalsy(); + + // Check user list + const select = selection.getElementsByTagName("select")[0]; + const options = select.getElementsByTagName("option"); + expect( + [...options] + .filter((o) => !o.disabled) + .reduce((p, n) => { + p[n.getAttribute("value")] = n.textContent; + return p; + }, {}) + ).toStrictEqual(users); + + // Select an option + select.focus(); + select.value = options[2].value; + + return false; + }, users); + + expect(users).toStrictEqual(users); + + expect(localStorage["Comfy.userId"]).toBe("B!"); + expect(localStorage["Comfy.userName"]).toBe("B"); + }); + it("doesnt show user screen if current user", async () => { + const starting = start({ + resetEnv: true, + userConfig: { + storage: "server", + users: { + "User!": "User", + }, + }, + localStorage: { + "Comfy.userId": "User!", + "Comfy.userName": "User", + }, + }); + await new Promise(process.nextTick); // wait for promises to resolve + + expectNoUserScreen(); + + await starting; + }); + it("allows user switching", async () => { + const { app } = await start({ + resetEnv: true, + userConfig: { + storage: "server", + users: { + "User!": "User", + }, + }, + localStorage: { + "Comfy.userId": "User!", + "Comfy.userName": "User", + }, + }); + + // cant actually test switching user easily but can check the setting is present + expect(app.ui.settings.settingsLookup["Comfy.SwitchUser"]).toBeTruthy(); + }); + }); + describe("single-user", () => { + it("doesnt show user creation if no default user", async () => { + const { app } = await start({ + resetEnv: true, + userConfig: { migrated: false, storage: "server" }, + }); + expectNoUserScreen(); + + // It should store the settings + const { api } = require("../../web/scripts/api"); + expect(api.storeSettings).toHaveBeenCalledTimes(1); + expect(api.storeUserData).toHaveBeenCalledTimes(1); + expect(api.storeUserData).toHaveBeenCalledWith("comfy.templates.json", null, { stringify: false }); + expect(app.isNewUserSession).toBeTruthy(); + }); + it("doesnt show user creation if default user", async () => { + const { app } = await start({ + resetEnv: true, + userConfig: { migrated: true, storage: "server" }, + }); + expectNoUserScreen(); + + // It should store the settings + const { api } = require("../../web/scripts/api"); + expect(api.storeSettings).toHaveBeenCalledTimes(0); + expect(api.storeUserData).toHaveBeenCalledTimes(0); + expect(app.isNewUserSession).toBeFalsy(); + }); + it("doesnt allow user switching", async () => { + const { app } = await start({ + resetEnv: true, + userConfig: { migrated: true, storage: "server" }, + }); + expectNoUserScreen(); + + expect(app.ui.settings.settingsLookup["Comfy.SwitchUser"]).toBeFalsy(); + }); + }); + describe("browser-user", () => { + it("doesnt show user creation if no default user", async () => { + const { app } = await start({ + resetEnv: true, + userConfig: { migrated: false, storage: "browser" }, + }); + expectNoUserScreen(); + + // It should store the settings + const { api } = require("../../web/scripts/api"); + expect(api.storeSettings).toHaveBeenCalledTimes(0); + expect(api.storeUserData).toHaveBeenCalledTimes(0); + expect(app.isNewUserSession).toBeFalsy(); + }); + it("doesnt show user creation if default user", async () => { + const { app } = await start({ + resetEnv: true, + userConfig: { migrated: true, storage: "server" }, + }); + expectNoUserScreen(); + + // It should store the settings + const { api } = require("../../web/scripts/api"); + expect(api.storeSettings).toHaveBeenCalledTimes(0); + expect(api.storeUserData).toHaveBeenCalledTimes(0); + expect(app.isNewUserSession).toBeFalsy(); + }); + it("doesnt allow user switching", async () => { + const { app } = await start({ + resetEnv: true, + userConfig: { migrated: true, storage: "browser" }, + }); + expectNoUserScreen(); + + expect(app.ui.settings.settingsLookup["Comfy.SwitchUser"]).toBeFalsy(); + }); + }); +}); diff --git a/tests-ui/tests/widgetInputs.test.js b/tests-ui/tests/widgetInputs.test.js new file mode 100644 index 0000000000000000000000000000000000000000..67e3fa341ecbfa3a9e331e74449f5cd264263b7a --- /dev/null +++ b/tests-ui/tests/widgetInputs.test.js @@ -0,0 +1,557 @@ +// @ts-check +/// + +const { + start, + makeNodeDef, + checkBeforeAndAfterReload, + assertNotNullOrUndefined, + createDefaultWorkflow, +} = require("../utils"); +const lg = require("../utils/litegraph"); + +/** + * @typedef { import("../utils/ezgraph") } Ez + * @typedef { ReturnType["ez"] } EzNodeFactory + */ + +/** + * @param { EzNodeFactory } ez + * @param { InstanceType } graph + * @param { InstanceType } input + * @param { string } widgetType + * @param { number } controlWidgetCount + * @returns + */ +async function connectPrimitiveAndReload(ez, graph, input, widgetType, controlWidgetCount = 0) { + // Connect to primitive and ensure its still connected after + let primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(input); + + await checkBeforeAndAfterReload(graph, async () => { + primitive = graph.find(primitive); + let { connections } = primitive.outputs[0]; + expect(connections).toHaveLength(1); + expect(connections[0].targetNode.id).toBe(input.node.node.id); + + // Ensure widget is correct type + const valueWidget = primitive.widgets.value; + expect(valueWidget.widget.type).toBe(widgetType); + + // Check if control_after_generate should be added + if (controlWidgetCount) { + const controlWidget = primitive.widgets.control_after_generate; + expect(controlWidget.widget.type).toBe("combo"); + if (widgetType === "combo") { + const filterWidget = primitive.widgets.control_filter_list; + expect(filterWidget.widget.type).toBe("string"); + } + } + + // Ensure we dont have other widgets + expect(primitive.node.widgets).toHaveLength(1 + controlWidgetCount); + }); + + return primitive; +} + +describe("widget inputs", () => { + beforeEach(() => { + lg.setup(global); + }); + + afterEach(() => { + lg.teardown(global); + }); + + [ + { name: "int", type: "INT", widget: "number", control: 1 }, + { name: "float", type: "FLOAT", widget: "number", control: 1 }, + { name: "text", type: "STRING" }, + { + name: "customtext", + type: "STRING", + opt: { multiline: true }, + }, + { name: "toggle", type: "BOOLEAN" }, + { name: "combo", type: ["a", "b", "c"], control: 2 }, + ].forEach((c) => { + test(`widget conversion + primitive works on ${c.name}`, async () => { + const { ez, graph } = await start({ + mockNodeDefs: makeNodeDef("TestNode", { [c.name]: [c.type, c.opt ?? {}] }), + }); + + // Create test node and convert to input + const n = ez.TestNode(); + const w = n.widgets[c.name]; + w.convertToInput(); + expect(w.isConvertedToInput).toBeTruthy(); + const input = w.getConvertedInput(); + expect(input).toBeTruthy(); + + // @ts-ignore : input is valid here + await connectPrimitiveAndReload(ez, graph, input, c.widget ?? c.name, c.control); + }); + }); + + test("converted widget works after reload", async () => { + const { ez, graph } = await start(); + let n = ez.CheckpointLoaderSimple(); + + const inputCount = n.inputs.length; + + // Convert ckpt name to an input + n.widgets.ckpt_name.convertToInput(); + expect(n.widgets.ckpt_name.isConvertedToInput).toBeTruthy(); + expect(n.inputs.ckpt_name).toBeTruthy(); + expect(n.inputs.length).toEqual(inputCount + 1); + + // Convert back to widget and ensure input is removed + n.widgets.ckpt_name.convertToWidget(); + expect(n.widgets.ckpt_name.isConvertedToInput).toBeFalsy(); + expect(n.inputs.ckpt_name).toBeFalsy(); + expect(n.inputs.length).toEqual(inputCount); + + // Convert again and reload the graph to ensure it maintains state + n.widgets.ckpt_name.convertToInput(); + expect(n.inputs.length).toEqual(inputCount + 1); + + const primitive = await connectPrimitiveAndReload(ez, graph, n.inputs.ckpt_name, "combo", 2); + + // Disconnect & reconnect + primitive.outputs[0].connections[0].disconnect(); + let { connections } = primitive.outputs[0]; + expect(connections).toHaveLength(0); + + primitive.outputs[0].connectTo(n.inputs.ckpt_name); + ({ connections } = primitive.outputs[0]); + expect(connections).toHaveLength(1); + expect(connections[0].targetNode.id).toBe(n.node.id); + + // Convert back to widget and ensure input is removed + n.widgets.ckpt_name.convertToWidget(); + expect(n.widgets.ckpt_name.isConvertedToInput).toBeFalsy(); + expect(n.inputs.ckpt_name).toBeFalsy(); + expect(n.inputs.length).toEqual(inputCount); + }); + + test("converted widget works on clone", async () => { + const { graph, ez } = await start(); + let n = ez.CheckpointLoaderSimple(); + + // Convert the widget to an input + n.widgets.ckpt_name.convertToInput(); + expect(n.widgets.ckpt_name.isConvertedToInput).toBeTruthy(); + + // Clone the node + n.menu["Clone"].call(); + expect(graph.nodes).toHaveLength(2); + const clone = graph.nodes[1]; + expect(clone.id).not.toEqual(n.id); + + // Ensure the clone has an input + expect(clone.widgets.ckpt_name.isConvertedToInput).toBeTruthy(); + expect(clone.inputs.ckpt_name).toBeTruthy(); + + // Ensure primitive connects to both nodes + let primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(n.inputs.ckpt_name); + primitive.outputs[0].connectTo(clone.inputs.ckpt_name); + expect(primitive.outputs[0].connections).toHaveLength(2); + + // Convert back to widget and ensure input is removed + clone.widgets.ckpt_name.convertToWidget(); + expect(clone.widgets.ckpt_name.isConvertedToInput).toBeFalsy(); + expect(clone.inputs.ckpt_name).toBeFalsy(); + }); + + test("shows missing node error on custom node with converted input", async () => { + const { graph } = await start(); + + const dialogShow = jest.spyOn(graph.app.ui.dialog, "show"); + + await graph.app.loadGraphData({ + last_node_id: 3, + last_link_id: 4, + nodes: [ + { + id: 1, + type: "TestNode", + pos: [41.87329101561909, 389.7381480823742], + size: { 0: 220, 1: 374 }, + flags: {}, + order: 1, + mode: 0, + inputs: [{ name: "test", type: "FLOAT", link: 4, widget: { name: "test" }, slot_index: 0 }], + outputs: [], + properties: { "Node name for S&R": "TestNode" }, + widgets_values: [1], + }, + { + id: 3, + type: "PrimitiveNode", + pos: [-312, 433], + size: { 0: 210, 1: 82 }, + flags: {}, + order: 0, + mode: 0, + outputs: [{ links: [4], widget: { name: "test" } }], + title: "test", + properties: {}, + }, + ], + links: [[4, 3, 0, 1, 6, "FLOAT"]], + groups: [], + config: {}, + extra: {}, + version: 0.4, + }); + + expect(dialogShow).toBeCalledTimes(1); + expect(dialogShow.mock.calls[0][0].innerHTML).toContain("the following node types were not found"); + expect(dialogShow.mock.calls[0][0].innerHTML).toContain("TestNode"); + }); + + test("defaultInput widgets can be converted back to inputs", async () => { + const { graph, ez } = await start({ + mockNodeDefs: makeNodeDef("TestNode", { example: ["INT", { defaultInput: true }] }), + }); + + // Create test node and ensure it starts as an input + let n = ez.TestNode(); + let w = n.widgets.example; + expect(w.isConvertedToInput).toBeTruthy(); + let input = w.getConvertedInput(); + expect(input).toBeTruthy(); + + // Ensure it can be converted to + w.convertToWidget(); + expect(w.isConvertedToInput).toBeFalsy(); + expect(n.inputs.length).toEqual(0); + // and from + w.convertToInput(); + expect(w.isConvertedToInput).toBeTruthy(); + input = w.getConvertedInput(); + + // Reload and ensure it still only has 1 converted widget + if (!assertNotNullOrUndefined(input)) return; + + await connectPrimitiveAndReload(ez, graph, input, "number", 1); + n = graph.find(n); + expect(n.widgets).toHaveLength(1); + w = n.widgets.example; + expect(w.isConvertedToInput).toBeTruthy(); + + // Convert back to widget and ensure it is still a widget after reload + w.convertToWidget(); + await graph.reload(); + n = graph.find(n); + expect(n.widgets).toHaveLength(1); + expect(n.widgets[0].isConvertedToInput).toBeFalsy(); + expect(n.inputs.length).toEqual(0); + }); + + test("forceInput widgets can not be converted back to inputs", async () => { + const { graph, ez } = await start({ + mockNodeDefs: makeNodeDef("TestNode", { example: ["INT", { forceInput: true }] }), + }); + + // Create test node and ensure it starts as an input + let n = ez.TestNode(); + let w = n.widgets.example; + expect(w.isConvertedToInput).toBeTruthy(); + const input = w.getConvertedInput(); + expect(input).toBeTruthy(); + + // Convert to widget should error + expect(() => w.convertToWidget()).toThrow(); + + // Reload and ensure it still only has 1 converted widget + if (assertNotNullOrUndefined(input)) { + await connectPrimitiveAndReload(ez, graph, input, "number", 1); + n = graph.find(n); + expect(n.widgets).toHaveLength(1); + expect(n.widgets.example.isConvertedToInput).toBeTruthy(); + } + }); + + test("primitive can connect to matching combos on converted widgets", async () => { + const { ez } = await start({ + mockNodeDefs: { + ...makeNodeDef("TestNode1", { example: [["A", "B", "C"], { forceInput: true }] }), + ...makeNodeDef("TestNode2", { example: [["A", "B", "C"], { forceInput: true }] }), + }, + }); + + const n1 = ez.TestNode1(); + const n2 = ez.TestNode2(); + const p = ez.PrimitiveNode(); + p.outputs[0].connectTo(n1.inputs[0]); + p.outputs[0].connectTo(n2.inputs[0]); + expect(p.outputs[0].connections).toHaveLength(2); + const valueWidget = p.widgets.value; + expect(valueWidget.widget.type).toBe("combo"); + expect(valueWidget.widget.options.values).toEqual(["A", "B", "C"]); + }); + + test("primitive can not connect to non matching combos on converted widgets", async () => { + const { ez } = await start({ + mockNodeDefs: { + ...makeNodeDef("TestNode1", { example: [["A", "B", "C"], { forceInput: true }] }), + ...makeNodeDef("TestNode2", { example: [["A", "B"], { forceInput: true }] }), + }, + }); + + const n1 = ez.TestNode1(); + const n2 = ez.TestNode2(); + const p = ez.PrimitiveNode(); + p.outputs[0].connectTo(n1.inputs[0]); + expect(() => p.outputs[0].connectTo(n2.inputs[0])).toThrow(); + expect(p.outputs[0].connections).toHaveLength(1); + }); + + test("combo output can not connect to non matching combos list input", async () => { + const { ez } = await start({ + mockNodeDefs: { + ...makeNodeDef("TestNode1", {}, [["A", "B"]]), + ...makeNodeDef("TestNode2", { example: [["A", "B"], { forceInput: true }] }), + ...makeNodeDef("TestNode3", { example: [["A", "B", "C"], { forceInput: true }] }), + }, + }); + + const n1 = ez.TestNode1(); + const n2 = ez.TestNode2(); + const n3 = ez.TestNode3(); + + n1.outputs[0].connectTo(n2.inputs[0]); + expect(() => n1.outputs[0].connectTo(n3.inputs[0])).toThrow(); + }); + + test("combo primitive can filter list when control_after_generate called", async () => { + const { ez } = await start({ + mockNodeDefs: { + ...makeNodeDef("TestNode1", { example: [["A", "B", "C", "D", "AA", "BB", "CC", "DD", "AAA", "BBB"], {}] }), + }, + }); + + const n1 = ez.TestNode1(); + n1.widgets.example.convertToInput(); + const p = ez.PrimitiveNode(); + p.outputs[0].connectTo(n1.inputs[0]); + + const value = p.widgets.value; + const control = p.widgets.control_after_generate.widget; + const filter = p.widgets.control_filter_list; + + expect(p.widgets.length).toBe(3); + control.value = "increment"; + expect(value.value).toBe("A"); + + // Manually trigger after queue when set to increment + control["afterQueued"](); + expect(value.value).toBe("B"); + + // Filter to items containing D + filter.value = "D"; + control["afterQueued"](); + expect(value.value).toBe("D"); + control["afterQueued"](); + expect(value.value).toBe("DD"); + + // Check decrement + value.value = "BBB"; + control.value = "decrement"; + filter.value = "B"; + control["afterQueued"](); + expect(value.value).toBe("BB"); + control["afterQueued"](); + expect(value.value).toBe("B"); + + // Check regex works + value.value = "BBB"; + filter.value = "/[AB]|^C$/"; + control["afterQueued"](); + expect(value.value).toBe("AAA"); + control["afterQueued"](); + expect(value.value).toBe("BB"); + control["afterQueued"](); + expect(value.value).toBe("AA"); + control["afterQueued"](); + expect(value.value).toBe("C"); + control["afterQueued"](); + expect(value.value).toBe("B"); + control["afterQueued"](); + expect(value.value).toBe("A"); + + // Check random + control.value = "randomize"; + filter.value = "/D/"; + for (let i = 0; i < 100; i++) { + control["afterQueued"](); + expect(value.value === "D" || value.value === "DD").toBeTruthy(); + } + + // Ensure it doesnt apply when fixed + control.value = "fixed"; + value.value = "B"; + filter.value = "C"; + control["afterQueued"](); + expect(value.value).toBe("B"); + }); + + describe("reroutes", () => { + async function checkOutput(graph, values) { + expect((await graph.toPrompt()).output).toStrictEqual({ + 1: { inputs: { ckpt_name: "model1.safetensors" }, class_type: "CheckpointLoaderSimple" }, + 2: { inputs: { text: "positive", clip: ["1", 1] }, class_type: "CLIPTextEncode" }, + 3: { inputs: { text: "negative", clip: ["1", 1] }, class_type: "CLIPTextEncode" }, + 4: { + inputs: { width: values.width ?? 512, height: values.height ?? 512, batch_size: values?.batch_size ?? 1 }, + class_type: "EmptyLatentImage", + }, + 5: { + inputs: { + seed: 0, + steps: 20, + cfg: 8, + sampler_name: "euler", + scheduler: values?.scheduler ?? "normal", + denoise: 1, + model: ["1", 0], + positive: ["2", 0], + negative: ["3", 0], + latent_image: ["4", 0], + }, + class_type: "KSampler", + }, + 6: { inputs: { samples: ["5", 0], vae: ["1", 2] }, class_type: "VAEDecode" }, + 7: { + inputs: { filename_prefix: values.filename_prefix ?? "ComfyUI", images: ["6", 0] }, + class_type: "SaveImage", + }, + }); + } + + async function waitForWidget(node) { + // widgets are created slightly after the graph is ready + // hard to find an exact hook to get these so just wait for them to be ready + for (let i = 0; i < 10; i++) { + await new Promise((r) => setTimeout(r, 10)); + if (node.widgets?.value) { + return; + } + } + } + + it("can connect primitive via a reroute path to a widget input", async () => { + const { ez, graph } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + nodes.empty.widgets.width.convertToInput(); + nodes.sampler.widgets.scheduler.convertToInput(); + nodes.save.widgets.filename_prefix.convertToInput(); + + let widthReroute = ez.Reroute(); + let schedulerReroute = ez.Reroute(); + let fileReroute = ez.Reroute(); + + let widthNext = widthReroute; + let schedulerNext = schedulerReroute; + let fileNext = fileReroute; + + for (let i = 0; i < 5; i++) { + let next = ez.Reroute(); + widthNext.outputs[0].connectTo(next.inputs[0]); + widthNext = next; + + next = ez.Reroute(); + schedulerNext.outputs[0].connectTo(next.inputs[0]); + schedulerNext = next; + + next = ez.Reroute(); + fileNext.outputs[0].connectTo(next.inputs[0]); + fileNext = next; + } + + widthNext.outputs[0].connectTo(nodes.empty.inputs.width); + schedulerNext.outputs[0].connectTo(nodes.sampler.inputs.scheduler); + fileNext.outputs[0].connectTo(nodes.save.inputs.filename_prefix); + + let widthPrimitive = ez.PrimitiveNode(); + let schedulerPrimitive = ez.PrimitiveNode(); + let filePrimitive = ez.PrimitiveNode(); + + widthPrimitive.outputs[0].connectTo(widthReroute.inputs[0]); + schedulerPrimitive.outputs[0].connectTo(schedulerReroute.inputs[0]); + filePrimitive.outputs[0].connectTo(fileReroute.inputs[0]); + expect(widthPrimitive.widgets.value.value).toBe(512); + widthPrimitive.widgets.value.value = 1024; + expect(schedulerPrimitive.widgets.value.value).toBe("normal"); + schedulerPrimitive.widgets.value.value = "simple"; + expect(filePrimitive.widgets.value.value).toBe("ComfyUI"); + filePrimitive.widgets.value.value = "ComfyTest"; + + await checkBeforeAndAfterReload(graph, async () => { + widthPrimitive = graph.find(widthPrimitive); + schedulerPrimitive = graph.find(schedulerPrimitive); + filePrimitive = graph.find(filePrimitive); + await waitForWidget(filePrimitive); + expect(widthPrimitive.widgets.length).toBe(2); + expect(schedulerPrimitive.widgets.length).toBe(3); + expect(filePrimitive.widgets.length).toBe(1); + + await checkOutput(graph, { + width: 1024, + scheduler: "simple", + filename_prefix: "ComfyTest", + }); + }); + }); + it("can connect primitive via a reroute path to multiple widget inputs", async () => { + const { ez, graph } = await start(); + const nodes = createDefaultWorkflow(ez, graph); + + nodes.empty.widgets.width.convertToInput(); + nodes.empty.widgets.height.convertToInput(); + nodes.empty.widgets.batch_size.convertToInput(); + + let reroute = ez.Reroute(); + let prevReroute = reroute; + for (let i = 0; i < 5; i++) { + const next = ez.Reroute(); + prevReroute.outputs[0].connectTo(next.inputs[0]); + prevReroute = next; + } + + const r1 = ez.Reroute(prevReroute.outputs[0]); + const r2 = ez.Reroute(prevReroute.outputs[0]); + const r3 = ez.Reroute(r2.outputs[0]); + const r4 = ez.Reroute(r2.outputs[0]); + + r1.outputs[0].connectTo(nodes.empty.inputs.width); + r3.outputs[0].connectTo(nodes.empty.inputs.height); + r4.outputs[0].connectTo(nodes.empty.inputs.batch_size); + + let primitive = ez.PrimitiveNode(); + primitive.outputs[0].connectTo(reroute.inputs[0]); + expect(primitive.widgets.value.value).toBe(1); + primitive.widgets.value.value = 64; + + await checkBeforeAndAfterReload(graph, async (r) => { + primitive = graph.find(primitive); + await waitForWidget(primitive); + + // Ensure widget configs are merged + expect(primitive.widgets.value.widget.options?.min).toBe(16); // width/height min + expect(primitive.widgets.value.widget.options?.max).toBe(4096); // batch max + expect(primitive.widgets.value.widget.options?.step).toBe(80); // width/height step * 10 + + await checkOutput(graph, { + width: 64, + height: 64, + batch_size: 64, + }); + }); + }); + }); +}); diff --git a/tests-ui/utils/ezgraph.js b/tests-ui/utils/ezgraph.js new file mode 100644 index 0000000000000000000000000000000000000000..8a55246ee3d2ca5cfa2cef1c0b6e4cd913feb61c --- /dev/null +++ b/tests-ui/utils/ezgraph.js @@ -0,0 +1,448 @@ +// @ts-check +/// + +/** + * @typedef { import("../../web/scripts/app")["app"] } app + * @typedef { import("../../web/types/litegraph") } LG + * @typedef { import("../../web/types/litegraph").IWidget } IWidget + * @typedef { import("../../web/types/litegraph").ContextMenuItem } ContextMenuItem + * @typedef { import("../../web/types/litegraph").INodeInputSlot } INodeInputSlot + * @typedef { import("../../web/types/litegraph").INodeOutputSlot } INodeOutputSlot + * @typedef { InstanceType & { widgets?: Array } } LGNode + * @typedef { (...args: EzOutput[] | [...EzOutput[], Record]) => EzNode } EzNodeFactory + */ + +export class EzConnection { + /** @type { app } */ + app; + /** @type { InstanceType } */ + link; + + get originNode() { + return new EzNode(this.app, this.app.graph.getNodeById(this.link.origin_id)); + } + + get originOutput() { + return this.originNode.outputs[this.link.origin_slot]; + } + + get targetNode() { + return new EzNode(this.app, this.app.graph.getNodeById(this.link.target_id)); + } + + get targetInput() { + return this.targetNode.inputs[this.link.target_slot]; + } + + /** + * @param { app } app + * @param { InstanceType } link + */ + constructor(app, link) { + this.app = app; + this.link = link; + } + + disconnect() { + this.targetInput.disconnect(); + } +} + +export class EzSlot { + /** @type { EzNode } */ + node; + /** @type { number } */ + index; + + /** + * @param { EzNode } node + * @param { number } index + */ + constructor(node, index) { + this.node = node; + this.index = index; + } +} + +export class EzInput extends EzSlot { + /** @type { INodeInputSlot } */ + input; + + /** + * @param { EzNode } node + * @param { number } index + * @param { INodeInputSlot } input + */ + constructor(node, index, input) { + super(node, index); + this.input = input; + } + + get connection() { + const link = this.node.node.inputs?.[this.index]?.link; + if (link == null) { + return null; + } + return new EzConnection(this.node.app, this.node.app.graph.links[link]); + } + + disconnect() { + this.node.node.disconnectInput(this.index); + } +} + +export class EzOutput extends EzSlot { + /** @type { INodeOutputSlot } */ + output; + + /** + * @param { EzNode } node + * @param { number } index + * @param { INodeOutputSlot } output + */ + constructor(node, index, output) { + super(node, index); + this.output = output; + } + + get connections() { + return (this.node.node.outputs?.[this.index]?.links ?? []).map( + (l) => new EzConnection(this.node.app, this.node.app.graph.links[l]) + ); + } + + /** + * @param { EzInput } input + */ + connectTo(input) { + if (!input) throw new Error("Invalid input"); + + /** + * @type { LG["LLink"] | null } + */ + const link = this.node.node.connect(this.index, input.node.node, input.index); + if (!link) { + const inp = input.input; + const inName = inp.name || inp.label || inp.type; + throw new Error( + `Connecting from ${input.node.node.type}#${input.node.id}[${inName}#${input.index}] -> ${this.node.node.type}#${this.node.id}[${ + this.output.name ?? this.output.type + }#${this.index}] failed.` + ); + } + return link; + } +} + +export class EzNodeMenuItem { + /** @type { EzNode } */ + node; + /** @type { number } */ + index; + /** @type { ContextMenuItem } */ + item; + + /** + * @param { EzNode } node + * @param { number } index + * @param { ContextMenuItem } item + */ + constructor(node, index, item) { + this.node = node; + this.index = index; + this.item = item; + } + + call(selectNode = true) { + if (!this.item?.callback) throw new Error(`Menu Item ${this.item?.content ?? "[null]"} has no callback.`); + if (selectNode) { + this.node.select(); + } + return this.item.callback.call(this.node.node, undefined, undefined, undefined, undefined, this.node.node); + } +} + +export class EzWidget { + /** @type { EzNode } */ + node; + /** @type { number } */ + index; + /** @type { IWidget } */ + widget; + + /** + * @param { EzNode } node + * @param { number } index + * @param { IWidget } widget + */ + constructor(node, index, widget) { + this.node = node; + this.index = index; + this.widget = widget; + } + + get value() { + return this.widget.value; + } + + set value(v) { + this.widget.value = v; + this.widget.callback?.call?.(this.widget, v) + } + + get isConvertedToInput() { + // @ts-ignore : this type is valid for converted widgets + return this.widget.type === "converted-widget"; + } + + getConvertedInput() { + if (!this.isConvertedToInput) throw new Error(`Widget ${this.widget.name} is not converted to input.`); + + return this.node.inputs.find((inp) => inp.input["widget"]?.name === this.widget.name); + } + + convertToWidget() { + if (!this.isConvertedToInput) + throw new Error(`Widget ${this.widget.name} cannot be converted as it is already a widget.`); + this.node.menu[`Convert ${this.widget.name} to widget`].call(); + } + + convertToInput() { + if (this.isConvertedToInput) + throw new Error(`Widget ${this.widget.name} cannot be converted as it is already an input.`); + this.node.menu[`Convert ${this.widget.name} to input`].call(); + } +} + +export class EzNode { + /** @type { app } */ + app; + /** @type { LGNode } */ + node; + + /** + * @param { app } app + * @param { LGNode } node + */ + constructor(app, node) { + this.app = app; + this.node = node; + } + + get id() { + return this.node.id; + } + + get inputs() { + return this.#makeLookupArray("inputs", "name", EzInput); + } + + get outputs() { + return this.#makeLookupArray("outputs", "name", EzOutput); + } + + get widgets() { + return this.#makeLookupArray("widgets", "name", EzWidget); + } + + get menu() { + return this.#makeLookupArray(() => this.app.canvas.getNodeMenuOptions(this.node), "content", EzNodeMenuItem); + } + + get isRemoved() { + return !this.app.graph.getNodeById(this.id); + } + + select(addToSelection = false) { + this.app.canvas.selectNode(this.node, addToSelection); + } + + // /** + // * @template { "inputs" | "outputs" } T + // * @param { T } type + // * @returns { Record & (type extends "inputs" ? EzInput [] : EzOutput[]) } + // */ + // #getSlotItems(type) { + // // @ts-ignore : these items are correct + // return (this.node[type] ?? []).reduce((p, s, i) => { + // if (s.name in p) { + // throw new Error(`Unable to store input ${s.name} on array as name conflicts.`); + // } + // // @ts-ignore + // p.push((p[s.name] = new (type === "inputs" ? EzInput : EzOutput)(this, i, s))); + // return p; + // }, Object.assign([], { $: this })); + // } + + /** + * @template { { new(node: EzNode, index: number, obj: any): any } } T + * @param { "inputs" | "outputs" | "widgets" | (() => Array) } nodeProperty + * @param { string } nameProperty + * @param { T } ctor + * @returns { Record> & Array> } + */ + #makeLookupArray(nodeProperty, nameProperty, ctor) { + const items = typeof nodeProperty === "function" ? nodeProperty() : this.node[nodeProperty]; + // @ts-ignore + return (items ?? []).reduce((p, s, i) => { + if (!s) return p; + + const name = s[nameProperty]; + const item = new ctor(this, i, s); + // @ts-ignore + p.push(item); + if (name) { + // @ts-ignore + if (name in p) { + throw new Error(`Unable to store ${nodeProperty} ${name} on array as name conflicts.`); + } + } + // @ts-ignore + p[name] = item; + return p; + }, Object.assign([], { $: this })); + } +} + +export class EzGraph { + /** @type { app } */ + app; + + /** + * @param { app } app + */ + constructor(app) { + this.app = app; + } + + get nodes() { + return this.app.graph._nodes.map((n) => new EzNode(this.app, n)); + } + + clear() { + this.app.graph.clear(); + } + + arrange() { + this.app.graph.arrange(); + } + + stringify() { + return JSON.stringify(this.app.graph.serialize(), undefined); + } + + /** + * @param { number | LGNode | EzNode } obj + * @returns { EzNode } + */ + find(obj) { + let match; + let id; + if (typeof obj === "number") { + id = obj; + } else { + id = obj.id; + } + + match = this.app.graph.getNodeById(id); + + if (!match) { + throw new Error(`Unable to find node with ID ${id}.`); + } + + return new EzNode(this.app, match); + } + + /** + * @returns { Promise } + */ + reload() { + const graph = JSON.parse(JSON.stringify(this.app.graph.serialize())); + return new Promise((r) => { + this.app.graph.clear(); + setTimeout(async () => { + await this.app.loadGraphData(graph); + r(); + }, 10); + }); + } + + /** + * @returns { Promise<{ + * workflow: {}, + * output: Record + * }>}> } + */ + toPrompt() { + // @ts-ignore + return this.app.graphToPrompt(); + } +} + +export const Ez = { + /** + * Quickly build and interact with a ComfyUI graph + * @example + * const { ez, graph } = Ez.graph(app); + * graph.clear(); + * const [model, clip, vae] = ez.CheckpointLoaderSimple().outputs; + * const [pos] = ez.CLIPTextEncode(clip, { text: "positive" }).outputs; + * const [neg] = ez.CLIPTextEncode(clip, { text: "negative" }).outputs; + * const [latent] = ez.KSampler(model, pos, neg, ...ez.EmptyLatentImage().outputs).outputs; + * const [image] = ez.VAEDecode(latent, vae).outputs; + * const saveNode = ez.SaveImage(image); + * console.log(saveNode); + * graph.arrange(); + * @param { app } app + * @param { LG["LiteGraph"] } LiteGraph + * @param { LG["LGraphCanvas"] } LGraphCanvas + * @param { boolean } clearGraph + * @returns { { graph: EzGraph, ez: Record } } + */ + graph(app, LiteGraph = window["LiteGraph"], LGraphCanvas = window["LGraphCanvas"], clearGraph = true) { + // Always set the active canvas so things work + LGraphCanvas.active_canvas = app.canvas; + + if (clearGraph) { + app.graph.clear(); + } + + // @ts-ignore : this proxy handles utility methods & node creation + const factory = new Proxy( + {}, + { + get(_, p) { + if (typeof p !== "string") throw new Error("Invalid node"); + const node = LiteGraph.createNode(p); + if (!node) throw new Error(`Unknown node "${p}"`); + app.graph.add(node); + + /** + * @param {Parameters} args + */ + return function (...args) { + const ezNode = new EzNode(app, node); + const inputs = ezNode.inputs; + + let slot = 0; + for (const arg of args) { + if (arg instanceof EzOutput) { + arg.connectTo(inputs[slot++]); + } else { + for (const k in arg) { + ezNode.widgets[k].value = arg[k]; + } + } + } + + return ezNode; + }; + }, + } + ); + + return { graph: new EzGraph(app), ez: factory }; + }, +}; diff --git a/tests-ui/utils/index.js b/tests-ui/utils/index.js new file mode 100644 index 0000000000000000000000000000000000000000..74b6cf93dbc2ddd6c84afb8c31f744a1b9ac73bd --- /dev/null +++ b/tests-ui/utils/index.js @@ -0,0 +1,129 @@ +const { mockApi } = require("./setup"); +const { Ez } = require("./ezgraph"); +const lg = require("./litegraph"); +const fs = require("fs"); +const path = require("path"); + +const html = fs.readFileSync(path.resolve(__dirname, "../../web/index.html")) + +/** + * + * @param { Parameters[0] & { + * resetEnv?: boolean, + * preSetup?(app): Promise, + * localStorage?: Record + * } } config + * @returns + */ +export async function start(config = {}) { + if(config.resetEnv) { + jest.resetModules(); + jest.resetAllMocks(); + lg.setup(global); + localStorage.clear(); + sessionStorage.clear(); + } + + Object.assign(localStorage, config.localStorage ?? {}); + document.body.innerHTML = html; + + mockApi(config); + const { app } = require("../../web/scripts/app"); + config.preSetup?.(app); + await app.setup(); + + return { ...Ez.graph(app, global["LiteGraph"], global["LGraphCanvas"]), app }; +} + +/** + * @param { ReturnType["graph"] } graph + * @param { (hasReloaded: boolean) => (Promise | void) } cb + */ +export async function checkBeforeAndAfterReload(graph, cb) { + await cb(false); + await graph.reload(); + await cb(true); +} + +/** + * @param { string } name + * @param { Record } input + * @param { (string | string[])[] | Record } output + * @returns { Record } + */ +export function makeNodeDef(name, input, output = {}) { + const nodeDef = { + name, + category: "test", + output: [], + output_name: [], + output_is_list: [], + input: { + required: {}, + }, + }; + for (const k in input) { + nodeDef.input.required[k] = typeof input[k] === "string" ? [input[k], {}] : [...input[k]]; + } + if (output instanceof Array) { + output = output.reduce((p, c) => { + p[c] = c; + return p; + }, {}); + } + for (const k in output) { + nodeDef.output.push(output[k]); + nodeDef.output_name.push(k); + nodeDef.output_is_list.push(false); + } + + return { [name]: nodeDef }; +} + +/** +/** + * @template { any } T + * @param { T } x + * @returns { x is Exclude } + */ +export function assertNotNullOrUndefined(x) { + expect(x).not.toEqual(null); + expect(x).not.toEqual(undefined); + return true; +} + +/** + * + * @param { ReturnType["ez"] } ez + * @param { ReturnType["graph"] } graph + */ +export function createDefaultWorkflow(ez, graph) { + graph.clear(); + const ckpt = ez.CheckpointLoaderSimple(); + + const pos = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "positive" }); + const neg = ez.CLIPTextEncode(ckpt.outputs.CLIP, { text: "negative" }); + + const empty = ez.EmptyLatentImage(); + const sampler = ez.KSampler( + ckpt.outputs.MODEL, + pos.outputs.CONDITIONING, + neg.outputs.CONDITIONING, + empty.outputs.LATENT + ); + + const decode = ez.VAEDecode(sampler.outputs.LATENT, ckpt.outputs.VAE); + const save = ez.SaveImage(decode.outputs.IMAGE); + graph.arrange(); + + return { ckpt, pos, neg, empty, sampler, decode, save }; +} + +export async function getNodeDefs() { + const { api } = require("../../web/scripts/api"); + return api.getNodeDefs(); +} + +export async function getNodeDef(nodeId) { + return (await getNodeDefs())[nodeId]; +} \ No newline at end of file diff --git a/tests-ui/utils/litegraph.js b/tests-ui/utils/litegraph.js new file mode 100644 index 0000000000000000000000000000000000000000..777f8c3ba136ab4564cb434e917c8241d94f5cf3 --- /dev/null +++ b/tests-ui/utils/litegraph.js @@ -0,0 +1,36 @@ +const fs = require("fs"); +const path = require("path"); +const { nop } = require("../utils/nopProxy"); + +function forEachKey(cb) { + for (const k of [ + "LiteGraph", + "LGraph", + "LLink", + "LGraphNode", + "LGraphGroup", + "DragAndScale", + "LGraphCanvas", + "ContextMenu", + ]) { + cb(k); + } +} + +export function setup(ctx) { + const lg = fs.readFileSync(path.resolve("../web/lib/litegraph.core.js"), "utf-8"); + const globalTemp = {}; + (function (console) { + eval(lg); + }).call(globalTemp, nop); + + forEachKey((k) => (ctx[k] = globalTemp[k])); + require(path.resolve("../web/lib/litegraph.extensions.js")); +} + +export function teardown(ctx) { + forEachKey((k) => delete ctx[k]); + + // Clear document after each run + document.getElementsByTagName("html")[0].innerHTML = ""; +} diff --git a/tests-ui/utils/nopProxy.js b/tests-ui/utils/nopProxy.js new file mode 100644 index 0000000000000000000000000000000000000000..2502d9d03d6dbe09844e6940da5f4aede612fb6a --- /dev/null +++ b/tests-ui/utils/nopProxy.js @@ -0,0 +1,6 @@ +export const nop = new Proxy(function () {}, { + get: () => nop, + set: () => true, + apply: () => nop, + construct: () => nop, +}); diff --git a/tests-ui/utils/setup.js b/tests-ui/utils/setup.js new file mode 100644 index 0000000000000000000000000000000000000000..e46258943ede7959200530c117d061159b97ffb1 --- /dev/null +++ b/tests-ui/utils/setup.js @@ -0,0 +1,81 @@ +require("../../web/scripts/api"); + +const fs = require("fs"); +const path = require("path"); +function* walkSync(dir) { + const files = fs.readdirSync(dir, { withFileTypes: true }); + for (const file of files) { + if (file.isDirectory()) { + yield* walkSync(path.join(dir, file.name)); + } else { + yield path.join(dir, file.name); + } + } +} + +/** + * @typedef { import("../../web/types/comfy").ComfyObjectInfo } ComfyObjectInfo + */ + +/** + * @param {{ + * mockExtensions?: string[], + * mockNodeDefs?: Record, +* settings?: Record +* userConfig?: {storage: "server" | "browser", users?: Record, migrated?: boolean }, +* userData?: Record + * }} config + */ +export function mockApi(config = {}) { + let { mockExtensions, mockNodeDefs, userConfig, settings, userData } = { + userConfig, + settings: {}, + userData: {}, + ...config, + }; + if (!mockExtensions) { + mockExtensions = Array.from(walkSync(path.resolve("../web/extensions/core"))) + .filter((x) => x.endsWith(".js")) + .map((x) => path.relative(path.resolve("../web"), x)); + } + if (!mockNodeDefs) { + mockNodeDefs = JSON.parse(fs.readFileSync(path.resolve("./data/object_info.json"))); + } + + const events = new EventTarget(); + const mockApi = { + addEventListener: events.addEventListener.bind(events), + removeEventListener: events.removeEventListener.bind(events), + dispatchEvent: events.dispatchEvent.bind(events), + getSystemStats: jest.fn(), + getExtensions: jest.fn(() => mockExtensions), + getNodeDefs: jest.fn(() => mockNodeDefs), + init: jest.fn(), + apiURL: jest.fn((x) => "../../web/" + x), + createUser: jest.fn((username) => { + if(username in userConfig.users) { + return { status: 400, json: () => "Duplicate" } + } + userConfig.users[username + "!"] = username; + return { status: 200, json: () => username + "!" } + }), + getUserConfig: jest.fn(() => userConfig ?? { storage: "browser", migrated: false }), + getSettings: jest.fn(() => settings), + storeSettings: jest.fn((v) => Object.assign(settings, v)), + getUserData: jest.fn((f) => { + if (f in userData) { + return { status: 200, json: () => userData[f] }; + } else { + return { status: 404 }; + } + }), + storeUserData: jest.fn((file, data) => { + userData[file] = data; + }), + }; + jest.mock("../../web/scripts/api", () => ({ + get api() { + return mockApi; + }, + })); +} diff --git a/tests/.DS_Store b/tests/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..775728362a54942dcec17adaf1fadac766e2d22a Binary files /dev/null and b/tests/.DS_Store differ diff --git a/tests/README.md b/tests/README.md new file mode 100644 index 0000000000000000000000000000000000000000..2005fd45b2bbd249fb7f1dfff789b2ae236568ba --- /dev/null +++ b/tests/README.md @@ -0,0 +1,29 @@ +# Automated Testing + +## Running tests locally + +Additional requirements for running tests: +``` +pip install pytest +pip install websocket-client==1.6.1 +opencv-python==4.6.0.66 +scikit-image==0.21.0 +``` +Run inference tests: +``` +pytest tests/inference +``` + +## Quality regression test +Compares images in 2 directories to ensure they are the same + +1) Run an inference test to save a directory of "ground truth" images +``` + pytest tests/inference --output_dir tests/inference/baseline +``` +2) Make code edits + +3) Run inference and quality comparison tests +``` +pytest +``` \ No newline at end of file diff --git a/tests/__init__.py b/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/tests/compare/conftest.py b/tests/compare/conftest.py new file mode 100644 index 0000000000000000000000000000000000000000..dd5078c9e6e432c7de2462c5641068bfa8e0aaee --- /dev/null +++ b/tests/compare/conftest.py @@ -0,0 +1,41 @@ +import os +import pytest + +# Command line arguments for pytest +def pytest_addoption(parser): + parser.addoption('--baseline_dir', action="store", default='tests/inference/baseline', help='Directory for ground-truth images') + parser.addoption('--test_dir', action="store", default='tests/inference/samples', help='Directory for images to test') + parser.addoption('--metrics_file', action="store", default='tests/metrics.md', help='Output file for metrics') + parser.addoption('--img_output_dir', action="store", default='tests/compare/samples', help='Output directory for diff metric images') + +# This initializes args at the beginning of the test session +@pytest.fixture(scope="session", autouse=True) +def args_pytest(pytestconfig): + args = {} + args['baseline_dir'] = pytestconfig.getoption('baseline_dir') + args['test_dir'] = pytestconfig.getoption('test_dir') + args['metrics_file'] = pytestconfig.getoption('metrics_file') + args['img_output_dir'] = pytestconfig.getoption('img_output_dir') + + # Initialize metrics file + with open(args['metrics_file'], 'a') as f: + # if file is empty, write header + if os.stat(args['metrics_file']).st_size == 0: + f.write("| date | run | file | status | value | \n") + f.write("| --- | --- | --- | --- | --- | \n") + + return args + + +def gather_file_basenames(directory: str): + files = [] + for file in os.listdir(directory): + if file.endswith(".png"): + files.append(file) + return files + +# Creates the list of baseline file names to use as a fixture +def pytest_generate_tests(metafunc): + if "baseline_fname" in metafunc.fixturenames: + baseline_fnames = gather_file_basenames(metafunc.config.getoption("baseline_dir")) + metafunc.parametrize("baseline_fname", baseline_fnames) diff --git a/tests/compare/test_quality.py b/tests/compare/test_quality.py new file mode 100644 index 0000000000000000000000000000000000000000..92a2d5a8b021e98c6d24343033ac01020a5016bd --- /dev/null +++ b/tests/compare/test_quality.py @@ -0,0 +1,195 @@ +import datetime +import numpy as np +import os +from PIL import Image +import pytest +from pytest import fixture +from typing import Tuple, List + +from cv2 import imread, cvtColor, COLOR_BGR2RGB +from skimage.metrics import structural_similarity as ssim + + +""" +This test suite compares images in 2 directories by file name +The directories are specified by the command line arguments --baseline_dir and --test_dir + +""" +# ssim: Structural Similarity Index +# Returns a tuple of (ssim, diff_image) +def ssim_score(img0: np.ndarray, img1: np.ndarray) -> Tuple[float, np.ndarray]: + score, diff = ssim(img0, img1, channel_axis=-1, full=True) + # rescale the difference image to 0-255 range + diff = (diff * 255).astype("uint8") + return score, diff + +# Metrics must return a tuple of (score, diff_image) +METRICS = {"ssim": ssim_score} +METRICS_PASS_THRESHOLD = {"ssim": 0.95} + + +class TestCompareImageMetrics: + @fixture(scope="class") + def test_file_names(self, args_pytest): + test_dir = args_pytest['test_dir'] + fnames = self.gather_file_basenames(test_dir) + yield fnames + del fnames + + @fixture(scope="class", autouse=True) + def teardown(self, args_pytest): + yield + # Runs after all tests are complete + # Aggregate output files into a grid of images + baseline_dir = args_pytest['baseline_dir'] + test_dir = args_pytest['test_dir'] + img_output_dir = args_pytest['img_output_dir'] + metrics_file = args_pytest['metrics_file'] + + grid_dir = os.path.join(img_output_dir, "grid") + os.makedirs(grid_dir, exist_ok=True) + + for metric_dir in METRICS.keys(): + metric_path = os.path.join(img_output_dir, metric_dir) + for file in os.listdir(metric_path): + if file.endswith(".png"): + score = self.lookup_score_from_fname(file, metrics_file) + image_file_list = [] + image_file_list.append([ + os.path.join(baseline_dir, file), + os.path.join(test_dir, file), + os.path.join(metric_path, file) + ]) + # Create grid + image_list = [[Image.open(file) for file in files] for files in image_file_list] + grid = self.image_grid(image_list) + grid.save(os.path.join(grid_dir, f"{metric_dir}_{score:.3f}_{file}")) + + # Tests run for each baseline file name + @fixture() + def fname(self, baseline_fname): + yield baseline_fname + del baseline_fname + + def test_directories_not_empty(self, args_pytest): + baseline_dir = args_pytest['baseline_dir'] + test_dir = args_pytest['test_dir'] + assert len(os.listdir(baseline_dir)) != 0, f"Baseline directory {baseline_dir} is empty" + assert len(os.listdir(test_dir)) != 0, f"Test directory {test_dir} is empty" + + def test_dir_has_all_matching_metadata(self, fname, test_file_names, args_pytest): + # Check that all files in baseline_dir have a file in test_dir with matching metadata + baseline_file_path = os.path.join(args_pytest['baseline_dir'], fname) + file_paths = [os.path.join(args_pytest['test_dir'], f) for f in test_file_names] + file_match = self.find_file_match(baseline_file_path, file_paths) + assert file_match is not None, f"Could not find a file in {args_pytest['test_dir']} with matching metadata to {baseline_file_path}" + + # For a baseline image file, finds the corresponding file name in test_dir and + # compares the images using the metrics in METRICS + @pytest.mark.parametrize("metric", METRICS.keys()) + def test_pipeline_compare( + self, + args_pytest, + fname, + test_file_names, + metric, + ): + baseline_dir = args_pytest['baseline_dir'] + test_dir = args_pytest['test_dir'] + metrics_output_file = args_pytest['metrics_file'] + img_output_dir = args_pytest['img_output_dir'] + + baseline_file_path = os.path.join(baseline_dir, fname) + + # Find file match + file_paths = [os.path.join(test_dir, f) for f in test_file_names] + test_file = self.find_file_match(baseline_file_path, file_paths) + + # Run metrics + sample_baseline = self.read_img(baseline_file_path) + sample_secondary = self.read_img(test_file) + + score, metric_img = METRICS[metric](sample_baseline, sample_secondary) + metric_status = score > METRICS_PASS_THRESHOLD[metric] + + # Save metric values + with open(metrics_output_file, 'a') as f: + run_info = os.path.splitext(fname)[0] + metric_status_str = "PASS ✅" if metric_status else "FAIL ❌" + date_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + f.write(f"| {date_str} | {run_info} | {metric} | {metric_status_str} | {score} | \n") + + # Save metric image + metric_img_dir = os.path.join(img_output_dir, metric) + os.makedirs(metric_img_dir, exist_ok=True) + output_filename = f'{fname}' + Image.fromarray(metric_img).save(os.path.join(metric_img_dir, output_filename)) + + assert score > METRICS_PASS_THRESHOLD[metric] + + def read_img(self, filename: str) -> np.ndarray: + cvImg = imread(filename) + cvImg = cvtColor(cvImg, COLOR_BGR2RGB) + return cvImg + + def image_grid(self, img_list: list[list[Image.Image]]): + # imgs is a 2D list of images + # Assumes the input images are a rectangular grid of equal sized images + rows = len(img_list) + cols = len(img_list[0]) + + w, h = img_list[0][0].size + grid = Image.new('RGB', size=(cols*w, rows*h)) + + for i, row in enumerate(img_list): + for j, img in enumerate(row): + grid.paste(img, box=(j*w, i*h)) + return grid + + def lookup_score_from_fname(self, + fname: str, + metrics_output_file: str + ) -> float: + fname_basestr = os.path.splitext(fname)[0] + with open(metrics_output_file, 'r') as f: + for line in f: + if fname_basestr in line: + score = float(line.split('|')[5]) + return score + raise ValueError(f"Could not find score for {fname} in {metrics_output_file}") + + def gather_file_basenames(self, directory: str): + files = [] + for file in os.listdir(directory): + if file.endswith(".png"): + files.append(file) + return files + + def read_file_prompt(self, fname:str) -> str: + # Read prompt from image file metadata + img = Image.open(fname) + img.load() + return img.info['prompt'] + + def find_file_match(self, baseline_file: str, file_paths: List[str]): + # Find a file in file_paths with matching metadata to baseline_file + baseline_prompt = self.read_file_prompt(baseline_file) + + # Do not match empty prompts + if baseline_prompt is None or baseline_prompt == "": + return None + + # Find file match + # Reorder test_file_names so that the file with matching name is first + # This is an optimization because matching file names are more likely + # to have matching metadata if they were generated with the same script + basename = os.path.basename(baseline_file) + file_path_basenames = [os.path.basename(f) for f in file_paths] + if basename in file_path_basenames: + match_index = file_path_basenames.index(basename) + file_paths.insert(0, file_paths.pop(match_index)) + + for f in file_paths: + test_file_prompt = self.read_file_prompt(f) + if baseline_prompt == test_file_prompt: + return f \ No newline at end of file diff --git a/tests/conftest.py b/tests/conftest.py new file mode 100644 index 0000000000000000000000000000000000000000..1a35880af5bf86f4a1680b6835b1dcf2e4ef59c8 --- /dev/null +++ b/tests/conftest.py @@ -0,0 +1,36 @@ +import os +import pytest + +# Command line arguments for pytest +def pytest_addoption(parser): + parser.addoption('--output_dir', action="store", default='tests/inference/samples', help='Output directory for generated images') + parser.addoption("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)") + parser.addoption("--port", type=int, default=8188, help="Set the listen port.") + +# This initializes args at the beginning of the test session +@pytest.fixture(scope="session", autouse=True) +def args_pytest(pytestconfig): + args = {} + args['output_dir'] = pytestconfig.getoption('output_dir') + args['listen'] = pytestconfig.getoption('listen') + args['port'] = pytestconfig.getoption('port') + + os.makedirs(args['output_dir'], exist_ok=True) + + return args + +def pytest_collection_modifyitems(items): + # Modifies items so tests run in the correct order + + LAST_TESTS = ['test_quality'] + + # Move the last items to the end + last_items = [] + for test_name in LAST_TESTS: + for item in items.copy(): + print(item.module.__name__, item) + if item.module.__name__ == test_name: + last_items.append(item) + items.remove(item) + + items.extend(last_items) diff --git a/tests/inference/__init__.py b/tests/inference/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/tests/inference/graphs/default_graph_sdxl1_0.json b/tests/inference/graphs/default_graph_sdxl1_0.json new file mode 100644 index 0000000000000000000000000000000000000000..c06c6829c6253cc71982f3714620bd10dd41bd73 --- /dev/null +++ b/tests/inference/graphs/default_graph_sdxl1_0.json @@ -0,0 +1,144 @@ +{ + "4": { + "inputs": { + "ckpt_name": "sd_xl_base_1.0.safetensors" + }, + "class_type": "CheckpointLoaderSimple" + }, + "5": { + "inputs": { + "width": 1024, + "height": 1024, + "batch_size": 1 + }, + "class_type": "EmptyLatentImage" + }, + "6": { + "inputs": { + "text": "a photo of a cat", + "clip": [ + "4", + 1 + ] + }, + "class_type": "CLIPTextEncode" + }, + "10": { + "inputs": { + "add_noise": "enable", + "noise_seed": 42, + "steps": 20, + "cfg": 7.5, + "sampler_name": "euler", + "scheduler": "normal", + "start_at_step": 0, + "end_at_step": 32, + "return_with_leftover_noise": "enable", + "model": [ + "4", + 0 + ], + "positive": [ + "6", + 0 + ], + "negative": [ + "15", + 0 + ], + "latent_image": [ + "5", + 0 + ] + }, + "class_type": "KSamplerAdvanced" + }, + "12": { + "inputs": { + "samples": [ + "14", + 0 + ], + "vae": [ + "4", + 2 + ] + }, + "class_type": "VAEDecode" + }, + "13": { + "inputs": { + "filename_prefix": "test_inference", + "images": [ + "12", + 0 + ] + }, + "class_type": "SaveImage" + }, + "14": { + "inputs": { + "add_noise": "disable", + "noise_seed": 42, + "steps": 20, + "cfg": 7.5, + "sampler_name": "euler", + "scheduler": "normal", + "start_at_step": 32, + "end_at_step": 10000, + "return_with_leftover_noise": "disable", + "model": [ + "16", + 0 + ], + "positive": [ + "17", + 0 + ], + "negative": [ + "20", + 0 + ], + "latent_image": [ + "10", + 0 + ] + }, + "class_type": "KSamplerAdvanced" + }, + "15": { + "inputs": { + "conditioning": [ + "6", + 0 + ] + }, + "class_type": "ConditioningZeroOut" + }, + "16": { + "inputs": { + "ckpt_name": "sd_xl_refiner_1.0.safetensors" + }, + "class_type": "CheckpointLoaderSimple" + }, + "17": { + "inputs": { + "text": "a photo of a cat", + "clip": [ + "16", + 1 + ] + }, + "class_type": "CLIPTextEncode" + }, + "20": { + "inputs": { + "text": "", + "clip": [ + "16", + 1 + ] + }, + "class_type": "CLIPTextEncode" + } + } \ No newline at end of file diff --git a/tests/inference/test_inference.py b/tests/inference/test_inference.py new file mode 100644 index 0000000000000000000000000000000000000000..141cc5c7eac02e5fe98394f7fc8d76cf820138bb --- /dev/null +++ b/tests/inference/test_inference.py @@ -0,0 +1,239 @@ +from copy import deepcopy +from io import BytesIO +from urllib import request +import numpy +import os +from PIL import Image +import pytest +from pytest import fixture +import time +import torch +from typing import Union +import json +import subprocess +import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client) +import uuid +import urllib.request +import urllib.parse + + +from comfy.samplers import KSampler + +""" +These tests generate and save images through a range of parameters +""" + +class ComfyGraph: + def __init__(self, + graph: dict, + sampler_nodes: list[str], + ): + self.graph = graph + self.sampler_nodes = sampler_nodes + + def set_prompt(self, prompt, negative_prompt=None): + # Sets the prompt for the sampler nodes (eg. base and refiner) + for node in self.sampler_nodes: + prompt_node = self.graph[node]['inputs']['positive'][0] + self.graph[prompt_node]['inputs']['text'] = prompt + if negative_prompt: + negative_prompt_node = self.graph[node]['inputs']['negative'][0] + self.graph[negative_prompt_node]['inputs']['text'] = negative_prompt + + def set_sampler_name(self, sampler_name:str, ): + # sets the sampler name for the sampler nodes (eg. base and refiner) + for node in self.sampler_nodes: + self.graph[node]['inputs']['sampler_name'] = sampler_name + + def set_scheduler(self, scheduler:str): + # sets the sampler name for the sampler nodes (eg. base and refiner) + for node in self.sampler_nodes: + self.graph[node]['inputs']['scheduler'] = scheduler + + def set_filename_prefix(self, prefix:str): + # sets the filename prefix for the save nodes + for node in self.graph: + if self.graph[node]['class_type'] == 'SaveImage': + self.graph[node]['inputs']['filename_prefix'] = prefix + + +class ComfyClient: + # From examples/websockets_api_example.py + + def connect(self, + listen:str = '127.0.0.1', + port:Union[str,int] = 8188, + client_id: str = str(uuid.uuid4()) + ): + self.client_id = client_id + self.server_address = f"{listen}:{port}" + ws = websocket.WebSocket() + ws.connect("ws://{}/ws?clientId={}".format(self.server_address, self.client_id)) + self.ws = ws + + def queue_prompt(self, prompt): + p = {"prompt": prompt, "client_id": self.client_id} + data = json.dumps(p).encode('utf-8') + req = urllib.request.Request("http://{}/prompt".format(self.server_address), data=data) + return json.loads(urllib.request.urlopen(req).read()) + + def get_image(self, filename, subfolder, folder_type): + data = {"filename": filename, "subfolder": subfolder, "type": folder_type} + url_values = urllib.parse.urlencode(data) + with urllib.request.urlopen("http://{}/view?{}".format(self.server_address, url_values)) as response: + return response.read() + + def get_history(self, prompt_id): + with urllib.request.urlopen("http://{}/history/{}".format(self.server_address, prompt_id)) as response: + return json.loads(response.read()) + + def get_images(self, graph, save=True): + prompt = graph + if not save: + # Replace save nodes with preview nodes + prompt_str = json.dumps(prompt) + prompt_str = prompt_str.replace('SaveImage', 'PreviewImage') + prompt = json.loads(prompt_str) + + prompt_id = self.queue_prompt(prompt)['prompt_id'] + output_images = {} + while True: + out = self.ws.recv() + if isinstance(out, str): + message = json.loads(out) + if message['type'] == 'executing': + data = message['data'] + if data['node'] is None and data['prompt_id'] == prompt_id: + break #Execution is done + else: + continue #previews are binary data + + history = self.get_history(prompt_id)[prompt_id] + for o in history['outputs']: + for node_id in history['outputs']: + node_output = history['outputs'][node_id] + if 'images' in node_output: + images_output = [] + for image in node_output['images']: + image_data = self.get_image(image['filename'], image['subfolder'], image['type']) + images_output.append(image_data) + output_images[node_id] = images_output + + return output_images + +# +# Initialize graphs +# +default_graph_file = 'tests/inference/graphs/default_graph_sdxl1_0.json' +with open(default_graph_file, 'r') as file: + default_graph = json.loads(file.read()) +DEFAULT_COMFY_GRAPH = ComfyGraph(graph=default_graph, sampler_nodes=['10','14']) +DEFAULT_COMFY_GRAPH_ID = os.path.splitext(os.path.basename(default_graph_file))[0] + +# +# Loop through these variables +# +comfy_graph_list = [DEFAULT_COMFY_GRAPH] +comfy_graph_ids = [DEFAULT_COMFY_GRAPH_ID] +prompt_list = [ + 'a painting of a cat', +] + +sampler_list = KSampler.SAMPLERS +scheduler_list = KSampler.SCHEDULERS + +@pytest.mark.inference +@pytest.mark.parametrize("sampler", sampler_list) +@pytest.mark.parametrize("scheduler", scheduler_list) +@pytest.mark.parametrize("prompt", prompt_list) +class TestInference: + # + # Initialize server and client + # + @fixture(scope="class", autouse=True) + def _server(self, args_pytest): + # Start server + p = subprocess.Popen([ + 'python','main.py', + '--output-directory', args_pytest["output_dir"], + '--listen', args_pytest["listen"], + '--port', str(args_pytest["port"]), + ]) + yield + p.kill() + torch.cuda.empty_cache() + + def start_client(self, listen:str, port:int): + # Start client + comfy_client = ComfyClient() + # Connect to server (with retries) + n_tries = 5 + for i in range(n_tries): + time.sleep(4) + try: + comfy_client.connect(listen=listen, port=port) + except ConnectionRefusedError as e: + print(e) + print(f"({i+1}/{n_tries}) Retrying...") + else: + break + return comfy_client + + # + # Client and graph fixtures with server warmup + # + # Returns a "_client_graph", which is client-graph pair corresponding to an initialized server + # The "graph" is the default graph + @fixture(scope="class", params=comfy_graph_list, ids=comfy_graph_ids, autouse=True) + def _client_graph(self, request, args_pytest, _server) -> (ComfyClient, ComfyGraph): + comfy_graph = request.param + + # Start client + comfy_client = self.start_client(args_pytest["listen"], args_pytest["port"]) + + # Warm up pipeline + comfy_client.get_images(graph=comfy_graph.graph, save=False) + + yield comfy_client, comfy_graph + del comfy_client + del comfy_graph + torch.cuda.empty_cache() + + @fixture + def client(self, _client_graph): + client = _client_graph[0] + yield client + + @fixture + def comfy_graph(self, _client_graph): + # avoid mutating the graph + graph = deepcopy(_client_graph[1]) + yield graph + + def test_comfy( + self, + client, + comfy_graph, + sampler, + scheduler, + prompt, + request + ): + test_info = request.node.name + comfy_graph.set_filename_prefix(test_info) + # Settings for comfy graph + comfy_graph.set_sampler_name(sampler) + comfy_graph.set_scheduler(scheduler) + comfy_graph.set_prompt(prompt) + + # Generate + images = client.get_images(comfy_graph.graph) + + assert len(images) != 0, "No images generated" + # assert all images are not blank + for images_output in images.values(): + for image_data in images_output: + pil_image = Image.open(BytesIO(image_data)) + assert numpy.array(pil_image).any() != 0, "Image is blank" + + diff --git a/web/.DS_Store b/web/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..54fcfbbccfa0d979dc4ca3b09f6ba3cef6a03421 Binary files /dev/null and b/web/.DS_Store differ diff --git a/web/extensions/core/clipspace.js b/web/extensions/core/clipspace.js new file mode 100644 index 0000000000000000000000000000000000000000..e376a02f70db855e056cb3ccc0c57b6627a190f5 --- /dev/null +++ b/web/extensions/core/clipspace.js @@ -0,0 +1,166 @@ +import { app } from "../../scripts/app.js"; +import { ComfyDialog, $el } from "../../scripts/ui.js"; +import { ComfyApp } from "../../scripts/app.js"; + +export class ClipspaceDialog extends ComfyDialog { + static items = []; + static instance = null; + + static registerButton(name, contextPredicate, callback) { + const item = + $el("button", { + type: "button", + textContent: name, + contextPredicate: contextPredicate, + onclick: callback + }) + + ClipspaceDialog.items.push(item); + } + + static invalidatePreview() { + if(ComfyApp.clipspace && ComfyApp.clipspace.imgs && ComfyApp.clipspace.imgs.length > 0) { + const img_preview = document.getElementById("clipspace_preview"); + if(img_preview) { + img_preview.src = ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src; + img_preview.style.maxHeight = "100%"; + img_preview.style.maxWidth = "100%"; + } + } + } + + static invalidate() { + if(ClipspaceDialog.instance) { + const self = ClipspaceDialog.instance; + // allow reconstruct controls when copying from non-image to image content. + const children = $el("div.comfy-modal-content", [ self.createImgSettings(), ...self.createButtons() ]); + + if(self.element) { + // update + self.element.removeChild(self.element.firstChild); + self.element.appendChild(children); + } + else { + // new + self.element = $el("div.comfy-modal", { parent: document.body }, [children,]); + } + + if(self.element.children[0].children.length <= 1) { + self.element.children[0].appendChild($el("p", {}, ["Unable to find the features to edit content of a format stored in the current Clipspace."])); + } + + ClipspaceDialog.invalidatePreview(); + } + } + + constructor() { + super(); + } + + createButtons(self) { + const buttons = []; + + for(let idx in ClipspaceDialog.items) { + const item = ClipspaceDialog.items[idx]; + if(!item.contextPredicate || item.contextPredicate()) + buttons.push(ClipspaceDialog.items[idx]); + } + + buttons.push( + $el("button", { + type: "button", + textContent: "Close", + onclick: () => { this.close(); } + }) + ); + + return buttons; + } + + createImgSettings() { + if(ComfyApp.clipspace.imgs) { + const combo_items = []; + const imgs = ComfyApp.clipspace.imgs; + + for(let i=0; i < imgs.length; i++) { + combo_items.push($el("option", {value:i}, [`${i}`])); + } + + const combo1 = $el("select", + {id:"clipspace_img_selector", onchange:(event) => { + ComfyApp.clipspace['selectedIndex'] = event.target.selectedIndex; + ClipspaceDialog.invalidatePreview(); + } }, combo_items); + + const row1 = + $el("tr", {}, + [ + $el("td", {}, [$el("font", {color:"white"}, ["Select Image"])]), + $el("td", {}, [combo1]) + ]); + + + const combo2 = $el("select", + {id:"clipspace_img_paste_mode", onchange:(event) => { + ComfyApp.clipspace['img_paste_mode'] = event.target.value; + } }, + [ + $el("option", {value:'selected'}, 'selected'), + $el("option", {value:'all'}, 'all') + ]); + combo2.value = ComfyApp.clipspace['img_paste_mode']; + + const row2 = + $el("tr", {}, + [ + $el("td", {}, [$el("font", {color:"white"}, ["Paste Mode"])]), + $el("td", {}, [combo2]) + ]); + + const td = $el("td", {align:'center', width:'100px', height:'100px', colSpan:'2'}, + [ $el("img",{id:"clipspace_preview", ondragstart:() => false},[]) ]); + + const row3 = + $el("tr", {}, [td]); + + return $el("table", {}, [row1, row2, row3]); + } + else { + return []; + } + } + + createImgPreview() { + if(ComfyApp.clipspace.imgs) { + return $el("img",{id:"clipspace_preview", ondragstart:() => false}); + } + else + return []; + } + + show() { + const img_preview = document.getElementById("clipspace_preview"); + ClipspaceDialog.invalidate(); + + this.element.style.display = "block"; + } +} + +app.registerExtension({ + name: "Comfy.Clipspace", + init(app) { + app.openClipspace = + function () { + if(!ClipspaceDialog.instance) { + ClipspaceDialog.instance = new ClipspaceDialog(app); + ComfyApp.clipspace_invalidate_handler = ClipspaceDialog.invalidate; + } + + if(ComfyApp.clipspace) { + ClipspaceDialog.instance.show(); + } + else + app.ui.dialog.show("Clipspace is Empty!"); + }; + } +}); \ No newline at end of file diff --git a/web/extensions/core/colorPalette.js b/web/extensions/core/colorPalette.js new file mode 100644 index 0000000000000000000000000000000000000000..b8d83613d4b06116bdea66c20c177ed2e14d0677 --- /dev/null +++ b/web/extensions/core/colorPalette.js @@ -0,0 +1,757 @@ +import {app} from "../../scripts/app.js"; +import {$el} from "../../scripts/ui.js"; + +// Manage color palettes + +const colorPalettes = { + "dark": { + "id": "dark", + "name": "Dark (Default)", + "colors": { + "node_slot": { + "CLIP": "#FFD500", // bright yellow + "CLIP_VISION": "#A8DADC", // light blue-gray + "CLIP_VISION_OUTPUT": "#ad7452", // rusty brown-orange + "CONDITIONING": "#FFA931", // vibrant orange-yellow + "CONTROL_NET": "#6EE7B7", // soft mint green + "IMAGE": "#64B5F6", // bright sky blue + "LATENT": "#FF9CF9", // light pink-purple + "MASK": "#81C784", // muted green + "MODEL": "#B39DDB", // light lavender-purple + "STYLE_MODEL": "#C2FFAE", // light green-yellow + "VAE": "#FF6E6E", // bright red + "TAESD": "#DCC274", // cheesecake + }, + "litegraph_base": { + "BACKGROUND_IMAGE": "", + "CLEAR_BACKGROUND_COLOR": "#222", + "NODE_TITLE_COLOR": "#999", + "NODE_SELECTED_TITLE_COLOR": "#FFF", + "NODE_TEXT_SIZE": 14, + "NODE_TEXT_COLOR": "#AAA", + "NODE_SUBTEXT_SIZE": 12, + "NODE_DEFAULT_COLOR": "#333", + "NODE_DEFAULT_BGCOLOR": "#353535", + "NODE_DEFAULT_BOXCOLOR": "#666", + "NODE_DEFAULT_SHAPE": "box", + "NODE_BOX_OUTLINE_COLOR": "#FFF", + "DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)", + "DEFAULT_GROUP_FONT": 24, + + "WIDGET_BGCOLOR": "#222", + "WIDGET_OUTLINE_COLOR": "#666", + "WIDGET_TEXT_COLOR": "#DDD", + "WIDGET_SECONDARY_TEXT_COLOR": "#999", + + "LINK_COLOR": "#9A9", + "EVENT_LINK_COLOR": "#A86", + "CONNECTING_LINK_COLOR": "#AFA", + }, + "comfy_base": { + "fg-color": "#fff", + "bg-color": "#202020", + "comfy-menu-bg": "#353535", + "comfy-input-bg": "#222", + "input-text": "#ddd", + "descrip-text": "#999", + "drag-text": "#ccc", + "error-text": "#ff4444", + "border-color": "#4e4e4e", + "tr-even-bg-color": "#222", + "tr-odd-bg-color": "#353535", + } + }, + }, + "light": { + "id": "light", + "name": "Light", + "colors": { + "node_slot": { + "CLIP": "#FFA726", // orange + "CLIP_VISION": "#5C6BC0", // indigo + "CLIP_VISION_OUTPUT": "#8D6E63", // brown + "CONDITIONING": "#EF5350", // red + "CONTROL_NET": "#66BB6A", // green + "IMAGE": "#42A5F5", // blue + "LATENT": "#AB47BC", // purple + "MASK": "#9CCC65", // light green + "MODEL": "#7E57C2", // deep purple + "STYLE_MODEL": "#D4E157", // lime + "VAE": "#FF7043", // deep orange + }, + "litegraph_base": { + "BACKGROUND_IMAGE": "", + "CLEAR_BACKGROUND_COLOR": "lightgray", + "NODE_TITLE_COLOR": "#222", + "NODE_SELECTED_TITLE_COLOR": "#000", + "NODE_TEXT_SIZE": 14, + "NODE_TEXT_COLOR": "#444", + "NODE_SUBTEXT_SIZE": 12, + "NODE_DEFAULT_COLOR": "#F7F7F7", + "NODE_DEFAULT_BGCOLOR": "#F5F5F5", + "NODE_DEFAULT_BOXCOLOR": "#CCC", + "NODE_DEFAULT_SHAPE": "box", + "NODE_BOX_OUTLINE_COLOR": "#000", + "DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.1)", + "DEFAULT_GROUP_FONT": 24, + + "WIDGET_BGCOLOR": "#D4D4D4", + "WIDGET_OUTLINE_COLOR": "#999", + "WIDGET_TEXT_COLOR": "#222", + "WIDGET_SECONDARY_TEXT_COLOR": "#555", + + "LINK_COLOR": "#4CAF50", + "EVENT_LINK_COLOR": "#FF9800", + "CONNECTING_LINK_COLOR": "#2196F3", + }, + "comfy_base": { + "fg-color": "#222", + "bg-color": "#DDD", + "comfy-menu-bg": "#F5F5F5", + "comfy-input-bg": "#C9C9C9", + "input-text": "#222", + "descrip-text": "#444", + "drag-text": "#555", + "error-text": "#F44336", + "border-color": "#888", + "tr-even-bg-color": "#f9f9f9", + "tr-odd-bg-color": "#fff", + } + }, + }, + "solarized": { + "id": "solarized", + "name": "Solarized", + "colors": { + "node_slot": { + "CLIP": "#2AB7CA", // light blue + "CLIP_VISION": "#6c71c4", // blue violet + "CLIP_VISION_OUTPUT": "#859900", // olive green + "CONDITIONING": "#d33682", // magenta + "CONTROL_NET": "#d1ffd7", // light mint green + "IMAGE": "#5940bb", // deep blue violet + "LATENT": "#268bd2", // blue + "MASK": "#CCC9E7", // light purple-gray + "MODEL": "#dc322f", // red + "STYLE_MODEL": "#1a998a", // teal + "UPSCALE_MODEL": "#054A29", // dark green + "VAE": "#facfad", // light pink-orange + }, + "litegraph_base": { + "NODE_TITLE_COLOR": "#fdf6e3", // Base3 + "NODE_SELECTED_TITLE_COLOR": "#A9D400", + "NODE_TEXT_SIZE": 14, + "NODE_TEXT_COLOR": "#657b83", // Base00 + "NODE_SUBTEXT_SIZE": 12, + "NODE_DEFAULT_COLOR": "#094656", + "NODE_DEFAULT_BGCOLOR": "#073642", // Base02 + "NODE_DEFAULT_BOXCOLOR": "#839496", // Base0 + "NODE_DEFAULT_SHAPE": "box", + "NODE_BOX_OUTLINE_COLOR": "#fdf6e3", // Base3 + "DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)", + "DEFAULT_GROUP_FONT": 24, + + "WIDGET_BGCOLOR": "#002b36", // Base03 + "WIDGET_OUTLINE_COLOR": "#839496", // Base0 + "WIDGET_TEXT_COLOR": "#fdf6e3", // Base3 + "WIDGET_SECONDARY_TEXT_COLOR": "#93a1a1", // Base1 + + "LINK_COLOR": "#2aa198", // Solarized Cyan + "EVENT_LINK_COLOR": "#268bd2", // Solarized Blue + "CONNECTING_LINK_COLOR": "#859900", // Solarized Green + }, + "comfy_base": { + "fg-color": "#fdf6e3", // Base3 + "bg-color": "#002b36", // Base03 + "comfy-menu-bg": "#073642", // Base02 + "comfy-input-bg": "#002b36", // Base03 + "input-text": "#93a1a1", // Base1 + "descrip-text": "#586e75", // Base01 + "drag-text": "#839496", // Base0 + "error-text": "#dc322f", // Solarized Red + "border-color": "#657b83", // Base00 + "tr-even-bg-color": "#002b36", + "tr-odd-bg-color": "#073642", + } + }, + }, + "arc": { + "id": "arc", + "name": "Arc", + "colors": { + "node_slot": { + "BOOLEAN": "", + "CLIP": "#eacb8b", + "CLIP_VISION": "#A8DADC", + "CLIP_VISION_OUTPUT": "#ad7452", + "CONDITIONING": "#cf876f", + "CONTROL_NET": "#00d78d", + "CONTROL_NET_WEIGHTS": "", + "FLOAT": "", + "GLIGEN": "", + "IMAGE": "#80a1c0", + "IMAGEUPLOAD": "", + "INT": "", + "LATENT": "#b38ead", + "LATENT_KEYFRAME": "", + "MASK": "#a3bd8d", + "MODEL": "#8978a7", + "SAMPLER": "", + "SIGMAS": "", + "STRING": "", + "STYLE_MODEL": "#C2FFAE", + "T2I_ADAPTER_WEIGHTS": "", + "TAESD": "#DCC274", + "TIMESTEP_KEYFRAME": "", + "UPSCALE_MODEL": "", + "VAE": "#be616b" + }, + "litegraph_base": { + "BACKGROUND_IMAGE": "", + "CLEAR_BACKGROUND_COLOR": "#2b2f38", + "NODE_TITLE_COLOR": "#b2b7bd", + "NODE_SELECTED_TITLE_COLOR": "#FFF", + "NODE_TEXT_SIZE": 14, + "NODE_TEXT_COLOR": "#AAA", + "NODE_SUBTEXT_SIZE": 12, + "NODE_DEFAULT_COLOR": "#2b2f38", + "NODE_DEFAULT_BGCOLOR": "#242730", + "NODE_DEFAULT_BOXCOLOR": "#6e7581", + "NODE_DEFAULT_SHAPE": "box", + "NODE_BOX_OUTLINE_COLOR": "#FFF", + "DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)", + "DEFAULT_GROUP_FONT": 22, + "WIDGET_BGCOLOR": "#2b2f38", + "WIDGET_OUTLINE_COLOR": "#6e7581", + "WIDGET_TEXT_COLOR": "#DDD", + "WIDGET_SECONDARY_TEXT_COLOR": "#b2b7bd", + "LINK_COLOR": "#9A9", + "EVENT_LINK_COLOR": "#A86", + "CONNECTING_LINK_COLOR": "#AFA" + }, + "comfy_base": { + "fg-color": "#fff", + "bg-color": "#2b2f38", + "comfy-menu-bg": "#242730", + "comfy-input-bg": "#2b2f38", + "input-text": "#ddd", + "descrip-text": "#b2b7bd", + "drag-text": "#ccc", + "error-text": "#ff4444", + "border-color": "#6e7581", + "tr-even-bg-color": "#2b2f38", + "tr-odd-bg-color": "#242730" + } + }, + }, + "nord": { + "id": "nord", + "name": "Nord", + "colors": { + "node_slot": { + "BOOLEAN": "", + "CLIP": "#eacb8b", + "CLIP_VISION": "#A8DADC", + "CLIP_VISION_OUTPUT": "#ad7452", + "CONDITIONING": "#cf876f", + "CONTROL_NET": "#00d78d", + "CONTROL_NET_WEIGHTS": "", + "FLOAT": "", + "GLIGEN": "", + "IMAGE": "#80a1c0", + "IMAGEUPLOAD": "", + "INT": "", + "LATENT": "#b38ead", + "LATENT_KEYFRAME": "", + "MASK": "#a3bd8d", + "MODEL": "#8978a7", + "SAMPLER": "", + "SIGMAS": "", + "STRING": "", + "STYLE_MODEL": "#C2FFAE", + "T2I_ADAPTER_WEIGHTS": "", + "TAESD": "#DCC274", + "TIMESTEP_KEYFRAME": "", + "UPSCALE_MODEL": "", + "VAE": "#be616b" + }, + "litegraph_base": { + "BACKGROUND_IMAGE": "", + "CLEAR_BACKGROUND_COLOR": "#212732", + "NODE_TITLE_COLOR": "#999", + "NODE_SELECTED_TITLE_COLOR": "#e5eaf0", + "NODE_TEXT_SIZE": 14, + "NODE_TEXT_COLOR": "#bcc2c8", + "NODE_SUBTEXT_SIZE": 12, + "NODE_DEFAULT_COLOR": "#2e3440", + "NODE_DEFAULT_BGCOLOR": "#161b22", + "NODE_DEFAULT_BOXCOLOR": "#545d70", + "NODE_DEFAULT_SHAPE": "box", + "NODE_BOX_OUTLINE_COLOR": "#e5eaf0", + "DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)", + "DEFAULT_GROUP_FONT": 24, + "WIDGET_BGCOLOR": "#2e3440", + "WIDGET_OUTLINE_COLOR": "#545d70", + "WIDGET_TEXT_COLOR": "#bcc2c8", + "WIDGET_SECONDARY_TEXT_COLOR": "#999", + "LINK_COLOR": "#9A9", + "EVENT_LINK_COLOR": "#A86", + "CONNECTING_LINK_COLOR": "#AFA" + }, + "comfy_base": { + "fg-color": "#e5eaf0", + "bg-color": "#2e3440", + "comfy-menu-bg": "#161b22", + "comfy-input-bg": "#2e3440", + "input-text": "#bcc2c8", + "descrip-text": "#999", + "drag-text": "#ccc", + "error-text": "#ff4444", + "border-color": "#545d70", + "tr-even-bg-color": "#2e3440", + "tr-odd-bg-color": "#161b22" + } + }, + }, + "github": { + "id": "github", + "name": "Github", + "colors": { + "node_slot": { + "BOOLEAN": "", + "CLIP": "#eacb8b", + "CLIP_VISION": "#A8DADC", + "CLIP_VISION_OUTPUT": "#ad7452", + "CONDITIONING": "#cf876f", + "CONTROL_NET": "#00d78d", + "CONTROL_NET_WEIGHTS": "", + "FLOAT": "", + "GLIGEN": "", + "IMAGE": "#80a1c0", + "IMAGEUPLOAD": "", + "INT": "", + "LATENT": "#b38ead", + "LATENT_KEYFRAME": "", + "MASK": "#a3bd8d", + "MODEL": "#8978a7", + "SAMPLER": "", + "SIGMAS": "", + "STRING": "", + "STYLE_MODEL": "#C2FFAE", + "T2I_ADAPTER_WEIGHTS": "", + "TAESD": "#DCC274", + "TIMESTEP_KEYFRAME": "", + "UPSCALE_MODEL": "", + "VAE": "#be616b" + }, + "litegraph_base": { + "BACKGROUND_IMAGE": "", + "CLEAR_BACKGROUND_COLOR": "#040506", + "NODE_TITLE_COLOR": "#999", + "NODE_SELECTED_TITLE_COLOR": "#e5eaf0", + "NODE_TEXT_SIZE": 14, + "NODE_TEXT_COLOR": "#bcc2c8", + "NODE_SUBTEXT_SIZE": 12, + "NODE_DEFAULT_COLOR": "#161b22", + "NODE_DEFAULT_BGCOLOR": "#13171d", + "NODE_DEFAULT_BOXCOLOR": "#30363d", + "NODE_DEFAULT_SHAPE": "box", + "NODE_BOX_OUTLINE_COLOR": "#e5eaf0", + "DEFAULT_SHADOW_COLOR": "rgba(0,0,0,0.5)", + "DEFAULT_GROUP_FONT": 24, + "WIDGET_BGCOLOR": "#161b22", + "WIDGET_OUTLINE_COLOR": "#30363d", + "WIDGET_TEXT_COLOR": "#bcc2c8", + "WIDGET_SECONDARY_TEXT_COLOR": "#999", + "LINK_COLOR": "#9A9", + "EVENT_LINK_COLOR": "#A86", + "CONNECTING_LINK_COLOR": "#AFA" + }, + "comfy_base": { + "fg-color": "#e5eaf0", + "bg-color": "#161b22", + "comfy-menu-bg": "#13171d", + "comfy-input-bg": "#161b22", + "input-text": "#bcc2c8", + "descrip-text": "#999", + "drag-text": "#ccc", + "error-text": "#ff4444", + "border-color": "#30363d", + "tr-even-bg-color": "#161b22", + "tr-odd-bg-color": "#13171d" + } + }, + } +}; + +const id = "Comfy.ColorPalette"; +const idCustomColorPalettes = "Comfy.CustomColorPalettes"; +const defaultColorPaletteId = "dark"; +const els = {} +// const ctxMenu = LiteGraph.ContextMenu; +app.registerExtension({ + name: id, + addCustomNodeDefs(node_defs) { + const sortObjectKeys = (unordered) => { + return Object.keys(unordered).sort().reduce((obj, key) => { + obj[key] = unordered[key]; + return obj; + }, {}); + }; + + function getSlotTypes() { + var types = []; + + const defs = node_defs; + for (const nodeId in defs) { + const nodeData = defs[nodeId]; + + var inputs = nodeData["input"]["required"]; + if (nodeData["input"]["optional"] !== undefined) { + inputs = Object.assign({}, nodeData["input"]["required"], nodeData["input"]["optional"]) + } + + for (const inputName in inputs) { + const inputData = inputs[inputName]; + const type = inputData[0]; + + if (!Array.isArray(type)) { + types.push(type); + } + } + + for (const o in nodeData["output"]) { + const output = nodeData["output"][o]; + types.push(output); + } + } + + return types; + } + + function completeColorPalette(colorPalette) { + var types = getSlotTypes(); + + for (const type of types) { + if (!colorPalette.colors.node_slot[type]) { + colorPalette.colors.node_slot[type] = ""; + } + } + + colorPalette.colors.node_slot = sortObjectKeys(colorPalette.colors.node_slot); + + return colorPalette; + } + + const getColorPaletteTemplate = async () => { + let colorPalette = { + "id": "my_color_palette_unique_id", + "name": "My Color Palette", + "colors": { + "node_slot": {}, + "litegraph_base": {}, + "comfy_base": {} + } + }; + + // Copy over missing keys from default color palette + const defaultColorPalette = colorPalettes[defaultColorPaletteId]; + for (const key in defaultColorPalette.colors.litegraph_base) { + if (!colorPalette.colors.litegraph_base[key]) { + colorPalette.colors.litegraph_base[key] = ""; + } + } + for (const key in defaultColorPalette.colors.comfy_base) { + if (!colorPalette.colors.comfy_base[key]) { + colorPalette.colors.comfy_base[key] = ""; + } + } + + return completeColorPalette(colorPalette); + }; + + const getCustomColorPalettes = () => { + return app.ui.settings.getSettingValue(idCustomColorPalettes, {}); + }; + + const setCustomColorPalettes = (customColorPalettes) => { + return app.ui.settings.setSettingValue(idCustomColorPalettes, customColorPalettes); + }; + + const addCustomColorPalette = async (colorPalette) => { + if (typeof (colorPalette) !== "object") { + alert("Invalid color palette."); + return; + } + + if (!colorPalette.id) { + alert("Color palette missing id."); + return; + } + + if (!colorPalette.name) { + alert("Color palette missing name."); + return; + } + + if (!colorPalette.colors) { + alert("Color palette missing colors."); + return; + } + + if (colorPalette.colors.node_slot && typeof (colorPalette.colors.node_slot) !== "object") { + alert("Invalid color palette colors.node_slot."); + return; + } + + const customColorPalettes = getCustomColorPalettes(); + customColorPalettes[colorPalette.id] = colorPalette; + setCustomColorPalettes(customColorPalettes); + + for (const option of els.select.childNodes) { + if (option.value === "custom_" + colorPalette.id) { + els.select.removeChild(option); + } + } + + els.select.append($el("option", { + textContent: colorPalette.name + " (custom)", + value: "custom_" + colorPalette.id, + selected: true + })); + + setColorPalette("custom_" + colorPalette.id); + await loadColorPalette(colorPalette); + }; + + const deleteCustomColorPalette = async (colorPaletteId) => { + const customColorPalettes = getCustomColorPalettes(); + delete customColorPalettes[colorPaletteId]; + setCustomColorPalettes(customColorPalettes); + + for (const option of els.select.childNodes) { + if (option.value === defaultColorPaletteId) { + option.selected = true; + } + + if (option.value === "custom_" + colorPaletteId) { + els.select.removeChild(option); + } + } + + setColorPalette(defaultColorPaletteId); + await loadColorPalette(getColorPalette()); + }; + + const loadColorPalette = async (colorPalette) => { + colorPalette = await completeColorPalette(colorPalette); + if (colorPalette.colors) { + // Sets the colors of node slots and links + if (colorPalette.colors.node_slot) { + Object.assign(app.canvas.default_connection_color_byType, colorPalette.colors.node_slot); + Object.assign(LGraphCanvas.link_type_colors, colorPalette.colors.node_slot); + } + // Sets the colors of the LiteGraph objects + if (colorPalette.colors.litegraph_base) { + // Everything updates correctly in the loop, except the Node Title and Link Color for some reason + app.canvas.node_title_color = colorPalette.colors.litegraph_base.NODE_TITLE_COLOR; + app.canvas.default_link_color = colorPalette.colors.litegraph_base.LINK_COLOR; + + for (const key in colorPalette.colors.litegraph_base) { + if (colorPalette.colors.litegraph_base.hasOwnProperty(key) && LiteGraph.hasOwnProperty(key)) { + LiteGraph[key] = colorPalette.colors.litegraph_base[key]; + } + } + } + // Sets the color of ComfyUI elements + if (colorPalette.colors.comfy_base) { + const rootStyle = document.documentElement.style; + for (const key in colorPalette.colors.comfy_base) { + rootStyle.setProperty('--' + key, colorPalette.colors.comfy_base[key]); + } + } + app.canvas.draw(true, true); + } + }; + + const getColorPalette = (colorPaletteId) => { + if (!colorPaletteId) { + colorPaletteId = app.ui.settings.getSettingValue(id, defaultColorPaletteId); + } + + if (colorPaletteId.startsWith("custom_")) { + colorPaletteId = colorPaletteId.substr(7); + let customColorPalettes = getCustomColorPalettes(); + if (customColorPalettes[colorPaletteId]) { + return customColorPalettes[colorPaletteId]; + } + } + + return colorPalettes[colorPaletteId]; + }; + + const setColorPalette = (colorPaletteId) => { + app.ui.settings.setSettingValue(id, colorPaletteId); + }; + + const fileInput = $el("input", { + type: "file", + accept: ".json", + style: {display: "none"}, + parent: document.body, + onchange: () => { + const file = fileInput.files[0]; + if (file.type === "application/json" || file.name.endsWith(".json")) { + const reader = new FileReader(); + reader.onload = async () => { + await addCustomColorPalette(JSON.parse(reader.result)); + }; + reader.readAsText(file); + } + }, + }); + + app.ui.settings.addSetting({ + id, + name: "Color Palette", + type: (name, setter, value) => { + const options = [ + ...Object.values(colorPalettes).map(c=> $el("option", { + textContent: c.name, + value: c.id, + selected: c.id === value + })), + ...Object.values(getCustomColorPalettes()).map(c=>$el("option", { + textContent: `${c.name} (custom)`, + value: `custom_${c.id}`, + selected: `custom_${c.id}` === value + })) , + ]; + + els.select = $el("select", { + style: { + marginBottom: "0.15rem", + width: "100%", + }, + onchange: (e) => { + setter(e.target.value); + } + }, options) + + return $el("tr", [ + $el("td", [ + $el("label", { + for: id.replaceAll(".", "-"), + textContent: "Color palette", + }), + ]), + $el("td", [ + els.select, + $el("div", { + style: { + display: "grid", + gap: "4px", + gridAutoFlow: "column", + }, + }, [ + $el("input", { + type: "button", + value: "Export", + onclick: async () => { + const colorPaletteId = app.ui.settings.getSettingValue(id, defaultColorPaletteId); + const colorPalette = await completeColorPalette(getColorPalette(colorPaletteId)); + const json = JSON.stringify(colorPalette, null, 2); // convert the data to a JSON string + const blob = new Blob([json], {type: "application/json"}); + const url = URL.createObjectURL(blob); + const a = $el("a", { + href: url, + download: colorPaletteId + ".json", + style: {display: "none"}, + parent: document.body, + }); + a.click(); + setTimeout(function () { + a.remove(); + window.URL.revokeObjectURL(url); + }, 0); + }, + }), + $el("input", { + type: "button", + value: "Import", + onclick: () => { + fileInput.click(); + } + }), + $el("input", { + type: "button", + value: "Template", + onclick: async () => { + const colorPalette = await getColorPaletteTemplate(); + const json = JSON.stringify(colorPalette, null, 2); // convert the data to a JSON string + const blob = new Blob([json], {type: "application/json"}); + const url = URL.createObjectURL(blob); + const a = $el("a", { + href: url, + download: "color_palette.json", + style: {display: "none"}, + parent: document.body, + }); + a.click(); + setTimeout(function () { + a.remove(); + window.URL.revokeObjectURL(url); + }, 0); + } + }), + $el("input", { + type: "button", + value: "Delete", + onclick: async () => { + let colorPaletteId = app.ui.settings.getSettingValue(id, defaultColorPaletteId); + + if (colorPalettes[colorPaletteId]) { + alert("You cannot delete a built-in color palette."); + return; + } + + if (colorPaletteId.startsWith("custom_")) { + colorPaletteId = colorPaletteId.substr(7); + } + + await deleteCustomColorPalette(colorPaletteId); + } + }), + ]), + ]), + ]) + }, + defaultValue: defaultColorPaletteId, + async onChange(value) { + if (!value) { + return; + } + + let palette = colorPalettes[value]; + if (palette) { + await loadColorPalette(palette); + } else if (value.startsWith("custom_")) { + value = value.substr(7); + let customColorPalettes = getCustomColorPalettes(); + if (customColorPalettes[value]) { + palette = customColorPalettes[value]; + await loadColorPalette(customColorPalettes[value]); + } + } + + let {BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR} = palette.colors.litegraph_base; + if (BACKGROUND_IMAGE === undefined || CLEAR_BACKGROUND_COLOR === undefined) { + const base = colorPalettes["dark"].colors.litegraph_base; + BACKGROUND_IMAGE = base.BACKGROUND_IMAGE; + CLEAR_BACKGROUND_COLOR = base.CLEAR_BACKGROUND_COLOR; + } + app.canvas.updateBackground(BACKGROUND_IMAGE, CLEAR_BACKGROUND_COLOR); + }, + }); + }, +}); diff --git a/web/extensions/core/contextMenuFilter.js b/web/extensions/core/contextMenuFilter.js new file mode 100644 index 0000000000000000000000000000000000000000..0a305391a4e11fce506fd8cc082ad9c7eaa71f2b --- /dev/null +++ b/web/extensions/core/contextMenuFilter.js @@ -0,0 +1,148 @@ +import {app} from "../../scripts/app.js"; + +// Adds filtering to combo context menus + +const ext = { + name: "Comfy.ContextMenuFilter", + init() { + const ctxMenu = LiteGraph.ContextMenu; + + LiteGraph.ContextMenu = function (values, options) { + const ctx = ctxMenu.call(this, values, options); + + // If we are a dark menu (only used for combo boxes) then add a filter input + if (options?.className === "dark" && values?.length > 10) { + const filter = document.createElement("input"); + filter.classList.add("comfy-context-menu-filter"); + filter.placeholder = "Filter list"; + this.root.prepend(filter); + + const items = Array.from(this.root.querySelectorAll(".litemenu-entry")); + let displayedItems = [...items]; + let itemCount = displayedItems.length; + + // We must request an animation frame for the current node of the active canvas to update. + requestAnimationFrame(() => { + const currentNode = LGraphCanvas.active_canvas.current_node; + const clickedComboValue = currentNode.widgets + ?.filter(w => w.type === "combo" && w.options.values.length === values.length) + .find(w => w.options.values.every((v, i) => v === values[i])) + ?.value; + + let selectedIndex = clickedComboValue ? values.findIndex(v => v === clickedComboValue) : 0; + if (selectedIndex < 0) { + selectedIndex = 0; + } + let selectedItem = displayedItems[selectedIndex]; + updateSelected(); + + // Apply highlighting to the selected item + function updateSelected() { + selectedItem?.style.setProperty("background-color", ""); + selectedItem?.style.setProperty("color", ""); + selectedItem = displayedItems[selectedIndex]; + selectedItem?.style.setProperty("background-color", "#ccc", "important"); + selectedItem?.style.setProperty("color", "#000", "important"); + } + + const positionList = () => { + const rect = this.root.getBoundingClientRect(); + + // If the top is off-screen then shift the element with scaling applied + if (rect.top < 0) { + const scale = 1 - this.root.getBoundingClientRect().height / this.root.clientHeight; + const shift = (this.root.clientHeight * scale) / 2; + this.root.style.top = -shift + "px"; + } + } + + // Arrow up/down to select items + filter.addEventListener("keydown", (event) => { + switch (event.key) { + case "ArrowUp": + event.preventDefault(); + if (selectedIndex === 0) { + selectedIndex = itemCount - 1; + } else { + selectedIndex--; + } + updateSelected(); + break; + case "ArrowRight": + event.preventDefault(); + selectedIndex = itemCount - 1; + updateSelected(); + break; + case "ArrowDown": + event.preventDefault(); + if (selectedIndex === itemCount - 1) { + selectedIndex = 0; + } else { + selectedIndex++; + } + updateSelected(); + break; + case "ArrowLeft": + event.preventDefault(); + selectedIndex = 0; + updateSelected(); + break; + case "Enter": + selectedItem?.click(); + break; + case "Escape": + this.close(); + break; + } + }); + + filter.addEventListener("input", () => { + // Hide all items that don't match our filter + const term = filter.value.toLocaleLowerCase(); + // When filtering, recompute which items are visible for arrow up/down and maintain selection. + displayedItems = items.filter(item => { + const isVisible = !term || item.textContent.toLocaleLowerCase().includes(term); + item.style.display = isVisible ? "block" : "none"; + return isVisible; + }); + + selectedIndex = 0; + if (displayedItems.includes(selectedItem)) { + selectedIndex = displayedItems.findIndex(d => d === selectedItem); + } + itemCount = displayedItems.length; + + updateSelected(); + + // If we have an event then we can try and position the list under the source + if (options.event) { + let top = options.event.clientY - 10; + + const bodyRect = document.body.getBoundingClientRect(); + const rootRect = this.root.getBoundingClientRect(); + if (bodyRect.height && top > bodyRect.height - rootRect.height - 10) { + top = Math.max(0, bodyRect.height - rootRect.height - 10); + } + + this.root.style.top = top + "px"; + positionList(); + } + }); + + requestAnimationFrame(() => { + // Focus the filter box when opening + filter.focus(); + + positionList(); + }); + }) + } + + return ctx; + }; + + LiteGraph.ContextMenu.prototype = ctxMenu.prototype; + }, +} + +app.registerExtension(ext); diff --git a/web/extensions/core/dynamicPrompts.js b/web/extensions/core/dynamicPrompts.js new file mode 100644 index 0000000000000000000000000000000000000000..599a9e685893dafbcdebb149bdfb68ab85db142d --- /dev/null +++ b/web/extensions/core/dynamicPrompts.js @@ -0,0 +1,48 @@ +import { app } from "../../scripts/app.js"; + +// Allows for simple dynamic prompt replacement +// Inputs in the format {a|b} will have a random value of a or b chosen when the prompt is queued. + +/* + * Strips C-style line and block comments from a string + */ +function stripComments(str) { + return str.replace(/\/\*[\s\S]*?\*\/|\/\/.*/g,''); +} + +app.registerExtension({ + name: "Comfy.DynamicPrompts", + nodeCreated(node) { + if (node.widgets) { + // Locate dynamic prompt text widgets + // Include any widgets with dynamicPrompts set to true, and customtext + const widgets = node.widgets.filter( + (n) => (n.type === "customtext" && n.dynamicPrompts !== false) || n.dynamicPrompts + ); + for (const widget of widgets) { + // Override the serialization of the value to resolve dynamic prompts for all widgets supporting it in this node + widget.serializeValue = (workflowNode, widgetIndex) => { + let prompt = stripComments(widget.value); + while (prompt.replace("\\{", "").includes("{") && prompt.replace("\\}", "").includes("}")) { + const startIndex = prompt.replace("\\{", "00").indexOf("{"); + const endIndex = prompt.replace("\\}", "00").indexOf("}"); + + const optionsString = prompt.substring(startIndex + 1, endIndex); + const options = optionsString.split("|"); + + const randomIndex = Math.floor(Math.random() * options.length); + const randomOption = options[randomIndex]; + + prompt = prompt.substring(0, startIndex) + randomOption + prompt.substring(endIndex + 1); + } + + // Overwrite the value in the serialized workflow pnginfo + if (workflowNode?.widgets_values) + workflowNode.widgets_values[widgetIndex] = prompt; + + return prompt; + }; + } + } + }, +}); diff --git a/web/extensions/core/editAttention.js b/web/extensions/core/editAttention.js new file mode 100644 index 0000000000000000000000000000000000000000..6792b235720115c4bc5c29694b25c4a66cd4a3bf --- /dev/null +++ b/web/extensions/core/editAttention.js @@ -0,0 +1,144 @@ +import { app } from "../../scripts/app.js"; + +// Allows you to edit the attention weight by holding ctrl (or cmd) and using the up/down arrow keys + +app.registerExtension({ + name: "Comfy.EditAttention", + init() { + const editAttentionDelta = app.ui.settings.addSetting({ + id: "Comfy.EditAttention.Delta", + name: "Ctrl+up/down precision", + type: "slider", + attrs: { + min: 0.01, + max: 0.5, + step: 0.01, + }, + defaultValue: 0.05, + }); + + function incrementWeight(weight, delta) { + const floatWeight = parseFloat(weight); + if (isNaN(floatWeight)) return weight; + const newWeight = floatWeight + delta; + if (newWeight < 0) return "0"; + return String(Number(newWeight.toFixed(10))); + } + + function findNearestEnclosure(text, cursorPos) { + let start = cursorPos, end = cursorPos; + let openCount = 0, closeCount = 0; + + // Find opening parenthesis before cursor + while (start >= 0) { + start--; + if (text[start] === "(" && openCount === closeCount) break; + if (text[start] === "(") openCount++; + if (text[start] === ")") closeCount++; + } + if (start < 0) return false; + + openCount = 0; + closeCount = 0; + + // Find closing parenthesis after cursor + while (end < text.length) { + if (text[end] === ")" && openCount === closeCount) break; + if (text[end] === "(") openCount++; + if (text[end] === ")") closeCount++; + end++; + } + if (end === text.length) return false; + + return { start: start + 1, end: end }; + } + + function addWeightToParentheses(text) { + const parenRegex = /^\((.*)\)$/; + const parenMatch = text.match(parenRegex); + + const floatRegex = /:([+-]?(\d*\.)?\d+([eE][+-]?\d+)?)/; + const floatMatch = text.match(floatRegex); + + if (parenMatch && !floatMatch) { + return `(${parenMatch[1]}:1.0)`; + } else { + return text; + } + }; + + function editAttention(event) { + const inputField = event.composedPath()[0]; + const delta = parseFloat(editAttentionDelta.value); + + if (inputField.tagName !== "TEXTAREA") return; + if (!(event.key === "ArrowUp" || event.key === "ArrowDown")) return; + if (!event.ctrlKey && !event.metaKey) return; + + event.preventDefault(); + + let start = inputField.selectionStart; + let end = inputField.selectionEnd; + let selectedText = inputField.value.substring(start, end); + + // If there is no selection, attempt to find the nearest enclosure, or select the current word + if (!selectedText) { + const nearestEnclosure = findNearestEnclosure(inputField.value, start); + if (nearestEnclosure) { + start = nearestEnclosure.start; + end = nearestEnclosure.end; + selectedText = inputField.value.substring(start, end); + } else { + // Select the current word, find the start and end of the word + const delimiters = " .,\\/!?%^*;:{}=-_`~()\r\n\t"; + + while (!delimiters.includes(inputField.value[start - 1]) && start > 0) { + start--; + } + + while (!delimiters.includes(inputField.value[end]) && end < inputField.value.length) { + end++; + } + + selectedText = inputField.value.substring(start, end); + if (!selectedText) return; + } + } + + // If the selection ends with a space, remove it + if (selectedText[selectedText.length - 1] === " ") { + selectedText = selectedText.substring(0, selectedText.length - 1); + end -= 1; + } + + // If there are parentheses left and right of the selection, select them + if (inputField.value[start - 1] === "(" && inputField.value[end] === ")") { + start -= 1; + end += 1; + selectedText = inputField.value.substring(start, end); + } + + // If the selection is not enclosed in parentheses, add them + if (selectedText[0] !== "(" || selectedText[selectedText.length - 1] !== ")") { + selectedText = `(${selectedText})`; + } + + // If the selection does not have a weight, add a weight of 1.0 + selectedText = addWeightToParentheses(selectedText); + + // Increment the weight + const weightDelta = event.key === "ArrowUp" ? delta : -delta; + const updatedText = selectedText.replace(/\((.*):(\d+(?:\.\d+)?)\)/, (match, text, weight) => { + weight = incrementWeight(weight, weightDelta); + if (weight == 1) { + return text; + } else { + return `(${text}:${weight})`; + } + }); + + inputField.setRangeText(updatedText, start, end, "select"); + } + window.addEventListener("keydown", editAttention); + }, +}); diff --git a/web/extensions/core/groupNode.js b/web/extensions/core/groupNode.js new file mode 100644 index 0000000000000000000000000000000000000000..0b0763d1d49670880e3b4b5f903be59bb00638ba --- /dev/null +++ b/web/extensions/core/groupNode.js @@ -0,0 +1,1281 @@ +import { app } from "../../scripts/app.js"; +import { api } from "../../scripts/api.js"; +import { mergeIfValid } from "./widgetInputs.js"; +import { ManageGroupDialog } from "./groupNodeManage.js"; + +const GROUP = Symbol(); + +const Workflow = { + InUse: { + Free: 0, + Registered: 1, + InWorkflow: 2, + }, + isInUseGroupNode(name) { + const id = `workflow/${name}`; + // Check if lready registered/in use in this workflow + if (app.graph.extra?.groupNodes?.[name]) { + if (app.graph._nodes.find((n) => n.type === id)) { + return Workflow.InUse.InWorkflow; + } else { + return Workflow.InUse.Registered; + } + } + return Workflow.InUse.Free; + }, + storeGroupNode(name, data) { + let extra = app.graph.extra; + if (!extra) app.graph.extra = extra = {}; + let groupNodes = extra.groupNodes; + if (!groupNodes) extra.groupNodes = groupNodes = {}; + groupNodes[name] = data; + }, +}; + +class GroupNodeBuilder { + constructor(nodes) { + this.nodes = nodes; + } + + build() { + const name = this.getName(); + if (!name) return; + + // Sort the nodes so they are in execution order + // this allows for widgets to be in the correct order when reconstructing + this.sortNodes(); + + this.nodeData = this.getNodeData(); + Workflow.storeGroupNode(name, this.nodeData); + + return { name, nodeData: this.nodeData }; + } + + getName() { + const name = prompt("Enter group name"); + if (!name) return; + const used = Workflow.isInUseGroupNode(name); + switch (used) { + case Workflow.InUse.InWorkflow: + alert( + "An in use group node with this name already exists embedded in this workflow, please remove any instances or use a new name." + ); + return; + case Workflow.InUse.Registered: + if (!confirm("A group node with this name already exists embedded in this workflow, are you sure you want to overwrite it?")) { + return; + } + break; + } + return name; + } + + sortNodes() { + // Gets the builders nodes in graph execution order + const nodesInOrder = app.graph.computeExecutionOrder(false); + this.nodes = this.nodes + .map((node) => ({ index: nodesInOrder.indexOf(node), node })) + .sort((a, b) => a.index - b.index || a.node.id - b.node.id) + .map(({ node }) => node); + } + + getNodeData() { + const storeLinkTypes = (config) => { + // Store link types for dynamically typed nodes e.g. reroutes + for (const link of config.links) { + const origin = app.graph.getNodeById(link[4]); + const type = origin.outputs[link[1]].type; + link.push(type); + } + }; + + const storeExternalLinks = (config) => { + // Store any external links to the group in the config so when rebuilding we add extra slots + config.external = []; + for (let i = 0; i < this.nodes.length; i++) { + const node = this.nodes[i]; + if (!node.outputs?.length) continue; + for (let slot = 0; slot < node.outputs.length; slot++) { + let hasExternal = false; + const output = node.outputs[slot]; + let type = output.type; + if (!output.links?.length) continue; + for (const l of output.links) { + const link = app.graph.links[l]; + if (!link) continue; + if (type === "*") type = link.type; + + if (!app.canvas.selected_nodes[link.target_id]) { + hasExternal = true; + break; + } + } + if (hasExternal) { + config.external.push([i, slot, type]); + } + } + } + }; + + // Use the built in copyToClipboard function to generate the node data we need + const backup = localStorage.getItem("litegrapheditor_clipboard"); + try { + app.canvas.copyToClipboard(this.nodes); + const config = JSON.parse(localStorage.getItem("litegrapheditor_clipboard")); + + storeLinkTypes(config); + storeExternalLinks(config); + + return config; + } finally { + localStorage.setItem("litegrapheditor_clipboard", backup); + } + } +} + +export class GroupNodeConfig { + constructor(name, nodeData) { + this.name = name; + this.nodeData = nodeData; + this.getLinks(); + + this.inputCount = 0; + this.oldToNewOutputMap = {}; + this.newToOldOutputMap = {}; + this.oldToNewInputMap = {}; + this.oldToNewWidgetMap = {}; + this.newToOldWidgetMap = {}; + this.primitiveDefs = {}; + this.widgetToPrimitive = {}; + this.primitiveToWidget = {}; + this.nodeInputs = {}; + this.outputVisibility = []; + } + + async registerType(source = "workflow") { + this.nodeDef = { + output: [], + output_name: [], + output_is_list: [], + output_is_hidden: [], + name: source + "/" + this.name, + display_name: this.name, + category: "group nodes" + ("/" + source), + input: { required: {} }, + + [GROUP]: this, + }; + + this.inputs = []; + const seenInputs = {}; + const seenOutputs = {}; + for (let i = 0; i < this.nodeData.nodes.length; i++) { + const node = this.nodeData.nodes[i]; + node.index = i; + this.processNode(node, seenInputs, seenOutputs); + } + + for (const p of this.#convertedToProcess) { + p(); + } + this.#convertedToProcess = null; + await app.registerNodeDef("workflow/" + this.name, this.nodeDef); + } + + getLinks() { + this.linksFrom = {}; + this.linksTo = {}; + this.externalFrom = {}; + + // Extract links for easy lookup + for (const l of this.nodeData.links) { + const [sourceNodeId, sourceNodeSlot, targetNodeId, targetNodeSlot] = l; + + // Skip links outside the copy config + if (sourceNodeId == null) continue; + + if (!this.linksFrom[sourceNodeId]) { + this.linksFrom[sourceNodeId] = {}; + } + if (!this.linksFrom[sourceNodeId][sourceNodeSlot]) { + this.linksFrom[sourceNodeId][sourceNodeSlot] = []; + } + this.linksFrom[sourceNodeId][sourceNodeSlot].push(l); + + if (!this.linksTo[targetNodeId]) { + this.linksTo[targetNodeId] = {}; + } + this.linksTo[targetNodeId][targetNodeSlot] = l; + } + + if (this.nodeData.external) { + for (const ext of this.nodeData.external) { + if (!this.externalFrom[ext[0]]) { + this.externalFrom[ext[0]] = { [ext[1]]: ext[2] }; + } else { + this.externalFrom[ext[0]][ext[1]] = ext[2]; + } + } + } + } + + processNode(node, seenInputs, seenOutputs) { + const def = this.getNodeDef(node); + if (!def) return; + + const inputs = { ...def.input?.required, ...def.input?.optional }; + + this.inputs.push(this.processNodeInputs(node, seenInputs, inputs)); + if (def.output?.length) this.processNodeOutputs(node, seenOutputs, def); + } + + getNodeDef(node) { + const def = globalDefs[node.type]; + if (def) return def; + + const linksFrom = this.linksFrom[node.index]; + if (node.type === "PrimitiveNode") { + // Skip as its not linked + if (!linksFrom) return; + + let type = linksFrom["0"][0][5]; + if (type === "COMBO") { + // Use the array items + const source = node.outputs[0].widget.name; + const fromTypeName = this.nodeData.nodes[linksFrom["0"][0][2]].type; + const fromType = globalDefs[fromTypeName]; + const input = fromType.input.required[source] ?? fromType.input.optional[source]; + type = input[0]; + } + + const def = (this.primitiveDefs[node.index] = { + input: { + required: { + value: [type, {}], + }, + }, + output: [type], + output_name: [], + output_is_list: [], + }); + return def; + } else if (node.type === "Reroute") { + const linksTo = this.linksTo[node.index]; + if (linksTo && linksFrom && !this.externalFrom[node.index]?.[0]) { + // Being used internally + return null; + } + + let config = {}; + let rerouteType = "*"; + if (linksFrom) { + for (const [, , id, slot] of linksFrom["0"]) { + const node = this.nodeData.nodes[id]; + const input = node.inputs[slot]; + if (rerouteType === "*") { + rerouteType = input.type; + } + if (input.widget) { + const targetDef = globalDefs[node.type]; + const targetWidget = targetDef.input.required[input.widget.name] ?? targetDef.input.optional[input.widget.name]; + + const widget = [targetWidget[0], config]; + const res = mergeIfValid( + { + widget, + }, + targetWidget, + false, + null, + widget + ); + config = res?.customConfig ?? config; + } + } + } else if (linksTo) { + const [id, slot] = linksTo["0"]; + rerouteType = this.nodeData.nodes[id].outputs[slot].type; + } else { + // Reroute used as a pipe + for (const l of this.nodeData.links) { + if (l[2] === node.index) { + rerouteType = l[5]; + break; + } + } + if (rerouteType === "*") { + // Check for an external link + const t = this.externalFrom[node.index]?.[0]; + if (t) { + rerouteType = t; + } + } + } + + config.forceInput = true; + return { + input: { + required: { + [rerouteType]: [rerouteType, config], + }, + }, + output: [rerouteType], + output_name: [], + output_is_list: [], + }; + } + + console.warn("Skipping virtual node " + node.type + " when building group node " + this.name); + } + + getInputConfig(node, inputName, seenInputs, config, extra) { + const customConfig = this.nodeData.config?.[node.index]?.input?.[inputName]; + let name = customConfig?.name ?? node.inputs?.find((inp) => inp.name === inputName)?.label ?? inputName; + let key = name; + let prefix = ""; + // Special handling for primitive to include the title if it is set rather than just "value" + if ((node.type === "PrimitiveNode" && node.title) || name in seenInputs) { + prefix = `${node.title ?? node.type} `; + key = name = `${prefix}${inputName}`; + if (name in seenInputs) { + name = `${prefix}${seenInputs[name]} ${inputName}`; + } + } + seenInputs[key] = (seenInputs[key] ?? 1) + 1; + + if (inputName === "seed" || inputName === "noise_seed") { + if (!extra) extra = {}; + extra.control_after_generate = `${prefix}control_after_generate`; + } + if (config[0] === "IMAGEUPLOAD") { + if (!extra) extra = {}; + extra.widget = this.oldToNewWidgetMap[node.index]?.[config[1]?.widget ?? "image"] ?? "image"; + } + + if (extra) { + config = [config[0], { ...config[1], ...extra }]; + } + + return { name, config, customConfig }; + } + + processWidgetInputs(inputs, node, inputNames, seenInputs) { + const slots = []; + const converted = new Map(); + const widgetMap = (this.oldToNewWidgetMap[node.index] = {}); + for (const inputName of inputNames) { + let widgetType = app.getWidgetType(inputs[inputName], inputName); + if (widgetType) { + const convertedIndex = node.inputs?.findIndex((inp) => inp.name === inputName && inp.widget?.name === inputName); + if (convertedIndex > -1) { + // This widget has been converted to a widget + // We need to store this in the correct position so link ids line up + converted.set(convertedIndex, inputName); + widgetMap[inputName] = null; + } else { + // Normal widget + const { name, config } = this.getInputConfig(node, inputName, seenInputs, inputs[inputName]); + this.nodeDef.input.required[name] = config; + widgetMap[inputName] = name; + this.newToOldWidgetMap[name] = { node, inputName }; + } + } else { + // Normal input + slots.push(inputName); + } + } + return { converted, slots }; + } + + checkPrimitiveConnection(link, inputName, inputs) { + const sourceNode = this.nodeData.nodes[link[0]]; + if (sourceNode.type === "PrimitiveNode") { + // Merge link configurations + const [sourceNodeId, _, targetNodeId, __] = link; + const primitiveDef = this.primitiveDefs[sourceNodeId]; + const targetWidget = inputs[inputName]; + const primitiveConfig = primitiveDef.input.required.value; + const output = { widget: primitiveConfig }; + const config = mergeIfValid(output, targetWidget, false, null, primitiveConfig); + primitiveConfig[1] = config?.customConfig ?? inputs[inputName][1] ? { ...inputs[inputName][1] } : {}; + + let name = this.oldToNewWidgetMap[sourceNodeId]["value"]; + name = name.substr(0, name.length - 6); + primitiveConfig[1].control_after_generate = true; + primitiveConfig[1].control_prefix = name; + + let toPrimitive = this.widgetToPrimitive[targetNodeId]; + if (!toPrimitive) { + toPrimitive = this.widgetToPrimitive[targetNodeId] = {}; + } + if (toPrimitive[inputName]) { + toPrimitive[inputName].push(sourceNodeId); + } + toPrimitive[inputName] = sourceNodeId; + + let toWidget = this.primitiveToWidget[sourceNodeId]; + if (!toWidget) { + toWidget = this.primitiveToWidget[sourceNodeId] = []; + } + toWidget.push({ nodeId: targetNodeId, inputName }); + } + } + + processInputSlots(inputs, node, slots, linksTo, inputMap, seenInputs) { + this.nodeInputs[node.index] = {}; + for (let i = 0; i < slots.length; i++) { + const inputName = slots[i]; + if (linksTo[i]) { + this.checkPrimitiveConnection(linksTo[i], inputName, inputs); + // This input is linked so we can skip it + continue; + } + + const { name, config, customConfig } = this.getInputConfig(node, inputName, seenInputs, inputs[inputName]); + + this.nodeInputs[node.index][inputName] = name; + if(customConfig?.visible === false) continue; + + this.nodeDef.input.required[name] = config; + inputMap[i] = this.inputCount++; + } + } + + processConvertedWidgets(inputs, node, slots, converted, linksTo, inputMap, seenInputs) { + // Add converted widgets sorted into their index order (ordered as they were converted) so link ids match up + const convertedSlots = [...converted.keys()].sort().map((k) => converted.get(k)); + for (let i = 0; i < convertedSlots.length; i++) { + const inputName = convertedSlots[i]; + if (linksTo[slots.length + i]) { + this.checkPrimitiveConnection(linksTo[slots.length + i], inputName, inputs); + // This input is linked so we can skip it + continue; + } + + const { name, config } = this.getInputConfig(node, inputName, seenInputs, inputs[inputName], { + defaultInput: true, + }); + + this.nodeDef.input.required[name] = config; + this.newToOldWidgetMap[name] = { node, inputName }; + + if (!this.oldToNewWidgetMap[node.index]) { + this.oldToNewWidgetMap[node.index] = {}; + } + this.oldToNewWidgetMap[node.index][inputName] = name; + + inputMap[slots.length + i] = this.inputCount++; + } + } + + #convertedToProcess = []; + processNodeInputs(node, seenInputs, inputs) { + const inputMapping = []; + + const inputNames = Object.keys(inputs); + if (!inputNames.length) return; + + const { converted, slots } = this.processWidgetInputs(inputs, node, inputNames, seenInputs); + const linksTo = this.linksTo[node.index] ?? {}; + const inputMap = (this.oldToNewInputMap[node.index] = {}); + this.processInputSlots(inputs, node, slots, linksTo, inputMap, seenInputs); + + // Converted inputs have to be processed after all other nodes as they'll be at the end of the list + this.#convertedToProcess.push(() => this.processConvertedWidgets(inputs, node, slots, converted, linksTo, inputMap, seenInputs)); + + return inputMapping; + } + + processNodeOutputs(node, seenOutputs, def) { + const oldToNew = (this.oldToNewOutputMap[node.index] = {}); + + // Add outputs + for (let outputId = 0; outputId < def.output.length; outputId++) { + const linksFrom = this.linksFrom[node.index]; + // If this output is linked internally we flag it to hide + const hasLink = linksFrom?.[outputId] && !this.externalFrom[node.index]?.[outputId]; + const customConfig = this.nodeData.config?.[node.index]?.output?.[outputId]; + const visible = customConfig?.visible ?? !hasLink; + this.outputVisibility.push(visible); + if (!visible) { + continue; + } + + oldToNew[outputId] = this.nodeDef.output.length; + this.newToOldOutputMap[this.nodeDef.output.length] = { node, slot: outputId }; + this.nodeDef.output.push(def.output[outputId]); + this.nodeDef.output_is_list.push(def.output_is_list[outputId]); + + let label = customConfig?.name; + if (!label) { + label = def.output_name?.[outputId] ?? def.output[outputId]; + const output = node.outputs.find((o) => o.name === label); + if (output?.label) { + label = output.label; + } + } + + let name = label; + if (name in seenOutputs) { + const prefix = `${node.title ?? node.type} `; + name = `${prefix}${label}`; + if (name in seenOutputs) { + name = `${prefix}${node.index} ${label}`; + } + } + seenOutputs[name] = 1; + + this.nodeDef.output_name.push(name); + } + } + + static async registerFromWorkflow(groupNodes, missingNodeTypes) { + const clean = app.clean; + app.clean = function () { + for (const g in groupNodes) { + try { + LiteGraph.unregisterNodeType("workflow/" + g); + } catch (error) {} + } + app.clean = clean; + }; + + for (const g in groupNodes) { + const groupData = groupNodes[g]; + + let hasMissing = false; + for (const n of groupData.nodes) { + // Find missing node types + if (!(n.type in LiteGraph.registered_node_types)) { + missingNodeTypes.push({ + type: n.type, + hint: ` (In group node 'workflow/${g}')`, + }); + + missingNodeTypes.push({ + type: "workflow/" + g, + action: { + text: "Remove from workflow", + callback: (e) => { + delete groupNodes[g]; + e.target.textContent = "Removed"; + e.target.style.pointerEvents = "none"; + e.target.style.opacity = 0.7; + }, + }, + }); + + hasMissing = true; + } + } + + if (hasMissing) continue; + + const config = new GroupNodeConfig(g, groupData); + await config.registerType(); + } + } +} + +export class GroupNodeHandler { + node; + groupData; + + constructor(node) { + this.node = node; + this.groupData = node.constructor?.nodeData?.[GROUP]; + + this.node.setInnerNodes = (innerNodes) => { + this.innerNodes = innerNodes; + + for (let innerNodeIndex = 0; innerNodeIndex < this.innerNodes.length; innerNodeIndex++) { + const innerNode = this.innerNodes[innerNodeIndex]; + + for (const w of innerNode.widgets ?? []) { + if (w.type === "converted-widget") { + w.serializeValue = w.origSerializeValue; + } + } + + innerNode.index = innerNodeIndex; + innerNode.getInputNode = (slot) => { + // Check if this input is internal or external + const externalSlot = this.groupData.oldToNewInputMap[innerNode.index]?.[slot]; + if (externalSlot != null) { + return this.node.getInputNode(externalSlot); + } + + // Internal link + const innerLink = this.groupData.linksTo[innerNode.index]?.[slot]; + if (!innerLink) return null; + + const inputNode = innerNodes[innerLink[0]]; + // Primitives will already apply their values + if (inputNode.type === "PrimitiveNode") return null; + + return inputNode; + }; + + innerNode.getInputLink = (slot) => { + const externalSlot = this.groupData.oldToNewInputMap[innerNode.index]?.[slot]; + if (externalSlot != null) { + // The inner node is connected via the group node inputs + const linkId = this.node.inputs[externalSlot].link; + let link = app.graph.links[linkId]; + + // Use the outer link, but update the target to the inner node + link = { + ...link, + target_id: innerNode.id, + target_slot: +slot, + }; + return link; + } + + let link = this.groupData.linksTo[innerNode.index]?.[slot]; + if (!link) return null; + // Use the inner link, but update the origin node to be inner node id + link = { + origin_id: innerNodes[link[0]].id, + origin_slot: link[1], + target_id: innerNode.id, + target_slot: +slot, + }; + return link; + }; + } + }; + + this.node.updateLink = (link) => { + // Replace the group node reference with the internal node + link = { ...link }; + const output = this.groupData.newToOldOutputMap[link.origin_slot]; + let innerNode = this.innerNodes[output.node.index]; + let l; + while (innerNode?.type === "Reroute") { + l = innerNode.getInputLink(0); + innerNode = innerNode.getInputNode(0); + } + + if (!innerNode) { + return null; + } + + if (l && GroupNodeHandler.isGroupNode(innerNode)) { + return innerNode.updateLink(l); + } + + link.origin_id = innerNode.id; + link.origin_slot = l?.origin_slot ?? output.slot; + return link; + }; + + this.node.getInnerNodes = () => { + if (!this.innerNodes) { + this.node.setInnerNodes( + this.groupData.nodeData.nodes.map((n, i) => { + const innerNode = LiteGraph.createNode(n.type); + innerNode.configure(n); + innerNode.id = `${this.node.id}:${i}`; + return innerNode; + }) + ); + } + + this.updateInnerWidgets(); + + return this.innerNodes; + }; + + this.node.recreate = async () => { + const id = this.node.id; + const sz = this.node.size; + const nodes = this.node.convertToNodes(); + + const groupNode = LiteGraph.createNode(this.node.type); + groupNode.id = id; + + // Reuse the existing nodes for this instance + groupNode.setInnerNodes(nodes); + groupNode[GROUP].populateWidgets(); + app.graph.add(groupNode); + groupNode.size = [Math.max(groupNode.size[0], sz[0]), Math.max(groupNode.size[1], sz[1])]; + + // Remove all converted nodes and relink them + groupNode[GROUP].replaceNodes(nodes); + return groupNode; + }; + + this.node.convertToNodes = () => { + const addInnerNodes = () => { + const backup = localStorage.getItem("litegrapheditor_clipboard"); + // Clone the node data so we dont mutate it for other nodes + const c = { ...this.groupData.nodeData }; + c.nodes = [...c.nodes]; + const innerNodes = this.node.getInnerNodes(); + let ids = []; + for (let i = 0; i < c.nodes.length; i++) { + let id = innerNodes?.[i]?.id; + // Use existing IDs if they are set on the inner nodes + if (id == null || isNaN(id)) { + id = undefined; + } else { + ids.push(id); + } + c.nodes[i] = { ...c.nodes[i], id }; + } + localStorage.setItem("litegrapheditor_clipboard", JSON.stringify(c)); + app.canvas.pasteFromClipboard(); + localStorage.setItem("litegrapheditor_clipboard", backup); + + const [x, y] = this.node.pos; + let top; + let left; + // Configure nodes with current widget data + const selectedIds = ids.length ? ids : Object.keys(app.canvas.selected_nodes); + const newNodes = []; + for (let i = 0; i < selectedIds.length; i++) { + const id = selectedIds[i]; + const newNode = app.graph.getNodeById(id); + const innerNode = innerNodes[i]; + newNodes.push(newNode); + + if (left == null || newNode.pos[0] < left) { + left = newNode.pos[0]; + } + if (top == null || newNode.pos[1] < top) { + top = newNode.pos[1]; + } + + if (!newNode.widgets) continue; + + const map = this.groupData.oldToNewWidgetMap[innerNode.index]; + if (map) { + const widgets = Object.keys(map); + + for (const oldName of widgets) { + const newName = map[oldName]; + if (!newName) continue; + + const widgetIndex = this.node.widgets.findIndex((w) => w.name === newName); + if (widgetIndex === -1) continue; + + // Populate the main and any linked widgets + if (innerNode.type === "PrimitiveNode") { + for (let i = 0; i < newNode.widgets.length; i++) { + newNode.widgets[i].value = this.node.widgets[widgetIndex + i].value; + } + } else { + const outerWidget = this.node.widgets[widgetIndex]; + const newWidget = newNode.widgets.find((w) => w.name === oldName); + if (!newWidget) continue; + + newWidget.value = outerWidget.value; + for (let w = 0; w < outerWidget.linkedWidgets?.length; w++) { + newWidget.linkedWidgets[w].value = outerWidget.linkedWidgets[w].value; + } + } + } + } + } + + // Shift each node + for (const newNode of newNodes) { + newNode.pos = [newNode.pos[0] - (left - x), newNode.pos[1] - (top - y)]; + } + + return { newNodes, selectedIds }; + }; + + const reconnectInputs = (selectedIds) => { + for (const innerNodeIndex in this.groupData.oldToNewInputMap) { + const id = selectedIds[innerNodeIndex]; + const newNode = app.graph.getNodeById(id); + const map = this.groupData.oldToNewInputMap[innerNodeIndex]; + for (const innerInputId in map) { + const groupSlotId = map[innerInputId]; + if (groupSlotId == null) continue; + const slot = node.inputs[groupSlotId]; + if (slot.link == null) continue; + const link = app.graph.links[slot.link]; + if (!link) continue; + // connect this node output to the input of another node + const originNode = app.graph.getNodeById(link.origin_id); + originNode.connect(link.origin_slot, newNode, +innerInputId); + } + } + }; + + const reconnectOutputs = (selectedIds) => { + for (let groupOutputId = 0; groupOutputId < node.outputs?.length; groupOutputId++) { + const output = node.outputs[groupOutputId]; + if (!output.links) continue; + const links = [...output.links]; + for (const l of links) { + const slot = this.groupData.newToOldOutputMap[groupOutputId]; + const link = app.graph.links[l]; + const targetNode = app.graph.getNodeById(link.target_id); + const newNode = app.graph.getNodeById(selectedIds[slot.node.index]); + newNode.connect(slot.slot, targetNode, link.target_slot); + } + } + }; + + const { newNodes, selectedIds } = addInnerNodes(); + reconnectInputs(selectedIds); + reconnectOutputs(selectedIds); + app.graph.remove(this.node); + + return newNodes; + }; + + const getExtraMenuOptions = this.node.getExtraMenuOptions; + this.node.getExtraMenuOptions = function (_, options) { + getExtraMenuOptions?.apply(this, arguments); + + let optionIndex = options.findIndex((o) => o.content === "Outputs"); + if (optionIndex === -1) optionIndex = options.length; + else optionIndex++; + options.splice( + optionIndex, + 0, + null, + { + content: "Convert to nodes", + callback: () => { + return this.convertToNodes(); + }, + }, + { + content: "Manage Group Node", + callback: () => { + new ManageGroupDialog(app).show(this.type); + }, + } + ); + }; + + // Draw custom collapse icon to identity this as a group + const onDrawTitleBox = this.node.onDrawTitleBox; + this.node.onDrawTitleBox = function (ctx, height, size, scale) { + onDrawTitleBox?.apply(this, arguments); + + const fill = ctx.fillStyle; + ctx.beginPath(); + ctx.rect(11, -height + 11, 2, 2); + ctx.rect(14, -height + 11, 2, 2); + ctx.rect(17, -height + 11, 2, 2); + ctx.rect(11, -height + 14, 2, 2); + ctx.rect(14, -height + 14, 2, 2); + ctx.rect(17, -height + 14, 2, 2); + ctx.rect(11, -height + 17, 2, 2); + ctx.rect(14, -height + 17, 2, 2); + ctx.rect(17, -height + 17, 2, 2); + + ctx.fillStyle = this.boxcolor || LiteGraph.NODE_DEFAULT_BOXCOLOR; + ctx.fill(); + ctx.fillStyle = fill; + }; + + // Draw progress label + const onDrawForeground = node.onDrawForeground; + const groupData = this.groupData.nodeData; + node.onDrawForeground = function (ctx) { + const r = onDrawForeground?.apply?.(this, arguments); + if (+app.runningNodeId === this.id && this.runningInternalNodeId !== null) { + const n = groupData.nodes[this.runningInternalNodeId]; + if(!n) return; + const message = `Running ${n.title || n.type} (${this.runningInternalNodeId}/${groupData.nodes.length})`; + ctx.save(); + ctx.font = "12px sans-serif"; + const sz = ctx.measureText(message); + ctx.fillStyle = node.boxcolor || LiteGraph.NODE_DEFAULT_BOXCOLOR; + ctx.beginPath(); + ctx.roundRect(0, -LiteGraph.NODE_TITLE_HEIGHT - 20, sz.width + 12, 20, 5); + ctx.fill(); + + ctx.fillStyle = "#fff"; + ctx.fillText(message, 6, -LiteGraph.NODE_TITLE_HEIGHT - 6); + ctx.restore(); + } + }; + + // Flag this node as needing to be reset + const onExecutionStart = this.node.onExecutionStart; + this.node.onExecutionStart = function () { + this.resetExecution = true; + return onExecutionStart?.apply(this, arguments); + }; + + const self = this; + const onNodeCreated = this.node.onNodeCreated; + this.node.onNodeCreated = function () { + if (!this.widgets) { + return; + } + const config = self.groupData.nodeData.config; + if (config) { + for (const n in config) { + const inputs = config[n]?.input; + for (const w in inputs) { + if (inputs[w].visible !== false) continue; + const widgetName = self.groupData.oldToNewWidgetMap[n][w]; + const widget = this.widgets.find((w) => w.name === widgetName); + if (widget) { + widget.type = "hidden"; + widget.computeSize = () => [0, -4]; + } + } + } + } + + return onNodeCreated?.apply(this, arguments); + }; + + function handleEvent(type, getId, getEvent) { + const handler = ({ detail }) => { + const id = getId(detail); + if (!id) return; + const node = app.graph.getNodeById(id); + if (node) return; + + const innerNodeIndex = this.innerNodes?.findIndex((n) => n.id == id); + if (innerNodeIndex > -1) { + this.node.runningInternalNodeId = innerNodeIndex; + api.dispatchEvent(new CustomEvent(type, { detail: getEvent(detail, this.node.id + "", this.node) })); + } + }; + api.addEventListener(type, handler); + return handler; + } + + const executing = handleEvent.call( + this, + "executing", + (d) => d, + (d, id, node) => id + ); + + const executed = handleEvent.call( + this, + "executed", + (d) => d?.node, + (d, id, node) => ({ ...d, node: id, merge: !node.resetExecution }) + ); + + const onRemoved = node.onRemoved; + this.node.onRemoved = function () { + onRemoved?.apply(this, arguments); + api.removeEventListener("executing", executing); + api.removeEventListener("executed", executed); + }; + + this.node.refreshComboInNode = (defs) => { + // Update combo widget options + for (const widgetName in this.groupData.newToOldWidgetMap) { + const widget = this.node.widgets.find((w) => w.name === widgetName); + if (widget?.type === "combo") { + const old = this.groupData.newToOldWidgetMap[widgetName]; + const def = defs[old.node.type]; + const input = def?.input?.required?.[old.inputName] ?? def?.input?.optional?.[old.inputName]; + if (!input) continue; + + widget.options.values = input[0]; + + if (old.inputName !== "image" && !widget.options.values.includes(widget.value)) { + widget.value = widget.options.values[0]; + widget.callback(widget.value); + } + } + } + }; + } + + updateInnerWidgets() { + for (const newWidgetName in this.groupData.newToOldWidgetMap) { + const newWidget = this.node.widgets.find((w) => w.name === newWidgetName); + if (!newWidget) continue; + + const newValue = newWidget.value; + const old = this.groupData.newToOldWidgetMap[newWidgetName]; + let innerNode = this.innerNodes[old.node.index]; + + if (innerNode.type === "PrimitiveNode") { + innerNode.primitiveValue = newValue; + const primitiveLinked = this.groupData.primitiveToWidget[old.node.index]; + for (const linked of primitiveLinked ?? []) { + const node = this.innerNodes[linked.nodeId]; + const widget = node.widgets.find((w) => w.name === linked.inputName); + + if (widget) { + widget.value = newValue; + } + } + continue; + } else if (innerNode.type === "Reroute") { + const rerouteLinks = this.groupData.linksFrom[old.node.index]; + if (rerouteLinks) { + for (const [_, , targetNodeId, targetSlot] of rerouteLinks["0"]) { + const node = this.innerNodes[targetNodeId]; + const input = node.inputs[targetSlot]; + if (input.widget) { + const widget = node.widgets?.find((w) => w.name === input.widget.name); + if (widget) { + widget.value = newValue; + } + } + } + } + } + + const widget = innerNode.widgets?.find((w) => w.name === old.inputName); + if (widget) { + widget.value = newValue; + } + } + } + + populatePrimitive(node, nodeId, oldName, i, linkedShift) { + // Converted widget, populate primitive if linked + const primitiveId = this.groupData.widgetToPrimitive[nodeId]?.[oldName]; + if (primitiveId == null) return; + const targetWidgetName = this.groupData.oldToNewWidgetMap[primitiveId]["value"]; + const targetWidgetIndex = this.node.widgets.findIndex((w) => w.name === targetWidgetName); + if (targetWidgetIndex > -1) { + const primitiveNode = this.innerNodes[primitiveId]; + let len = primitiveNode.widgets.length; + if (len - 1 !== this.node.widgets[targetWidgetIndex].linkedWidgets?.length) { + // Fallback handling for if some reason the primitive has a different number of widgets + // we dont want to overwrite random widgets, better to leave blank + len = 1; + } + for (let i = 0; i < len; i++) { + this.node.widgets[targetWidgetIndex + i].value = primitiveNode.widgets[i].value; + } + } + return true; + } + + populateReroute(node, nodeId, map) { + if (node.type !== "Reroute") return; + + const link = this.groupData.linksFrom[nodeId]?.[0]?.[0]; + if (!link) return; + const [, , targetNodeId, targetNodeSlot] = link; + const targetNode = this.groupData.nodeData.nodes[targetNodeId]; + const inputs = targetNode.inputs; + const targetWidget = inputs?.[targetNodeSlot]?.widget; + if (!targetWidget) return; + + const offset = inputs.length - (targetNode.widgets_values?.length ?? 0); + const v = targetNode.widgets_values?.[targetNodeSlot - offset]; + if (v == null) return; + + const widgetName = Object.values(map)[0]; + const widget = this.node.widgets.find((w) => w.name === widgetName); + if (widget) { + widget.value = v; + } + } + + populateWidgets() { + if (!this.node.widgets) return; + + for (let nodeId = 0; nodeId < this.groupData.nodeData.nodes.length; nodeId++) { + const node = this.groupData.nodeData.nodes[nodeId]; + const map = this.groupData.oldToNewWidgetMap[nodeId] ?? {}; + const widgets = Object.keys(map); + + if (!node.widgets_values?.length) { + // special handling for populating values into reroutes + // this allows primitives connect to them to pick up the correct value + this.populateReroute(node, nodeId, map); + continue; + } + + let linkedShift = 0; + for (let i = 0; i < widgets.length; i++) { + const oldName = widgets[i]; + const newName = map[oldName]; + const widgetIndex = this.node.widgets.findIndex((w) => w.name === newName); + const mainWidget = this.node.widgets[widgetIndex]; + if (this.populatePrimitive(node, nodeId, oldName, i, linkedShift) || widgetIndex === -1) { + // Find the inner widget and shift by the number of linked widgets as they will have been removed too + const innerWidget = this.innerNodes[nodeId].widgets?.find((w) => w.name === oldName); + linkedShift += innerWidget?.linkedWidgets?.length ?? 0; + } + if (widgetIndex === -1) { + continue; + } + + // Populate the main and any linked widget + mainWidget.value = node.widgets_values[i + linkedShift]; + for (let w = 0; w < mainWidget.linkedWidgets?.length; w++) { + this.node.widgets[widgetIndex + w + 1].value = node.widgets_values[i + ++linkedShift]; + } + } + } + } + + replaceNodes(nodes) { + let top; + let left; + + for (let i = 0; i < nodes.length; i++) { + const node = nodes[i]; + if (left == null || node.pos[0] < left) { + left = node.pos[0]; + } + if (top == null || node.pos[1] < top) { + top = node.pos[1]; + } + + this.linkOutputs(node, i); + app.graph.remove(node); + } + + this.linkInputs(); + this.node.pos = [left, top]; + } + + linkOutputs(originalNode, nodeId) { + if (!originalNode.outputs) return; + + for (const output of originalNode.outputs) { + if (!output.links) continue; + // Clone the links as they'll be changed if we reconnect + const links = [...output.links]; + for (const l of links) { + const link = app.graph.links[l]; + if (!link) continue; + + const targetNode = app.graph.getNodeById(link.target_id); + const newSlot = this.groupData.oldToNewOutputMap[nodeId]?.[link.origin_slot]; + if (newSlot != null) { + this.node.connect(newSlot, targetNode, link.target_slot); + } + } + } + } + + linkInputs() { + for (const link of this.groupData.nodeData.links ?? []) { + const [, originSlot, targetId, targetSlot, actualOriginId] = link; + const originNode = app.graph.getNodeById(actualOriginId); + if (!originNode) continue; // this node is in the group + originNode.connect(originSlot, this.node.id, this.groupData.oldToNewInputMap[targetId][targetSlot]); + } + } + + static getGroupData(node) { + return (node.nodeData ?? node.constructor?.nodeData)?.[GROUP]; + } + + static isGroupNode(node) { + return !!node.constructor?.nodeData?.[GROUP]; + } + + static async fromNodes(nodes) { + // Process the nodes into the stored workflow group node data + const builder = new GroupNodeBuilder(nodes); + const res = builder.build(); + if (!res) return; + + const { name, nodeData } = res; + + // Convert this data into a LG node definition and register it + const config = new GroupNodeConfig(name, nodeData); + await config.registerType(); + + const groupNode = LiteGraph.createNode(`workflow/${name}`); + // Reuse the existing nodes for this instance + groupNode.setInnerNodes(builder.nodes); + groupNode[GROUP].populateWidgets(); + app.graph.add(groupNode); + + // Remove all converted nodes and relink them + groupNode[GROUP].replaceNodes(builder.nodes); + return groupNode; + } +} + +function addConvertToGroupOptions() { + function addConvertOption(options, index) { + const selected = Object.values(app.canvas.selected_nodes ?? {}); + const disabled = selected.length < 2 || selected.find((n) => GroupNodeHandler.isGroupNode(n)); + options.splice(index + 1, null, { + content: `Convert to Group Node`, + disabled, + callback: async () => { + return await GroupNodeHandler.fromNodes(selected); + }, + }); + } + + function addManageOption(options, index) { + const groups = app.graph.extra?.groupNodes; + const disabled = !groups || !Object.keys(groups).length; + options.splice(index + 1, null, { + content: `Manage Group Nodes`, + disabled, + callback: () => { + new ManageGroupDialog(app).show(); + }, + }); + } + + // Add to canvas + const getCanvasMenuOptions = LGraphCanvas.prototype.getCanvasMenuOptions; + LGraphCanvas.prototype.getCanvasMenuOptions = function () { + const options = getCanvasMenuOptions.apply(this, arguments); + const index = options.findIndex((o) => o?.content === "Add Group") + 1 || options.length; + addConvertOption(options, index); + addManageOption(options, index + 1); + return options; + }; + + // Add to nodes + const getNodeMenuOptions = LGraphCanvas.prototype.getNodeMenuOptions; + LGraphCanvas.prototype.getNodeMenuOptions = function (node) { + const options = getNodeMenuOptions.apply(this, arguments); + if (!GroupNodeHandler.isGroupNode(node)) { + const index = options.findIndex((o) => o?.content === "Outputs") + 1 || options.length - 1; + addConvertOption(options, index); + } + return options; + }; +} + +const id = "Comfy.GroupNode"; +let globalDefs; +const ext = { + name: id, + setup() { + addConvertToGroupOptions(); + }, + async beforeConfigureGraph(graphData, missingNodeTypes) { + const nodes = graphData?.extra?.groupNodes; + if (nodes) { + await GroupNodeConfig.registerFromWorkflow(nodes, missingNodeTypes); + } + }, + addCustomNodeDefs(defs) { + // Store this so we can mutate it later with group nodes + globalDefs = defs; + }, + nodeCreated(node) { + if (GroupNodeHandler.isGroupNode(node)) { + node[GROUP] = new GroupNodeHandler(node); + } + }, + async refreshComboInNodes(defs) { + // Re-register group nodes so new ones are created with the correct options + Object.assign(globalDefs, defs); + const nodes = app.graph.extra?.groupNodes; + if (nodes) { + await GroupNodeConfig.registerFromWorkflow(nodes, {}); + } + } +}; + +app.registerExtension(ext); diff --git a/web/extensions/core/groupNodeManage.css b/web/extensions/core/groupNodeManage.css new file mode 100644 index 0000000000000000000000000000000000000000..5470ecb5e67bd700b52601979a607b2d89893860 --- /dev/null +++ b/web/extensions/core/groupNodeManage.css @@ -0,0 +1,149 @@ +.comfy-group-manage { + background: var(--bg-color); + color: var(--fg-color); + padding: 0; + font-family: Arial, Helvetica, sans-serif; + border-color: black; + margin: 20vh auto; + max-height: 60vh; +} +.comfy-group-manage-outer { + max-height: 60vh; + min-width: 500px; + display: flex; + flex-direction: column; +} +.comfy-group-manage-outer > header { + display: flex; + align-items: center; + gap: 10px; + justify-content: space-between; + background: var(--comfy-menu-bg); + padding: 15px 20px; +} +.comfy-group-manage-outer > header select { + background: var(--comfy-input-bg); + border: 1px solid var(--border-color); + color: var(--input-text); + padding: 5px 10px; + border-radius: 5px; +} +.comfy-group-manage h2 { + margin: 0; + font-weight: normal; +} +.comfy-group-manage main { + display: flex; + overflow: hidden; +} +.comfy-group-manage .drag-handle { + font-weight: bold; +} +.comfy-group-manage-list { + border-right: 1px solid var(--comfy-menu-bg); +} +.comfy-group-manage-list ul { + margin: 40px 0 0; + padding: 0; + list-style: none; +} +.comfy-group-manage-list-items { + max-height: calc(100% - 40px); + overflow-y: scroll; + overflow-x: hidden; +} +.comfy-group-manage-list li { + display: flex; + padding: 10px 20px 10px 10px; + cursor: pointer; + align-items: center; + gap: 5px; +} +.comfy-group-manage-list div { + display: flex; + flex-direction: column; +} +.comfy-group-manage-list li:not(.selected):hover div { + text-decoration: underline; +} +.comfy-group-manage-list li.selected { + background: var(--border-color); +} +.comfy-group-manage-list li span { + opacity: 0.7; + font-size: smaller; +} +.comfy-group-manage-node { + flex: auto; + background: var(--border-color); + display: flex; + flex-direction: column; +} +.comfy-group-manage-node > div { + overflow: auto; +} +.comfy-group-manage-node header { + display: flex; + background: var(--bg-color); + height: 40px; +} +.comfy-group-manage-node header a { + text-align: center; + flex: auto; + border-right: 1px solid var(--comfy-menu-bg); + border-bottom: 1px solid var(--comfy-menu-bg); + padding: 10px; + cursor: pointer; + font-size: 15px; +} +.comfy-group-manage-node header a:last-child { + border-right: none; +} +.comfy-group-manage-node header a:not(.active):hover { + text-decoration: underline; +} +.comfy-group-manage-node header a.active { + background: var(--border-color); + border-bottom: none; +} +.comfy-group-manage-node-page { + display: none; + overflow: auto; +} +.comfy-group-manage-node-page.active { + display: block; +} +.comfy-group-manage-node-page div { + padding: 10px; + display: flex; + align-items: center; + gap: 10px; +} +.comfy-group-manage-node-page input { + border: none; + color: var(--input-text); + background: var(--comfy-input-bg); + padding: 5px 10px; +} +.comfy-group-manage-node-page input[type="text"] { + flex: auto; +} +.comfy-group-manage-node-page label { + display: flex; + gap: 5px; + align-items: center; +} +.comfy-group-manage footer { + border-top: 1px solid var(--comfy-menu-bg); + padding: 10px; + display: flex; + gap: 10px; +} +.comfy-group-manage footer button { + font-size: 14px; + padding: 5px 10px; + border-radius: 0; +} +.comfy-group-manage footer button:first-child { + margin-right: auto; +} diff --git a/web/extensions/core/groupNodeManage.js b/web/extensions/core/groupNodeManage.js new file mode 100644 index 0000000000000000000000000000000000000000..1ab3383868823eac5ae09d457ae6e89c0b5a4d5a --- /dev/null +++ b/web/extensions/core/groupNodeManage.js @@ -0,0 +1,422 @@ +import { $el, ComfyDialog } from "../../scripts/ui.js"; +import { DraggableList } from "../../scripts/ui/draggableList.js"; +import { addStylesheet } from "../../scripts/utils.js"; +import { GroupNodeConfig, GroupNodeHandler } from "./groupNode.js"; + +addStylesheet(import.meta.url); + +const ORDER = Symbol(); + +function merge(target, source) { + if (typeof target === "object" && typeof source === "object") { + for (const key in source) { + const sv = source[key]; + if (typeof sv === "object") { + let tv = target[key]; + if (!tv) tv = target[key] = {}; + merge(tv, source[key]); + } else { + target[key] = sv; + } + } + } + + return target; +} + +export class ManageGroupDialog extends ComfyDialog { + /** @type { Record<"Inputs" | "Outputs" | "Widgets", {tab: HTMLAnchorElement, page: HTMLElement}> } */ + tabs = {}; + /** @type { number | null | undefined } */ + selectedNodeIndex; + /** @type { keyof ManageGroupDialog["tabs"] } */ + selectedTab = "Inputs"; + /** @type { string | undefined } */ + selectedGroup; + + /** @type { Record>> } */ + modifications = {}; + + get selectedNodeInnerIndex() { + return +this.nodeItems[this.selectedNodeIndex].dataset.nodeindex; + } + + constructor(app) { + super(); + this.app = app; + this.element = $el("dialog.comfy-group-manage", { + parent: document.body, + }); + } + + changeTab(tab) { + this.tabs[this.selectedTab].tab.classList.remove("active"); + this.tabs[this.selectedTab].page.classList.remove("active"); + this.tabs[tab].tab.classList.add("active"); + this.tabs[tab].page.classList.add("active"); + this.selectedTab = tab; + } + + changeNode(index, force) { + if (!force && this.selectedNodeIndex === index) return; + + if (this.selectedNodeIndex != null) { + this.nodeItems[this.selectedNodeIndex].classList.remove("selected"); + } + this.nodeItems[index].classList.add("selected"); + this.selectedNodeIndex = index; + + if (!this.buildInputsPage() && this.selectedTab === "Inputs") { + this.changeTab("Widgets"); + } + if (!this.buildWidgetsPage() && this.selectedTab === "Widgets") { + this.changeTab("Outputs"); + } + if (!this.buildOutputsPage() && this.selectedTab === "Outputs") { + this.changeTab("Inputs"); + } + + this.changeTab(this.selectedTab); + } + + getGroupData() { + this.groupNodeType = LiteGraph.registered_node_types["workflow/" + this.selectedGroup]; + this.groupNodeDef = this.groupNodeType.nodeData; + this.groupData = GroupNodeHandler.getGroupData(this.groupNodeType); + } + + changeGroup(group, reset = true) { + this.selectedGroup = group; + this.getGroupData(); + + const nodes = this.groupData.nodeData.nodes; + this.nodeItems = nodes.map((n, i) => + $el( + "li.draggable-item", + { + dataset: { + nodeindex: n.index + "", + }, + onclick: () => { + this.changeNode(i); + }, + }, + [ + $el("span.drag-handle"), + $el( + "div", + { + textContent: n.title ?? n.type, + }, + n.title + ? $el("span", { + textContent: n.type, + }) + : [] + ), + ] + ) + ); + + this.innerNodesList.replaceChildren(...this.nodeItems); + + if (reset) { + this.selectedNodeIndex = null; + this.changeNode(0); + } else { + const items = this.draggable.getAllItems(); + let index = items.findIndex(item => item.classList.contains("selected")); + if(index === -1) index = this.selectedNodeIndex; + this.changeNode(index, true); + } + + const ordered = [...nodes]; + this.draggable?.dispose(); + this.draggable = new DraggableList(this.innerNodesList, "li"); + this.draggable.addEventListener("dragend", ({ detail: { oldPosition, newPosition } }) => { + if (oldPosition === newPosition) return; + ordered.splice(newPosition, 0, ordered.splice(oldPosition, 1)[0]); + for (let i = 0; i < ordered.length; i++) { + this.storeModification({ nodeIndex: ordered[i].index, section: ORDER, prop: "order", value: i }); + } + }); + } + + storeModification({ nodeIndex, section, prop, value }) { + const groupMod = (this.modifications[this.selectedGroup] ??= {}); + const nodesMod = (groupMod.nodes ??= {}); + const nodeMod = (nodesMod[nodeIndex ?? this.selectedNodeInnerIndex] ??= {}); + const typeMod = (nodeMod[section] ??= {}); + if (typeof value === "object") { + const objMod = (typeMod[prop] ??= {}); + Object.assign(objMod, value); + } else { + typeMod[prop] = value; + } + } + + getEditElement(section, prop, value, placeholder, checked, checkable = true) { + if (value === placeholder) value = ""; + + const mods = this.modifications[this.selectedGroup]?.nodes?.[this.selectedNodeInnerIndex]?.[section]?.[prop]; + if (mods) { + if (mods.name != null) { + value = mods.name; + } + if (mods.visible != null) { + checked = mods.visible; + } + } + + return $el("div", [ + $el("input", { + value, + placeholder, + type: "text", + onchange: (e) => { + this.storeModification({ section, prop, value: { name: e.target.value } }); + }, + }), + $el("label", { textContent: "Visible" }, [ + $el("input", { + type: "checkbox", + checked, + disabled: !checkable, + onchange: (e) => { + this.storeModification({ section, prop, value: { visible: !!e.target.checked } }); + }, + }), + ]), + ]); + } + + buildWidgetsPage() { + const widgets = this.groupData.oldToNewWidgetMap[this.selectedNodeInnerIndex]; + const items = Object.keys(widgets ?? {}); + const type = app.graph.extra.groupNodes[this.selectedGroup]; + const config = type.config?.[this.selectedNodeInnerIndex]?.input; + this.widgetsPage.replaceChildren( + ...items.map((oldName) => { + return this.getEditElement("input", oldName, widgets[oldName], oldName, config?.[oldName]?.visible !== false); + }) + ); + return !!items.length; + } + + buildInputsPage() { + const inputs = this.groupData.nodeInputs[this.selectedNodeInnerIndex]; + const items = Object.keys(inputs ?? {}); + const type = app.graph.extra.groupNodes[this.selectedGroup]; + const config = type.config?.[this.selectedNodeInnerIndex]?.input; + this.inputsPage.replaceChildren( + ...items + .map((oldName) => { + let value = inputs[oldName]; + if (!value) { + return; + } + + return this.getEditElement("input", oldName, value, oldName, config?.[oldName]?.visible !== false); + }) + .filter(Boolean) + ); + return !!items.length; + } + + buildOutputsPage() { + const nodes = this.groupData.nodeData.nodes; + const innerNodeDef = this.groupData.getNodeDef(nodes[this.selectedNodeInnerIndex]); + const outputs = innerNodeDef?.output ?? []; + const groupOutputs = this.groupData.oldToNewOutputMap[this.selectedNodeInnerIndex]; + + const type = app.graph.extra.groupNodes[this.selectedGroup]; + const config = type.config?.[this.selectedNodeInnerIndex]?.output; + const node = this.groupData.nodeData.nodes[this.selectedNodeInnerIndex]; + const checkable = node.type !== "PrimitiveNode"; + this.outputsPage.replaceChildren( + ...outputs + .map((type, slot) => { + const groupOutputIndex = groupOutputs?.[slot]; + const oldName = innerNodeDef.output_name?.[slot] ?? type; + let value = config?.[slot]?.name; + const visible = config?.[slot]?.visible || groupOutputIndex != null; + if (!value || value === oldName) { + value = ""; + } + return this.getEditElement("output", slot, value, oldName, visible, checkable); + }) + .filter(Boolean) + ); + return !!outputs.length; + } + + show(type) { + const groupNodes = Object.keys(app.graph.extra?.groupNodes ?? {}).sort((a, b) => a.localeCompare(b)); + + this.innerNodesList = $el("ul.comfy-group-manage-list-items"); + this.widgetsPage = $el("section.comfy-group-manage-node-page"); + this.inputsPage = $el("section.comfy-group-manage-node-page"); + this.outputsPage = $el("section.comfy-group-manage-node-page"); + const pages = $el("div", [this.widgetsPage, this.inputsPage, this.outputsPage]); + + this.tabs = [ + ["Inputs", this.inputsPage], + ["Widgets", this.widgetsPage], + ["Outputs", this.outputsPage], + ].reduce((p, [name, page]) => { + p[name] = { + tab: $el("a", { + onclick: () => { + this.changeTab(name); + }, + textContent: name, + }), + page, + }; + return p; + }, {}); + + const outer = $el("div.comfy-group-manage-outer", [ + $el("header", [ + $el("h2", "Group Nodes"), + $el( + "select", + { + onchange: (e) => { + this.changeGroup(e.target.value); + }, + }, + groupNodes.map((g) => + $el("option", { + textContent: g, + selected: "workflow/" + g === type, + value: g, + }) + ) + ), + ]), + $el("main", [ + $el("section.comfy-group-manage-list", this.innerNodesList), + $el("section.comfy-group-manage-node", [ + $el( + "header", + Object.values(this.tabs).map((t) => t.tab) + ), + pages, + ]), + ]), + $el("footer", [ + $el( + "button.comfy-btn", + { + onclick: (e) => { + const node = app.graph._nodes.find((n) => n.type === "workflow/" + this.selectedGroup); + if (node) { + alert("This group node is in use in the current workflow, please first remove these."); + return; + } + if (confirm(`Are you sure you want to remove the node: "${this.selectedGroup}"`)) { + delete app.graph.extra.groupNodes[this.selectedGroup]; + LiteGraph.unregisterNodeType("workflow/" + this.selectedGroup); + } + this.show(); + }, + }, + "Delete Group Node" + ), + $el( + "button.comfy-btn", + { + onclick: async () => { + let nodesByType; + let recreateNodes = []; + const types = {}; + for (const g in this.modifications) { + const type = app.graph.extra.groupNodes[g]; + let config = (type.config ??= {}); + + let nodeMods = this.modifications[g]?.nodes; + if (nodeMods) { + const keys = Object.keys(nodeMods); + if (nodeMods[keys[0]][ORDER]) { + // If any node is reordered, they will all need sequencing + const orderedNodes = []; + const orderedMods = {}; + const orderedConfig = {}; + + for (const n of keys) { + const order = nodeMods[n][ORDER].order; + orderedNodes[order] = type.nodes[+n]; + orderedMods[order] = nodeMods[n]; + orderedNodes[order].index = order; + } + + // Rewrite links + for (const l of type.links) { + if (l[0] != null) l[0] = type.nodes[l[0]].index; + if (l[2] != null) l[2] = type.nodes[l[2]].index; + } + + // Rewrite externals + if (type.external) { + for (const ext of type.external) { + ext[0] = type.nodes[ext[0]]; + } + } + + // Rewrite modifications + for (const id of keys) { + if (config[id]) { + orderedConfig[type.nodes[id].index] = config[id]; + } + delete config[id]; + } + + type.nodes = orderedNodes; + nodeMods = orderedMods; + type.config = config = orderedConfig; + } + + merge(config, nodeMods); + } + + types[g] = type; + + if (!nodesByType) { + nodesByType = app.graph._nodes.reduce((p, n) => { + p[n.type] ??= []; + p[n.type].push(n); + return p; + }, {}); + } + + const nodes = nodesByType["workflow/" + g]; + if (nodes) recreateNodes.push(...nodes); + } + + await GroupNodeConfig.registerFromWorkflow(types, {}); + + for (const node of recreateNodes) { + node.recreate(); + } + + this.modifications = {}; + this.app.graph.setDirtyCanvas(true, true); + this.changeGroup(this.selectedGroup, false); + }, + }, + "Save" + ), + $el("button.comfy-btn", { onclick: () => this.element.close() }, "Close"), + ]), + ]); + + this.element.replaceChildren(outer); + this.changeGroup(type ? groupNodes.find((g) => "workflow/" + g === type) : groupNodes[0]); + this.element.showModal(); + + this.element.addEventListener("close", () => { + this.draggable?.dispose(); + }); + } +} \ No newline at end of file diff --git a/web/extensions/core/groupOptions.js b/web/extensions/core/groupOptions.js new file mode 100644 index 0000000000000000000000000000000000000000..5dd21e7301660cfbe34a7804df6f1a94f8b04666 --- /dev/null +++ b/web/extensions/core/groupOptions.js @@ -0,0 +1,259 @@ +import {app} from "../../scripts/app.js"; + +function setNodeMode(node, mode) { + node.mode = mode; + node.graph.change(); +} + +function addNodesToGroup(group, nodes=[]) { + var x1, y1, x2, y2; + var nx1, ny1, nx2, ny2; + var node; + + x1 = y1 = x2 = y2 = -1; + nx1 = ny1 = nx2 = ny2 = -1; + + for (var n of [group._nodes, nodes]) { + for (var i in n) { + node = n[i] + + nx1 = node.pos[0] + ny1 = node.pos[1] + nx2 = node.pos[0] + node.size[0] + ny2 = node.pos[1] + node.size[1] + + if (node.type != "Reroute") { + ny1 -= LiteGraph.NODE_TITLE_HEIGHT; + } + + if (node.flags?.collapsed) { + ny2 = ny1 + LiteGraph.NODE_TITLE_HEIGHT; + + if (node?._collapsed_width) { + nx2 = nx1 + Math.round(node._collapsed_width); + } + } + + if (x1 == -1 || nx1 < x1) { + x1 = nx1; + } + + if (y1 == -1 || ny1 < y1) { + y1 = ny1; + } + + if (x2 == -1 || nx2 > x2) { + x2 = nx2; + } + + if (y2 == -1 || ny2 > y2) { + y2 = ny2; + } + } + } + + var padding = 10; + + y1 = y1 - Math.round(group.font_size * 1.4); + + group.pos = [x1 - padding, y1 - padding]; + group.size = [x2 - x1 + padding * 2, y2 - y1 + padding * 2]; +} + +app.registerExtension({ + name: "Comfy.GroupOptions", + setup() { + const orig = LGraphCanvas.prototype.getCanvasMenuOptions; + // graph_mouse + LGraphCanvas.prototype.getCanvasMenuOptions = function () { + const options = orig.apply(this, arguments); + const group = this.graph.getGroupOnPos(this.graph_mouse[0], this.graph_mouse[1]); + if (!group) { + options.push({ + content: "Add Group For Selected Nodes", + disabled: !Object.keys(app.canvas.selected_nodes || {}).length, + callback: () => { + var group = new LiteGraph.LGraphGroup(); + addNodesToGroup(group, this.selected_nodes) + app.canvas.graph.add(group); + this.graph.change(); + } + }); + + return options; + } + + // Group nodes aren't recomputed until the group is moved, this ensures the nodes are up-to-date + group.recomputeInsideNodes(); + const nodesInGroup = group._nodes; + + options.push({ + content: "Add Selected Nodes To Group", + disabled: !Object.keys(app.canvas.selected_nodes || {}).length, + callback: () => { + addNodesToGroup(group, this.selected_nodes) + this.graph.change(); + } + }); + + // No nodes in group, return default options + if (nodesInGroup.length === 0) { + return options; + } else { + // Add a separator between the default options and the group options + options.push(null); + } + + // Check if all nodes are the same mode + let allNodesAreSameMode = true; + for (let i = 1; i < nodesInGroup.length; i++) { + if (nodesInGroup[i].mode !== nodesInGroup[0].mode) { + allNodesAreSameMode = false; + break; + } + } + + options.push({ + content: "Fit Group To Nodes", + callback: () => { + addNodesToGroup(group) + this.graph.change(); + } + }); + + options.push({ + content: "Select Nodes", + callback: () => { + this.selectNodes(nodesInGroup); + this.graph.change(); + this.canvas.focus(); + } + }); + + // Modes + // 0: Always + // 1: On Event + // 2: Never + // 3: On Trigger + // 4: Bypass + // If all nodes are the same mode, add a menu option to change the mode + if (allNodesAreSameMode) { + const mode = nodesInGroup[0].mode; + switch (mode) { + case 0: + // All nodes are always, option to disable, and bypass + options.push({ + content: "Set Group Nodes to Never", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 2); + } + } + }); + options.push({ + content: "Bypass Group Nodes", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 4); + } + } + }); + break; + case 2: + // All nodes are never, option to enable, and bypass + options.push({ + content: "Set Group Nodes to Always", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 0); + } + } + }); + options.push({ + content: "Bypass Group Nodes", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 4); + } + } + }); + break; + case 4: + // All nodes are bypass, option to enable, and disable + options.push({ + content: "Set Group Nodes to Always", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 0); + } + } + }); + options.push({ + content: "Set Group Nodes to Never", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 2); + } + } + }); + break; + default: + // All nodes are On Trigger or On Event(Or other?), option to disable, set to always, or bypass + options.push({ + content: "Set Group Nodes to Always", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 0); + } + } + }); + options.push({ + content: "Set Group Nodes to Never", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 2); + } + } + }); + options.push({ + content: "Bypass Group Nodes", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 4); + } + } + }); + break; + } + } else { + // Nodes are not all the same mode, add a menu option to change the mode to always, never, or bypass + options.push({ + content: "Set Group Nodes to Always", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 0); + } + } + }); + options.push({ + content: "Set Group Nodes to Never", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 2); + } + } + }); + options.push({ + content: "Bypass Group Nodes", + callback: () => { + for (const node of nodesInGroup) { + setNodeMode(node, 4); + } + } + }); + } + + return options + } + } +}); diff --git a/web/extensions/core/invertMenuScrolling.js b/web/extensions/core/invertMenuScrolling.js new file mode 100644 index 0000000000000000000000000000000000000000..98a1786ab48972ad3a92f4f7cda8fa4273e0bde6 --- /dev/null +++ b/web/extensions/core/invertMenuScrolling.js @@ -0,0 +1,36 @@ +import { app } from "../../scripts/app.js"; + +// Inverts the scrolling of context menus + +const id = "Comfy.InvertMenuScrolling"; +app.registerExtension({ + name: id, + init() { + const ctxMenu = LiteGraph.ContextMenu; + const replace = () => { + LiteGraph.ContextMenu = function (values, options) { + options = options || {}; + if (options.scroll_speed) { + options.scroll_speed *= -1; + } else { + options.scroll_speed = -0.1; + } + return ctxMenu.call(this, values, options); + }; + LiteGraph.ContextMenu.prototype = ctxMenu.prototype; + }; + app.ui.settings.addSetting({ + id, + name: "Invert Menu Scrolling", + type: "boolean", + defaultValue: false, + onChange(value) { + if (value) { + replace(); + } else { + LiteGraph.ContextMenu = ctxMenu; + } + }, + }); + }, +}); diff --git a/web/extensions/core/keybinds.js b/web/extensions/core/keybinds.js new file mode 100644 index 0000000000000000000000000000000000000000..cf698ea5a66cebfb3c8e9192d4d192503b461697 --- /dev/null +++ b/web/extensions/core/keybinds.js @@ -0,0 +1,70 @@ +import {app} from "../../scripts/app.js"; + +app.registerExtension({ + name: "Comfy.Keybinds", + init() { + const keybindListener = function (event) { + const modifierPressed = event.ctrlKey || event.metaKey; + + // Queue prompt using ctrl or command + enter + if (modifierPressed && event.key === "Enter") { + app.queuePrompt(event.shiftKey ? -1 : 0).then(); + return; + } + + const target = event.composedPath()[0]; + if (["INPUT", "TEXTAREA"].includes(target.tagName)) { + return; + } + + const modifierKeyIdMap = { + s: "#comfy-save-button", + o: "#comfy-file-input", + Backspace: "#comfy-clear-button", + Delete: "#comfy-clear-button", + d: "#comfy-load-default-button", + }; + + const modifierKeybindId = modifierKeyIdMap[event.key]; + if (modifierPressed && modifierKeybindId) { + event.preventDefault(); + + const elem = document.querySelector(modifierKeybindId); + elem.click(); + return; + } + + // Finished Handling all modifier keybinds, now handle the rest + if (event.ctrlKey || event.altKey || event.metaKey) { + return; + } + + // Close out of modals using escape + if (event.key === "Escape") { + const modals = document.querySelectorAll(".comfy-modal"); + const modal = Array.from(modals).find(modal => window.getComputedStyle(modal).getPropertyValue("display") !== "none"); + if (modal) { + modal.style.display = "none"; + } + + [...document.querySelectorAll("dialog")].forEach(d => { + d.close(); + }); + } + + const keyIdMap = { + q: "#comfy-view-queue-button", + h: "#comfy-view-history-button", + r: "#comfy-refresh-button", + }; + + const buttonId = keyIdMap[event.key]; + if (buttonId) { + const button = document.querySelector(buttonId); + button.click(); + } + } + + window.addEventListener("keydown", keybindListener, true); + } +}); diff --git a/web/extensions/core/linkRenderMode.js b/web/extensions/core/linkRenderMode.js new file mode 100644 index 0000000000000000000000000000000000000000..fb4df4234e587817c150be71059113f10443b01a --- /dev/null +++ b/web/extensions/core/linkRenderMode.js @@ -0,0 +1,25 @@ +import { app } from "../../scripts/app.js"; + +const id = "Comfy.LinkRenderMode"; +const ext = { + name: id, + async setup(app) { + app.ui.settings.addSetting({ + id, + name: "Link Render Mode", + defaultValue: 2, + type: "combo", + options: [...LiteGraph.LINK_RENDER_MODES, "Hidden"].map((m, i) => ({ + value: i, + text: m, + selected: i == app.canvas.links_render_mode, + })), + onChange(value) { + app.canvas.links_render_mode = +value; + app.graph.setDirtyCanvas(true); + }, + }); + }, +}; + +app.registerExtension(ext); diff --git a/web/extensions/core/maskeditor.js b/web/extensions/core/maskeditor.js new file mode 100644 index 0000000000000000000000000000000000000000..4f69ac7607c76d63548241874a13b694b682bad0 --- /dev/null +++ b/web/extensions/core/maskeditor.js @@ -0,0 +1,923 @@ +import { app } from "../../scripts/app.js"; +import { ComfyDialog, $el } from "../../scripts/ui.js"; +import { ComfyApp } from "../../scripts/app.js"; +import { api } from "../../scripts/api.js" +import { ClipspaceDialog } from "./clipspace.js"; + +// Helper function to convert a data URL to a Blob object +function dataURLToBlob(dataURL) { + const parts = dataURL.split(';base64,'); + const contentType = parts[0].split(':')[1]; + const byteString = atob(parts[1]); + const arrayBuffer = new ArrayBuffer(byteString.length); + const uint8Array = new Uint8Array(arrayBuffer); + for (let i = 0; i < byteString.length; i++) { + uint8Array[i] = byteString.charCodeAt(i); + } + return new Blob([arrayBuffer], { type: contentType }); +} + +function loadedImageToBlob(image) { + const canvas = document.createElement('canvas'); + + canvas.width = image.width; + canvas.height = image.height; + + const ctx = canvas.getContext('2d'); + + ctx.drawImage(image, 0, 0); + + const dataURL = canvas.toDataURL('image/png', 1); + const blob = dataURLToBlob(dataURL); + + return blob; +} + +function loadImage(imagePath) { + return new Promise((resolve, reject) => { + const image = new Image(); + + image.onload = function() { + resolve(image); + }; + + image.src = imagePath; + }); +} + +async function uploadMask(filepath, formData) { + await api.fetchApi('/upload/mask', { + method: 'POST', + body: formData + }).then(response => {}).catch(error => { + console.error('Error:', error); + }); + + ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']] = new Image(); + ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src = api.apiURL("/view?" + new URLSearchParams(filepath).toString() + app.getPreviewFormatParam() + app.getRandParam()); + + if(ComfyApp.clipspace.images) + ComfyApp.clipspace.images[ComfyApp.clipspace['selectedIndex']] = filepath; + + ClipspaceDialog.invalidatePreview(); +} + +function prepare_mask(image, maskCanvas, maskCtx, maskColor) { + // paste mask data into alpha channel + maskCtx.drawImage(image, 0, 0, maskCanvas.width, maskCanvas.height); + const maskData = maskCtx.getImageData(0, 0, maskCanvas.width, maskCanvas.height); + + // invert mask + for (let i = 0; i < maskData.data.length; i += 4) { + if(maskData.data[i+3] == 255) + maskData.data[i+3] = 0; + else + maskData.data[i+3] = 255; + + maskData.data[i] = maskColor.r; + maskData.data[i+1] = maskColor.g; + maskData.data[i+2] = maskColor.b; + } + + maskCtx.globalCompositeOperation = 'source-over'; + maskCtx.putImageData(maskData, 0, 0); +} + +class MaskEditorDialog extends ComfyDialog { + static instance = null; + + static getInstance() { + if(!MaskEditorDialog.instance) { + MaskEditorDialog.instance = new MaskEditorDialog(app); + } + + return MaskEditorDialog.instance; + } + + is_layout_created = false; + + constructor() { + super(); + this.element = $el("div.comfy-modal", { parent: document.body }, + [ $el("div.comfy-modal-content", + [...this.createButtons()]), + ]); + } + + createButtons() { + return []; + } + + createButton(name, callback) { + var button = document.createElement("button"); + button.style.pointerEvents = "auto"; + button.innerText = name; + button.addEventListener("click", callback); + return button; + } + + createLeftButton(name, callback) { + var button = this.createButton(name, callback); + button.style.cssFloat = "left"; + button.style.marginRight = "4px"; + return button; + } + + createRightButton(name, callback) { + var button = this.createButton(name, callback); + button.style.cssFloat = "right"; + button.style.marginLeft = "4px"; + return button; + } + + createLeftSlider(self, name, callback) { + const divElement = document.createElement('div'); + divElement.id = "maskeditor-slider"; + divElement.style.cssFloat = "left"; + divElement.style.fontFamily = "sans-serif"; + divElement.style.marginRight = "4px"; + divElement.style.color = "var(--input-text)"; + divElement.style.backgroundColor = "var(--comfy-input-bg)"; + divElement.style.borderRadius = "8px"; + divElement.style.borderColor = "var(--border-color)"; + divElement.style.borderStyle = "solid"; + divElement.style.fontSize = "15px"; + divElement.style.height = "21px"; + divElement.style.padding = "1px 6px"; + divElement.style.display = "flex"; + divElement.style.position = "relative"; + divElement.style.top = "2px"; + divElement.style.pointerEvents = "auto"; + self.brush_slider_input = document.createElement('input'); + self.brush_slider_input.setAttribute('type', 'range'); + self.brush_slider_input.setAttribute('min', '1'); + self.brush_slider_input.setAttribute('max', '100'); + self.brush_slider_input.setAttribute('value', '10'); + const labelElement = document.createElement("label"); + labelElement.textContent = name; + + divElement.appendChild(labelElement); + divElement.appendChild(self.brush_slider_input); + + self.brush_slider_input.addEventListener("change", callback); + + return divElement; + } + + setlayout(imgCanvas, maskCanvas) { + const self = this; + + // If it is specified as relative, using it only as a hidden placeholder for padding is recommended + // to prevent anomalies where it exceeds a certain size and goes outside of the window. + var bottom_panel = document.createElement("div"); + bottom_panel.style.position = "absolute"; + bottom_panel.style.bottom = "0px"; + bottom_panel.style.left = "20px"; + bottom_panel.style.right = "20px"; + bottom_panel.style.height = "50px"; + bottom_panel.style.pointerEvents = "none"; + + var brush = document.createElement("div"); + brush.id = "brush"; + brush.style.backgroundColor = "transparent"; + brush.style.outline = "1px dashed black"; + brush.style.boxShadow = "0 0 0 1px white"; + brush.style.borderRadius = "50%"; + brush.style.MozBorderRadius = "50%"; + brush.style.WebkitBorderRadius = "50%"; + brush.style.position = "absolute"; + brush.style.zIndex = 8889; + brush.style.pointerEvents = "none"; + this.brush = brush; + this.element.appendChild(imgCanvas); + this.element.appendChild(maskCanvas); + this.element.appendChild(bottom_panel); + document.body.appendChild(brush); + + var clearButton = this.createLeftButton("Clear", () => { + self.maskCtx.clearRect(0, 0, self.maskCanvas.width, self.maskCanvas.height); + }); + + this.brush_size_slider = this.createLeftSlider(self, "Thickness", (event) => { + self.brush_size = event.target.value; + self.updateBrushPreview(self, null, null); + }); + + this.colorButton = this.createLeftButton(this.getColorButtonText(), () => { + if (self.brush_color_mode === "black") { + self.brush_color_mode = "white"; + } + else if (self.brush_color_mode === "white") { + self.brush_color_mode = "negative"; + } + else { + self.brush_color_mode = "black"; + } + + self.updateWhenBrushColorModeChanged(); + }); + + var cancelButton = this.createRightButton("Cancel", () => { + document.removeEventListener("mouseup", MaskEditorDialog.handleMouseUp); + document.removeEventListener("keydown", MaskEditorDialog.handleKeyDown); + self.close(); + }); + + this.saveButton = this.createRightButton("Save", () => { + document.removeEventListener("mouseup", MaskEditorDialog.handleMouseUp); + document.removeEventListener("keydown", MaskEditorDialog.handleKeyDown); + self.save(); + }); + + this.element.appendChild(imgCanvas); + this.element.appendChild(maskCanvas); + this.element.appendChild(bottom_panel); + + bottom_panel.appendChild(clearButton); + bottom_panel.appendChild(this.saveButton); + bottom_panel.appendChild(cancelButton); + bottom_panel.appendChild(this.brush_size_slider); + bottom_panel.appendChild(this.colorButton); + + imgCanvas.style.position = "absolute"; + maskCanvas.style.position = "absolute"; + + imgCanvas.style.top = "200"; + imgCanvas.style.left = "0"; + + maskCanvas.style.top = imgCanvas.style.top; + maskCanvas.style.left = imgCanvas.style.left; + + const maskCanvasStyle = this.getMaskCanvasStyle(); + maskCanvas.style.mixBlendMode = maskCanvasStyle.mixBlendMode; + maskCanvas.style.opacity = maskCanvasStyle.opacity; + } + + async show() { + this.zoom_ratio = 1.0; + this.pan_x = 0; + this.pan_y = 0; + + if(!this.is_layout_created) { + // layout + const imgCanvas = document.createElement('canvas'); + const maskCanvas = document.createElement('canvas'); + + imgCanvas.id = "imageCanvas"; + maskCanvas.id = "maskCanvas"; + + this.setlayout(imgCanvas, maskCanvas); + + // prepare content + this.imgCanvas = imgCanvas; + this.maskCanvas = maskCanvas; + this.maskCtx = maskCanvas.getContext('2d', {willReadFrequently: true }); + + this.setEventHandler(maskCanvas); + + this.is_layout_created = true; + + // replacement of onClose hook since close is not real close + const self = this; + const observer = new MutationObserver(function(mutations) { + mutations.forEach(function(mutation) { + if (mutation.type === 'attributes' && mutation.attributeName === 'style') { + if(self.last_display_style && self.last_display_style != 'none' && self.element.style.display == 'none') { + document.removeEventListener("mouseup", MaskEditorDialog.handleMouseUp); + self.brush.style.display = "none"; + ComfyApp.onClipspaceEditorClosed(); + } + + self.last_display_style = self.element.style.display; + } + }); + }); + + const config = { attributes: true }; + observer.observe(this.element, config); + } + + // The keydown event needs to be reconfigured when closing the dialog as it gets removed. + document.addEventListener('keydown', MaskEditorDialog.handleKeyDown); + + if(ComfyApp.clipspace_return_node) { + this.saveButton.innerText = "Save to node"; + } + else { + this.saveButton.innerText = "Save"; + } + this.saveButton.disabled = false; + + this.element.style.display = "block"; + this.element.style.width = "85%"; + this.element.style.margin = "0 7.5%"; + this.element.style.height = "100vh"; + this.element.style.top = "50%"; + this.element.style.left = "42%"; + this.element.style.zIndex = 8888; // NOTE: alert dialog must be high priority. + + await this.setImages(this.imgCanvas); + + this.is_visible = true; + } + + isOpened() { + return this.element.style.display == "block"; + } + + invalidateCanvas(orig_image, mask_image) { + this.imgCanvas.width = orig_image.width; + this.imgCanvas.height = orig_image.height; + + this.maskCanvas.width = orig_image.width; + this.maskCanvas.height = orig_image.height; + + let imgCtx = this.imgCanvas.getContext('2d', {willReadFrequently: true }); + let maskCtx = this.maskCanvas.getContext('2d', {willReadFrequently: true }); + + imgCtx.drawImage(orig_image, 0, 0, orig_image.width, orig_image.height); + prepare_mask(mask_image, this.maskCanvas, maskCtx, this.getMaskColor()); + } + + async setImages(imgCanvas) { + let self = this; + + const imgCtx = imgCanvas.getContext('2d', {willReadFrequently: true }); + const maskCtx = this.maskCtx; + const maskCanvas = this.maskCanvas; + + imgCtx.clearRect(0,0,this.imgCanvas.width,this.imgCanvas.height); + maskCtx.clearRect(0,0,this.maskCanvas.width,this.maskCanvas.height); + + // image load + const filepath = ComfyApp.clipspace.images; + + const alpha_url = new URL(ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src) + alpha_url.searchParams.delete('channel'); + alpha_url.searchParams.delete('preview'); + alpha_url.searchParams.set('channel', 'a'); + let mask_image = await loadImage(alpha_url); + + // original image load + const rgb_url = new URL(ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src); + rgb_url.searchParams.delete('channel'); + rgb_url.searchParams.set('channel', 'rgb'); + this.image = new Image(); + this.image.onload = function() { + maskCanvas.width = self.image.width; + maskCanvas.height = self.image.height; + + self.invalidateCanvas(self.image, mask_image); + self.initializeCanvasPanZoom(); + }; + this.image.src = rgb_url; + } + + initializeCanvasPanZoom() { + // set initialize + let drawWidth = this.image.width; + let drawHeight = this.image.height; + + let width = this.element.clientWidth; + let height = this.element.clientHeight; + + if (this.image.width > width) { + drawWidth = width; + drawHeight = (drawWidth / this.image.width) * this.image.height; + } + + if (drawHeight > height) { + drawHeight = height; + drawWidth = (drawHeight / this.image.height) * this.image.width; + } + + this.zoom_ratio = drawWidth/this.image.width; + + const canvasX = (width - drawWidth) / 2; + const canvasY = (height - drawHeight) / 2; + this.pan_x = canvasX; + this.pan_y = canvasY; + + this.invalidatePanZoom(); + } + + + invalidatePanZoom() { + let raw_width = this.image.width * this.zoom_ratio; + let raw_height = this.image.height * this.zoom_ratio; + + if(this.pan_x + raw_width < 10) { + this.pan_x = 10 - raw_width; + } + + if(this.pan_y + raw_height < 10) { + this.pan_y = 10 - raw_height; + } + + let width = `${raw_width}px`; + let height = `${raw_height}px`; + + let left = `${this.pan_x}px`; + let top = `${this.pan_y}px`; + + this.maskCanvas.style.width = width; + this.maskCanvas.style.height = height; + this.maskCanvas.style.left = left; + this.maskCanvas.style.top = top; + + this.imgCanvas.style.width = width; + this.imgCanvas.style.height = height; + this.imgCanvas.style.left = left; + this.imgCanvas.style.top = top; + } + + + setEventHandler(maskCanvas) { + const self = this; + + if(!this.handler_registered) { + maskCanvas.addEventListener("contextmenu", (event) => { + event.preventDefault(); + }); + + this.element.addEventListener('wheel', (event) => this.handleWheelEvent(self,event)); + this.element.addEventListener('pointermove', (event) => this.pointMoveEvent(self,event)); + this.element.addEventListener('touchmove', (event) => this.pointMoveEvent(self,event)); + + this.element.addEventListener('dragstart', (event) => { + if(event.ctrlKey) { + event.preventDefault(); + } + }); + + maskCanvas.addEventListener('pointerdown', (event) => this.handlePointerDown(self,event)); + maskCanvas.addEventListener('pointermove', (event) => this.draw_move(self,event)); + maskCanvas.addEventListener('touchmove', (event) => this.draw_move(self,event)); + maskCanvas.addEventListener('pointerover', (event) => { this.brush.style.display = "block"; }); + maskCanvas.addEventListener('pointerleave', (event) => { this.brush.style.display = "none"; }); + + document.addEventListener('pointerup', MaskEditorDialog.handlePointerUp); + + this.handler_registered = true; + } + } + + getMaskCanvasStyle() { + if (this.brush_color_mode === "negative") { + return { + mixBlendMode: "difference", + opacity: "1", + }; + } + else { + return { + mixBlendMode: "initial", + opacity: "0.7", + }; + } + } + + getMaskColor() { + if (this.brush_color_mode === "black") { + return { r: 0, g: 0, b: 0 }; + } + if (this.brush_color_mode === "white") { + return { r: 255, g: 255, b: 255 }; + } + if (this.brush_color_mode === "negative") { + // negative effect only works with white color + return { r: 255, g: 255, b: 255 }; + } + + return { r: 0, g: 0, b: 0 }; + } + + getMaskFillStyle() { + const maskColor = this.getMaskColor(); + + return "rgb(" + maskColor.r + "," + maskColor.g + "," + maskColor.b + ")"; + } + + getColorButtonText() { + let colorCaption = "unknown"; + + if (this.brush_color_mode === "black") { + colorCaption = "black"; + } + else if (this.brush_color_mode === "white") { + colorCaption = "white"; + } + else if (this.brush_color_mode === "negative") { + colorCaption = "negative"; + } + + return "Color: " + colorCaption; + } + + updateWhenBrushColorModeChanged() { + this.colorButton.innerText = this.getColorButtonText(); + + // update mask canvas css styles + + const maskCanvasStyle = this.getMaskCanvasStyle(); + this.maskCanvas.style.mixBlendMode = maskCanvasStyle.mixBlendMode; + this.maskCanvas.style.opacity = maskCanvasStyle.opacity; + + // update mask canvas rgb colors + + const maskColor = this.getMaskColor(); + + const maskData = this.maskCtx.getImageData(0, 0, this.maskCanvas.width, this.maskCanvas.height); + + for (let i = 0; i < maskData.data.length; i += 4) { + maskData.data[i] = maskColor.r; + maskData.data[i+1] = maskColor.g; + maskData.data[i+2] = maskColor.b; + } + + this.maskCtx.putImageData(maskData, 0, 0); + } + + brush_size = 10; + brush_color_mode = "black"; + drawing_mode = false; + lastx = -1; + lasty = -1; + lasttime = 0; + + static handleKeyDown(event) { + const self = MaskEditorDialog.instance; + if (event.key === ']') { + self.brush_size = Math.min(self.brush_size+2, 100); + self.brush_slider_input.value = self.brush_size; + } else if (event.key === '[') { + self.brush_size = Math.max(self.brush_size-2, 1); + self.brush_slider_input.value = self.brush_size; + } else if(event.key === 'Enter') { + self.save(); + } + + self.updateBrushPreview(self); + } + + static handlePointerUp(event) { + event.preventDefault(); + + this.mousedown_x = null; + this.mousedown_y = null; + + MaskEditorDialog.instance.drawing_mode = false; + } + + updateBrushPreview(self) { + const brush = self.brush; + + var centerX = self.cursorX; + var centerY = self.cursorY; + + brush.style.width = self.brush_size * 2 * this.zoom_ratio + "px"; + brush.style.height = self.brush_size * 2 * this.zoom_ratio + "px"; + brush.style.left = (centerX - self.brush_size * this.zoom_ratio) + "px"; + brush.style.top = (centerY - self.brush_size * this.zoom_ratio) + "px"; + } + + handleWheelEvent(self, event) { + event.preventDefault(); + + if(event.ctrlKey) { + // zoom canvas + if(event.deltaY < 0) { + this.zoom_ratio = Math.min(10.0, this.zoom_ratio+0.2); + } + else { + this.zoom_ratio = Math.max(0.2, this.zoom_ratio-0.2); + } + + this.invalidatePanZoom(); + } + else { + // adjust brush size + if(event.deltaY < 0) + this.brush_size = Math.min(this.brush_size+2, 100); + else + this.brush_size = Math.max(this.brush_size-2, 1); + + this.brush_slider_input.value = this.brush_size; + + this.updateBrushPreview(this); + } + } + + pointMoveEvent(self, event) { + this.cursorX = event.pageX; + this.cursorY = event.pageY; + + self.updateBrushPreview(self); + + if(event.ctrlKey) { + event.preventDefault(); + self.pan_move(self, event); + } + + let left_button_down = window.TouchEvent && event instanceof TouchEvent || event.buttons == 1; + + if(event.shiftKey && left_button_down) { + self.drawing_mode = false; + + const y = event.clientY; + let delta = (self.zoom_lasty - y)*0.005; + self.zoom_ratio = Math.max(Math.min(10.0, self.last_zoom_ratio - delta), 0.2); + + this.invalidatePanZoom(); + return; + } + } + + pan_move(self, event) { + if(event.buttons == 1) { + if(this.mousedown_x) { + let deltaX = this.mousedown_x - event.clientX; + let deltaY = this.mousedown_y - event.clientY; + + self.pan_x = this.mousedown_pan_x - deltaX; + self.pan_y = this.mousedown_pan_y - deltaY; + + self.invalidatePanZoom(); + } + } + } + + draw_move(self, event) { + if(event.ctrlKey || event.shiftKey) { + return; + } + + event.preventDefault(); + + this.cursorX = event.pageX; + this.cursorY = event.pageY; + + self.updateBrushPreview(self); + + let left_button_down = window.TouchEvent && event instanceof TouchEvent || event.buttons == 1; + let right_button_down = [2, 5, 32].includes(event.buttons); + + if (!event.altKey && left_button_down) { + var diff = performance.now() - self.lasttime; + + const maskRect = self.maskCanvas.getBoundingClientRect(); + + var x = event.offsetX; + var y = event.offsetY + + if(event.offsetX == null) { + x = event.targetTouches[0].clientX - maskRect.left; + } + + if(event.offsetY == null) { + y = event.targetTouches[0].clientY - maskRect.top; + } + + x /= self.zoom_ratio; + y /= self.zoom_ratio; + + var brush_size = this.brush_size; + if(event instanceof PointerEvent && event.pointerType == 'pen') { + brush_size *= event.pressure; + this.last_pressure = event.pressure; + } + else if(window.TouchEvent && event instanceof TouchEvent && diff < 20){ + // The firing interval of PointerEvents in Pen is unreliable, so it is supplemented by TouchEvents. + brush_size *= this.last_pressure; + } + else { + brush_size = this.brush_size; + } + + if(diff > 20 && !this.drawing_mode) + requestAnimationFrame(() => { + self.maskCtx.beginPath(); + self.maskCtx.fillStyle = this.getMaskFillStyle(); + self.maskCtx.globalCompositeOperation = "source-over"; + self.maskCtx.arc(x, y, brush_size, 0, Math.PI * 2, false); + self.maskCtx.fill(); + self.lastx = x; + self.lasty = y; + }); + else + requestAnimationFrame(() => { + self.maskCtx.beginPath(); + self.maskCtx.fillStyle = this.getMaskFillStyle(); + self.maskCtx.globalCompositeOperation = "source-over"; + + var dx = x - self.lastx; + var dy = y - self.lasty; + + var distance = Math.sqrt(dx * dx + dy * dy); + var directionX = dx / distance; + var directionY = dy / distance; + + for (var i = 0; i < distance; i+=5) { + var px = self.lastx + (directionX * i); + var py = self.lasty + (directionY * i); + self.maskCtx.arc(px, py, brush_size, 0, Math.PI * 2, false); + self.maskCtx.fill(); + } + self.lastx = x; + self.lasty = y; + }); + + self.lasttime = performance.now(); + } + else if((event.altKey && left_button_down) || right_button_down) { + const maskRect = self.maskCanvas.getBoundingClientRect(); + const x = (event.offsetX || event.targetTouches[0].clientX - maskRect.left) / self.zoom_ratio; + const y = (event.offsetY || event.targetTouches[0].clientY - maskRect.top) / self.zoom_ratio; + + var brush_size = this.brush_size; + if(event instanceof PointerEvent && event.pointerType == 'pen') { + brush_size *= event.pressure; + this.last_pressure = event.pressure; + } + else if(window.TouchEvent && event instanceof TouchEvent && diff < 20){ + brush_size *= this.last_pressure; + } + else { + brush_size = this.brush_size; + } + + if(diff > 20 && !drawing_mode) // cannot tracking drawing_mode for touch event + requestAnimationFrame(() => { + self.maskCtx.beginPath(); + self.maskCtx.globalCompositeOperation = "destination-out"; + self.maskCtx.arc(x, y, brush_size, 0, Math.PI * 2, false); + self.maskCtx.fill(); + self.lastx = x; + self.lasty = y; + }); + else + requestAnimationFrame(() => { + self.maskCtx.beginPath(); + self.maskCtx.globalCompositeOperation = "destination-out"; + + var dx = x - self.lastx; + var dy = y - self.lasty; + + var distance = Math.sqrt(dx * dx + dy * dy); + var directionX = dx / distance; + var directionY = dy / distance; + + for (var i = 0; i < distance; i+=5) { + var px = self.lastx + (directionX * i); + var py = self.lasty + (directionY * i); + self.maskCtx.arc(px, py, brush_size, 0, Math.PI * 2, false); + self.maskCtx.fill(); + } + self.lastx = x; + self.lasty = y; + }); + + self.lasttime = performance.now(); + } + } + + handlePointerDown(self, event) { + if(event.ctrlKey) { + if (event.buttons == 1) { + this.mousedown_x = event.clientX; + this.mousedown_y = event.clientY; + + this.mousedown_pan_x = this.pan_x; + this.mousedown_pan_y = this.pan_y; + } + return; + } + + var brush_size = this.brush_size; + if(event instanceof PointerEvent && event.pointerType == 'pen') { + brush_size *= event.pressure; + this.last_pressure = event.pressure; + } + + if ([0, 2, 5].includes(event.button)) { + self.drawing_mode = true; + + event.preventDefault(); + + if(event.shiftKey) { + self.zoom_lasty = event.clientY; + self.last_zoom_ratio = self.zoom_ratio; + return; + } + + const maskRect = self.maskCanvas.getBoundingClientRect(); + const x = (event.offsetX || event.targetTouches[0].clientX - maskRect.left) / self.zoom_ratio; + const y = (event.offsetY || event.targetTouches[0].clientY - maskRect.top) / self.zoom_ratio; + + self.maskCtx.beginPath(); + if (!event.altKey && event.button == 0) { + self.maskCtx.fillStyle = this.getMaskFillStyle(); + self.maskCtx.globalCompositeOperation = "source-over"; + } else { + self.maskCtx.globalCompositeOperation = "destination-out"; + } + self.maskCtx.arc(x, y, brush_size, 0, Math.PI * 2, false); + self.maskCtx.fill(); + self.lastx = x; + self.lasty = y; + self.lasttime = performance.now(); + } + } + + async save() { + const backupCanvas = document.createElement('canvas'); + const backupCtx = backupCanvas.getContext('2d', {willReadFrequently:true}); + backupCanvas.width = this.image.width; + backupCanvas.height = this.image.height; + + backupCtx.clearRect(0,0, backupCanvas.width, backupCanvas.height); + backupCtx.drawImage(this.maskCanvas, + 0, 0, this.maskCanvas.width, this.maskCanvas.height, + 0, 0, backupCanvas.width, backupCanvas.height); + + // paste mask data into alpha channel + const backupData = backupCtx.getImageData(0, 0, backupCanvas.width, backupCanvas.height); + + // refine mask image + for (let i = 0; i < backupData.data.length; i += 4) { + if(backupData.data[i+3] == 255) + backupData.data[i+3] = 0; + else + backupData.data[i+3] = 255; + + backupData.data[i] = 0; + backupData.data[i+1] = 0; + backupData.data[i+2] = 0; + } + + backupCtx.globalCompositeOperation = 'source-over'; + backupCtx.putImageData(backupData, 0, 0); + + const formData = new FormData(); + const filename = "clipspace-mask-" + performance.now() + ".png"; + + const item = + { + "filename": filename, + "subfolder": "clipspace", + "type": "input", + }; + + if(ComfyApp.clipspace.images) + ComfyApp.clipspace.images[0] = item; + + if(ComfyApp.clipspace.widgets) { + const index = ComfyApp.clipspace.widgets.findIndex(obj => obj.name === 'image'); + + if(index >= 0) + ComfyApp.clipspace.widgets[index].value = item; + } + + const dataURL = backupCanvas.toDataURL(); + const blob = dataURLToBlob(dataURL); + + let original_url = new URL(this.image.src); + + const original_ref = { filename: original_url.searchParams.get('filename') }; + + let original_subfolder = original_url.searchParams.get("subfolder"); + if(original_subfolder) + original_ref.subfolder = original_subfolder; + + let original_type = original_url.searchParams.get("type"); + if(original_type) + original_ref.type = original_type; + + formData.append('image', blob, filename); + formData.append('original_ref', JSON.stringify(original_ref)); + formData.append('type', "input"); + formData.append('subfolder', "clipspace"); + + this.saveButton.innerText = "Saving..."; + this.saveButton.disabled = true; + await uploadMask(item, formData); + ComfyApp.onClipspaceEditorSave(); + this.close(); + } +} + +app.registerExtension({ + name: "Comfy.MaskEditor", + init(app) { + ComfyApp.open_maskeditor = + function () { + const dlg = MaskEditorDialog.getInstance(); + if(!dlg.isOpened()) { + dlg.show(); + } + }; + + const context_predicate = () => ComfyApp.clipspace && ComfyApp.clipspace.imgs && ComfyApp.clipspace.imgs.length > 0 + ClipspaceDialog.registerButton("MaskEditor", context_predicate, ComfyApp.open_maskeditor); + } +}); diff --git a/web/extensions/core/nodeTemplates.js b/web/extensions/core/nodeTemplates.js new file mode 100644 index 0000000000000000000000000000000000000000..9350ba6549cf3da641aef4f6b249258321f12f98 --- /dev/null +++ b/web/extensions/core/nodeTemplates.js @@ -0,0 +1,412 @@ +import { app } from "../../scripts/app.js"; +import { api } from "../../scripts/api.js"; +import { ComfyDialog, $el } from "../../scripts/ui.js"; +import { GroupNodeConfig, GroupNodeHandler } from "./groupNode.js"; + +// Adds the ability to save and add multiple nodes as a template +// To save: +// Select multiple nodes (ctrl + drag to select a region or ctrl+click individual nodes) +// Right click the canvas +// Save Node Template -> give it a name +// +// To add: +// Right click the canvas +// Node templates -> click the one to add +// +// To delete/rename: +// Right click the canvas +// Node templates -> Manage +// +// To rearrange: +// Open the manage dialog and Drag and drop elements using the "Name:" label as handle + +const id = "Comfy.NodeTemplates"; +const file = "comfy.templates.json"; + +class ManageTemplates extends ComfyDialog { + constructor() { + super(); + this.load().then((v) => { + this.templates = v; + }); + + this.element.classList.add("comfy-manage-templates"); + this.draggedEl = null; + this.saveVisualCue = null; + this.emptyImg = new Image(); + this.emptyImg.src = ""; + + this.importInput = $el("input", { + type: "file", + accept: ".json", + multiple: true, + style: { display: "none" }, + parent: document.body, + onchange: () => this.importAll(), + }); + } + + createButtons() { + const btns = super.createButtons(); + btns[0].textContent = "Close"; + btns[0].onclick = (e) => { + clearTimeout(this.saveVisualCue); + this.close(); + }; + btns.unshift( + $el("button", { + type: "button", + textContent: "Export", + onclick: () => this.exportAll(), + }) + ); + btns.unshift( + $el("button", { + type: "button", + textContent: "Import", + onclick: () => { + this.importInput.click(); + }, + }) + ); + return btns; + } + + async load() { + let templates = []; + if (app.storageLocation === "server") { + if (app.isNewUserSession) { + // New user so migrate existing templates + const json = localStorage.getItem(id); + if (json) { + templates = JSON.parse(json); + } + await api.storeUserData(file, json, { stringify: false }); + } else { + const res = await api.getUserData(file); + if (res.status === 200) { + try { + templates = await res.json(); + } catch (error) { + } + } else if (res.status !== 404) { + console.error(res.status + " " + res.statusText); + } + } + } else { + const json = localStorage.getItem(id); + if (json) { + templates = JSON.parse(json); + } + } + + return templates ?? []; + } + + async store() { + if(app.storageLocation === "server") { + const templates = JSON.stringify(this.templates, undefined, 4); + localStorage.setItem(id, templates); // Backwards compatibility + try { + await api.storeUserData(file, templates, { stringify: false }); + } catch (error) { + console.error(error); + alert(error.message); + } + } else { + localStorage.setItem(id, JSON.stringify(this.templates)); + } + } + + async importAll() { + for (const file of this.importInput.files) { + if (file.type === "application/json" || file.name.endsWith(".json")) { + const reader = new FileReader(); + reader.onload = async () => { + const importFile = JSON.parse(reader.result); + if (importFile?.templates) { + for (const template of importFile.templates) { + if (template?.name && template?.data) { + this.templates.push(template); + } + } + await this.store(); + } + }; + await reader.readAsText(file); + } + } + + this.importInput.value = null; + + this.close(); + } + + exportAll() { + if (this.templates.length == 0) { + alert("No templates to export."); + return; + } + + const json = JSON.stringify({ templates: this.templates }, null, 2); // convert the data to a JSON string + const blob = new Blob([json], { type: "application/json" }); + const url = URL.createObjectURL(blob); + const a = $el("a", { + href: url, + download: "node_templates.json", + style: { display: "none" }, + parent: document.body, + }); + a.click(); + setTimeout(function () { + a.remove(); + window.URL.revokeObjectURL(url); + }, 0); + } + + show() { + // Show list of template names + delete button + super.show( + $el( + "div", + {}, + this.templates.flatMap((t,i) => { + let nameInput; + return [ + $el( + "div", + { + dataset: { id: i }, + className: "tempateManagerRow", + style: { + display: "grid", + gridTemplateColumns: "1fr auto", + border: "1px dashed transparent", + gap: "5px", + backgroundColor: "var(--comfy-menu-bg)" + }, + ondragstart: (e) => { + this.draggedEl = e.currentTarget; + e.currentTarget.style.opacity = "0.6"; + e.currentTarget.style.border = "1px dashed yellow"; + e.dataTransfer.effectAllowed = 'move'; + e.dataTransfer.setDragImage(this.emptyImg, 0, 0); + }, + ondragend: (e) => { + e.target.style.opacity = "1"; + e.currentTarget.style.border = "1px dashed transparent"; + e.currentTarget.removeAttribute("draggable"); + + // rearrange the elements + this.element.querySelectorAll('.tempateManagerRow').forEach((el,i) => { + var prev_i = el.dataset.id; + + if ( el == this.draggedEl && prev_i != i ) { + this.templates.splice(i, 0, this.templates.splice(prev_i, 1)[0]); + } + el.dataset.id = i; + }); + this.store(); + }, + ondragover: (e) => { + e.preventDefault(); + if ( e.currentTarget == this.draggedEl ) + return; + + let rect = e.currentTarget.getBoundingClientRect(); + if (e.clientY > rect.top + rect.height / 2) { + e.currentTarget.parentNode.insertBefore(this.draggedEl, e.currentTarget.nextSibling); + } else { + e.currentTarget.parentNode.insertBefore(this.draggedEl, e.currentTarget); + } + } + }, + [ + $el( + "label", + { + textContent: "Name: ", + style: { + cursor: "grab", + }, + onmousedown: (e) => { + // enable dragging only from the label + if (e.target.localName == 'label') + e.currentTarget.parentNode.draggable = 'true'; + } + }, + [ + $el("input", { + value: t.name, + dataset: { name: t.name }, + style: { + transitionProperty: 'background-color', + transitionDuration: '0s', + }, + onchange: (e) => { + clearTimeout(this.saveVisualCue); + var el = e.target; + var row = el.parentNode.parentNode; + this.templates[row.dataset.id].name = el.value.trim() || 'untitled'; + this.store(); + el.style.backgroundColor = 'rgb(40, 95, 40)'; + el.style.transitionDuration = '0s'; + this.saveVisualCue = setTimeout(function () { + el.style.transitionDuration = '.7s'; + el.style.backgroundColor = 'var(--comfy-input-bg)'; + }, 15); + }, + onkeypress: (e) => { + var el = e.target; + clearTimeout(this.saveVisualCue); + el.style.transitionDuration = '0s'; + el.style.backgroundColor = 'var(--comfy-input-bg)'; + }, + $: (el) => (nameInput = el), + }) + ] + ), + $el( + "div", + {}, + [ + $el("button", { + textContent: "Export", + style: { + fontSize: "12px", + fontWeight: "normal", + }, + onclick: (e) => { + const json = JSON.stringify({templates: [t]}, null, 2); // convert the data to a JSON string + const blob = new Blob([json], {type: "application/json"}); + const url = URL.createObjectURL(blob); + const a = $el("a", { + href: url, + download: (nameInput.value || t.name) + ".json", + style: {display: "none"}, + parent: document.body, + }); + a.click(); + setTimeout(function () { + a.remove(); + window.URL.revokeObjectURL(url); + }, 0); + }, + }), + $el("button", { + textContent: "Delete", + style: { + fontSize: "12px", + color: "red", + fontWeight: "normal", + }, + onclick: (e) => { + const item = e.target.parentNode.parentNode; + item.parentNode.removeChild(item); + this.templates.splice(item.dataset.id*1, 1); + this.store(); + // update the rows index, setTimeout ensures that the list is updated + var that = this; + setTimeout(function (){ + that.element.querySelectorAll('.tempateManagerRow').forEach((el,i) => { + el.dataset.id = i; + }); + }, 0); + }, + }), + ] + ), + ] + ) + ]; + }) + ) + ); + } +} + +app.registerExtension({ + name: id, + setup() { + const manage = new ManageTemplates(); + + const clipboardAction = async (cb) => { + // We use the clipboard functions but dont want to overwrite the current user clipboard + // Restore it after we've run our callback + const old = localStorage.getItem("litegrapheditor_clipboard"); + await cb(); + localStorage.setItem("litegrapheditor_clipboard", old); + }; + + const orig = LGraphCanvas.prototype.getCanvasMenuOptions; + LGraphCanvas.prototype.getCanvasMenuOptions = function () { + const options = orig.apply(this, arguments); + + options.push(null); + options.push({ + content: `Save Selected as Template`, + disabled: !Object.keys(app.canvas.selected_nodes || {}).length, + callback: () => { + const name = prompt("Enter name"); + if (!name?.trim()) return; + + clipboardAction(() => { + app.canvas.copyToClipboard(); + let data = localStorage.getItem("litegrapheditor_clipboard"); + data = JSON.parse(data); + const nodeIds = Object.keys(app.canvas.selected_nodes); + for (let i = 0; i < nodeIds.length; i++) { + const node = app.graph.getNodeById(nodeIds[i]); + const nodeData = node?.constructor.nodeData; + + let groupData = GroupNodeHandler.getGroupData(node); + if (groupData) { + groupData = groupData.nodeData; + if (!data.groupNodes) { + data.groupNodes = {}; + } + data.groupNodes[nodeData.name] = groupData; + data.nodes[i].type = nodeData.name; + } + } + + manage.templates.push({ + name, + data: JSON.stringify(data), + }); + manage.store(); + }); + }, + }); + + // Map each template to a menu item + const subItems = manage.templates.map((t) => { + return { + content: t.name, + callback: () => { + clipboardAction(async () => { + const data = JSON.parse(t.data); + await GroupNodeConfig.registerFromWorkflow(data.groupNodes, {}); + localStorage.setItem("litegrapheditor_clipboard", t.data); + app.canvas.pasteFromClipboard(); + }); + }, + }; + }); + + subItems.push(null, { + content: "Manage", + callback: () => manage.show(), + }); + + options.push({ + content: "Node Templates", + submenu: { + options: subItems, + }, + }); + + return options; + }; + }, +}); diff --git a/web/extensions/core/noteNode.js b/web/extensions/core/noteNode.js new file mode 100644 index 0000000000000000000000000000000000000000..8d89054e9f6465e467acd72b609f53b292b87d70 --- /dev/null +++ b/web/extensions/core/noteNode.js @@ -0,0 +1,41 @@ +import {app} from "../../scripts/app.js"; +import {ComfyWidgets} from "../../scripts/widgets.js"; +// Node that add notes to your project + +app.registerExtension({ + name: "Comfy.NoteNode", + registerCustomNodes() { + class NoteNode { + color=LGraphCanvas.node_colors.yellow.color; + bgcolor=LGraphCanvas.node_colors.yellow.bgcolor; + groupcolor = LGraphCanvas.node_colors.yellow.groupcolor; + constructor() { + if (!this.properties) { + this.properties = {}; + this.properties.text=""; + } + + ComfyWidgets.STRING(this, "", ["", {default:this.properties.text, multiline: true}], app) + + this.serialize_widgets = true; + this.isVirtualNode = true; + + } + + + } + + // Load default visibility + + LiteGraph.registerNodeType( + "Note", + Object.assign(NoteNode, { + title_mode: LiteGraph.NORMAL_TITLE, + title: "Note", + collapsable: true, + }) + ); + + NoteNode.category = "utils"; + }, +}); diff --git a/web/extensions/core/rerouteNode.js b/web/extensions/core/rerouteNode.js new file mode 100644 index 0000000000000000000000000000000000000000..4feff91e50e025b2d4dbaf08581e38110f397e74 --- /dev/null +++ b/web/extensions/core/rerouteNode.js @@ -0,0 +1,274 @@ +import { app } from "../../scripts/app.js"; +import { mergeIfValid, getWidgetConfig, setWidgetConfig } from "./widgetInputs.js"; + +// Node that allows you to redirect connections for cleaner graphs + +app.registerExtension({ + name: "Comfy.RerouteNode", + registerCustomNodes(app) { + class RerouteNode { + constructor() { + if (!this.properties) { + this.properties = {}; + } + this.properties.showOutputText = RerouteNode.defaultVisibility; + this.properties.horizontal = false; + + this.addInput("", "*"); + this.addOutput(this.properties.showOutputText ? "*" : "", "*"); + + this.onAfterGraphConfigured = function () { + requestAnimationFrame(() => { + this.onConnectionsChange(LiteGraph.INPUT, null, true, null); + }); + }; + + this.onConnectionsChange = function (type, index, connected, link_info) { + this.applyOrientation(); + + // Prevent multiple connections to different types when we have no input + if (connected && type === LiteGraph.OUTPUT) { + // Ignore wildcard nodes as these will be updated to real types + const types = new Set(this.outputs[0].links.map((l) => app.graph.links[l].type).filter((t) => t !== "*")); + if (types.size > 1) { + const linksToDisconnect = []; + for (let i = 0; i < this.outputs[0].links.length - 1; i++) { + const linkId = this.outputs[0].links[i]; + const link = app.graph.links[linkId]; + linksToDisconnect.push(link); + } + for (const link of linksToDisconnect) { + const node = app.graph.getNodeById(link.target_id); + node.disconnectInput(link.target_slot); + } + } + } + + // Find root input + let currentNode = this; + let updateNodes = []; + let inputType = null; + let inputNode = null; + while (currentNode) { + updateNodes.unshift(currentNode); + const linkId = currentNode.inputs[0].link; + if (linkId !== null) { + const link = app.graph.links[linkId]; + if (!link) return; + const node = app.graph.getNodeById(link.origin_id); + const type = node.constructor.type; + if (type === "Reroute") { + if (node === this) { + // We've found a circle + currentNode.disconnectInput(link.target_slot); + currentNode = null; + } else { + // Move the previous node + currentNode = node; + } + } else { + // We've found the end + inputNode = currentNode; + inputType = node.outputs[link.origin_slot]?.type ?? null; + break; + } + } else { + // This path has no input node + currentNode = null; + break; + } + } + + // Find all outputs + const nodes = [this]; + let outputType = null; + while (nodes.length) { + currentNode = nodes.pop(); + const outputs = (currentNode.outputs ? currentNode.outputs[0].links : []) || []; + if (outputs.length) { + for (const linkId of outputs) { + const link = app.graph.links[linkId]; + + // When disconnecting sometimes the link is still registered + if (!link) continue; + + const node = app.graph.getNodeById(link.target_id); + const type = node.constructor.type; + + if (type === "Reroute") { + // Follow reroute nodes + nodes.push(node); + updateNodes.push(node); + } else { + // We've found an output + const nodeOutType = + node.inputs && node.inputs[link?.target_slot] && node.inputs[link.target_slot].type + ? node.inputs[link.target_slot].type + : null; + if (inputType && inputType !== "*" && nodeOutType !== inputType) { + // The output doesnt match our input so disconnect it + node.disconnectInput(link.target_slot); + } else { + outputType = nodeOutType; + } + } + } + } else { + // No more outputs for this path + } + } + + const displayType = inputType || outputType || "*"; + const color = LGraphCanvas.link_type_colors[displayType]; + + let widgetConfig; + let targetWidget; + let widgetType; + // Update the types of each node + for (const node of updateNodes) { + // If we dont have an input type we are always wildcard but we'll show the output type + // This lets you change the output link to a different type and all nodes will update + node.outputs[0].type = inputType || "*"; + node.__outputType = displayType; + node.outputs[0].name = node.properties.showOutputText ? displayType : ""; + node.size = node.computeSize(); + node.applyOrientation(); + + for (const l of node.outputs[0].links || []) { + const link = app.graph.links[l]; + if (link) { + link.color = color; + + if (app.configuringGraph) continue; + const targetNode = app.graph.getNodeById(link.target_id); + const targetInput = targetNode.inputs?.[link.target_slot]; + if (targetInput?.widget) { + const config = getWidgetConfig(targetInput); + if (!widgetConfig) { + widgetConfig = config[1] ?? {}; + widgetType = config[0]; + } + if (!targetWidget) { + targetWidget = targetNode.widgets?.find((w) => w.name === targetInput.widget.name); + } + + const merged = mergeIfValid(targetInput, [config[0], widgetConfig]); + if (merged.customConfig) { + widgetConfig = merged.customConfig; + } + } + } + } + } + + for (const node of updateNodes) { + if (widgetConfig && outputType) { + node.inputs[0].widget = { name: "value" }; + setWidgetConfig(node.inputs[0], [widgetType ?? displayType, widgetConfig], targetWidget); + } else { + setWidgetConfig(node.inputs[0], null); + } + } + + if (inputNode) { + const link = app.graph.links[inputNode.inputs[0].link]; + if (link) { + link.color = color; + } + } + }; + + this.clone = function () { + const cloned = RerouteNode.prototype.clone.apply(this); + cloned.removeOutput(0); + cloned.addOutput(this.properties.showOutputText ? "*" : "", "*"); + cloned.size = cloned.computeSize(); + return cloned; + }; + + // This node is purely frontend and does not impact the resulting prompt so should not be serialized + this.isVirtualNode = true; + } + + getExtraMenuOptions(_, options) { + options.unshift( + { + content: (this.properties.showOutputText ? "Hide" : "Show") + " Type", + callback: () => { + this.properties.showOutputText = !this.properties.showOutputText; + if (this.properties.showOutputText) { + this.outputs[0].name = this.__outputType || this.outputs[0].type; + } else { + this.outputs[0].name = ""; + } + this.size = this.computeSize(); + this.applyOrientation(); + app.graph.setDirtyCanvas(true, true); + }, + }, + { + content: (RerouteNode.defaultVisibility ? "Hide" : "Show") + " Type By Default", + callback: () => { + RerouteNode.setDefaultTextVisibility(!RerouteNode.defaultVisibility); + }, + }, + { + // naming is inverted with respect to LiteGraphNode.horizontal + // LiteGraphNode.horizontal == true means that + // each slot in the inputs and outputs are layed out horizontally, + // which is the opposite of the visual orientation of the inputs and outputs as a node + content: "Set " + (this.properties.horizontal ? "Horizontal" : "Vertical"), + callback: () => { + this.properties.horizontal = !this.properties.horizontal; + this.applyOrientation(); + }, + } + ); + } + applyOrientation() { + this.horizontal = this.properties.horizontal; + if (this.horizontal) { + // we correct the input position, because LiteGraphNode.horizontal + // doesn't account for title presence + // which reroute nodes don't have + this.inputs[0].pos = [this.size[0] / 2, 0]; + } else { + delete this.inputs[0].pos; + } + app.graph.setDirtyCanvas(true, true); + } + + computeSize() { + return [ + this.properties.showOutputText && this.outputs && this.outputs.length + ? Math.max(75, LiteGraph.NODE_TEXT_SIZE * this.outputs[0].name.length * 0.6 + 40) + : 75, + 26, + ]; + } + + static setDefaultTextVisibility(visible) { + RerouteNode.defaultVisibility = visible; + if (visible) { + localStorage["Comfy.RerouteNode.DefaultVisibility"] = "true"; + } else { + delete localStorage["Comfy.RerouteNode.DefaultVisibility"]; + } + } + } + + // Load default visibility + RerouteNode.setDefaultTextVisibility(!!localStorage["Comfy.RerouteNode.DefaultVisibility"]); + + LiteGraph.registerNodeType( + "Reroute", + Object.assign(RerouteNode, { + title_mode: LiteGraph.NO_TITLE, + title: "Reroute", + collapsable: false, + }) + ); + + RerouteNode.category = "utils"; + }, +}); diff --git a/web/extensions/core/saveImageExtraOutput.js b/web/extensions/core/saveImageExtraOutput.js new file mode 100644 index 0000000000000000000000000000000000000000..a0506b43b6b521251ebdca0cbb69788d3b503be6 --- /dev/null +++ b/web/extensions/core/saveImageExtraOutput.js @@ -0,0 +1,35 @@ +import { app } from "../../scripts/app.js"; +import { applyTextReplacements } from "../../scripts/utils.js"; +// Use widget values and dates in output filenames + +app.registerExtension({ + name: "Comfy.SaveImageExtraOutput", + async beforeRegisterNodeDef(nodeType, nodeData, app) { + if (nodeData.name === "SaveImage") { + const onNodeCreated = nodeType.prototype.onNodeCreated; + // When the SaveImage node is created we want to override the serialization of the output name widget to run our S&R + nodeType.prototype.onNodeCreated = function () { + const r = onNodeCreated ? onNodeCreated.apply(this, arguments) : undefined; + + const widget = this.widgets.find((w) => w.name === "filename_prefix"); + widget.serializeValue = () => { + return applyTextReplacements(app, widget.value); + }; + + return r; + }; + } else { + // When any other node is created add a property to alias the node + const onNodeCreated = nodeType.prototype.onNodeCreated; + nodeType.prototype.onNodeCreated = function () { + const r = onNodeCreated ? onNodeCreated.apply(this, arguments) : undefined; + + if (!this.properties || !("Node name for S&R" in this.properties)) { + this.addProperty("Node name for S&R", this.constructor.type, "string"); + } + + return r; + }; + } + }, +}); diff --git a/web/extensions/core/simpleTouchSupport.js b/web/extensions/core/simpleTouchSupport.js new file mode 100644 index 0000000000000000000000000000000000000000..041fc2c4ca961e15a886b54cb3f0e51d662127b5 --- /dev/null +++ b/web/extensions/core/simpleTouchSupport.js @@ -0,0 +1,102 @@ +import { app } from "../../scripts/app.js"; + +let touchZooming; +let touchCount = 0; + +app.registerExtension({ + name: "Comfy.SimpleTouchSupport", + setup() { + let zoomPos; + let touchTime; + let lastTouch; + + function getMultiTouchPos(e) { + return Math.hypot(e.touches[0].clientX - e.touches[1].clientX, e.touches[0].clientY - e.touches[1].clientY); + } + + app.canvasEl.addEventListener( + "touchstart", + (e) => { + touchCount++; + lastTouch = null; + if (e.touches?.length === 1) { + // Store start time for press+hold for context menu + touchTime = new Date(); + lastTouch = e.touches[0]; + } else { + touchTime = null; + if (e.touches?.length === 2) { + // Store center pos for zoom + zoomPos = getMultiTouchPos(e); + app.canvas.pointer_is_down = false; + } + } + }, + true + ); + + app.canvasEl.addEventListener("touchend", (e) => { + touchZooming = false; + touchCount = e.touches?.length ?? touchCount - 1; + if (touchTime && !e.touches?.length) { + if (new Date() - touchTime > 600) { + try { + // hack to get litegraph to use this event + e.constructor = CustomEvent; + } catch (error) {} + e.clientX = lastTouch.clientX; + e.clientY = lastTouch.clientY; + + app.canvas.pointer_is_down = true; + app.canvas._mousedown_callback(e); + } + touchTime = null; + } + }); + + app.canvasEl.addEventListener( + "touchmove", + (e) => { + touchTime = null; + if (e.touches?.length === 2) { + app.canvas.pointer_is_down = false; + touchZooming = true; + LiteGraph.closeAllContextMenus(); + app.canvas.search_box?.close(); + const newZoomPos = getMultiTouchPos(e); + + const midX = (e.touches[0].clientX + e.touches[1].clientX) / 2; + const midY = (e.touches[0].clientY + e.touches[1].clientY) / 2; + + let scale = app.canvas.ds.scale; + const diff = zoomPos - newZoomPos; + if (diff > 0.5) { + scale *= 1 / 1.07; + } else if (diff < -0.5) { + scale *= 1.07; + } + app.canvas.ds.changeScale(scale, [midX, midY]); + app.canvas.setDirty(true, true); + zoomPos = newZoomPos; + } + }, + true + ); + }, +}); + +const processMouseDown = LGraphCanvas.prototype.processMouseDown; +LGraphCanvas.prototype.processMouseDown = function (e) { + if (touchZooming || touchCount) { + return; + } + return processMouseDown.apply(this, arguments); +}; + +const processMouseMove = LGraphCanvas.prototype.processMouseMove; +LGraphCanvas.prototype.processMouseMove = function (e) { + if (touchZooming || touchCount > 1) { + return; + } + return processMouseMove.apply(this, arguments); +}; diff --git a/web/extensions/core/slotDefaults.js b/web/extensions/core/slotDefaults.js new file mode 100644 index 0000000000000000000000000000000000000000..718d25405713ba2d6c341424f113f9a58c5d965f --- /dev/null +++ b/web/extensions/core/slotDefaults.js @@ -0,0 +1,91 @@ +import { app } from "../../scripts/app.js"; +import { ComfyWidgets } from "../../scripts/widgets.js"; +// Adds defaults for quickly adding nodes with middle click on the input/output + +app.registerExtension({ + name: "Comfy.SlotDefaults", + suggestionsNumber: null, + init() { + LiteGraph.search_filter_enabled = true; + LiteGraph.middle_click_slot_add_default_node = true; + this.suggestionsNumber = app.ui.settings.addSetting({ + id: "Comfy.NodeSuggestions.number", + name: "Number of nodes suggestions", + type: "slider", + attrs: { + min: 1, + max: 100, + step: 1, + }, + defaultValue: 5, + onChange: (newVal, oldVal) => { + this.setDefaults(newVal); + } + }); + }, + slot_types_default_out: {}, + slot_types_default_in: {}, + async beforeRegisterNodeDef(nodeType, nodeData, app) { + var nodeId = nodeData.name; + var inputs = []; + inputs = nodeData["input"]["required"]; //only show required inputs to reduce the mess also not logical to create node with optional inputs + for (const inputKey in inputs) { + var input = (inputs[inputKey]); + if (typeof input[0] !== "string") continue; + + var type = input[0] + if (type in ComfyWidgets) { + var customProperties = input[1] + if (!(customProperties?.forceInput)) continue; //ignore widgets that don't force input + } + + if (!(type in this.slot_types_default_out)) { + this.slot_types_default_out[type] = ["Reroute"]; + } + if (this.slot_types_default_out[type].includes(nodeId)) continue; + this.slot_types_default_out[type].push(nodeId); + + // Input types have to be stored as lower case + // Store each node that can handle this input type + const lowerType = type.toLocaleLowerCase(); + if (!(lowerType in LiteGraph.registered_slot_in_types)) { + LiteGraph.registered_slot_in_types[lowerType] = { nodes: [] }; + } + LiteGraph.registered_slot_in_types[lowerType].nodes.push(nodeType.comfyClass); + } + + var outputs = nodeData["output"]; + for (const key in outputs) { + var type = outputs[key]; + if (!(type in this.slot_types_default_in)) { + this.slot_types_default_in[type] = ["Reroute"];// ["Reroute", "Primitive"]; primitive doesn't always work :'() + } + + this.slot_types_default_in[type].push(nodeId); + + // Store each node that can handle this output type + if (!(type in LiteGraph.registered_slot_out_types)) { + LiteGraph.registered_slot_out_types[type] = { nodes: [] }; + } + LiteGraph.registered_slot_out_types[type].nodes.push(nodeType.comfyClass); + + if(!LiteGraph.slot_types_out.includes(type)) { + LiteGraph.slot_types_out.push(type); + } + } + var maxNum = this.suggestionsNumber.value; + this.setDefaults(maxNum); + }, + setDefaults(maxNum) { + + LiteGraph.slot_types_default_out = {}; + LiteGraph.slot_types_default_in = {}; + + for (const type in this.slot_types_default_out) { + LiteGraph.slot_types_default_out[type] = this.slot_types_default_out[type].slice(0, maxNum); + } + for (const type in this.slot_types_default_in) { + LiteGraph.slot_types_default_in[type] = this.slot_types_default_in[type].slice(0, maxNum); + } + } +}); diff --git a/web/extensions/core/snapToGrid.js b/web/extensions/core/snapToGrid.js new file mode 100644 index 0000000000000000000000000000000000000000..dc534d6edf97a3d20a51b7ca5dc6d5fde770ef5a --- /dev/null +++ b/web/extensions/core/snapToGrid.js @@ -0,0 +1,89 @@ +import { app } from "../../scripts/app.js"; + +// Shift + drag/resize to snap to grid + +app.registerExtension({ + name: "Comfy.SnapToGrid", + init() { + // Add setting to control grid size + app.ui.settings.addSetting({ + id: "Comfy.SnapToGrid.GridSize", + name: "Grid Size", + type: "slider", + attrs: { + min: 1, + max: 500, + }, + tooltip: + "When dragging and resizing nodes while holding shift they will be aligned to the grid, this controls the size of that grid.", + defaultValue: LiteGraph.CANVAS_GRID_SIZE, + onChange(value) { + LiteGraph.CANVAS_GRID_SIZE = +value; + }, + }); + + // After moving a node, if the shift key is down align it to grid + const onNodeMoved = app.canvas.onNodeMoved; + app.canvas.onNodeMoved = function (node) { + const r = onNodeMoved?.apply(this, arguments); + + if (app.shiftDown) { + // Ensure all selected nodes are realigned + for (const id in this.selected_nodes) { + this.selected_nodes[id].alignToGrid(); + } + } + + return r; + }; + + // When a node is added, add a resize handler to it so we can fix align the size with the grid + const onNodeAdded = app.graph.onNodeAdded; + app.graph.onNodeAdded = function (node) { + const onResize = node.onResize; + node.onResize = function () { + if (app.shiftDown) { + const w = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.size[0] / LiteGraph.CANVAS_GRID_SIZE); + const h = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.size[1] / LiteGraph.CANVAS_GRID_SIZE); + node.size[0] = w; + node.size[1] = h; + } + return onResize?.apply(this, arguments); + }; + return onNodeAdded?.apply(this, arguments); + }; + + // Draw a preview of where the node will go if holding shift and the node is selected + const origDrawNode = LGraphCanvas.prototype.drawNode; + LGraphCanvas.prototype.drawNode = function (node, ctx) { + if (app.shiftDown && this.node_dragged && node.id in this.selected_nodes) { + const x = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.pos[0] / LiteGraph.CANVAS_GRID_SIZE); + const y = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.pos[1] / LiteGraph.CANVAS_GRID_SIZE); + + const shiftX = x - node.pos[0]; + let shiftY = y - node.pos[1]; + + let w, h; + if (node.flags.collapsed) { + w = node._collapsed_width; + h = LiteGraph.NODE_TITLE_HEIGHT; + shiftY -= LiteGraph.NODE_TITLE_HEIGHT; + } else { + w = node.size[0]; + h = node.size[1]; + let titleMode = node.constructor.title_mode; + if (titleMode !== LiteGraph.TRANSPARENT_TITLE && titleMode !== LiteGraph.NO_TITLE) { + h += LiteGraph.NODE_TITLE_HEIGHT; + shiftY -= LiteGraph.NODE_TITLE_HEIGHT; + } + } + const f = ctx.fillStyle; + ctx.fillStyle = "rgba(100, 100, 100, 0.5)"; + ctx.fillRect(shiftX, shiftY, w, h); + ctx.fillStyle = f; + } + + return origDrawNode.apply(this, arguments); + }; + }, +}); diff --git a/web/extensions/core/undoRedo.js b/web/extensions/core/undoRedo.js new file mode 100644 index 0000000000000000000000000000000000000000..900eed2a7cd2f83b4af2089ebbbf919759405bf3 --- /dev/null +++ b/web/extensions/core/undoRedo.js @@ -0,0 +1,177 @@ +import { app } from "../../scripts/app.js"; +import { api } from "../../scripts/api.js" + +const MAX_HISTORY = 50; + +let undo = []; +let redo = []; +let activeState = null; +let isOurLoad = false; +function checkState() { + const currentState = app.graph.serialize(); + if (!graphEqual(activeState, currentState)) { + undo.push(activeState); + if (undo.length > MAX_HISTORY) { + undo.shift(); + } + activeState = clone(currentState); + redo.length = 0; + api.dispatchEvent(new CustomEvent("graphChanged", { detail: activeState })); + } +} + +const loadGraphData = app.loadGraphData; +app.loadGraphData = async function () { + const v = await loadGraphData.apply(this, arguments); + if (isOurLoad) { + isOurLoad = false; + } else { + checkState(); + } + return v; +}; + +function clone(obj) { + try { + if (typeof structuredClone !== "undefined") { + return structuredClone(obj); + } + } catch (error) { + // structuredClone is stricter than using JSON.parse/stringify so fallback to that + } + + return JSON.parse(JSON.stringify(obj)); +} + +function graphEqual(a, b, root = true) { + if (a === b) return true; + + if (typeof a == "object" && a && typeof b == "object" && b) { + const keys = Object.getOwnPropertyNames(a); + + if (keys.length != Object.getOwnPropertyNames(b).length) { + return false; + } + + for (const key of keys) { + let av = a[key]; + let bv = b[key]; + if (root && key === "nodes") { + // Nodes need to be sorted as the order changes when selecting nodes + av = [...av].sort((a, b) => a.id - b.id); + bv = [...bv].sort((a, b) => a.id - b.id); + } + if (!graphEqual(av, bv, false)) { + return false; + } + } + + return true; + } + + return false; +} + +const undoRedo = async (e) => { + const updateState = async (source, target) => { + const prevState = source.pop(); + if (prevState) { + target.push(activeState); + isOurLoad = true; + await app.loadGraphData(prevState, false); + activeState = prevState; + } + } + if (e.ctrlKey || e.metaKey) { + if (e.key === "y") { + updateState(redo, undo); + return true; + } else if (e.key === "z") { + updateState(undo, redo); + return true; + } + } +}; + +const bindInput = (activeEl) => { + if (activeEl && activeEl.tagName !== "CANVAS" && activeEl.tagName !== "BODY") { + for (const evt of ["change", "input", "blur"]) { + if (`on${evt}` in activeEl) { + const listener = () => { + checkState(); + activeEl.removeEventListener(evt, listener); + }; + activeEl.addEventListener(evt, listener); + return true; + } + } + } +}; + +let keyIgnored = false; +window.addEventListener( + "keydown", + (e) => { + requestAnimationFrame(async () => { + let activeEl; + // If we are auto queue in change mode then we do want to trigger on inputs + if (!app.ui.autoQueueEnabled || app.ui.autoQueueMode === "instant") { + activeEl = document.activeElement; + if (activeEl?.tagName === "INPUT" || activeEl?.type === "textarea") { + // Ignore events on inputs, they have their native history + return; + } + } + + keyIgnored = e.key === "Control" || e.key === "Shift" || e.key === "Alt" || e.key === "Meta"; + if (keyIgnored) return; + + // Check if this is a ctrl+z ctrl+y + if (await undoRedo(e)) return; + + // If our active element is some type of input then handle changes after they're done + if (bindInput(activeEl)) return; + checkState(); + }); + }, + true +); + +window.addEventListener("keyup", (e) => { + if (keyIgnored) { + keyIgnored = false; + checkState(); + } +}); + +// Handle clicking DOM elements (e.g. widgets) +window.addEventListener("mouseup", () => { + checkState(); +}); + +// Handle prompt queue event for dynamic widget changes +api.addEventListener("promptQueued", () => { + checkState(); +}); + +// Handle litegraph clicks +const processMouseUp = LGraphCanvas.prototype.processMouseUp; +LGraphCanvas.prototype.processMouseUp = function (e) { + const v = processMouseUp.apply(this, arguments); + checkState(); + return v; +}; +const processMouseDown = LGraphCanvas.prototype.processMouseDown; +LGraphCanvas.prototype.processMouseDown = function (e) { + const v = processMouseDown.apply(this, arguments); + checkState(); + return v; +}; + +// Handle litegraph context menu for COMBO widgets +const close = LiteGraph.ContextMenu.prototype.close; +LiteGraph.ContextMenu.prototype.close = function(e) { + const v = close.apply(this, arguments); + checkState(); + return v; +} \ No newline at end of file diff --git a/web/extensions/core/uploadImage.js b/web/extensions/core/uploadImage.js new file mode 100644 index 0000000000000000000000000000000000000000..530c4599e7990eb619af3b3dabacecec0a0e4334 --- /dev/null +++ b/web/extensions/core/uploadImage.js @@ -0,0 +1,12 @@ +import { app } from "../../scripts/app.js"; + +// Adds an upload button to the nodes + +app.registerExtension({ + name: "Comfy.UploadImage", + async beforeRegisterNodeDef(nodeType, nodeData, app) { + if (nodeData?.input?.required?.image?.[1]?.image_upload === true) { + nodeData.input.required.upload = ["IMAGEUPLOAD"]; + } + }, +}); diff --git a/web/extensions/core/widgetInputs.js b/web/extensions/core/widgetInputs.js new file mode 100644 index 0000000000000000000000000000000000000000..b12ad968f4faf63c5f86e07455c4ed1eacad4f84 --- /dev/null +++ b/web/extensions/core/widgetInputs.js @@ -0,0 +1,770 @@ +import { ComfyWidgets, addValueControlWidgets } from "../../scripts/widgets.js"; +import { app } from "../../scripts/app.js"; +import { applyTextReplacements } from "../../scripts/utils.js"; + +const CONVERTED_TYPE = "converted-widget"; +const VALID_TYPES = ["STRING", "combo", "number", "BOOLEAN"]; +const CONFIG = Symbol(); +const GET_CONFIG = Symbol(); +const TARGET = Symbol(); // Used for reroutes to specify the real target widget + +export function getWidgetConfig(slot) { + return slot.widget[CONFIG] ?? slot.widget[GET_CONFIG](); +} + +function getConfig(widgetName) { + const { nodeData } = this.constructor; + return nodeData?.input?.required[widgetName] ?? nodeData?.input?.optional?.[widgetName]; +} + +function isConvertableWidget(widget, config) { + return (VALID_TYPES.includes(widget.type) || VALID_TYPES.includes(config[0])) && !widget.options?.forceInput; +} + +function hideWidget(node, widget, suffix = "") { + widget.origType = widget.type; + widget.origComputeSize = widget.computeSize; + widget.origSerializeValue = widget.serializeValue; + widget.computeSize = () => [0, -4]; // -4 is due to the gap litegraph adds between widgets automatically + widget.type = CONVERTED_TYPE + suffix; + widget.serializeValue = () => { + // Prevent serializing the widget if we have no input linked + if (!node.inputs) { + return undefined; + } + let node_input = node.inputs.find((i) => i.widget?.name === widget.name); + + if (!node_input || !node_input.link) { + return undefined; + } + return widget.origSerializeValue ? widget.origSerializeValue() : widget.value; + }; + + // Hide any linked widgets, e.g. seed+seedControl + if (widget.linkedWidgets) { + for (const w of widget.linkedWidgets) { + hideWidget(node, w, ":" + widget.name); + } + } +} + +function showWidget(widget) { + widget.type = widget.origType; + widget.computeSize = widget.origComputeSize; + widget.serializeValue = widget.origSerializeValue; + + delete widget.origType; + delete widget.origComputeSize; + delete widget.origSerializeValue; + + // Hide any linked widgets, e.g. seed+seedControl + if (widget.linkedWidgets) { + for (const w of widget.linkedWidgets) { + showWidget(w); + } + } +} + +function convertToInput(node, widget, config) { + hideWidget(node, widget); + + const { type } = getWidgetType(config); + + // Add input and store widget config for creating on primitive node + const sz = node.size; + node.addInput(widget.name, type, { + widget: { name: widget.name, [GET_CONFIG]: () => config }, + }); + + for (const widget of node.widgets) { + widget.last_y += LiteGraph.NODE_SLOT_HEIGHT; + } + + // Restore original size but grow if needed + node.setSize([Math.max(sz[0], node.size[0]), Math.max(sz[1], node.size[1])]); +} + +function convertToWidget(node, widget) { + showWidget(widget); + const sz = node.size; + node.removeInput(node.inputs.findIndex((i) => i.widget?.name === widget.name)); + + for (const widget of node.widgets) { + widget.last_y -= LiteGraph.NODE_SLOT_HEIGHT; + } + + // Restore original size but grow if needed + node.setSize([Math.max(sz[0], node.size[0]), Math.max(sz[1], node.size[1])]); +} + +function getWidgetType(config) { + // Special handling for COMBO so we restrict links based on the entries + let type = config[0]; + if (type instanceof Array) { + type = "COMBO"; + } + return { type }; +} + +function isValidCombo(combo, obj) { + // New input isnt a combo + if (!(obj instanceof Array)) { + console.log(`connection rejected: tried to connect combo to ${obj}`); + return false; + } + // New imput combo has a different size + if (combo.length !== obj.length) { + console.log(`connection rejected: combo lists dont match`); + return false; + } + // New input combo has different elements + if (combo.find((v, i) => obj[i] !== v)) { + console.log(`connection rejected: combo lists dont match`); + return false; + } + + return true; +} + +export function setWidgetConfig(slot, config, target) { + if (!slot.widget) return; + if (config) { + slot.widget[GET_CONFIG] = () => config; + slot.widget[TARGET] = target; + } else { + delete slot.widget; + } + + if (slot.link) { + const link = app.graph.links[slot.link]; + if (link) { + const originNode = app.graph.getNodeById(link.origin_id); + if (originNode.type === "PrimitiveNode") { + if (config) { + originNode.recreateWidget(); + } else if(!app.configuringGraph) { + originNode.disconnectOutput(0); + originNode.onLastDisconnect(); + } + } + } + } +} + +export function mergeIfValid(output, config2, forceUpdate, recreateWidget, config1) { + if (!config1) { + config1 = output.widget[CONFIG] ?? output.widget[GET_CONFIG](); + } + + if (config1[0] instanceof Array) { + if (!isValidCombo(config1[0], config2[0])) return false; + } else if (config1[0] !== config2[0]) { + // Types dont match + console.log(`connection rejected: types dont match`, config1[0], config2[0]); + return false; + } + + const keys = new Set([...Object.keys(config1[1] ?? {}), ...Object.keys(config2[1] ?? {})]); + + let customConfig; + const getCustomConfig = () => { + if (!customConfig) { + if (typeof structuredClone === "undefined") { + customConfig = JSON.parse(JSON.stringify(config1[1] ?? {})); + } else { + customConfig = structuredClone(config1[1] ?? {}); + } + } + return customConfig; + }; + + const isNumber = config1[0] === "INT" || config1[0] === "FLOAT"; + for (const k of keys.values()) { + if (k !== "default" && k !== "forceInput" && k !== "defaultInput" && k !== "control_after_generate" && k !== "multiline") { + let v1 = config1[1][k]; + let v2 = config2[1]?.[k]; + + if (v1 === v2 || (!v1 && !v2)) continue; + + if (isNumber) { + if (k === "min") { + const theirMax = config2[1]?.["max"]; + if (theirMax != null && v1 > theirMax) { + console.log("connection rejected: min > max", v1, theirMax); + return false; + } + getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.max(v1, v2); + continue; + } else if (k === "max") { + const theirMin = config2[1]?.["min"]; + if (theirMin != null && v1 < theirMin) { + console.log("connection rejected: max < min", v1, theirMin); + return false; + } + getCustomConfig()[k] = v1 == null ? v2 : v2 == null ? v1 : Math.min(v1, v2); + continue; + } else if (k === "step") { + let step; + if (v1 == null) { + // No current step + step = v2; + } else if (v2 == null) { + // No new step + step = v1; + } else { + if (v1 < v2) { + // Ensure v1 is larger for the mod + const a = v2; + v2 = v1; + v1 = a; + } + if (v1 % v2) { + console.log("connection rejected: steps not divisible", "current:", v1, "new:", v2); + return false; + } + + step = v1; + } + + getCustomConfig()[k] = step; + continue; + } + } + + console.log(`connection rejected: config ${k} values dont match`, v1, v2); + return false; + } + } + + if (customConfig || forceUpdate) { + if (customConfig) { + output.widget[CONFIG] = [config1[0], customConfig]; + } + + const widget = recreateWidget?.call(this); + // When deleting a node this can be null + if (widget) { + const min = widget.options.min; + const max = widget.options.max; + if (min != null && widget.value < min) widget.value = min; + if (max != null && widget.value > max) widget.value = max; + widget.callback(widget.value); + } + } + + return { customConfig }; +} + +app.registerExtension({ + name: "Comfy.WidgetInputs", + async beforeRegisterNodeDef(nodeType, nodeData, app) { + // Add menu options to conver to/from widgets + const origGetExtraMenuOptions = nodeType.prototype.getExtraMenuOptions; + nodeType.prototype.convertWidgetToInput = function (widget) { + const config = getConfig.call(this, widget.name) ?? [widget.type, widget.options || {}]; + if (!isConvertableWidget(widget, config)) return false; + convertToInput(this, widget, config); + return true; + }; + nodeType.prototype.getExtraMenuOptions = function (_, options) { + const r = origGetExtraMenuOptions ? origGetExtraMenuOptions.apply(this, arguments) : undefined; + + if (this.widgets) { + let toInput = []; + let toWidget = []; + for (const w of this.widgets) { + if (w.options?.forceInput) { + continue; + } + if (w.type === CONVERTED_TYPE) { + toWidget.push({ + content: `Convert ${w.name} to widget`, + callback: () => convertToWidget(this, w), + }); + } else { + const config = getConfig.call(this, w.name) ?? [w.type, w.options || {}]; + if (isConvertableWidget(w, config)) { + toInput.push({ + content: `Convert ${w.name} to input`, + callback: () => convertToInput(this, w, config), + }); + } + } + } + if (toInput.length) { + options.push(...toInput, null); + } + + if (toWidget.length) { + options.push(...toWidget, null); + } + } + + return r; + }; + + nodeType.prototype.onGraphConfigured = function () { + if (!this.inputs) return; + + for (const input of this.inputs) { + if (input.widget) { + if (!input.widget[GET_CONFIG]) { + input.widget[GET_CONFIG] = () => getConfig.call(this, input.widget.name); + } + + // Cleanup old widget config + if (input.widget.config) { + if (input.widget.config[0] instanceof Array) { + // If we are an old converted combo then replace the input type and the stored link data + input.type = "COMBO"; + + const link = app.graph.links[input.link]; + if (link) { + link.type = input.type; + } + } + delete input.widget.config; + } + + const w = this.widgets.find((w) => w.name === input.widget.name); + if (w) { + hideWidget(this, w); + } else { + convertToWidget(this, input); + } + } + } + }; + + const origOnNodeCreated = nodeType.prototype.onNodeCreated; + nodeType.prototype.onNodeCreated = function () { + const r = origOnNodeCreated ? origOnNodeCreated.apply(this) : undefined; + + // When node is created, convert any force/default inputs + if (!app.configuringGraph && this.widgets) { + for (const w of this.widgets) { + if (w?.options?.forceInput || w?.options?.defaultInput) { + const config = getConfig.call(this, w.name) ?? [w.type, w.options || {}]; + convertToInput(this, w, config); + } + } + } + + return r; + }; + + const origOnConfigure = nodeType.prototype.onConfigure; + nodeType.prototype.onConfigure = function () { + const r = origOnConfigure ? origOnConfigure.apply(this, arguments) : undefined; + if (!app.configuringGraph && this.inputs) { + // On copy + paste of nodes, ensure that widget configs are set up + for (const input of this.inputs) { + if (input.widget && !input.widget[GET_CONFIG]) { + input.widget[GET_CONFIG] = () => getConfig.call(this, input.widget.name); + const w = this.widgets.find((w) => w.name === input.widget.name); + if (w) { + hideWidget(this, w); + } + } + } + } + + return r; + }; + + function isNodeAtPos(pos) { + for (const n of app.graph._nodes) { + if (n.pos[0] === pos[0] && n.pos[1] === pos[1]) { + return true; + } + } + return false; + } + + // Double click a widget input to automatically attach a primitive + const origOnInputDblClick = nodeType.prototype.onInputDblClick; + const ignoreDblClick = Symbol(); + nodeType.prototype.onInputDblClick = function (slot) { + const r = origOnInputDblClick ? origOnInputDblClick.apply(this, arguments) : undefined; + + const input = this.inputs[slot]; + if (!input.widget || !input[ignoreDblClick]) { + // Not a widget input or already handled input + if (!(input.type in ComfyWidgets) && !(input.widget[GET_CONFIG]?.()?.[0] instanceof Array)) { + return r; //also Not a ComfyWidgets input or combo (do nothing) + } + } + + // Create a primitive node + const node = LiteGraph.createNode("PrimitiveNode"); + app.graph.add(node); + + // Calculate a position that wont directly overlap another node + const pos = [this.pos[0] - node.size[0] - 30, this.pos[1]]; + while (isNodeAtPos(pos)) { + pos[1] += LiteGraph.NODE_TITLE_HEIGHT; + } + + node.pos = pos; + node.connect(0, this, slot); + node.title = input.name; + + // Prevent adding duplicates due to triple clicking + input[ignoreDblClick] = true; + setTimeout(() => { + delete input[ignoreDblClick]; + }, 300); + + return r; + }; + + // Prevent connecting COMBO lists to converted inputs that dont match types + const onConnectInput = nodeType.prototype.onConnectInput; + nodeType.prototype.onConnectInput = function (targetSlot, type, output, originNode, originSlot) { + const v = onConnectInput?.(this, arguments); + // Not a combo, ignore + if (type !== "COMBO") return v; + // Primitive output, allow that to handle + if (originNode.outputs[originSlot].widget) return v; + + // Ensure target is also a combo + const targetCombo = this.inputs[targetSlot].widget?.[GET_CONFIG]?.()?.[0]; + if (!targetCombo || !(targetCombo instanceof Array)) return v; + + // Check they match + const originConfig = originNode.constructor?.nodeData?.output?.[originSlot]; + if (!originConfig || !isValidCombo(targetCombo, originConfig)) { + return false; + } + + return v; + }; + }, + registerCustomNodes() { + const replacePropertyName = "Run widget replace on values"; + class PrimitiveNode { + constructor() { + this.addOutput("connect to widget input", "*"); + this.serialize_widgets = true; + this.isVirtualNode = true; + + if (!this.properties || !(replacePropertyName in this.properties)) { + this.addProperty(replacePropertyName, false, "boolean"); + } + } + + applyToGraph(extraLinks = []) { + if (!this.outputs[0].links?.length) return; + + function get_links(node) { + let links = []; + for (const l of node.outputs[0].links) { + const linkInfo = app.graph.links[l]; + const n = node.graph.getNodeById(linkInfo.target_id); + if (n.type == "Reroute") { + links = links.concat(get_links(n)); + } else { + links.push(l); + } + } + return links; + } + + let links = [...get_links(this).map((l) => app.graph.links[l]), ...extraLinks]; + let v = this.widgets?.[0].value; + if(v && this.properties[replacePropertyName]) { + v = applyTextReplacements(app, v); + } + + // For each output link copy our value over the original widget value + for (const linkInfo of links) { + const node = this.graph.getNodeById(linkInfo.target_id); + const input = node.inputs[linkInfo.target_slot]; + let widget; + if (input.widget[TARGET]) { + widget = input.widget[TARGET]; + } else { + const widgetName = input.widget.name; + if (widgetName) { + widget = node.widgets.find((w) => w.name === widgetName); + } + } + + if (widget) { + widget.value = v; + if (widget.callback) { + widget.callback(widget.value, app.canvas, node, app.canvas.graph_mouse, {}); + } + } + } + } + + refreshComboInNode() { + const widget = this.widgets?.[0]; + if (widget?.type === "combo") { + widget.options.values = this.outputs[0].widget[GET_CONFIG]()[0]; + + if (!widget.options.values.includes(widget.value)) { + widget.value = widget.options.values[0]; + widget.callback(widget.value); + } + } + } + + onAfterGraphConfigured() { + if (this.outputs[0].links?.length && !this.widgets?.length) { + if (!this.#onFirstConnection()) return; + + // Populate widget values from config data + if (this.widgets) { + for (let i = 0; i < this.widgets_values.length; i++) { + const w = this.widgets[i]; + if (w) { + w.value = this.widgets_values[i]; + } + } + } + + // Merge values if required + this.#mergeWidgetConfig(); + } + } + + onConnectionsChange(_, index, connected) { + if (app.configuringGraph) { + // Dont run while the graph is still setting up + return; + } + + const links = this.outputs[0].links; + if (connected) { + if (links?.length && !this.widgets?.length) { + this.#onFirstConnection(); + } + } else { + // We may have removed a link that caused the constraints to change + this.#mergeWidgetConfig(); + + if (!links?.length) { + this.onLastDisconnect(); + } + } + } + + onConnectOutput(slot, type, input, target_node, target_slot) { + // Fires before the link is made allowing us to reject it if it isn't valid + // No widget, we cant connect + if (!input.widget) { + if (!(input.type in ComfyWidgets)) return false; + } + + if (this.outputs[slot].links?.length) { + const valid = this.#isValidConnection(input); + if (valid) { + // On connect of additional outputs, copy our value to their widget + this.applyToGraph([{ target_id: target_node.id, target_slot }]); + } + return valid; + } + } + + #onFirstConnection(recreating) { + // First connection can fire before the graph is ready on initial load so random things can be missing + if (!this.outputs[0].links) { + this.onLastDisconnect(); + return; + } + const linkId = this.outputs[0].links[0]; + const link = this.graph.links[linkId]; + if (!link) return; + + const theirNode = this.graph.getNodeById(link.target_id); + if (!theirNode || !theirNode.inputs) return; + + const input = theirNode.inputs[link.target_slot]; + if (!input) return; + + let widget; + if (!input.widget) { + if (!(input.type in ComfyWidgets)) return; + widget = { name: input.name, [GET_CONFIG]: () => [input.type, {}] }; //fake widget + } else { + widget = input.widget; + } + + const config = widget[GET_CONFIG]?.(); + if (!config) return; + + const { type } = getWidgetType(config); + // Update our output to restrict to the widget type + this.outputs[0].type = type; + this.outputs[0].name = type; + this.outputs[0].widget = widget; + + this.#createWidget(widget[CONFIG] ?? config, theirNode, widget.name, recreating, widget[TARGET]); + } + + #createWidget(inputData, node, widgetName, recreating, targetWidget) { + let type = inputData[0]; + + if (type instanceof Array) { + type = "COMBO"; + } + + let widget; + if (type in ComfyWidgets) { + widget = (ComfyWidgets[type](this, "value", inputData, app) || {}).widget; + } else { + widget = this.addWidget(type, "value", null, () => {}, {}); + } + + if (targetWidget) { + widget.value = targetWidget.value; + } else if (node?.widgets && widget) { + const theirWidget = node.widgets.find((w) => w.name === widgetName); + if (theirWidget) { + widget.value = theirWidget.value; + } + } + + if (!inputData?.[1]?.control_after_generate && (widget.type === "number" || widget.type === "combo")) { + let control_value = this.widgets_values?.[1]; + if (!control_value) { + control_value = "fixed"; + } + addValueControlWidgets(this, widget, control_value, undefined, inputData); + let filter = this.widgets_values?.[2]; + if (filter && this.widgets.length === 3) { + this.widgets[2].value = filter; + } + } + + // Restore any saved control values + const controlValues = this.controlValues; + if(this.lastType === this.widgets[0].type && controlValues?.length === this.widgets.length - 1) { + for(let i = 0; i < controlValues.length; i++) { + this.widgets[i + 1].value = controlValues[i]; + } + } + + // When our value changes, update other widgets to reflect our changes + // e.g. so LoadImage shows correct image + const callback = widget.callback; + const self = this; + widget.callback = function () { + const r = callback ? callback.apply(this, arguments) : undefined; + self.applyToGraph(); + return r; + }; + + if (!recreating) { + // Grow our node if required + const sz = this.computeSize(); + if (this.size[0] < sz[0]) { + this.size[0] = sz[0]; + } + if (this.size[1] < sz[1]) { + this.size[1] = sz[1]; + } + + requestAnimationFrame(() => { + if (this.onResize) { + this.onResize(this.size); + } + }); + } + } + + recreateWidget() { + const values = this.widgets?.map((w) => w.value); + this.#removeWidgets(); + this.#onFirstConnection(true); + if (values?.length) { + for (let i = 0; i < this.widgets?.length; i++) this.widgets[i].value = values[i]; + } + return this.widgets?.[0]; + } + + #mergeWidgetConfig() { + // Merge widget configs if the node has multiple outputs + const output = this.outputs[0]; + const links = output.links; + + const hasConfig = !!output.widget[CONFIG]; + if (hasConfig) { + delete output.widget[CONFIG]; + } + + if (links?.length < 2 && hasConfig) { + // Copy the widget options from the source + if (links.length) { + this.recreateWidget(); + } + + return; + } + + const config1 = output.widget[GET_CONFIG](); + const isNumber = config1[0] === "INT" || config1[0] === "FLOAT"; + if (!isNumber) return; + + for (const linkId of links) { + const link = app.graph.links[linkId]; + if (!link) continue; // Can be null when removing a node + + const theirNode = app.graph.getNodeById(link.target_id); + const theirInput = theirNode.inputs[link.target_slot]; + + // Call is valid connection so it can merge the configs when validating + this.#isValidConnection(theirInput, hasConfig); + } + } + + #isValidConnection(input, forceUpdate) { + // Only allow connections where the configs match + const output = this.outputs[0]; + const config2 = input.widget[GET_CONFIG](); + return !!mergeIfValid.call(this, output, config2, forceUpdate, this.recreateWidget); + } + + #removeWidgets() { + if (this.widgets) { + // Allow widgets to cleanup + for (const w of this.widgets) { + if (w.onRemove) { + w.onRemove(); + } + } + + // Temporarily store the current values in case the node is being recreated + // e.g. by group node conversion + this.controlValues = []; + this.lastType = this.widgets[0]?.type; + for(let i = 1; i < this.widgets.length; i++) { + this.controlValues.push(this.widgets[i].value); + } + setTimeout(() => { delete this.lastType; delete this.controlValues }, 15); + this.widgets.length = 0; + } + } + + onLastDisconnect() { + // We cant remove + re-add the output here as if you drag a link over the same link + // it removes, then re-adds, causing it to break + this.outputs[0].type = "*"; + this.outputs[0].name = "connect to widget input"; + delete this.outputs[0].widget; + + this.#removeWidgets(); + } + } + + LiteGraph.registerNodeType( + "PrimitiveNode", + Object.assign(PrimitiveNode, { + title: "Primitive", + }) + ); + PrimitiveNode.category = "utils"; + }, +}); diff --git a/web/extensions/logging.js.example b/web/extensions/logging.js.example new file mode 100644 index 0000000000000000000000000000000000000000..d015096a29f2732135b827a0efb513c6bf387bcf --- /dev/null +++ b/web/extensions/logging.js.example @@ -0,0 +1,55 @@ +import { app } from "../scripts/app.js"; + +const ext = { + // Unique name for the extension + name: "Example.LoggingExtension", + async init(app) { + // Any initial setup to run as soon as the page loads + console.log("[logging]", "extension init"); + }, + async setup(app) { + // Any setup to run after the app is created + console.log("[logging]", "extension setup"); + }, + async addCustomNodeDefs(defs, app) { + // Add custom node definitions + // These definitions will be configured and registered automatically + // defs is a lookup core nodes, add yours into this + console.log("[logging]", "add custom node definitions", "current nodes:", Object.keys(defs)); + }, + async getCustomWidgets(app) { + // Return custom widget types + // See ComfyWidgets for widget examples + console.log("[logging]", "provide custom widgets"); + }, + async beforeRegisterNodeDef(nodeType, nodeData, app) { + // Run custom logic before a node definition is registered with the graph + console.log("[logging]", "before register node: ", nodeType, nodeData); + + // This fires for every node definition so only log once + delete ext.beforeRegisterNodeDef; + }, + async registerCustomNodes(app) { + // Register any custom node implementations here allowing for more flexability than a custom node def + console.log("[logging]", "register custom nodes"); + }, + loadedGraphNode(node, app) { + // Fires for each node when loading/dragging/etc a workflow json or png + // If you break something in the backend and want to patch workflows in the frontend + // This is the place to do this + console.log("[logging]", "loaded graph node: ", node); + + // This fires for every node on each load so only log once + delete ext.loadedGraphNode; + }, + nodeCreated(node, app) { + // Fires every time a node is constructed + // You can modify widgets/add handlers/etc here + console.log("[logging]", "node created: ", node); + + // This fires for every node so only log once + delete ext.nodeCreated; + } +}; + +app.registerExtension(ext); diff --git a/web/index.html b/web/index.html new file mode 100644 index 0000000000000000000000000000000000000000..094db9d1529fb690715c501aa43207dcbb39bf95 --- /dev/null +++ b/web/index.html @@ -0,0 +1,48 @@ + + + + + ComfyUI + + + + + + + + + + + + diff --git a/web/jsconfig.json b/web/jsconfig.json new file mode 100644 index 0000000000000000000000000000000000000000..b65fa2746dae5444f06c0ede78152c9a6fb084c1 --- /dev/null +++ b/web/jsconfig.json @@ -0,0 +1,10 @@ +{ + "compilerOptions": { + "baseUrl": ".", + "paths": { + "/*": ["./*"] + }, + "lib": ["DOM", "ES2022"] + }, + "include": ["."] +} diff --git a/web/lib/litegraph.core.js b/web/lib/litegraph.core.js new file mode 100644 index 0000000000000000000000000000000000000000..4ff05ae813002e599e1ae0aa4a41ac1019040753 --- /dev/null +++ b/web/lib/litegraph.core.js @@ -0,0 +1,14424 @@ +//packer version + + +(function(global) { + // ************************************************************* + // LiteGraph CLASS ******* + // ************************************************************* + + /** + * The Global Scope. It contains all the registered node classes. + * + * @class LiteGraph + * @constructor + */ + + var LiteGraph = (global.LiteGraph = { + VERSION: 0.4, + + CANVAS_GRID_SIZE: 10, + + NODE_TITLE_HEIGHT: 30, + NODE_TITLE_TEXT_Y: 20, + NODE_SLOT_HEIGHT: 20, + NODE_WIDGET_HEIGHT: 20, + NODE_WIDTH: 140, + NODE_MIN_WIDTH: 50, + NODE_COLLAPSED_RADIUS: 10, + NODE_COLLAPSED_WIDTH: 80, + NODE_TITLE_COLOR: "#999", + NODE_SELECTED_TITLE_COLOR: "#FFF", + NODE_TEXT_SIZE: 14, + NODE_TEXT_COLOR: "#AAA", + NODE_SUBTEXT_SIZE: 12, + NODE_DEFAULT_COLOR: "#333", + NODE_DEFAULT_BGCOLOR: "#353535", + NODE_DEFAULT_BOXCOLOR: "#666", + NODE_DEFAULT_SHAPE: "box", + NODE_BOX_OUTLINE_COLOR: "#FFF", + DEFAULT_SHADOW_COLOR: "rgba(0,0,0,0.5)", + DEFAULT_GROUP_FONT: 24, + + WIDGET_BGCOLOR: "#222", + WIDGET_OUTLINE_COLOR: "#666", + WIDGET_TEXT_COLOR: "#DDD", + WIDGET_SECONDARY_TEXT_COLOR: "#999", + + LINK_COLOR: "#9A9", + EVENT_LINK_COLOR: "#A86", + CONNECTING_LINK_COLOR: "#AFA", + + MAX_NUMBER_OF_NODES: 10000, //avoid infinite loops + DEFAULT_POSITION: [100, 100], //default node position + VALID_SHAPES: ["default", "box", "round", "card"], //,"circle" + + //shapes are used for nodes but also for slots + BOX_SHAPE: 1, + ROUND_SHAPE: 2, + CIRCLE_SHAPE: 3, + CARD_SHAPE: 4, + ARROW_SHAPE: 5, + GRID_SHAPE: 6, // intended for slot arrays + + //enums + INPUT: 1, + OUTPUT: 2, + + EVENT: -1, //for outputs + ACTION: -1, //for inputs + + NODE_MODES: ["Always", "On Event", "Never", "On Trigger"], // helper, will add "On Request" and more in the future + NODE_MODES_COLORS:["#666","#422","#333","#224","#626"], // use with node_box_coloured_by_mode + ALWAYS: 0, + ON_EVENT: 1, + NEVER: 2, + ON_TRIGGER: 3, + + UP: 1, + DOWN: 2, + LEFT: 3, + RIGHT: 4, + CENTER: 5, + + LINK_RENDER_MODES: ["Straight", "Linear", "Spline"], // helper + STRAIGHT_LINK: 0, + LINEAR_LINK: 1, + SPLINE_LINK: 2, + + NORMAL_TITLE: 0, + NO_TITLE: 1, + TRANSPARENT_TITLE: 2, + AUTOHIDE_TITLE: 3, + VERTICAL_LAYOUT: "vertical", // arrange nodes vertically + + proxy: null, //used to redirect calls + node_images_path: "", + + debug: false, + catch_exceptions: true, + throw_errors: true, + allow_scripts: false, //if set to true some nodes like Formula would be allowed to evaluate code that comes from unsafe sources (like node configuration), which could lead to exploits + registered_node_types: {}, //nodetypes by string + node_types_by_file_extension: {}, //used for dropping files in the canvas + Nodes: {}, //node types by classname + Globals: {}, //used to store vars between graphs + + searchbox_extras: {}, //used to add extra features to the search box + auto_sort_node_types: false, // [true!] If set to true, will automatically sort node types / categories in the context menus + + node_box_coloured_when_on: false, // [true!] this make the nodes box (top left circle) coloured when triggered (execute/action), visual feedback + node_box_coloured_by_mode: false, // [true!] nodebox based on node mode, visual feedback + + dialog_close_on_mouse_leave: false, // [false on mobile] better true if not touch device, TODO add an helper/listener to close if false + dialog_close_on_mouse_leave_delay: 500, + + shift_click_do_break_link_from: false, // [false!] prefer false if results too easy to break links - implement with ALT or TODO custom keys + click_do_break_link_to: false, // [false!]prefer false, way too easy to break links + + search_hide_on_mouse_leave: true, // [false on mobile] better true if not touch device, TODO add an helper/listener to close if false + search_filter_enabled: false, // [true!] enable filtering slots type in the search widget, !requires auto_load_slot_types or manual set registered_slot_[in/out]_types and slot_types_[in/out] + search_show_all_on_open: true, // [true!] opens the results list when opening the search widget + + auto_load_slot_types: false, // [if want false, use true, run, get vars values to be statically set, than disable] nodes types and nodeclass association with node types need to be calculated, if dont want this, calculate once and set registered_slot_[in/out]_types and slot_types_[in/out] + + // set these values if not using auto_load_slot_types + registered_slot_in_types: {}, // slot types for nodeclass + registered_slot_out_types: {}, // slot types for nodeclass + slot_types_in: [], // slot types IN + slot_types_out: [], // slot types OUT + slot_types_default_in: [], // specify for each IN slot type a(/many) default node(s), use single string, array, or object (with node, title, parameters, ..) like for search + slot_types_default_out: [], // specify for each OUT slot type a(/many) default node(s), use single string, array, or object (with node, title, parameters, ..) like for search + + alt_drag_do_clone_nodes: false, // [true!] very handy, ALT click to clone and drag the new node + + do_add_triggers_slots: false, // [true!] will create and connect event slots when using action/events connections, !WILL CHANGE node mode when using onTrigger (enable mode colors), onExecuted does not need this + + allow_multi_output_for_events: true, // [false!] being events, it is strongly reccomended to use them sequentially, one by one + + middle_click_slot_add_default_node: false, //[true!] allows to create and connect a ndoe clicking with the third button (wheel) + + release_link_on_empty_shows_menu: false, //[true!] dragging a link to empty space will open a menu, add from list, search or defaults + + pointerevents_method: "pointer", // "mouse"|"pointer" use mouse for retrocompatibility issues? (none found @ now) + // TODO implement pointercancel, gotpointercapture, lostpointercapture, (pointerover, pointerout if necessary) + + ctrl_shift_v_paste_connect_unselected_outputs: true, //[true!] allows ctrl + shift + v to paste nodes with the outputs of the unselected nodes connected with the inputs of the newly pasted nodes + + // if true, all newly created nodes/links will use string UUIDs for their id fields instead of integers. + // use this if you must have node IDs that are unique across all graphs and subgraphs. + use_uuids: false, + + /** + * Register a node class so it can be listed when the user wants to create a new one + * @method registerNodeType + * @param {String} type name of the node and path + * @param {Class} base_class class containing the structure of a node + */ + + registerNodeType: function(type, base_class) { + if (!base_class.prototype) { + throw "Cannot register a simple object, it must be a class with a prototype"; + } + base_class.type = type; + + if (LiteGraph.debug) { + console.log("Node registered: " + type); + } + + const classname = base_class.name; + + const pos = type.lastIndexOf("/"); + base_class.category = type.substring(0, pos); + + if (!base_class.title) { + base_class.title = classname; + } + + //extend class + for (var i in LGraphNode.prototype) { + if (!base_class.prototype[i]) { + base_class.prototype[i] = LGraphNode.prototype[i]; + } + } + + const prev = this.registered_node_types[type]; + if(prev) { + console.log("replacing node type: " + type); + } + if( !Object.prototype.hasOwnProperty.call( base_class.prototype, "shape") ) { + Object.defineProperty(base_class.prototype, "shape", { + set: function(v) { + switch (v) { + case "default": + delete this._shape; + break; + case "box": + this._shape = LiteGraph.BOX_SHAPE; + break; + case "round": + this._shape = LiteGraph.ROUND_SHAPE; + break; + case "circle": + this._shape = LiteGraph.CIRCLE_SHAPE; + break; + case "card": + this._shape = LiteGraph.CARD_SHAPE; + break; + default: + this._shape = v; + } + }, + get: function() { + return this._shape; + }, + enumerable: true, + configurable: true + }); + + + //used to know which nodes to create when dragging files to the canvas + if (base_class.supported_extensions) { + for (let i in base_class.supported_extensions) { + const ext = base_class.supported_extensions[i]; + if(ext && ext.constructor === String) { + this.node_types_by_file_extension[ ext.toLowerCase() ] = base_class; + } + } + } + } + + this.registered_node_types[type] = base_class; + if (base_class.constructor.name) { + this.Nodes[classname] = base_class; + } + if (LiteGraph.onNodeTypeRegistered) { + LiteGraph.onNodeTypeRegistered(type, base_class); + } + if (prev && LiteGraph.onNodeTypeReplaced) { + LiteGraph.onNodeTypeReplaced(type, base_class, prev); + } + + //warnings + if (base_class.prototype.onPropertyChange) { + console.warn( + "LiteGraph node class " + + type + + " has onPropertyChange method, it must be called onPropertyChanged with d at the end" + ); + } + + // TODO one would want to know input and ouput :: this would allow through registerNodeAndSlotType to get all the slots types + if (this.auto_load_slot_types) { + new base_class(base_class.title || "tmpnode"); + } + }, + + /** + * removes a node type from the system + * @method unregisterNodeType + * @param {String|Object} type name of the node or the node constructor itself + */ + unregisterNodeType: function(type) { + const base_class = + type.constructor === String + ? this.registered_node_types[type] + : type; + if (!base_class) { + throw "node type not found: " + type; + } + delete this.registered_node_types[base_class.type]; + if (base_class.constructor.name) { + delete this.Nodes[base_class.constructor.name]; + } + }, + + /** + * Save a slot type and his node + * @method registerSlotType + * @param {String|Object} type name of the node or the node constructor itself + * @param {String} slot_type name of the slot type (variable type), eg. string, number, array, boolean, .. + */ + registerNodeAndSlotType: function(type, slot_type, out){ + out = out || false; + const base_class = + type.constructor === String && + this.registered_node_types[type] !== "anonymous" + ? this.registered_node_types[type] + : type; + + const class_type = base_class.constructor.type; + + let allTypes = []; + if (typeof slot_type === "string") { + allTypes = slot_type.split(","); + } else if (slot_type == this.EVENT || slot_type == this.ACTION) { + allTypes = ["_event_"]; + } else { + allTypes = ["*"]; + } + + for (let i = 0; i < allTypes.length; ++i) { + let slotType = allTypes[i]; + if (slotType === "") { + slotType = "*"; + } + const registerTo = out + ? "registered_slot_out_types" + : "registered_slot_in_types"; + if (this[registerTo][slotType] === undefined) { + this[registerTo][slotType] = { nodes: [] }; + } + if (!this[registerTo][slotType].nodes.includes(class_type)) { + this[registerTo][slotType].nodes.push(class_type); + } + + // check if is a new type + if (!out) { + if (!this.slot_types_in.includes(slotType.toLowerCase())) { + this.slot_types_in.push(slotType.toLowerCase()); + this.slot_types_in.sort(); + } + } else { + if (!this.slot_types_out.includes(slotType.toLowerCase())) { + this.slot_types_out.push(slotType.toLowerCase()); + this.slot_types_out.sort(); + } + } + } + }, + + /** + * Create a new nodetype by passing a function, it wraps it with a proper class and generates inputs according to the parameters of the function. + * Useful to wrap simple methods that do not require properties, and that only process some input to generate an output. + * @method wrapFunctionAsNode + * @param {String} name node name with namespace (p.e.: 'math/sum') + * @param {Function} func + * @param {Array} param_types [optional] an array containing the type of every parameter, otherwise parameters will accept any type + * @param {String} return_type [optional] string with the return type, otherwise it will be generic + * @param {Object} properties [optional] properties to be configurable + */ + wrapFunctionAsNode: function( + name, + func, + param_types, + return_type, + properties + ) { + var params = Array(func.length); + var code = ""; + var names = LiteGraph.getParameterNames(func); + for (var i = 0; i < names.length; ++i) { + code += + "this.addInput('" + + names[i] + + "'," + + (param_types && param_types[i] + ? "'" + param_types[i] + "'" + : "0") + + ");\n"; + } + code += + "this.addOutput('out'," + + (return_type ? "'" + return_type + "'" : 0) + + ");\n"; + if (properties) { + code += + "this.properties = " + JSON.stringify(properties) + ";\n"; + } + var classobj = Function(code); + classobj.title = name.split("/").pop(); + classobj.desc = "Generated from " + func.name; + classobj.prototype.onExecute = function onExecute() { + for (var i = 0; i < params.length; ++i) { + params[i] = this.getInputData(i); + } + var r = func.apply(this, params); + this.setOutputData(0, r); + }; + this.registerNodeType(name, classobj); + }, + + /** + * Removes all previously registered node's types + */ + clearRegisteredTypes: function() { + this.registered_node_types = {}; + this.node_types_by_file_extension = {}; + this.Nodes = {}; + this.searchbox_extras = {}; + }, + + /** + * Adds this method to all nodetypes, existing and to be created + * (You can add it to LGraphNode.prototype but then existing node types wont have it) + * @method addNodeMethod + * @param {Function} func + */ + addNodeMethod: function(name, func) { + LGraphNode.prototype[name] = func; + for (var i in this.registered_node_types) { + var type = this.registered_node_types[i]; + if (type.prototype[name]) { + type.prototype["_" + name] = type.prototype[name]; + } //keep old in case of replacing + type.prototype[name] = func; + } + }, + + /** + * Create a node of a given type with a name. The node is not attached to any graph yet. + * @method createNode + * @param {String} type full name of the node class. p.e. "math/sin" + * @param {String} name a name to distinguish from other nodes + * @param {Object} options to set options + */ + + createNode: function(type, title, options) { + var base_class = this.registered_node_types[type]; + if (!base_class) { + if (LiteGraph.debug) { + console.log( + 'GraphNode type "' + type + '" not registered.' + ); + } + return null; + } + + var prototype = base_class.prototype || base_class; + + title = title || base_class.title || type; + + var node = null; + + if (LiteGraph.catch_exceptions) { + try { + node = new base_class(title); + } catch (err) { + console.error(err); + return null; + } + } else { + node = new base_class(title); + } + + node.type = type; + + if (!node.title && title) { + node.title = title; + } + if (!node.properties) { + node.properties = {}; + } + if (!node.properties_info) { + node.properties_info = []; + } + if (!node.flags) { + node.flags = {}; + } + if (!node.size) { + node.size = node.computeSize(); + //call onresize? + } + if (!node.pos) { + node.pos = LiteGraph.DEFAULT_POSITION.concat(); + } + if (!node.mode) { + node.mode = LiteGraph.ALWAYS; + } + + //extra options + if (options) { + for (var i in options) { + node[i] = options[i]; + } + } + + // callback + if ( node.onNodeCreated ) { + node.onNodeCreated(); + } + + return node; + }, + + /** + * Returns a registered node type with a given name + * @method getNodeType + * @param {String} type full name of the node class. p.e. "math/sin" + * @return {Class} the node class + */ + getNodeType: function(type) { + return this.registered_node_types[type]; + }, + + /** + * Returns a list of node types matching one category + * @method getNodeType + * @param {String} category category name + * @return {Array} array with all the node classes + */ + + getNodeTypesInCategory: function(category, filter) { + var r = []; + for (var i in this.registered_node_types) { + var type = this.registered_node_types[i]; + if (type.filter != filter) { + continue; + } + + if (category == "") { + if (type.category == null) { + r.push(type); + } + } else if (type.category == category) { + r.push(type); + } + } + + if (this.auto_sort_node_types) { + r.sort(function(a,b){return a.title.localeCompare(b.title)}); + } + + return r; + }, + + /** + * Returns a list with all the node type categories + * @method getNodeTypesCategories + * @param {String} filter only nodes with ctor.filter equal can be shown + * @return {Array} array with all the names of the categories + */ + getNodeTypesCategories: function( filter ) { + var categories = { "": 1 }; + for (var i in this.registered_node_types) { + var type = this.registered_node_types[i]; + if ( type.category && !type.skip_list ) + { + if(type.filter != filter) + continue; + categories[type.category] = 1; + } + } + var result = []; + for (var i in categories) { + result.push(i); + } + return this.auto_sort_node_types ? result.sort() : result; + }, + + //debug purposes: reloads all the js scripts that matches a wildcard + reloadNodes: function(folder_wildcard) { + var tmp = document.getElementsByTagName("script"); + //weird, this array changes by its own, so we use a copy + var script_files = []; + for (var i=0; i < tmp.length; i++) { + script_files.push(tmp[i]); + } + + var docHeadObj = document.getElementsByTagName("head")[0]; + folder_wildcard = document.location.href + folder_wildcard; + + for (var i=0; i < script_files.length; i++) { + var src = script_files[i].src; + if ( + !src || + src.substr(0, folder_wildcard.length) != folder_wildcard + ) { + continue; + } + + try { + if (LiteGraph.debug) { + console.log("Reloading: " + src); + } + var dynamicScript = document.createElement("script"); + dynamicScript.type = "text/javascript"; + dynamicScript.src = src; + docHeadObj.appendChild(dynamicScript); + docHeadObj.removeChild(script_files[i]); + } catch (err) { + if (LiteGraph.throw_errors) { + throw err; + } + if (LiteGraph.debug) { + console.log("Error while reloading " + src); + } + } + } + + if (LiteGraph.debug) { + console.log("Nodes reloaded"); + } + }, + + //separated just to improve if it doesn't work + cloneObject: function(obj, target) { + if (obj == null) { + return null; + } + var r = JSON.parse(JSON.stringify(obj)); + if (!target) { + return r; + } + + for (var i in r) { + target[i] = r[i]; + } + return target; + }, + + /* + * https://gist.github.com/jed/982883?permalink_comment_id=852670#gistcomment-852670 + */ + uuidv4: function() { + return ([1e7]+-1e3+-4e3+-8e3+-1e11).replace(/[018]/g,a=>(a^Math.random()*16>>a/4).toString(16)); + }, + + /** + * Returns if the types of two slots are compatible (taking into account wildcards, etc) + * @method isValidConnection + * @param {String} type_a + * @param {String} type_b + * @return {Boolean} true if they can be connected + */ + isValidConnection: function(type_a, type_b) { + if (type_a=="" || type_a==="*") type_a = 0; + if (type_b=="" || type_b==="*") type_b = 0; + if ( + !type_a //generic output + || !type_b // generic input + || type_a == type_b //same type (is valid for triggers) + || (type_a == LiteGraph.EVENT && type_b == LiteGraph.ACTION) + ) { + return true; + } + + // Enforce string type to handle toLowerCase call (-1 number not ok) + type_a = String(type_a); + type_b = String(type_b); + type_a = type_a.toLowerCase(); + type_b = type_b.toLowerCase(); + + // For nodes supporting multiple connection types + if (type_a.indexOf(",") == -1 && type_b.indexOf(",") == -1) { + return type_a == type_b; + } + + // Check all permutations to see if one is valid + var supported_types_a = type_a.split(","); + var supported_types_b = type_b.split(","); + for (var i = 0; i < supported_types_a.length; ++i) { + for (var j = 0; j < supported_types_b.length; ++j) { + if(this.isValidConnection(supported_types_a[i],supported_types_b[j])){ + //if (supported_types_a[i] == supported_types_b[j]) { + return true; + } + } + } + + return false; + }, + + /** + * Register a string in the search box so when the user types it it will recommend this node + * @method registerSearchboxExtra + * @param {String} node_type the node recommended + * @param {String} description text to show next to it + * @param {Object} data it could contain info of how the node should be configured + * @return {Boolean} true if they can be connected + */ + registerSearchboxExtra: function(node_type, description, data) { + this.searchbox_extras[description.toLowerCase()] = { + type: node_type, + desc: description, + data: data + }; + }, + + /** + * Wrapper to load files (from url using fetch or from file using FileReader) + * @method fetchFile + * @param {String|File|Blob} url the url of the file (or the file itself) + * @param {String} type an string to know how to fetch it: "text","arraybuffer","json","blob" + * @param {Function} on_complete callback(data) + * @param {Function} on_error in case of an error + * @return {FileReader|Promise} returns the object used to + */ + fetchFile: function( url, type, on_complete, on_error ) { + var that = this; + if(!url) + return null; + + type = type || "text"; + if( url.constructor === String ) + { + if (url.substr(0, 4) == "http" && LiteGraph.proxy) { + url = LiteGraph.proxy + url.substr(url.indexOf(":") + 3); + } + return fetch(url) + .then(function(response) { + if(!response.ok) + throw new Error("File not found"); //it will be catch below + if(type == "arraybuffer") + return response.arrayBuffer(); + else if(type == "text" || type == "string") + return response.text(); + else if(type == "json") + return response.json(); + else if(type == "blob") + return response.blob(); + }) + .then(function(data) { + if(on_complete) + on_complete(data); + }) + .catch(function(error) { + console.error("error fetching file:",url); + if(on_error) + on_error(error); + }); + } + else if( url.constructor === File || url.constructor === Blob) + { + var reader = new FileReader(); + reader.onload = function(e) + { + var v = e.target.result; + if( type == "json" ) + v = JSON.parse(v); + if(on_complete) + on_complete(v); + } + if(type == "arraybuffer") + return reader.readAsArrayBuffer(url); + else if(type == "text" || type == "json") + return reader.readAsText(url); + else if(type == "blob") + return reader.readAsBinaryString(url); + } + return null; + } + }); + + //timer that works everywhere + if (typeof performance != "undefined") { + LiteGraph.getTime = performance.now.bind(performance); + } else if (typeof Date != "undefined" && Date.now) { + LiteGraph.getTime = Date.now.bind(Date); + } else if (typeof process != "undefined") { + LiteGraph.getTime = function() { + var t = process.hrtime(); + return t[0] * 0.001 + t[1] * 1e-6; + }; + } else { + LiteGraph.getTime = function getTime() { + return new Date().getTime(); + }; + } + + //********************************************************************************* + // LGraph CLASS + //********************************************************************************* + + /** + * LGraph is the class that contain a full graph. We instantiate one and add nodes to it, and then we can run the execution loop. + * supported callbacks: + + onNodeAdded: when a new node is added to the graph + + onNodeRemoved: when a node inside this graph is removed + + onNodeConnectionChange: some connection has changed in the graph (connected or disconnected) + * + * @class LGraph + * @constructor + * @param {Object} o data from previous serialization [optional] + */ + + function LGraph(o) { + if (LiteGraph.debug) { + console.log("Graph created"); + } + this.list_of_graphcanvas = null; + this.clear(); + + if (o) { + this.configure(o); + } + } + + global.LGraph = LiteGraph.LGraph = LGraph; + + //default supported types + LGraph.supported_types = ["number", "string", "boolean"]; + + //used to know which types of connections support this graph (some graphs do not allow certain types) + LGraph.prototype.getSupportedTypes = function() { + return this.supported_types || LGraph.supported_types; + }; + + LGraph.STATUS_STOPPED = 1; + LGraph.STATUS_RUNNING = 2; + + /** + * Removes all nodes from this graph + * @method clear + */ + + LGraph.prototype.clear = function() { + this.stop(); + this.status = LGraph.STATUS_STOPPED; + + this.last_node_id = 0; + this.last_link_id = 0; + + this._version = -1; //used to detect changes + + //safe clear + if (this._nodes) { + for (var i = 0; i < this._nodes.length; ++i) { + var node = this._nodes[i]; + if (node.onRemoved) { + node.onRemoved(); + } + } + } + + //nodes + this._nodes = []; + this._nodes_by_id = {}; + this._nodes_in_order = []; //nodes sorted in execution order + this._nodes_executable = null; //nodes that contain onExecute sorted in execution order + + //other scene stuff + this._groups = []; + + //links + this.links = {}; //container with all the links + + //iterations + this.iteration = 0; + + //custom data + this.config = {}; + this.vars = {}; + this.extra = {}; //to store custom data + + //timing + this.globaltime = 0; + this.runningtime = 0; + this.fixedtime = 0; + this.fixedtime_lapse = 0.01; + this.elapsed_time = 0.01; + this.last_update_time = 0; + this.starttime = 0; + + this.catch_errors = true; + + this.nodes_executing = []; + this.nodes_actioning = []; + this.nodes_executedAction = []; + + //subgraph_data + this.inputs = {}; + this.outputs = {}; + + //notify canvas to redraw + this.change(); + + this.sendActionToCanvas("clear"); + }; + + /** + * Attach Canvas to this graph + * @method attachCanvas + * @param {GraphCanvas} graph_canvas + */ + + LGraph.prototype.attachCanvas = function(graphcanvas) { + if (graphcanvas.constructor != LGraphCanvas) { + throw "attachCanvas expects a LGraphCanvas instance"; + } + if (graphcanvas.graph && graphcanvas.graph != this) { + graphcanvas.graph.detachCanvas(graphcanvas); + } + + graphcanvas.graph = this; + + if (!this.list_of_graphcanvas) { + this.list_of_graphcanvas = []; + } + this.list_of_graphcanvas.push(graphcanvas); + }; + + /** + * Detach Canvas from this graph + * @method detachCanvas + * @param {GraphCanvas} graph_canvas + */ + LGraph.prototype.detachCanvas = function(graphcanvas) { + if (!this.list_of_graphcanvas) { + return; + } + + var pos = this.list_of_graphcanvas.indexOf(graphcanvas); + if (pos == -1) { + return; + } + graphcanvas.graph = null; + this.list_of_graphcanvas.splice(pos, 1); + }; + + /** + * Starts running this graph every interval milliseconds. + * @method start + * @param {number} interval amount of milliseconds between executions, if 0 then it renders to the monitor refresh rate + */ + + LGraph.prototype.start = function(interval) { + if (this.status == LGraph.STATUS_RUNNING) { + return; + } + this.status = LGraph.STATUS_RUNNING; + + if (this.onPlayEvent) { + this.onPlayEvent(); + } + + this.sendEventToAllNodes("onStart"); + + //launch + this.starttime = LiteGraph.getTime(); + this.last_update_time = this.starttime; + interval = interval || 0; + var that = this; + + //execute once per frame + if ( interval == 0 && typeof window != "undefined" && window.requestAnimationFrame ) { + function on_frame() { + if (that.execution_timer_id != -1) { + return; + } + window.requestAnimationFrame(on_frame); + if(that.onBeforeStep) + that.onBeforeStep(); + that.runStep(1, !that.catch_errors); + if(that.onAfterStep) + that.onAfterStep(); + } + this.execution_timer_id = -1; + on_frame(); + } else { //execute every 'interval' ms + this.execution_timer_id = setInterval(function() { + //execute + if(that.onBeforeStep) + that.onBeforeStep(); + that.runStep(1, !that.catch_errors); + if(that.onAfterStep) + that.onAfterStep(); + }, interval); + } + }; + + /** + * Stops the execution loop of the graph + * @method stop execution + */ + + LGraph.prototype.stop = function() { + if (this.status == LGraph.STATUS_STOPPED) { + return; + } + + this.status = LGraph.STATUS_STOPPED; + + if (this.onStopEvent) { + this.onStopEvent(); + } + + if (this.execution_timer_id != null) { + if (this.execution_timer_id != -1) { + clearInterval(this.execution_timer_id); + } + this.execution_timer_id = null; + } + + this.sendEventToAllNodes("onStop"); + }; + + /** + * Run N steps (cycles) of the graph + * @method runStep + * @param {number} num number of steps to run, default is 1 + * @param {Boolean} do_not_catch_errors [optional] if you want to try/catch errors + * @param {number} limit max number of nodes to execute (used to execute from start to a node) + */ + + LGraph.prototype.runStep = function(num, do_not_catch_errors, limit ) { + num = num || 1; + + var start = LiteGraph.getTime(); + this.globaltime = 0.001 * (start - this.starttime); + + var nodes = this._nodes_executable + ? this._nodes_executable + : this._nodes; + if (!nodes) { + return; + } + + limit = limit || nodes.length; + + if (do_not_catch_errors) { + //iterations + for (var i = 0; i < num; i++) { + for (var j = 0; j < limit; ++j) { + var node = nodes[j]; + if (node.mode == LiteGraph.ALWAYS && node.onExecute) { + //wrap node.onExecute(); + node.doExecute(); + } + } + + this.fixedtime += this.fixedtime_lapse; + if (this.onExecuteStep) { + this.onExecuteStep(); + } + } + + if (this.onAfterExecute) { + this.onAfterExecute(); + } + } else { + try { + //iterations + for (var i = 0; i < num; i++) { + for (var j = 0; j < limit; ++j) { + var node = nodes[j]; + if (node.mode == LiteGraph.ALWAYS && node.onExecute) { + node.onExecute(); + } + } + + this.fixedtime += this.fixedtime_lapse; + if (this.onExecuteStep) { + this.onExecuteStep(); + } + } + + if (this.onAfterExecute) { + this.onAfterExecute(); + } + this.errors_in_execution = false; + } catch (err) { + this.errors_in_execution = true; + if (LiteGraph.throw_errors) { + throw err; + } + if (LiteGraph.debug) { + console.log("Error during execution: " + err); + } + this.stop(); + } + } + + var now = LiteGraph.getTime(); + var elapsed = now - start; + if (elapsed == 0) { + elapsed = 1; + } + this.execution_time = 0.001 * elapsed; + this.globaltime += 0.001 * elapsed; + this.iteration += 1; + this.elapsed_time = (now - this.last_update_time) * 0.001; + this.last_update_time = now; + this.nodes_executing = []; + this.nodes_actioning = []; + this.nodes_executedAction = []; + }; + + /** + * Updates the graph execution order according to relevance of the nodes (nodes with only outputs have more relevance than + * nodes with only inputs. + * @method updateExecutionOrder + */ + LGraph.prototype.updateExecutionOrder = function() { + this._nodes_in_order = this.computeExecutionOrder(false); + this._nodes_executable = []; + for (var i = 0; i < this._nodes_in_order.length; ++i) { + if (this._nodes_in_order[i].onExecute) { + this._nodes_executable.push(this._nodes_in_order[i]); + } + } + }; + + //This is more internal, it computes the executable nodes in order and returns it + LGraph.prototype.computeExecutionOrder = function( + only_onExecute, + set_level + ) { + var L = []; + var S = []; + var M = {}; + var visited_links = {}; //to avoid repeating links + var remaining_links = {}; //to a + + //search for the nodes without inputs (starting nodes) + for (var i = 0, l = this._nodes.length; i < l; ++i) { + var node = this._nodes[i]; + if (only_onExecute && !node.onExecute) { + continue; + } + + M[node.id] = node; //add to pending nodes + + var num = 0; //num of input connections + if (node.inputs) { + for (var j = 0, l2 = node.inputs.length; j < l2; j++) { + if (node.inputs[j] && node.inputs[j].link != null) { + num += 1; + } + } + } + + if (num == 0) { + //is a starting node + S.push(node); + if (set_level) { + node._level = 1; + } + } //num of input links + else { + if (set_level) { + node._level = 0; + } + remaining_links[node.id] = num; + } + } + + while (true) { + if (S.length == 0) { + break; + } + + //get an starting node + var node = S.shift(); + L.push(node); //add to ordered list + delete M[node.id]; //remove from the pending nodes + + if (!node.outputs) { + continue; + } + + //for every output + for (var i = 0; i < node.outputs.length; i++) { + var output = node.outputs[i]; + //not connected + if ( + output == null || + output.links == null || + output.links.length == 0 + ) { + continue; + } + + //for every connection + for (var j = 0; j < output.links.length; j++) { + var link_id = output.links[j]; + var link = this.links[link_id]; + if (!link) { + continue; + } + + //already visited link (ignore it) + if (visited_links[link.id]) { + continue; + } + + var target_node = this.getNodeById(link.target_id); + if (target_node == null) { + visited_links[link.id] = true; + continue; + } + + if ( + set_level && + (!target_node._level || + target_node._level <= node._level) + ) { + target_node._level = node._level + 1; + } + + visited_links[link.id] = true; //mark as visited + remaining_links[target_node.id] -= 1; //reduce the number of links remaining + if (remaining_links[target_node.id] == 0) { + S.push(target_node); + } //if no more links, then add to starters array + } + } + } + + //the remaining ones (loops) + for (var i in M) { + L.push(M[i]); + } + + if (L.length != this._nodes.length && LiteGraph.debug) { + console.warn("something went wrong, nodes missing"); + } + + var l = L.length; + + //save order number in the node + for (var i = 0; i < l; ++i) { + L[i].order = i; + } + + //sort now by priority + L = L.sort(function(A, B) { + var Ap = A.constructor.priority || A.priority || 0; + var Bp = B.constructor.priority || B.priority || 0; + if (Ap == Bp) { + //if same priority, sort by order + return A.order - B.order; + } + return Ap - Bp; //sort by priority + }); + + //save order number in the node, again... + for (var i = 0; i < l; ++i) { + L[i].order = i; + } + + return L; + }; + + /** + * Returns all the nodes that could affect this one (ancestors) by crawling all the inputs recursively. + * It doesn't include the node itself + * @method getAncestors + * @return {Array} an array with all the LGraphNodes that affect this node, in order of execution + */ + LGraph.prototype.getAncestors = function(node) { + var ancestors = []; + var pending = [node]; + var visited = {}; + + while (pending.length) { + var current = pending.shift(); + if (!current.inputs) { + continue; + } + if (!visited[current.id] && current != node) { + visited[current.id] = true; + ancestors.push(current); + } + + for (var i = 0; i < current.inputs.length; ++i) { + var input = current.getInputNode(i); + if (input && ancestors.indexOf(input) == -1) { + pending.push(input); + } + } + } + + ancestors.sort(function(a, b) { + return a.order - b.order; + }); + return ancestors; + }; + + /** + * Positions every node in a more readable manner + * @method arrange + */ + LGraph.prototype.arrange = function (margin, layout) { + margin = margin || 100; + + const nodes = this.computeExecutionOrder(false, true); + const columns = []; + for (let i = 0; i < nodes.length; ++i) { + const node = nodes[i]; + const col = node._level || 1; + if (!columns[col]) { + columns[col] = []; + } + columns[col].push(node); + } + + let x = margin; + + for (let i = 0; i < columns.length; ++i) { + const column = columns[i]; + if (!column) { + continue; + } + let max_size = 100; + let y = margin + LiteGraph.NODE_TITLE_HEIGHT; + for (let j = 0; j < column.length; ++j) { + const node = column[j]; + node.pos[0] = (layout == LiteGraph.VERTICAL_LAYOUT) ? y : x; + node.pos[1] = (layout == LiteGraph.VERTICAL_LAYOUT) ? x : y; + const max_size_index = (layout == LiteGraph.VERTICAL_LAYOUT) ? 1 : 0; + if (node.size[max_size_index] > max_size) { + max_size = node.size[max_size_index]; + } + const node_size_index = (layout == LiteGraph.VERTICAL_LAYOUT) ? 0 : 1; + y += node.size[node_size_index] + margin + LiteGraph.NODE_TITLE_HEIGHT; + } + x += max_size + margin; + } + + this.setDirtyCanvas(true, true); + }; + + /** + * Returns the amount of time the graph has been running in milliseconds + * @method getTime + * @return {number} number of milliseconds the graph has been running + */ + LGraph.prototype.getTime = function() { + return this.globaltime; + }; + + /** + * Returns the amount of time accumulated using the fixedtime_lapse var. This is used in context where the time increments should be constant + * @method getFixedTime + * @return {number} number of milliseconds the graph has been running + */ + + LGraph.prototype.getFixedTime = function() { + return this.fixedtime; + }; + + /** + * Returns the amount of time it took to compute the latest iteration. Take into account that this number could be not correct + * if the nodes are using graphical actions + * @method getElapsedTime + * @return {number} number of milliseconds it took the last cycle + */ + + LGraph.prototype.getElapsedTime = function() { + return this.elapsed_time; + }; + + /** + * Sends an event to all the nodes, useful to trigger stuff + * @method sendEventToAllNodes + * @param {String} eventname the name of the event (function to be called) + * @param {Array} params parameters in array format + */ + LGraph.prototype.sendEventToAllNodes = function(eventname, params, mode) { + mode = mode || LiteGraph.ALWAYS; + + var nodes = this._nodes_in_order ? this._nodes_in_order : this._nodes; + if (!nodes) { + return; + } + + for (var j = 0, l = nodes.length; j < l; ++j) { + var node = nodes[j]; + + if ( + node.constructor === LiteGraph.Subgraph && + eventname != "onExecute" + ) { + if (node.mode == mode) { + node.sendEventToAllNodes(eventname, params, mode); + } + continue; + } + + if (!node[eventname] || node.mode != mode) { + continue; + } + if (params === undefined) { + node[eventname](); + } else if (params && params.constructor === Array) { + node[eventname].apply(node, params); + } else { + node[eventname](params); + } + } + }; + + LGraph.prototype.sendActionToCanvas = function(action, params) { + if (!this.list_of_graphcanvas) { + return; + } + + for (var i = 0; i < this.list_of_graphcanvas.length; ++i) { + var c = this.list_of_graphcanvas[i]; + if (c[action]) { + c[action].apply(c, params); + } + } + }; + + /** + * Adds a new node instance to this graph + * @method add + * @param {LGraphNode} node the instance of the node + */ + + LGraph.prototype.add = function(node, skip_compute_order) { + if (!node) { + return; + } + + //groups + if (node.constructor === LGraphGroup) { + this._groups.push(node); + this.setDirtyCanvas(true); + this.change(); + node.graph = this; + this._version++; + return; + } + + //nodes + if (node.id != -1 && this._nodes_by_id[node.id] != null) { + console.warn( + "LiteGraph: there is already a node with this ID, changing it" + ); + if (LiteGraph.use_uuids) { + node.id = LiteGraph.uuidv4(); + } + else { + node.id = ++this.last_node_id; + } + } + + if (this._nodes.length >= LiteGraph.MAX_NUMBER_OF_NODES) { + throw "LiteGraph: max number of nodes in a graph reached"; + } + + //give him an id + if (LiteGraph.use_uuids) { + if (node.id == null || node.id == -1) + node.id = LiteGraph.uuidv4(); + } + else { + if (node.id == null || node.id == -1) { + node.id = ++this.last_node_id; + } else if (this.last_node_id < node.id) { + this.last_node_id = node.id; + } + } + + node.graph = this; + this._version++; + + this._nodes.push(node); + this._nodes_by_id[node.id] = node; + + if (node.onAdded) { + node.onAdded(this); + } + + if (this.config.align_to_grid) { + node.alignToGrid(); + } + + if (!skip_compute_order) { + this.updateExecutionOrder(); + } + + if (this.onNodeAdded) { + this.onNodeAdded(node); + } + + this.setDirtyCanvas(true); + this.change(); + + return node; //to chain actions + }; + + /** + * Removes a node from the graph + * @method remove + * @param {LGraphNode} node the instance of the node + */ + + LGraph.prototype.remove = function(node) { + if (node.constructor === LiteGraph.LGraphGroup) { + var index = this._groups.indexOf(node); + if (index != -1) { + this._groups.splice(index, 1); + } + node.graph = null; + this._version++; + this.setDirtyCanvas(true, true); + this.change(); + return; + } + + if (this._nodes_by_id[node.id] == null) { + return; + } //not found + + if (node.ignore_remove) { + return; + } //cannot be removed + + this.beforeChange(); //sure? - almost sure is wrong + + //disconnect inputs + if (node.inputs) { + for (var i = 0; i < node.inputs.length; i++) { + var slot = node.inputs[i]; + if (slot.link != null) { + node.disconnectInput(i); + } + } + } + + //disconnect outputs + if (node.outputs) { + for (var i = 0; i < node.outputs.length; i++) { + var slot = node.outputs[i]; + if (slot.links != null && slot.links.length) { + node.disconnectOutput(i); + } + } + } + + //node.id = -1; //why? + + //callback + if (node.onRemoved) { + node.onRemoved(); + } + + node.graph = null; + this._version++; + + //remove from canvas render + if (this.list_of_graphcanvas) { + for (var i = 0; i < this.list_of_graphcanvas.length; ++i) { + var canvas = this.list_of_graphcanvas[i]; + if (canvas.selected_nodes[node.id]) { + delete canvas.selected_nodes[node.id]; + } + if (canvas.node_dragged == node) { + canvas.node_dragged = null; + } + } + } + + //remove from containers + var pos = this._nodes.indexOf(node); + if (pos != -1) { + this._nodes.splice(pos, 1); + } + delete this._nodes_by_id[node.id]; + + if (this.onNodeRemoved) { + this.onNodeRemoved(node); + } + + //close panels + this.sendActionToCanvas("checkPanels"); + + this.setDirtyCanvas(true, true); + this.afterChange(); //sure? - almost sure is wrong + this.change(); + + this.updateExecutionOrder(); + }; + + /** + * Returns a node by its id. + * @method getNodeById + * @param {Number} id + */ + + LGraph.prototype.getNodeById = function(id) { + if (id == null) { + return null; + } + return this._nodes_by_id[id]; + }; + + /** + * Returns a list of nodes that matches a class + * @method findNodesByClass + * @param {Class} classObject the class itself (not an string) + * @return {Array} a list with all the nodes of this type + */ + LGraph.prototype.findNodesByClass = function(classObject, result) { + result = result || []; + result.length = 0; + for (var i = 0, l = this._nodes.length; i < l; ++i) { + if (this._nodes[i].constructor === classObject) { + result.push(this._nodes[i]); + } + } + return result; + }; + + /** + * Returns a list of nodes that matches a type + * @method findNodesByType + * @param {String} type the name of the node type + * @return {Array} a list with all the nodes of this type + */ + LGraph.prototype.findNodesByType = function(type, result) { + var type = type.toLowerCase(); + result = result || []; + result.length = 0; + for (var i = 0, l = this._nodes.length; i < l; ++i) { + if (this._nodes[i].type.toLowerCase() == type) { + result.push(this._nodes[i]); + } + } + return result; + }; + + /** + * Returns the first node that matches a name in its title + * @method findNodeByTitle + * @param {String} name the name of the node to search + * @return {Node} the node or null + */ + LGraph.prototype.findNodeByTitle = function(title) { + for (var i = 0, l = this._nodes.length; i < l; ++i) { + if (this._nodes[i].title == title) { + return this._nodes[i]; + } + } + return null; + }; + + /** + * Returns a list of nodes that matches a name + * @method findNodesByTitle + * @param {String} name the name of the node to search + * @return {Array} a list with all the nodes with this name + */ + LGraph.prototype.findNodesByTitle = function(title) { + var result = []; + for (var i = 0, l = this._nodes.length; i < l; ++i) { + if (this._nodes[i].title == title) { + result.push(this._nodes[i]); + } + } + return result; + }; + + /** + * Returns the top-most node in this position of the canvas + * @method getNodeOnPos + * @param {number} x the x coordinate in canvas space + * @param {number} y the y coordinate in canvas space + * @param {Array} nodes_list a list with all the nodes to search from, by default is all the nodes in the graph + * @return {LGraphNode} the node at this position or null + */ + LGraph.prototype.getNodeOnPos = function(x, y, nodes_list, margin) { + nodes_list = nodes_list || this._nodes; + var nRet = null; + for (var i = nodes_list.length - 1; i >= 0; i--) { + var n = nodes_list[i]; + var skip_title = n.constructor.title_mode == LiteGraph.NO_TITLE; + if (n.isPointInside(x, y, margin, skip_title)) { + // check for lesser interest nodes (TODO check for overlapping, use the top) + /*if (typeof n == "LGraphGroup"){ + nRet = n; + }else{*/ + return n; + /*}*/ + } + } + return nRet; + }; + + /** + * Returns the top-most group in that position + * @method getGroupOnPos + * @param {number} x the x coordinate in canvas space + * @param {number} y the y coordinate in canvas space + * @return {LGraphGroup} the group or null + */ + LGraph.prototype.getGroupOnPos = function(x, y) { + for (var i = this._groups.length - 1; i >= 0; i--) { + var g = this._groups[i]; + if (g.isPointInside(x, y, 2, true)) { + return g; + } + } + return null; + }; + + /** + * Checks that the node type matches the node type registered, used when replacing a nodetype by a newer version during execution + * this replaces the ones using the old version with the new version + * @method checkNodeTypes + */ + LGraph.prototype.checkNodeTypes = function() { + var changes = false; + for (var i = 0; i < this._nodes.length; i++) { + var node = this._nodes[i]; + var ctor = LiteGraph.registered_node_types[node.type]; + if (node.constructor == ctor) { + continue; + } + console.log("node being replaced by newer version: " + node.type); + var newnode = LiteGraph.createNode(node.type); + changes = true; + this._nodes[i] = newnode; + newnode.configure(node.serialize()); + newnode.graph = this; + this._nodes_by_id[newnode.id] = newnode; + if (node.inputs) { + newnode.inputs = node.inputs.concat(); + } + if (node.outputs) { + newnode.outputs = node.outputs.concat(); + } + } + this.updateExecutionOrder(); + }; + + // ********** GLOBALS ***************** + + LGraph.prototype.onAction = function(action, param, options) { + this._input_nodes = this.findNodesByClass( + LiteGraph.GraphInput, + this._input_nodes + ); + for (var i = 0; i < this._input_nodes.length; ++i) { + var node = this._input_nodes[i]; + if (node.properties.name != action) { + continue; + } + //wrap node.onAction(action, param); + node.actionDo(action, param, options); + break; + } + }; + + LGraph.prototype.trigger = function(action, param) { + if (this.onTrigger) { + this.onTrigger(action, param); + } + }; + + /** + * Tell this graph it has a global graph input of this type + * @method addGlobalInput + * @param {String} name + * @param {String} type + * @param {*} value [optional] + */ + LGraph.prototype.addInput = function(name, type, value) { + var input = this.inputs[name]; + if (input) { + //already exist + return; + } + + this.beforeChange(); + this.inputs[name] = { name: name, type: type, value: value }; + this._version++; + this.afterChange(); + + if (this.onInputAdded) { + this.onInputAdded(name, type); + } + + if (this.onInputsOutputsChange) { + this.onInputsOutputsChange(); + } + }; + + /** + * Assign a data to the global graph input + * @method setGlobalInputData + * @param {String} name + * @param {*} data + */ + LGraph.prototype.setInputData = function(name, data) { + var input = this.inputs[name]; + if (!input) { + return; + } + input.value = data; + }; + + /** + * Returns the current value of a global graph input + * @method getInputData + * @param {String} name + * @return {*} the data + */ + LGraph.prototype.getInputData = function(name) { + var input = this.inputs[name]; + if (!input) { + return null; + } + return input.value; + }; + + /** + * Changes the name of a global graph input + * @method renameInput + * @param {String} old_name + * @param {String} new_name + */ + LGraph.prototype.renameInput = function(old_name, name) { + if (name == old_name) { + return; + } + + if (!this.inputs[old_name]) { + return false; + } + + if (this.inputs[name]) { + console.error("there is already one input with that name"); + return false; + } + + this.inputs[name] = this.inputs[old_name]; + delete this.inputs[old_name]; + this._version++; + + if (this.onInputRenamed) { + this.onInputRenamed(old_name, name); + } + + if (this.onInputsOutputsChange) { + this.onInputsOutputsChange(); + } + }; + + /** + * Changes the type of a global graph input + * @method changeInputType + * @param {String} name + * @param {String} type + */ + LGraph.prototype.changeInputType = function(name, type) { + if (!this.inputs[name]) { + return false; + } + + if ( + this.inputs[name].type && + String(this.inputs[name].type).toLowerCase() == + String(type).toLowerCase() + ) { + return; + } + + this.inputs[name].type = type; + this._version++; + if (this.onInputTypeChanged) { + this.onInputTypeChanged(name, type); + } + }; + + /** + * Removes a global graph input + * @method removeInput + * @param {String} name + * @param {String} type + */ + LGraph.prototype.removeInput = function(name) { + if (!this.inputs[name]) { + return false; + } + + delete this.inputs[name]; + this._version++; + + if (this.onInputRemoved) { + this.onInputRemoved(name); + } + + if (this.onInputsOutputsChange) { + this.onInputsOutputsChange(); + } + return true; + }; + + /** + * Creates a global graph output + * @method addOutput + * @param {String} name + * @param {String} type + * @param {*} value + */ + LGraph.prototype.addOutput = function(name, type, value) { + this.outputs[name] = { name: name, type: type, value: value }; + this._version++; + + if (this.onOutputAdded) { + this.onOutputAdded(name, type); + } + + if (this.onInputsOutputsChange) { + this.onInputsOutputsChange(); + } + }; + + /** + * Assign a data to the global output + * @method setOutputData + * @param {String} name + * @param {String} value + */ + LGraph.prototype.setOutputData = function(name, value) { + var output = this.outputs[name]; + if (!output) { + return; + } + output.value = value; + }; + + /** + * Returns the current value of a global graph output + * @method getOutputData + * @param {String} name + * @return {*} the data + */ + LGraph.prototype.getOutputData = function(name) { + var output = this.outputs[name]; + if (!output) { + return null; + } + return output.value; + }; + + /** + * Renames a global graph output + * @method renameOutput + * @param {String} old_name + * @param {String} new_name + */ + LGraph.prototype.renameOutput = function(old_name, name) { + if (!this.outputs[old_name]) { + return false; + } + + if (this.outputs[name]) { + console.error("there is already one output with that name"); + return false; + } + + this.outputs[name] = this.outputs[old_name]; + delete this.outputs[old_name]; + this._version++; + + if (this.onOutputRenamed) { + this.onOutputRenamed(old_name, name); + } + + if (this.onInputsOutputsChange) { + this.onInputsOutputsChange(); + } + }; + + /** + * Changes the type of a global graph output + * @method changeOutputType + * @param {String} name + * @param {String} type + */ + LGraph.prototype.changeOutputType = function(name, type) { + if (!this.outputs[name]) { + return false; + } + + if ( + this.outputs[name].type && + String(this.outputs[name].type).toLowerCase() == + String(type).toLowerCase() + ) { + return; + } + + this.outputs[name].type = type; + this._version++; + if (this.onOutputTypeChanged) { + this.onOutputTypeChanged(name, type); + } + }; + + /** + * Removes a global graph output + * @method removeOutput + * @param {String} name + */ + LGraph.prototype.removeOutput = function(name) { + if (!this.outputs[name]) { + return false; + } + delete this.outputs[name]; + this._version++; + + if (this.onOutputRemoved) { + this.onOutputRemoved(name); + } + + if (this.onInputsOutputsChange) { + this.onInputsOutputsChange(); + } + return true; + }; + + LGraph.prototype.triggerInput = function(name, value) { + var nodes = this.findNodesByTitle(name); + for (var i = 0; i < nodes.length; ++i) { + nodes[i].onTrigger(value); + } + }; + + LGraph.prototype.setCallback = function(name, func) { + var nodes = this.findNodesByTitle(name); + for (var i = 0; i < nodes.length; ++i) { + nodes[i].setTrigger(func); + } + }; + + //used for undo, called before any change is made to the graph + LGraph.prototype.beforeChange = function(info) { + if (this.onBeforeChange) { + this.onBeforeChange(this,info); + } + this.sendActionToCanvas("onBeforeChange", this); + }; + + //used to resend actions, called after any change is made to the graph + LGraph.prototype.afterChange = function(info) { + if (this.onAfterChange) { + this.onAfterChange(this,info); + } + this.sendActionToCanvas("onAfterChange", this); + }; + + LGraph.prototype.connectionChange = function(node, link_info) { + this.updateExecutionOrder(); + if (this.onConnectionChange) { + this.onConnectionChange(node); + } + this._version++; + this.sendActionToCanvas("onConnectionChange"); + }; + + /** + * returns if the graph is in live mode + * @method isLive + */ + + LGraph.prototype.isLive = function() { + if (!this.list_of_graphcanvas) { + return false; + } + + for (var i = 0; i < this.list_of_graphcanvas.length; ++i) { + var c = this.list_of_graphcanvas[i]; + if (c.live_mode) { + return true; + } + } + return false; + }; + + /** + * clears the triggered slot animation in all links (stop visual animation) + * @method clearTriggeredSlots + */ + LGraph.prototype.clearTriggeredSlots = function() { + for (var i in this.links) { + var link_info = this.links[i]; + if (!link_info) { + continue; + } + if (link_info._last_time) { + link_info._last_time = 0; + } + } + }; + + /* Called when something visually changed (not the graph!) */ + LGraph.prototype.change = function() { + if (LiteGraph.debug) { + console.log("Graph changed"); + } + this.sendActionToCanvas("setDirty", [true, true]); + if (this.on_change) { + this.on_change(this); + } + }; + + LGraph.prototype.setDirtyCanvas = function(fg, bg) { + this.sendActionToCanvas("setDirty", [fg, bg]); + }; + + /** + * Destroys a link + * @method removeLink + * @param {Number} link_id + */ + LGraph.prototype.removeLink = function(link_id) { + var link = this.links[link_id]; + if (!link) { + return; + } + var node = this.getNodeById(link.target_id); + if (node) { + node.disconnectInput(link.target_slot); + } + }; + + //save and recover app state *************************************** + /** + * Creates a Object containing all the info about this graph, it can be serialized + * @method serialize + * @return {Object} value of the node + */ + LGraph.prototype.serialize = function() { + var nodes_info = []; + for (var i = 0, l = this._nodes.length; i < l; ++i) { + nodes_info.push(this._nodes[i].serialize()); + } + + //pack link info into a non-verbose format + var links = []; + for (var i in this.links) { + //links is an OBJECT + var link = this.links[i]; + if (!link.serialize) { + //weird bug I havent solved yet + console.warn( + "weird LLink bug, link info is not a LLink but a regular object" + ); + var link2 = new LLink(); + for (var j in link) { + link2[j] = link[j]; + } + this.links[i] = link2; + link = link2; + } + + links.push(link.serialize()); + } + + var groups_info = []; + for (var i = 0; i < this._groups.length; ++i) { + groups_info.push(this._groups[i].serialize()); + } + + var data = { + last_node_id: this.last_node_id, + last_link_id: this.last_link_id, + nodes: nodes_info, + links: links, + groups: groups_info, + config: this.config, + extra: this.extra, + version: LiteGraph.VERSION + }; + + if(this.onSerialize) + this.onSerialize(data); + + return data; + }; + + /** + * Configure a graph from a JSON string + * @method configure + * @param {String} str configure a graph from a JSON string + * @param {Boolean} returns if there was any error parsing + */ + LGraph.prototype.configure = function(data, keep_old) { + if (!data) { + return; + } + + if (!keep_old) { + this.clear(); + } + + var nodes = data.nodes; + + //decode links info (they are very verbose) + if (data.links && data.links.constructor === Array) { + var links = []; + for (var i = 0; i < data.links.length; ++i) { + var link_data = data.links[i]; + if(!link_data) //weird bug + { + console.warn("serialized graph link data contains errors, skipping."); + continue; + } + var link = new LLink(); + link.configure(link_data); + links[link.id] = link; + } + data.links = links; + } + + //copy all stored fields + for (var i in data) { + if(i == "nodes" || i == "groups" ) //links must be accepted + continue; + this[i] = data[i]; + } + + var error = false; + + //create nodes + this._nodes = []; + if (nodes) { + for (var i = 0, l = nodes.length; i < l; ++i) { + var n_info = nodes[i]; //stored info + var node = LiteGraph.createNode(n_info.type, n_info.title); + if (!node) { + if (LiteGraph.debug) { + console.log( + "Node not found or has errors: " + n_info.type + ); + } + + //in case of error we create a replacement node to avoid losing info + node = new LGraphNode(); + node.last_serialization = n_info; + node.has_errors = true; + error = true; + //continue; + } + + node.id = n_info.id; //id it or it will create a new id + this.add(node, true); //add before configure, otherwise configure cannot create links + } + + //configure nodes afterwards so they can reach each other + for (var i = 0, l = nodes.length; i < l; ++i) { + var n_info = nodes[i]; + var node = this.getNodeById(n_info.id); + if (node) { + node.configure(n_info); + } + } + } + + //groups + this._groups.length = 0; + if (data.groups) { + for (var i = 0; i < data.groups.length; ++i) { + var group = new LiteGraph.LGraphGroup(); + group.configure(data.groups[i]); + this.add(group); + } + } + + this.updateExecutionOrder(); + + this.extra = data.extra || {}; + + if(this.onConfigure) + this.onConfigure(data); + + this._version++; + this.setDirtyCanvas(true, true); + return error; + }; + + LGraph.prototype.load = function(url, callback) { + var that = this; + + //from file + if(url.constructor === File || url.constructor === Blob) + { + var reader = new FileReader(); + reader.addEventListener('load', function(event) { + var data = JSON.parse(event.target.result); + that.configure(data); + if(callback) + callback(); + }); + + reader.readAsText(url); + return; + } + + //is a string, then an URL + var req = new XMLHttpRequest(); + req.open("GET", url, true); + req.send(null); + req.onload = function(oEvent) { + if (req.status !== 200) { + console.error("Error loading graph:", req.status, req.response); + return; + } + var data = JSON.parse( req.response ); + that.configure(data); + if(callback) + callback(); + }; + req.onerror = function(err) { + console.error("Error loading graph:", err); + }; + }; + + LGraph.prototype.onNodeTrace = function(node, msg, color) { + //TODO + }; + + //this is the class in charge of storing link information + function LLink(id, type, origin_id, origin_slot, target_id, target_slot) { + this.id = id; + this.type = type; + this.origin_id = origin_id; + this.origin_slot = origin_slot; + this.target_id = target_id; + this.target_slot = target_slot; + + this._data = null; + this._pos = new Float32Array(2); //center + } + + LLink.prototype.configure = function(o) { + if (o.constructor === Array) { + this.id = o[0]; + this.origin_id = o[1]; + this.origin_slot = o[2]; + this.target_id = o[3]; + this.target_slot = o[4]; + this.type = o[5]; + } else { + this.id = o.id; + this.type = o.type; + this.origin_id = o.origin_id; + this.origin_slot = o.origin_slot; + this.target_id = o.target_id; + this.target_slot = o.target_slot; + } + }; + + LLink.prototype.serialize = function() { + return [ + this.id, + this.origin_id, + this.origin_slot, + this.target_id, + this.target_slot, + this.type + ]; + }; + + LiteGraph.LLink = LLink; + + // ************************************************************* + // Node CLASS ******* + // ************************************************************* + + /* + title: string + pos: [x,y] + size: [x,y] + + input|output: every connection + + { name:string, type:string, pos: [x,y]=Optional, direction: "input"|"output", links: Array }); + + general properties: + + clip_area: if you render outside the node, it will be clipped + + unsafe_execution: not allowed for safe execution + + skip_repeated_outputs: when adding new outputs, it wont show if there is one already connected + + resizable: if set to false it wont be resizable with the mouse + + horizontal: slots are distributed horizontally + + widgets_start_y: widgets start at y distance from the top of the node + + flags object: + + collapsed: if it is collapsed + + supported callbacks: + + onAdded: when added to graph (warning: this is called BEFORE the node is configured when loading) + + onRemoved: when removed from graph + + onStart: when the graph starts playing + + onStop: when the graph stops playing + + onDrawForeground: render the inside widgets inside the node + + onDrawBackground: render the background area inside the node (only in edit mode) + + onMouseDown + + onMouseMove + + onMouseUp + + onMouseEnter + + onMouseLeave + + onExecute: execute the node + + onPropertyChanged: when a property is changed in the panel (return true to skip default behaviour) + + onGetInputs: returns an array of possible inputs + + onGetOutputs: returns an array of possible outputs + + onBounding: in case this node has a bigger bounding than the node itself (the callback receives the bounding as [x,y,w,h]) + + onDblClick: double clicked in the node + + onInputDblClick: input slot double clicked (can be used to automatically create a node connected) + + onOutputDblClick: output slot double clicked (can be used to automatically create a node connected) + + onConfigure: called after the node has been configured + + onSerialize: to add extra info when serializing (the callback receives the object that should be filled with the data) + + onSelected + + onDeselected + + onDropItem : DOM item dropped over the node + + onDropFile : file dropped over the node + + onConnectInput : if returns false the incoming connection will be canceled + + onConnectionsChange : a connection changed (new one or removed) (LiteGraph.INPUT or LiteGraph.OUTPUT, slot, true if connected, link_info, input_info ) + + onAction: action slot triggered + + getExtraMenuOptions: to add option to context menu +*/ + + /** + * Base Class for all the node type classes + * @class LGraphNode + * @param {String} name a name for the node + */ + + function LGraphNode(title) { + this._ctor(title); + } + + global.LGraphNode = LiteGraph.LGraphNode = LGraphNode; + + LGraphNode.prototype._ctor = function(title) { + this.title = title || "Unnamed"; + this.size = [LiteGraph.NODE_WIDTH, 60]; + this.graph = null; + + this._pos = new Float32Array(10, 10); + + Object.defineProperty(this, "pos", { + set: function(v) { + if (!v || v.length < 2) { + return; + } + this._pos[0] = v[0]; + this._pos[1] = v[1]; + }, + get: function() { + return this._pos; + }, + enumerable: true + }); + + if (LiteGraph.use_uuids) { + this.id = LiteGraph.uuidv4(); + } + else { + this.id = -1; //not know till not added + } + this.type = null; + + //inputs available: array of inputs + this.inputs = []; + this.outputs = []; + this.connections = []; + + //local data + this.properties = {}; //for the values + this.properties_info = []; //for the info + + this.flags = {}; + }; + + /** + * configure a node from an object containing the serialized info + * @method configure + */ + LGraphNode.prototype.configure = function(info) { + if (this.graph) { + this.graph._version++; + } + for (var j in info) { + if (j == "properties") { + //i don't want to clone properties, I want to reuse the old container + for (var k in info.properties) { + this.properties[k] = info.properties[k]; + if (this.onPropertyChanged) { + this.onPropertyChanged( k, info.properties[k] ); + } + } + continue; + } + + if (info[j] == null) { + continue; + } else if (typeof info[j] == "object") { + //object + if (this[j] && this[j].configure) { + this[j].configure(info[j]); + } else { + this[j] = LiteGraph.cloneObject(info[j], this[j]); + } + } //value + else { + this[j] = info[j]; + } + } + + if (!info.title) { + this.title = this.constructor.title; + } + + if (this.inputs) { + for (var i = 0; i < this.inputs.length; ++i) { + var input = this.inputs[i]; + var link_info = this.graph ? this.graph.links[input.link] : null; + if (this.onConnectionsChange) + this.onConnectionsChange( LiteGraph.INPUT, i, true, link_info, input ); //link_info has been created now, so its updated + + if( this.onInputAdded ) + this.onInputAdded(input); + + } + } + + if (this.outputs) { + for (var i = 0; i < this.outputs.length; ++i) { + var output = this.outputs[i]; + if (!output.links) { + continue; + } + for (var j = 0; j < output.links.length; ++j) { + var link_info = this.graph ? this.graph.links[output.links[j]] : null; + if (this.onConnectionsChange) + this.onConnectionsChange( LiteGraph.OUTPUT, i, true, link_info, output ); //link_info has been created now, so its updated + } + + if( this.onOutputAdded ) + this.onOutputAdded(output); + } + } + + if( this.widgets ) + { + for (var i = 0; i < this.widgets.length; ++i) + { + var w = this.widgets[i]; + if(!w) + continue; + if(w.options && w.options.property && (this.properties[ w.options.property ] != undefined)) + w.value = JSON.parse( JSON.stringify( this.properties[ w.options.property ] ) ); + } + if (info.widgets_values) { + for (var i = 0; i < info.widgets_values.length; ++i) { + if (this.widgets[i]) { + this.widgets[i].value = info.widgets_values[i]; + } + } + } + } + + if (this.onConfigure) { + this.onConfigure(info); + } + }; + + /** + * serialize the content + * @method serialize + */ + + LGraphNode.prototype.serialize = function() { + //create serialization object + var o = { + id: this.id, + type: this.type, + pos: this.pos, + size: this.size, + flags: LiteGraph.cloneObject(this.flags), + order: this.order, + mode: this.mode + }; + + //special case for when there were errors + if (this.constructor === LGraphNode && this.last_serialization) { + return this.last_serialization; + } + + if (this.inputs) { + o.inputs = this.inputs; + } + + if (this.outputs) { + //clear outputs last data (because data in connections is never serialized but stored inside the outputs info) + for (var i = 0; i < this.outputs.length; i++) { + delete this.outputs[i]._data; + } + o.outputs = this.outputs; + } + + if (this.title && this.title != this.constructor.title) { + o.title = this.title; + } + + if (this.properties) { + o.properties = LiteGraph.cloneObject(this.properties); + } + + if (this.widgets && this.serialize_widgets) { + o.widgets_values = []; + for (var i = 0; i < this.widgets.length; ++i) { + if(this.widgets[i]) + o.widgets_values[i] = this.widgets[i].value; + else + o.widgets_values[i] = null; + } + } + + if (!o.type) { + o.type = this.constructor.type; + } + + if (this.color) { + o.color = this.color; + } + if (this.bgcolor) { + o.bgcolor = this.bgcolor; + } + if (this.boxcolor) { + o.boxcolor = this.boxcolor; + } + if (this.shape) { + o.shape = this.shape; + } + + if (this.onSerialize) { + if (this.onSerialize(o)) { + console.warn( + "node onSerialize shouldnt return anything, data should be stored in the object pass in the first parameter" + ); + } + } + + return o; + }; + + /* Creates a clone of this node */ + LGraphNode.prototype.clone = function() { + var node = LiteGraph.createNode(this.type); + if (!node) { + return null; + } + + //we clone it because serialize returns shared containers + var data = LiteGraph.cloneObject(this.serialize()); + + //remove links + if (data.inputs) { + for (var i = 0; i < data.inputs.length; ++i) { + data.inputs[i].link = null; + } + } + + if (data.outputs) { + for (var i = 0; i < data.outputs.length; ++i) { + if (data.outputs[i].links) { + data.outputs[i].links.length = 0; + } + } + } + + delete data["id"]; + + if (LiteGraph.use_uuids) { + data["id"] = LiteGraph.uuidv4() + } + + //remove links + node.configure(data); + + return node; + }; + + /** + * serialize and stringify + * @method toString + */ + + LGraphNode.prototype.toString = function() { + return JSON.stringify(this.serialize()); + }; + //LGraphNode.prototype.deserialize = function(info) {} //this cannot be done from within, must be done in LiteGraph + + /** + * get the title string + * @method getTitle + */ + + LGraphNode.prototype.getTitle = function() { + return this.title || this.constructor.title; + }; + + /** + * sets the value of a property + * @method setProperty + * @param {String} name + * @param {*} value + */ + LGraphNode.prototype.setProperty = function(name, value) { + if (!this.properties) { + this.properties = {}; + } + if( value === this.properties[name] ) + return; + var prev_value = this.properties[name]; + this.properties[name] = value; + if (this.onPropertyChanged) { + if( this.onPropertyChanged(name, value, prev_value) === false ) //abort change + this.properties[name] = prev_value; + } + if(this.widgets) //widgets could be linked to properties + for(var i = 0; i < this.widgets.length; ++i) + { + var w = this.widgets[i]; + if(!w) + continue; + if(w.options.property == name) + { + w.value = value; + break; + } + } + }; + + // Execution ************************* + /** + * sets the output data + * @method setOutputData + * @param {number} slot + * @param {*} data + */ + LGraphNode.prototype.setOutputData = function(slot, data) { + if (!this.outputs) { + return; + } + + //this maybe slow and a niche case + //if(slot && slot.constructor === String) + // slot = this.findOutputSlot(slot); + + if (slot == -1 || slot >= this.outputs.length) { + return; + } + + var output_info = this.outputs[slot]; + if (!output_info) { + return; + } + + //store data in the output itself in case we want to debug + output_info._data = data; + + //if there are connections, pass the data to the connections + if (this.outputs[slot].links) { + for (var i = 0; i < this.outputs[slot].links.length; i++) { + var link_id = this.outputs[slot].links[i]; + var link = this.graph.links[link_id]; + if(link) + link.data = data; + } + } + }; + + /** + * sets the output data type, useful when you want to be able to overwrite the data type + * @method setOutputDataType + * @param {number} slot + * @param {String} datatype + */ + LGraphNode.prototype.setOutputDataType = function(slot, type) { + if (!this.outputs) { + return; + } + if (slot == -1 || slot >= this.outputs.length) { + return; + } + var output_info = this.outputs[slot]; + if (!output_info) { + return; + } + //store data in the output itself in case we want to debug + output_info.type = type; + + //if there are connections, pass the data to the connections + if (this.outputs[slot].links) { + for (var i = 0; i < this.outputs[slot].links.length; i++) { + var link_id = this.outputs[slot].links[i]; + this.graph.links[link_id].type = type; + } + } + }; + + /** + * Retrieves the input data (data traveling through the connection) from one slot + * @method getInputData + * @param {number} slot + * @param {boolean} force_update if set to true it will force the connected node of this slot to output data into this link + * @return {*} data or if it is not connected returns undefined + */ + LGraphNode.prototype.getInputData = function(slot, force_update) { + if (!this.inputs) { + return; + } //undefined; + + if (slot >= this.inputs.length || this.inputs[slot].link == null) { + return; + } + + var link_id = this.inputs[slot].link; + var link = this.graph.links[link_id]; + if (!link) { + //bug: weird case but it happens sometimes + return null; + } + + if (!force_update) { + return link.data; + } + + //special case: used to extract data from the incoming connection before the graph has been executed + var node = this.graph.getNodeById(link.origin_id); + if (!node) { + return link.data; + } + + if (node.updateOutputData) { + node.updateOutputData(link.origin_slot); + } else if (node.onExecute) { + node.onExecute(); + } + + return link.data; + }; + + /** + * Retrieves the input data type (in case this supports multiple input types) + * @method getInputDataType + * @param {number} slot + * @return {String} datatype in string format + */ + LGraphNode.prototype.getInputDataType = function(slot) { + if (!this.inputs) { + return null; + } //undefined; + + if (slot >= this.inputs.length || this.inputs[slot].link == null) { + return null; + } + var link_id = this.inputs[slot].link; + var link = this.graph.links[link_id]; + if (!link) { + //bug: weird case but it happens sometimes + return null; + } + var node = this.graph.getNodeById(link.origin_id); + if (!node) { + return link.type; + } + var output_info = node.outputs[link.origin_slot]; + if (output_info) { + return output_info.type; + } + return null; + }; + + /** + * Retrieves the input data from one slot using its name instead of slot number + * @method getInputDataByName + * @param {String} slot_name + * @param {boolean} force_update if set to true it will force the connected node of this slot to output data into this link + * @return {*} data or if it is not connected returns null + */ + LGraphNode.prototype.getInputDataByName = function( + slot_name, + force_update + ) { + var slot = this.findInputSlot(slot_name); + if (slot == -1) { + return null; + } + return this.getInputData(slot, force_update); + }; + + /** + * tells you if there is a connection in one input slot + * @method isInputConnected + * @param {number} slot + * @return {boolean} + */ + LGraphNode.prototype.isInputConnected = function(slot) { + if (!this.inputs) { + return false; + } + return slot < this.inputs.length && this.inputs[slot].link != null; + }; + + /** + * tells you info about an input connection (which node, type, etc) + * @method getInputInfo + * @param {number} slot + * @return {Object} object or null { link: id, name: string, type: string or 0 } + */ + LGraphNode.prototype.getInputInfo = function(slot) { + if (!this.inputs) { + return null; + } + if (slot < this.inputs.length) { + return this.inputs[slot]; + } + return null; + }; + + /** + * Returns the link info in the connection of an input slot + * @method getInputLink + * @param {number} slot + * @return {LLink} object or null + */ + LGraphNode.prototype.getInputLink = function(slot) { + if (!this.inputs) { + return null; + } + if (slot < this.inputs.length) { + var slot_info = this.inputs[slot]; + return this.graph.links[ slot_info.link ]; + } + return null; + }; + + /** + * returns the node connected in the input slot + * @method getInputNode + * @param {number} slot + * @return {LGraphNode} node or null + */ + LGraphNode.prototype.getInputNode = function(slot) { + if (!this.inputs) { + return null; + } + if (slot >= this.inputs.length) { + return null; + } + var input = this.inputs[slot]; + if (!input || input.link === null) { + return null; + } + var link_info = this.graph.links[input.link]; + if (!link_info) { + return null; + } + return this.graph.getNodeById(link_info.origin_id); + }; + + /** + * returns the value of an input with this name, otherwise checks if there is a property with that name + * @method getInputOrProperty + * @param {string} name + * @return {*} value + */ + LGraphNode.prototype.getInputOrProperty = function(name) { + if (!this.inputs || !this.inputs.length) { + return this.properties ? this.properties[name] : null; + } + + for (var i = 0, l = this.inputs.length; i < l; ++i) { + var input_info = this.inputs[i]; + if (name == input_info.name && input_info.link != null) { + var link = this.graph.links[input_info.link]; + if (link) { + return link.data; + } + } + } + return this.properties[name]; + }; + + /** + * tells you the last output data that went in that slot + * @method getOutputData + * @param {number} slot + * @return {Object} object or null + */ + LGraphNode.prototype.getOutputData = function(slot) { + if (!this.outputs) { + return null; + } + if (slot >= this.outputs.length) { + return null; + } + + var info = this.outputs[slot]; + return info._data; + }; + + /** + * tells you info about an output connection (which node, type, etc) + * @method getOutputInfo + * @param {number} slot + * @return {Object} object or null { name: string, type: string, links: [ ids of links in number ] } + */ + LGraphNode.prototype.getOutputInfo = function(slot) { + if (!this.outputs) { + return null; + } + if (slot < this.outputs.length) { + return this.outputs[slot]; + } + return null; + }; + + /** + * tells you if there is a connection in one output slot + * @method isOutputConnected + * @param {number} slot + * @return {boolean} + */ + LGraphNode.prototype.isOutputConnected = function(slot) { + if (!this.outputs) { + return false; + } + return ( + slot < this.outputs.length && + this.outputs[slot].links && + this.outputs[slot].links.length + ); + }; + + /** + * tells you if there is any connection in the output slots + * @method isAnyOutputConnected + * @return {boolean} + */ + LGraphNode.prototype.isAnyOutputConnected = function() { + if (!this.outputs) { + return false; + } + for (var i = 0; i < this.outputs.length; ++i) { + if (this.outputs[i].links && this.outputs[i].links.length) { + return true; + } + } + return false; + }; + + /** + * retrieves all the nodes connected to this output slot + * @method getOutputNodes + * @param {number} slot + * @return {array} + */ + LGraphNode.prototype.getOutputNodes = function(slot) { + if (!this.outputs || this.outputs.length == 0) { + return null; + } + + if (slot >= this.outputs.length) { + return null; + } + + var output = this.outputs[slot]; + if (!output.links || output.links.length == 0) { + return null; + } + + var r = []; + for (var i = 0; i < output.links.length; i++) { + var link_id = output.links[i]; + var link = this.graph.links[link_id]; + if (link) { + var target_node = this.graph.getNodeById(link.target_id); + if (target_node) { + r.push(target_node); + } + } + } + return r; + }; + + LGraphNode.prototype.addOnTriggerInput = function(){ + var trigS = this.findInputSlot("onTrigger"); + if (trigS == -1){ //!trigS || + var input = this.addInput("onTrigger", LiteGraph.EVENT, {optional: true, nameLocked: true}); + return this.findInputSlot("onTrigger"); + } + return trigS; + } + + LGraphNode.prototype.addOnExecutedOutput = function(){ + var trigS = this.findOutputSlot("onExecuted"); + if (trigS == -1){ //!trigS || + var output = this.addOutput("onExecuted", LiteGraph.ACTION, {optional: true, nameLocked: true}); + return this.findOutputSlot("onExecuted"); + } + return trigS; + } + + LGraphNode.prototype.onAfterExecuteNode = function(param, options){ + var trigS = this.findOutputSlot("onExecuted"); + if (trigS != -1){ + + //console.debug(this.id+":"+this.order+" triggering slot onAfterExecute"); + //console.debug(param); + //console.debug(options); + this.triggerSlot(trigS, param, null, options); + + } + } + + LGraphNode.prototype.changeMode = function(modeTo){ + switch(modeTo){ + case LiteGraph.ON_EVENT: + // this.addOnExecutedOutput(); + break; + + case LiteGraph.ON_TRIGGER: + this.addOnTriggerInput(); + this.addOnExecutedOutput(); + break; + + case LiteGraph.NEVER: + break; + + case LiteGraph.ALWAYS: + break; + + case LiteGraph.ON_REQUEST: + break; + + default: + return false; + break; + } + this.mode = modeTo; + return true; + }; + + /** + * Triggers the node code execution, place a boolean/counter to mark the node as being executed + * @method execute + * @param {*} param + * @param {*} options + */ + LGraphNode.prototype.doExecute = function(param, options) { + options = options || {}; + if (this.onExecute){ + + // enable this to give the event an ID + if (!options.action_call) options.action_call = this.id+"_exec_"+Math.floor(Math.random()*9999); + + this.graph.nodes_executing[this.id] = true; //.push(this.id); + + this.onExecute(param, options); + + this.graph.nodes_executing[this.id] = false; //.pop(); + + // save execution/action ref + this.exec_version = this.graph.iteration; + if(options && options.action_call){ + this.action_call = options.action_call; // if (param) + this.graph.nodes_executedAction[this.id] = options.action_call; + } + } + this.execute_triggered = 2; // the nFrames it will be used (-- each step), means "how old" is the event + if(this.onAfterExecuteNode) this.onAfterExecuteNode(param, options); // callback + }; + + /** + * Triggers an action, wrapped by logics to control execution flow + * @method actionDo + * @param {String} action name + * @param {*} param + */ + LGraphNode.prototype.actionDo = function(action, param, options) { + options = options || {}; + if (this.onAction){ + + // enable this to give the event an ID + if (!options.action_call) options.action_call = this.id+"_"+(action?action:"action")+"_"+Math.floor(Math.random()*9999); + + this.graph.nodes_actioning[this.id] = (action?action:"actioning"); //.push(this.id); + + this.onAction(action, param, options); + + this.graph.nodes_actioning[this.id] = false; //.pop(); + + // save execution/action ref + if(options && options.action_call){ + this.action_call = options.action_call; // if (param) + this.graph.nodes_executedAction[this.id] = options.action_call; + } + } + this.action_triggered = 2; // the nFrames it will be used (-- each step), means "how old" is the event + if(this.onAfterExecuteNode) this.onAfterExecuteNode(param, options); + }; + + /** + * Triggers an event in this node, this will trigger any output with the same name + * @method trigger + * @param {String} event name ( "on_play", ... ) if action is equivalent to false then the event is send to all + * @param {*} param + */ + LGraphNode.prototype.trigger = function(action, param, options) { + if (!this.outputs || !this.outputs.length) { + return; + } + + if (this.graph) + this.graph._last_trigger_time = LiteGraph.getTime(); + + for (var i = 0; i < this.outputs.length; ++i) { + var output = this.outputs[i]; + if ( !output || output.type !== LiteGraph.EVENT || (action && output.name != action) ) + continue; + this.triggerSlot(i, param, null, options); + } + }; + + /** + * Triggers a slot event in this node: cycle output slots and launch execute/action on connected nodes + * @method triggerSlot + * @param {Number} slot the index of the output slot + * @param {*} param + * @param {Number} link_id [optional] in case you want to trigger and specific output link in a slot + */ + LGraphNode.prototype.triggerSlot = function(slot, param, link_id, options) { + options = options || {}; + if (!this.outputs) { + return; + } + + if(slot == null) + { + console.error("slot must be a number"); + return; + } + + if(slot.constructor !== Number) + console.warn("slot must be a number, use node.trigger('name') if you want to use a string"); + + var output = this.outputs[slot]; + if (!output) { + return; + } + + var links = output.links; + if (!links || !links.length) { + return; + } + + if (this.graph) { + this.graph._last_trigger_time = LiteGraph.getTime(); + } + + //for every link attached here + for (var k = 0; k < links.length; ++k) { + var id = links[k]; + if (link_id != null && link_id != id) { + //to skip links + continue; + } + var link_info = this.graph.links[links[k]]; + if (!link_info) { + //not connected + continue; + } + link_info._last_time = LiteGraph.getTime(); + var node = this.graph.getNodeById(link_info.target_id); + if (!node) { + //node not found? + continue; + } + + //used to mark events in graph + var target_connection = node.inputs[link_info.target_slot]; + + if (node.mode === LiteGraph.ON_TRIGGER) + { + // generate unique trigger ID if not present + if (!options.action_call) options.action_call = this.id+"_trigg_"+Math.floor(Math.random()*9999); + if (node.onExecute) { + // -- wrapping node.onExecute(param); -- + node.doExecute(param, options); + } + } + else if (node.onAction) { + // generate unique action ID if not present + if (!options.action_call) options.action_call = this.id+"_act_"+Math.floor(Math.random()*9999); + //pass the action name + var target_connection = node.inputs[link_info.target_slot]; + // wrap node.onAction(target_connection.name, param); + node.actionDo(target_connection.name, param, options); + } + } + }; + + /** + * clears the trigger slot animation + * @method clearTriggeredSlot + * @param {Number} slot the index of the output slot + * @param {Number} link_id [optional] in case you want to trigger and specific output link in a slot + */ + LGraphNode.prototype.clearTriggeredSlot = function(slot, link_id) { + if (!this.outputs) { + return; + } + + var output = this.outputs[slot]; + if (!output) { + return; + } + + var links = output.links; + if (!links || !links.length) { + return; + } + + //for every link attached here + for (var k = 0; k < links.length; ++k) { + var id = links[k]; + if (link_id != null && link_id != id) { + //to skip links + continue; + } + var link_info = this.graph.links[links[k]]; + if (!link_info) { + //not connected + continue; + } + link_info._last_time = 0; + } + }; + + /** + * changes node size and triggers callback + * @method setSize + * @param {vec2} size + */ + LGraphNode.prototype.setSize = function(size) + { + this.size = size; + if(this.onResize) + this.onResize(this.size); + } + + /** + * add a new property to this node + * @method addProperty + * @param {string} name + * @param {*} default_value + * @param {string} type string defining the output type ("vec3","number",...) + * @param {Object} extra_info this can be used to have special properties of the property (like values, etc) + */ + LGraphNode.prototype.addProperty = function( + name, + default_value, + type, + extra_info + ) { + var o = { name: name, type: type, default_value: default_value }; + if (extra_info) { + for (var i in extra_info) { + o[i] = extra_info[i]; + } + } + if (!this.properties_info) { + this.properties_info = []; + } + this.properties_info.push(o); + if (!this.properties) { + this.properties = {}; + } + this.properties[name] = default_value; + return o; + }; + + //connections + + /** + * add a new output slot to use in this node + * @method addOutput + * @param {string} name + * @param {string} type string defining the output type ("vec3","number",...) + * @param {Object} extra_info this can be used to have special properties of an output (label, special color, position, etc) + */ + LGraphNode.prototype.addOutput = function(name, type, extra_info) { + var output = { name: name, type: type, links: null }; + if (extra_info) { + for (var i in extra_info) { + output[i] = extra_info[i]; + } + } + + if (!this.outputs) { + this.outputs = []; + } + this.outputs.push(output); + if (this.onOutputAdded) { + this.onOutputAdded(output); + } + + if (LiteGraph.auto_load_slot_types) LiteGraph.registerNodeAndSlotType(this,type,true); + + this.setSize( this.computeSize() ); + this.setDirtyCanvas(true, true); + return output; + }; + + /** + * add a new output slot to use in this node + * @method addOutputs + * @param {Array} array of triplets like [[name,type,extra_info],[...]] + */ + LGraphNode.prototype.addOutputs = function(array) { + for (var i = 0; i < array.length; ++i) { + var info = array[i]; + var o = { name: info[0], type: info[1], link: null }; + if (array[2]) { + for (var j in info[2]) { + o[j] = info[2][j]; + } + } + + if (!this.outputs) { + this.outputs = []; + } + this.outputs.push(o); + if (this.onOutputAdded) { + this.onOutputAdded(o); + } + + if (LiteGraph.auto_load_slot_types) LiteGraph.registerNodeAndSlotType(this,info[1],true); + + } + + this.setSize( this.computeSize() ); + this.setDirtyCanvas(true, true); + }; + + /** + * remove an existing output slot + * @method removeOutput + * @param {number} slot + */ + LGraphNode.prototype.removeOutput = function(slot) { + this.disconnectOutput(slot); + this.outputs.splice(slot, 1); + for (var i = slot; i < this.outputs.length; ++i) { + if (!this.outputs[i] || !this.outputs[i].links) { + continue; + } + var links = this.outputs[i].links; + for (var j = 0; j < links.length; ++j) { + var link = this.graph.links[links[j]]; + if (!link) { + continue; + } + link.origin_slot -= 1; + } + } + + this.setSize( this.computeSize() ); + if (this.onOutputRemoved) { + this.onOutputRemoved(slot); + } + this.setDirtyCanvas(true, true); + }; + + /** + * add a new input slot to use in this node + * @method addInput + * @param {string} name + * @param {string} type string defining the input type ("vec3","number",...), it its a generic one use 0 + * @param {Object} extra_info this can be used to have special properties of an input (label, color, position, etc) + */ + LGraphNode.prototype.addInput = function(name, type, extra_info) { + type = type || 0; + var input = { name: name, type: type, link: null }; + if (extra_info) { + for (var i in extra_info) { + input[i] = extra_info[i]; + } + } + + if (!this.inputs) { + this.inputs = []; + } + + this.inputs.push(input); + this.setSize( this.computeSize() ); + + if (this.onInputAdded) { + this.onInputAdded(input); + } + + LiteGraph.registerNodeAndSlotType(this,type); + + this.setDirtyCanvas(true, true); + return input; + }; + + /** + * add several new input slots in this node + * @method addInputs + * @param {Array} array of triplets like [[name,type,extra_info],[...]] + */ + LGraphNode.prototype.addInputs = function(array) { + for (var i = 0; i < array.length; ++i) { + var info = array[i]; + var o = { name: info[0], type: info[1], link: null }; + if (array[2]) { + for (var j in info[2]) { + o[j] = info[2][j]; + } + } + + if (!this.inputs) { + this.inputs = []; + } + this.inputs.push(o); + if (this.onInputAdded) { + this.onInputAdded(o); + } + + LiteGraph.registerNodeAndSlotType(this,info[1]); + } + + this.setSize( this.computeSize() ); + this.setDirtyCanvas(true, true); + }; + + /** + * remove an existing input slot + * @method removeInput + * @param {number} slot + */ + LGraphNode.prototype.removeInput = function(slot) { + this.disconnectInput(slot); + var slot_info = this.inputs.splice(slot, 1); + for (var i = slot; i < this.inputs.length; ++i) { + if (!this.inputs[i]) { + continue; + } + var link = this.graph.links[this.inputs[i].link]; + if (!link) { + continue; + } + link.target_slot -= 1; + } + this.setSize( this.computeSize() ); + if (this.onInputRemoved) { + this.onInputRemoved(slot, slot_info[0] ); + } + this.setDirtyCanvas(true, true); + }; + + /** + * add an special connection to this node (used for special kinds of graphs) + * @method addConnection + * @param {string} name + * @param {string} type string defining the input type ("vec3","number",...) + * @param {[x,y]} pos position of the connection inside the node + * @param {string} direction if is input or output + */ + LGraphNode.prototype.addConnection = function(name, type, pos, direction) { + var o = { + name: name, + type: type, + pos: pos, + direction: direction, + links: null + }; + this.connections.push(o); + return o; + }; + + /** + * computes the minimum size of a node according to its inputs and output slots + * @method computeSize + * @param {vec2} minHeight + * @return {vec2} the total size + */ + LGraphNode.prototype.computeSize = function(out) { + if (this.constructor.size) { + return this.constructor.size.concat(); + } + + var rows = Math.max( + this.inputs ? this.inputs.length : 1, + this.outputs ? this.outputs.length : 1 + ); + var size = out || new Float32Array([0, 0]); + rows = Math.max(rows, 1); + var font_size = LiteGraph.NODE_TEXT_SIZE; //although it should be graphcanvas.inner_text_font size + + var title_width = compute_text_size(this.title); + var input_width = 0; + var output_width = 0; + + if (this.inputs) { + for (var i = 0, l = this.inputs.length; i < l; ++i) { + var input = this.inputs[i]; + var text = input.label || input.name || ""; + var text_width = compute_text_size(text); + if (input_width < text_width) { + input_width = text_width; + } + } + } + + if (this.outputs) { + for (var i = 0, l = this.outputs.length; i < l; ++i) { + var output = this.outputs[i]; + var text = output.label || output.name || ""; + var text_width = compute_text_size(text); + if (output_width < text_width) { + output_width = text_width; + } + } + } + + size[0] = Math.max(input_width + output_width + 10, title_width); + size[0] = Math.max(size[0], LiteGraph.NODE_WIDTH); + if (this.widgets && this.widgets.length) { + size[0] = Math.max(size[0], LiteGraph.NODE_WIDTH * 1.5); + } + + size[1] = (this.constructor.slot_start_y || 0) + rows * LiteGraph.NODE_SLOT_HEIGHT; + + var widgets_height = 0; + if (this.widgets && this.widgets.length) { + for (var i = 0, l = this.widgets.length; i < l; ++i) { + if (this.widgets[i].computeSize) + widgets_height += this.widgets[i].computeSize(size[0])[1] + 4; + else + widgets_height += LiteGraph.NODE_WIDGET_HEIGHT + 4; + } + widgets_height += 8; + } + + //compute height using widgets height + if( this.widgets_up ) + size[1] = Math.max( size[1], widgets_height ); + else if( this.widgets_start_y != null ) + size[1] = Math.max( size[1], widgets_height + this.widgets_start_y ); + else + size[1] += widgets_height; + + function compute_text_size(text) { + if (!text) { + return 0; + } + return font_size * text.length * 0.6; + } + + if ( + this.constructor.min_height && + size[1] < this.constructor.min_height + ) { + size[1] = this.constructor.min_height; + } + + size[1] += 6; //margin + + return size; + }; + + LGraphNode.prototype.inResizeCorner = function(canvasX, canvasY) { + var rows = this.outputs ? this.outputs.length : 1; + var outputs_offset = (this.constructor.slot_start_y || 0) + rows * LiteGraph.NODE_SLOT_HEIGHT; + return isInsideRectangle(canvasX, + canvasY, + this.pos[0] + this.size[0] - 15, + this.pos[1] + Math.max(this.size[1] - 15, outputs_offset), + 20, + 20 + ); + } + + /** + * returns all the info available about a property of this node. + * + * @method getPropertyInfo + * @param {String} property name of the property + * @return {Object} the object with all the available info + */ + LGraphNode.prototype.getPropertyInfo = function( property ) + { + var info = null; + + //there are several ways to define info about a property + //legacy mode + if (this.properties_info) { + for (var i = 0; i < this.properties_info.length; ++i) { + if (this.properties_info[i].name == property) { + info = this.properties_info[i]; + break; + } + } + } + //litescene mode using the constructor + if(this.constructor["@" + property]) + info = this.constructor["@" + property]; + + if(this.constructor.widgets_info && this.constructor.widgets_info[property]) + info = this.constructor.widgets_info[property]; + + //litescene mode using the constructor + if (!info && this.onGetPropertyInfo) { + info = this.onGetPropertyInfo(property); + } + + if (!info) + info = {}; + if(!info.type) + info.type = typeof this.properties[property]; + if(info.widget == "combo") + info.type = "enum"; + + return info; + } + + /** + * Defines a widget inside the node, it will be rendered on top of the node, you can control lots of properties + * + * @method addWidget + * @param {String} type the widget type (could be "number","string","combo" + * @param {String} name the text to show on the widget + * @param {String} value the default value + * @param {Function|String} callback function to call when it changes (optionally, it can be the name of the property to modify) + * @param {Object} options the object that contains special properties of this widget + * @return {Object} the created widget object + */ + LGraphNode.prototype.addWidget = function( type, name, value, callback, options ) + { + if (!this.widgets) { + this.widgets = []; + } + + if(!options && callback && callback.constructor === Object) + { + options = callback; + callback = null; + } + + if(options && options.constructor === String) //options can be the property name + options = { property: options }; + + if(callback && callback.constructor === String) //callback can be the property name + { + if(!options) + options = {}; + options.property = callback; + callback = null; + } + + if(callback && callback.constructor !== Function) + { + console.warn("addWidget: callback must be a function"); + callback = null; + } + + var w = { + type: type.toLowerCase(), + name: name, + value: value, + callback: callback, + options: options || {} + }; + + if (w.options.y !== undefined) { + w.y = w.options.y; + } + + if (!callback && !w.options.callback && !w.options.property) { + console.warn("LiteGraph addWidget(...) without a callback or property assigned"); + } + if (type == "combo" && !w.options.values) { + throw "LiteGraph addWidget('combo',...) requires to pass values in options: { values:['red','blue'] }"; + } + this.widgets.push(w); + this.setSize( this.computeSize() ); + return w; + }; + + LGraphNode.prototype.addCustomWidget = function(custom_widget) { + if (!this.widgets) { + this.widgets = []; + } + this.widgets.push(custom_widget); + return custom_widget; + }; + + /** + * returns the bounding of the object, used for rendering purposes + * @method getBounding + * @param out {Float32Array[4]?} [optional] a place to store the output, to free garbage + * @param compute_outer {boolean?} [optional] set to true to include the shadow and connection points in the bounding calculation + * @return {Float32Array[4]} the bounding box in format of [topleft_cornerx, topleft_cornery, width, height] + */ + LGraphNode.prototype.getBounding = function(out, compute_outer) { + out = out || new Float32Array(4); + const nodePos = this.pos; + const isCollapsed = this.flags.collapsed; + const nodeSize = this.size; + + let left_offset = 0; + // 1 offset due to how nodes are rendered + let right_offset = 1 ; + let top_offset = 0; + let bottom_offset = 0; + + if (compute_outer) { + // 4 offset for collapsed node connection points + left_offset = 4; + // 6 offset for right shadow and collapsed node connection points + right_offset = 6 + left_offset; + // 4 offset for collapsed nodes top connection points + top_offset = 4; + // 5 offset for bottom shadow and collapsed node connection points + bottom_offset = 5 + top_offset; + } + + out[0] = nodePos[0] - left_offset; + out[1] = nodePos[1] - LiteGraph.NODE_TITLE_HEIGHT - top_offset; + out[2] = isCollapsed ? + (this._collapsed_width || LiteGraph.NODE_COLLAPSED_WIDTH) + right_offset : + nodeSize[0] + right_offset; + out[3] = isCollapsed ? + LiteGraph.NODE_TITLE_HEIGHT + bottom_offset : + nodeSize[1] + LiteGraph.NODE_TITLE_HEIGHT + bottom_offset; + + if (this.onBounding) { + this.onBounding(out); + } + return out; + }; + + /** + * checks if a point is inside the shape of a node + * @method isPointInside + * @param {number} x + * @param {number} y + * @return {boolean} + */ + LGraphNode.prototype.isPointInside = function(x, y, margin, skip_title) { + margin = margin || 0; + + var margin_top = this.graph && this.graph.isLive() ? 0 : LiteGraph.NODE_TITLE_HEIGHT; + if (skip_title) { + margin_top = 0; + } + if (this.flags && this.flags.collapsed) { + //if ( distance([x,y], [this.pos[0] + this.size[0]*0.5, this.pos[1] + this.size[1]*0.5]) < LiteGraph.NODE_COLLAPSED_RADIUS) + if ( + isInsideRectangle( + x, + y, + this.pos[0] - margin, + this.pos[1] - LiteGraph.NODE_TITLE_HEIGHT - margin, + (this._collapsed_width || LiteGraph.NODE_COLLAPSED_WIDTH) + + 2 * margin, + LiteGraph.NODE_TITLE_HEIGHT + 2 * margin + ) + ) { + return true; + } + } else if ( + this.pos[0] - 4 - margin < x && + this.pos[0] + this.size[0] + 4 + margin > x && + this.pos[1] - margin_top - margin < y && + this.pos[1] + this.size[1] + margin > y + ) { + return true; + } + return false; + }; + + /** + * checks if a point is inside a node slot, and returns info about which slot + * @method getSlotInPosition + * @param {number} x + * @param {number} y + * @return {Object} if found the object contains { input|output: slot object, slot: number, link_pos: [x,y] } + */ + LGraphNode.prototype.getSlotInPosition = function(x, y) { + //search for inputs + var link_pos = new Float32Array(2); + if (this.inputs) { + for (var i = 0, l = this.inputs.length; i < l; ++i) { + var input = this.inputs[i]; + this.getConnectionPos(true, i, link_pos); + if ( + isInsideRectangle( + x, + y, + link_pos[0] - 10, + link_pos[1] - 5, + 20, + 10 + ) + ) { + return { input: input, slot: i, link_pos: link_pos }; + } + } + } + + if (this.outputs) { + for (var i = 0, l = this.outputs.length; i < l; ++i) { + var output = this.outputs[i]; + this.getConnectionPos(false, i, link_pos); + if ( + isInsideRectangle( + x, + y, + link_pos[0] - 10, + link_pos[1] - 5, + 20, + 10 + ) + ) { + return { output: output, slot: i, link_pos: link_pos }; + } + } + } + + return null; + }; + + /** + * returns the input slot with a given name (used for dynamic slots), -1 if not found + * @method findInputSlot + * @param {string} name the name of the slot + * @param {boolean} returnObj if the obj itself wanted + * @return {number_or_object} the slot (-1 if not found) + */ + LGraphNode.prototype.findInputSlot = function(name, returnObj) { + if (!this.inputs) { + return -1; + } + for (var i = 0, l = this.inputs.length; i < l; ++i) { + if (name == this.inputs[i].name) { + return !returnObj ? i : this.inputs[i]; + } + } + return -1; + }; + + /** + * returns the output slot with a given name (used for dynamic slots), -1 if not found + * @method findOutputSlot + * @param {string} name the name of the slot + * @param {boolean} returnObj if the obj itself wanted + * @return {number_or_object} the slot (-1 if not found) + */ + LGraphNode.prototype.findOutputSlot = function(name, returnObj) { + returnObj = returnObj || false; + if (!this.outputs) { + return -1; + } + for (var i = 0, l = this.outputs.length; i < l; ++i) { + if (name == this.outputs[i].name) { + return !returnObj ? i : this.outputs[i]; + } + } + return -1; + }; + + // TODO refactor: USE SINGLE findInput/findOutput functions! :: merge options + + /** + * returns the first free input slot + * @method findInputSlotFree + * @param {object} options + * @return {number_or_object} the slot (-1 if not found) + */ + LGraphNode.prototype.findInputSlotFree = function(optsIn) { + var optsIn = optsIn || {}; + var optsDef = {returnObj: false + ,typesNotAccepted: [] + }; + var opts = Object.assign(optsDef,optsIn); + if (!this.inputs) { + return -1; + } + for (var i = 0, l = this.inputs.length; i < l; ++i) { + if (this.inputs[i].link && this.inputs[i].link != null) { + continue; + } + if (opts.typesNotAccepted && opts.typesNotAccepted.includes && opts.typesNotAccepted.includes(this.inputs[i].type)){ + continue; + } + return !opts.returnObj ? i : this.inputs[i]; + } + return -1; + }; + + /** + * returns the first output slot free + * @method findOutputSlotFree + * @param {object} options + * @return {number_or_object} the slot (-1 if not found) + */ + LGraphNode.prototype.findOutputSlotFree = function(optsIn) { + var optsIn = optsIn || {}; + var optsDef = { returnObj: false + ,typesNotAccepted: [] + }; + var opts = Object.assign(optsDef,optsIn); + if (!this.outputs) { + return -1; + } + for (var i = 0, l = this.outputs.length; i < l; ++i) { + if (this.outputs[i].links && this.outputs[i].links != null) { + continue; + } + if (opts.typesNotAccepted && opts.typesNotAccepted.includes && opts.typesNotAccepted.includes(this.outputs[i].type)){ + continue; + } + return !opts.returnObj ? i : this.outputs[i]; + } + return -1; + }; + + /** + * findSlotByType for INPUTS + */ + LGraphNode.prototype.findInputSlotByType = function(type, returnObj, preferFreeSlot, doNotUseOccupied) { + return this.findSlotByType(true, type, returnObj, preferFreeSlot, doNotUseOccupied); + }; + + /** + * findSlotByType for OUTPUTS + */ + LGraphNode.prototype.findOutputSlotByType = function(type, returnObj, preferFreeSlot, doNotUseOccupied) { + return this.findSlotByType(false, type, returnObj, preferFreeSlot, doNotUseOccupied); + }; + + /** + * returns the output (or input) slot with a given type, -1 if not found + * @method findSlotByType + * @param {boolean} input uise inputs instead of outputs + * @param {string} type the type of the slot + * @param {boolean} returnObj if the obj itself wanted + * @param {boolean} preferFreeSlot if we want a free slot (if not found, will return the first of the type anyway) + * @return {number_or_object} the slot (-1 if not found) + */ + LGraphNode.prototype.findSlotByType = function(input, type, returnObj, preferFreeSlot, doNotUseOccupied) { + input = input || false; + returnObj = returnObj || false; + preferFreeSlot = preferFreeSlot || false; + doNotUseOccupied = doNotUseOccupied || false; + var aSlots = input ? this.inputs : this.outputs; + if (!aSlots) { + return -1; + } + // !! empty string type is considered 0, * !! + if (type == "" || type == "*") type = 0; + for (var i = 0, l = aSlots.length; i < l; ++i) { + var tFound = false; + var aSource = (type+"").toLowerCase().split(","); + var aDest = aSlots[i].type=="0"||aSlots[i].type=="*"?"0":aSlots[i].type; + aDest = (aDest+"").toLowerCase().split(","); + for(var sI=0;sI= 0 && target_slot !== null){ + //console.debug("CONNbyTYPE type "+target_slotType+" for "+target_slot) + return this.connect(slot, target_node, target_slot); + }else{ + //console.log("type "+target_slotType+" not found or not free?") + if (opts.createEventInCase && target_slotType == LiteGraph.EVENT){ + // WILL CREATE THE onTrigger IN SLOT + //console.debug("connect WILL CREATE THE onTrigger "+target_slotType+" to "+target_node); + return this.connect(slot, target_node, -1); + } + // connect to the first general output slot if not found a specific type and + if (opts.generalTypeInCase){ + var target_slot = target_node.findInputSlotByType(0, false, true, true); + //console.debug("connect TO a general type (*, 0), if not found the specific type ",target_slotType," to ",target_node,"RES_SLOT:",target_slot); + if (target_slot >= 0){ + return this.connect(slot, target_node, target_slot); + } + } + // connect to the first free input slot if not found a specific type and this output is general + if (opts.firstFreeIfOutputGeneralInCase && (target_slotType == 0 || target_slotType == "*" || target_slotType == "")){ + var target_slot = target_node.findInputSlotFree({typesNotAccepted: [LiteGraph.EVENT] }); + //console.debug("connect TO TheFirstFREE ",target_slotType," to ",target_node,"RES_SLOT:",target_slot); + if (target_slot >= 0){ + return this.connect(slot, target_node, target_slot); + } + } + + console.debug("no way to connect type: ",target_slotType," to targetNODE ",target_node); + //TODO filter + + return null; + } + } + + /** + * connect this node input to the output of another node BY TYPE + * @method connectByType + * @param {number_or_string} slot (could be the number of the slot or the string with the name of the slot) + * @param {LGraphNode} node the target node + * @param {string} target_type the output slot type of the target node + * @return {Object} the link_info is created, otherwise null + */ + LGraphNode.prototype.connectByTypeOutput = function(slot, source_node, source_slotType, optsIn) { + var optsIn = optsIn || {}; + var optsDef = { createEventInCase: true + ,firstFreeIfInputGeneralInCase: true + ,generalTypeInCase: true + }; + var opts = Object.assign(optsDef,optsIn); + if (source_node && source_node.constructor === Number) { + source_node = this.graph.getNodeById(source_node); + } + var source_slot = source_node.findOutputSlotByType(source_slotType, false, true); + if (source_slot >= 0 && source_slot !== null){ + //console.debug("CONNbyTYPE OUT! type "+source_slotType+" for "+source_slot) + return source_node.connect(source_slot, this, slot); + }else{ + + // connect to the first general output slot if not found a specific type and + if (opts.generalTypeInCase){ + var source_slot = source_node.findOutputSlotByType(0, false, true, true); + if (source_slot >= 0){ + return source_node.connect(source_slot, this, slot); + } + } + + if (opts.createEventInCase && source_slotType == LiteGraph.EVENT){ + // WILL CREATE THE onExecuted OUT SLOT + if (LiteGraph.do_add_triggers_slots){ + var source_slot = source_node.addOnExecutedOutput(); + return source_node.connect(source_slot, this, slot); + } + } + // connect to the first free output slot if not found a specific type and this input is general + if (opts.firstFreeIfInputGeneralInCase && (source_slotType == 0 || source_slotType == "*" || source_slotType == "")){ + var source_slot = source_node.findOutputSlotFree({typesNotAccepted: [LiteGraph.EVENT] }); + if (source_slot >= 0){ + return source_node.connect(source_slot, this, slot); + } + } + + console.debug("no way to connect byOUT type: ",source_slotType," to sourceNODE ",source_node); + //TODO filter + + //console.log("type OUT! "+source_slotType+" not found or not free?") + return null; + } + } + + /** + * connect this node output to the input of another node + * @method connect + * @param {number_or_string} slot (could be the number of the slot or the string with the name of the slot) + * @param {LGraphNode} node the target node + * @param {number_or_string} target_slot the input slot of the target node (could be the number of the slot or the string with the name of the slot, or -1 to connect a trigger) + * @return {Object} the link_info is created, otherwise null + */ + LGraphNode.prototype.connect = function(slot, target_node, target_slot) { + target_slot = target_slot || 0; + + if (!this.graph) { + //could be connected before adding it to a graph + console.log( + "Connect: Error, node doesn't belong to any graph. Nodes must be added first to a graph before connecting them." + ); //due to link ids being associated with graphs + return null; + } + + //seek for the output slot + if (slot.constructor === String) { + slot = this.findOutputSlot(slot); + if (slot == -1) { + if (LiteGraph.debug) { + console.log("Connect: Error, no slot of name " + slot); + } + return null; + } + } else if (!this.outputs || slot >= this.outputs.length) { + if (LiteGraph.debug) { + console.log("Connect: Error, slot number not found"); + } + return null; + } + + if (target_node && target_node.constructor === Number) { + target_node = this.graph.getNodeById(target_node); + } + if (!target_node) { + throw "target node is null"; + } + + //avoid loopback + if (target_node == this) { + return null; + } + + //you can specify the slot by name + if (target_slot.constructor === String) { + target_slot = target_node.findInputSlot(target_slot); + if (target_slot == -1) { + if (LiteGraph.debug) { + console.log( + "Connect: Error, no slot of name " + target_slot + ); + } + return null; + } + } else if (target_slot === LiteGraph.EVENT) { + + if (LiteGraph.do_add_triggers_slots){ + //search for first slot with event? :: NO this is done outside + //console.log("Connect: Creating triggerEvent"); + // force mode + target_node.changeMode(LiteGraph.ON_TRIGGER); + target_slot = target_node.findInputSlot("onTrigger"); + }else{ + return null; // -- break -- + } + } else if ( + !target_node.inputs || + target_slot >= target_node.inputs.length + ) { + if (LiteGraph.debug) { + console.log("Connect: Error, slot number not found"); + } + return null; + } + + var changed = false; + + var input = target_node.inputs[target_slot]; + var link_info = null; + var output = this.outputs[slot]; + + if (!this.outputs[slot]){ + /*console.debug("Invalid slot passed: "+slot); + console.debug(this.outputs);*/ + return null; + } + + // allow target node to change slot + if (target_node.onBeforeConnectInput) { + // This way node can choose another slot (or make a new one?) + target_slot = target_node.onBeforeConnectInput(target_slot); //callback + } + + //check target_slot and check connection types + if (target_slot===false || target_slot===null || !LiteGraph.isValidConnection(output.type, input.type)) + { + this.setDirtyCanvas(false, true); + if(changed) + this.graph.connectionChange(this, link_info); + return null; + }else{ + //console.debug("valid connection",output.type, input.type); + } + + //allows nodes to block connection, callback + if (target_node.onConnectInput) { + if ( target_node.onConnectInput(target_slot, output.type, output, this, slot) === false ) { + return null; + } + } + if (this.onConnectOutput) { // callback + if ( this.onConnectOutput(slot, input.type, input, target_node, target_slot) === false ) { + return null; + } + } + + //if there is something already plugged there, disconnect + if (target_node.inputs[target_slot] && target_node.inputs[target_slot].link != null) { + this.graph.beforeChange(); + target_node.disconnectInput(target_slot, {doProcessChange: false}); + changed = true; + } + if (output.links !== null && output.links.length){ + switch(output.type){ + case LiteGraph.EVENT: + if (!LiteGraph.allow_multi_output_for_events){ + this.graph.beforeChange(); + this.disconnectOutput(slot, false, {doProcessChange: false}); // Input(target_slot, {doProcessChange: false}); + changed = true; + } + break; + default: + break; + } + } + + var nextId + if (LiteGraph.use_uuids) + nextId = LiteGraph.uuidv4(); + else + nextId = ++this.graph.last_link_id; + + //create link class + link_info = new LLink( + nextId, + input.type || output.type, + this.id, + slot, + target_node.id, + target_slot + ); + + //add to graph links list + this.graph.links[link_info.id] = link_info; + + //connect in output + if (output.links == null) { + output.links = []; + } + output.links.push(link_info.id); + //connect in input + target_node.inputs[target_slot].link = link_info.id; + if (this.graph) { + this.graph._version++; + } + if (this.onConnectionsChange) { + this.onConnectionsChange( + LiteGraph.OUTPUT, + slot, + true, + link_info, + output + ); + } //link_info has been created now, so its updated + if (target_node.onConnectionsChange) { + target_node.onConnectionsChange( + LiteGraph.INPUT, + target_slot, + true, + link_info, + input + ); + } + if (this.graph && this.graph.onNodeConnectionChange) { + this.graph.onNodeConnectionChange( + LiteGraph.INPUT, + target_node, + target_slot, + this, + slot + ); + this.graph.onNodeConnectionChange( + LiteGraph.OUTPUT, + this, + slot, + target_node, + target_slot + ); + } + + this.setDirtyCanvas(false, true); + this.graph.afterChange(); + this.graph.connectionChange(this, link_info); + + return link_info; + }; + + /** + * disconnect one output to an specific node + * @method disconnectOutput + * @param {number_or_string} slot (could be the number of the slot or the string with the name of the slot) + * @param {LGraphNode} target_node the target node to which this slot is connected [Optional, if not target_node is specified all nodes will be disconnected] + * @return {boolean} if it was disconnected successfully + */ + LGraphNode.prototype.disconnectOutput = function(slot, target_node) { + if (slot.constructor === String) { + slot = this.findOutputSlot(slot); + if (slot == -1) { + if (LiteGraph.debug) { + console.log("Connect: Error, no slot of name " + slot); + } + return false; + } + } else if (!this.outputs || slot >= this.outputs.length) { + if (LiteGraph.debug) { + console.log("Connect: Error, slot number not found"); + } + return false; + } + + //get output slot + var output = this.outputs[slot]; + if (!output || !output.links || output.links.length == 0) { + return false; + } + + //one of the output links in this slot + if (target_node) { + if (target_node.constructor === Number) { + target_node = this.graph.getNodeById(target_node); + } + if (!target_node) { + throw "Target Node not found"; + } + + for (var i = 0, l = output.links.length; i < l; i++) { + var link_id = output.links[i]; + var link_info = this.graph.links[link_id]; + + //is the link we are searching for... + if (link_info.target_id == target_node.id) { + output.links.splice(i, 1); //remove here + var input = target_node.inputs[link_info.target_slot]; + input.link = null; //remove there + delete this.graph.links[link_id]; //remove the link from the links pool + if (this.graph) { + this.graph._version++; + } + if (target_node.onConnectionsChange) { + target_node.onConnectionsChange( + LiteGraph.INPUT, + link_info.target_slot, + false, + link_info, + input + ); + } //link_info hasn't been modified so its ok + if (this.onConnectionsChange) { + this.onConnectionsChange( + LiteGraph.OUTPUT, + slot, + false, + link_info, + output + ); + } + if (this.graph && this.graph.onNodeConnectionChange) { + this.graph.onNodeConnectionChange( + LiteGraph.OUTPUT, + this, + slot + ); + } + if (this.graph && this.graph.onNodeConnectionChange) { + this.graph.onNodeConnectionChange( + LiteGraph.OUTPUT, + this, + slot + ); + this.graph.onNodeConnectionChange( + LiteGraph.INPUT, + target_node, + link_info.target_slot + ); + } + break; + } + } + } //all the links in this output slot + else { + for (var i = 0, l = output.links.length; i < l; i++) { + var link_id = output.links[i]; + var link_info = this.graph.links[link_id]; + if (!link_info) { + //bug: it happens sometimes + continue; + } + + var target_node = this.graph.getNodeById(link_info.target_id); + var input = null; + if (this.graph) { + this.graph._version++; + } + if (target_node) { + input = target_node.inputs[link_info.target_slot]; + input.link = null; //remove other side link + if (target_node.onConnectionsChange) { + target_node.onConnectionsChange( + LiteGraph.INPUT, + link_info.target_slot, + false, + link_info, + input + ); + } //link_info hasn't been modified so its ok + if (this.graph && this.graph.onNodeConnectionChange) { + this.graph.onNodeConnectionChange( + LiteGraph.INPUT, + target_node, + link_info.target_slot + ); + } + } + delete this.graph.links[link_id]; //remove the link from the links pool + if (this.onConnectionsChange) { + this.onConnectionsChange( + LiteGraph.OUTPUT, + slot, + false, + link_info, + output + ); + } + if (this.graph && this.graph.onNodeConnectionChange) { + this.graph.onNodeConnectionChange( + LiteGraph.OUTPUT, + this, + slot + ); + this.graph.onNodeConnectionChange( + LiteGraph.INPUT, + target_node, + link_info.target_slot + ); + } + } + output.links = null; + } + + this.setDirtyCanvas(false, true); + this.graph.connectionChange(this); + return true; + }; + + /** + * disconnect one input + * @method disconnectInput + * @param {number_or_string} slot (could be the number of the slot or the string with the name of the slot) + * @return {boolean} if it was disconnected successfully + */ + LGraphNode.prototype.disconnectInput = function(slot) { + //seek for the output slot + if (slot.constructor === String) { + slot = this.findInputSlot(slot); + if (slot == -1) { + if (LiteGraph.debug) { + console.log("Connect: Error, no slot of name " + slot); + } + return false; + } + } else if (!this.inputs || slot >= this.inputs.length) { + if (LiteGraph.debug) { + console.log("Connect: Error, slot number not found"); + } + return false; + } + + var input = this.inputs[slot]; + if (!input) { + return false; + } + + var link_id = this.inputs[slot].link; + if(link_id != null) + { + this.inputs[slot].link = null; + + //remove other side + var link_info = this.graph.links[link_id]; + if (link_info) { + var target_node = this.graph.getNodeById(link_info.origin_id); + if (!target_node) { + return false; + } + + var output = target_node.outputs[link_info.origin_slot]; + if (!output || !output.links || output.links.length == 0) { + return false; + } + + //search in the inputs list for this link + for (var i = 0, l = output.links.length; i < l; i++) { + if (output.links[i] == link_id) { + output.links.splice(i, 1); + break; + } + } + + delete this.graph.links[link_id]; //remove from the pool + if (this.graph) { + this.graph._version++; + } + if (this.onConnectionsChange) { + this.onConnectionsChange( + LiteGraph.INPUT, + slot, + false, + link_info, + input + ); + } + if (target_node.onConnectionsChange) { + target_node.onConnectionsChange( + LiteGraph.OUTPUT, + i, + false, + link_info, + output + ); + } + if (this.graph && this.graph.onNodeConnectionChange) { + this.graph.onNodeConnectionChange( + LiteGraph.OUTPUT, + target_node, + i + ); + this.graph.onNodeConnectionChange(LiteGraph.INPUT, this, slot); + } + } + } //link != null + + this.setDirtyCanvas(false, true); + if(this.graph) + this.graph.connectionChange(this); + return true; + }; + + /** + * returns the center of a connection point in canvas coords + * @method getConnectionPos + * @param {boolean} is_input true if if a input slot, false if it is an output + * @param {number_or_string} slot (could be the number of the slot or the string with the name of the slot) + * @param {vec2} out [optional] a place to store the output, to free garbage + * @return {[x,y]} the position + **/ + LGraphNode.prototype.getConnectionPos = function( + is_input, + slot_number, + out + ) { + out = out || new Float32Array(2); + var num_slots = 0; + if (is_input && this.inputs) { + num_slots = this.inputs.length; + } + if (!is_input && this.outputs) { + num_slots = this.outputs.length; + } + + var offset = LiteGraph.NODE_SLOT_HEIGHT * 0.5; + + if (this.flags.collapsed) { + var w = this._collapsed_width || LiteGraph.NODE_COLLAPSED_WIDTH; + if (this.horizontal) { + out[0] = this.pos[0] + w * 0.5; + if (is_input) { + out[1] = this.pos[1] - LiteGraph.NODE_TITLE_HEIGHT; + } else { + out[1] = this.pos[1]; + } + } else { + if (is_input) { + out[0] = this.pos[0]; + } else { + out[0] = this.pos[0] + w; + } + out[1] = this.pos[1] - LiteGraph.NODE_TITLE_HEIGHT * 0.5; + } + return out; + } + + //weird feature that never got finished + if (is_input && slot_number == -1) { + out[0] = this.pos[0] + LiteGraph.NODE_TITLE_HEIGHT * 0.5; + out[1] = this.pos[1] + LiteGraph.NODE_TITLE_HEIGHT * 0.5; + return out; + } + + //hard-coded pos + if ( + is_input && + num_slots > slot_number && + this.inputs[slot_number].pos + ) { + out[0] = this.pos[0] + this.inputs[slot_number].pos[0]; + out[1] = this.pos[1] + this.inputs[slot_number].pos[1]; + return out; + } else if ( + !is_input && + num_slots > slot_number && + this.outputs[slot_number].pos + ) { + out[0] = this.pos[0] + this.outputs[slot_number].pos[0]; + out[1] = this.pos[1] + this.outputs[slot_number].pos[1]; + return out; + } + + //horizontal distributed slots + if (this.horizontal) { + out[0] = + this.pos[0] + (slot_number + 0.5) * (this.size[0] / num_slots); + if (is_input) { + out[1] = this.pos[1] - LiteGraph.NODE_TITLE_HEIGHT; + } else { + out[1] = this.pos[1] + this.size[1]; + } + return out; + } + + //default vertical slots + if (is_input) { + out[0] = this.pos[0] + offset; + } else { + out[0] = this.pos[0] + this.size[0] + 1 - offset; + } + out[1] = + this.pos[1] + + (slot_number + 0.7) * LiteGraph.NODE_SLOT_HEIGHT + + (this.constructor.slot_start_y || 0); + return out; + }; + + /* Force align to grid */ + LGraphNode.prototype.alignToGrid = function() { + this.pos[0] = + LiteGraph.CANVAS_GRID_SIZE * + Math.round(this.pos[0] / LiteGraph.CANVAS_GRID_SIZE); + this.pos[1] = + LiteGraph.CANVAS_GRID_SIZE * + Math.round(this.pos[1] / LiteGraph.CANVAS_GRID_SIZE); + }; + + /* Console output */ + LGraphNode.prototype.trace = function(msg) { + if (!this.console) { + this.console = []; + } + + this.console.push(msg); + if (this.console.length > LGraphNode.MAX_CONSOLE) { + this.console.shift(); + } + + if(this.graph.onNodeTrace) + this.graph.onNodeTrace(this, msg); + }; + + /* Forces to redraw or the main canvas (LGraphNode) or the bg canvas (links) */ + LGraphNode.prototype.setDirtyCanvas = function( + dirty_foreground, + dirty_background + ) { + if (!this.graph) { + return; + } + this.graph.sendActionToCanvas("setDirty", [ + dirty_foreground, + dirty_background + ]); + }; + + LGraphNode.prototype.loadImage = function(url) { + var img = new Image(); + img.src = LiteGraph.node_images_path + url; + img.ready = false; + + var that = this; + img.onload = function() { + this.ready = true; + that.setDirtyCanvas(true); + }; + return img; + }; + + //safe LGraphNode action execution (not sure if safe) + /* +LGraphNode.prototype.executeAction = function(action) +{ + if(action == "") return false; + + if( action.indexOf(";") != -1 || action.indexOf("}") != -1) + { + this.trace("Error: Action contains unsafe characters"); + return false; + } + + var tokens = action.split("("); + var func_name = tokens[0]; + if( typeof(this[func_name]) != "function") + { + this.trace("Error: Action not found on node: " + func_name); + return false; + } + + var code = action; + + try + { + var _foo = eval; + eval = null; + (new Function("with(this) { " + code + "}")).call(this); + eval = _foo; + } + catch (err) + { + this.trace("Error executing action {" + action + "} :" + err); + return false; + } + + return true; +} +*/ + + /* Allows to get onMouseMove and onMouseUp events even if the mouse is out of focus */ + LGraphNode.prototype.captureInput = function(v) { + if (!this.graph || !this.graph.list_of_graphcanvas) { + return; + } + + var list = this.graph.list_of_graphcanvas; + + for (var i = 0; i < list.length; ++i) { + var c = list[i]; + //releasing somebody elses capture?! + if (!v && c.node_capturing_input != this) { + continue; + } + + //change + c.node_capturing_input = v ? this : null; + } + }; + + /** + * Collapse the node to make it smaller on the canvas + * @method collapse + **/ + LGraphNode.prototype.collapse = function(force) { + this.graph._version++; + if (this.constructor.collapsable === false && !force) { + return; + } + if (!this.flags.collapsed) { + this.flags.collapsed = true; + } else { + this.flags.collapsed = false; + } + this.setDirtyCanvas(true, true); + }; + + /** + * Forces the node to do not move or realign on Z + * @method pin + **/ + + LGraphNode.prototype.pin = function(v) { + this.graph._version++; + if (v === undefined) { + this.flags.pinned = !this.flags.pinned; + } else { + this.flags.pinned = v; + } + }; + + LGraphNode.prototype.localToScreen = function(x, y, graphcanvas) { + return [ + (x + this.pos[0]) * graphcanvas.scale + graphcanvas.offset[0], + (y + this.pos[1]) * graphcanvas.scale + graphcanvas.offset[1] + ]; + }; + + function LGraphGroup(title) { + this._ctor(title); + } + + global.LGraphGroup = LiteGraph.LGraphGroup = LGraphGroup; + + LGraphGroup.prototype._ctor = function(title) { + this.title = title || "Group"; + this.font_size = 24; + this.color = LGraphCanvas.node_colors.pale_blue + ? LGraphCanvas.node_colors.pale_blue.groupcolor + : "#AAA"; + this._bounding = new Float32Array([10, 10, 140, 80]); + this._pos = this._bounding.subarray(0, 2); + this._size = this._bounding.subarray(2, 4); + this._nodes = []; + this.graph = null; + + Object.defineProperty(this, "pos", { + set: function(v) { + if (!v || v.length < 2) { + return; + } + this._pos[0] = v[0]; + this._pos[1] = v[1]; + }, + get: function() { + return this._pos; + }, + enumerable: true + }); + + Object.defineProperty(this, "size", { + set: function(v) { + if (!v || v.length < 2) { + return; + } + this._size[0] = Math.max(140, v[0]); + this._size[1] = Math.max(80, v[1]); + }, + get: function() { + return this._size; + }, + enumerable: true + }); + }; + + LGraphGroup.prototype.configure = function(o) { + this.title = o.title; + this._bounding.set(o.bounding); + this.color = o.color; + if (o.font_size) { + this.font_size = o.font_size; + } + }; + + LGraphGroup.prototype.serialize = function() { + var b = this._bounding; + return { + title: this.title, + bounding: [ + Math.round(b[0]), + Math.round(b[1]), + Math.round(b[2]), + Math.round(b[3]) + ], + color: this.color, + font_size: this.font_size + }; + }; + + LGraphGroup.prototype.move = function(deltax, deltay, ignore_nodes) { + this._pos[0] += deltax; + this._pos[1] += deltay; + if (ignore_nodes) { + return; + } + for (var i = 0; i < this._nodes.length; ++i) { + var node = this._nodes[i]; + node.pos[0] += deltax; + node.pos[1] += deltay; + } + }; + + LGraphGroup.prototype.recomputeInsideNodes = function() { + this._nodes.length = 0; + var nodes = this.graph._nodes; + var node_bounding = new Float32Array(4); + + for (var i = 0; i < nodes.length; ++i) { + var node = nodes[i]; + node.getBounding(node_bounding); + if (!overlapBounding(this._bounding, node_bounding)) { + continue; + } //out of the visible area + this._nodes.push(node); + } + }; + + LGraphGroup.prototype.isPointInside = LGraphNode.prototype.isPointInside; + LGraphGroup.prototype.setDirtyCanvas = LGraphNode.prototype.setDirtyCanvas; + + //**************************************** + + //Scale and Offset + function DragAndScale(element, skip_events) { + this.offset = new Float32Array([0, 0]); + this.scale = 1; + this.max_scale = 10; + this.min_scale = 0.1; + this.onredraw = null; + this.enabled = true; + this.last_mouse = [0, 0]; + this.element = null; + this.visible_area = new Float32Array(4); + + if (element) { + this.element = element; + if (!skip_events) { + this.bindEvents(element); + } + } + } + + LiteGraph.DragAndScale = DragAndScale; + + DragAndScale.prototype.bindEvents = function(element) { + this.last_mouse = new Float32Array(2); + + this._binded_mouse_callback = this.onMouse.bind(this); + + LiteGraph.pointerListenerAdd(element,"down", this._binded_mouse_callback); + LiteGraph.pointerListenerAdd(element,"move", this._binded_mouse_callback); + LiteGraph.pointerListenerAdd(element,"up", this._binded_mouse_callback); + + element.addEventListener( + "mousewheel", + this._binded_mouse_callback, + false + ); + element.addEventListener("wheel", this._binded_mouse_callback, false); + }; + + DragAndScale.prototype.computeVisibleArea = function( viewport ) { + if (!this.element) { + this.visible_area[0] = this.visible_area[1] = this.visible_area[2] = this.visible_area[3] = 0; + return; + } + var width = this.element.width; + var height = this.element.height; + var startx = -this.offset[0]; + var starty = -this.offset[1]; + if( viewport ) + { + startx += viewport[0] / this.scale; + starty += viewport[1] / this.scale; + width = viewport[2]; + height = viewport[3]; + } + var endx = startx + width / this.scale; + var endy = starty + height / this.scale; + this.visible_area[0] = startx; + this.visible_area[1] = starty; + this.visible_area[2] = endx - startx; + this.visible_area[3] = endy - starty; + }; + + DragAndScale.prototype.onMouse = function(e) { + if (!this.enabled) { + return; + } + + var canvas = this.element; + var rect = canvas.getBoundingClientRect(); + var x = e.clientX - rect.left; + var y = e.clientY - rect.top; + e.canvasx = x; + e.canvasy = y; + e.dragging = this.dragging; + + var is_inside = !this.viewport || ( this.viewport && x >= this.viewport[0] && x < (this.viewport[0] + this.viewport[2]) && y >= this.viewport[1] && y < (this.viewport[1] + this.viewport[3]) ); + + //console.log("pointerevents: DragAndScale onMouse "+e.type+" "+is_inside); + + var ignore = false; + if (this.onmouse) { + ignore = this.onmouse(e); + } + + if (e.type == LiteGraph.pointerevents_method+"down" && is_inside) { + this.dragging = true; + LiteGraph.pointerListenerRemove(canvas,"move",this._binded_mouse_callback); + LiteGraph.pointerListenerAdd(document,"move",this._binded_mouse_callback); + LiteGraph.pointerListenerAdd(document,"up",this._binded_mouse_callback); + } else if (e.type == LiteGraph.pointerevents_method+"move") { + if (!ignore) { + var deltax = x - this.last_mouse[0]; + var deltay = y - this.last_mouse[1]; + if (this.dragging) { + this.mouseDrag(deltax, deltay); + } + } + } else if (e.type == LiteGraph.pointerevents_method+"up") { + this.dragging = false; + LiteGraph.pointerListenerRemove(document,"move",this._binded_mouse_callback); + LiteGraph.pointerListenerRemove(document,"up",this._binded_mouse_callback); + LiteGraph.pointerListenerAdd(canvas,"move",this._binded_mouse_callback); + } else if ( is_inside && + (e.type == "mousewheel" || + e.type == "wheel" || + e.type == "DOMMouseScroll") + ) { + e.eventType = "mousewheel"; + if (e.type == "wheel") { + e.wheel = -e.deltaY; + } else { + e.wheel = + e.wheelDeltaY != null ? e.wheelDeltaY : e.detail * -60; + } + + //from stack overflow + e.delta = e.wheelDelta + ? e.wheelDelta / 40 + : e.deltaY + ? -e.deltaY / 3 + : 0; + this.changeDeltaScale(1.0 + e.delta * 0.05); + } + + this.last_mouse[0] = x; + this.last_mouse[1] = y; + + if(is_inside) + { + e.preventDefault(); + e.stopPropagation(); + return false; + } + }; + + DragAndScale.prototype.toCanvasContext = function(ctx) { + ctx.scale(this.scale, this.scale); + ctx.translate(this.offset[0], this.offset[1]); + }; + + DragAndScale.prototype.convertOffsetToCanvas = function(pos) { + //return [pos[0] / this.scale - this.offset[0], pos[1] / this.scale - this.offset[1]]; + return [ + (pos[0] + this.offset[0]) * this.scale, + (pos[1] + this.offset[1]) * this.scale + ]; + }; + + DragAndScale.prototype.convertCanvasToOffset = function(pos, out) { + out = out || [0, 0]; + out[0] = pos[0] / this.scale - this.offset[0]; + out[1] = pos[1] / this.scale - this.offset[1]; + return out; + }; + + DragAndScale.prototype.mouseDrag = function(x, y) { + this.offset[0] += x / this.scale; + this.offset[1] += y / this.scale; + + if (this.onredraw) { + this.onredraw(this); + } + }; + + DragAndScale.prototype.changeScale = function(value, zooming_center) { + if (value < this.min_scale) { + value = this.min_scale; + } else if (value > this.max_scale) { + value = this.max_scale; + } + + if (value == this.scale) { + return; + } + + if (!this.element) { + return; + } + + var rect = this.element.getBoundingClientRect(); + if (!rect) { + return; + } + + zooming_center = zooming_center || [ + rect.width * 0.5, + rect.height * 0.5 + ]; + var center = this.convertCanvasToOffset(zooming_center); + this.scale = value; + if (Math.abs(this.scale - 1) < 0.01) { + this.scale = 1; + } + + var new_center = this.convertCanvasToOffset(zooming_center); + var delta_offset = [ + new_center[0] - center[0], + new_center[1] - center[1] + ]; + + this.offset[0] += delta_offset[0]; + this.offset[1] += delta_offset[1]; + + if (this.onredraw) { + this.onredraw(this); + } + }; + + DragAndScale.prototype.changeDeltaScale = function(value, zooming_center) { + this.changeScale(this.scale * value, zooming_center); + }; + + DragAndScale.prototype.reset = function() { + this.scale = 1; + this.offset[0] = 0; + this.offset[1] = 0; + }; + + //********************************************************************************* + // LGraphCanvas: LGraph renderer CLASS + //********************************************************************************* + + /** + * This class is in charge of rendering one graph inside a canvas. And provides all the interaction required. + * Valid callbacks are: onNodeSelected, onNodeDeselected, onShowNodePanel, onNodeDblClicked + * + * @class LGraphCanvas + * @constructor + * @param {HTMLCanvas} canvas the canvas where you want to render (it accepts a selector in string format or the canvas element itself) + * @param {LGraph} graph [optional] + * @param {Object} options [optional] { skip_rendering, autoresize, viewport } + */ + function LGraphCanvas(canvas, graph, options) { + this.options = options = options || {}; + + //if(graph === undefined) + // throw ("No graph assigned"); + this.background_image = LGraphCanvas.DEFAULT_BACKGROUND_IMAGE; + + if (canvas && canvas.constructor === String) { + canvas = document.querySelector(canvas); + } + + this.ds = new DragAndScale(); + this.zoom_modify_alpha = true; //otherwise it generates ugly patterns when scaling down too much + + this.title_text_font = "" + LiteGraph.NODE_TEXT_SIZE + "px Arial"; + this.inner_text_font = + "normal " + LiteGraph.NODE_SUBTEXT_SIZE + "px Arial"; + this.node_title_color = LiteGraph.NODE_TITLE_COLOR; + this.default_link_color = LiteGraph.LINK_COLOR; + this.default_connection_color = { + input_off: "#778", + input_on: "#7F7", //"#BBD" + output_off: "#778", + output_on: "#7F7" //"#BBD" + }; + this.default_connection_color_byType = { + /*number: "#7F7", + string: "#77F", + boolean: "#F77",*/ + } + this.default_connection_color_byTypeOff = { + /*number: "#474", + string: "#447", + boolean: "#744",*/ + }; + + this.highquality_render = true; + this.use_gradients = false; //set to true to render titlebar with gradients + this.editor_alpha = 1; //used for transition + this.pause_rendering = false; + this.clear_background = true; + this.clear_background_color = "#222"; + + this.read_only = false; //if set to true users cannot modify the graph + this.render_only_selected = true; + this.live_mode = false; + this.show_info = true; + this.allow_dragcanvas = true; + this.allow_dragnodes = true; + this.allow_interaction = true; //allow to control widgets, buttons, collapse, etc + this.multi_select = false; //allow selecting multi nodes without pressing extra keys + this.allow_searchbox = true; + this.allow_reconnect_links = true; //allows to change a connection with having to redo it again + this.align_to_grid = false; //snap to grid + + this.drag_mode = false; + this.dragging_rectangle = null; + + this.filter = null; //allows to filter to only accept some type of nodes in a graph + + this.set_canvas_dirty_on_mouse_event = true; //forces to redraw the canvas if the mouse does anything + this.always_render_background = false; + this.render_shadows = true; + this.render_canvas_border = true; + this.render_connections_shadows = false; //too much cpu + this.render_connections_border = true; + this.render_curved_connections = false; + this.render_connection_arrows = false; + this.render_collapsed_slots = true; + this.render_execution_order = false; + this.render_title_colored = true; + this.render_link_tooltip = true; + + this.links_render_mode = LiteGraph.SPLINE_LINK; + + this.mouse = [0, 0]; //mouse in canvas coordinates, where 0,0 is the top-left corner of the blue rectangle + this.graph_mouse = [0, 0]; //mouse in graph coordinates, where 0,0 is the top-left corner of the blue rectangle + this.canvas_mouse = this.graph_mouse; //LEGACY: REMOVE THIS, USE GRAPH_MOUSE INSTEAD + + //to personalize the search box + this.onSearchBox = null; + this.onSearchBoxSelection = null; + + //callbacks + this.onMouse = null; + this.onDrawBackground = null; //to render background objects (behind nodes and connections) in the canvas affected by transform + this.onDrawForeground = null; //to render foreground objects (above nodes and connections) in the canvas affected by transform + this.onDrawOverlay = null; //to render foreground objects not affected by transform (for GUIs) + this.onDrawLinkTooltip = null; //called when rendering a tooltip + this.onNodeMoved = null; //called after moving a node + this.onSelectionChange = null; //called if the selection changes + this.onConnectingChange = null; //called before any link changes + this.onBeforeChange = null; //called before modifying the graph + this.onAfterChange = null; //called after modifying the graph + + this.connections_width = 3; + this.round_radius = 8; + + this.current_node = null; + this.node_widget = null; //used for widgets + this.over_link_center = null; + this.last_mouse_position = [0, 0]; + this.visible_area = this.ds.visible_area; + this.visible_links = []; + + this.viewport = options.viewport || null; //to constraint render area to a portion of the canvas + + //link canvas and graph + if (graph) { + graph.attachCanvas(this); + } + + this.setCanvas(canvas,options.skip_events); + this.clear(); + + if (!options.skip_render) { + this.startRendering(); + } + + this.autoresize = options.autoresize; + } + + global.LGraphCanvas = LiteGraph.LGraphCanvas = LGraphCanvas; + + LGraphCanvas.DEFAULT_BACKGROUND_IMAGE = ""; + + LGraphCanvas.link_type_colors = { + "-1": LiteGraph.EVENT_LINK_COLOR, + number: "#AAA", + node: "#DCA" + }; + LGraphCanvas.gradients = {}; //cache of gradients + + /** + * clears all the data inside + * + * @method clear + */ + LGraphCanvas.prototype.clear = function() { + this.frame = 0; + this.last_draw_time = 0; + this.render_time = 0; + this.fps = 0; + + //this.scale = 1; + //this.offset = [0,0]; + + this.dragging_rectangle = null; + + this.selected_nodes = {}; + this.selected_group = null; + + this.visible_nodes = []; + this.node_dragged = null; + this.node_over = null; + this.node_capturing_input = null; + this.connecting_node = null; + this.highlighted_links = {}; + + this.dragging_canvas = false; + + this.dirty_canvas = true; + this.dirty_bgcanvas = true; + this.dirty_area = null; + + this.node_in_panel = null; + this.node_widget = null; + + this.last_mouse = [0, 0]; + this.last_mouseclick = 0; + this.pointer_is_down = false; + this.pointer_is_double = false; + this.visible_area.set([0, 0, 0, 0]); + + if (this.onClear) { + this.onClear(); + } + }; + + /** + * assigns a graph, you can reassign graphs to the same canvas + * + * @method setGraph + * @param {LGraph} graph + */ + LGraphCanvas.prototype.setGraph = function(graph, skip_clear) { + if (this.graph == graph) { + return; + } + + if (!skip_clear) { + this.clear(); + } + + if (!graph && this.graph) { + this.graph.detachCanvas(this); + return; + } + + graph.attachCanvas(this); + + //remove the graph stack in case a subgraph was open + if (this._graph_stack) + this._graph_stack = null; + + this.setDirty(true, true); + }; + + /** + * returns the top level graph (in case there are subgraphs open on the canvas) + * + * @method getTopGraph + * @return {LGraph} graph + */ + LGraphCanvas.prototype.getTopGraph = function() + { + if(this._graph_stack.length) + return this._graph_stack[0]; + return this.graph; + } + + /** + * opens a graph contained inside a node in the current graph + * + * @method openSubgraph + * @param {LGraph} graph + */ + LGraphCanvas.prototype.openSubgraph = function(graph) { + if (!graph) { + throw "graph cannot be null"; + } + + if (this.graph == graph) { + throw "graph cannot be the same"; + } + + this.clear(); + + if (this.graph) { + if (!this._graph_stack) { + this._graph_stack = []; + } + this._graph_stack.push(this.graph); + } + + graph.attachCanvas(this); + this.checkPanels(); + this.setDirty(true, true); + }; + + /** + * closes a subgraph contained inside a node + * + * @method closeSubgraph + * @param {LGraph} assigns a graph + */ + LGraphCanvas.prototype.closeSubgraph = function() { + if (!this._graph_stack || this._graph_stack.length == 0) { + return; + } + var subgraph_node = this.graph._subgraph_node; + var graph = this._graph_stack.pop(); + this.selected_nodes = {}; + this.highlighted_links = {}; + graph.attachCanvas(this); + this.setDirty(true, true); + if (subgraph_node) { + this.centerOnNode(subgraph_node); + this.selectNodes([subgraph_node]); + } + // when close sub graph back to offset [0, 0] scale 1 + this.ds.offset = [0, 0] + this.ds.scale = 1 + }; + + /** + * returns the visually active graph (in case there are more in the stack) + * @method getCurrentGraph + * @return {LGraph} the active graph + */ + LGraphCanvas.prototype.getCurrentGraph = function() { + return this.graph; + }; + + /** + * assigns a canvas + * + * @method setCanvas + * @param {Canvas} assigns a canvas (also accepts the ID of the element (not a selector) + */ + LGraphCanvas.prototype.setCanvas = function(canvas, skip_events) { + var that = this; + + if (canvas) { + if (canvas.constructor === String) { + canvas = document.getElementById(canvas); + if (!canvas) { + throw "Error creating LiteGraph canvas: Canvas not found"; + } + } + } + + if (canvas === this.canvas) { + return; + } + + if (!canvas && this.canvas) { + //maybe detach events from old_canvas + if (!skip_events) { + this.unbindEvents(); + } + } + + this.canvas = canvas; + this.ds.element = canvas; + + if (!canvas) { + return; + } + + //this.canvas.tabindex = "1000"; + canvas.className += " lgraphcanvas"; + canvas.data = this; + canvas.tabindex = "1"; //to allow key events + + //bg canvas: used for non changing stuff + this.bgcanvas = null; + if (!this.bgcanvas) { + this.bgcanvas = document.createElement("canvas"); + this.bgcanvas.width = this.canvas.width; + this.bgcanvas.height = this.canvas.height; + } + + if (canvas.getContext == null) { + if (canvas.localName != "canvas") { + throw "Element supplied for LGraphCanvas must be a element, you passed a " + + canvas.localName; + } + throw "This browser doesn't support Canvas"; + } + + var ctx = (this.ctx = canvas.getContext("2d")); + if (ctx == null) { + if (!canvas.webgl_enabled) { + console.warn( + "This canvas seems to be WebGL, enabling WebGL renderer" + ); + } + this.enableWebGL(); + } + + //input: (move and up could be unbinded) + // why here? this._mousemove_callback = this.processMouseMove.bind(this); + // why here? this._mouseup_callback = this.processMouseUp.bind(this); + + if (!skip_events) { + this.bindEvents(); + } + }; + + //used in some events to capture them + LGraphCanvas.prototype._doNothing = function doNothing(e) { + //console.log("pointerevents: _doNothing "+e.type); + e.preventDefault(); + return false; + }; + LGraphCanvas.prototype._doReturnTrue = function doNothing(e) { + e.preventDefault(); + return true; + }; + + /** + * binds mouse, keyboard, touch and drag events to the canvas + * @method bindEvents + **/ + LGraphCanvas.prototype.bindEvents = function() { + if (this._events_binded) { + console.warn("LGraphCanvas: events already binded"); + return; + } + + //console.log("pointerevents: bindEvents"); + + var canvas = this.canvas; + + var ref_window = this.getCanvasWindow(); + var document = ref_window.document; //hack used when moving canvas between windows + + this._mousedown_callback = this.processMouseDown.bind(this); + this._mousewheel_callback = this.processMouseWheel.bind(this); + // why mousemove and mouseup were not binded here? + this._mousemove_callback = this.processMouseMove.bind(this); + this._mouseup_callback = this.processMouseUp.bind(this); + + //touch events -- TODO IMPLEMENT + //this._touch_callback = this.touchHandler.bind(this); + + LiteGraph.pointerListenerAdd(canvas,"down", this._mousedown_callback, true); //down do not need to store the binded + canvas.addEventListener("mousewheel", this._mousewheel_callback, false); + + LiteGraph.pointerListenerAdd(canvas,"up", this._mouseup_callback, true); // CHECK: ??? binded or not + LiteGraph.pointerListenerAdd(canvas,"move", this._mousemove_callback); + + canvas.addEventListener("contextmenu", this._doNothing); + canvas.addEventListener( + "DOMMouseScroll", + this._mousewheel_callback, + false + ); + + //touch events -- THIS WAY DOES NOT WORK, finish implementing pointerevents, than clean the touchevents + /*if( 'touchstart' in document.documentElement ) + { + canvas.addEventListener("touchstart", this._touch_callback, true); + canvas.addEventListener("touchmove", this._touch_callback, true); + canvas.addEventListener("touchend", this._touch_callback, true); + canvas.addEventListener("touchcancel", this._touch_callback, true); + }*/ + + //Keyboard ****************** + this._key_callback = this.processKey.bind(this); + + canvas.addEventListener("keydown", this._key_callback, true); + document.addEventListener("keyup", this._key_callback, true); //in document, otherwise it doesn't fire keyup + + //Dropping Stuff over nodes ************************************ + this._ondrop_callback = this.processDrop.bind(this); + + canvas.addEventListener("dragover", this._doNothing, false); + canvas.addEventListener("dragend", this._doNothing, false); + canvas.addEventListener("drop", this._ondrop_callback, false); + canvas.addEventListener("dragenter", this._doReturnTrue, false); + + this._events_binded = true; + }; + + /** + * unbinds mouse events from the canvas + * @method unbindEvents + **/ + LGraphCanvas.prototype.unbindEvents = function() { + if (!this._events_binded) { + console.warn("LGraphCanvas: no events binded"); + return; + } + + //console.log("pointerevents: unbindEvents"); + + var ref_window = this.getCanvasWindow(); + var document = ref_window.document; + + LiteGraph.pointerListenerRemove(this.canvas,"move", this._mousedown_callback); + LiteGraph.pointerListenerRemove(this.canvas,"up", this._mousedown_callback); + LiteGraph.pointerListenerRemove(this.canvas,"down", this._mousedown_callback); + this.canvas.removeEventListener( + "mousewheel", + this._mousewheel_callback + ); + this.canvas.removeEventListener( + "DOMMouseScroll", + this._mousewheel_callback + ); + this.canvas.removeEventListener("keydown", this._key_callback); + document.removeEventListener("keyup", this._key_callback); + this.canvas.removeEventListener("contextmenu", this._doNothing); + this.canvas.removeEventListener("drop", this._ondrop_callback); + this.canvas.removeEventListener("dragenter", this._doReturnTrue); + + //touch events -- THIS WAY DOES NOT WORK, finish implementing pointerevents, than clean the touchevents + /*this.canvas.removeEventListener("touchstart", this._touch_callback ); + this.canvas.removeEventListener("touchmove", this._touch_callback ); + this.canvas.removeEventListener("touchend", this._touch_callback ); + this.canvas.removeEventListener("touchcancel", this._touch_callback );*/ + + this._mousedown_callback = null; + this._mousewheel_callback = null; + this._key_callback = null; + this._ondrop_callback = null; + + this._events_binded = false; + }; + + LGraphCanvas.getFileExtension = function(url) { + var question = url.indexOf("?"); + if (question != -1) { + url = url.substr(0, question); + } + var point = url.lastIndexOf("."); + if (point == -1) { + return ""; + } + return url.substr(point + 1).toLowerCase(); + }; + + /** + * this function allows to render the canvas using WebGL instead of Canvas2D + * this is useful if you plant to render 3D objects inside your nodes, it uses litegl.js for webgl and canvas2DtoWebGL to emulate the Canvas2D calls in webGL + * @method enableWebGL + **/ + LGraphCanvas.prototype.enableWebGL = function() { + if (typeof GL === "undefined") { + throw "litegl.js must be included to use a WebGL canvas"; + } + if (typeof enableWebGLCanvas === "undefined") { + throw "webglCanvas.js must be included to use this feature"; + } + + this.gl = this.ctx = enableWebGLCanvas(this.canvas); + this.ctx.webgl = true; + this.bgcanvas = this.canvas; + this.bgctx = this.gl; + this.canvas.webgl_enabled = true; + + /* + GL.create({ canvas: this.bgcanvas }); + this.bgctx = enableWebGLCanvas( this.bgcanvas ); + window.gl = this.gl; + */ + }; + + /** + * marks as dirty the canvas, this way it will be rendered again + * + * @class LGraphCanvas + * @method setDirty + * @param {bool} fgcanvas if the foreground canvas is dirty (the one containing the nodes) + * @param {bool} bgcanvas if the background canvas is dirty (the one containing the wires) + */ + LGraphCanvas.prototype.setDirty = function(fgcanvas, bgcanvas) { + if (fgcanvas) { + this.dirty_canvas = true; + } + if (bgcanvas) { + this.dirty_bgcanvas = true; + } + }; + + /** + * Used to attach the canvas in a popup + * + * @method getCanvasWindow + * @return {window} returns the window where the canvas is attached (the DOM root node) + */ + LGraphCanvas.prototype.getCanvasWindow = function() { + if (!this.canvas) { + return window; + } + var doc = this.canvas.ownerDocument; + return doc.defaultView || doc.parentWindow; + }; + + /** + * starts rendering the content of the canvas when needed + * + * @method startRendering + */ + LGraphCanvas.prototype.startRendering = function() { + if (this.is_rendering) { + return; + } //already rendering + + this.is_rendering = true; + renderFrame.call(this); + + function renderFrame() { + if (!this.pause_rendering) { + this.draw(); + } + + var window = this.getCanvasWindow(); + if (this.is_rendering) { + window.requestAnimationFrame(renderFrame.bind(this)); + } + } + }; + + /** + * stops rendering the content of the canvas (to save resources) + * + * @method stopRendering + */ + LGraphCanvas.prototype.stopRendering = function() { + this.is_rendering = false; + /* + if(this.rendering_timer_id) + { + clearInterval(this.rendering_timer_id); + this.rendering_timer_id = null; + } + */ + }; + + /* LiteGraphCanvas input */ + + //used to block future mouse events (because of im gui) + LGraphCanvas.prototype.blockClick = function() + { + this.block_click = true; + this.last_mouseclick = 0; + } + + LGraphCanvas.prototype.processMouseDown = function(e) { + + if( this.set_canvas_dirty_on_mouse_event ) + this.dirty_canvas = true; + + if (!this.graph) { + return; + } + + this.adjustMouseEvent(e); + + var ref_window = this.getCanvasWindow(); + var document = ref_window.document; + LGraphCanvas.active_canvas = this; + var that = this; + + var x = e.clientX; + var y = e.clientY; + //console.log(y,this.viewport); + //console.log("pointerevents: processMouseDown pointerId:"+e.pointerId+" which:"+e.which+" isPrimary:"+e.isPrimary+" :: x y "+x+" "+y); + + this.ds.viewport = this.viewport; + var is_inside = !this.viewport || ( this.viewport && x >= this.viewport[0] && x < (this.viewport[0] + this.viewport[2]) && y >= this.viewport[1] && y < (this.viewport[1] + this.viewport[3]) ); + + //move mouse move event to the window in case it drags outside of the canvas + if(!this.options.skip_events) + { + LiteGraph.pointerListenerRemove(this.canvas,"move", this._mousemove_callback); + LiteGraph.pointerListenerAdd(ref_window.document,"move", this._mousemove_callback,true); //catch for the entire window + LiteGraph.pointerListenerAdd(ref_window.document,"up", this._mouseup_callback,true); + } + + if(!is_inside){ + return; + } + + var node = this.graph.getNodeOnPos( e.canvasX, e.canvasY, this.visible_nodes, 5 ); + var skip_dragging = false; + var skip_action = false; + var now = LiteGraph.getTime(); + var is_primary = (e.isPrimary === undefined || !e.isPrimary); + var is_double_click = (now - this.last_mouseclick < 300); + this.mouse[0] = e.clientX; + this.mouse[1] = e.clientY; + this.graph_mouse[0] = e.canvasX; + this.graph_mouse[1] = e.canvasY; + this.last_click_position = [this.mouse[0],this.mouse[1]]; + + if (this.pointer_is_down && is_primary ){ + this.pointer_is_double = true; + //console.log("pointerevents: pointer_is_double start"); + }else{ + this.pointer_is_double = false; + } + this.pointer_is_down = true; + + + this.canvas.focus(); + + LiteGraph.closeAllContextMenus(ref_window); + + if (this.onMouse) + { + if (this.onMouse(e) == true) + return; + } + + //left button mouse / single finger + if (e.which == 1 && !this.pointer_is_double) + { + if (e.ctrlKey) + { + this.dragging_rectangle = new Float32Array(4); + this.dragging_rectangle[0] = e.canvasX; + this.dragging_rectangle[1] = e.canvasY; + this.dragging_rectangle[2] = 1; + this.dragging_rectangle[3] = 1; + skip_action = true; + } + + // clone node ALT dragging + if (LiteGraph.alt_drag_do_clone_nodes && e.altKey && node && this.allow_interaction && !skip_action && !this.read_only) + { + if (cloned = node.clone()){ + cloned.pos[0] += 5; + cloned.pos[1] += 5; + this.graph.add(cloned,false,{doCalcSize: false}); + node = cloned; + skip_action = true; + if (!block_drag_node) { + if (this.allow_dragnodes) { + this.graph.beforeChange(); + this.node_dragged = node; + } + if (!this.selected_nodes[node.id]) { + this.processNodeSelected(node, e); + } + } + } + } + + var clicking_canvas_bg = false; + + //when clicked on top of a node + //and it is not interactive + if (node && (this.allow_interaction || node.flags.allow_interaction) && !skip_action && !this.read_only) { + if (!this.live_mode && !node.flags.pinned) { + this.bringToFront(node); + } //if it wasn't selected? + + //not dragging mouse to connect two slots + if ( this.allow_interaction && !this.connecting_node && !node.flags.collapsed && !this.live_mode ) { + //Search for corner for resize + if ( !skip_action && + node.resizable !== false && node.inResizeCorner(e.canvasX, e.canvasY) + ) { + this.graph.beforeChange(); + this.resizing_node = node; + this.canvas.style.cursor = "se-resize"; + skip_action = true; + } else { + //search for outputs + if (node.outputs) { + for ( var i = 0, l = node.outputs.length; i < l; ++i ) { + var output = node.outputs[i]; + var link_pos = node.getConnectionPos(false, i); + if ( + isInsideRectangle( + e.canvasX, + e.canvasY, + link_pos[0] - 15, + link_pos[1] - 10, + 30, + 20 + ) + ) { + this.connecting_node = node; + this.connecting_output = output; + this.connecting_output.slot_index = i; + this.connecting_pos = node.getConnectionPos( false, i ); + this.connecting_slot = i; + + if (LiteGraph.shift_click_do_break_link_from){ + if (e.shiftKey) { + node.disconnectOutput(i); + } + } + + if (is_double_click) { + if (node.onOutputDblClick) { + node.onOutputDblClick(i, e); + } + } else { + if (node.onOutputClick) { + node.onOutputClick(i, e); + } + } + + skip_action = true; + break; + } + } + } + + //search for inputs + if (node.inputs) { + for ( var i = 0, l = node.inputs.length; i < l; ++i ) { + var input = node.inputs[i]; + var link_pos = node.getConnectionPos(true, i); + if ( + isInsideRectangle( + e.canvasX, + e.canvasY, + link_pos[0] - 15, + link_pos[1] - 10, + 30, + 20 + ) + ) { + if (is_double_click) { + if (node.onInputDblClick) { + node.onInputDblClick(i, e); + } + } else { + if (node.onInputClick) { + node.onInputClick(i, e); + } + } + + if (input.link !== null) { + var link_info = this.graph.links[ + input.link + ]; //before disconnecting + if (LiteGraph.click_do_break_link_to){ + node.disconnectInput(i); + this.dirty_bgcanvas = true; + skip_action = true; + }else{ + // do same action as has not node ? + } + + if ( + this.allow_reconnect_links || + //this.move_destination_link_without_shift || + e.shiftKey + ) { + if (!LiteGraph.click_do_break_link_to){ + node.disconnectInput(i); + } + this.connecting_node = this.graph._nodes_by_id[ + link_info.origin_id + ]; + this.connecting_slot = + link_info.origin_slot; + this.connecting_output = this.connecting_node.outputs[ + this.connecting_slot + ]; + this.connecting_pos = this.connecting_node.getConnectionPos( false, this.connecting_slot ); + + this.dirty_bgcanvas = true; + skip_action = true; + } + + + }else{ + // has not node + } + + if (!skip_action){ + // connect from in to out, from to to from + this.connecting_node = node; + this.connecting_input = input; + this.connecting_input.slot_index = i; + this.connecting_pos = node.getConnectionPos( true, i ); + this.connecting_slot = i; + + this.dirty_bgcanvas = true; + skip_action = true; + } + } + } + } + } //not resizing + } + + //it wasn't clicked on the links boxes + if (!skip_action) { + var block_drag_node = false; + if(node && node.flags && node.flags.pinned) { + block_drag_node = true; + } + var pos = [e.canvasX - node.pos[0], e.canvasY - node.pos[1]]; + + //widgets + var widget = this.processNodeWidgets( node, this.graph_mouse, e ); + if (widget) { + block_drag_node = true; + this.node_widget = [node, widget]; + } + + //double clicking + if (this.allow_interaction && is_double_click && this.selected_nodes[node.id]) { + //double click node + if (node.onDblClick) { + node.onDblClick( e, pos, this ); + } + this.processNodeDblClicked(node); + block_drag_node = true; + } + + //if do not capture mouse + if ( node.onMouseDown && node.onMouseDown( e, pos, this ) ) { + block_drag_node = true; + } else { + //open subgraph button + if(node.subgraph && !node.skip_subgraph_button) + { + if ( !node.flags.collapsed && pos[0] > node.size[0] - LiteGraph.NODE_TITLE_HEIGHT && pos[1] < 0 ) { + var that = this; + setTimeout(function() { + that.openSubgraph(node.subgraph); + }, 10); + } + } + + if (this.live_mode) { + clicking_canvas_bg = true; + block_drag_node = true; + } + } + + if (!block_drag_node) { + if (this.allow_dragnodes) { + this.graph.beforeChange(); + this.node_dragged = node; + } + this.processNodeSelected(node, e); + } else { // double-click + /** + * Don't call the function if the block is already selected. + * Otherwise, it could cause the block to be unselected while its panel is open. + */ + if (!node.is_selected) this.processNodeSelected(node, e); + } + + this.dirty_canvas = true; + } + } //clicked outside of nodes + else { + if (!skip_action){ + //search for link connector + if(!this.read_only) { + for (var i = 0; i < this.visible_links.length; ++i) { + var link = this.visible_links[i]; + var center = link._pos; + if ( + !center || + e.canvasX < center[0] - 4 || + e.canvasX > center[0] + 4 || + e.canvasY < center[1] - 4 || + e.canvasY > center[1] + 4 + ) { + continue; + } + //link clicked + this.showLinkMenu(link, e); + this.over_link_center = null; //clear tooltip + break; + } + } + + this.selected_group = this.graph.getGroupOnPos( e.canvasX, e.canvasY ); + this.selected_group_resizing = false; + if (this.selected_group && !this.read_only ) { + if (e.ctrlKey) { + this.dragging_rectangle = null; + } + + var dist = distance( [e.canvasX, e.canvasY], [ this.selected_group.pos[0] + this.selected_group.size[0], this.selected_group.pos[1] + this.selected_group.size[1] ] ); + if (dist * this.ds.scale < 10) { + this.selected_group_resizing = true; + } else { + this.selected_group.recomputeInsideNodes(); + } + } + + if (is_double_click && !this.read_only && this.allow_searchbox) { + this.showSearchBox(e); + e.preventDefault(); + e.stopPropagation(); + } + + clicking_canvas_bg = true; + } + } + + if (!skip_action && clicking_canvas_bg && this.allow_dragcanvas) { + //console.log("pointerevents: dragging_canvas start"); + this.dragging_canvas = true; + } + + } else if (e.which == 2) { + //middle button + + if (LiteGraph.middle_click_slot_add_default_node){ + if (node && this.allow_interaction && !skip_action && !this.read_only){ + //not dragging mouse to connect two slots + if ( + !this.connecting_node && + !node.flags.collapsed && + !this.live_mode + ) { + var mClikSlot = false; + var mClikSlot_index = false; + var mClikSlot_isOut = false; + //search for outputs + if (node.outputs) { + for ( var i = 0, l = node.outputs.length; i < l; ++i ) { + var output = node.outputs[i]; + var link_pos = node.getConnectionPos(false, i); + if (isInsideRectangle(e.canvasX,e.canvasY,link_pos[0] - 15,link_pos[1] - 10,30,20)) { + mClikSlot = output; + mClikSlot_index = i; + mClikSlot_isOut = true; + break; + } + } + } + + //search for inputs + if (node.inputs) { + for ( var i = 0, l = node.inputs.length; i < l; ++i ) { + var input = node.inputs[i]; + var link_pos = node.getConnectionPos(true, i); + if (isInsideRectangle(e.canvasX,e.canvasY,link_pos[0] - 15,link_pos[1] - 10,30,20)) { + mClikSlot = input; + mClikSlot_index = i; + mClikSlot_isOut = false; + break; + } + } + } + //console.log("middleClickSlots? "+mClikSlot+" & "+(mClikSlot_index!==false)); + if (mClikSlot && mClikSlot_index!==false){ + + var alphaPosY = 0.5-((mClikSlot_index+1)/((mClikSlot_isOut?node.outputs.length:node.inputs.length))); + var node_bounding = node.getBounding(); + // estimate a position: this is a bad semi-bad-working mess .. REFACTOR with a correct autoplacement that knows about the others slots and nodes + var posRef = [ (!mClikSlot_isOut?node_bounding[0]:node_bounding[0]+node_bounding[2])// + node_bounding[0]/this.canvas.width*150 + ,e.canvasY-80// + node_bounding[0]/this.canvas.width*66 // vertical "derive" + ]; + var nodeCreated = this.createDefaultNodeForSlot({ nodeFrom: !mClikSlot_isOut?null:node + ,slotFrom: !mClikSlot_isOut?null:mClikSlot_index + ,nodeTo: !mClikSlot_isOut?node:null + ,slotTo: !mClikSlot_isOut?mClikSlot_index:null + ,position: posRef //,e: e + ,nodeType: "AUTO" //nodeNewType + ,posAdd:[!mClikSlot_isOut?-30:30, -alphaPosY*130] //-alphaPosY*30] + ,posSizeFix:[!mClikSlot_isOut?-1:0, 0] //-alphaPosY*2*/ + }); + skip_action = true; + } + } + } + } + + if (!skip_action && this.allow_dragcanvas) { + //console.log("pointerevents: dragging_canvas start from middle button"); + this.dragging_canvas = true; + } + + + } else if (e.which == 3 || this.pointer_is_double) { + + //right button + if (this.allow_interaction && !skip_action && !this.read_only){ + + // is it hover a node ? + if (node){ + if(Object.keys(this.selected_nodes).length + && (this.selected_nodes[node.id] || e.shiftKey || e.ctrlKey || e.metaKey) + ){ + // is multiselected or using shift to include the now node + if (!this.selected_nodes[node.id]) this.selectNodes([node],true); // add this if not present + }else{ + // update selection + this.selectNodes([node]); + } + } + + // show menu on this node + this.processContextMenu(node, e); + } + + } + + //TODO + //if(this.node_selected != prev_selected) + // this.onNodeSelectionChange(this.node_selected); + + this.last_mouse[0] = e.clientX; + this.last_mouse[1] = e.clientY; + this.last_mouseclick = LiteGraph.getTime(); + this.last_mouse_dragging = true; + + /* + if( (this.dirty_canvas || this.dirty_bgcanvas) && this.rendering_timer_id == null) + this.draw(); + */ + + this.graph.change(); + + //this is to ensure to defocus(blur) if a text input element is on focus + if ( + !ref_window.document.activeElement || + (ref_window.document.activeElement.nodeName.toLowerCase() != + "input" && + ref_window.document.activeElement.nodeName.toLowerCase() != + "textarea") + ) { + e.preventDefault(); + } + e.stopPropagation(); + + if (this.onMouseDown) { + this.onMouseDown(e); + } + + return false; + }; + + /** + * Called when a mouse move event has to be processed + * @method processMouseMove + **/ + LGraphCanvas.prototype.processMouseMove = function(e) { + if (this.autoresize) { + this.resize(); + } + + if( this.set_canvas_dirty_on_mouse_event ) + this.dirty_canvas = true; + + if (!this.graph) { + return; + } + + LGraphCanvas.active_canvas = this; + this.adjustMouseEvent(e); + var mouse = [e.clientX, e.clientY]; + this.mouse[0] = mouse[0]; + this.mouse[1] = mouse[1]; + var delta = [ + mouse[0] - this.last_mouse[0], + mouse[1] - this.last_mouse[1] + ]; + this.last_mouse = mouse; + this.graph_mouse[0] = e.canvasX; + this.graph_mouse[1] = e.canvasY; + + //console.log("pointerevents: processMouseMove "+e.pointerId+" "+e.isPrimary); + + if(this.block_click) + { + //console.log("pointerevents: processMouseMove block_click"); + e.preventDefault(); + return false; + } + + e.dragging = this.last_mouse_dragging; + + if (this.node_widget) { + this.processNodeWidgets( + this.node_widget[0], + this.graph_mouse, + e, + this.node_widget[1] + ); + this.dirty_canvas = true; + } + + //get node over + var node = this.graph.getNodeOnPos(e.canvasX,e.canvasY,this.visible_nodes); + + if (this.dragging_rectangle) + { + this.dragging_rectangle[2] = e.canvasX - this.dragging_rectangle[0]; + this.dragging_rectangle[3] = e.canvasY - this.dragging_rectangle[1]; + this.dirty_canvas = true; + } + else if (this.selected_group && !this.read_only) + { + //moving/resizing a group + if (this.selected_group_resizing) { + this.selected_group.size = [ + e.canvasX - this.selected_group.pos[0], + e.canvasY - this.selected_group.pos[1] + ]; + } else { + var deltax = delta[0] / this.ds.scale; + var deltay = delta[1] / this.ds.scale; + this.selected_group.move(deltax, deltay, e.ctrlKey); + if (this.selected_group._nodes.length) { + this.dirty_canvas = true; + } + } + this.dirty_bgcanvas = true; + } else if (this.dragging_canvas) { + ////console.log("pointerevents: processMouseMove is dragging_canvas"); + this.ds.offset[0] += delta[0] / this.ds.scale; + this.ds.offset[1] += delta[1] / this.ds.scale; + this.dirty_canvas = true; + this.dirty_bgcanvas = true; + } else if ((this.allow_interaction || (node && node.flags.allow_interaction)) && !this.read_only) { + if (this.connecting_node) { + this.dirty_canvas = true; + } + + //remove mouseover flag + for (var i = 0, l = this.graph._nodes.length; i < l; ++i) { + if (this.graph._nodes[i].mouseOver && node != this.graph._nodes[i] ) { + //mouse leave + this.graph._nodes[i].mouseOver = false; + if (this.node_over && this.node_over.onMouseLeave) { + this.node_over.onMouseLeave(e); + } + this.node_over = null; + this.dirty_canvas = true; + } + } + + //mouse over a node + if (node) { + + if(node.redraw_on_mouse) + this.dirty_canvas = true; + + //this.canvas.style.cursor = "move"; + if (!node.mouseOver) { + //mouse enter + node.mouseOver = true; + this.node_over = node; + this.dirty_canvas = true; + + if (node.onMouseEnter) { + node.onMouseEnter(e); + } + } + + //in case the node wants to do something + if (node.onMouseMove) { + node.onMouseMove( e, [e.canvasX - node.pos[0], e.canvasY - node.pos[1]], this ); + } + + //if dragging a link + if (this.connecting_node) { + + if (this.connecting_output){ + + var pos = this._highlight_input || [0, 0]; //to store the output of isOverNodeInput + + //on top of input + if (this.isOverNodeBox(node, e.canvasX, e.canvasY)) { + //mouse on top of the corner box, don't know what to do + } else { + //check if I have a slot below de mouse + var slot = this.isOverNodeInput( node, e.canvasX, e.canvasY, pos ); + if (slot != -1 && node.inputs[slot]) { + var slot_type = node.inputs[slot].type; + if ( LiteGraph.isValidConnection( this.connecting_output.type, slot_type ) ) { + this._highlight_input = pos; + this._highlight_input_slot = node.inputs[slot]; // XXX CHECK THIS + } + } else { + this._highlight_input = null; + this._highlight_input_slot = null; // XXX CHECK THIS + } + } + + }else if(this.connecting_input){ + + var pos = this._highlight_output || [0, 0]; //to store the output of isOverNodeOutput + + //on top of output + if (this.isOverNodeBox(node, e.canvasX, e.canvasY)) { + //mouse on top of the corner box, don't know what to do + } else { + //check if I have a slot below de mouse + var slot = this.isOverNodeOutput( node, e.canvasX, e.canvasY, pos ); + if (slot != -1 && node.outputs[slot]) { + var slot_type = node.outputs[slot].type; + if ( LiteGraph.isValidConnection( this.connecting_input.type, slot_type ) ) { + this._highlight_output = pos; + } + } else { + this._highlight_output = null; + } + } + } + } + + //Search for corner + if (this.canvas) { + if (node.inResizeCorner(e.canvasX, e.canvasY)) { + this.canvas.style.cursor = "se-resize"; + } else { + this.canvas.style.cursor = "crosshair"; + } + } + } else { //not over a node + + //search for link connector + var over_link = null; + for (var i = 0; i < this.visible_links.length; ++i) { + var link = this.visible_links[i]; + var center = link._pos; + if ( + !center || + e.canvasX < center[0] - 4 || + e.canvasX > center[0] + 4 || + e.canvasY < center[1] - 4 || + e.canvasY > center[1] + 4 + ) { + continue; + } + over_link = link; + break; + } + if( over_link != this.over_link_center ) + { + this.over_link_center = over_link; + this.dirty_canvas = true; + } + + if (this.canvas) { + this.canvas.style.cursor = ""; + } + } //end + + //send event to node if capturing input (used with widgets that allow drag outside of the area of the node) + if ( this.node_capturing_input && this.node_capturing_input != node && this.node_capturing_input.onMouseMove ) { + this.node_capturing_input.onMouseMove(e,[e.canvasX - this.node_capturing_input.pos[0],e.canvasY - this.node_capturing_input.pos[1]], this); + } + + //node being dragged + if (this.node_dragged && !this.live_mode) { + //console.log("draggin!",this.selected_nodes); + for (var i in this.selected_nodes) { + var n = this.selected_nodes[i]; + n.pos[0] += delta[0] / this.ds.scale; + n.pos[1] += delta[1] / this.ds.scale; + if (!n.is_selected) this.processNodeSelected(n, e); /* + * Don't call the function if the block is already selected. + * Otherwise, it could cause the block to be unselected while dragging. + */ + } + + this.dirty_canvas = true; + this.dirty_bgcanvas = true; + } + + if (this.resizing_node && !this.live_mode) { + //convert mouse to node space + var desired_size = [ e.canvasX - this.resizing_node.pos[0], e.canvasY - this.resizing_node.pos[1] ]; + var min_size = this.resizing_node.computeSize(); + desired_size[0] = Math.max( min_size[0], desired_size[0] ); + desired_size[1] = Math.max( min_size[1], desired_size[1] ); + this.resizing_node.setSize( desired_size ); + + this.canvas.style.cursor = "se-resize"; + this.dirty_canvas = true; + this.dirty_bgcanvas = true; + } + } + + e.preventDefault(); + return false; + }; + + /** + * Called when a mouse up event has to be processed + * @method processMouseUp + **/ + LGraphCanvas.prototype.processMouseUp = function(e) { + + var is_primary = ( e.isPrimary === undefined || e.isPrimary ); + + //early exit for extra pointer + if(!is_primary){ + /*e.stopPropagation(); + e.preventDefault();*/ + //console.log("pointerevents: processMouseUp pointerN_stop "+e.pointerId+" "+e.isPrimary); + return false; + } + + //console.log("pointerevents: processMouseUp "+e.pointerId+" "+e.isPrimary+" :: "+e.clientX+" "+e.clientY); + + if( this.set_canvas_dirty_on_mouse_event ) + this.dirty_canvas = true; + + if (!this.graph) + return; + + var window = this.getCanvasWindow(); + var document = window.document; + LGraphCanvas.active_canvas = this; + + //restore the mousemove event back to the canvas + if(!this.options.skip_events) + { + //console.log("pointerevents: processMouseUp adjustEventListener"); + LiteGraph.pointerListenerRemove(document,"move", this._mousemove_callback,true); + LiteGraph.pointerListenerAdd(this.canvas,"move", this._mousemove_callback,true); + LiteGraph.pointerListenerRemove(document,"up", this._mouseup_callback,true); + } + + this.adjustMouseEvent(e); + var now = LiteGraph.getTime(); + e.click_time = now - this.last_mouseclick; + this.last_mouse_dragging = false; + this.last_click_position = null; + + if(this.block_click) + { + //console.log("pointerevents: processMouseUp block_clicks"); + this.block_click = false; //used to avoid sending twice a click in a immediate button + } + + //console.log("pointerevents: processMouseUp which: "+e.which); + + if (e.which == 1) { + + if( this.node_widget ) + { + this.processNodeWidgets( this.node_widget[0], this.graph_mouse, e ); + } + + //left button + this.node_widget = null; + + if (this.selected_group) { + var diffx = + this.selected_group.pos[0] - + Math.round(this.selected_group.pos[0]); + var diffy = + this.selected_group.pos[1] - + Math.round(this.selected_group.pos[1]); + this.selected_group.move(diffx, diffy, e.ctrlKey); + this.selected_group.pos[0] = Math.round( + this.selected_group.pos[0] + ); + this.selected_group.pos[1] = Math.round( + this.selected_group.pos[1] + ); + if (this.selected_group._nodes.length) { + this.dirty_canvas = true; + } + this.selected_group = null; + } + this.selected_group_resizing = false; + + var node = this.graph.getNodeOnPos( + e.canvasX, + e.canvasY, + this.visible_nodes + ); + + if (this.dragging_rectangle) { + if (this.graph) { + var nodes = this.graph._nodes; + var node_bounding = new Float32Array(4); + + //compute bounding and flip if left to right + var w = Math.abs(this.dragging_rectangle[2]); + var h = Math.abs(this.dragging_rectangle[3]); + var startx = + this.dragging_rectangle[2] < 0 + ? this.dragging_rectangle[0] - w + : this.dragging_rectangle[0]; + var starty = + this.dragging_rectangle[3] < 0 + ? this.dragging_rectangle[1] - h + : this.dragging_rectangle[1]; + this.dragging_rectangle[0] = startx; + this.dragging_rectangle[1] = starty; + this.dragging_rectangle[2] = w; + this.dragging_rectangle[3] = h; + + // test dragging rect size, if minimun simulate a click + if (!node || (w > 10 && h > 10 )){ + //test against all nodes (not visible because the rectangle maybe start outside + var to_select = []; + for (var i = 0; i < nodes.length; ++i) { + var nodeX = nodes[i]; + nodeX.getBounding(node_bounding); + if ( + !overlapBounding( + this.dragging_rectangle, + node_bounding + ) + ) { + continue; + } //out of the visible area + to_select.push(nodeX); + } + if (to_select.length) { + this.selectNodes(to_select,e.shiftKey); // add to selection with shift + } + }else{ + // will select of update selection + this.selectNodes([node],e.shiftKey||e.ctrlKey); // add to selection add to selection with ctrlKey or shiftKey + } + + } + this.dragging_rectangle = null; + } else if (this.connecting_node) { + //dragging a connection + this.dirty_canvas = true; + this.dirty_bgcanvas = true; + + var connInOrOut = this.connecting_output || this.connecting_input; + var connType = connInOrOut.type; + + //node below mouse + if (node) { + + /* no need to condition on event type.. just another type + if ( + connType == LiteGraph.EVENT && + this.isOverNodeBox(node, e.canvasX, e.canvasY) + ) { + + this.connecting_node.connect( + this.connecting_slot, + node, + LiteGraph.EVENT + ); + + } else {*/ + + //slot below mouse? connect + + if (this.connecting_output){ + + var slot = this.isOverNodeInput( + node, + e.canvasX, + e.canvasY + ); + if (slot != -1) { + this.connecting_node.connect(this.connecting_slot, node, slot); + } else { + //not on top of an input + // look for a good slot + this.connecting_node.connectByType(this.connecting_slot,node,connType); + } + + }else if (this.connecting_input){ + + var slot = this.isOverNodeOutput( + node, + e.canvasX, + e.canvasY + ); + + if (slot != -1) { + node.connect(slot, this.connecting_node, this.connecting_slot); // this is inverted has output-input nature like + } else { + //not on top of an input + // look for a good slot + this.connecting_node.connectByTypeOutput(this.connecting_slot,node,connType); + } + + } + + + //} + + }else{ + + // add menu when releasing link in empty space + if (LiteGraph.release_link_on_empty_shows_menu){ + if (e.shiftKey && this.allow_searchbox){ + if(this.connecting_output){ + this.showSearchBox(e,{node_from: this.connecting_node, slot_from: this.connecting_output, type_filter_in: this.connecting_output.type}); + }else if(this.connecting_input){ + this.showSearchBox(e,{node_to: this.connecting_node, slot_from: this.connecting_input, type_filter_out: this.connecting_input.type}); + } + }else{ + if(this.connecting_output){ + this.showConnectionMenu({nodeFrom: this.connecting_node, slotFrom: this.connecting_output, e: e}); + }else if(this.connecting_input){ + this.showConnectionMenu({nodeTo: this.connecting_node, slotTo: this.connecting_input, e: e}); + } + } + } + } + + this.connecting_output = null; + this.connecting_input = null; + this.connecting_pos = null; + this.connecting_node = null; + this.connecting_slot = -1; + } //not dragging connection + else if (this.resizing_node) { + this.dirty_canvas = true; + this.dirty_bgcanvas = true; + this.graph.afterChange(this.resizing_node); + this.resizing_node = null; + } else if (this.node_dragged) { + //node being dragged? + var node = this.node_dragged; + if ( + node && + e.click_time < 300 && + isInsideRectangle( e.canvasX, e.canvasY, node.pos[0], node.pos[1] - LiteGraph.NODE_TITLE_HEIGHT, LiteGraph.NODE_TITLE_HEIGHT, LiteGraph.NODE_TITLE_HEIGHT ) + ) { + node.collapse(); + } + + this.dirty_canvas = true; + this.dirty_bgcanvas = true; + this.node_dragged.pos[0] = Math.round(this.node_dragged.pos[0]); + this.node_dragged.pos[1] = Math.round(this.node_dragged.pos[1]); + if (this.graph.config.align_to_grid || this.align_to_grid ) { + this.node_dragged.alignToGrid(); + } + if( this.onNodeMoved ) + this.onNodeMoved( this.node_dragged ); + this.graph.afterChange(this.node_dragged); + this.node_dragged = null; + } //no node being dragged + else { + //get node over + var node = this.graph.getNodeOnPos( + e.canvasX, + e.canvasY, + this.visible_nodes + ); + + if (!node && e.click_time < 300) { + this.deselectAllNodes(); + } + + this.dirty_canvas = true; + this.dragging_canvas = false; + + if (this.node_over && this.node_over.onMouseUp) { + this.node_over.onMouseUp( e, [ e.canvasX - this.node_over.pos[0], e.canvasY - this.node_over.pos[1] ], this ); + } + if ( + this.node_capturing_input && + this.node_capturing_input.onMouseUp + ) { + this.node_capturing_input.onMouseUp(e, [ + e.canvasX - this.node_capturing_input.pos[0], + e.canvasY - this.node_capturing_input.pos[1] + ]); + } + } + } else if (e.which == 2) { + //middle button + //trace("middle"); + this.dirty_canvas = true; + this.dragging_canvas = false; + } else if (e.which == 3) { + //right button + //trace("right"); + this.dirty_canvas = true; + this.dragging_canvas = false; + } + + /* + if((this.dirty_canvas || this.dirty_bgcanvas) && this.rendering_timer_id == null) + this.draw(); + */ + + if (is_primary) + { + this.pointer_is_down = false; + this.pointer_is_double = false; + } + + this.graph.change(); + + //console.log("pointerevents: processMouseUp stopPropagation"); + e.stopPropagation(); + e.preventDefault(); + return false; + }; + + /** + * Called when a mouse wheel event has to be processed + * @method processMouseWheel + **/ + LGraphCanvas.prototype.processMouseWheel = function(e) { + if (!this.graph || !this.allow_dragcanvas) { + return; + } + + var delta = e.wheelDeltaY != null ? e.wheelDeltaY : e.detail * -60; + + this.adjustMouseEvent(e); + + var x = e.clientX; + var y = e.clientY; + var is_inside = !this.viewport || ( this.viewport && x >= this.viewport[0] && x < (this.viewport[0] + this.viewport[2]) && y >= this.viewport[1] && y < (this.viewport[1] + this.viewport[3]) ); + if(!is_inside) + return; + + var scale = this.ds.scale; + + if (delta > 0) { + scale *= 1.1; + } else if (delta < 0) { + scale *= 1 / 1.1; + } + + //this.setZoom( scale, [ e.clientX, e.clientY ] ); + this.ds.changeScale(scale, [e.clientX, e.clientY]); + + this.graph.change(); + + e.preventDefault(); + return false; // prevent default + }; + + /** + * returns true if a position (in graph space) is on top of a node little corner box + * @method isOverNodeBox + **/ + LGraphCanvas.prototype.isOverNodeBox = function(node, canvasx, canvasy) { + var title_height = LiteGraph.NODE_TITLE_HEIGHT; + if ( + isInsideRectangle( + canvasx, + canvasy, + node.pos[0] + 2, + node.pos[1] + 2 - title_height, + title_height - 4, + title_height - 4 + ) + ) { + return true; + } + return false; + }; + + /** + * returns the INDEX if a position (in graph space) is on top of a node input slot + * @method isOverNodeInput + **/ + LGraphCanvas.prototype.isOverNodeInput = function( + node, + canvasx, + canvasy, + slot_pos + ) { + if (node.inputs) { + for (var i = 0, l = node.inputs.length; i < l; ++i) { + var input = node.inputs[i]; + var link_pos = node.getConnectionPos(true, i); + var is_inside = false; + if (node.horizontal) { + is_inside = isInsideRectangle( + canvasx, + canvasy, + link_pos[0] - 5, + link_pos[1] - 10, + 10, + 20 + ); + } else { + is_inside = isInsideRectangle( + canvasx, + canvasy, + link_pos[0] - 10, + link_pos[1] - 5, + 40, + 10 + ); + } + if (is_inside) { + if (slot_pos) { + slot_pos[0] = link_pos[0]; + slot_pos[1] = link_pos[1]; + } + return i; + } + } + } + return -1; + }; + + /** + * returns the INDEX if a position (in graph space) is on top of a node output slot + * @method isOverNodeOuput + **/ + LGraphCanvas.prototype.isOverNodeOutput = function( + node, + canvasx, + canvasy, + slot_pos + ) { + if (node.outputs) { + for (var i = 0, l = node.outputs.length; i < l; ++i) { + var output = node.outputs[i]; + var link_pos = node.getConnectionPos(false, i); + var is_inside = false; + if (node.horizontal) { + is_inside = isInsideRectangle( + canvasx, + canvasy, + link_pos[0] - 5, + link_pos[1] - 10, + 10, + 20 + ); + } else { + is_inside = isInsideRectangle( + canvasx, + canvasy, + link_pos[0] - 10, + link_pos[1] - 5, + 40, + 10 + ); + } + if (is_inside) { + if (slot_pos) { + slot_pos[0] = link_pos[0]; + slot_pos[1] = link_pos[1]; + } + return i; + } + } + } + return -1; + }; + + /** + * process a key event + * @method processKey + **/ + LGraphCanvas.prototype.processKey = function(e) { + if (!this.graph) { + return; + } + + var block_default = false; + //console.log(e); //debug + + if (e.target.localName == "input") { + return; + } + + if (e.type == "keydown") { + if (e.keyCode == 32) { + //space + this.dragging_canvas = true; + block_default = true; + } + + if (e.keyCode == 27) { + //esc + if(this.node_panel) this.node_panel.close(); + if(this.options_panel) this.options_panel.close(); + block_default = true; + } + + //select all Control A + if (e.keyCode == 65 && e.ctrlKey) { + this.selectNodes(); + block_default = true; + } + + if ((e.keyCode === 67) && (e.metaKey || e.ctrlKey) && !e.shiftKey) { + //copy + if (this.selected_nodes) { + this.copyToClipboard(); + block_default = true; + } + } + + if ((e.keyCode === 86) && (e.metaKey || e.ctrlKey)) { + //paste + this.pasteFromClipboard(e.shiftKey); + } + + //delete or backspace + if (e.keyCode == 46 || e.keyCode == 8) { + if ( + e.target.localName != "input" && + e.target.localName != "textarea" + ) { + this.deleteSelectedNodes(); + block_default = true; + } + } + + //collapse + //... + + //TODO + if (this.selected_nodes) { + for (var i in this.selected_nodes) { + if (this.selected_nodes[i].onKeyDown) { + this.selected_nodes[i].onKeyDown(e); + } + } + } + } else if (e.type == "keyup") { + if (e.keyCode == 32) { + // space + this.dragging_canvas = false; + } + + if (this.selected_nodes) { + for (var i in this.selected_nodes) { + if (this.selected_nodes[i].onKeyUp) { + this.selected_nodes[i].onKeyUp(e); + } + } + } + } + + this.graph.change(); + + if (block_default) { + e.preventDefault(); + e.stopImmediatePropagation(); + return false; + } + }; + + LGraphCanvas.prototype.copyToClipboard = function(nodes) { + var clipboard_info = { + nodes: [], + links: [] + }; + var index = 0; + var selected_nodes_array = []; + if (!nodes) nodes = this.selected_nodes; + for (var i in nodes) { + var node = nodes[i]; + if (node.clonable === false) + continue; + node._relative_id = index; + selected_nodes_array.push(node); + index += 1; + } + + for (var i = 0; i < selected_nodes_array.length; ++i) { + var node = selected_nodes_array[i]; + var cloned = node.clone(); + if(!cloned) + { + console.warn("node type not found: " + node.type ); + continue; + } + clipboard_info.nodes.push(cloned.serialize()); + if (node.inputs && node.inputs.length) { + for (var j = 0; j < node.inputs.length; ++j) { + var input = node.inputs[j]; + if (!input || input.link == null) { + continue; + } + var link_info = this.graph.links[input.link]; + if (!link_info) { + continue; + } + var target_node = this.graph.getNodeById( + link_info.origin_id + ); + if (!target_node) { + continue; + } + clipboard_info.links.push([ + target_node._relative_id, + link_info.origin_slot, //j, + node._relative_id, + link_info.target_slot, + target_node.id + ]); + } + } + } + localStorage.setItem( + "litegrapheditor_clipboard", + JSON.stringify(clipboard_info) + ); + }; + + LGraphCanvas.prototype.pasteFromClipboard = function(isConnectUnselected = false) { + // if ctrl + shift + v is off, return when isConnectUnselected is true (shift is pressed) to maintain old behavior + if (!LiteGraph.ctrl_shift_v_paste_connect_unselected_outputs && isConnectUnselected) { + return; + } + var data = localStorage.getItem("litegrapheditor_clipboard"); + if (!data) { + return; + } + + this.graph.beforeChange(); + + //create nodes + var clipboard_info = JSON.parse(data); + // calculate top-left node, could work without this processing but using diff with last node pos :: clipboard_info.nodes[clipboard_info.nodes.length-1].pos + var posMin = false; + var posMinIndexes = false; + for (var i = 0; i < clipboard_info.nodes.length; ++i) { + if (posMin){ + if(posMin[0]>clipboard_info.nodes[i].pos[0]){ + posMin[0] = clipboard_info.nodes[i].pos[0]; + posMinIndexes[0] = i; + } + if(posMin[1]>clipboard_info.nodes[i].pos[1]){ + posMin[1] = clipboard_info.nodes[i].pos[1]; + posMinIndexes[1] = i; + } + } + else{ + posMin = [clipboard_info.nodes[i].pos[0], clipboard_info.nodes[i].pos[1]]; + posMinIndexes = [i, i]; + } + } + var nodes = []; + for (var i = 0; i < clipboard_info.nodes.length; ++i) { + var node_data = clipboard_info.nodes[i]; + var node = LiteGraph.createNode(node_data.type); + if (node) { + node.configure(node_data); + + //paste in last known mouse position + node.pos[0] += this.graph_mouse[0] - posMin[0]; //+= 5; + node.pos[1] += this.graph_mouse[1] - posMin[1]; //+= 5; + + this.graph.add(node,{doProcessChange:false}); + + nodes.push(node); + } + } + + //create links + for (var i = 0; i < clipboard_info.links.length; ++i) { + var link_info = clipboard_info.links[i]; + var origin_node; + var origin_node_relative_id = link_info[0]; + if (origin_node_relative_id != null) { + origin_node = nodes[origin_node_relative_id]; + } else if (LiteGraph.ctrl_shift_v_paste_connect_unselected_outputs && isConnectUnselected) { + var origin_node_id = link_info[4]; + if (origin_node_id) { + origin_node = this.graph.getNodeById(origin_node_id); + } + } + var target_node = nodes[link_info[2]]; + if( origin_node && target_node ) + origin_node.connect(link_info[1], target_node, link_info[3]); + else + console.warn("Warning, nodes missing on pasting"); + } + + this.selectNodes(nodes); + + this.graph.afterChange(); + }; + + /** + * process a item drop event on top the canvas + * @method processDrop + **/ + LGraphCanvas.prototype.processDrop = function(e) { + e.preventDefault(); + this.adjustMouseEvent(e); + var x = e.clientX; + var y = e.clientY; + var is_inside = !this.viewport || ( this.viewport && x >= this.viewport[0] && x < (this.viewport[0] + this.viewport[2]) && y >= this.viewport[1] && y < (this.viewport[1] + this.viewport[3]) ); + if(!is_inside){ + return; + // --- BREAK --- + } + + var pos = [e.canvasX, e.canvasY]; + + + var node = this.graph ? this.graph.getNodeOnPos(pos[0], pos[1]) : null; + + if (!node) { + var r = null; + if (this.onDropItem) { + r = this.onDropItem(event); + } + if (!r) { + this.checkDropItem(e); + } + return; + } + + if (node.onDropFile || node.onDropData) { + var files = e.dataTransfer.files; + if (files && files.length) { + for (var i = 0; i < files.length; i++) { + var file = e.dataTransfer.files[0]; + var filename = file.name; + var ext = LGraphCanvas.getFileExtension(filename); + //console.log(file); + + if (node.onDropFile) { + node.onDropFile(file); + } + + if (node.onDropData) { + //prepare reader + var reader = new FileReader(); + reader.onload = function(event) { + //console.log(event.target); + var data = event.target.result; + node.onDropData(data, filename, file); + }; + + //read data + var type = file.type.split("/")[0]; + if (type == "text" || type == "") { + reader.readAsText(file); + } else if (type == "image") { + reader.readAsDataURL(file); + } else { + reader.readAsArrayBuffer(file); + } + } + } + } + } + + if (node.onDropItem) { + if (node.onDropItem(event)) { + return true; + } + } + + if (this.onDropItem) { + return this.onDropItem(event); + } + + return false; + }; + + //called if the graph doesn't have a default drop item behaviour + LGraphCanvas.prototype.checkDropItem = function(e) { + if (e.dataTransfer.files.length) { + var file = e.dataTransfer.files[0]; + var ext = LGraphCanvas.getFileExtension(file.name).toLowerCase(); + var nodetype = LiteGraph.node_types_by_file_extension[ext]; + if (nodetype) { + this.graph.beforeChange(); + var node = LiteGraph.createNode(nodetype.type); + node.pos = [e.canvasX, e.canvasY]; + this.graph.add(node); + if (node.onDropFile) { + node.onDropFile(file); + } + this.graph.afterChange(); + } + } + }; + + LGraphCanvas.prototype.processNodeDblClicked = function(n) { + if (this.onShowNodePanel) { + this.onShowNodePanel(n); + } + + if (this.onNodeDblClicked) { + this.onNodeDblClicked(n); + } + + this.setDirty(true); + }; + + LGraphCanvas.prototype.processNodeSelected = function(node, e) { + this.selectNode(node, e && (e.shiftKey || e.ctrlKey || this.multi_select)); + if (this.onNodeSelected) { + this.onNodeSelected(node); + } + }; + + /** + * selects a given node (or adds it to the current selection) + * @method selectNode + **/ + LGraphCanvas.prototype.selectNode = function( + node, + add_to_current_selection + ) { + if (node == null) { + this.deselectAllNodes(); + } else { + this.selectNodes([node], add_to_current_selection); + } + }; + + /** + * selects several nodes (or adds them to the current selection) + * @method selectNodes + **/ + LGraphCanvas.prototype.selectNodes = function( nodes, add_to_current_selection ) + { + if (!add_to_current_selection) { + this.deselectAllNodes(); + } + + nodes = nodes || this.graph._nodes; + if (typeof nodes == "string") nodes = [nodes]; + for (var i in nodes) { + var node = nodes[i]; + if (node.is_selected) { + this.deselectNode(node); + continue; + } + + if (!node.is_selected && node.onSelected) { + node.onSelected(); + } + node.is_selected = true; + this.selected_nodes[node.id] = node; + + if (node.inputs) { + for (var j = 0; j < node.inputs.length; ++j) { + this.highlighted_links[node.inputs[j].link] = true; + } + } + if (node.outputs) { + for (var j = 0; j < node.outputs.length; ++j) { + var out = node.outputs[j]; + if (out.links) { + for (var k = 0; k < out.links.length; ++k) { + this.highlighted_links[out.links[k]] = true; + } + } + } + } + } + + if( this.onSelectionChange ) + this.onSelectionChange( this.selected_nodes ); + + this.setDirty(true); + }; + + /** + * removes a node from the current selection + * @method deselectNode + **/ + LGraphCanvas.prototype.deselectNode = function(node) { + if (!node.is_selected) { + return; + } + if (node.onDeselected) { + node.onDeselected(); + } + node.is_selected = false; + + if (this.onNodeDeselected) { + this.onNodeDeselected(node); + } + + //remove highlighted + if (node.inputs) { + for (var i = 0; i < node.inputs.length; ++i) { + delete this.highlighted_links[node.inputs[i].link]; + } + } + if (node.outputs) { + for (var i = 0; i < node.outputs.length; ++i) { + var out = node.outputs[i]; + if (out.links) { + for (var j = 0; j < out.links.length; ++j) { + delete this.highlighted_links[out.links[j]]; + } + } + } + } + }; + + /** + * removes all nodes from the current selection + * @method deselectAllNodes + **/ + LGraphCanvas.prototype.deselectAllNodes = function() { + if (!this.graph) { + return; + } + var nodes = this.graph._nodes; + for (var i = 0, l = nodes.length; i < l; ++i) { + var node = nodes[i]; + if (!node.is_selected) { + continue; + } + if (node.onDeselected) { + node.onDeselected(); + } + node.is_selected = false; + if (this.onNodeDeselected) { + this.onNodeDeselected(node); + } + } + this.selected_nodes = {}; + this.current_node = null; + this.highlighted_links = {}; + if( this.onSelectionChange ) + this.onSelectionChange( this.selected_nodes ); + this.setDirty(true); + }; + + /** + * deletes all nodes in the current selection from the graph + * @method deleteSelectedNodes + **/ + LGraphCanvas.prototype.deleteSelectedNodes = function() { + + this.graph.beforeChange(); + + for (var i in this.selected_nodes) { + var node = this.selected_nodes[i]; + + if(node.block_delete) + continue; + + //autoconnect when possible (very basic, only takes into account first input-output) + if(node.inputs && node.inputs.length && node.outputs && node.outputs.length && LiteGraph.isValidConnection( node.inputs[0].type, node.outputs[0].type ) && node.inputs[0].link && node.outputs[0].links && node.outputs[0].links.length ) + { + var input_link = node.graph.links[ node.inputs[0].link ]; + var output_link = node.graph.links[ node.outputs[0].links[0] ]; + var input_node = node.getInputNode(0); + var output_node = node.getOutputNodes(0)[0]; + if(input_node && output_node) + input_node.connect( input_link.origin_slot, output_node, output_link.target_slot ); + } + this.graph.remove(node); + if (this.onNodeDeselected) { + this.onNodeDeselected(node); + } + } + this.selected_nodes = {}; + this.current_node = null; + this.highlighted_links = {}; + this.setDirty(true); + this.graph.afterChange(); + }; + + /** + * centers the camera on a given node + * @method centerOnNode + **/ + LGraphCanvas.prototype.centerOnNode = function(node) { + this.ds.offset[0] = + -node.pos[0] - + node.size[0] * 0.5 + + (this.canvas.width * 0.5) / this.ds.scale; + this.ds.offset[1] = + -node.pos[1] - + node.size[1] * 0.5 + + (this.canvas.height * 0.5) / this.ds.scale; + this.setDirty(true, true); + }; + + /** + * adds some useful properties to a mouse event, like the position in graph coordinates + * @method adjustMouseEvent + **/ + LGraphCanvas.prototype.adjustMouseEvent = function(e) { + var clientX_rel = 0; + var clientY_rel = 0; + + if (this.canvas) { + var b = this.canvas.getBoundingClientRect(); + clientX_rel = e.clientX - b.left; + clientY_rel = e.clientY - b.top; + } else { + clientX_rel = e.clientX; + clientY_rel = e.clientY; + } + + e.deltaX = clientX_rel - this.last_mouse_position[0]; + e.deltaY = clientY_rel- this.last_mouse_position[1]; + + this.last_mouse_position[0] = clientX_rel; + this.last_mouse_position[1] = clientY_rel; + + e.canvasX = clientX_rel / this.ds.scale - this.ds.offset[0]; + e.canvasY = clientY_rel / this.ds.scale - this.ds.offset[1]; + + //console.log("pointerevents: adjustMouseEvent "+e.clientX+":"+e.clientY+" "+clientX_rel+":"+clientY_rel+" "+e.canvasX+":"+e.canvasY); + }; + + /** + * changes the zoom level of the graph (default is 1), you can pass also a place used to pivot the zoom + * @method setZoom + **/ + LGraphCanvas.prototype.setZoom = function(value, zooming_center) { + this.ds.changeScale(value, zooming_center); + /* + if(!zooming_center && this.canvas) + zooming_center = [this.canvas.width * 0.5,this.canvas.height * 0.5]; + + var center = this.convertOffsetToCanvas( zooming_center ); + + this.ds.scale = value; + + if(this.scale > this.max_zoom) + this.scale = this.max_zoom; + else if(this.scale < this.min_zoom) + this.scale = this.min_zoom; + + var new_center = this.convertOffsetToCanvas( zooming_center ); + var delta_offset = [new_center[0] - center[0], new_center[1] - center[1]]; + + this.offset[0] += delta_offset[0]; + this.offset[1] += delta_offset[1]; + */ + + this.dirty_canvas = true; + this.dirty_bgcanvas = true; + }; + + /** + * converts a coordinate from graph coordinates to canvas2D coordinates + * @method convertOffsetToCanvas + **/ + LGraphCanvas.prototype.convertOffsetToCanvas = function(pos, out) { + return this.ds.convertOffsetToCanvas(pos, out); + }; + + /** + * converts a coordinate from Canvas2D coordinates to graph space + * @method convertCanvasToOffset + **/ + LGraphCanvas.prototype.convertCanvasToOffset = function(pos, out) { + return this.ds.convertCanvasToOffset(pos, out); + }; + + //converts event coordinates from canvas2D to graph coordinates + LGraphCanvas.prototype.convertEventToCanvasOffset = function(e) { + var rect = this.canvas.getBoundingClientRect(); + return this.convertCanvasToOffset([ + e.clientX - rect.left, + e.clientY - rect.top + ]); + }; + + /** + * brings a node to front (above all other nodes) + * @method bringToFront + **/ + LGraphCanvas.prototype.bringToFront = function(node) { + var i = this.graph._nodes.indexOf(node); + if (i == -1) { + return; + } + + this.graph._nodes.splice(i, 1); + this.graph._nodes.push(node); + }; + + /** + * sends a node to the back (below all other nodes) + * @method sendToBack + **/ + LGraphCanvas.prototype.sendToBack = function(node) { + var i = this.graph._nodes.indexOf(node); + if (i == -1) { + return; + } + + this.graph._nodes.splice(i, 1); + this.graph._nodes.unshift(node); + }; + + /* Interaction */ + + /* LGraphCanvas render */ + var temp = new Float32Array(4); + + /** + * checks which nodes are visible (inside the camera area) + * @method computeVisibleNodes + **/ + LGraphCanvas.prototype.computeVisibleNodes = function(nodes, out) { + var visible_nodes = out || []; + visible_nodes.length = 0; + nodes = nodes || this.graph._nodes; + for (var i = 0, l = nodes.length; i < l; ++i) { + var n = nodes[i]; + + //skip rendering nodes in live mode + if (this.live_mode && !n.onDrawBackground && !n.onDrawForeground) { + continue; + } + + if (!overlapBounding(this.visible_area, n.getBounding(temp, true))) { + continue; + } //out of the visible area + + visible_nodes.push(n); + } + return visible_nodes; + }; + + /** + * renders the whole canvas content, by rendering in two separated canvas, one containing the background grid and the connections, and one containing the nodes) + * @method draw + **/ + LGraphCanvas.prototype.draw = function(force_canvas, force_bgcanvas) { + if (!this.canvas || this.canvas.width == 0 || this.canvas.height == 0) { + return; + } + + //fps counting + var now = LiteGraph.getTime(); + this.render_time = (now - this.last_draw_time) * 0.001; + this.last_draw_time = now; + + if (this.graph) { + this.ds.computeVisibleArea(this.viewport); + } + + if ( + this.dirty_bgcanvas || + force_bgcanvas || + this.always_render_background || + (this.graph && + this.graph._last_trigger_time && + now - this.graph._last_trigger_time < 1000) + ) { + this.drawBackCanvas(); + } + + if (this.dirty_canvas || force_canvas) { + this.drawFrontCanvas(); + } + + this.fps = this.render_time ? 1.0 / this.render_time : 0; + this.frame += 1; + }; + + /** + * draws the front canvas (the one containing all the nodes) + * @method drawFrontCanvas + **/ + LGraphCanvas.prototype.drawFrontCanvas = function() { + this.dirty_canvas = false; + + if (!this.ctx) { + this.ctx = this.bgcanvas.getContext("2d"); + } + var ctx = this.ctx; + if (!ctx) { + //maybe is using webgl... + return; + } + + var canvas = this.canvas; + if ( ctx.start2D && !this.viewport ) { + ctx.start2D(); + ctx.restore(); + ctx.setTransform(1, 0, 0, 1, 0, 0); + } + + //clip dirty area if there is one, otherwise work in full canvas + var area = this.viewport || this.dirty_area; + if (area) { + ctx.save(); + ctx.beginPath(); + ctx.rect( area[0],area[1],area[2],area[3] ); + ctx.clip(); + } + + //clear + //canvas.width = canvas.width; + if (this.clear_background) { + if(area) + ctx.clearRect( area[0],area[1],area[2],area[3] ); + else + ctx.clearRect(0, 0, canvas.width, canvas.height); + } + + //draw bg canvas + if (this.bgcanvas == this.canvas) { + this.drawBackCanvas(); + } else { + ctx.drawImage( this.bgcanvas, 0, 0 ); + } + + //rendering + if (this.onRender) { + this.onRender(canvas, ctx); + } + + //info widget + if (this.show_info) { + this.renderInfo(ctx, area ? area[0] : 0, area ? area[1] : 0 ); + } + + if (this.graph) { + //apply transformations + ctx.save(); + this.ds.toCanvasContext(ctx); + + //draw nodes + var drawn_nodes = 0; + var visible_nodes = this.computeVisibleNodes( + null, + this.visible_nodes + ); + + for (var i = 0; i < visible_nodes.length; ++i) { + var node = visible_nodes[i]; + + //transform coords system + ctx.save(); + ctx.translate(node.pos[0], node.pos[1]); + + //Draw + this.drawNode(node, ctx); + drawn_nodes += 1; + + //Restore + ctx.restore(); + } + + //on top (debug) + if (this.render_execution_order) { + this.drawExecutionOrder(ctx); + } + + //connections ontop? + if (this.graph.config.links_ontop) { + if (!this.live_mode) { + this.drawConnections(ctx); + } + } + + //current connection (the one being dragged by the mouse) + if (this.connecting_pos != null) { + ctx.lineWidth = this.connections_width; + var link_color = null; + + var connInOrOut = this.connecting_output || this.connecting_input; + + var connType = connInOrOut.type; + var connDir = connInOrOut.dir; + if(connDir == null) + { + if (this.connecting_output) + connDir = this.connecting_node.horizontal ? LiteGraph.DOWN : LiteGraph.RIGHT; + else + connDir = this.connecting_node.horizontal ? LiteGraph.UP : LiteGraph.LEFT; + } + var connShape = connInOrOut.shape; + + switch (connType) { + case LiteGraph.EVENT: + link_color = LiteGraph.EVENT_LINK_COLOR; + break; + default: + link_color = LiteGraph.CONNECTING_LINK_COLOR; + } + + //the connection being dragged by the mouse + this.renderLink( + ctx, + this.connecting_pos, + [this.graph_mouse[0], this.graph_mouse[1]], + null, + false, + null, + link_color, + connDir, + LiteGraph.CENTER + ); + + ctx.beginPath(); + if ( + connType === LiteGraph.EVENT || + connShape === LiteGraph.BOX_SHAPE + ) { + ctx.rect( + this.connecting_pos[0] - 6 + 0.5, + this.connecting_pos[1] - 5 + 0.5, + 14, + 10 + ); + ctx.fill(); + ctx.beginPath(); + ctx.rect( + this.graph_mouse[0] - 6 + 0.5, + this.graph_mouse[1] - 5 + 0.5, + 14, + 10 + ); + } else if (connShape === LiteGraph.ARROW_SHAPE) { + ctx.moveTo(this.connecting_pos[0] + 8, this.connecting_pos[1] + 0.5); + ctx.lineTo(this.connecting_pos[0] - 4, this.connecting_pos[1] + 6 + 0.5); + ctx.lineTo(this.connecting_pos[0] - 4, this.connecting_pos[1] - 6 + 0.5); + ctx.closePath(); + } + else { + ctx.arc( + this.connecting_pos[0], + this.connecting_pos[1], + 4, + 0, + Math.PI * 2 + ); + ctx.fill(); + ctx.beginPath(); + ctx.arc( + this.graph_mouse[0], + this.graph_mouse[1], + 4, + 0, + Math.PI * 2 + ); + } + ctx.fill(); + + ctx.fillStyle = "#ffcc00"; + if (this._highlight_input) { + ctx.beginPath(); + var shape = this._highlight_input_slot.shape; + if (shape === LiteGraph.ARROW_SHAPE) { + ctx.moveTo(this._highlight_input[0] + 8, this._highlight_input[1] + 0.5); + ctx.lineTo(this._highlight_input[0] - 4, this._highlight_input[1] + 6 + 0.5); + ctx.lineTo(this._highlight_input[0] - 4, this._highlight_input[1] - 6 + 0.5); + ctx.closePath(); + } else { + ctx.arc( + this._highlight_input[0], + this._highlight_input[1], + 6, + 0, + Math.PI * 2 + ); + } + ctx.fill(); + } + if (this._highlight_output) { + ctx.beginPath(); + if (shape === LiteGraph.ARROW_SHAPE) { + ctx.moveTo(this._highlight_output[0] + 8, this._highlight_output[1] + 0.5); + ctx.lineTo(this._highlight_output[0] - 4, this._highlight_output[1] + 6 + 0.5); + ctx.lineTo(this._highlight_output[0] - 4, this._highlight_output[1] - 6 + 0.5); + ctx.closePath(); + } else { + ctx.arc( + this._highlight_output[0], + this._highlight_output[1], + 6, + 0, + Math.PI * 2 + ); + } + ctx.fill(); + } + } + + //the selection rectangle + if (this.dragging_rectangle) { + ctx.strokeStyle = "#FFF"; + ctx.strokeRect( + this.dragging_rectangle[0], + this.dragging_rectangle[1], + this.dragging_rectangle[2], + this.dragging_rectangle[3] + ); + } + + //on top of link center + if(this.over_link_center && this.render_link_tooltip) + this.drawLinkTooltip( ctx, this.over_link_center ); + else + if(this.onDrawLinkTooltip) //to remove + this.onDrawLinkTooltip(ctx,null); + + //custom info + if (this.onDrawForeground) { + this.onDrawForeground(ctx, this.visible_rect); + } + + ctx.restore(); + } + + //draws panel in the corner + if (this._graph_stack && this._graph_stack.length) { + this.drawSubgraphPanel( ctx ); + } + + + if (this.onDrawOverlay) { + this.onDrawOverlay(ctx); + } + + if (area){ + ctx.restore(); + } + + if (ctx.finish2D) { + //this is a function I use in webgl renderer + ctx.finish2D(); + } + }; + + /** + * draws the panel in the corner that shows subgraph properties + * @method drawSubgraphPanel + **/ + LGraphCanvas.prototype.drawSubgraphPanel = function (ctx) { + var subgraph = this.graph; + var subnode = subgraph._subgraph_node; + if (!subnode) { + console.warn("subgraph without subnode"); + return; + } + this.drawSubgraphPanelLeft(subgraph, subnode, ctx) + this.drawSubgraphPanelRight(subgraph, subnode, ctx) + } + + LGraphCanvas.prototype.drawSubgraphPanelLeft = function (subgraph, subnode, ctx) { + var num = subnode.inputs ? subnode.inputs.length : 0; + var w = 200; + var h = Math.floor(LiteGraph.NODE_SLOT_HEIGHT * 1.6); + + ctx.fillStyle = "#111"; + ctx.globalAlpha = 0.8; + ctx.beginPath(); + ctx.roundRect(10, 10, w, (num + 1) * h + 50, [8]); + ctx.fill(); + ctx.globalAlpha = 1; + + ctx.fillStyle = "#888"; + ctx.font = "14px Arial"; + ctx.textAlign = "left"; + ctx.fillText("Graph Inputs", 20, 34); + // var pos = this.mouse; + + if (this.drawButton(w - 20, 20, 20, 20, "X", "#151515")) { + this.closeSubgraph(); + return; + } + + var y = 50; + ctx.font = "14px Arial"; + if (subnode.inputs) + for (var i = 0; i < subnode.inputs.length; ++i) { + var input = subnode.inputs[i]; + if (input.not_subgraph_input) + continue; + + //input button clicked + if (this.drawButton(20, y + 2, w - 20, h - 2)) { + var type = subnode.constructor.input_node_type || "graph/input"; + this.graph.beforeChange(); + var newnode = LiteGraph.createNode(type); + if (newnode) { + subgraph.add(newnode); + this.block_click = false; + this.last_click_position = null; + this.selectNodes([newnode]); + this.node_dragged = newnode; + this.dragging_canvas = false; + newnode.setProperty("name", input.name); + newnode.setProperty("type", input.type); + this.node_dragged.pos[0] = this.graph_mouse[0] - 5; + this.node_dragged.pos[1] = this.graph_mouse[1] - 5; + this.graph.afterChange(); + } + else + console.error("graph input node not found:", type); + } + ctx.fillStyle = "#9C9"; + ctx.beginPath(); + ctx.arc(w - 16, y + h * 0.5, 5, 0, 2 * Math.PI); + ctx.fill(); + ctx.fillStyle = "#AAA"; + ctx.fillText(input.name, 30, y + h * 0.75); + // var tw = ctx.measureText(input.name); + ctx.fillStyle = "#777"; + ctx.fillText(input.type, 130, y + h * 0.75); + y += h; + } + //add + button + if (this.drawButton(20, y + 2, w - 20, h - 2, "+", "#151515", "#222")) { + this.showSubgraphPropertiesDialog(subnode); + } + } + LGraphCanvas.prototype.drawSubgraphPanelRight = function (subgraph, subnode, ctx) { + var num = subnode.outputs ? subnode.outputs.length : 0; + var canvas_w = this.bgcanvas.width + var w = 200; + var h = Math.floor(LiteGraph.NODE_SLOT_HEIGHT * 1.6); + + ctx.fillStyle = "#111"; + ctx.globalAlpha = 0.8; + ctx.beginPath(); + ctx.roundRect(canvas_w - w - 10, 10, w, (num + 1) * h + 50, [8]); + ctx.fill(); + ctx.globalAlpha = 1; + + ctx.fillStyle = "#888"; + ctx.font = "14px Arial"; + ctx.textAlign = "left"; + var title_text = "Graph Outputs" + var tw = ctx.measureText(title_text).width + ctx.fillText(title_text, (canvas_w - tw) - 20, 34); + // var pos = this.mouse; + if (this.drawButton(canvas_w - w, 20, 20, 20, "X", "#151515")) { + this.closeSubgraph(); + return; + } + + var y = 50; + ctx.font = "14px Arial"; + if (subnode.outputs) + for (var i = 0; i < subnode.outputs.length; ++i) { + var output = subnode.outputs[i]; + if (output.not_subgraph_input) + continue; + + //output button clicked + if (this.drawButton(canvas_w - w, y + 2, w - 20, h - 2)) { + var type = subnode.constructor.output_node_type || "graph/output"; + this.graph.beforeChange(); + var newnode = LiteGraph.createNode(type); + if (newnode) { + subgraph.add(newnode); + this.block_click = false; + this.last_click_position = null; + this.selectNodes([newnode]); + this.node_dragged = newnode; + this.dragging_canvas = false; + newnode.setProperty("name", output.name); + newnode.setProperty("type", output.type); + this.node_dragged.pos[0] = this.graph_mouse[0] - 5; + this.node_dragged.pos[1] = this.graph_mouse[1] - 5; + this.graph.afterChange(); + } + else + console.error("graph input node not found:", type); + } + ctx.fillStyle = "#9C9"; + ctx.beginPath(); + ctx.arc(canvas_w - w + 16, y + h * 0.5, 5, 0, 2 * Math.PI); + ctx.fill(); + ctx.fillStyle = "#AAA"; + ctx.fillText(output.name, canvas_w - w + 30, y + h * 0.75); + // var tw = ctx.measureText(input.name); + ctx.fillStyle = "#777"; + ctx.fillText(output.type, canvas_w - w + 130, y + h * 0.75); + y += h; + } + //add + button + if (this.drawButton(canvas_w - w, y + 2, w - 20, h - 2, "+", "#151515", "#222")) { + this.showSubgraphPropertiesDialogRight(subnode); + } + } + //Draws a button into the canvas overlay and computes if it was clicked using the immediate gui paradigm + LGraphCanvas.prototype.drawButton = function( x,y,w,h, text, bgcolor, hovercolor, textcolor ) + { + var ctx = this.ctx; + bgcolor = bgcolor || LiteGraph.NODE_DEFAULT_COLOR; + hovercolor = hovercolor || "#555"; + textcolor = textcolor || LiteGraph.NODE_TEXT_COLOR; + var pos = this.ds.convertOffsetToCanvas(this.graph_mouse); + var hover = LiteGraph.isInsideRectangle( pos[0], pos[1], x,y,w,h ); + pos = this.last_click_position ? [this.last_click_position[0], this.last_click_position[1]] : null; + if(pos) { + var rect = this.canvas.getBoundingClientRect(); + pos[0] -= rect.left; + pos[1] -= rect.top; + } + var clicked = pos && LiteGraph.isInsideRectangle( pos[0], pos[1], x,y,w,h ); + + ctx.fillStyle = hover ? hovercolor : bgcolor; + if(clicked) + ctx.fillStyle = "#AAA"; + ctx.beginPath(); + ctx.roundRect(x,y,w,h,[4] ); + ctx.fill(); + + if(text != null) + { + if(text.constructor == String) + { + ctx.fillStyle = textcolor; + ctx.textAlign = "center"; + ctx.font = ((h * 0.65)|0) + "px Arial"; + ctx.fillText( text, x + w * 0.5,y + h * 0.75 ); + ctx.textAlign = "left"; + } + } + + var was_clicked = clicked && !this.block_click; + if(clicked) + this.blockClick(); + return was_clicked; + } + + LGraphCanvas.prototype.isAreaClicked = function( x,y,w,h, hold_click ) + { + var pos = this.mouse; + var hover = LiteGraph.isInsideRectangle( pos[0], pos[1], x,y,w,h ); + pos = this.last_click_position; + var clicked = pos && LiteGraph.isInsideRectangle( pos[0], pos[1], x,y,w,h ); + var was_clicked = clicked && !this.block_click; + if(clicked && hold_click) + this.blockClick(); + return was_clicked; + } + + /** + * draws some useful stats in the corner of the canvas + * @method renderInfo + **/ + LGraphCanvas.prototype.renderInfo = function(ctx, x, y) { + x = x || 10; + y = y || this.canvas.offsetHeight - 80; + + ctx.save(); + ctx.translate(x, y); + + ctx.font = "10px Arial"; + ctx.fillStyle = "#888"; + ctx.textAlign = "left"; + if (this.graph) { + ctx.fillText( "T: " + this.graph.globaltime.toFixed(2) + "s", 5, 13 * 1 ); + ctx.fillText("I: " + this.graph.iteration, 5, 13 * 2 ); + ctx.fillText("N: " + this.graph._nodes.length + " [" + this.visible_nodes.length + "]", 5, 13 * 3 ); + ctx.fillText("V: " + this.graph._version, 5, 13 * 4); + ctx.fillText("FPS:" + this.fps.toFixed(2), 5, 13 * 5); + } else { + ctx.fillText("No graph selected", 5, 13 * 1); + } + ctx.restore(); + }; + + /** + * draws the back canvas (the one containing the background and the connections) + * @method drawBackCanvas + **/ + LGraphCanvas.prototype.drawBackCanvas = function() { + var canvas = this.bgcanvas; + if ( + canvas.width != this.canvas.width || + canvas.height != this.canvas.height + ) { + canvas.width = this.canvas.width; + canvas.height = this.canvas.height; + } + + if (!this.bgctx) { + this.bgctx = this.bgcanvas.getContext("2d"); + } + var ctx = this.bgctx; + if (ctx.start) { + ctx.start(); + } + + var viewport = this.viewport || [0,0,ctx.canvas.width,ctx.canvas.height]; + + //clear + if (this.clear_background) { + ctx.clearRect( viewport[0], viewport[1], viewport[2], viewport[3] ); + } + + //show subgraph stack header + if (this._graph_stack && this._graph_stack.length) { + ctx.save(); + var parent_graph = this._graph_stack[this._graph_stack.length - 1]; + var subgraph_node = this.graph._subgraph_node; + ctx.strokeStyle = subgraph_node.bgcolor; + ctx.lineWidth = 10; + ctx.strokeRect(1, 1, canvas.width - 2, canvas.height - 2); + ctx.lineWidth = 1; + ctx.font = "40px Arial"; + ctx.textAlign = "center"; + ctx.fillStyle = subgraph_node.bgcolor || "#AAA"; + var title = ""; + for (var i = 1; i < this._graph_stack.length; ++i) { + title += + this._graph_stack[i]._subgraph_node.getTitle() + " >> "; + } + ctx.fillText( + title + subgraph_node.getTitle(), + canvas.width * 0.5, + 40 + ); + ctx.restore(); + } + + var bg_already_painted = false; + if (this.onRenderBackground) { + bg_already_painted = this.onRenderBackground(canvas, ctx); + } + + //reset in case of error + if ( !this.viewport ) + { + ctx.restore(); + ctx.setTransform(1, 0, 0, 1, 0, 0); + } + this.visible_links.length = 0; + + if (this.graph) { + //apply transformations + ctx.save(); + this.ds.toCanvasContext(ctx); + + //render BG + if ( this.ds.scale < 1.5 && !bg_already_painted && this.clear_background_color ) + { + ctx.fillStyle = this.clear_background_color; + ctx.fillRect( + this.visible_area[0], + this.visible_area[1], + this.visible_area[2], + this.visible_area[3] + ); + } + + if ( + this.background_image && + this.ds.scale > 0.5 && + !bg_already_painted + ) { + if (this.zoom_modify_alpha) { + ctx.globalAlpha = + (1.0 - 0.5 / this.ds.scale) * this.editor_alpha; + } else { + ctx.globalAlpha = this.editor_alpha; + } + ctx.imageSmoothingEnabled = ctx.imageSmoothingEnabled = false; // ctx.mozImageSmoothingEnabled = + if ( + !this._bg_img || + this._bg_img.name != this.background_image + ) { + this._bg_img = new Image(); + this._bg_img.name = this.background_image; + this._bg_img.src = this.background_image; + var that = this; + this._bg_img.onload = function() { + that.draw(true, true); + }; + } + + var pattern = null; + if (this._pattern == null && this._bg_img.width > 0) { + pattern = ctx.createPattern(this._bg_img, "repeat"); + this._pattern_img = this._bg_img; + this._pattern = pattern; + } else { + pattern = this._pattern; + } + if (pattern) { + ctx.fillStyle = pattern; + ctx.fillRect( + this.visible_area[0], + this.visible_area[1], + this.visible_area[2], + this.visible_area[3] + ); + ctx.fillStyle = "transparent"; + } + + ctx.globalAlpha = 1.0; + ctx.imageSmoothingEnabled = ctx.imageSmoothingEnabled = true; //= ctx.mozImageSmoothingEnabled + } + + //groups + if (this.graph._groups.length && !this.live_mode) { + this.drawGroups(canvas, ctx); + } + + if (this.onDrawBackground) { + this.onDrawBackground(ctx, this.visible_area); + } + if (this.onBackgroundRender) { + //LEGACY + console.error( + "WARNING! onBackgroundRender deprecated, now is named onDrawBackground " + ); + this.onBackgroundRender = null; + } + + //DEBUG: show clipping area + //ctx.fillStyle = "red"; + //ctx.fillRect( this.visible_area[0] + 10, this.visible_area[1] + 10, this.visible_area[2] - 20, this.visible_area[3] - 20); + + //bg + if (this.render_canvas_border) { + ctx.strokeStyle = "#235"; + ctx.strokeRect(0, 0, canvas.width, canvas.height); + } + + if (this.render_connections_shadows) { + ctx.shadowColor = "#000"; + ctx.shadowOffsetX = 0; + ctx.shadowOffsetY = 0; + ctx.shadowBlur = 6; + } else { + ctx.shadowColor = "rgba(0,0,0,0)"; + } + + //draw connections + if (!this.live_mode) { + this.drawConnections(ctx); + } + + ctx.shadowColor = "rgba(0,0,0,0)"; + + //restore state + ctx.restore(); + } + + if (ctx.finish) { + ctx.finish(); + } + + this.dirty_bgcanvas = false; + this.dirty_canvas = true; //to force to repaint the front canvas with the bgcanvas + }; + + var temp_vec2 = new Float32Array(2); + + /** + * draws the given node inside the canvas + * @method drawNode + **/ + LGraphCanvas.prototype.drawNode = function(node, ctx) { + var glow = false; + this.current_node = node; + + var color = node.color || node.constructor.color || LiteGraph.NODE_DEFAULT_COLOR; + var bgcolor = node.bgcolor || node.constructor.bgcolor || LiteGraph.NODE_DEFAULT_BGCOLOR; + + //shadow and glow + if (node.mouseOver) { + glow = true; + } + + var low_quality = this.ds.scale < 0.6; //zoomed out + + //only render if it forces it to do it + if (this.live_mode) { + if (!node.flags.collapsed) { + ctx.shadowColor = "transparent"; + if (node.onDrawForeground) { + node.onDrawForeground(ctx, this, this.canvas); + } + } + return; + } + + var editor_alpha = this.editor_alpha; + ctx.globalAlpha = editor_alpha; + + if (this.render_shadows && !low_quality) { + ctx.shadowColor = LiteGraph.DEFAULT_SHADOW_COLOR; + ctx.shadowOffsetX = 2 * this.ds.scale; + ctx.shadowOffsetY = 2 * this.ds.scale; + ctx.shadowBlur = 3 * this.ds.scale; + } else { + ctx.shadowColor = "transparent"; + } + + //custom draw collapsed method (draw after shadows because they are affected) + if ( + node.flags.collapsed && + node.onDrawCollapsed && + node.onDrawCollapsed(ctx, this) == true + ) { + return; + } + + //clip if required (mask) + var shape = node._shape || LiteGraph.BOX_SHAPE; + var size = temp_vec2; + temp_vec2.set(node.size); + var horizontal = node.horizontal; // || node.flags.horizontal; + + if (node.flags.collapsed) { + ctx.font = this.inner_text_font; + var title = node.getTitle ? node.getTitle() : node.title; + if (title != null) { + node._collapsed_width = Math.min( + node.size[0], + ctx.measureText(title).width + + LiteGraph.NODE_TITLE_HEIGHT * 2 + ); //LiteGraph.NODE_COLLAPSED_WIDTH; + size[0] = node._collapsed_width; + size[1] = 0; + } + } + + if (node.clip_area) { + //Start clipping + ctx.save(); + ctx.beginPath(); + if (shape == LiteGraph.BOX_SHAPE) { + ctx.rect(0, 0, size[0], size[1]); + } else if (shape == LiteGraph.ROUND_SHAPE) { + ctx.roundRect(0, 0, size[0], size[1], [10]); + } else if (shape == LiteGraph.CIRCLE_SHAPE) { + ctx.arc( + size[0] * 0.5, + size[1] * 0.5, + size[0] * 0.5, + 0, + Math.PI * 2 + ); + } + ctx.clip(); + } + + //draw shape + if (node.has_errors) { + bgcolor = "red"; + } + this.drawNodeShape( + node, + ctx, + size, + color, + bgcolor, + node.is_selected, + node.mouseOver + ); + ctx.shadowColor = "transparent"; + + //draw foreground + if (node.onDrawForeground) { + node.onDrawForeground(ctx, this, this.canvas); + } + + //connection slots + ctx.textAlign = horizontal ? "center" : "left"; + ctx.font = this.inner_text_font; + + var render_text = !low_quality; + + var out_slot = this.connecting_output; + var in_slot = this.connecting_input; + ctx.lineWidth = 1; + + var max_y = 0; + var slot_pos = new Float32Array(2); //to reuse + + //render inputs and outputs + if (!node.flags.collapsed) { + //input connection slots + if (node.inputs) { + for (var i = 0; i < node.inputs.length; i++) { + var slot = node.inputs[i]; + + var slot_type = slot.type; + var slot_shape = slot.shape; + + ctx.globalAlpha = editor_alpha; + //change opacity of incompatible slots when dragging a connection + if ( this.connecting_output && !LiteGraph.isValidConnection( slot.type , out_slot.type) ) { + ctx.globalAlpha = 0.4 * editor_alpha; + } + + ctx.fillStyle = + slot.link != null + ? slot.color_on || + this.default_connection_color_byType[slot_type] || + this.default_connection_color.input_on + : slot.color_off || + this.default_connection_color_byTypeOff[slot_type] || + this.default_connection_color_byType[slot_type] || + this.default_connection_color.input_off; + + var pos = node.getConnectionPos(true, i, slot_pos); + pos[0] -= node.pos[0]; + pos[1] -= node.pos[1]; + if (max_y < pos[1] + LiteGraph.NODE_SLOT_HEIGHT * 0.5) { + max_y = pos[1] + LiteGraph.NODE_SLOT_HEIGHT * 0.5; + } + + ctx.beginPath(); + + if (slot_type == "array"){ + slot_shape = LiteGraph.GRID_SHAPE; // place in addInput? addOutput instead? + } + + var doStroke = true; + + if ( + slot.type === LiteGraph.EVENT || + slot.shape === LiteGraph.BOX_SHAPE + ) { + if (horizontal) { + ctx.rect( + pos[0] - 5 + 0.5, + pos[1] - 8 + 0.5, + 10, + 14 + ); + } else { + ctx.rect( + pos[0] - 6 + 0.5, + pos[1] - 5 + 0.5, + 14, + 10 + ); + } + } else if (slot_shape === LiteGraph.ARROW_SHAPE) { + ctx.moveTo(pos[0] + 8, pos[1] + 0.5); + ctx.lineTo(pos[0] - 4, pos[1] + 6 + 0.5); + ctx.lineTo(pos[0] - 4, pos[1] - 6 + 0.5); + ctx.closePath(); + } else if (slot_shape === LiteGraph.GRID_SHAPE) { + ctx.rect(pos[0] - 4, pos[1] - 4, 2, 2); + ctx.rect(pos[0] - 1, pos[1] - 4, 2, 2); + ctx.rect(pos[0] + 2, pos[1] - 4, 2, 2); + ctx.rect(pos[0] - 4, pos[1] - 1, 2, 2); + ctx.rect(pos[0] - 1, pos[1] - 1, 2, 2); + ctx.rect(pos[0] + 2, pos[1] - 1, 2, 2); + ctx.rect(pos[0] - 4, pos[1] + 2, 2, 2); + ctx.rect(pos[0] - 1, pos[1] + 2, 2, 2); + ctx.rect(pos[0] + 2, pos[1] + 2, 2, 2); + doStroke = false; + } else { + if(low_quality) + ctx.rect(pos[0] - 4, pos[1] - 4, 8, 8 ); //faster + else + ctx.arc(pos[0], pos[1], 4, 0, Math.PI * 2); + } + ctx.fill(); + + //render name + if (render_text) { + var text = slot.label != null ? slot.label : slot.name; + if (text) { + ctx.fillStyle = LiteGraph.NODE_TEXT_COLOR; + if (horizontal || slot.dir == LiteGraph.UP) { + ctx.fillText(text, pos[0], pos[1] - 10); + } else { + ctx.fillText(text, pos[0] + 10, pos[1] + 5); + } + } + } + } + } + + //output connection slots + + ctx.textAlign = horizontal ? "center" : "right"; + ctx.strokeStyle = "black"; + if (node.outputs) { + for (var i = 0; i < node.outputs.length; i++) { + var slot = node.outputs[i]; + + var slot_type = slot.type; + var slot_shape = slot.shape; + + //change opacity of incompatible slots when dragging a connection + if (this.connecting_input && !LiteGraph.isValidConnection( slot_type , in_slot.type) ) { + ctx.globalAlpha = 0.4 * editor_alpha; + } + + var pos = node.getConnectionPos(false, i, slot_pos); + pos[0] -= node.pos[0]; + pos[1] -= node.pos[1]; + if (max_y < pos[1] + LiteGraph.NODE_SLOT_HEIGHT * 0.5) { + max_y = pos[1] + LiteGraph.NODE_SLOT_HEIGHT * 0.5; + } + + ctx.fillStyle = + slot.links && slot.links.length + ? slot.color_on || + this.default_connection_color_byType[slot_type] || + this.default_connection_color.output_on + : slot.color_off || + this.default_connection_color_byTypeOff[slot_type] || + this.default_connection_color_byType[slot_type] || + this.default_connection_color.output_off; + ctx.beginPath(); + //ctx.rect( node.size[0] - 14,i*14,10,10); + + if (slot_type == "array"){ + slot_shape = LiteGraph.GRID_SHAPE; + } + + var doStroke = true; + + if ( + slot_type === LiteGraph.EVENT || + slot_shape === LiteGraph.BOX_SHAPE + ) { + if (horizontal) { + ctx.rect( + pos[0] - 5 + 0.5, + pos[1] - 8 + 0.5, + 10, + 14 + ); + } else { + ctx.rect( + pos[0] - 6 + 0.5, + pos[1] - 5 + 0.5, + 14, + 10 + ); + } + } else if (slot_shape === LiteGraph.ARROW_SHAPE) { + ctx.moveTo(pos[0] + 8, pos[1] + 0.5); + ctx.lineTo(pos[0] - 4, pos[1] + 6 + 0.5); + ctx.lineTo(pos[0] - 4, pos[1] - 6 + 0.5); + ctx.closePath(); + } else if (slot_shape === LiteGraph.GRID_SHAPE) { + ctx.rect(pos[0] - 4, pos[1] - 4, 2, 2); + ctx.rect(pos[0] - 1, pos[1] - 4, 2, 2); + ctx.rect(pos[0] + 2, pos[1] - 4, 2, 2); + ctx.rect(pos[0] - 4, pos[1] - 1, 2, 2); + ctx.rect(pos[0] - 1, pos[1] - 1, 2, 2); + ctx.rect(pos[0] + 2, pos[1] - 1, 2, 2); + ctx.rect(pos[0] - 4, pos[1] + 2, 2, 2); + ctx.rect(pos[0] - 1, pos[1] + 2, 2, 2); + ctx.rect(pos[0] + 2, pos[1] + 2, 2, 2); + doStroke = false; + } else { + if(low_quality) + ctx.rect(pos[0] - 4, pos[1] - 4, 8, 8 ); + else + ctx.arc(pos[0], pos[1], 4, 0, Math.PI * 2); + } + + //trigger + //if(slot.node_id != null && slot.slot == -1) + // ctx.fillStyle = "#F85"; + + //if(slot.links != null && slot.links.length) + ctx.fill(); + if(!low_quality && doStroke) + ctx.stroke(); + + //render output name + if (render_text) { + var text = slot.label != null ? slot.label : slot.name; + if (text) { + ctx.fillStyle = LiteGraph.NODE_TEXT_COLOR; + if (horizontal || slot.dir == LiteGraph.DOWN) { + ctx.fillText(text, pos[0], pos[1] - 8); + } else { + ctx.fillText(text, pos[0] - 10, pos[1] + 5); + } + } + } + } + } + + ctx.textAlign = "left"; + ctx.globalAlpha = 1; + + if (node.widgets) { + var widgets_y = max_y; + if (horizontal || node.widgets_up) { + widgets_y = 2; + } + if( node.widgets_start_y != null ) + widgets_y = node.widgets_start_y; + this.drawNodeWidgets( + node, + widgets_y, + ctx, + this.node_widget && this.node_widget[0] == node + ? this.node_widget[1] + : null + ); + } + } else if (this.render_collapsed_slots) { + //if collapsed + var input_slot = null; + var output_slot = null; + + //get first connected slot to render + if (node.inputs) { + for (var i = 0; i < node.inputs.length; i++) { + var slot = node.inputs[i]; + if (slot.link == null) { + continue; + } + input_slot = slot; + break; + } + } + if (node.outputs) { + for (var i = 0; i < node.outputs.length; i++) { + var slot = node.outputs[i]; + if (!slot.links || !slot.links.length) { + continue; + } + output_slot = slot; + } + } + + if (input_slot) { + var x = 0; + var y = LiteGraph.NODE_TITLE_HEIGHT * -0.5; //center + if (horizontal) { + x = node._collapsed_width * 0.5; + y = -LiteGraph.NODE_TITLE_HEIGHT; + } + ctx.fillStyle = "#686"; + ctx.beginPath(); + if ( + slot.type === LiteGraph.EVENT || + slot.shape === LiteGraph.BOX_SHAPE + ) { + ctx.rect(x - 7 + 0.5, y - 4, 14, 8); + } else if (slot.shape === LiteGraph.ARROW_SHAPE) { + ctx.moveTo(x + 8, y); + ctx.lineTo(x + -4, y - 4); + ctx.lineTo(x + -4, y + 4); + ctx.closePath(); + } else { + ctx.arc(x, y, 4, 0, Math.PI * 2); + } + ctx.fill(); + } + + if (output_slot) { + var x = node._collapsed_width; + var y = LiteGraph.NODE_TITLE_HEIGHT * -0.5; //center + if (horizontal) { + x = node._collapsed_width * 0.5; + y = 0; + } + ctx.fillStyle = "#686"; + ctx.strokeStyle = "black"; + ctx.beginPath(); + if ( + slot.type === LiteGraph.EVENT || + slot.shape === LiteGraph.BOX_SHAPE + ) { + ctx.rect(x - 7 + 0.5, y - 4, 14, 8); + } else if (slot.shape === LiteGraph.ARROW_SHAPE) { + ctx.moveTo(x + 6, y); + ctx.lineTo(x - 6, y - 4); + ctx.lineTo(x - 6, y + 4); + ctx.closePath(); + } else { + ctx.arc(x, y, 4, 0, Math.PI * 2); + } + ctx.fill(); + //ctx.stroke(); + } + } + + if (node.clip_area) { + ctx.restore(); + } + + ctx.globalAlpha = 1.0; + }; + + //used by this.over_link_center + LGraphCanvas.prototype.drawLinkTooltip = function( ctx, link ) + { + var pos = link._pos; + ctx.fillStyle = "black"; + ctx.beginPath(); + ctx.arc( pos[0], pos[1], 3, 0, Math.PI * 2 ); + ctx.fill(); + + if(link.data == null) + return; + + if(this.onDrawLinkTooltip) + if( this.onDrawLinkTooltip(ctx,link,this) == true ) + return; + + var data = link.data; + var text = null; + + if( data.constructor === Number ) + text = data.toFixed(2); + else if( data.constructor === String ) + text = "\"" + data + "\""; + else if( data.constructor === Boolean ) + text = String(data); + else if (data.toToolTip) + text = data.toToolTip(); + else + text = "[" + data.constructor.name + "]"; + + if(text == null) + return; + text = text.substr(0,30); //avoid weird + + ctx.font = "14px Courier New"; + var info = ctx.measureText(text); + var w = info.width + 20; + var h = 24; + ctx.shadowColor = "black"; + ctx.shadowOffsetX = 2; + ctx.shadowOffsetY = 2; + ctx.shadowBlur = 3; + ctx.fillStyle = "#454"; + ctx.beginPath(); + ctx.roundRect( pos[0] - w*0.5, pos[1] - 15 - h, w, h, [3]); + ctx.moveTo( pos[0] - 10, pos[1] - 15 ); + ctx.lineTo( pos[0] + 10, pos[1] - 15 ); + ctx.lineTo( pos[0], pos[1] - 5 ); + ctx.fill(); + ctx.shadowColor = "transparent"; + ctx.textAlign = "center"; + ctx.fillStyle = "#CEC"; + ctx.fillText(text, pos[0], pos[1] - 15 - h * 0.3); + } + + /** + * draws the shape of the given node in the canvas + * @method drawNodeShape + **/ + var tmp_area = new Float32Array(4); + + LGraphCanvas.prototype.drawNodeShape = function( + node, + ctx, + size, + fgcolor, + bgcolor, + selected, + mouse_over + ) { + //bg rect + ctx.strokeStyle = fgcolor; + ctx.fillStyle = bgcolor; + + var title_height = LiteGraph.NODE_TITLE_HEIGHT; + var low_quality = this.ds.scale < 0.5; + + //render node area depending on shape + var shape = + node._shape || node.constructor.shape || LiteGraph.ROUND_SHAPE; + + var title_mode = node.constructor.title_mode; + + var render_title = true; + if (title_mode == LiteGraph.TRANSPARENT_TITLE || title_mode == LiteGraph.NO_TITLE) { + render_title = false; + } else if (title_mode == LiteGraph.AUTOHIDE_TITLE && mouse_over) { + render_title = true; + } + + var area = tmp_area; + area[0] = 0; //x + area[1] = render_title ? -title_height : 0; //y + area[2] = size[0] + 1; //w + area[3] = render_title ? size[1] + title_height : size[1]; //h + + var old_alpha = ctx.globalAlpha; + + //full node shape + //if(node.flags.collapsed) + { + ctx.beginPath(); + if (shape == LiteGraph.BOX_SHAPE || low_quality) { + ctx.fillRect(area[0], area[1], area[2], area[3]); + } else if ( + shape == LiteGraph.ROUND_SHAPE || + shape == LiteGraph.CARD_SHAPE + ) { + ctx.roundRect( + area[0], + area[1], + area[2], + area[3], + shape == LiteGraph.CARD_SHAPE ? [this.round_radius,this.round_radius,0,0] : [this.round_radius] + ); + } else if (shape == LiteGraph.CIRCLE_SHAPE) { + ctx.arc( + size[0] * 0.5, + size[1] * 0.5, + size[0] * 0.5, + 0, + Math.PI * 2 + ); + } + ctx.fill(); + + //separator + if(!node.flags.collapsed && render_title) + { + ctx.shadowColor = "transparent"; + ctx.fillStyle = "rgba(0,0,0,0.2)"; + ctx.fillRect(0, -1, area[2], 2); + } + } + ctx.shadowColor = "transparent"; + + if (node.onDrawBackground) { + node.onDrawBackground(ctx, this, this.canvas, this.graph_mouse ); + } + + //title bg (remember, it is rendered ABOVE the node) + if (render_title || title_mode == LiteGraph.TRANSPARENT_TITLE) { + //title bar + if (node.onDrawTitleBar) { + node.onDrawTitleBar( ctx, title_height, size, this.ds.scale, fgcolor ); + } else if ( + title_mode != LiteGraph.TRANSPARENT_TITLE && + (node.constructor.title_color || this.render_title_colored) + ) { + var title_color = node.constructor.title_color || fgcolor; + + if (node.flags.collapsed) { + ctx.shadowColor = LiteGraph.DEFAULT_SHADOW_COLOR; + } + + //* gradient test + if (this.use_gradients) { + var grad = LGraphCanvas.gradients[title_color]; + if (!grad) { + grad = LGraphCanvas.gradients[ title_color ] = ctx.createLinearGradient(0, 0, 400, 0); + grad.addColorStop(0, title_color); // TODO refactor: validate color !! prevent DOMException + grad.addColorStop(1, "#000"); + } + ctx.fillStyle = grad; + } else { + ctx.fillStyle = title_color; + } + + //ctx.globalAlpha = 0.5 * old_alpha; + ctx.beginPath(); + if (shape == LiteGraph.BOX_SHAPE || low_quality) { + ctx.rect(0, -title_height, size[0] + 1, title_height); + } else if ( shape == LiteGraph.ROUND_SHAPE || shape == LiteGraph.CARD_SHAPE ) { + ctx.roundRect( + 0, + -title_height, + size[0] + 1, + title_height, + node.flags.collapsed ? [this.round_radius] : [this.round_radius,this.round_radius,0,0] + ); + } + ctx.fill(); + ctx.shadowColor = "transparent"; + } + + var colState = false; + if (LiteGraph.node_box_coloured_by_mode){ + if(LiteGraph.NODE_MODES_COLORS[node.mode]){ + colState = LiteGraph.NODE_MODES_COLORS[node.mode]; + } + } + if (LiteGraph.node_box_coloured_when_on){ + colState = node.action_triggered ? "#FFF" : (node.execute_triggered ? "#AAA" : colState); + } + + //title box + var box_size = 10; + if (node.onDrawTitleBox) { + node.onDrawTitleBox(ctx, title_height, size, this.ds.scale); + } else if ( + shape == LiteGraph.ROUND_SHAPE || + shape == LiteGraph.CIRCLE_SHAPE || + shape == LiteGraph.CARD_SHAPE + ) { + if (low_quality) { + ctx.fillStyle = "black"; + ctx.beginPath(); + ctx.arc( + title_height * 0.5, + title_height * -0.5, + box_size * 0.5 + 1, + 0, + Math.PI * 2 + ); + ctx.fill(); + } + + ctx.fillStyle = node.boxcolor || colState || LiteGraph.NODE_DEFAULT_BOXCOLOR; + if(low_quality) + ctx.fillRect( title_height * 0.5 - box_size *0.5, title_height * -0.5 - box_size *0.5, box_size , box_size ); + else + { + ctx.beginPath(); + ctx.arc( + title_height * 0.5, + title_height * -0.5, + box_size * 0.5, + 0, + Math.PI * 2 + ); + ctx.fill(); + } + } else { + if (low_quality) { + ctx.fillStyle = "black"; + ctx.fillRect( + (title_height - box_size) * 0.5 - 1, + (title_height + box_size) * -0.5 - 1, + box_size + 2, + box_size + 2 + ); + } + ctx.fillStyle = node.boxcolor || colState || LiteGraph.NODE_DEFAULT_BOXCOLOR; + ctx.fillRect( + (title_height - box_size) * 0.5, + (title_height + box_size) * -0.5, + box_size, + box_size + ); + } + ctx.globalAlpha = old_alpha; + + //title text + if (node.onDrawTitleText) { + node.onDrawTitleText( + ctx, + title_height, + size, + this.ds.scale, + this.title_text_font, + selected + ); + } + if (!low_quality) { + ctx.font = this.title_text_font; + var title = String(node.getTitle()); + if (title) { + if (selected) { + ctx.fillStyle = LiteGraph.NODE_SELECTED_TITLE_COLOR; + } else { + ctx.fillStyle = + node.constructor.title_text_color || + this.node_title_color; + } + if (node.flags.collapsed) { + ctx.textAlign = "left"; + var measure = ctx.measureText(title); + ctx.fillText( + title.substr(0,20), //avoid urls too long + title_height,// + measure.width * 0.5, + LiteGraph.NODE_TITLE_TEXT_Y - title_height + ); + ctx.textAlign = "left"; + } else { + ctx.textAlign = "left"; + ctx.fillText( + title, + title_height, + LiteGraph.NODE_TITLE_TEXT_Y - title_height + ); + } + } + } + + //subgraph box + if (!node.flags.collapsed && node.subgraph && !node.skip_subgraph_button) { + var w = LiteGraph.NODE_TITLE_HEIGHT; + var x = node.size[0] - w; + var over = LiteGraph.isInsideRectangle( this.graph_mouse[0] - node.pos[0], this.graph_mouse[1] - node.pos[1], x+2, -w+2, w-4, w-4 ); + ctx.fillStyle = over ? "#888" : "#555"; + if( shape == LiteGraph.BOX_SHAPE || low_quality) + ctx.fillRect(x+2, -w+2, w-4, w-4); + else + { + ctx.beginPath(); + ctx.roundRect(x+2, -w+2, w-4, w-4,[4]); + ctx.fill(); + } + ctx.fillStyle = "#333"; + ctx.beginPath(); + ctx.moveTo(x + w * 0.2, -w * 0.6); + ctx.lineTo(x + w * 0.8, -w * 0.6); + ctx.lineTo(x + w * 0.5, -w * 0.3); + ctx.fill(); + } + + //custom title render + if (node.onDrawTitle) { + node.onDrawTitle(ctx); + } + } + + //render selection marker + if (selected) { + if (node.onBounding) { + node.onBounding(area); + } + + if (title_mode == LiteGraph.TRANSPARENT_TITLE) { + area[1] -= title_height; + area[3] += title_height; + } + ctx.lineWidth = 1; + ctx.globalAlpha = 0.8; + ctx.beginPath(); + if (shape == LiteGraph.BOX_SHAPE) { + ctx.rect( + -6 + area[0], + -6 + area[1], + 12 + area[2], + 12 + area[3] + ); + } else if ( + shape == LiteGraph.ROUND_SHAPE || + (shape == LiteGraph.CARD_SHAPE && node.flags.collapsed) + ) { + ctx.roundRect( + -6 + area[0], + -6 + area[1], + 12 + area[2], + 12 + area[3], + [this.round_radius * 2] + ); + } else if (shape == LiteGraph.CARD_SHAPE) { + ctx.roundRect( + -6 + area[0], + -6 + area[1], + 12 + area[2], + 12 + area[3], + [this.round_radius * 2,2,this.round_radius * 2,2] + ); + } else if (shape == LiteGraph.CIRCLE_SHAPE) { + ctx.arc( + size[0] * 0.5, + size[1] * 0.5, + size[0] * 0.5 + 6, + 0, + Math.PI * 2 + ); + } + ctx.strokeStyle = LiteGraph.NODE_BOX_OUTLINE_COLOR; + ctx.stroke(); + ctx.strokeStyle = fgcolor; + ctx.globalAlpha = 1; + } + + // these counter helps in conditioning drawing based on if the node has been executed or an action occurred + if (node.execute_triggered>0) node.execute_triggered--; + if (node.action_triggered>0) node.action_triggered--; + }; + + var margin_area = new Float32Array(4); + var link_bounding = new Float32Array(4); + var tempA = new Float32Array(2); + var tempB = new Float32Array(2); + + /** + * draws every connection visible in the canvas + * OPTIMIZE THIS: pre-catch connections position instead of recomputing them every time + * @method drawConnections + **/ + LGraphCanvas.prototype.drawConnections = function(ctx) { + var now = LiteGraph.getTime(); + var visible_area = this.visible_area; + margin_area[0] = visible_area[0] - 20; + margin_area[1] = visible_area[1] - 20; + margin_area[2] = visible_area[2] + 40; + margin_area[3] = visible_area[3] + 40; + + //draw connections + ctx.lineWidth = this.connections_width; + + ctx.fillStyle = "#AAA"; + ctx.strokeStyle = "#AAA"; + ctx.globalAlpha = this.editor_alpha; + //for every node + var nodes = this.graph._nodes; + for (var n = 0, l = nodes.length; n < l; ++n) { + var node = nodes[n]; + //for every input (we render just inputs because it is easier as every slot can only have one input) + if (!node.inputs || !node.inputs.length) { + continue; + } + + for (var i = 0; i < node.inputs.length; ++i) { + var input = node.inputs[i]; + if (!input || input.link == null) { + continue; + } + var link_id = input.link; + var link = this.graph.links[link_id]; + if (!link) { + continue; + } + + //find link info + var start_node = this.graph.getNodeById(link.origin_id); + if (start_node == null) { + continue; + } + var start_node_slot = link.origin_slot; + var start_node_slotpos = null; + if (start_node_slot == -1) { + start_node_slotpos = [ + start_node.pos[0] + 10, + start_node.pos[1] + 10 + ]; + } else { + start_node_slotpos = start_node.getConnectionPos( + false, + start_node_slot, + tempA + ); + } + var end_node_slotpos = node.getConnectionPos(true, i, tempB); + + //compute link bounding + link_bounding[0] = start_node_slotpos[0]; + link_bounding[1] = start_node_slotpos[1]; + link_bounding[2] = end_node_slotpos[0] - start_node_slotpos[0]; + link_bounding[3] = end_node_slotpos[1] - start_node_slotpos[1]; + if (link_bounding[2] < 0) { + link_bounding[0] += link_bounding[2]; + link_bounding[2] = Math.abs(link_bounding[2]); + } + if (link_bounding[3] < 0) { + link_bounding[1] += link_bounding[3]; + link_bounding[3] = Math.abs(link_bounding[3]); + } + + //skip links outside of the visible area of the canvas + if (!overlapBounding(link_bounding, margin_area)) { + continue; + } + + var start_slot = start_node.outputs[start_node_slot]; + var end_slot = node.inputs[i]; + if (!start_slot || !end_slot) { + continue; + } + var start_dir = + start_slot.dir || + (start_node.horizontal ? LiteGraph.DOWN : LiteGraph.RIGHT); + var end_dir = + end_slot.dir || + (node.horizontal ? LiteGraph.UP : LiteGraph.LEFT); + + this.renderLink( + ctx, + start_node_slotpos, + end_node_slotpos, + link, + false, + 0, + null, + start_dir, + end_dir + ); + + //event triggered rendered on top + if (link && link._last_time && now - link._last_time < 1000) { + var f = 2.0 - (now - link._last_time) * 0.002; + var tmp = ctx.globalAlpha; + ctx.globalAlpha = tmp * f; + this.renderLink( + ctx, + start_node_slotpos, + end_node_slotpos, + link, + true, + f, + "white", + start_dir, + end_dir + ); + ctx.globalAlpha = tmp; + } + } + } + ctx.globalAlpha = 1; + }; + + /** + * draws a link between two points + * @method renderLink + * @param {vec2} a start pos + * @param {vec2} b end pos + * @param {Object} link the link object with all the link info + * @param {boolean} skip_border ignore the shadow of the link + * @param {boolean} flow show flow animation (for events) + * @param {string} color the color for the link + * @param {number} start_dir the direction enum + * @param {number} end_dir the direction enum + * @param {number} num_sublines number of sublines (useful to represent vec3 or rgb) + **/ + LGraphCanvas.prototype.renderLink = function( + ctx, + a, + b, + link, + skip_border, + flow, + color, + start_dir, + end_dir, + num_sublines + ) { + if (link) { + this.visible_links.push(link); + } + + //choose color + if (!color && link) { + color = link.color || LGraphCanvas.link_type_colors[link.type]; + } + if (!color) { + color = this.default_link_color; + } + if (link != null && this.highlighted_links[link.id]) { + color = "#FFF"; + } + + start_dir = start_dir || LiteGraph.RIGHT; + end_dir = end_dir || LiteGraph.LEFT; + + var dist = distance(a, b); + + if (this.render_connections_border && this.ds.scale > 0.6) { + ctx.lineWidth = this.connections_width + 4; + } + ctx.lineJoin = "round"; + num_sublines = num_sublines || 1; + if (num_sublines > 1) { + ctx.lineWidth = 0.5; + } + + //begin line shape + ctx.beginPath(); + for (var i = 0; i < num_sublines; i += 1) { + var offsety = (i - (num_sublines - 1) * 0.5) * 5; + + if (this.links_render_mode == LiteGraph.SPLINE_LINK) { + ctx.moveTo(a[0], a[1] + offsety); + var start_offset_x = 0; + var start_offset_y = 0; + var end_offset_x = 0; + var end_offset_y = 0; + switch (start_dir) { + case LiteGraph.LEFT: + start_offset_x = dist * -0.25; + break; + case LiteGraph.RIGHT: + start_offset_x = dist * 0.25; + break; + case LiteGraph.UP: + start_offset_y = dist * -0.25; + break; + case LiteGraph.DOWN: + start_offset_y = dist * 0.25; + break; + } + switch (end_dir) { + case LiteGraph.LEFT: + end_offset_x = dist * -0.25; + break; + case LiteGraph.RIGHT: + end_offset_x = dist * 0.25; + break; + case LiteGraph.UP: + end_offset_y = dist * -0.25; + break; + case LiteGraph.DOWN: + end_offset_y = dist * 0.25; + break; + } + ctx.bezierCurveTo( + a[0] + start_offset_x, + a[1] + start_offset_y + offsety, + b[0] + end_offset_x, + b[1] + end_offset_y + offsety, + b[0], + b[1] + offsety + ); + } else if (this.links_render_mode == LiteGraph.LINEAR_LINK) { + ctx.moveTo(a[0], a[1] + offsety); + var start_offset_x = 0; + var start_offset_y = 0; + var end_offset_x = 0; + var end_offset_y = 0; + switch (start_dir) { + case LiteGraph.LEFT: + start_offset_x = -1; + break; + case LiteGraph.RIGHT: + start_offset_x = 1; + break; + case LiteGraph.UP: + start_offset_y = -1; + break; + case LiteGraph.DOWN: + start_offset_y = 1; + break; + } + switch (end_dir) { + case LiteGraph.LEFT: + end_offset_x = -1; + break; + case LiteGraph.RIGHT: + end_offset_x = 1; + break; + case LiteGraph.UP: + end_offset_y = -1; + break; + case LiteGraph.DOWN: + end_offset_y = 1; + break; + } + var l = 15; + ctx.lineTo( + a[0] + start_offset_x * l, + a[1] + start_offset_y * l + offsety + ); + ctx.lineTo( + b[0] + end_offset_x * l, + b[1] + end_offset_y * l + offsety + ); + ctx.lineTo(b[0], b[1] + offsety); + } else if (this.links_render_mode == LiteGraph.STRAIGHT_LINK) { + ctx.moveTo(a[0], a[1]); + var start_x = a[0]; + var start_y = a[1]; + var end_x = b[0]; + var end_y = b[1]; + if (start_dir == LiteGraph.RIGHT) { + start_x += 10; + } else { + start_y += 10; + } + if (end_dir == LiteGraph.LEFT) { + end_x -= 10; + } else { + end_y -= 10; + } + ctx.lineTo(start_x, start_y); + ctx.lineTo((start_x + end_x) * 0.5, start_y); + ctx.lineTo((start_x + end_x) * 0.5, end_y); + ctx.lineTo(end_x, end_y); + ctx.lineTo(b[0], b[1]); + } else { + return; + } //unknown + } + + //rendering the outline of the connection can be a little bit slow + if ( + this.render_connections_border && + this.ds.scale > 0.6 && + !skip_border + ) { + ctx.strokeStyle = "rgba(0,0,0,0.5)"; + ctx.stroke(); + } + + ctx.lineWidth = this.connections_width; + ctx.fillStyle = ctx.strokeStyle = color; + ctx.stroke(); + //end line shape + + var pos = this.computeConnectionPoint(a, b, 0.5, start_dir, end_dir); + if (link && link._pos) { + link._pos[0] = pos[0]; + link._pos[1] = pos[1]; + } + + //render arrow in the middle + if ( + this.ds.scale >= 0.6 && + this.highquality_render && + end_dir != LiteGraph.CENTER + ) { + //render arrow + if (this.render_connection_arrows) { + //compute two points in the connection + var posA = this.computeConnectionPoint( + a, + b, + 0.25, + start_dir, + end_dir + ); + var posB = this.computeConnectionPoint( + a, + b, + 0.26, + start_dir, + end_dir + ); + var posC = this.computeConnectionPoint( + a, + b, + 0.75, + start_dir, + end_dir + ); + var posD = this.computeConnectionPoint( + a, + b, + 0.76, + start_dir, + end_dir + ); + + //compute the angle between them so the arrow points in the right direction + var angleA = 0; + var angleB = 0; + if (this.render_curved_connections) { + angleA = -Math.atan2(posB[0] - posA[0], posB[1] - posA[1]); + angleB = -Math.atan2(posD[0] - posC[0], posD[1] - posC[1]); + } else { + angleB = angleA = b[1] > a[1] ? 0 : Math.PI; + } + + //render arrow + ctx.save(); + ctx.translate(posA[0], posA[1]); + ctx.rotate(angleA); + ctx.beginPath(); + ctx.moveTo(-5, -3); + ctx.lineTo(0, +7); + ctx.lineTo(+5, -3); + ctx.fill(); + ctx.restore(); + ctx.save(); + ctx.translate(posC[0], posC[1]); + ctx.rotate(angleB); + ctx.beginPath(); + ctx.moveTo(-5, -3); + ctx.lineTo(0, +7); + ctx.lineTo(+5, -3); + ctx.fill(); + ctx.restore(); + } + + //circle + ctx.beginPath(); + ctx.arc(pos[0], pos[1], 5, 0, Math.PI * 2); + ctx.fill(); + } + + //render flowing points + if (flow) { + ctx.fillStyle = color; + for (var i = 0; i < 5; ++i) { + var f = (LiteGraph.getTime() * 0.001 + i * 0.2) % 1; + var pos = this.computeConnectionPoint( + a, + b, + f, + start_dir, + end_dir + ); + ctx.beginPath(); + ctx.arc(pos[0], pos[1], 5, 0, 2 * Math.PI); + ctx.fill(); + } + } + }; + + //returns the link center point based on curvature + LGraphCanvas.prototype.computeConnectionPoint = function( + a, + b, + t, + start_dir, + end_dir + ) { + start_dir = start_dir || LiteGraph.RIGHT; + end_dir = end_dir || LiteGraph.LEFT; + + var dist = distance(a, b); + var p0 = a; + var p1 = [a[0], a[1]]; + var p2 = [b[0], b[1]]; + var p3 = b; + + switch (start_dir) { + case LiteGraph.LEFT: + p1[0] += dist * -0.25; + break; + case LiteGraph.RIGHT: + p1[0] += dist * 0.25; + break; + case LiteGraph.UP: + p1[1] += dist * -0.25; + break; + case LiteGraph.DOWN: + p1[1] += dist * 0.25; + break; + } + switch (end_dir) { + case LiteGraph.LEFT: + p2[0] += dist * -0.25; + break; + case LiteGraph.RIGHT: + p2[0] += dist * 0.25; + break; + case LiteGraph.UP: + p2[1] += dist * -0.25; + break; + case LiteGraph.DOWN: + p2[1] += dist * 0.25; + break; + } + + var c1 = (1 - t) * (1 - t) * (1 - t); + var c2 = 3 * ((1 - t) * (1 - t)) * t; + var c3 = 3 * (1 - t) * (t * t); + var c4 = t * t * t; + + var x = c1 * p0[0] + c2 * p1[0] + c3 * p2[0] + c4 * p3[0]; + var y = c1 * p0[1] + c2 * p1[1] + c3 * p2[1] + c4 * p3[1]; + return [x, y]; + }; + + LGraphCanvas.prototype.drawExecutionOrder = function(ctx) { + ctx.shadowColor = "transparent"; + ctx.globalAlpha = 0.25; + + ctx.textAlign = "center"; + ctx.strokeStyle = "white"; + ctx.globalAlpha = 0.75; + + var visible_nodes = this.visible_nodes; + for (var i = 0; i < visible_nodes.length; ++i) { + var node = visible_nodes[i]; + ctx.fillStyle = "black"; + ctx.fillRect( + node.pos[0] - LiteGraph.NODE_TITLE_HEIGHT, + node.pos[1] - LiteGraph.NODE_TITLE_HEIGHT, + LiteGraph.NODE_TITLE_HEIGHT, + LiteGraph.NODE_TITLE_HEIGHT + ); + if (node.order == 0) { + ctx.strokeRect( + node.pos[0] - LiteGraph.NODE_TITLE_HEIGHT + 0.5, + node.pos[1] - LiteGraph.NODE_TITLE_HEIGHT + 0.5, + LiteGraph.NODE_TITLE_HEIGHT, + LiteGraph.NODE_TITLE_HEIGHT + ); + } + ctx.fillStyle = "#FFF"; + ctx.fillText( + node.order, + node.pos[0] + LiteGraph.NODE_TITLE_HEIGHT * -0.5, + node.pos[1] - 6 + ); + } + ctx.globalAlpha = 1; + }; + + /** + * draws the widgets stored inside a node + * @method drawNodeWidgets + **/ + LGraphCanvas.prototype.drawNodeWidgets = function( + node, + posY, + ctx, + active_widget + ) { + if (!node.widgets || !node.widgets.length) { + return 0; + } + var width = node.size[0]; + var widgets = node.widgets; + posY += 2; + var H = LiteGraph.NODE_WIDGET_HEIGHT; + var show_text = this.ds.scale > 0.5; + ctx.save(); + ctx.globalAlpha = this.editor_alpha; + var outline_color = LiteGraph.WIDGET_OUTLINE_COLOR; + var background_color = LiteGraph.WIDGET_BGCOLOR; + var text_color = LiteGraph.WIDGET_TEXT_COLOR; + var secondary_text_color = LiteGraph.WIDGET_SECONDARY_TEXT_COLOR; + var margin = 15; + + for (var i = 0; i < widgets.length; ++i) { + var w = widgets[i]; + var y = posY; + if (w.y) { + y = w.y; + } + w.last_y = y; + ctx.strokeStyle = outline_color; + ctx.fillStyle = "#222"; + ctx.textAlign = "left"; + //ctx.lineWidth = 2; + if(w.disabled) + ctx.globalAlpha *= 0.5; + var widget_width = w.width || width; + + switch (w.type) { + case "button": + ctx.fillStyle = background_color; + if (w.clicked) { + ctx.fillStyle = "#AAA"; + w.clicked = false; + this.dirty_canvas = true; + } + ctx.fillRect(margin, y, widget_width - margin * 2, H); + if(show_text && !w.disabled) + ctx.strokeRect( margin, y, widget_width - margin * 2, H ); + if (show_text) { + ctx.textAlign = "center"; + ctx.fillStyle = text_color; + ctx.fillText(w.label || w.name, widget_width * 0.5, y + H * 0.7); + } + break; + case "toggle": + ctx.textAlign = "left"; + ctx.strokeStyle = outline_color; + ctx.fillStyle = background_color; + ctx.beginPath(); + if (show_text) + ctx.roundRect(margin, y, widget_width - margin * 2, H, [H * 0.5]); + else + ctx.rect(margin, y, widget_width - margin * 2, H ); + ctx.fill(); + if(show_text && !w.disabled) + ctx.stroke(); + ctx.fillStyle = w.value ? "#89A" : "#333"; + ctx.beginPath(); + ctx.arc( widget_width - margin * 2, y + H * 0.5, H * 0.36, 0, Math.PI * 2 ); + ctx.fill(); + if (show_text) { + ctx.fillStyle = secondary_text_color; + const label = w.label || w.name; + if (label != null) { + ctx.fillText(label, margin * 2, y + H * 0.7); + } + ctx.fillStyle = w.value ? text_color : secondary_text_color; + ctx.textAlign = "right"; + ctx.fillText( + w.value + ? w.options.on || "true" + : w.options.off || "false", + widget_width - 40, + y + H * 0.7 + ); + } + break; + case "slider": + ctx.fillStyle = background_color; + ctx.fillRect(margin, y, widget_width - margin * 2, H); + var range = w.options.max - w.options.min; + var nvalue = (w.value - w.options.min) / range; + if(nvalue < 0.0) nvalue = 0.0; + if(nvalue > 1.0) nvalue = 1.0; + ctx.fillStyle = w.options.hasOwnProperty("slider_color") ? w.options.slider_color : (active_widget == w ? "#89A" : "#678"); + ctx.fillRect(margin, y, nvalue * (widget_width - margin * 2), H); + if(show_text && !w.disabled) + ctx.strokeRect(margin, y, widget_width - margin * 2, H); + if (w.marker) { + var marker_nvalue = (w.marker - w.options.min) / range; + if(marker_nvalue < 0.0) marker_nvalue = 0.0; + if(marker_nvalue > 1.0) marker_nvalue = 1.0; + ctx.fillStyle = w.options.hasOwnProperty("marker_color") ? w.options.marker_color : "#AA9"; + ctx.fillRect( margin + marker_nvalue * (widget_width - margin * 2), y, 2, H ); + } + if (show_text) { + ctx.textAlign = "center"; + ctx.fillStyle = text_color; + ctx.fillText( + w.label || w.name + " " + Number(w.value).toFixed( + w.options.precision != null + ? w.options.precision + : 3 + ), + widget_width * 0.5, + y + H * 0.7 + ); + } + break; + case "number": + case "combo": + ctx.textAlign = "left"; + ctx.strokeStyle = outline_color; + ctx.fillStyle = background_color; + ctx.beginPath(); + if(show_text) + ctx.roundRect(margin, y, widget_width - margin * 2, H, [H * 0.5] ); + else + ctx.rect(margin, y, widget_width - margin * 2, H ); + ctx.fill(); + if (show_text) { + if(!w.disabled) + ctx.stroke(); + ctx.fillStyle = text_color; + if(!w.disabled) + { + ctx.beginPath(); + ctx.moveTo(margin + 16, y + 5); + ctx.lineTo(margin + 6, y + H * 0.5); + ctx.lineTo(margin + 16, y + H - 5); + ctx.fill(); + ctx.beginPath(); + ctx.moveTo(widget_width - margin - 16, y + 5); + ctx.lineTo(widget_width - margin - 6, y + H * 0.5); + ctx.lineTo(widget_width - margin - 16, y + H - 5); + ctx.fill(); + } + ctx.fillStyle = secondary_text_color; + ctx.fillText(w.label || w.name, margin * 2 + 5, y + H * 0.7); + ctx.fillStyle = text_color; + ctx.textAlign = "right"; + if (w.type == "number") { + ctx.fillText( + Number(w.value).toFixed( + w.options.precision !== undefined + ? w.options.precision + : 3 + ), + widget_width - margin * 2 - 20, + y + H * 0.7 + ); + } else { + var v = w.value; + if( w.options.values ) + { + var values = w.options.values; + if( values.constructor === Function ) + values = values(); + if(values && values.constructor !== Array) + v = values[ w.value ]; + } + ctx.fillText( + v, + widget_width - margin * 2 - 20, + y + H * 0.7 + ); + } + } + break; + case "string": + case "text": + ctx.textAlign = "left"; + ctx.strokeStyle = outline_color; + ctx.fillStyle = background_color; + ctx.beginPath(); + if (show_text) + ctx.roundRect(margin, y, widget_width - margin * 2, H, [H * 0.5]); + else + ctx.rect( margin, y, widget_width - margin * 2, H ); + ctx.fill(); + if (show_text) { + if(!w.disabled) + ctx.stroke(); + ctx.save(); + ctx.beginPath(); + ctx.rect(margin, y, widget_width - margin * 2, H); + ctx.clip(); + + //ctx.stroke(); + ctx.fillStyle = secondary_text_color; + const label = w.label || w.name; + if (label != null) { + ctx.fillText(label, margin * 2, y + H * 0.7); + } + ctx.fillStyle = text_color; + ctx.textAlign = "right"; + ctx.fillText(String(w.value).substr(0,30), widget_width - margin * 2, y + H * 0.7); //30 chars max + ctx.restore(); + } + break; + default: + if (w.draw) { + w.draw(ctx, node, widget_width, y, H); + } + break; + } + posY += (w.computeSize ? w.computeSize(widget_width)[1] : H) + 4; + ctx.globalAlpha = this.editor_alpha; + + } + ctx.restore(); + ctx.textAlign = "left"; + }; + + /** + * process an event on widgets + * @method processNodeWidgets + **/ + LGraphCanvas.prototype.processNodeWidgets = function( + node, + pos, + event, + active_widget + ) { + if (!node.widgets || !node.widgets.length || (!this.allow_interaction && !node.flags.allow_interaction)) { + return null; + } + + var x = pos[0] - node.pos[0]; + var y = pos[1] - node.pos[1]; + var width = node.size[0]; + var that = this; + var ref_window = this.getCanvasWindow(); + + for (var i = 0; i < node.widgets.length; ++i) { + var w = node.widgets[i]; + if(!w || w.disabled) + continue; + var widget_height = w.computeSize ? w.computeSize(width)[1] : LiteGraph.NODE_WIDGET_HEIGHT; + var widget_width = w.width || width; + //outside + if ( w != active_widget && + (x < 6 || x > widget_width - 12 || y < w.last_y || y > w.last_y + widget_height || w.last_y === undefined) ) + continue; + + var old_value = w.value; + + //if ( w == active_widget || (x > 6 && x < widget_width - 12 && y > w.last_y && y < w.last_y + widget_height) ) { + //inside widget + switch (w.type) { + case "button": + if (event.type === LiteGraph.pointerevents_method+"down") { + if (w.callback) { + setTimeout(function() { + w.callback(w, that, node, pos, event); + }, 20); + } + w.clicked = true; + this.dirty_canvas = true; + } + break; + case "slider": + var old_value = w.value; + var nvalue = clamp((x - 15) / (widget_width - 30), 0, 1); + if(w.options.read_only) break; + w.value = w.options.min + (w.options.max - w.options.min) * nvalue; + if (old_value != w.value) { + setTimeout(function() { + inner_value_change(w, w.value); + }, 20); + } + this.dirty_canvas = true; + break; + case "number": + case "combo": + var old_value = w.value; + var delta = x < 40 ? -1 : x > widget_width - 40 ? 1 : 0; + var allow_scroll = true; + if (delta) { + if (x > -3 && x < widget_width + 3) { + allow_scroll = false; + } + } + if (allow_scroll && event.type == LiteGraph.pointerevents_method+"move" && w.type == "number") { + if(event.deltaX) + w.value += event.deltaX * 0.1 * (w.options.step || 1); + if ( w.options.min != null && w.value < w.options.min ) { + w.value = w.options.min; + } + if ( w.options.max != null && w.value > w.options.max ) { + w.value = w.options.max; + } + } else if (event.type == LiteGraph.pointerevents_method+"down") { + var values = w.options.values; + if (values && values.constructor === Function) { + values = w.options.values(w, node); + } + var values_list = null; + + if( w.type != "number") + values_list = values.constructor === Array ? values : Object.keys(values); + + var delta = x < 40 ? -1 : x > widget_width - 40 ? 1 : 0; + if (w.type == "number") { + w.value += delta * 0.1 * (w.options.step || 1); + if ( w.options.min != null && w.value < w.options.min ) { + w.value = w.options.min; + } + if ( w.options.max != null && w.value > w.options.max ) { + w.value = w.options.max; + } + } else if (delta) { //clicked in arrow, used for combos + var index = -1; + this.last_mouseclick = 0; //avoids dobl click event + if(values.constructor === Object) + index = values_list.indexOf( String( w.value ) ) + delta; + else + index = values_list.indexOf( w.value ) + delta; + if (index >= values_list.length) { + index = values_list.length - 1; + } + if (index < 0) { + index = 0; + } + if( values.constructor === Array ) + w.value = values[index]; + else + w.value = index; + } else { //combo clicked + var text_values = values != values_list ? Object.values(values) : values; + var menu = new LiteGraph.ContextMenu(text_values, { + scale: Math.max(1, this.ds.scale), + event: event, + className: "dark", + callback: inner_clicked.bind(w) + }, + ref_window); + function inner_clicked(v, option, event) { + if(values != values_list) + v = text_values.indexOf(v); + this.value = v; + inner_value_change(this, v); + that.dirty_canvas = true; + return false; + } + } + } //end mousedown + else if(event.type == LiteGraph.pointerevents_method+"up" && w.type == "number") + { + var delta = x < 40 ? -1 : x > widget_width - 40 ? 1 : 0; + if (event.click_time < 200 && delta == 0) { + this.prompt("Value",w.value,function(v) { + // check if v is a valid equation or a number + if (/^[0-9+\-*/()\s]+|\d+\.\d+$/.test(v)) { + try {//solve the equation if possible + v = eval(v); + } catch (e) { } + } + this.value = Number(v); + inner_value_change(this, this.value); + }.bind(w), + event); + } + } + + if( old_value != w.value ) + setTimeout( + function() { + inner_value_change(this, this.value); + }.bind(w), + 20 + ); + this.dirty_canvas = true; + break; + case "toggle": + if (event.type == LiteGraph.pointerevents_method+"down") { + w.value = !w.value; + setTimeout(function() { + inner_value_change(w, w.value); + }, 20); + } + break; + case "string": + case "text": + if (event.type == LiteGraph.pointerevents_method+"down") { + this.prompt("Value",w.value,function(v) { + inner_value_change(this, v); + }.bind(w), + event,w.options ? w.options.multiline : false ); + } + break; + default: + if (w.mouse) { + this.dirty_canvas = w.mouse(event, [x, y], node); + } + break; + } //end switch + + //value changed + if( old_value != w.value ) + { + if(node.onWidgetChanged) + node.onWidgetChanged( w.name,w.value,old_value,w ); + node.graph._version++; + } + + return w; + }//end for + + function inner_value_change(widget, value) { + if(widget.type == "number"){ + value = Number(value); + } + widget.value = value; + if ( widget.options && widget.options.property && node.properties[widget.options.property] !== undefined ) { + node.setProperty( widget.options.property, value ); + } + if (widget.callback) { + widget.callback(widget.value, that, node, pos, event); + } + } + + return null; + }; + + /** + * draws every group area in the background + * @method drawGroups + **/ + LGraphCanvas.prototype.drawGroups = function(canvas, ctx) { + if (!this.graph) { + return; + } + + var groups = this.graph._groups; + + ctx.save(); + ctx.globalAlpha = 0.5 * this.editor_alpha; + + for (var i = 0; i < groups.length; ++i) { + var group = groups[i]; + + if (!overlapBounding(this.visible_area, group._bounding)) { + continue; + } //out of the visible area + + ctx.fillStyle = group.color || "#335"; + ctx.strokeStyle = group.color || "#335"; + var pos = group._pos; + var size = group._size; + ctx.globalAlpha = 0.25 * this.editor_alpha; + ctx.beginPath(); + ctx.rect(pos[0] + 0.5, pos[1] + 0.5, size[0], size[1]); + ctx.fill(); + ctx.globalAlpha = this.editor_alpha; + ctx.stroke(); + + ctx.beginPath(); + ctx.moveTo(pos[0] + size[0], pos[1] + size[1]); + ctx.lineTo(pos[0] + size[0] - 10, pos[1] + size[1]); + ctx.lineTo(pos[0] + size[0], pos[1] + size[1] - 10); + ctx.fill(); + + var font_size = + group.font_size || LiteGraph.DEFAULT_GROUP_FONT_SIZE; + ctx.font = font_size + "px Arial"; + ctx.textAlign = "left"; + ctx.fillText(group.title, pos[0] + 4, pos[1] + font_size); + } + + ctx.restore(); + }; + + LGraphCanvas.prototype.adjustNodesSize = function() { + var nodes = this.graph._nodes; + for (var i = 0; i < nodes.length; ++i) { + nodes[i].size = nodes[i].computeSize(); + } + this.setDirty(true, true); + }; + + /** + * resizes the canvas to a given size, if no size is passed, then it tries to fill the parentNode + * @method resize + **/ + LGraphCanvas.prototype.resize = function(width, height) { + if (!width && !height) { + var parent = this.canvas.parentNode; + width = parent.offsetWidth; + height = parent.offsetHeight; + } + + if (this.canvas.width == width && this.canvas.height == height) { + return; + } + + this.canvas.width = width; + this.canvas.height = height; + this.bgcanvas.width = this.canvas.width; + this.bgcanvas.height = this.canvas.height; + this.setDirty(true, true); + }; + + /** + * switches to live mode (node shapes are not rendered, only the content) + * this feature was designed when graphs where meant to create user interfaces + * @method switchLiveMode + **/ + LGraphCanvas.prototype.switchLiveMode = function(transition) { + if (!transition) { + this.live_mode = !this.live_mode; + this.dirty_canvas = true; + this.dirty_bgcanvas = true; + return; + } + + var self = this; + var delta = this.live_mode ? 1.1 : 0.9; + if (this.live_mode) { + this.live_mode = false; + this.editor_alpha = 0.1; + } + + var t = setInterval(function() { + self.editor_alpha *= delta; + self.dirty_canvas = true; + self.dirty_bgcanvas = true; + + if (delta < 1 && self.editor_alpha < 0.01) { + clearInterval(t); + if (delta < 1) { + self.live_mode = true; + } + } + if (delta > 1 && self.editor_alpha > 0.99) { + clearInterval(t); + self.editor_alpha = 1; + } + }, 1); + }; + + LGraphCanvas.prototype.onNodeSelectionChange = function(node) { + return; //disabled + }; + + /* this is an implementation for touch not in production and not ready + */ + /*LGraphCanvas.prototype.touchHandler = function(event) { + //alert("foo"); + var touches = event.changedTouches, + first = touches[0], + type = ""; + + switch (event.type) { + case "touchstart": + type = "mousedown"; + break; + case "touchmove": + type = "mousemove"; + break; + case "touchend": + type = "mouseup"; + break; + default: + return; + } + + //initMouseEvent(type, canBubble, cancelable, view, clickCount, + // screenX, screenY, clientX, clientY, ctrlKey, + // altKey, shiftKey, metaKey, button, relatedTarget); + + // this is eventually a Dom object, get the LGraphCanvas back + if(typeof this.getCanvasWindow == "undefined"){ + var window = this.lgraphcanvas.getCanvasWindow(); + }else{ + var window = this.getCanvasWindow(); + } + + var document = window.document; + + var simulatedEvent = document.createEvent("MouseEvent"); + simulatedEvent.initMouseEvent( + type, + true, + true, + window, + 1, + first.screenX, + first.screenY, + first.clientX, + first.clientY, + false, + false, + false, + false, + 0, //left + null + ); + first.target.dispatchEvent(simulatedEvent); + event.preventDefault(); + };*/ + + /* CONTEXT MENU ********************/ + + LGraphCanvas.onGroupAdd = function(info, entry, mouse_event) { + var canvas = LGraphCanvas.active_canvas; + var ref_window = canvas.getCanvasWindow(); + + var group = new LiteGraph.LGraphGroup(); + group.pos = canvas.convertEventToCanvasOffset(mouse_event); + canvas.graph.add(group); + }; + + /** + * Determines the furthest nodes in each direction + * @param nodes {LGraphNode[]} the nodes to from which boundary nodes will be extracted + * @return {{left: LGraphNode, top: LGraphNode, right: LGraphNode, bottom: LGraphNode}} + */ + LGraphCanvas.getBoundaryNodes = function(nodes) { + let top = null; + let right = null; + let bottom = null; + let left = null; + for (const nID in nodes) { + const node = nodes[nID]; + const [x, y] = node.pos; + const [width, height] = node.size; + + if (top === null || y < top.pos[1]) { + top = node; + } + if (right === null || x + width > right.pos[0] + right.size[0]) { + right = node; + } + if (bottom === null || y + height > bottom.pos[1] + bottom.size[1]) { + bottom = node; + } + if (left === null || x < left.pos[0]) { + left = node; + } + } + + return { + "top": top, + "right": right, + "bottom": bottom, + "left": left + }; + } + /** + * Determines the furthest nodes in each direction for the currently selected nodes + * @return {{left: LGraphNode, top: LGraphNode, right: LGraphNode, bottom: LGraphNode}} + */ + LGraphCanvas.prototype.boundaryNodesForSelection = function() { + return LGraphCanvas.getBoundaryNodes(Object.values(this.selected_nodes)); + } + + /** + * + * @param {LGraphNode[]} nodes a list of nodes + * @param {"top"|"bottom"|"left"|"right"} direction Direction to align the nodes + * @param {LGraphNode?} align_to Node to align to (if null, align to the furthest node in the given direction) + */ + LGraphCanvas.alignNodes = function (nodes, direction, align_to) { + if (!nodes) { + return; + } + + const canvas = LGraphCanvas.active_canvas; + let boundaryNodes = [] + if (align_to === undefined) { + boundaryNodes = LGraphCanvas.getBoundaryNodes(nodes) + } else { + boundaryNodes = { + "top": align_to, + "right": align_to, + "bottom": align_to, + "left": align_to + } + } + + for (const [_, node] of Object.entries(canvas.selected_nodes)) { + switch (direction) { + case "right": + node.pos[0] = boundaryNodes["right"].pos[0] + boundaryNodes["right"].size[0] - node.size[0]; + break; + case "left": + node.pos[0] = boundaryNodes["left"].pos[0]; + break; + case "top": + node.pos[1] = boundaryNodes["top"].pos[1]; + break; + case "bottom": + node.pos[1] = boundaryNodes["bottom"].pos[1] + boundaryNodes["bottom"].size[1] - node.size[1]; + break; + } + } + + canvas.dirty_canvas = true; + canvas.dirty_bgcanvas = true; + }; + + LGraphCanvas.onNodeAlign = function(value, options, event, prev_menu, node) { + new LiteGraph.ContextMenu(["Top", "Bottom", "Left", "Right"], { + event: event, + callback: inner_clicked, + parentMenu: prev_menu, + }); + + function inner_clicked(value) { + LGraphCanvas.alignNodes(LGraphCanvas.active_canvas.selected_nodes, value.toLowerCase(), node); + } + } + + LGraphCanvas.onGroupAlign = function(value, options, event, prev_menu) { + new LiteGraph.ContextMenu(["Top", "Bottom", "Left", "Right"], { + event: event, + callback: inner_clicked, + parentMenu: prev_menu, + }); + + function inner_clicked(value) { + LGraphCanvas.alignNodes(LGraphCanvas.active_canvas.selected_nodes, value.toLowerCase()); + } + } + + LGraphCanvas.onMenuAdd = function (node, options, e, prev_menu, callback) { + + var canvas = LGraphCanvas.active_canvas; + var ref_window = canvas.getCanvasWindow(); + var graph = canvas.graph; + if (!graph) + return; + + function inner_onMenuAdded(base_category ,prev_menu){ + + var categories = LiteGraph.getNodeTypesCategories(canvas.filter || graph.filter).filter(function(category){return category.startsWith(base_category)}); + var entries = []; + + categories.map(function(category){ + + if (!category) + return; + + var base_category_regex = new RegExp('^(' + base_category + ')'); + var category_name = category.replace(base_category_regex,"").split('/')[0]; + var category_path = base_category === '' ? category_name + '/' : base_category + category_name + '/'; + + var name = category_name; + if(name.indexOf("::") != -1) //in case it has a namespace like "shader::math/rand" it hides the namespace + name = name.split("::")[1]; + + var index = entries.findIndex(function(entry){return entry.value === category_path}); + if (index === -1) { + entries.push({ value: category_path, content: name, has_submenu: true, callback : function(value, event, mouseEvent, contextMenu){ + inner_onMenuAdded(value.value, contextMenu) + }}); + } + + }); + + var nodes = LiteGraph.getNodeTypesInCategory(base_category.slice(0, -1), canvas.filter || graph.filter ); + nodes.map(function(node){ + + if (node.skip_list) + return; + + var entry = { value: node.type, content: node.title, has_submenu: false , callback : function(value, event, mouseEvent, contextMenu){ + + var first_event = contextMenu.getFirstEvent(); + canvas.graph.beforeChange(); + var node = LiteGraph.createNode(value.value); + if (node) { + node.pos = canvas.convertEventToCanvasOffset(first_event); + canvas.graph.add(node); + } + if(callback) + callback(node); + canvas.graph.afterChange(); + + } + } + + entries.push(entry); + + }); + + new LiteGraph.ContextMenu( entries, { event: e, parentMenu: prev_menu }, ref_window ); + + } + + inner_onMenuAdded('',prev_menu); + return false; + + }; + + LGraphCanvas.onMenuCollapseAll = function() {}; + + LGraphCanvas.onMenuNodeEdit = function() {}; + + LGraphCanvas.showMenuNodeOptionalInputs = function( + v, + options, + e, + prev_menu, + node + ) { + if (!node) { + return; + } + + var that = this; + var canvas = LGraphCanvas.active_canvas; + var ref_window = canvas.getCanvasWindow(); + + var options = node.optional_inputs; + if (node.onGetInputs) { + options = node.onGetInputs(); + } + + var entries = []; + if (options) { + for (var i=0; i < options.length; i++) { + var entry = options[i]; + if (!entry) { + entries.push(null); + continue; + } + var label = entry[0]; + if(!entry[2]) + entry[2] = {}; + + if (entry[2].label) { + label = entry[2].label; + } + + entry[2].removable = true; + var data = { content: label, value: entry }; + if (entry[1] == LiteGraph.ACTION) { + data.className = "event"; + } + entries.push(data); + } + } + + if (node.onMenuNodeInputs) { + var retEntries = node.onMenuNodeInputs(entries); + if(retEntries) entries = retEntries; + } + + if (!entries.length) { + console.log("no input entries"); + return; + } + + var menu = new LiteGraph.ContextMenu( + entries, + { + event: e, + callback: inner_clicked, + parentMenu: prev_menu, + node: node + }, + ref_window + ); + + function inner_clicked(v, e, prev) { + if (!node) { + return; + } + + if (v.callback) { + v.callback.call(that, node, v, e, prev); + } + + if (v.value) { + node.graph.beforeChange(); + node.addInput(v.value[0], v.value[1], v.value[2]); + + if (node.onNodeInputAdd) { // callback to the node when adding a slot + node.onNodeInputAdd(v.value); + } + node.setDirtyCanvas(true, true); + node.graph.afterChange(); + } + } + + return false; + }; + + LGraphCanvas.showMenuNodeOptionalOutputs = function( + v, + options, + e, + prev_menu, + node + ) { + if (!node) { + return; + } + + var that = this; + var canvas = LGraphCanvas.active_canvas; + var ref_window = canvas.getCanvasWindow(); + + var options = node.optional_outputs; + if (node.onGetOutputs) { + options = node.onGetOutputs(); + } + + var entries = []; + if (options) { + for (var i=0; i < options.length; i++) { + var entry = options[i]; + if (!entry) { + //separator? + entries.push(null); + continue; + } + + if ( + node.flags && + node.flags.skip_repeated_outputs && + node.findOutputSlot(entry[0]) != -1 + ) { + continue; + } //skip the ones already on + var label = entry[0]; + if(!entry[2]) + entry[2] = {}; + if (entry[2].label) { + label = entry[2].label; + } + entry[2].removable = true; + var data = { content: label, value: entry }; + if (entry[1] == LiteGraph.EVENT) { + data.className = "event"; + } + entries.push(data); + } + } + + if (this.onMenuNodeOutputs) { + entries = this.onMenuNodeOutputs(entries); + } + if (LiteGraph.do_add_triggers_slots){ //canvas.allow_addOutSlot_onExecuted + if (node.findOutputSlot("onExecuted") == -1){ + entries.push({content: "On Executed", value: ["onExecuted", LiteGraph.EVENT, {nameLocked: true}], className: "event"}); //, opts: {} + } + } + // add callback for modifing the menu elements onMenuNodeOutputs + if (node.onMenuNodeOutputs) { + var retEntries = node.onMenuNodeOutputs(entries); + if(retEntries) entries = retEntries; + } + + if (!entries.length) { + return; + } + + var menu = new LiteGraph.ContextMenu( + entries, + { + event: e, + callback: inner_clicked, + parentMenu: prev_menu, + node: node + }, + ref_window + ); + + function inner_clicked(v, e, prev) { + if (!node) { + return; + } + + if (v.callback) { + v.callback.call(that, node, v, e, prev); + } + + if (!v.value) { + return; + } + + var value = v.value[1]; + + if ( + value && + (value.constructor === Object || value.constructor === Array) + ) { + //submenu why? + var entries = []; + for (var i in value) { + entries.push({ content: i, value: value[i] }); + } + new LiteGraph.ContextMenu(entries, { + event: e, + callback: inner_clicked, + parentMenu: prev_menu, + node: node + }); + return false; + } else { + node.graph.beforeChange(); + node.addOutput(v.value[0], v.value[1], v.value[2]); + + if (node.onNodeOutputAdd) { // a callback to the node when adding a slot + node.onNodeOutputAdd(v.value); + } + node.setDirtyCanvas(true, true); + node.graph.afterChange(); + } + } + + return false; + }; + + LGraphCanvas.onShowMenuNodeProperties = function( + value, + options, + e, + prev_menu, + node + ) { + if (!node || !node.properties) { + return; + } + + var that = this; + var canvas = LGraphCanvas.active_canvas; + var ref_window = canvas.getCanvasWindow(); + + var entries = []; + for (var i in node.properties) { + var value = node.properties[i] !== undefined ? node.properties[i] : " "; + if( typeof value == "object" ) + value = JSON.stringify(value); + var info = node.getPropertyInfo(i); + if(info.type == "enum" || info.type == "combo") + value = LGraphCanvas.getPropertyPrintableValue( value, info.values ); + + //value could contain invalid html characters, clean that + value = LGraphCanvas.decodeHTML(value); + entries.push({ + content: + "" + + (info.label ? info.label : i) + + "" + + "" + + value + + "", + value: i + }); + } + if (!entries.length) { + return; + } + + var menu = new LiteGraph.ContextMenu( + entries, + { + event: e, + callback: inner_clicked, + parentMenu: prev_menu, + allow_html: true, + node: node + }, + ref_window + ); + + function inner_clicked(v, options, e, prev) { + if (!node) { + return; + } + var rect = this.getBoundingClientRect(); + canvas.showEditPropertyValue(node, v.value, { + position: [rect.left, rect.top] + }); + } + + return false; + }; + + LGraphCanvas.decodeHTML = function(str) { + var e = document.createElement("div"); + e.innerText = str; + return e.innerHTML; + }; + + LGraphCanvas.onMenuResizeNode = function(value, options, e, menu, node) { + if (!node) { + return; + } + + var fApplyMultiNode = function(node){ + node.size = node.computeSize(); + if (node.onResize) + node.onResize(node.size); + } + + var graphcanvas = LGraphCanvas.active_canvas; + if (!graphcanvas.selected_nodes || Object.keys(graphcanvas.selected_nodes).length <= 1){ + fApplyMultiNode(node); + }else{ + for (var i in graphcanvas.selected_nodes) { + fApplyMultiNode(graphcanvas.selected_nodes[i]); + } + } + + node.setDirtyCanvas(true, true); + }; + + LGraphCanvas.prototype.showLinkMenu = function(link, e) { + var that = this; + // console.log(link); + var node_left = that.graph.getNodeById( link.origin_id ); + var node_right = that.graph.getNodeById( link.target_id ); + var fromType = false; + if (node_left && node_left.outputs && node_left.outputs[link.origin_slot]) fromType = node_left.outputs[link.origin_slot].type; + var destType = false; + if (node_right && node_right.outputs && node_right.outputs[link.target_slot]) destType = node_right.inputs[link.target_slot].type; + + var options = ["Add Node",null,"Delete",null]; + + + var menu = new LiteGraph.ContextMenu(options, { + event: e, + title: link.data != null ? link.data.constructor.name : null, + callback: inner_clicked + }); + + function inner_clicked(v,options,e) { + switch (v) { + case "Add Node": + LGraphCanvas.onMenuAdd(null, null, e, menu, function(node){ + // console.debug("node autoconnect"); + if(!node.inputs || !node.inputs.length || !node.outputs || !node.outputs.length){ + return; + } + // leave the connection type checking inside connectByType + if (node_left.connectByType( link.origin_slot, node, fromType )){ + node.connectByType( link.target_slot, node_right, destType ); + node.pos[0] -= node.size[0] * 0.5; + } + }); + break; + + case "Delete": + that.graph.removeLink(link.id); + break; + default: + /*var nodeCreated = createDefaultNodeForSlot({ nodeFrom: node_left + ,slotFrom: link.origin_slot + ,nodeTo: node + ,slotTo: link.target_slot + ,e: e + ,nodeType: "AUTO" + }); + if(nodeCreated) console.log("new node in beetween "+v+" created");*/ + } + } + + return false; + }; + + LGraphCanvas.prototype.createDefaultNodeForSlot = function(optPass) { // addNodeMenu for connection + var optPass = optPass || {}; + var opts = Object.assign({ nodeFrom: null // input + ,slotFrom: null // input + ,nodeTo: null // output + ,slotTo: null // output + ,position: [] // pass the event coords + ,nodeType: null // choose a nodetype to add, AUTO to set at first good + ,posAdd:[0,0] // adjust x,y + ,posSizeFix:[0,0] // alpha, adjust the position x,y based on the new node size w,h + } + ,optPass + ); + var that = this; + + var isFrom = opts.nodeFrom && opts.slotFrom!==null; + var isTo = !isFrom && opts.nodeTo && opts.slotTo!==null; + + if (!isFrom && !isTo){ + console.warn("No data passed to createDefaultNodeForSlot "+opts.nodeFrom+" "+opts.slotFrom+" "+opts.nodeTo+" "+opts.slotTo); + return false; + } + if (!opts.nodeType){ + console.warn("No type to createDefaultNodeForSlot"); + return false; + } + + var nodeX = isFrom ? opts.nodeFrom : opts.nodeTo; + var slotX = isFrom ? opts.slotFrom : opts.slotTo; + + var iSlotConn = false; + switch (typeof slotX){ + case "string": + iSlotConn = isFrom ? nodeX.findOutputSlot(slotX,false) : nodeX.findInputSlot(slotX,false); + slotX = isFrom ? nodeX.outputs[slotX] : nodeX.inputs[slotX]; + break; + case "object": + // ok slotX + iSlotConn = isFrom ? nodeX.findOutputSlot(slotX.name) : nodeX.findInputSlot(slotX.name); + break; + case "number": + iSlotConn = slotX; + slotX = isFrom ? nodeX.outputs[slotX] : nodeX.inputs[slotX]; + break; + case "undefined": + default: + // bad ? + //iSlotConn = 0; + console.warn("Cant get slot information "+slotX); + return false; + } + + if (slotX===false || iSlotConn===false){ + console.warn("createDefaultNodeForSlot bad slotX "+slotX+" "+iSlotConn); + } + + // check for defaults nodes for this slottype + var fromSlotType = slotX.type==LiteGraph.EVENT?"_event_":slotX.type; + var slotTypesDefault = isFrom ? LiteGraph.slot_types_default_out : LiteGraph.slot_types_default_in; + if(slotTypesDefault && slotTypesDefault[fromSlotType]){ + if (slotX.link !== null) { + // is connected + }else{ + // is not not connected + } + nodeNewType = false; + if(typeof slotTypesDefault[fromSlotType] == "object" || typeof slotTypesDefault[fromSlotType] == "array"){ + for(var typeX in slotTypesDefault[fromSlotType]){ + if (opts.nodeType == slotTypesDefault[fromSlotType][typeX] || opts.nodeType == "AUTO"){ + nodeNewType = slotTypesDefault[fromSlotType][typeX]; + // console.log("opts.nodeType == slotTypesDefault[fromSlotType][typeX] :: "+opts.nodeType); + break; // -------- + } + } + }else{ + if (opts.nodeType == slotTypesDefault[fromSlotType] || opts.nodeType == "AUTO") nodeNewType = slotTypesDefault[fromSlotType]; + } + if (nodeNewType) { + var nodeNewOpts = false; + if (typeof nodeNewType == "object" && nodeNewType.node){ + nodeNewOpts = nodeNewType; + nodeNewType = nodeNewType.node; + } + + //that.graph.beforeChange(); + + var newNode = LiteGraph.createNode(nodeNewType); + if(newNode){ + // if is object pass options + if (nodeNewOpts){ + if (nodeNewOpts.properties) { + for (var i in nodeNewOpts.properties) { + newNode.addProperty( i, nodeNewOpts.properties[i] ); + } + } + if (nodeNewOpts.inputs) { + newNode.inputs = []; + for (var i in nodeNewOpts.inputs) { + newNode.addOutput( + nodeNewOpts.inputs[i][0], + nodeNewOpts.inputs[i][1] + ); + } + } + if (nodeNewOpts.outputs) { + newNode.outputs = []; + for (var i in nodeNewOpts.outputs) { + newNode.addOutput( + nodeNewOpts.outputs[i][0], + nodeNewOpts.outputs[i][1] + ); + } + } + if (nodeNewOpts.title) { + newNode.title = nodeNewOpts.title; + } + if (nodeNewOpts.json) { + newNode.configure(nodeNewOpts.json); + } + + } + + // add the node + that.graph.add(newNode); + newNode.pos = [ opts.position[0]+opts.posAdd[0]+(opts.posSizeFix[0]?opts.posSizeFix[0]*newNode.size[0]:0) + ,opts.position[1]+opts.posAdd[1]+(opts.posSizeFix[1]?opts.posSizeFix[1]*newNode.size[1]:0)]; //that.last_click_position; //[e.canvasX+30, e.canvasX+5];*/ + + //that.graph.afterChange(); + + // connect the two! + if (isFrom){ + opts.nodeFrom.connectByType( iSlotConn, newNode, fromSlotType ); + }else{ + opts.nodeTo.connectByTypeOutput( iSlotConn, newNode, fromSlotType ); + } + + // if connecting in between + if (isFrom && isTo){ + // TODO + } + + return true; + + }else{ + console.log("failed creating "+nodeNewType); + } + } + } + return false; + } + + LGraphCanvas.prototype.showConnectionMenu = function(optPass) { // addNodeMenu for connection + var optPass = optPass || {}; + var opts = Object.assign({ nodeFrom: null // input + ,slotFrom: null // input + ,nodeTo: null // output + ,slotTo: null // output + ,e: null + } + ,optPass + ); + var that = this; + + var isFrom = opts.nodeFrom && opts.slotFrom; + var isTo = !isFrom && opts.nodeTo && opts.slotTo; + + if (!isFrom && !isTo){ + console.warn("No data passed to showConnectionMenu"); + return false; + } + + var nodeX = isFrom ? opts.nodeFrom : opts.nodeTo; + var slotX = isFrom ? opts.slotFrom : opts.slotTo; + + var iSlotConn = false; + switch (typeof slotX){ + case "string": + iSlotConn = isFrom ? nodeX.findOutputSlot(slotX,false) : nodeX.findInputSlot(slotX,false); + slotX = isFrom ? nodeX.outputs[slotX] : nodeX.inputs[slotX]; + break; + case "object": + // ok slotX + iSlotConn = isFrom ? nodeX.findOutputSlot(slotX.name) : nodeX.findInputSlot(slotX.name); + break; + case "number": + iSlotConn = slotX; + slotX = isFrom ? nodeX.outputs[slotX] : nodeX.inputs[slotX]; + break; + default: + // bad ? + //iSlotConn = 0; + console.warn("Cant get slot information "+slotX); + return false; + } + + var options = ["Add Node",null]; + + if (that.allow_searchbox){ + options.push("Search"); + options.push(null); + } + + // get defaults nodes for this slottype + var fromSlotType = slotX.type==LiteGraph.EVENT?"_event_":slotX.type; + var slotTypesDefault = isFrom ? LiteGraph.slot_types_default_out : LiteGraph.slot_types_default_in; + if(slotTypesDefault && slotTypesDefault[fromSlotType]){ + if(typeof slotTypesDefault[fromSlotType] == "object" || typeof slotTypesDefault[fromSlotType] == "array"){ + for(var typeX in slotTypesDefault[fromSlotType]){ + options.push(slotTypesDefault[fromSlotType][typeX]); + } + }else{ + options.push(slotTypesDefault[fromSlotType]); + } + } + + // build menu + var menu = new LiteGraph.ContextMenu(options, { + event: opts.e, + title: (slotX && slotX.name!="" ? (slotX.name + (fromSlotType?" | ":"")) : "")+(slotX && fromSlotType ? fromSlotType : ""), + callback: inner_clicked + }); + + // callback + function inner_clicked(v,options,e) { + //console.log("Process showConnectionMenu selection"); + switch (v) { + case "Add Node": + LGraphCanvas.onMenuAdd(null, null, e, menu, function(node){ + if (isFrom){ + opts.nodeFrom.connectByType( iSlotConn, node, fromSlotType ); + }else{ + opts.nodeTo.connectByTypeOutput( iSlotConn, node, fromSlotType ); + } + }); + break; + case "Search": + if(isFrom){ + that.showSearchBox(e,{node_from: opts.nodeFrom, slot_from: slotX, type_filter_in: fromSlotType}); + }else{ + that.showSearchBox(e,{node_to: opts.nodeTo, slot_from: slotX, type_filter_out: fromSlotType}); + } + break; + default: + // check for defaults nodes for this slottype + var nodeCreated = that.createDefaultNodeForSlot(Object.assign(opts,{ position: [opts.e.canvasX, opts.e.canvasY] + ,nodeType: v + })); + if (nodeCreated){ + // new node created + //console.log("node "+v+" created") + }else{ + // failed or v is not in defaults + } + break; + } + } + + return false; + }; + + // TODO refactor :: this is used fot title but not for properties! + LGraphCanvas.onShowPropertyEditor = function(item, options, e, menu, node) { + var input_html = ""; + var property = item.property || "title"; + var value = node[property]; + + // TODO refactor :: use createDialog ? + + var dialog = document.createElement("div"); + dialog.is_modified = false; + dialog.className = "graphdialog"; + dialog.innerHTML = + ""; + dialog.close = function() { + if (dialog.parentNode) { + dialog.parentNode.removeChild(dialog); + } + }; + var title = dialog.querySelector(".name"); + title.innerText = property; + var input = dialog.querySelector(".value"); + if (input) { + input.value = value; + input.addEventListener("blur", function(e) { + this.focus(); + }); + input.addEventListener("keydown", function(e) { + dialog.is_modified = true; + if (e.keyCode == 27) { + //ESC + dialog.close(); + } else if (e.keyCode == 13) { + inner(); // save + } else if (e.keyCode != 13 && e.target.localName != "textarea") { + return; + } + e.preventDefault(); + e.stopPropagation(); + }); + } + + var graphcanvas = LGraphCanvas.active_canvas; + var canvas = graphcanvas.canvas; + + var rect = canvas.getBoundingClientRect(); + var offsetx = -20; + var offsety = -20; + if (rect) { + offsetx -= rect.left; + offsety -= rect.top; + } + + if (event) { + dialog.style.left = event.clientX + offsetx + "px"; + dialog.style.top = event.clientY + offsety + "px"; + } else { + dialog.style.left = canvas.width * 0.5 + offsetx + "px"; + dialog.style.top = canvas.height * 0.5 + offsety + "px"; + } + + var button = dialog.querySelector("button"); + button.addEventListener("click", inner); + canvas.parentNode.appendChild(dialog); + + if(input) input.focus(); + + var dialogCloseTimer = null; + dialog.addEventListener("mouseleave", function(e) { + if(LiteGraph.dialog_close_on_mouse_leave) + if (!dialog.is_modified && LiteGraph.dialog_close_on_mouse_leave) + dialogCloseTimer = setTimeout(dialog.close, LiteGraph.dialog_close_on_mouse_leave_delay); //dialog.close(); + }); + dialog.addEventListener("mouseenter", function(e) { + if(LiteGraph.dialog_close_on_mouse_leave) + if(dialogCloseTimer) clearTimeout(dialogCloseTimer); + }); + + function inner() { + if(input) setValue(input.value); + } + + function setValue(value) { + if (item.type == "Number") { + value = Number(value); + } else if (item.type == "Boolean") { + value = Boolean(value); + } + node[property] = value; + if (dialog.parentNode) { + dialog.parentNode.removeChild(dialog); + } + node.setDirtyCanvas(true, true); + } + }; + + // refactor: there are different dialogs, some uses createDialog some dont + LGraphCanvas.prototype.prompt = function(title, value, callback, event, multiline) { + var that = this; + var input_html = ""; + title = title || ""; + + var dialog = document.createElement("div"); + dialog.is_modified = false; + dialog.className = "graphdialog rounded"; + if(multiline) + dialog.innerHTML = " "; + else + dialog.innerHTML = " "; + dialog.close = function() { + that.prompt_box = null; + if (dialog.parentNode) { + dialog.parentNode.removeChild(dialog); + } + }; + + var graphcanvas = LGraphCanvas.active_canvas; + var canvas = graphcanvas.canvas; + canvas.parentNode.appendChild(dialog); + + if (this.ds.scale > 1) { + dialog.style.transform = "scale(" + this.ds.scale + ")"; + } + + var dialogCloseTimer = null; + var prevent_timeout = false; + LiteGraph.pointerListenerAdd(dialog,"leave", function(e) { + if (prevent_timeout) + return; + if(LiteGraph.dialog_close_on_mouse_leave) + if (!dialog.is_modified && LiteGraph.dialog_close_on_mouse_leave) + dialogCloseTimer = setTimeout(dialog.close, LiteGraph.dialog_close_on_mouse_leave_delay); //dialog.close(); + }); + LiteGraph.pointerListenerAdd(dialog,"enter", function(e) { + if(LiteGraph.dialog_close_on_mouse_leave) + if(dialogCloseTimer) clearTimeout(dialogCloseTimer); + }); + var selInDia = dialog.querySelectorAll("select"); + if (selInDia){ + // if filtering, check focus changed to comboboxes and prevent closing + selInDia.forEach(function(selIn) { + selIn.addEventListener("click", function(e) { + prevent_timeout++; + }); + selIn.addEventListener("blur", function(e) { + prevent_timeout = 0; + }); + selIn.addEventListener("change", function(e) { + prevent_timeout = -1; + }); + }); + } + + if (that.prompt_box) { + that.prompt_box.close(); + } + that.prompt_box = dialog; + + var first = null; + var timeout = null; + var selected = null; + + var name_element = dialog.querySelector(".name"); + name_element.innerText = title; + var value_element = dialog.querySelector(".value"); + value_element.value = value; + value_element.select(); + + var input = value_element; + input.addEventListener("keydown", function(e) { + dialog.is_modified = true; + if (e.keyCode == 27) { + //ESC + dialog.close(); + } else if (e.keyCode == 13 && e.target.localName != "textarea") { + if (callback) { + callback(this.value); + } + dialog.close(); + } else { + return; + } + e.preventDefault(); + e.stopPropagation(); + }); + + var button = dialog.querySelector("button"); + button.addEventListener("click", function(e) { + if (callback) { + callback(input.value); + } + that.setDirty(true); + dialog.close(); + }); + + var rect = canvas.getBoundingClientRect(); + var offsetx = -20; + var offsety = -20; + if (rect) { + offsetx -= rect.left; + offsety -= rect.top; + } + + if (event) { + dialog.style.left = event.clientX + offsetx + "px"; + dialog.style.top = event.clientY + offsety + "px"; + } else { + dialog.style.left = canvas.width * 0.5 + offsetx + "px"; + dialog.style.top = canvas.height * 0.5 + offsety + "px"; + } + + setTimeout(function() { + input.focus(); + }, 10); + + return dialog; + }; + + LGraphCanvas.search_limit = -1; + LGraphCanvas.prototype.showSearchBox = function(event, options) { + // proposed defaults + var def_options = { slot_from: null + ,node_from: null + ,node_to: null + ,do_type_filter: LiteGraph.search_filter_enabled // TODO check for registered_slot_[in/out]_types not empty // this will be checked for functionality enabled : filter on slot type, in and out + ,type_filter_in: false // these are default: pass to set initially set values + ,type_filter_out: false + ,show_general_if_none_on_typefilter: true + ,show_general_after_typefiltered: true + ,hide_on_mouse_leave: LiteGraph.search_hide_on_mouse_leave + ,show_all_if_empty: true + ,show_all_on_open: LiteGraph.search_show_all_on_open + }; + options = Object.assign(def_options, options || {}); + + //console.log(options); + + var that = this; + var input_html = ""; + var graphcanvas = LGraphCanvas.active_canvas; + var canvas = graphcanvas.canvas; + var root_document = canvas.ownerDocument || document; + + var dialog = document.createElement("div"); + dialog.className = "litegraph litesearchbox graphdialog rounded"; + dialog.innerHTML = "Search "; + if (options.do_type_filter){ + dialog.innerHTML += ""; + dialog.innerHTML += ""; + } + dialog.innerHTML += "
"; + + if( root_document.fullscreenElement ) + root_document.fullscreenElement.appendChild(dialog); + else + { + root_document.body.appendChild(dialog); + root_document.body.style.overflow = "hidden"; + } + // dialog element has been appended + + if (options.do_type_filter){ + var selIn = dialog.querySelector(".slot_in_type_filter"); + var selOut = dialog.querySelector(".slot_out_type_filter"); + } + + dialog.close = function() { + that.search_box = null; + this.blur(); + canvas.focus(); + root_document.body.style.overflow = ""; + + setTimeout(function() { + that.canvas.focus(); + }, 20); //important, if canvas loses focus keys wont be captured + if (dialog.parentNode) { + dialog.parentNode.removeChild(dialog); + } + }; + + if (this.ds.scale > 1) { + dialog.style.transform = "scale(" + this.ds.scale + ")"; + } + + // hide on mouse leave + if(options.hide_on_mouse_leave){ + var prevent_timeout = false; + var timeout_close = null; + LiteGraph.pointerListenerAdd(dialog,"enter", function(e) { + if (timeout_close) { + clearTimeout(timeout_close); + timeout_close = null; + } + }); + LiteGraph.pointerListenerAdd(dialog,"leave", function(e) { + if (prevent_timeout){ + return; + } + timeout_close = setTimeout(function() { + dialog.close(); + }, typeof options.hide_on_mouse_leave === "number" ? options.hide_on_mouse_leave : 500); + }); + // if filtering, check focus changed to comboboxes and prevent closing + if (options.do_type_filter){ + selIn.addEventListener("click", function(e) { + prevent_timeout++; + }); + selIn.addEventListener("blur", function(e) { + prevent_timeout = 0; + }); + selIn.addEventListener("change", function(e) { + prevent_timeout = -1; + }); + selOut.addEventListener("click", function(e) { + prevent_timeout++; + }); + selOut.addEventListener("blur", function(e) { + prevent_timeout = 0; + }); + selOut.addEventListener("change", function(e) { + prevent_timeout = -1; + }); + } + } + + if (that.search_box) { + that.search_box.close(); + } + that.search_box = dialog; + + var helper = dialog.querySelector(".helper"); + + var first = null; + var timeout = null; + var selected = null; + + var input = dialog.querySelector("input"); + if (input) { + input.addEventListener("blur", function(e) { + this.focus(); + }); + input.addEventListener("keydown", function(e) { + if (e.keyCode == 38) { + //UP + changeSelection(false); + } else if (e.keyCode == 40) { + //DOWN + changeSelection(true); + } else if (e.keyCode == 27) { + //ESC + dialog.close(); + } else if (e.keyCode == 13) { + if (selected) { + select(unescape(selected.dataset["type"])); + } else if (first) { + select(first); + } else { + dialog.close(); + } + } else { + if (timeout) { + clearInterval(timeout); + } + timeout = setTimeout(refreshHelper, 10); + return; + } + e.preventDefault(); + e.stopPropagation(); + e.stopImmediatePropagation(); + return true; + }); + } + + // if should filter on type, load and fill selected and choose elements if passed + if (options.do_type_filter){ + if (selIn){ + var aSlots = LiteGraph.slot_types_in; + var nSlots = aSlots.length; // this for object :: Object.keys(aSlots).length; + + if (options.type_filter_in == LiteGraph.EVENT || options.type_filter_in == LiteGraph.ACTION) + options.type_filter_in = "_event_"; + /* this will filter on * .. but better do it manually in case + else if(options.type_filter_in === "" || options.type_filter_in === 0) + options.type_filter_in = "*";*/ + + for (var iK=0; iK (rect.height - 200)) + helper.style.maxHeight = (rect.height - event.layerY - 20) + "px"; + + /* + var offsetx = -20; + var offsety = -20; + if (rect) { + offsetx -= rect.left; + offsety -= rect.top; + } + + if (event) { + dialog.style.left = event.clientX + offsetx + "px"; + dialog.style.top = event.clientY + offsety + "px"; + } else { + dialog.style.left = canvas.width * 0.5 + offsetx + "px"; + dialog.style.top = canvas.height * 0.5 + offsety + "px"; + } + canvas.parentNode.appendChild(dialog); + */ + + input.focus(); + if (options.show_all_on_open) refreshHelper(); + + function select(name) { + if (name) { + if (that.onSearchBoxSelection) { + that.onSearchBoxSelection(name, event, graphcanvas); + } else { + var extra = LiteGraph.searchbox_extras[name.toLowerCase()]; + if (extra) { + name = extra.type; + } + + graphcanvas.graph.beforeChange(); + var node = LiteGraph.createNode(name); + if (node) { + node.pos = graphcanvas.convertEventToCanvasOffset( + event + ); + graphcanvas.graph.add(node, false); + } + + if (extra && extra.data) { + if (extra.data.properties) { + for (var i in extra.data.properties) { + node.addProperty( i, extra.data.properties[i] ); + } + } + if (extra.data.inputs) { + node.inputs = []; + for (var i in extra.data.inputs) { + node.addOutput( + extra.data.inputs[i][0], + extra.data.inputs[i][1] + ); + } + } + if (extra.data.outputs) { + node.outputs = []; + for (var i in extra.data.outputs) { + node.addOutput( + extra.data.outputs[i][0], + extra.data.outputs[i][1] + ); + } + } + if (extra.data.title) { + node.title = extra.data.title; + } + if (extra.data.json) { + node.configure(extra.data.json); + } + + } + + // join node after inserting + if (options.node_from){ + var iS = false; + switch (typeof options.slot_from){ + case "string": + iS = options.node_from.findOutputSlot(options.slot_from); + break; + case "object": + if (options.slot_from.name){ + iS = options.node_from.findOutputSlot(options.slot_from.name); + }else{ + iS = -1; + } + if (iS==-1 && typeof options.slot_from.slot_index !== "undefined") iS = options.slot_from.slot_index; + break; + case "number": + iS = options.slot_from; + break; + default: + iS = 0; // try with first if no name set + } + if (typeof options.node_from.outputs[iS] !== "undefined"){ + if (iS!==false && iS>-1){ + options.node_from.connectByType( iS, node, options.node_from.outputs[iS].type ); + } + }else{ + // console.warn("cant find slot " + options.slot_from); + } + } + if (options.node_to){ + var iS = false; + switch (typeof options.slot_from){ + case "string": + iS = options.node_to.findInputSlot(options.slot_from); + break; + case "object": + if (options.slot_from.name){ + iS = options.node_to.findInputSlot(options.slot_from.name); + }else{ + iS = -1; + } + if (iS==-1 && typeof options.slot_from.slot_index !== "undefined") iS = options.slot_from.slot_index; + break; + case "number": + iS = options.slot_from; + break; + default: + iS = 0; // try with first if no name set + } + if (typeof options.node_to.inputs[iS] !== "undefined"){ + if (iS!==false && iS>-1){ + // try connection + options.node_to.connectByTypeOutput(iS,node,options.node_to.inputs[iS].type); + } + }else{ + // console.warn("cant find slot_nodeTO " + options.slot_from); + } + } + + graphcanvas.graph.afterChange(); + } + } + + dialog.close(); + } + + function changeSelection(forward) { + var prev = selected; + if (selected) { + selected.classList.remove("selected"); + } + if (!selected) { + selected = forward + ? helper.childNodes[0] + : helper.childNodes[helper.childNodes.length]; + } else { + selected = forward + ? selected.nextSibling + : selected.previousSibling; + if (!selected) { + selected = prev; + } + } + if (!selected) { + return; + } + selected.classList.add("selected"); + selected.scrollIntoView({block: "end", behavior: "smooth"}); + } + + function refreshHelper() { + timeout = null; + var str = input.value; + first = null; + helper.innerHTML = ""; + if (!str && !options.show_all_if_empty) { + return; + } + + if (that.onSearchBox) { + var list = that.onSearchBox(helper, str, graphcanvas); + if (list) { + for (var i = 0; i < list.length; ++i) { + addResult(list[i]); + } + } + } else { + var c = 0; + str = str.toLowerCase(); + var filter = graphcanvas.filter || graphcanvas.graph.filter; + + // filter by type preprocess + if(options.do_type_filter && that.search_box){ + var sIn = that.search_box.querySelector(".slot_in_type_filter"); + var sOut = that.search_box.querySelector(".slot_out_type_filter"); + }else{ + var sIn = false; + var sOut = false; + } + + //extras + for (var i in LiteGraph.searchbox_extras) { + var extra = LiteGraph.searchbox_extras[i]; + if ((!options.show_all_if_empty || str) && extra.desc.toLowerCase().indexOf(str) === -1) { + continue; + } + var ctor = LiteGraph.registered_node_types[ extra.type ]; + if( ctor && ctor.filter != filter ) + continue; + if( ! inner_test_filter(extra.type) ) + continue; + addResult( extra.desc, "searchbox_extra" ); + if ( LGraphCanvas.search_limit !== -1 && c++ > LGraphCanvas.search_limit ) { + break; + } + } + + var filtered = null; + if (Array.prototype.filter) { //filter supported + var keys = Object.keys( LiteGraph.registered_node_types ); //types + var filtered = keys.filter( inner_test_filter ); + } else { + filtered = []; + for (var i in LiteGraph.registered_node_types) { + if( inner_test_filter(i) ) + filtered.push(i); + } + } + + for (var i = 0; i < filtered.length; i++) { + addResult(filtered[i]); + if ( LGraphCanvas.search_limit !== -1 && c++ > LGraphCanvas.search_limit ) { + break; + } + } + + // add general type if filtering + if (options.show_general_after_typefiltered + && (sIn.value || sOut.value) + ){ + filtered_extra = []; + for (var i in LiteGraph.registered_node_types) { + if( inner_test_filter(i, {inTypeOverride: sIn&&sIn.value?"*":false, outTypeOverride: sOut&&sOut.value?"*":false}) ) + filtered_extra.push(i); + } + for (var i = 0; i < filtered_extra.length; i++) { + addResult(filtered_extra[i], "generic_type"); + if ( LGraphCanvas.search_limit !== -1 && c++ > LGraphCanvas.search_limit ) { + break; + } + } + } + + // check il filtering gave no results + if ((sIn.value || sOut.value) && + ( (helper.childNodes.length == 0 && options.show_general_if_none_on_typefilter) ) + ){ + filtered_extra = []; + for (var i in LiteGraph.registered_node_types) { + if( inner_test_filter(i, {skipFilter: true}) ) + filtered_extra.push(i); + } + for (var i = 0; i < filtered_extra.length; i++) { + addResult(filtered_extra[i], "not_in_filter"); + if ( LGraphCanvas.search_limit !== -1 && c++ > LGraphCanvas.search_limit ) { + break; + } + } + } + + function inner_test_filter( type, optsIn ) + { + var optsIn = optsIn || {}; + var optsDef = { skipFilter: false + ,inTypeOverride: false + ,outTypeOverride: false + }; + var opts = Object.assign(optsDef,optsIn); + var ctor = LiteGraph.registered_node_types[ type ]; + if(filter && ctor.filter != filter ) + return false; + if ((!options.show_all_if_empty || str) && type.toLowerCase().indexOf(str) === -1 && (!ctor.title || ctor.title.toLowerCase().indexOf(str) === -1)) + return false; + + // filter by slot IN, OUT types + if(options.do_type_filter && !opts.skipFilter){ + var sType = type; + + var sV = sIn.value; + if (opts.inTypeOverride!==false) sV = opts.inTypeOverride; + //if (sV.toLowerCase() == "_event_") sV = LiteGraph.EVENT; // -1 + + if(sIn && sV){ + //console.log("will check filter against "+sV); + if (LiteGraph.registered_slot_in_types[sV] && LiteGraph.registered_slot_in_types[sV].nodes){ // type is stored + //console.debug("check "+sType+" in "+LiteGraph.registered_slot_in_types[sV].nodes); + var doesInc = LiteGraph.registered_slot_in_types[sV].nodes.includes(sType); + if (doesInc!==false){ + //console.log(sType+" HAS "+sV); + }else{ + /*console.debug(LiteGraph.registered_slot_in_types[sV]); + console.log(+" DONT includes "+type);*/ + return false; + } + } + } + + var sV = sOut.value; + if (opts.outTypeOverride!==false) sV = opts.outTypeOverride; + //if (sV.toLowerCase() == "_event_") sV = LiteGraph.EVENT; // -1 + + if(sOut && sV){ + //console.log("search will check filter against "+sV); + if (LiteGraph.registered_slot_out_types[sV] && LiteGraph.registered_slot_out_types[sV].nodes){ // type is stored + //console.debug("check "+sType+" in "+LiteGraph.registered_slot_out_types[sV].nodes); + var doesInc = LiteGraph.registered_slot_out_types[sV].nodes.includes(sType); + if (doesInc!==false){ + //console.log(sType+" HAS "+sV); + }else{ + /*console.debug(LiteGraph.registered_slot_out_types[sV]); + console.log(+" DONT includes "+type);*/ + return false; + } + } + } + } + return true; + } + } + + function addResult(type, className) { + var help = document.createElement("div"); + if (!first) { + first = type; + } + + const nodeType = LiteGraph.registered_node_types[type]; + if (nodeType?.title) { + help.innerText = nodeType?.title; + const typeEl = document.createElement("span"); + typeEl.className = "litegraph lite-search-item-type"; + typeEl.textContent = type; + help.append(typeEl); + } else { + help.innerText = type; + } + + help.dataset["type"] = escape(type); + help.className = "litegraph lite-search-item"; + if (className) { + help.className += " " + className; + } + help.addEventListener("click", function(e) { + select(unescape(this.dataset["type"])); + }); + helper.appendChild(help); + } + } + + return dialog; + }; + + LGraphCanvas.prototype.showEditPropertyValue = function( node, property, options ) { + if (!node || node.properties[property] === undefined) { + return; + } + + options = options || {}; + var that = this; + + var info = node.getPropertyInfo(property); + var type = info.type; + + var input_html = ""; + + if (type == "string" || type == "number" || type == "array" || type == "object") { + input_html = ""; + } else if ( (type == "enum" || type == "combo") && info.values) { + input_html = ""; + } else if (type == "boolean" || type == "toggle") { + input_html = + ""; + } else { + console.warn("unknown type: " + type); + return; + } + + var dialog = this.createDialog( + "" + + (info.label ? info.label : property) + + "" + + input_html + + "", + options + ); + + var input = false; + if ((type == "enum" || type == "combo") && info.values) { + input = dialog.querySelector("select"); + input.addEventListener("change", function(e) { + dialog.modified(); + setValue(e.target.value); + //var index = e.target.value; + //setValue( e.options[e.selectedIndex].value ); + }); + } else if (type == "boolean" || type == "toggle") { + input = dialog.querySelector("input"); + if (input) { + input.addEventListener("click", function(e) { + dialog.modified(); + setValue(!!input.checked); + }); + } + } else { + input = dialog.querySelector("input"); + if (input) { + input.addEventListener("blur", function(e) { + this.focus(); + }); + + var v = node.properties[property] !== undefined ? node.properties[property] : ""; + if (type !== 'string') { + v = JSON.stringify(v); + } + + input.value = v; + input.addEventListener("keydown", function(e) { + if (e.keyCode == 27) { + //ESC + dialog.close(); + } else if (e.keyCode == 13) { + // ENTER + inner(); // save + } else if (e.keyCode != 13) { + dialog.modified(); + return; + } + e.preventDefault(); + e.stopPropagation(); + }); + } + } + if (input) input.focus(); + + var button = dialog.querySelector("button"); + button.addEventListener("click", inner); + + function inner() { + setValue(input.value); + } + + function setValue(value) { + + if(info && info.values && info.values.constructor === Object && info.values[value] != undefined ) + value = info.values[value]; + + if (typeof node.properties[property] == "number") { + value = Number(value); + } + if (type == "array" || type == "object") { + value = JSON.parse(value); + } + node.properties[property] = value; + if (node.graph) { + node.graph._version++; + } + if (node.onPropertyChanged) { + node.onPropertyChanged(property, value); + } + if(options.onclose) + options.onclose(); + dialog.close(); + node.setDirtyCanvas(true, true); + } + + return dialog; + }; + + // TODO refactor, theer are different dialog, some uses createDialog, some dont + LGraphCanvas.prototype.createDialog = function(html, options) { + var def_options = { checkForInput: false, closeOnLeave: true, closeOnLeave_checkModified: true }; + options = Object.assign(def_options, options || {}); + + var dialog = document.createElement("div"); + dialog.className = "graphdialog"; + dialog.innerHTML = html; + dialog.is_modified = false; + + var rect = this.canvas.getBoundingClientRect(); + var offsetx = -20; + var offsety = -20; + if (rect) { + offsetx -= rect.left; + offsety -= rect.top; + } + + if (options.position) { + offsetx += options.position[0]; + offsety += options.position[1]; + } else if (options.event) { + offsetx += options.event.clientX; + offsety += options.event.clientY; + } //centered + else { + offsetx += this.canvas.width * 0.5; + offsety += this.canvas.height * 0.5; + } + + dialog.style.left = offsetx + "px"; + dialog.style.top = offsety + "px"; + + this.canvas.parentNode.appendChild(dialog); + + // acheck for input and use default behaviour: save on enter, close on esc + if (options.checkForInput){ + var aI = []; + var focused = false; + if (aI = dialog.querySelectorAll("input")){ + aI.forEach(function(iX) { + iX.addEventListener("keydown",function(e){ + dialog.modified(); + if (e.keyCode == 27) { + dialog.close(); + } else if (e.keyCode != 13) { + return; + } + // set value ? + e.preventDefault(); + e.stopPropagation(); + }); + if (!focused) iX.focus(); + }); + } + } + + dialog.modified = function(){ + dialog.is_modified = true; + } + dialog.close = function() { + if (dialog.parentNode) { + dialog.parentNode.removeChild(dialog); + } + }; + + var dialogCloseTimer = null; + var prevent_timeout = false; + dialog.addEventListener("mouseleave", function(e) { + if (prevent_timeout) + return; + if(options.closeOnLeave || LiteGraph.dialog_close_on_mouse_leave) + if (!dialog.is_modified && LiteGraph.dialog_close_on_mouse_leave) + dialogCloseTimer = setTimeout(dialog.close, LiteGraph.dialog_close_on_mouse_leave_delay); //dialog.close(); + }); + dialog.addEventListener("mouseenter", function(e) { + if(options.closeOnLeave || LiteGraph.dialog_close_on_mouse_leave) + if(dialogCloseTimer) clearTimeout(dialogCloseTimer); + }); + var selInDia = dialog.querySelectorAll("select"); + if (selInDia){ + // if filtering, check focus changed to comboboxes and prevent closing + selInDia.forEach(function(selIn) { + selIn.addEventListener("click", function(e) { + prevent_timeout++; + }); + selIn.addEventListener("blur", function(e) { + prevent_timeout = 0; + }); + selIn.addEventListener("change", function(e) { + prevent_timeout = -1; + }); + }); + } + + return dialog; + }; + + LGraphCanvas.prototype.createPanel = function(title, options) { + options = options || {}; + + var ref_window = options.window || window; + var root = document.createElement("div"); + root.className = "litegraph dialog"; + root.innerHTML = "
"; + root.header = root.querySelector(".dialog-header"); + + if(options.width) + root.style.width = options.width + (options.width.constructor === Number ? "px" : ""); + if(options.height) + root.style.height = options.height + (options.height.constructor === Number ? "px" : ""); + if(options.closable) + { + var close = document.createElement("span"); + close.innerHTML = "✕"; + close.classList.add("close"); + close.addEventListener("click",function(){ + root.close(); + }); + root.header.appendChild(close); + } + root.title_element = root.querySelector(".dialog-title"); + root.title_element.innerText = title; + root.content = root.querySelector(".dialog-content"); + root.alt_content = root.querySelector(".dialog-alt-content"); + root.footer = root.querySelector(".dialog-footer"); + + root.close = function() + { + if (root.onClose && typeof root.onClose == "function"){ + root.onClose(); + } + if(root.parentNode) + root.parentNode.removeChild(root); + /* XXX CHECK THIS */ + if(this.parentNode){ + this.parentNode.removeChild(this); + } + /* XXX this was not working, was fixed with an IF, check this */ + } + + // function to swap panel content + root.toggleAltContent = function(force){ + if (typeof force != "undefined"){ + var vTo = force ? "block" : "none"; + var vAlt = force ? "none" : "block"; + }else{ + var vTo = root.alt_content.style.display != "block" ? "block" : "none"; + var vAlt = root.alt_content.style.display != "block" ? "none" : "block"; + } + root.alt_content.style.display = vTo; + root.content.style.display = vAlt; + } + + root.toggleFooterVisibility = function(force){ + if (typeof force != "undefined"){ + var vTo = force ? "block" : "none"; + }else{ + var vTo = root.footer.style.display != "block" ? "block" : "none"; + } + root.footer.style.display = vTo; + } + + root.clear = function() + { + this.content.innerHTML = ""; + } + + root.addHTML = function(code, classname, on_footer) + { + var elem = document.createElement("div"); + if(classname) + elem.className = classname; + elem.innerHTML = code; + if(on_footer) + root.footer.appendChild(elem); + else + root.content.appendChild(elem); + return elem; + } + + root.addButton = function( name, callback, options ) + { + var elem = document.createElement("button"); + elem.innerText = name; + elem.options = options; + elem.classList.add("btn"); + elem.addEventListener("click",callback); + root.footer.appendChild(elem); + return elem; + } + + root.addSeparator = function() + { + var elem = document.createElement("div"); + elem.className = "separator"; + root.content.appendChild(elem); + } + + root.addWidget = function( type, name, value, options, callback ) + { + options = options || {}; + var str_value = String(value); + type = type.toLowerCase(); + if(type == "number") + str_value = value.toFixed(3); + + var elem = document.createElement("div"); + elem.className = "property"; + elem.innerHTML = ""; + elem.querySelector(".property_name").innerText = options.label || name; + var value_element = elem.querySelector(".property_value"); + value_element.innerText = str_value; + elem.dataset["property"] = name; + elem.dataset["type"] = options.type || type; + elem.options = options; + elem.value = value; + + if( type == "code" ) + elem.addEventListener("click", function(e){ root.inner_showCodePad( this.dataset["property"] ); }); + else if (type == "boolean") + { + elem.classList.add("boolean"); + if(value) + elem.classList.add("bool-on"); + elem.addEventListener("click", function(){ + //var v = node.properties[this.dataset["property"]]; + //node.setProperty(this.dataset["property"],!v); this.innerText = v ? "true" : "false"; + var propname = this.dataset["property"]; + this.value = !this.value; + this.classList.toggle("bool-on"); + this.querySelector(".property_value").innerText = this.value ? "true" : "false"; + innerChange(propname, this.value ); + }); + } + else if (type == "string" || type == "number") + { + value_element.setAttribute("contenteditable",true); + value_element.addEventListener("keydown", function(e){ + if(e.code == "Enter" && (type != "string" || !e.shiftKey)) // allow for multiline + { + e.preventDefault(); + this.blur(); + } + }); + value_element.addEventListener("blur", function(){ + var v = this.innerText; + var propname = this.parentNode.dataset["property"]; + var proptype = this.parentNode.dataset["type"]; + if( proptype == "number") + v = Number(v); + innerChange(propname, v); + }); + } + else if (type == "enum" || type == "combo") { + var str_value = LGraphCanvas.getPropertyPrintableValue( value, options.values ); + value_element.innerText = str_value; + + value_element.addEventListener("click", function(event){ + var values = options.values || []; + var propname = this.parentNode.dataset["property"]; + var elem_that = this; + var menu = new LiteGraph.ContextMenu(values,{ + event: event, + className: "dark", + callback: inner_clicked + }, + ref_window); + function inner_clicked(v, option, event) { + //node.setProperty(propname,v); + //graphcanvas.dirty_canvas = true; + elem_that.innerText = v; + innerChange(propname,v); + return false; + } + }); + } + + root.content.appendChild(elem); + + function innerChange(name, value) + { + //console.log("change",name,value); + //that.dirty_canvas = true; + if(options.callback) + options.callback(name,value,options); + if(callback) + callback(name,value,options); + } + + return elem; + } + + if (root.onOpen && typeof root.onOpen == "function") root.onOpen(); + + return root; + }; + + LGraphCanvas.getPropertyPrintableValue = function(value, values) + { + if(!values) + return String(value); + + if(values.constructor === Array) + { + return String(value); + } + + if(values.constructor === Object) + { + var desc_value = ""; + for(var k in values) + { + if(values[k] != value) + continue; + desc_value = k; + break; + } + return String(value) + " ("+desc_value+")"; + } + } + + LGraphCanvas.prototype.closePanels = function(){ + var panel = document.querySelector("#node-panel"); + if(panel) + panel.close(); + var panel = document.querySelector("#option-panel"); + if(panel) + panel.close(); + } + + LGraphCanvas.prototype.showShowGraphOptionsPanel = function(refOpts, obEv, refMenu, refMenu2){ + if(this.constructor && this.constructor.name == "HTMLDivElement"){ + // assume coming from the menu event click + if (!obEv || !obEv.event || !obEv.event.target || !obEv.event.target.lgraphcanvas){ + console.warn("Canvas not found"); // need a ref to canvas obj + /*console.debug(event); + console.debug(event.target);*/ + return; + } + var graphcanvas = obEv.event.target.lgraphcanvas; + }else{ + // assume called internally + var graphcanvas = this; + } + graphcanvas.closePanels(); + var ref_window = graphcanvas.getCanvasWindow(); + panel = graphcanvas.createPanel("Options",{ + closable: true + ,window: ref_window + ,onOpen: function(){ + graphcanvas.OPTIONPANEL_IS_OPEN = true; + } + ,onClose: function(){ + graphcanvas.OPTIONPANEL_IS_OPEN = false; + graphcanvas.options_panel = null; + } + }); + graphcanvas.options_panel = panel; + panel.id = "option-panel"; + panel.classList.add("settings"); + + function inner_refresh(){ + + panel.content.innerHTML = ""; //clear + + var fUpdate = function(name, value, options){ + switch(name){ + /*case "Render mode": + // Case "".. + if (options.values && options.key){ + var kV = Object.values(options.values).indexOf(value); + if (kV>=0 && options.values[kV]){ + console.debug("update graph options: "+options.key+": "+kV); + graphcanvas[options.key] = kV; + //console.debug(graphcanvas); + break; + } + } + console.warn("unexpected options"); + console.debug(options); + break;*/ + default: + //console.debug("want to update graph options: "+name+": "+value); + if (options && options.key){ + name = options.key; + } + if (options.values){ + value = Object.values(options.values).indexOf(value); + } + //console.debug("update graph option: "+name+": "+value); + graphcanvas[name] = value; + break; + } + }; + + // panel.addWidget( "string", "Graph name", "", {}, fUpdate); // implement + + var aProps = LiteGraph.availableCanvasOptions; + aProps.sort(); + for(var pI in aProps){ + var pX = aProps[pI]; + panel.addWidget( "boolean", pX, graphcanvas[pX], {key: pX, on: "True", off: "False"}, fUpdate); + } + + var aLinks = [ graphcanvas.links_render_mode ]; + panel.addWidget( "combo", "Render mode", LiteGraph.LINK_RENDER_MODES[graphcanvas.links_render_mode], {key: "links_render_mode", values: LiteGraph.LINK_RENDER_MODES}, fUpdate); + + panel.addSeparator(); + + panel.footer.innerHTML = ""; // clear + + } + inner_refresh(); + + graphcanvas.canvas.parentNode.appendChild( panel ); + } + + LGraphCanvas.prototype.showShowNodePanel = function( node ) + { + this.SELECTED_NODE = node; + this.closePanels(); + var ref_window = this.getCanvasWindow(); + var that = this; + var graphcanvas = this; + var panel = this.createPanel(node.title || "",{ + closable: true + ,window: ref_window + ,onOpen: function(){ + graphcanvas.NODEPANEL_IS_OPEN = true; + } + ,onClose: function(){ + graphcanvas.NODEPANEL_IS_OPEN = false; + graphcanvas.node_panel = null; + } + }); + graphcanvas.node_panel = panel; + panel.id = "node-panel"; + panel.node = node; + panel.classList.add("settings"); + + function inner_refresh() + { + panel.content.innerHTML = ""; //clear + panel.addHTML(""+node.type+""+(node.constructor.desc || "")+""); + + panel.addHTML("

Properties

"); + + var fUpdate = function(name,value){ + graphcanvas.graph.beforeChange(node); + switch(name){ + case "Title": + node.title = value; + break; + case "Mode": + var kV = Object.values(LiteGraph.NODE_MODES).indexOf(value); + if (kV>=0 && LiteGraph.NODE_MODES[kV]){ + node.changeMode(kV); + }else{ + console.warn("unexpected mode: "+value); + } + break; + case "Color": + if (LGraphCanvas.node_colors[value]){ + node.color = LGraphCanvas.node_colors[value].color; + node.bgcolor = LGraphCanvas.node_colors[value].bgcolor; + }else{ + console.warn("unexpected color: "+value); + } + break; + default: + node.setProperty(name,value); + break; + } + graphcanvas.graph.afterChange(); + graphcanvas.dirty_canvas = true; + }; + + panel.addWidget( "string", "Title", node.title, {}, fUpdate); + + panel.addWidget( "combo", "Mode", LiteGraph.NODE_MODES[node.mode], {values: LiteGraph.NODE_MODES}, fUpdate); + + var nodeCol = ""; + if (node.color !== undefined){ + nodeCol = Object.keys(LGraphCanvas.node_colors).filter(function(nK){ return LGraphCanvas.node_colors[nK].color == node.color; }); + } + + panel.addWidget( "combo", "Color", nodeCol, {values: Object.keys(LGraphCanvas.node_colors)}, fUpdate); + + for(var pName in node.properties) + { + var value = node.properties[pName]; + var info = node.getPropertyInfo(pName); + var type = info.type || "string"; + + //in case the user wants control over the side panel widget + if( node.onAddPropertyToPanel && node.onAddPropertyToPanel(pName,panel) ) + continue; + + panel.addWidget( info.widget || info.type, pName, value, info, fUpdate); + } + + panel.addSeparator(); + + if(node.onShowCustomPanelInfo) + node.onShowCustomPanelInfo(panel); + + panel.footer.innerHTML = ""; // clear + panel.addButton("Delete",function(){ + if(node.block_delete) + return; + node.graph.remove(node); + panel.close(); + }).classList.add("delete"); + } + + panel.inner_showCodePad = function( propname ) + { + panel.classList.remove("settings"); + panel.classList.add("centered"); + + + /*if(window.CodeFlask) //disabled for now + { + panel.content.innerHTML = "
"; + var flask = new CodeFlask( "div.code", { language: 'js' }); + flask.updateCode(node.properties[propname]); + flask.onUpdate( function(code) { + node.setProperty(propname, code); + }); + } + else + {*/ + panel.alt_content.innerHTML = ""; + var textarea = panel.alt_content.querySelector("textarea"); + var fDoneWith = function(){ + panel.toggleAltContent(false); //if(node_prop_div) node_prop_div.style.display = "block"; // panel.close(); + panel.toggleFooterVisibility(true); + textarea.parentNode.removeChild(textarea); + panel.classList.add("settings"); + panel.classList.remove("centered"); + inner_refresh(); + } + textarea.value = node.properties[propname]; + textarea.addEventListener("keydown", function(e){ + if(e.code == "Enter" && e.ctrlKey ) + { + node.setProperty(propname, textarea.value); + fDoneWith(); + } + }); + panel.toggleAltContent(true); + panel.toggleFooterVisibility(false); + textarea.style.height = "calc(100% - 40px)"; + /*}*/ + var assign = panel.addButton( "Assign", function(){ + node.setProperty(propname, textarea.value); + fDoneWith(); + }); + panel.alt_content.appendChild(assign); //panel.content.appendChild(assign); + var button = panel.addButton( "Close", fDoneWith); + button.style.float = "right"; + panel.alt_content.appendChild(button); // panel.content.appendChild(button); + } + + inner_refresh(); + + this.canvas.parentNode.appendChild( panel ); + } + + LGraphCanvas.prototype.showSubgraphPropertiesDialog = function(node) + { + console.log("showing subgraph properties dialog"); + + var old_panel = this.canvas.parentNode.querySelector(".subgraph_dialog"); + if(old_panel) + old_panel.close(); + + var panel = this.createPanel("Subgraph Inputs",{closable:true, width: 500}); + panel.node = node; + panel.classList.add("subgraph_dialog"); + + function inner_refresh() + { + panel.clear(); + + //show currents + if(node.inputs) + for(var i = 0; i < node.inputs.length; ++i) + { + var input = node.inputs[i]; + if(input.not_subgraph_input) + continue; + var html = " "; + var elem = panel.addHTML(html,"subgraph_property"); + elem.dataset["name"] = input.name; + elem.dataset["slot"] = i; + elem.querySelector(".name").innerText = input.name; + elem.querySelector(".type").innerText = input.type; + elem.querySelector("button").addEventListener("click",function(e){ + node.removeInput( Number( this.parentNode.dataset["slot"] ) ); + inner_refresh(); + }); + } + } + + //add extra + var html = " + NameType"; + var elem = panel.addHTML(html,"subgraph_property extra", true); + elem.querySelector("button").addEventListener("click", function(e){ + var elem = this.parentNode; + var name = elem.querySelector(".name").value; + var type = elem.querySelector(".type").value; + if(!name || node.findInputSlot(name) != -1) + return; + node.addInput(name,type); + elem.querySelector(".name").value = ""; + elem.querySelector(".type").value = ""; + inner_refresh(); + }); + + inner_refresh(); + this.canvas.parentNode.appendChild(panel); + return panel; + } + LGraphCanvas.prototype.showSubgraphPropertiesDialogRight = function (node) { + + // console.log("showing subgraph properties dialog"); + var that = this; + // old_panel if old_panel is exist close it + var old_panel = this.canvas.parentNode.querySelector(".subgraph_dialog"); + if (old_panel) + old_panel.close(); + // new panel + var panel = this.createPanel("Subgraph Outputs", { closable: true, width: 500 }); + panel.node = node; + panel.classList.add("subgraph_dialog"); + + function inner_refresh() { + panel.clear(); + //show currents + if (node.outputs) + for (var i = 0; i < node.outputs.length; ++i) { + var input = node.outputs[i]; + if (input.not_subgraph_output) + continue; + var html = " "; + var elem = panel.addHTML(html, "subgraph_property"); + elem.dataset["name"] = input.name; + elem.dataset["slot"] = i; + elem.querySelector(".name").innerText = input.name; + elem.querySelector(".type").innerText = input.type; + elem.querySelector("button").addEventListener("click", function (e) { + node.removeOutput(Number(this.parentNode.dataset["slot"])); + inner_refresh(); + }); + } + } + + //add extra + var html = " + NameType"; + var elem = panel.addHTML(html, "subgraph_property extra", true); + elem.querySelector(".name").addEventListener("keydown", function (e) { + if (e.keyCode == 13) { + addOutput.apply(this) + } + }) + elem.querySelector("button").addEventListener("click", function (e) { + addOutput.apply(this) + }); + function addOutput() { + var elem = this.parentNode; + var name = elem.querySelector(".name").value; + var type = elem.querySelector(".type").value; + if (!name || node.findOutputSlot(name) != -1) + return; + node.addOutput(name, type); + elem.querySelector(".name").value = ""; + elem.querySelector(".type").value = ""; + inner_refresh(); + } + + inner_refresh(); + this.canvas.parentNode.appendChild(panel); + return panel; + } + LGraphCanvas.prototype.checkPanels = function() + { + if(!this.canvas) + return; + var panels = this.canvas.parentNode.querySelectorAll(".litegraph.dialog"); + for(var i = 0; i < panels.length; ++i) + { + var panel = panels[i]; + if( !panel.node ) + continue; + if( !panel.node.graph || panel.graph != this.graph ) + panel.close(); + } + } + + LGraphCanvas.onMenuNodeCollapse = function(value, options, e, menu, node) { + node.graph.beforeChange(/*?*/); + + var fApplyMultiNode = function(node){ + node.collapse(); + } + + var graphcanvas = LGraphCanvas.active_canvas; + if (!graphcanvas.selected_nodes || Object.keys(graphcanvas.selected_nodes).length <= 1){ + fApplyMultiNode(node); + }else{ + for (var i in graphcanvas.selected_nodes) { + fApplyMultiNode(graphcanvas.selected_nodes[i]); + } + } + + node.graph.afterChange(/*?*/); + }; + + LGraphCanvas.onMenuNodePin = function(value, options, e, menu, node) { + node.pin(); + }; + + LGraphCanvas.onMenuNodeMode = function(value, options, e, menu, node) { + new LiteGraph.ContextMenu( + LiteGraph.NODE_MODES, + { event: e, callback: inner_clicked, parentMenu: menu, node: node } + ); + + function inner_clicked(v) { + if (!node) { + return; + } + var kV = Object.values(LiteGraph.NODE_MODES).indexOf(v); + var fApplyMultiNode = function(node){ + if (kV>=0 && LiteGraph.NODE_MODES[kV]) + node.changeMode(kV); + else{ + console.warn("unexpected mode: "+v); + node.changeMode(LiteGraph.ALWAYS); + } + } + + var graphcanvas = LGraphCanvas.active_canvas; + if (!graphcanvas.selected_nodes || Object.keys(graphcanvas.selected_nodes).length <= 1){ + fApplyMultiNode(node); + }else{ + for (var i in graphcanvas.selected_nodes) { + fApplyMultiNode(graphcanvas.selected_nodes[i]); + } + } + } + + return false; + }; + + LGraphCanvas.onMenuNodeColors = function(value, options, e, menu, node) { + if (!node) { + throw "no node for color"; + } + + var values = []; + values.push({ + value: null, + content: + "No color" + }); + + for (var i in LGraphCanvas.node_colors) { + var color = LGraphCanvas.node_colors[i]; + var value = { + value: i, + content: + "" + + i + + "" + }; + values.push(value); + } + new LiteGraph.ContextMenu(values, { + event: e, + callback: inner_clicked, + parentMenu: menu, + node: node + }); + + function inner_clicked(v) { + if (!node) { + return; + } + + var color = v.value ? LGraphCanvas.node_colors[v.value] : null; + + var fApplyColor = function(node){ + if (color) { + if (node.constructor === LiteGraph.LGraphGroup) { + node.color = color.groupcolor; + } else { + node.color = color.color; + node.bgcolor = color.bgcolor; + } + } else { + delete node.color; + delete node.bgcolor; + } + } + + var graphcanvas = LGraphCanvas.active_canvas; + if (!graphcanvas.selected_nodes || Object.keys(graphcanvas.selected_nodes).length <= 1){ + fApplyColor(node); + }else{ + for (var i in graphcanvas.selected_nodes) { + fApplyColor(graphcanvas.selected_nodes[i]); + } + } + node.setDirtyCanvas(true, true); + } + + return false; + }; + + LGraphCanvas.onMenuNodeShapes = function(value, options, e, menu, node) { + if (!node) { + throw "no node passed"; + } + + new LiteGraph.ContextMenu(LiteGraph.VALID_SHAPES, { + event: e, + callback: inner_clicked, + parentMenu: menu, + node: node + }); + + function inner_clicked(v) { + if (!node) { + return; + } + node.graph.beforeChange(/*?*/); //node + + var fApplyMultiNode = function(node){ + node.shape = v; + } + + var graphcanvas = LGraphCanvas.active_canvas; + if (!graphcanvas.selected_nodes || Object.keys(graphcanvas.selected_nodes).length <= 1){ + fApplyMultiNode(node); + }else{ + for (var i in graphcanvas.selected_nodes) { + fApplyMultiNode(graphcanvas.selected_nodes[i]); + } + } + + node.graph.afterChange(/*?*/); //node + node.setDirtyCanvas(true); + } + + return false; + }; + + LGraphCanvas.onMenuNodeRemove = function(value, options, e, menu, node) { + if (!node) { + throw "no node passed"; + } + + var graph = node.graph; + graph.beforeChange(); + + + var fApplyMultiNode = function(node){ + if (node.removable === false) { + return; + } + graph.remove(node); + } + + var graphcanvas = LGraphCanvas.active_canvas; + if (!graphcanvas.selected_nodes || Object.keys(graphcanvas.selected_nodes).length <= 1){ + fApplyMultiNode(node); + }else{ + for (var i in graphcanvas.selected_nodes) { + fApplyMultiNode(graphcanvas.selected_nodes[i]); + } + } + + graph.afterChange(); + node.setDirtyCanvas(true, true); + }; + + LGraphCanvas.onMenuNodeToSubgraph = function(value, options, e, menu, node) { + var graph = node.graph; + var graphcanvas = LGraphCanvas.active_canvas; + if(!graphcanvas) //?? + return; + + var nodes_list = Object.values( graphcanvas.selected_nodes || {} ); + if( !nodes_list.length ) + nodes_list = [ node ]; + + var subgraph_node = LiteGraph.createNode("graph/subgraph"); + subgraph_node.pos = node.pos.concat(); + graph.add(subgraph_node); + + subgraph_node.buildFromNodes( nodes_list ); + + graphcanvas.deselectAllNodes(); + node.setDirtyCanvas(true, true); + }; + + LGraphCanvas.onMenuNodeClone = function(value, options, e, menu, node) { + + node.graph.beforeChange(); + + var newSelected = {}; + + var fApplyMultiNode = function(node){ + if (node.clonable === false) { + return; + } + var newnode = node.clone(); + if (!newnode) { + return; + } + newnode.pos = [node.pos[0] + 5, node.pos[1] + 5]; + node.graph.add(newnode); + newSelected[newnode.id] = newnode; + } + + var graphcanvas = LGraphCanvas.active_canvas; + if (!graphcanvas.selected_nodes || Object.keys(graphcanvas.selected_nodes).length <= 1){ + fApplyMultiNode(node); + }else{ + for (var i in graphcanvas.selected_nodes) { + fApplyMultiNode(graphcanvas.selected_nodes[i]); + } + } + + if(Object.keys(newSelected).length){ + graphcanvas.selectNodes(newSelected); + } + + node.graph.afterChange(); + + node.setDirtyCanvas(true, true); + }; + + LGraphCanvas.node_colors = { + red: { color: "#322", bgcolor: "#533", groupcolor: "#A88" }, + brown: { color: "#332922", bgcolor: "#593930", groupcolor: "#b06634" }, + green: { color: "#232", bgcolor: "#353", groupcolor: "#8A8" }, + blue: { color: "#223", bgcolor: "#335", groupcolor: "#88A" }, + pale_blue: { + color: "#2a363b", + bgcolor: "#3f5159", + groupcolor: "#3f789e" + }, + cyan: { color: "#233", bgcolor: "#355", groupcolor: "#8AA" }, + purple: { color: "#323", bgcolor: "#535", groupcolor: "#a1309b" }, + yellow: { color: "#432", bgcolor: "#653", groupcolor: "#b58b2a" }, + black: { color: "#222", bgcolor: "#000", groupcolor: "#444" } + }; + + LGraphCanvas.prototype.getCanvasMenuOptions = function() { + var options = null; + var that = this; + if (this.getMenuOptions) { + options = this.getMenuOptions(); + } else { + options = [ + { + content: "Add Node", + has_submenu: true, + callback: LGraphCanvas.onMenuAdd + }, + { content: "Add Group", callback: LGraphCanvas.onGroupAdd }, + //{ content: "Arrange", callback: that.graph.arrange }, + //{content:"Collapse All", callback: LGraphCanvas.onMenuCollapseAll } + ]; + /*if (LiteGraph.showCanvasOptions){ + options.push({ content: "Options", callback: that.showShowGraphOptionsPanel }); + }*/ + + if (Object.keys(this.selected_nodes).length > 1) { + options.push({ + content: "Align", + has_submenu: true, + callback: LGraphCanvas.onGroupAlign, + }) + } + + if (this._graph_stack && this._graph_stack.length > 0) { + options.push(null, { + content: "Close subgraph", + callback: this.closeSubgraph.bind(this) + }); + } + } + + if (this.getExtraMenuOptions) { + var extra = this.getExtraMenuOptions(this, options); + if (extra) { + options = options.concat(extra); + } + } + + return options; + }; + + //called by processContextMenu to extract the menu list + LGraphCanvas.prototype.getNodeMenuOptions = function(node) { + var options = null; + + if (node.getMenuOptions) { + options = node.getMenuOptions(this); + } else { + options = [ + { + content: "Inputs", + has_submenu: true, + disabled: true, + callback: LGraphCanvas.showMenuNodeOptionalInputs + }, + { + content: "Outputs", + has_submenu: true, + disabled: true, + callback: LGraphCanvas.showMenuNodeOptionalOutputs + }, + null, + { + content: "Properties", + has_submenu: true, + callback: LGraphCanvas.onShowMenuNodeProperties + }, + { + content: "Properties Panel", + callback: function(item, options, e, menu, node) { LGraphCanvas.active_canvas.showShowNodePanel(node) } + }, + null, + { + content: "Title", + callback: LGraphCanvas.onShowPropertyEditor + }, + { + content: "Mode", + has_submenu: true, + callback: LGraphCanvas.onMenuNodeMode + }]; + if(node.resizable !== false){ + options.push({ + content: "Resize", callback: LGraphCanvas.onMenuResizeNode + }); + } + options.push( + { + content: "Collapse", + callback: LGraphCanvas.onMenuNodeCollapse + }, + { content: "Pin", callback: LGraphCanvas.onMenuNodePin }, + { + content: "Colors", + has_submenu: true, + callback: LGraphCanvas.onMenuNodeColors + }, + { + content: "Shapes", + has_submenu: true, + callback: LGraphCanvas.onMenuNodeShapes + }, + null + ); + } + + if (node.onGetInputs) { + var inputs = node.onGetInputs(); + if (inputs && inputs.length) { + options[0].disabled = false; + } + } + + if (node.onGetOutputs) { + var outputs = node.onGetOutputs(); + if (outputs && outputs.length) { + options[1].disabled = false; + } + } + + if (node.getExtraMenuOptions) { + var extra = node.getExtraMenuOptions(this, options); + if (extra) { + extra.push(null); + options = extra.concat(options); + } + } + + if (node.clonable !== false) { + options.push({ + content: "Clone", + callback: LGraphCanvas.onMenuNodeClone + }); + } + + if(0) //TODO + options.push({ + content: "To Subgraph", + callback: LGraphCanvas.onMenuNodeToSubgraph + }); + + if (Object.keys(this.selected_nodes).length > 1) { + options.push({ + content: "Align Selected To", + has_submenu: true, + callback: LGraphCanvas.onNodeAlign, + }) + } + + options.push(null, { + content: "Remove", + disabled: !(node.removable !== false && !node.block_delete ), + callback: LGraphCanvas.onMenuNodeRemove + }); + + if (node.graph && node.graph.onGetNodeMenuOptions) { + node.graph.onGetNodeMenuOptions(options, node); + } + + return options; + }; + + LGraphCanvas.prototype.getGroupMenuOptions = function(node) { + var o = [ + { content: "Title", callback: LGraphCanvas.onShowPropertyEditor }, + { + content: "Color", + has_submenu: true, + callback: LGraphCanvas.onMenuNodeColors + }, + { + content: "Font size", + property: "font_size", + type: "Number", + callback: LGraphCanvas.onShowPropertyEditor + }, + null, + { content: "Remove", callback: LGraphCanvas.onMenuNodeRemove } + ]; + + return o; + }; + + LGraphCanvas.prototype.processContextMenu = function(node, event) { + var that = this; + var canvas = LGraphCanvas.active_canvas; + var ref_window = canvas.getCanvasWindow(); + + var menu_info = null; + var options = { + event: event, + callback: inner_option_clicked, + extra: node + }; + + if(node) + options.title = node.type; + + //check if mouse is in input + var slot = null; + if (node) { + slot = node.getSlotInPosition(event.canvasX, event.canvasY); + LGraphCanvas.active_node = node; + } + + if (slot) { + //on slot + menu_info = []; + if (node.getSlotMenuOptions) { + menu_info = node.getSlotMenuOptions(slot); + } else { + if ( + slot && + slot.output && + slot.output.links && + slot.output.links.length + ) { + menu_info.push({ content: "Disconnect Links", slot: slot }); + } + var _slot = slot.input || slot.output; + if (_slot.removable){ + menu_info.push( + _slot.locked + ? "Cannot remove" + : { content: "Remove Slot", slot: slot } + ); + } + if (!_slot.nameLocked){ + menu_info.push({ content: "Rename Slot", slot: slot }); + } + + } + options.title = + (slot.input ? slot.input.type : slot.output.type) || "*"; + if (slot.input && slot.input.type == LiteGraph.ACTION) { + options.title = "Action"; + } + if (slot.output && slot.output.type == LiteGraph.EVENT) { + options.title = "Event"; + } + } else { + if (node) { + //on node + menu_info = this.getNodeMenuOptions(node); + } else { + menu_info = this.getCanvasMenuOptions(); + var group = this.graph.getGroupOnPos( + event.canvasX, + event.canvasY + ); + if (group) { + //on group + menu_info.push(null, { + content: "Edit Group", + has_submenu: true, + submenu: { + title: "Group", + extra: group, + options: this.getGroupMenuOptions(group) + } + }); + } + } + } + + //show menu + if (!menu_info) { + return; + } + + var menu = new LiteGraph.ContextMenu(menu_info, options, ref_window); + + function inner_option_clicked(v, options, e) { + if (!v) { + return; + } + + if (v.content == "Remove Slot") { + var info = v.slot; + node.graph.beforeChange(); + if (info.input) { + node.removeInput(info.slot); + } else if (info.output) { + node.removeOutput(info.slot); + } + node.graph.afterChange(); + return; + } else if (v.content == "Disconnect Links") { + var info = v.slot; + node.graph.beforeChange(); + if (info.output) { + node.disconnectOutput(info.slot); + } else if (info.input) { + node.disconnectInput(info.slot); + } + node.graph.afterChange(); + return; + } else if (v.content == "Rename Slot") { + var info = v.slot; + var slot_info = info.input + ? node.getInputInfo(info.slot) + : node.getOutputInfo(info.slot); + var dialog = that.createDialog( + "Name", + options + ); + var input = dialog.querySelector("input"); + if (input && slot_info) { + input.value = slot_info.label || ""; + } + var inner = function(){ + node.graph.beforeChange(); + if (input.value) { + if (slot_info) { + slot_info.label = input.value; + } + that.setDirty(true); + } + dialog.close(); + node.graph.afterChange(); + } + dialog.querySelector("button").addEventListener("click", inner); + input.addEventListener("keydown", function(e) { + dialog.is_modified = true; + if (e.keyCode == 27) { + //ESC + dialog.close(); + } else if (e.keyCode == 13) { + inner(); // save + } else if (e.keyCode != 13 && e.target.localName != "textarea") { + return; + } + e.preventDefault(); + e.stopPropagation(); + }); + input.focus(); + } + + //if(v.callback) + // return v.callback.call(that, node, options, e, menu, that, event ); + } + }; + + //API ************************************************* + //like rect but rounded corners + if (typeof(window) != "undefined" && window.CanvasRenderingContext2D && !window.CanvasRenderingContext2D.prototype.roundRect) { + window.CanvasRenderingContext2D.prototype.roundRect = function( + x, + y, + w, + h, + radius, + radius_low + ) { + var top_left_radius = 0; + var top_right_radius = 0; + var bottom_left_radius = 0; + var bottom_right_radius = 0; + + if ( radius === 0 ) + { + this.rect(x,y,w,h); + return; + } + + if(radius_low === undefined) + radius_low = radius; + + //make it compatible with official one + if(radius != null && radius.constructor === Array) + { + if(radius.length == 1) + top_left_radius = top_right_radius = bottom_left_radius = bottom_right_radius = radius[0]; + else if(radius.length == 2) + { + top_left_radius = bottom_right_radius = radius[0]; + top_right_radius = bottom_left_radius = radius[1]; + } + else if(radius.length == 4) + { + top_left_radius = radius[0]; + top_right_radius = radius[1]; + bottom_left_radius = radius[2]; + bottom_right_radius = radius[3]; + } + else + return; + } + else //old using numbers + { + top_left_radius = radius || 0; + top_right_radius = radius || 0; + bottom_left_radius = radius_low || 0; + bottom_right_radius = radius_low || 0; + } + + //top right + this.moveTo(x + top_left_radius, y); + this.lineTo(x + w - top_right_radius, y); + this.quadraticCurveTo(x + w, y, x + w, y + top_right_radius); + + //bottom right + this.lineTo(x + w, y + h - bottom_right_radius); + this.quadraticCurveTo( + x + w, + y + h, + x + w - bottom_right_radius, + y + h + ); + + //bottom left + this.lineTo(x + bottom_right_radius, y + h); + this.quadraticCurveTo(x, y + h, x, y + h - bottom_left_radius); + + //top left + this.lineTo(x, y + bottom_left_radius); + this.quadraticCurveTo(x, y, x + top_left_radius, y); + }; + }//if + + function compareObjects(a, b) { + for (var i in a) { + if (a[i] != b[i]) { + return false; + } + } + return true; + } + LiteGraph.compareObjects = compareObjects; + + function distance(a, b) { + return Math.sqrt( + (b[0] - a[0]) * (b[0] - a[0]) + (b[1] - a[1]) * (b[1] - a[1]) + ); + } + LiteGraph.distance = distance; + + function colorToString(c) { + return ( + "rgba(" + + Math.round(c[0] * 255).toFixed() + + "," + + Math.round(c[1] * 255).toFixed() + + "," + + Math.round(c[2] * 255).toFixed() + + "," + + (c.length == 4 ? c[3].toFixed(2) : "1.0") + + ")" + ); + } + LiteGraph.colorToString = colorToString; + + function isInsideRectangle(x, y, left, top, width, height) { + if (left < x && left + width > x && top < y && top + height > y) { + return true; + } + return false; + } + LiteGraph.isInsideRectangle = isInsideRectangle; + + //[minx,miny,maxx,maxy] + function growBounding(bounding, x, y) { + if (x < bounding[0]) { + bounding[0] = x; + } else if (x > bounding[2]) { + bounding[2] = x; + } + + if (y < bounding[1]) { + bounding[1] = y; + } else if (y > bounding[3]) { + bounding[3] = y; + } + } + LiteGraph.growBounding = growBounding; + + //point inside bounding box + function isInsideBounding(p, bb) { + if ( + p[0] < bb[0][0] || + p[1] < bb[0][1] || + p[0] > bb[1][0] || + p[1] > bb[1][1] + ) { + return false; + } + return true; + } + LiteGraph.isInsideBounding = isInsideBounding; + + //bounding overlap, format: [ startx, starty, width, height ] + function overlapBounding(a, b) { + var A_end_x = a[0] + a[2]; + var A_end_y = a[1] + a[3]; + var B_end_x = b[0] + b[2]; + var B_end_y = b[1] + b[3]; + + if ( + a[0] > B_end_x || + a[1] > B_end_y || + A_end_x < b[0] || + A_end_y < b[1] + ) { + return false; + } + return true; + } + LiteGraph.overlapBounding = overlapBounding; + + //Convert a hex value to its decimal value - the inputted hex must be in the + // format of a hex triplet - the kind we use for HTML colours. The function + // will return an array with three values. + function hex2num(hex) { + if (hex.charAt(0) == "#") { + hex = hex.slice(1); + } //Remove the '#' char - if there is one. + hex = hex.toUpperCase(); + var hex_alphabets = "0123456789ABCDEF"; + var value = new Array(3); + var k = 0; + var int1, int2; + for (var i = 0; i < 6; i += 2) { + int1 = hex_alphabets.indexOf(hex.charAt(i)); + int2 = hex_alphabets.indexOf(hex.charAt(i + 1)); + value[k] = int1 * 16 + int2; + k++; + } + return value; + } + + LiteGraph.hex2num = hex2num; + + //Give a array with three values as the argument and the function will return + // the corresponding hex triplet. + function num2hex(triplet) { + var hex_alphabets = "0123456789ABCDEF"; + var hex = "#"; + var int1, int2; + for (var i = 0; i < 3; i++) { + int1 = triplet[i] / 16; + int2 = triplet[i] % 16; + + hex += hex_alphabets.charAt(int1) + hex_alphabets.charAt(int2); + } + return hex; + } + + LiteGraph.num2hex = num2hex; + + /* LiteGraph GUI elements used for canvas editing *************************************/ + + /** + * ContextMenu from LiteGUI + * + * @class ContextMenu + * @constructor + * @param {Array} values (allows object { title: "Nice text", callback: function ... }) + * @param {Object} options [optional] Some options:\ + * - title: title to show on top of the menu + * - callback: function to call when an option is clicked, it receives the item information + * - ignore_item_callbacks: ignores the callback inside the item, it just calls the options.callback + * - event: you can pass a MouseEvent, this way the ContextMenu appears in that position + */ + function ContextMenu(values, options) { + options = options || {}; + this.options = options; + var that = this; + + //to link a menu with its parent + if (options.parentMenu) { + if (options.parentMenu.constructor !== this.constructor) { + console.error( + "parentMenu must be of class ContextMenu, ignoring it" + ); + options.parentMenu = null; + } else { + this.parentMenu = options.parentMenu; + this.parentMenu.lock = true; + this.parentMenu.current_submenu = this; + } + } + + var eventClass = null; + if(options.event) //use strings because comparing classes between windows doesnt work + eventClass = options.event.constructor.name; + if ( eventClass !== "MouseEvent" && + eventClass !== "CustomEvent" && + eventClass !== "PointerEvent" + ) { + console.error( + "Event passed to ContextMenu is not of type MouseEvent or CustomEvent. Ignoring it. ("+eventClass+")" + ); + options.event = null; + } + + var root = document.createElement("div"); + root.className = "litegraph litecontextmenu litemenubar-panel"; + if (options.className) { + root.className += " " + options.className; + } + root.style.minWidth = 100; + root.style.minHeight = 100; + root.style.pointerEvents = "none"; + setTimeout(function() { + root.style.pointerEvents = "auto"; + }, 100); //delay so the mouse up event is not caught by this element + + //this prevents the default context browser menu to open in case this menu was created when pressing right button + LiteGraph.pointerListenerAdd(root,"up", + function(e) { + //console.log("pointerevents: ContextMenu up root prevent"); + e.preventDefault(); + return true; + }, + true + ); + root.addEventListener( + "contextmenu", + function(e) { + if (e.button != 2) { + //right button + return false; + } + e.preventDefault(); + return false; + }, + true + ); + + LiteGraph.pointerListenerAdd(root,"down", + function(e) { + //console.log("pointerevents: ContextMenu down"); + if (e.button == 2) { + that.close(); + e.preventDefault(); + return true; + } + }, + true + ); + + function on_mouse_wheel(e) { + var pos = parseInt(root.style.top); + root.style.top = + (pos + e.deltaY * options.scroll_speed).toFixed() + "px"; + e.preventDefault(); + return true; + } + + if (!options.scroll_speed) { + options.scroll_speed = 0.1; + } + + root.addEventListener("wheel", on_mouse_wheel, true); + root.addEventListener("mousewheel", on_mouse_wheel, true); + + this.root = root; + + //title + if (options.title) { + var element = document.createElement("div"); + element.className = "litemenu-title"; + element.innerHTML = options.title; + root.appendChild(element); + } + + //entries + var num = 0; + for (var i=0; i < values.length; i++) { + var name = values.constructor == Array ? values[i] : i; + if (name != null && name.constructor !== String) { + name = name.content === undefined ? String(name) : name.content; + } + var value = values[i]; + this.addItem(name, value, options); + num++; + } + + //close on leave? touch enabled devices won't work TODO use a global device detector and condition on that + /*LiteGraph.pointerListenerAdd(root,"leave", function(e) { + console.log("pointerevents: ContextMenu leave"); + if (that.lock) { + return; + } + if (root.closing_timer) { + clearTimeout(root.closing_timer); + } + root.closing_timer = setTimeout(that.close.bind(that, e), 500); + //that.close(e); + });*/ + + LiteGraph.pointerListenerAdd(root,"enter", function(e) { + //console.log("pointerevents: ContextMenu enter"); + if (root.closing_timer) { + clearTimeout(root.closing_timer); + } + }); + + //insert before checking position + var root_document = document; + if (options.event) { + root_document = options.event.target.ownerDocument; + } + + if (!root_document) { + root_document = document; + } + + if( root_document.fullscreenElement ) + root_document.fullscreenElement.appendChild(root); + else + root_document.body.appendChild(root); + + //compute best position + var left = options.left || 0; + var top = options.top || 0; + if (options.event) { + left = options.event.clientX - 10; + top = options.event.clientY - 10; + if (options.title) { + top -= 20; + } + + if (options.parentMenu) { + var rect = options.parentMenu.root.getBoundingClientRect(); + left = rect.left + rect.width; + } + + var body_rect = document.body.getBoundingClientRect(); + var root_rect = root.getBoundingClientRect(); + if(body_rect.height == 0) + console.error("document.body height is 0. That is dangerous, set html,body { height: 100%; }"); + + if (body_rect.width && left > body_rect.width - root_rect.width - 10) { + left = body_rect.width - root_rect.width - 10; + } + if (body_rect.height && top > body_rect.height - root_rect.height - 10) { + top = body_rect.height - root_rect.height - 10; + } + } + + root.style.left = left + "px"; + root.style.top = top + "px"; + + if (options.scale) { + root.style.transform = "scale(" + options.scale + ")"; + } + } + + ContextMenu.prototype.addItem = function(name, value, options) { + var that = this; + options = options || {}; + + var element = document.createElement("div"); + element.className = "litemenu-entry submenu"; + + var disabled = false; + + if (value === null) { + element.classList.add("separator"); + //element.innerHTML = "
" + //continue; + } else { + element.innerHTML = value && value.title ? value.title : name; + element.value = value; + + if (value) { + if (value.disabled) { + disabled = true; + element.classList.add("disabled"); + } + if (value.submenu || value.has_submenu) { + element.classList.add("has_submenu"); + } + } + + if (typeof value == "function") { + element.dataset["value"] = name; + element.onclick_callback = value; + } else { + element.dataset["value"] = value; + } + + if (value.className) { + element.className += " " + value.className; + } + } + + this.root.appendChild(element); + if (!disabled) { + element.addEventListener("click", inner_onclick); + } + if (!disabled && options.autoopen) { + LiteGraph.pointerListenerAdd(element,"enter",inner_over); + } + + function inner_over(e) { + var value = this.value; + if (!value || !value.has_submenu) { + return; + } + //if it is a submenu, autoopen like the item was clicked + inner_onclick.call(this, e); + } + + //menu option clicked + function inner_onclick(e) { + var value = this.value; + var close_parent = true; + + if (that.current_submenu) { + that.current_submenu.close(e); + } + + //global callback + if (options.callback) { + var r = options.callback.call( + this, + value, + options, + e, + that, + options.node + ); + if (r === true) { + close_parent = false; + } + } + + //special cases + if (value) { + if ( + value.callback && + !options.ignore_item_callbacks && + value.disabled !== true + ) { + //item callback + var r = value.callback.call( + this, + value, + options, + e, + that, + options.extra + ); + if (r === true) { + close_parent = false; + } + } + if (value.submenu) { + if (!value.submenu.options) { + throw "ContextMenu submenu needs options"; + } + var submenu = new that.constructor(value.submenu.options, { + callback: value.submenu.callback, + event: e, + parentMenu: that, + ignore_item_callbacks: + value.submenu.ignore_item_callbacks, + title: value.submenu.title, + extra: value.submenu.extra, + autoopen: options.autoopen + }); + close_parent = false; + } + } + + if (close_parent && !that.lock) { + that.close(); + } + } + + return element; + }; + + ContextMenu.prototype.close = function(e, ignore_parent_menu) { + if (this.root.parentNode) { + this.root.parentNode.removeChild(this.root); + } + if (this.parentMenu && !ignore_parent_menu) { + this.parentMenu.lock = false; + this.parentMenu.current_submenu = null; + if (e === undefined) { + this.parentMenu.close(); + } else if ( + e && + !ContextMenu.isCursorOverElement(e, this.parentMenu.root) + ) { + ContextMenu.trigger(this.parentMenu.root, LiteGraph.pointerevents_method+"leave", e); + } + } + if (this.current_submenu) { + this.current_submenu.close(e, true); + } + + if (this.root.closing_timer) { + clearTimeout(this.root.closing_timer); + } + + // TODO implement : LiteGraph.contextMenuClosed(); :: keep track of opened / closed / current ContextMenu + // on key press, allow filtering/selecting the context menu elements + }; + + //this code is used to trigger events easily (used in the context menu mouseleave + ContextMenu.trigger = function(element, event_name, params, origin) { + var evt = document.createEvent("CustomEvent"); + evt.initCustomEvent(event_name, true, true, params); //canBubble, cancelable, detail + evt.srcElement = origin; + if (element.dispatchEvent) { + element.dispatchEvent(evt); + } else if (element.__events) { + element.__events.dispatchEvent(evt); + } + //else nothing seems binded here so nothing to do + return evt; + }; + + //returns the top most menu + ContextMenu.prototype.getTopMenu = function() { + if (this.options.parentMenu) { + return this.options.parentMenu.getTopMenu(); + } + return this; + }; + + ContextMenu.prototype.getFirstEvent = function() { + if (this.options.parentMenu) { + return this.options.parentMenu.getFirstEvent(); + } + return this.options.event; + }; + + ContextMenu.isCursorOverElement = function(event, element) { + var left = event.clientX; + var top = event.clientY; + var rect = element.getBoundingClientRect(); + if (!rect) { + return false; + } + if ( + top > rect.top && + top < rect.top + rect.height && + left > rect.left && + left < rect.left + rect.width + ) { + return true; + } + return false; + }; + + LiteGraph.ContextMenu = ContextMenu; + + LiteGraph.closeAllContextMenus = function(ref_window) { + ref_window = ref_window || window; + + var elements = ref_window.document.querySelectorAll(".litecontextmenu"); + if (!elements.length) { + return; + } + + var result = []; + for (var i = 0; i < elements.length; i++) { + result.push(elements[i]); + } + + for (var i=0; i < result.length; i++) { + if (result[i].close) { + result[i].close(); + } else if (result[i].parentNode) { + result[i].parentNode.removeChild(result[i]); + } + } + }; + + LiteGraph.extendClass = function(target, origin) { + for (var i in origin) { + //copy class properties + if (target.hasOwnProperty(i)) { + continue; + } + target[i] = origin[i]; + } + + if (origin.prototype) { + //copy prototype properties + for (var i in origin.prototype) { + //only enumerable + if (!origin.prototype.hasOwnProperty(i)) { + continue; + } + + if (target.prototype.hasOwnProperty(i)) { + //avoid overwriting existing ones + continue; + } + + //copy getters + if (origin.prototype.__lookupGetter__(i)) { + target.prototype.__defineGetter__( + i, + origin.prototype.__lookupGetter__(i) + ); + } else { + target.prototype[i] = origin.prototype[i]; + } + + //and setters + if (origin.prototype.__lookupSetter__(i)) { + target.prototype.__defineSetter__( + i, + origin.prototype.__lookupSetter__(i) + ); + } + } + } + }; + + //used by some widgets to render a curve editor + function CurveEditor( points ) + { + this.points = points; + this.selected = -1; + this.nearest = -1; + this.size = null; //stores last size used + this.must_update = true; + this.margin = 5; + } + + CurveEditor.sampleCurve = function(f,points) + { + if(!points) + return; + for(var i = 0; i < points.length - 1; ++i) + { + var p = points[i]; + var pn = points[i+1]; + if(pn[0] < f) + continue; + var r = (pn[0] - p[0]); + if( Math.abs(r) < 0.00001 ) + return p[1]; + var local_f = (f - p[0]) / r; + return p[1] * (1.0 - local_f) + pn[1] * local_f; + } + return 0; + } + + CurveEditor.prototype.draw = function( ctx, size, graphcanvas, background_color, line_color, inactive ) + { + var points = this.points; + if(!points) + return; + this.size = size; + var w = size[0] - this.margin * 2; + var h = size[1] - this.margin * 2; + + line_color = line_color || "#666"; + + ctx.save(); + ctx.translate(this.margin,this.margin); + + if(background_color) + { + ctx.fillStyle = "#111"; + ctx.fillRect(0,0,w,h); + ctx.fillStyle = "#222"; + ctx.fillRect(w*0.5,0,1,h); + ctx.strokeStyle = "#333"; + ctx.strokeRect(0,0,w,h); + } + ctx.strokeStyle = line_color; + if(inactive) + ctx.globalAlpha = 0.5; + ctx.beginPath(); + for(var i = 0; i < points.length; ++i) + { + var p = points[i]; + ctx.lineTo( p[0] * w, (1.0 - p[1]) * h ); + } + ctx.stroke(); + ctx.globalAlpha = 1; + if(!inactive) + for(var i = 0; i < points.length; ++i) + { + var p = points[i]; + ctx.fillStyle = this.selected == i ? "#FFF" : (this.nearest == i ? "#DDD" : "#AAA"); + ctx.beginPath(); + ctx.arc( p[0] * w, (1.0 - p[1]) * h, 2, 0, Math.PI * 2 ); + ctx.fill(); + } + ctx.restore(); + } + + //localpos is mouse in curve editor space + CurveEditor.prototype.onMouseDown = function( localpos, graphcanvas ) + { + var points = this.points; + if(!points) + return; + if( localpos[1] < 0 ) + return; + + //this.captureInput(true); + var w = this.size[0] - this.margin * 2; + var h = this.size[1] - this.margin * 2; + var x = localpos[0] - this.margin; + var y = localpos[1] - this.margin; + var pos = [x,y]; + var max_dist = 30 / graphcanvas.ds.scale; + //search closer one + this.selected = this.getCloserPoint(pos, max_dist); + //create one + if(this.selected == -1) + { + var point = [x / w, 1 - y / h]; + points.push(point); + points.sort(function(a,b){ return a[0] - b[0]; }); + this.selected = points.indexOf(point); + this.must_update = true; + } + if(this.selected != -1) + return true; + } + + CurveEditor.prototype.onMouseMove = function( localpos, graphcanvas ) + { + var points = this.points; + if(!points) + return; + var s = this.selected; + if(s < 0) + return; + var x = (localpos[0] - this.margin) / (this.size[0] - this.margin * 2 ); + var y = (localpos[1] - this.margin) / (this.size[1] - this.margin * 2 ); + var curvepos = [(localpos[0] - this.margin),(localpos[1] - this.margin)]; + var max_dist = 30 / graphcanvas.ds.scale; + this._nearest = this.getCloserPoint(curvepos, max_dist); + var point = points[s]; + if(point) + { + var is_edge_point = s == 0 || s == points.length - 1; + if( !is_edge_point && (localpos[0] < -10 || localpos[0] > this.size[0] + 10 || localpos[1] < -10 || localpos[1] > this.size[1] + 10) ) + { + points.splice(s,1); + this.selected = -1; + return; + } + if( !is_edge_point ) //not edges + point[0] = clamp(x, 0, 1); + else + point[0] = s == 0 ? 0 : 1; + point[1] = 1.0 - clamp(y, 0, 1); + points.sort(function(a,b){ return a[0] - b[0]; }); + this.selected = points.indexOf(point); + this.must_update = true; + } + } + + CurveEditor.prototype.onMouseUp = function( localpos, graphcanvas ) + { + this.selected = -1; + return false; + } + + CurveEditor.prototype.getCloserPoint = function(pos, max_dist) + { + var points = this.points; + if(!points) + return -1; + max_dist = max_dist || 30; + var w = (this.size[0] - this.margin * 2); + var h = (this.size[1] - this.margin * 2); + var num = points.length; + var p2 = [0,0]; + var min_dist = 1000000; + var closest = -1; + var last_valid = -1; + for(var i = 0; i < num; ++i) + { + var p = points[i]; + p2[0] = p[0] * w; + p2[1] = (1.0 - p[1]) * h; + if(p2[0] < pos[0]) + last_valid = i; + var dist = vec2.distance(pos,p2); + if(dist > min_dist || dist > max_dist) + continue; + closest = i; + min_dist = dist; + } + return closest; + } + + LiteGraph.CurveEditor = CurveEditor; + + //used to create nodes from wrapping functions + LiteGraph.getParameterNames = function(func) { + return (func + "") + .replace(/[/][/].*$/gm, "") // strip single-line comments + .replace(/\s+/g, "") // strip white space + .replace(/[/][*][^/*]*[*][/]/g, "") // strip multi-line comments /**/ + .split("){", 1)[0] + .replace(/^[^(]*[(]/, "") // extract the parameters + .replace(/=[^,]+/g, "") // strip any ES6 defaults + .split(",") + .filter(Boolean); // split & filter [""] + }; + + /* helper for interaction: pointer, touch, mouse Listeners + used by LGraphCanvas DragAndScale ContextMenu*/ + LiteGraph.pointerListenerAdd = function(oDOM, sEvIn, fCall, capture=false) { + if (!oDOM || !oDOM.addEventListener || !sEvIn || typeof fCall!=="function"){ + //console.log("cant pointerListenerAdd "+oDOM+", "+sEvent+", "+fCall); + return; // -- break -- + } + + var sMethod = LiteGraph.pointerevents_method; + var sEvent = sEvIn; + + // UNDER CONSTRUCTION + // convert pointerevents to touch event when not available + if (sMethod=="pointer" && !window.PointerEvent){ + console.warn("sMethod=='pointer' && !window.PointerEvent"); + console.log("Converting pointer["+sEvent+"] : down move up cancel enter TO touchstart touchmove touchend, etc .."); + switch(sEvent){ + case "down":{ + sMethod = "touch"; + sEvent = "start"; + break; + } + case "move":{ + sMethod = "touch"; + //sEvent = "move"; + break; + } + case "up":{ + sMethod = "touch"; + sEvent = "end"; + break; + } + case "cancel":{ + sMethod = "touch"; + //sEvent = "cancel"; + break; + } + case "enter":{ + console.log("debug: Should I send a move event?"); // ??? + break; + } + // case "over": case "out": not used at now + default:{ + console.warn("PointerEvent not available in this browser ? The event "+sEvent+" would not be called"); + } + } + } + + switch(sEvent){ + //both pointer and move events + case "down": case "up": case "move": case "over": case "out": case "enter": + { + oDOM.addEventListener(sMethod+sEvent, fCall, capture); + } + // only pointerevents + case "leave": case "cancel": case "gotpointercapture": case "lostpointercapture": + { + if (sMethod!="mouse"){ + return oDOM.addEventListener(sMethod+sEvent, fCall, capture); + } + } + // not "pointer" || "mouse" + default: + return oDOM.addEventListener(sEvent, fCall, capture); + } + } + LiteGraph.pointerListenerRemove = function(oDOM, sEvent, fCall, capture=false) { + if (!oDOM || !oDOM.removeEventListener || !sEvent || typeof fCall!=="function"){ + //console.log("cant pointerListenerRemove "+oDOM+", "+sEvent+", "+fCall); + return; // -- break -- + } + switch(sEvent){ + //both pointer and move events + case "down": case "up": case "move": case "over": case "out": case "enter": + { + if (LiteGraph.pointerevents_method=="pointer" || LiteGraph.pointerevents_method=="mouse"){ + oDOM.removeEventListener(LiteGraph.pointerevents_method+sEvent, fCall, capture); + } + } + // only pointerevents + case "leave": case "cancel": case "gotpointercapture": case "lostpointercapture": + { + if (LiteGraph.pointerevents_method=="pointer"){ + return oDOM.removeEventListener(LiteGraph.pointerevents_method+sEvent, fCall, capture); + } + } + // not "pointer" || "mouse" + default: + return oDOM.removeEventListener(sEvent, fCall, capture); + } + } + + function clamp(v, a, b) { + return a > v ? a : b < v ? b : v; + }; + global.clamp = clamp; + + if (typeof window != "undefined" && !window["requestAnimationFrame"]) { + window.requestAnimationFrame = + window.webkitRequestAnimationFrame || + window.mozRequestAnimationFrame || + function(callback) { + window.setTimeout(callback, 1000 / 60); + }; + } +})(this); + +if (typeof exports != "undefined") { + exports.LiteGraph = this.LiteGraph; + exports.LGraph = this.LGraph; + exports.LLink = this.LLink; + exports.LGraphNode = this.LGraphNode; + exports.LGraphGroup = this.LGraphGroup; + exports.DragAndScale = this.DragAndScale; + exports.LGraphCanvas = this.LGraphCanvas; + exports.ContextMenu = this.ContextMenu; +} + + diff --git a/web/lib/litegraph.css b/web/lib/litegraph.css new file mode 100644 index 0000000000000000000000000000000000000000..5524e24bacb8f1c38fc02e07c09a863d8fe6edd4 --- /dev/null +++ b/web/lib/litegraph.css @@ -0,0 +1,693 @@ +/* this CSS contains only the basic CSS needed to run the app and use it */ + +.lgraphcanvas { + /*cursor: crosshair;*/ + user-select: none; + -moz-user-select: none; + -webkit-user-select: none; + outline: none; + font-family: Tahoma, sans-serif; +} + +.lgraphcanvas * { + box-sizing: border-box; +} + +.litegraph.litecontextmenu { + font-family: Tahoma, sans-serif; + position: fixed; + top: 100px; + left: 100px; + min-width: 100px; + color: #aaf; + padding: 0; + box-shadow: 0 0 10px black !important; + background-color: #2e2e2e !important; + z-index: 10; +} + +.litegraph.litecontextmenu.dark { + background-color: #000 !important; +} + +.litegraph.litecontextmenu .litemenu-title img { + margin-top: 2px; + margin-left: 2px; + margin-right: 4px; +} + +.litegraph.litecontextmenu .litemenu-entry { + margin: 2px; + padding: 2px; +} + +.litegraph.litecontextmenu .litemenu-entry.submenu { + background-color: #2e2e2e !important; +} + +.litegraph.litecontextmenu.dark .litemenu-entry.submenu { + background-color: #000 !important; +} + +.litegraph .litemenubar ul { + font-family: Tahoma, sans-serif; + margin: 0; + padding: 0; +} + +.litegraph .litemenubar li { + font-size: 14px; + color: #999; + display: inline-block; + min-width: 50px; + padding-left: 10px; + padding-right: 10px; + user-select: none; + -moz-user-select: none; + -webkit-user-select: none; + cursor: pointer; +} + +.litegraph .litemenubar li:hover { + background-color: #777; + color: #eee; +} + +.litegraph .litegraph .litemenubar-panel { + position: absolute; + top: 5px; + left: 5px; + min-width: 100px; + background-color: #444; + box-shadow: 0 0 3px black; + padding: 4px; + border-bottom: 2px solid #aaf; + z-index: 10; +} + +.litegraph .litemenu-entry, +.litemenu-title { + font-size: 12px; + color: #aaa; + padding: 0 0 0 4px; + margin: 2px; + padding-left: 2px; + -moz-user-select: none; + -webkit-user-select: none; + user-select: none; + cursor: pointer; +} + +.litegraph .litemenu-entry .icon { + display: inline-block; + width: 12px; + height: 12px; + margin: 2px; + vertical-align: top; +} + +.litegraph .litemenu-entry.checked .icon { + background-color: #aaf; +} + +.litegraph .litemenu-entry .more { + float: right; + padding-right: 5px; +} + +.litegraph .litemenu-entry.disabled { + opacity: 0.5; + cursor: default; +} + +.litegraph .litemenu-entry.separator { + display: block; + border-top: 1px solid #333; + border-bottom: 1px solid #666; + width: 100%; + height: 0px; + margin: 3px 0 2px 0; + background-color: transparent; + padding: 0 !important; + cursor: default !important; +} + +.litegraph .litemenu-entry.has_submenu { + border-right: 2px solid cyan; +} + +.litegraph .litemenu-title { + color: #dde; + background-color: #111; + margin: 0; + padding: 2px; + cursor: default; +} + +.litegraph .litemenu-entry:hover:not(.disabled):not(.separator) { + background-color: #444 !important; + color: #eee; + transition: all 0.2s; +} + +.litegraph .litemenu-entry .property_name { + display: inline-block; + text-align: left; + min-width: 80px; + min-height: 1.2em; +} + +.litegraph .litemenu-entry .property_value { + display: inline-block; + background-color: rgba(0, 0, 0, 0.5); + text-align: right; + min-width: 80px; + min-height: 1.2em; + vertical-align: middle; + padding-right: 10px; +} + +.litegraph.litesearchbox { + font-family: Tahoma, sans-serif; + position: absolute; + background-color: rgba(0, 0, 0, 0.5); + padding-top: 4px; +} + +.litegraph.litesearchbox input, +.litegraph.litesearchbox select { + margin-top: 3px; + min-width: 60px; + min-height: 1.5em; + background-color: black; + border: 0; + color: white; + padding-left: 10px; + margin-right: 5px; + max-width: 300px; +} + +.litegraph.litesearchbox .name { + display: inline-block; + min-width: 60px; + min-height: 1.5em; + padding-left: 10px; +} + +.litegraph.litesearchbox .helper { + overflow: auto; + max-height: 200px; + margin-top: 2px; +} + +.litegraph.lite-search-item { + font-family: Tahoma, sans-serif; + background-color: rgba(0, 0, 0, 0.5); + color: white; + padding-top: 2px; +} + +.litegraph.lite-search-item.not_in_filter{ + /*background-color: rgba(50, 50, 50, 0.5);*/ + /*color: #999;*/ + color: #B99; + font-style: italic; +} + +.litegraph.lite-search-item.generic_type{ + /*background-color: rgba(50, 50, 50, 0.5);*/ + /*color: #DD9;*/ + color: #999; + font-style: italic; +} + +.litegraph.lite-search-item:hover, +.litegraph.lite-search-item.selected { + cursor: pointer; + background-color: white; + color: black; +} + +.litegraph.lite-search-item-type { + display: inline-block; + background: rgba(0,0,0,0.2); + margin-left: 5px; + font-size: 14px; + padding: 2px 5px; + position: relative; + top: -2px; + opacity: 0.8; + border-radius: 4px; + } + +/* DIALOGs ******/ + +.litegraph .dialog { + position: absolute; + top: 50%; + left: 50%; + margin-top: -150px; + margin-left: -200px; + + background-color: #2A2A2A; + + min-width: 400px; + min-height: 200px; + box-shadow: 0 0 4px #111; + border-radius: 6px; +} + +.litegraph .dialog.settings { + left: 10px; + top: 10px; + height: calc( 100% - 20px ); + margin: auto; + max-width: 50%; +} + +.litegraph .dialog.centered { + top: 50px; + left: 50%; + position: absolute; + transform: translateX(-50%); + min-width: 600px; + min-height: 300px; + height: calc( 100% - 100px ); + margin: auto; +} + +.litegraph .dialog .close { + float: right; + margin: 4px; + margin-right: 10px; + cursor: pointer; + font-size: 1.4em; +} + +.litegraph .dialog .close:hover { + color: white; +} + +.litegraph .dialog .dialog-header { + color: #AAA; + border-bottom: 1px solid #161616; +} + +.litegraph .dialog .dialog-header { height: 40px; } +.litegraph .dialog .dialog-footer { height: 50px; padding: 10px; border-top: 1px solid #1a1a1a;} + +.litegraph .dialog .dialog-header .dialog-title { + font: 20px "Arial"; + margin: 4px; + padding: 4px 10px; + display: inline-block; +} + +.litegraph .dialog .dialog-content, .litegraph .dialog .dialog-alt-content { + height: calc(100% - 90px); + width: 100%; + min-height: 100px; + display: inline-block; + color: #AAA; + /*background-color: black;*/ + overflow: auto; +} + +.litegraph .dialog .dialog-content h3 { + margin: 10px; +} + +.litegraph .dialog .dialog-content .connections { + flex-direction: row; +} + +.litegraph .dialog .dialog-content .connections .connections_side { + width: calc(50% - 5px); + min-height: 100px; + background-color: black; + display: flex; +} + +.litegraph .dialog .node_type { + font-size: 1.2em; + display: block; + margin: 10px; +} + +.litegraph .dialog .node_desc { + opacity: 0.5; + display: block; + margin: 10px; +} + +.litegraph .dialog .separator { + display: block; + width: calc( 100% - 4px ); + height: 1px; + border-top: 1px solid #000; + border-bottom: 1px solid #333; + margin: 10px 2px; + padding: 0; +} + +.litegraph .dialog .property { + margin-bottom: 2px; + padding: 4px; +} + +.litegraph .dialog .property:hover { + background: #545454; +} + +.litegraph .dialog .property_name { + color: #737373; + display: inline-block; + text-align: left; + vertical-align: top; + width: 160px; + padding-left: 4px; + overflow: hidden; + margin-right: 6px; +} + +.litegraph .dialog .property:hover .property_name { + color: white; +} + +.litegraph .dialog .property_value { + display: inline-block; + text-align: right; + color: #AAA; + background-color: #1A1A1A; + /*width: calc( 100% - 122px );*/ + max-width: calc( 100% - 162px ); + min-width: 200px; + max-height: 300px; + min-height: 20px; + padding: 4px; + padding-right: 12px; + overflow: hidden; + cursor: pointer; + border-radius: 3px; +} + +.litegraph .dialog .property_value:hover { + color: white; +} + +.litegraph .dialog .property.boolean .property_value { + padding-right: 30px; + color: #A88; + /*width: auto; + float: right;*/ +} + +.litegraph .dialog .property.boolean.bool-on .property_name{ + color: #8A8; +} +.litegraph .dialog .property.boolean.bool-on .property_value{ + color: #8A8; +} + +.litegraph .dialog .btn { + border: 0; + border-radius: 4px; + padding: 4px 20px; + margin-left: 0px; + background-color: #060606; + color: #8e8e8e; +} + +.litegraph .dialog .btn:hover { + background-color: #111; + color: #FFF; +} + +.litegraph .dialog .btn.delete:hover { + background-color: #F33; + color: black; +} + +.litegraph .subgraph_property { + padding: 4px; +} + +.litegraph .subgraph_property:hover { + background-color: #333; +} + +.litegraph .subgraph_property.extra { + margin-top: 8px; +} + +.litegraph .subgraph_property span.name { + font-size: 1.3em; + padding-left: 4px; +} + +.litegraph .subgraph_property span.type { + opacity: 0.5; + margin-right: 20px; + padding-left: 4px; +} + +.litegraph .subgraph_property span.label { + display: inline-block; + width: 60px; + padding: 0px 10px; +} + +.litegraph .subgraph_property input { + width: 140px; + color: #999; + background-color: #1A1A1A; + border-radius: 4px; + border: 0; + margin-right: 10px; + padding: 4px; + padding-left: 10px; +} + +.litegraph .subgraph_property button { + background-color: #1c1c1c; + color: #aaa; + border: 0; + border-radius: 2px; + padding: 4px 10px; + cursor: pointer; +} + +.litegraph .subgraph_property.extra { + color: #ccc; +} + +.litegraph .subgraph_property.extra input { + background-color: #111; +} + +.litegraph .bullet_icon { + margin-left: 10px; + border-radius: 10px; + width: 12px; + height: 12px; + background-color: #666; + display: inline-block; + margin-top: 2px; + margin-right: 4px; + transition: background-color 0.1s ease 0s; + -moz-transition: background-color 0.1s ease 0s; +} + +.litegraph .bullet_icon:hover { + background-color: #698; + cursor: pointer; +} + +/* OLD */ + +.graphcontextmenu { + padding: 4px; + min-width: 100px; +} + +.graphcontextmenu-title { + color: #dde; + background-color: #222; + margin: 0; + padding: 2px; + cursor: default; +} + +.graphmenu-entry { + box-sizing: border-box; + margin: 2px; + padding-left: 20px; + user-select: none; + -moz-user-select: none; + -webkit-user-select: none; + transition: all linear 0.3s; +} + +.graphmenu-entry.event, +.litemenu-entry.event { + border-left: 8px solid orange; + padding-left: 12px; +} + +.graphmenu-entry.disabled { + opacity: 0.3; +} + +.graphmenu-entry.submenu { + border-right: 2px solid #eee; +} + +.graphmenu-entry:hover { + background-color: #555; +} + +.graphmenu-entry.separator { + background-color: #111; + border-bottom: 1px solid #666; + height: 1px; + width: calc(100% - 20px); + -moz-width: calc(100% - 20px); + -webkit-width: calc(100% - 20px); +} + +.graphmenu-entry .property_name { + display: inline-block; + text-align: left; + min-width: 80px; + min-height: 1.2em; +} + +.graphmenu-entry .property_value, +.litemenu-entry .property_value { + display: inline-block; + background-color: rgba(0, 0, 0, 0.5); + text-align: right; + min-width: 80px; + min-height: 1.2em; + vertical-align: middle; + padding-right: 10px; +} + +.graphdialog { + position: absolute; + top: 10px; + left: 10px; + min-height: 2em; + background-color: #333; + font-size: 1.2em; + box-shadow: 0 0 10px black !important; + z-index: 10; +} + +.graphdialog.rounded { + border-radius: 12px; + padding-right: 2px; +} + +.graphdialog .name { + display: inline-block; + min-width: 60px; + min-height: 1.5em; + padding-left: 10px; +} + +.graphdialog input, +.graphdialog textarea, +.graphdialog select { + margin: 3px; + min-width: 60px; + min-height: 1.5em; + background-color: black; + border: 0; + color: white; + padding-left: 10px; + outline: none; +} + +.graphdialog textarea { + min-height: 150px; +} + +.graphdialog button { + margin-top: 3px; + vertical-align: top; + background-color: #999; + border: 0; +} + +.graphdialog button.rounded, +.graphdialog input.rounded { + border-radius: 0 12px 12px 0; +} + +.graphdialog .helper { + overflow: auto; + max-height: 200px; +} + +.graphdialog .help-item { + padding-left: 10px; +} + +.graphdialog .help-item:hover, +.graphdialog .help-item.selected { + cursor: pointer; + background-color: white; + color: black; +} + +.litegraph .dialog { + min-height: 0; +} +.litegraph .dialog .dialog-content { +display: block; +} +.litegraph .dialog .dialog-content .subgraph_property { +padding: 5px; +} +.litegraph .dialog .dialog-footer { +margin: 0; +} +.litegraph .dialog .dialog-footer .subgraph_property { +margin-top: 0; +display: flex; +align-items: center; +padding: 5px; +} +.litegraph .dialog .dialog-footer .subgraph_property .name { +flex: 1; +} +.litegraph .graphdialog { +display: flex; +align-items: center; +border-radius: 20px; +padding: 4px 10px; +position: fixed; +} +.litegraph .graphdialog .name { +padding: 0; +min-height: 0; +font-size: 16px; +vertical-align: middle; +} +.litegraph .graphdialog .value { +font-size: 16px; +min-height: 0; +margin: 0 10px; +padding: 2px 5px; +} +.litegraph .graphdialog input[type="checkbox"] { +width: 16px; +height: 16px; +} +.litegraph .graphdialog button { +padding: 4px 18px; +border-radius: 20px; +cursor: pointer; +} + diff --git a/web/lib/litegraph.extensions.js b/web/lib/litegraph.extensions.js new file mode 100644 index 0000000000000000000000000000000000000000..32853fe498f5b89380b490ab23e4421dac0ea243 --- /dev/null +++ b/web/lib/litegraph.extensions.js @@ -0,0 +1,21 @@ +/** + * Changes the background color of the canvas. + * + * @method updateBackground + * @param {image} String + * @param {clearBackgroundColor} String + * @ + */ +LGraphCanvas.prototype.updateBackground = function (image, clearBackgroundColor) { + this._bg_img = new Image(); + this._bg_img.name = image; + this._bg_img.src = image; + this._bg_img.onload = () => { + this.draw(true, true); + }; + this.background_image = image; + + this.clear_background = true; + this.clear_background_color = clearBackgroundColor; + this._pattern = null +} diff --git a/web/scripts/api.js b/web/scripts/api.js new file mode 100644 index 0000000000000000000000000000000000000000..8c8155be66c9bde9bcb23952b5a66c8c19b35129 --- /dev/null +++ b/web/scripts/api.js @@ -0,0 +1,422 @@ +class ComfyApi extends EventTarget { + #registered = new Set(); + + constructor() { + super(); + this.api_host = location.host; + this.api_base = location.pathname.split('/').slice(0, -1).join('/'); + this.initialClientId = sessionStorage.getItem("clientId"); + } + + apiURL(route) { + return this.api_base + route; + } + + fetchApi(route, options) { + if (!options) { + options = {}; + } + if (!options.headers) { + options.headers = {}; + } + options.headers["Comfy-User"] = this.user; + return fetch(this.apiURL(route), options); + } + + addEventListener(type, callback, options) { + super.addEventListener(type, callback, options); + this.#registered.add(type); + } + + /** + * Poll status for colab and other things that don't support websockets. + */ + #pollQueue() { + setInterval(async () => { + try { + const resp = await this.fetchApi("/prompt"); + const status = await resp.json(); + this.dispatchEvent(new CustomEvent("status", { detail: status })); + } catch (error) { + this.dispatchEvent(new CustomEvent("status", { detail: null })); + } + }, 1000); + } + + /** + * Creates and connects a WebSocket for realtime updates + * @param {boolean} isReconnect If the socket is connection is a reconnect attempt + */ + #createSocket(isReconnect) { + if (this.socket) { + return; + } + + let opened = false; + let existingSession = window.name; + if (existingSession) { + existingSession = "?clientId=" + existingSession; + } + this.socket = new WebSocket( + `ws${window.location.protocol === "https:" ? "s" : ""}://${this.api_host}${this.api_base}/ws${existingSession}` + ); + this.socket.binaryType = "arraybuffer"; + + this.socket.addEventListener("open", () => { + opened = true; + if (isReconnect) { + this.dispatchEvent(new CustomEvent("reconnected")); + } + }); + + this.socket.addEventListener("error", () => { + if (this.socket) this.socket.close(); + if (!isReconnect && !opened) { + this.#pollQueue(); + } + }); + + this.socket.addEventListener("close", () => { + setTimeout(() => { + this.socket = null; + this.#createSocket(true); + }, 300); + if (opened) { + this.dispatchEvent(new CustomEvent("status", { detail: null })); + this.dispatchEvent(new CustomEvent("reconnecting")); + } + }); + + this.socket.addEventListener("message", (event) => { + try { + if (event.data instanceof ArrayBuffer) { + const view = new DataView(event.data); + const eventType = view.getUint32(0); + const buffer = event.data.slice(4); + switch (eventType) { + case 1: + const view2 = new DataView(event.data); + const imageType = view2.getUint32(0) + let imageMime + switch (imageType) { + case 1: + default: + imageMime = "image/jpeg"; + break; + case 2: + imageMime = "image/png" + } + const imageBlob = new Blob([buffer.slice(4)], { type: imageMime }); + this.dispatchEvent(new CustomEvent("b_preview", { detail: imageBlob })); + break; + default: + throw new Error(`Unknown binary websocket message of type ${eventType}`); + } + } + else { + const msg = JSON.parse(event.data); + switch (msg.type) { + case "status": + if (msg.data.sid) { + this.clientId = msg.data.sid; + window.name = this.clientId; // use window name so it isnt reused when duplicating tabs + sessionStorage.setItem("clientId", this.clientId); // store in session storage so duplicate tab can load correct workflow + } + this.dispatchEvent(new CustomEvent("status", { detail: msg.data.status })); + break; + case "progress": + this.dispatchEvent(new CustomEvent("progress", { detail: msg.data })); + break; + case "executing": + this.dispatchEvent(new CustomEvent("executing", { detail: msg.data.node })); + break; + case "executed": + this.dispatchEvent(new CustomEvent("executed", { detail: msg.data })); + break; + case "execution_start": + this.dispatchEvent(new CustomEvent("execution_start", { detail: msg.data })); + break; + case "execution_error": + this.dispatchEvent(new CustomEvent("execution_error", { detail: msg.data })); + break; + case "execution_cached": + this.dispatchEvent(new CustomEvent("execution_cached", { detail: msg.data })); + break; + default: + if (this.#registered.has(msg.type)) { + this.dispatchEvent(new CustomEvent(msg.type, { detail: msg.data })); + } else { + throw new Error(`Unknown message type ${msg.type}`); + } + } + } + } catch (error) { + console.warn("Unhandled message:", event.data, error); + } + }); + } + + /** + * Initialises sockets and realtime updates + */ + init() { + this.#createSocket(); + } + + /** + * Gets a list of extension urls + * @returns An array of script urls to import + */ + async getExtensions() { + const resp = await this.fetchApi("/extensions", { cache: "no-store" }); + return await resp.json(); + } + + /** + * Gets a list of embedding names + * @returns An array of script urls to import + */ + async getEmbeddings() { + const resp = await this.fetchApi("/embeddings", { cache: "no-store" }); + return await resp.json(); + } + + /** + * Loads node object definitions for the graph + * @returns The node definitions + */ + async getNodeDefs() { + const resp = await this.fetchApi("/object_info", { cache: "no-store" }); + return await resp.json(); + } + + /** + * + * @param {number} number The index at which to queue the prompt, passing -1 will insert the prompt at the front of the queue + * @param {object} prompt The prompt data to queue + */ + async queuePrompt(number, { output, workflow }) { + const body = { + client_id: this.clientId, + prompt: output, + extra_data: { extra_pnginfo: { workflow } }, + }; + + if (number === -1) { + body.front = true; + } else if (number != 0) { + body.number = number; + } + + const res = await this.fetchApi("/prompt", { + method: "POST", + headers: { + "Content-Type": "application/json", + }, + body: JSON.stringify(body), + }); + + if (res.status !== 200) { + throw { + response: await res.json(), + }; + } + + return await res.json(); + } + + /** + * Loads a list of items (queue or history) + * @param {string} type The type of items to load, queue or history + * @returns The items of the specified type grouped by their status + */ + async getItems(type) { + if (type === "queue") { + return this.getQueue(); + } + return this.getHistory(); + } + + /** + * Gets the current state of the queue + * @returns The currently running and queued items + */ + async getQueue() { + try { + const res = await this.fetchApi("/queue"); + const data = await res.json(); + return { + // Running action uses a different endpoint for cancelling + Running: data.queue_running.map((prompt) => ({ + prompt, + remove: { name: "Cancel", cb: () => api.interrupt() }, + })), + Pending: data.queue_pending.map((prompt) => ({ prompt })), + }; + } catch (error) { + console.error(error); + return { Running: [], Pending: [] }; + } + } + + /** + * Gets the prompt execution history + * @returns Prompt history including node outputs + */ + async getHistory(max_items=200) { + try { + const res = await this.fetchApi(`/history?max_items=${max_items}`); + return { History: Object.values(await res.json()) }; + } catch (error) { + console.error(error); + return { History: [] }; + } + } + + /** + * Gets system & device stats + * @returns System stats such as python version, OS, per device info + */ + async getSystemStats() { + const res = await this.fetchApi("/system_stats"); + return await res.json(); + } + + /** + * Sends a POST request to the API + * @param {*} type The endpoint to post to + * @param {*} body Optional POST data + */ + async #postItem(type, body) { + try { + await this.fetchApi("/" + type, { + method: "POST", + headers: { + "Content-Type": "application/json", + }, + body: body ? JSON.stringify(body) : undefined, + }); + } catch (error) { + console.error(error); + } + } + + /** + * Deletes an item from the specified list + * @param {string} type The type of item to delete, queue or history + * @param {number} id The id of the item to delete + */ + async deleteItem(type, id) { + await this.#postItem(type, { delete: [id] }); + } + + /** + * Clears the specified list + * @param {string} type The type of list to clear, queue or history + */ + async clearItems(type) { + await this.#postItem(type, { clear: true }); + } + + /** + * Interrupts the execution of the running prompt + */ + async interrupt() { + await this.#postItem("interrupt", null); + } + + /** + * Gets user configuration data and where data should be stored + * @returns { Promise<{ storage: "server" | "browser", users?: Promise, migrated?: boolean }> } + */ + async getUserConfig() { + return (await this.fetchApi("/users")).json(); + } + + /** + * Creates a new user + * @param { string } username + * @returns The fetch response + */ + createUser(username) { + return this.fetchApi("/users", { + method: "POST", + headers: { + "Content-Type": "application/json", + }, + body: JSON.stringify({ username }), + }); + } + + /** + * Gets all setting values for the current user + * @returns { Promise } A dictionary of id -> value + */ + async getSettings() { + return (await this.fetchApi("/settings")).json(); + } + + /** + * Gets a setting for the current user + * @param { string } id The id of the setting to fetch + * @returns { Promise } The setting value + */ + async getSetting(id) { + return (await this.fetchApi(`/settings/${encodeURIComponent(id)}`)).json(); + } + + /** + * Stores a dictionary of settings for the current user + * @param { Record } settings Dictionary of setting id -> value to save + * @returns { Promise } + */ + async storeSettings(settings) { + return this.fetchApi(`/settings`, { + method: "POST", + body: JSON.stringify(settings) + }); + } + + /** + * Stores a setting for the current user + * @param { string } id The id of the setting to update + * @param { unknown } value The value of the setting + * @returns { Promise } + */ + async storeSetting(id, value) { + return this.fetchApi(`/settings/${encodeURIComponent(id)}`, { + method: "POST", + body: JSON.stringify(value) + }); + } + + /** + * Gets a user data file for the current user + * @param { string } file The name of the userdata file to load + * @param { RequestInit } [options] + * @returns { Promise } The fetch response object + */ + async getUserData(file, options) { + return this.fetchApi(`/userdata/${encodeURIComponent(file)}`, options); + } + + /** + * Stores a user data file for the current user + * @param { string } file The name of the userdata file to save + * @param { unknown } data The data to save to the file + * @param { RequestInit & { stringify?: boolean, throwOnError?: boolean } } [options] + * @returns { Promise } + */ + async storeUserData(file, data, options = { stringify: true, throwOnError: true }) { + const resp = await this.fetchApi(`/userdata/${encodeURIComponent(file)}`, { + method: "POST", + body: options?.stringify ? JSON.stringify(data) : data, + ...options, + }); + if (resp.status !== 200) { + throw new Error(`Error storing user data file '${file}': ${resp.status} ${(await resp).statusText}`); + } + } +} + +export const api = new ComfyApi(); diff --git a/web/scripts/app.js b/web/scripts/app.js new file mode 100644 index 0000000000000000000000000000000000000000..77f29b8e5b1eecea5c670e835a96a26a840a8da8 --- /dev/null +++ b/web/scripts/app.js @@ -0,0 +1,2253 @@ +import { ComfyLogging } from "./logging.js"; +import { ComfyWidgets, initWidgets } from "./widgets.js"; +import { ComfyUI, $el } from "./ui.js"; +import { api } from "./api.js"; +import { defaultGraph } from "./defaultGraph.js"; +import { getPngMetadata, getWebpMetadata, importA1111, getLatentMetadata } from "./pnginfo.js"; +import { addDomClippingSetting } from "./domWidget.js"; +import { createImageHost, calculateImageGrid } from "./ui/imagePreview.js" + +export const ANIM_PREVIEW_WIDGET = "$$comfy_animation_preview" + +function sanitizeNodeName(string) { + let entityMap = { + '&': '', + '<': '', + '>': '', + '"': '', + "'": '', + '`': '', + '=': '' + }; + return String(string).replace(/[&<>"'`=]/g, function fromEntityMap (s) { + return entityMap[s]; + }); +} + +/** + * @typedef {import("types/comfy").ComfyExtension} ComfyExtension + */ + +export class ComfyApp { + /** + * List of entries to queue + * @type {{number: number, batchCount: number}[]} + */ + #queueItems = []; + /** + * If the queue is currently being processed + * @type {boolean} + */ + #processingQueue = false; + + /** + * Content Clipboard + * @type {serialized node object} + */ + static clipspace = null; + static clipspace_invalidate_handler = null; + static open_maskeditor = null; + static clipspace_return_node = null; + + constructor() { + this.ui = new ComfyUI(this); + this.logging = new ComfyLogging(this); + + /** + * List of extensions that are registered with the app + * @type {ComfyExtension[]} + */ + this.extensions = []; + + /** + * Stores the execution output data for each node + * @type {Record} + */ + this.nodeOutputs = {}; + + /** + * Stores the preview image data for each node + * @type {Record} + */ + this.nodePreviewImages = {}; + + /** + * If the shift key on the keyboard is pressed + * @type {boolean} + */ + this.shiftDown = false; + } + + getPreviewFormatParam() { + let preview_format = this.ui.settings.getSettingValue("Comfy.PreviewFormat"); + if(preview_format) + return `&preview=${preview_format}`; + else + return ""; + } + + getRandParam() { + return "&rand=" + Math.random(); + } + + static isImageNode(node) { + return node.imgs || (node && node.widgets && node.widgets.findIndex(obj => obj.name === 'image') >= 0); + } + + static onClipspaceEditorSave() { + if(ComfyApp.clipspace_return_node) { + ComfyApp.pasteFromClipspace(ComfyApp.clipspace_return_node); + } + } + + static onClipspaceEditorClosed() { + ComfyApp.clipspace_return_node = null; + } + + static copyToClipspace(node) { + var widgets = null; + if(node.widgets) { + widgets = node.widgets.map(({ type, name, value }) => ({ type, name, value })); + } + + var imgs = undefined; + var orig_imgs = undefined; + if(node.imgs != undefined) { + imgs = []; + orig_imgs = []; + + for (let i = 0; i < node.imgs.length; i++) { + imgs[i] = new Image(); + imgs[i].src = node.imgs[i].src; + orig_imgs[i] = imgs[i]; + } + } + + var selectedIndex = 0; + if(node.imageIndex) { + selectedIndex = node.imageIndex; + } + + ComfyApp.clipspace = { + 'widgets': widgets, + 'imgs': imgs, + 'original_imgs': orig_imgs, + 'images': node.images, + 'selectedIndex': selectedIndex, + 'img_paste_mode': 'selected' // reset to default im_paste_mode state on copy action + }; + + ComfyApp.clipspace_return_node = null; + + if(ComfyApp.clipspace_invalidate_handler) { + ComfyApp.clipspace_invalidate_handler(); + } + } + + static pasteFromClipspace(node) { + if(ComfyApp.clipspace) { + // image paste + if(ComfyApp.clipspace.imgs && node.imgs) { + if(node.images && ComfyApp.clipspace.images) { + if(ComfyApp.clipspace['img_paste_mode'] == 'selected') { + node.images = [ComfyApp.clipspace.images[ComfyApp.clipspace['selectedIndex']]]; + } + else { + node.images = ComfyApp.clipspace.images; + } + + if(app.nodeOutputs[node.id + ""]) + app.nodeOutputs[node.id + ""].images = node.images; + } + + if(ComfyApp.clipspace.imgs) { + // deep-copy to cut link with clipspace + if(ComfyApp.clipspace['img_paste_mode'] == 'selected') { + const img = new Image(); + img.src = ComfyApp.clipspace.imgs[ComfyApp.clipspace['selectedIndex']].src; + node.imgs = [img]; + node.imageIndex = 0; + } + else { + const imgs = []; + for(let i=0; i obj.name === 'image'); + if(index >= 0) { + if(node.widgets[index].type != 'image' && typeof node.widgets[index].value == "string" && clip_image.filename) { + node.widgets[index].value = (clip_image.subfolder?clip_image.subfolder+'/':'') + clip_image.filename + (clip_image.type?` [${clip_image.type}]`:''); + } + else { + node.widgets[index].value = clip_image; + } + } + } + if(ComfyApp.clipspace.widgets) { + ComfyApp.clipspace.widgets.forEach(({ type, name, value }) => { + const prop = Object.values(node.widgets).find(obj => obj.type === type && obj.name === name); + if (prop && prop.type != 'button') { + if(prop.type != 'image' && typeof prop.value == "string" && value.filename) { + prop.value = (value.subfolder?value.subfolder+'/':'') + value.filename + (value.type?` [${value.type}]`:''); + } + else { + prop.value = value; + prop.callback(value); + } + } + }); + } + } + + app.graph.setDirtyCanvas(true); + } + } + + /** + * Invoke an extension callback + * @param {keyof ComfyExtension} method The extension callback to execute + * @param {any[]} args Any arguments to pass to the callback + * @returns + */ + #invokeExtensions(method, ...args) { + let results = []; + for (const ext of this.extensions) { + if (method in ext) { + try { + results.push(ext[method](...args, this)); + } catch (error) { + console.error( + `Error calling extension '${ext.name}' method '${method}'`, + { error }, + { extension: ext }, + { args } + ); + } + } + } + return results; + } + + /** + * Invoke an async extension callback + * Each callback will be invoked concurrently + * @param {string} method The extension callback to execute + * @param {...any} args Any arguments to pass to the callback + * @returns + */ + async #invokeExtensionsAsync(method, ...args) { + return await Promise.all( + this.extensions.map(async (ext) => { + if (method in ext) { + try { + return await ext[method](...args, this); + } catch (error) { + console.error( + `Error calling extension '${ext.name}' method '${method}'`, + { error }, + { extension: ext }, + { args } + ); + } + } + }) + ); + } + + /** + * Adds special context menu handling for nodes + * e.g. this adds Open Image functionality for nodes that show images + * @param {*} node The node to add the menu handler + */ + #addNodeContextMenuHandler(node) { + function getCopyImageOption(img) { + if (typeof window.ClipboardItem === "undefined") return []; + return [ + { + content: "Copy Image", + callback: async () => { + const url = new URL(img.src); + url.searchParams.delete("preview"); + + const writeImage = async (blob) => { + await navigator.clipboard.write([ + new ClipboardItem({ + [blob.type]: blob, + }), + ]); + }; + + try { + const data = await fetch(url); + const blob = await data.blob(); + try { + await writeImage(blob); + } catch (error) { + // Chrome seems to only support PNG on write, convert and try again + if (blob.type !== "image/png") { + const canvas = $el("canvas", { + width: img.naturalWidth, + height: img.naturalHeight, + }); + const ctx = canvas.getContext("2d"); + let image; + if (typeof window.createImageBitmap === "undefined") { + image = new Image(); + const p = new Promise((resolve, reject) => { + image.onload = resolve; + image.onerror = reject; + }).finally(() => { + URL.revokeObjectURL(image.src); + }); + image.src = URL.createObjectURL(blob); + await p; + } else { + image = await createImageBitmap(blob); + } + try { + ctx.drawImage(image, 0, 0); + canvas.toBlob(writeImage, "image/png"); + } finally { + if (typeof image.close === "function") { + image.close(); + } + } + + return; + } + throw error; + } + } catch (error) { + alert("Error copying image: " + (error.message ?? error)); + } + }, + }, + ]; + } + + node.prototype.getExtraMenuOptions = function (_, options) { + if (this.imgs) { + // If this node has images then we add an open in new tab item + let img; + if (this.imageIndex != null) { + // An image is selected so select that + img = this.imgs[this.imageIndex]; + } else if (this.overIndex != null) { + // No image is selected but one is hovered + img = this.imgs[this.overIndex]; + } + if (img) { + options.unshift( + { + content: "Open Image", + callback: () => { + let url = new URL(img.src); + url.searchParams.delete("preview"); + window.open(url, "_blank"); + }, + }, + ...getCopyImageOption(img), + { + content: "Save Image", + callback: () => { + const a = document.createElement("a"); + let url = new URL(img.src); + url.searchParams.delete("preview"); + a.href = url; + a.setAttribute("download", new URLSearchParams(url.search).get("filename")); + document.body.append(a); + a.click(); + requestAnimationFrame(() => a.remove()); + }, + } + ); + } + } + + options.push({ + content: "Bypass", + callback: (obj) => { + if (this.mode === 4) this.mode = 0; + else this.mode = 4; + this.graph.change(); + }, + }); + + // prevent conflict of clipspace content + if (!ComfyApp.clipspace_return_node) { + options.push({ + content: "Copy (Clipspace)", + callback: (obj) => { + ComfyApp.copyToClipspace(this); + }, + }); + + if (ComfyApp.clipspace != null) { + options.push({ + content: "Paste (Clipspace)", + callback: () => { + ComfyApp.pasteFromClipspace(this); + }, + }); + } + + if (ComfyApp.isImageNode(this)) { + options.push({ + content: "Open in MaskEditor", + callback: (obj) => { + ComfyApp.copyToClipspace(this); + ComfyApp.clipspace_return_node = this; + ComfyApp.open_maskeditor(); + }, + }); + } + } + }; + } + + #addNodeKeyHandler(node) { + const app = this; + const origNodeOnKeyDown = node.prototype.onKeyDown; + + node.prototype.onKeyDown = function(e) { + if (origNodeOnKeyDown && origNodeOnKeyDown.apply(this, e) === false) { + return false; + } + + if (this.flags.collapsed || !this.imgs || this.imageIndex === null) { + return; + } + + let handled = false; + + if (e.key === "ArrowLeft" || e.key === "ArrowRight") { + if (e.key === "ArrowLeft") { + this.imageIndex -= 1; + } else if (e.key === "ArrowRight") { + this.imageIndex += 1; + } + this.imageIndex %= this.imgs.length; + + if (this.imageIndex < 0) { + this.imageIndex = this.imgs.length + this.imageIndex; + } + handled = true; + } else if (e.key === "Escape") { + this.imageIndex = null; + handled = true; + } + + if (handled === true) { + e.preventDefault(); + e.stopImmediatePropagation(); + return false; + } + } + } + + /** + * Adds Custom drawing logic for nodes + * e.g. Draws images and handles thumbnail navigation on nodes that output images + * @param {*} node The node to add the draw handler + */ + #addDrawBackgroundHandler(node) { + const app = this; + + function getImageTop(node) { + let shiftY; + if (node.imageOffset != null) { + shiftY = node.imageOffset; + } else { + if (node.widgets?.length) { + const w = node.widgets[node.widgets.length - 1]; + shiftY = w.last_y; + if (w.computeSize) { + shiftY += w.computeSize()[1] + 4; + } + else if(w.computedHeight) { + shiftY += w.computedHeight; + } + else { + shiftY += LiteGraph.NODE_WIDGET_HEIGHT + 4; + } + } else { + shiftY = node.computeSize()[1]; + } + } + return shiftY; + } + + node.prototype.setSizeForImage = function (force) { + if(!force && this.animatedImages) return; + + if (this.inputHeight || this.freeWidgetSpace > 210) { + this.setSize(this.size); + return; + } + const minHeight = getImageTop(this) + 220; + if (this.size[1] < minHeight) { + this.setSize([this.size[0], minHeight]); + } + }; + + node.prototype.onDrawBackground = function (ctx) { + if (!this.flags.collapsed) { + let imgURLs = [] + let imagesChanged = false + + const output = app.nodeOutputs[this.id + ""]; + if (output?.images) { + this.animatedImages = output?.animated?.find(Boolean); + if (this.images !== output.images) { + this.images = output.images; + imagesChanged = true; + imgURLs = imgURLs.concat( + output.images.map((params) => { + return api.apiURL( + "/view?" + + new URLSearchParams(params).toString() + + (this.animatedImages ? "" : app.getPreviewFormatParam()) + app.getRandParam() + ); + }) + ); + } + } + + const preview = app.nodePreviewImages[this.id + ""] + if (this.preview !== preview) { + this.preview = preview + imagesChanged = true; + if (preview != null) { + imgURLs.push(preview); + } + } + + if (imagesChanged) { + this.imageIndex = null; + if (imgURLs.length > 0) { + Promise.all( + imgURLs.map((src) => { + return new Promise((r) => { + const img = new Image(); + img.onload = () => r(img); + img.onerror = () => r(null); + img.src = src + }); + }) + ).then((imgs) => { + if ((!output || this.images === output.images) && (!preview || this.preview === preview)) { + this.imgs = imgs.filter(Boolean); + this.setSizeForImage?.(); + app.graph.setDirtyCanvas(true); + } + }); + } + else { + this.imgs = null; + } + } + + function calculateGrid(w, h, n) { + let columns, rows, cellsize; + + if (w > h) { + cellsize = h; + columns = Math.ceil(w / cellsize); + rows = Math.ceil(n / columns); + } else { + cellsize = w; + rows = Math.ceil(h / cellsize); + columns = Math.ceil(n / rows); + } + + while (columns * rows < n) { + cellsize++; + if (w >= h) { + columns = Math.ceil(w / cellsize); + rows = Math.ceil(n / columns); + } else { + rows = Math.ceil(h / cellsize); + columns = Math.ceil(n / rows); + } + } + + const cell_size = Math.min(w/columns, h/rows); + return {cell_size, columns, rows}; + } + + function is_all_same_aspect_ratio(imgs) { + // assume: imgs.length >= 2 + let ratio = imgs[0].naturalWidth/imgs[0].naturalHeight; + + for(let i=1; i w.name === ANIM_PREVIEW_WIDGET); + + if(this.animatedImages) { + // Instead of using the canvas we'll use a IMG + if(widgetIdx > -1) { + // Replace content + const widget = this.widgets[widgetIdx]; + widget.options.host.updateImages(this.imgs); + } else { + const host = createImageHost(this); + this.setSizeForImage(true); + const widget = this.addDOMWidget(ANIM_PREVIEW_WIDGET, "img", host.el, { + host, + getHeight: host.getHeight, + onDraw: host.onDraw, + hideOnZoom: false + }); + widget.serializeValue = () => undefined; + widget.options.host.updateImages(this.imgs); + } + return; + } + + if (widgetIdx > -1) { + this.widgets[widgetIdx].onRemove?.(); + this.widgets.splice(widgetIdx, 1); + } + + const canvas = app.graph.list_of_graphcanvas[0]; + const mouse = canvas.graph_mouse; + if (!canvas.pointer_is_down && this.pointerDown) { + if (mouse[0] === this.pointerDown.pos[0] && mouse[1] === this.pointerDown.pos[1]) { + this.imageIndex = this.pointerDown.index; + } + this.pointerDown = null; + } + + let imageIndex = this.imageIndex; + const numImages = this.imgs.length; + if (numImages === 1 && !imageIndex) { + this.imageIndex = imageIndex = 0; + } + + const top = getImageTop(this); + var shiftY = top; + + let dw = this.size[0]; + let dh = this.size[1]; + dh -= shiftY; + + if (imageIndex == null) { + var cellWidth, cellHeight, shiftX, cell_padding, cols; + + const compact_mode = is_all_same_aspect_ratio(this.imgs); + if(!compact_mode) { + // use rectangle cell style and border line + cell_padding = 2; + const { cell_size, columns, rows } = calculateGrid(dw, dh, numImages); + cols = columns; + + cellWidth = cell_size; + cellHeight = cell_size; + shiftX = (dw-cell_size*cols)/2; + shiftY = (dh-cell_size*rows)/2 + top; + } + else { + cell_padding = 0; + ({ cellWidth, cellHeight, cols, shiftX } = calculateImageGrid(this.imgs, dw, dh)); + } + + let anyHovered = false; + this.imageRects = []; + for (let i = 0; i < numImages; i++) { + const img = this.imgs[i]; + const row = Math.floor(i / cols); + const col = i % cols; + const x = col * cellWidth + shiftX; + const y = row * cellHeight + shiftY; + if (!anyHovered) { + anyHovered = LiteGraph.isInsideRectangle( + mouse[0], + mouse[1], + x + this.pos[0], + y + this.pos[1], + cellWidth, + cellHeight + ); + if (anyHovered) { + this.overIndex = i; + let value = 110; + if (canvas.pointer_is_down) { + if (!this.pointerDown || this.pointerDown.index !== i) { + this.pointerDown = { index: i, pos: [...mouse] }; + } + value = 125; + } + ctx.filter = `contrast(${value}%) brightness(${value}%)`; + canvas.canvas.style.cursor = "pointer"; + } + } + this.imageRects.push([x, y, cellWidth, cellHeight]); + + let wratio = cellWidth/img.width; + let hratio = cellHeight/img.height; + var ratio = Math.min(wratio, hratio); + + let imgHeight = ratio * img.height; + let imgY = row * cellHeight + shiftY + (cellHeight - imgHeight)/2; + let imgWidth = ratio * img.width; + let imgX = col * cellWidth + shiftX + (cellWidth - imgWidth)/2; + + ctx.drawImage(img, imgX+cell_padding, imgY+cell_padding, imgWidth-cell_padding*2, imgHeight-cell_padding*2); + if(!compact_mode) { + // rectangle cell and border line style + ctx.strokeStyle = "#8F8F8F"; + ctx.lineWidth = 1; + ctx.strokeRect(x+cell_padding, y+cell_padding, cellWidth-cell_padding*2, cellHeight-cell_padding*2); + } + + ctx.filter = "none"; + } + + if (!anyHovered) { + this.pointerDown = null; + this.overIndex = null; + } + } else { + // Draw individual + let w = this.imgs[imageIndex].naturalWidth; + let h = this.imgs[imageIndex].naturalHeight; + + const scaleX = dw / w; + const scaleY = dh / h; + const scale = Math.min(scaleX, scaleY, 1); + + w *= scale; + h *= scale; + + let x = (dw - w) / 2; + let y = (dh - h) / 2 + shiftY; + ctx.drawImage(this.imgs[imageIndex], x, y, w, h); + + const drawButton = (x, y, sz, text) => { + const hovered = LiteGraph.isInsideRectangle(mouse[0], mouse[1], x + this.pos[0], y + this.pos[1], sz, sz); + let fill = "#333"; + let textFill = "#fff"; + let isClicking = false; + if (hovered) { + canvas.canvas.style.cursor = "pointer"; + if (canvas.pointer_is_down) { + fill = "#1e90ff"; + isClicking = true; + } else { + fill = "#eee"; + textFill = "#000"; + } + } else { + this.pointerWasDown = null; + } + + ctx.fillStyle = fill; + ctx.beginPath(); + ctx.roundRect(x, y, sz, sz, [4]); + ctx.fill(); + ctx.fillStyle = textFill; + ctx.font = "12px Arial"; + ctx.textAlign = "center"; + ctx.fillText(text, x + 15, y + 20); + + return isClicking; + }; + + if (numImages > 1) { + if (drawButton(dw - 40, dh + top - 40, 30, `${this.imageIndex + 1}/${numImages}`)) { + let i = this.imageIndex + 1 >= numImages ? 0 : this.imageIndex + 1; + if (!this.pointerDown || !this.pointerDown.index === i) { + this.pointerDown = { index: i, pos: [...mouse] }; + } + } + + if (drawButton(dw - 40, top + 10, 30, `x`)) { + if (!this.pointerDown || !this.pointerDown.index === null) { + this.pointerDown = { index: null, pos: [...mouse] }; + } + } + } + } + } + } + }; + } + + /** + * Adds a handler allowing drag+drop of files onto the window to load workflows + */ + #addDropHandler() { + // Get prompt from dropped PNG or json + document.addEventListener("drop", async (event) => { + event.preventDefault(); + event.stopPropagation(); + + const n = this.dragOverNode; + this.dragOverNode = null; + // Node handles file drop, we dont use the built in onDropFile handler as its buggy + // If you drag multiple files it will call it multiple times with the same file + if (n && n.onDragDrop && (await n.onDragDrop(event))) { + return; + } + // Dragging from Chrome->Firefox there is a file but its a bmp, so ignore that + if (event.dataTransfer.files.length && event.dataTransfer.files[0].type !== "image/bmp") { + await this.handleFile(event.dataTransfer.files[0]); + } else { + // Try loading the first URI in the transfer list + const validTypes = ["text/uri-list", "text/x-moz-url"]; + const match = [...event.dataTransfer.types].find((t) => validTypes.find(v => t === v)); + if (match) { + const uri = event.dataTransfer.getData(match)?.split("\n")?.[0]; + if (uri) { + await this.handleFile(await (await fetch(uri)).blob()); + } + } + } + }); + + // Always clear over node on drag leave + this.canvasEl.addEventListener("dragleave", async () => { + if (this.dragOverNode) { + this.dragOverNode = null; + this.graph.setDirtyCanvas(false, true); + } + }); + + // Add handler for dropping onto a specific node + this.canvasEl.addEventListener( + "dragover", + (e) => { + this.canvas.adjustMouseEvent(e); + const node = this.graph.getNodeOnPos(e.canvasX, e.canvasY); + if (node) { + if (node.onDragOver && node.onDragOver(e)) { + this.dragOverNode = node; + + // dragover event is fired very frequently, run this on an animation frame + requestAnimationFrame(() => { + this.graph.setDirtyCanvas(false, true); + }); + return; + } + } + this.dragOverNode = null; + }, + false + ); + } + + /** + * Adds a handler on paste that extracts and loads images or workflows from pasted JSON data + */ + #addPasteHandler() { + document.addEventListener("paste", async (e) => { + // ctrl+shift+v is used to paste nodes with connections + // this is handled by litegraph + if(this.shiftDown) return; + + let data = (e.clipboardData || window.clipboardData); + const items = data.items; + + // Look for image paste data + for (const item of items) { + if (item.type.startsWith('image/')) { + var imageNode = null; + + // If an image node is selected, paste into it + if (this.canvas.current_node && + this.canvas.current_node.is_selected && + ComfyApp.isImageNode(this.canvas.current_node)) { + imageNode = this.canvas.current_node; + } + + // No image node selected: add a new one + if (!imageNode) { + const newNode = LiteGraph.createNode("LoadImage"); + newNode.pos = [...this.canvas.graph_mouse]; + imageNode = this.graph.add(newNode); + this.graph.change(); + } + const blob = item.getAsFile(); + imageNode.pasteFile(blob); + return; + } + } + + // No image found. Look for node data + data = data.getData("text/plain"); + let workflow; + try { + data = data.slice(data.indexOf("{")); + workflow = JSON.parse(data); + } catch (err) { + try { + data = data.slice(data.indexOf("workflow\n")); + data = data.slice(data.indexOf("{")); + workflow = JSON.parse(data); + } catch (error) {} + } + + if (workflow && workflow.version && workflow.nodes && workflow.extra) { + await this.loadGraphData(workflow); + } + else { + if (e.target.type === "text" || e.target.type === "textarea") { + return; + } + + // Litegraph default paste + this.canvas.pasteFromClipboard(); + } + + + }); + } + + + /** + * Adds a handler on copy that serializes selected nodes to JSON + */ + #addCopyHandler() { + document.addEventListener("copy", (e) => { + if (e.target.type === "text" || e.target.type === "textarea") { + // Default system copy + return; + } + + // copy nodes and clear clipboard + if (e.target.className === "litegraph" && this.canvas.selected_nodes) { + this.canvas.copyToClipboard(); + e.clipboardData.setData('text', ' '); //clearData doesn't remove images from clipboard + e.preventDefault(); + e.stopImmediatePropagation(); + return false; + } + }); + } + + + /** + * Handle mouse + * + * Move group by header + */ + #addProcessMouseHandler() { + const self = this; + + const origProcessMouseDown = LGraphCanvas.prototype.processMouseDown; + LGraphCanvas.prototype.processMouseDown = function(e) { + const res = origProcessMouseDown.apply(this, arguments); + + this.selected_group_moving = false; + + if (this.selected_group && !this.selected_group_resizing) { + var font_size = + this.selected_group.font_size || LiteGraph.DEFAULT_GROUP_FONT_SIZE; + var height = font_size * 1.4; + + // Move group by header + if (LiteGraph.isInsideRectangle(e.canvasX, e.canvasY, this.selected_group.pos[0], this.selected_group.pos[1], this.selected_group.size[0], height)) { + this.selected_group_moving = true; + } + } + + return res; + } + + const origProcessMouseMove = LGraphCanvas.prototype.processMouseMove; + LGraphCanvas.prototype.processMouseMove = function(e) { + const orig_selected_group = this.selected_group; + + if (this.selected_group && !this.selected_group_resizing && !this.selected_group_moving) { + this.selected_group = null; + } + + const res = origProcessMouseMove.apply(this, arguments); + + if (orig_selected_group && !this.selected_group_resizing && !this.selected_group_moving) { + this.selected_group = orig_selected_group; + } + + return res; + }; + } + + /** + * Handle keypress + * + * Ctrl + M mute/unmute selected nodes + */ + #addProcessKeyHandler() { + const self = this; + const origProcessKey = LGraphCanvas.prototype.processKey; + LGraphCanvas.prototype.processKey = function(e) { + if (!this.graph) { + return; + } + + var block_default = false; + + if (e.target.localName == "input") { + return; + } + + if (e.type == "keydown" && !e.repeat) { + + // Ctrl + M mute/unmute + if (e.key === 'm' && e.ctrlKey) { + if (this.selected_nodes) { + for (var i in this.selected_nodes) { + if (this.selected_nodes[i].mode === 2) { // never + this.selected_nodes[i].mode = 0; // always + } else { + this.selected_nodes[i].mode = 2; // never + } + } + } + block_default = true; + } + + // Ctrl + B bypass + if (e.key === 'b' && e.ctrlKey) { + if (this.selected_nodes) { + for (var i in this.selected_nodes) { + if (this.selected_nodes[i].mode === 4) { // never + this.selected_nodes[i].mode = 0; // always + } else { + this.selected_nodes[i].mode = 4; // never + } + } + } + block_default = true; + } + + // Alt + C collapse/uncollapse + if (e.key === 'c' && e.altKey) { + if (this.selected_nodes) { + for (var i in this.selected_nodes) { + this.selected_nodes[i].collapse() + } + } + block_default = true; + } + + // Ctrl+C Copy + if ((e.key === 'c') && (e.metaKey || e.ctrlKey)) { + // Trigger onCopy + return true; + } + + // Ctrl+V Paste + if ((e.key === 'v' || e.key == 'V') && (e.metaKey || e.ctrlKey) && !e.shiftKey) { + // Trigger onPaste + return true; + } + } + + this.graph.change(); + + if (block_default) { + e.preventDefault(); + e.stopImmediatePropagation(); + return false; + } + + // Fall through to Litegraph defaults + return origProcessKey.apply(this, arguments); + }; + } + + /** + * Draws group header bar + */ + #addDrawGroupsHandler() { + const self = this; + + const origDrawGroups = LGraphCanvas.prototype.drawGroups; + LGraphCanvas.prototype.drawGroups = function(canvas, ctx) { + if (!this.graph) { + return; + } + + var groups = this.graph._groups; + + ctx.save(); + ctx.globalAlpha = 0.7 * this.editor_alpha; + + for (var i = 0; i < groups.length; ++i) { + var group = groups[i]; + + if (!LiteGraph.overlapBounding(this.visible_area, group._bounding)) { + continue; + } //out of the visible area + + ctx.fillStyle = group.color || "#335"; + ctx.strokeStyle = group.color || "#335"; + var pos = group._pos; + var size = group._size; + ctx.globalAlpha = 0.25 * this.editor_alpha; + ctx.beginPath(); + var font_size = + group.font_size || LiteGraph.DEFAULT_GROUP_FONT_SIZE; + ctx.rect(pos[0] + 0.5, pos[1] + 0.5, size[0], font_size * 1.4); + ctx.fill(); + ctx.globalAlpha = this.editor_alpha; + } + + ctx.restore(); + + const res = origDrawGroups.apply(this, arguments); + return res; + } + } + + /** + * Draws node highlights (executing, drag drop) and progress bar + */ + #addDrawNodeHandler() { + const origDrawNodeShape = LGraphCanvas.prototype.drawNodeShape; + const self = this; + + LGraphCanvas.prototype.drawNodeShape = function (node, ctx, size, fgcolor, bgcolor, selected, mouse_over) { + const res = origDrawNodeShape.apply(this, arguments); + + const nodeErrors = self.lastNodeErrors?.[node.id]; + + let color = null; + let lineWidth = 1; + if (node.id === +self.runningNodeId) { + color = "#0f0"; + } else if (self.dragOverNode && node.id === self.dragOverNode.id) { + color = "dodgerblue"; + } + else if (nodeErrors?.errors) { + color = "red"; + lineWidth = 2; + } + else if (self.lastExecutionError && +self.lastExecutionError.node_id === node.id) { + color = "#f0f"; + lineWidth = 2; + } + + if (color) { + const shape = node._shape || node.constructor.shape || LiteGraph.ROUND_SHAPE; + ctx.lineWidth = lineWidth; + ctx.globalAlpha = 0.8; + ctx.beginPath(); + if (shape == LiteGraph.BOX_SHAPE) + ctx.rect(-6, -6 - LiteGraph.NODE_TITLE_HEIGHT, 12 + size[0] + 1, 12 + size[1] + LiteGraph.NODE_TITLE_HEIGHT); + else if (shape == LiteGraph.ROUND_SHAPE || (shape == LiteGraph.CARD_SHAPE && node.flags.collapsed)) + ctx.roundRect( + -6, + -6 - LiteGraph.NODE_TITLE_HEIGHT, + 12 + size[0] + 1, + 12 + size[1] + LiteGraph.NODE_TITLE_HEIGHT, + this.round_radius * 2 + ); + else if (shape == LiteGraph.CARD_SHAPE) + ctx.roundRect( + -6, + -6 - LiteGraph.NODE_TITLE_HEIGHT, + 12 + size[0] + 1, + 12 + size[1] + LiteGraph.NODE_TITLE_HEIGHT, + [this.round_radius * 2, this.round_radius * 2, 2, 2] + ); + else if (shape == LiteGraph.CIRCLE_SHAPE) + ctx.arc(size[0] * 0.5, size[1] * 0.5, size[0] * 0.5 + 6, 0, Math.PI * 2); + ctx.strokeStyle = color; + ctx.stroke(); + ctx.strokeStyle = fgcolor; + ctx.globalAlpha = 1; + } + + if (self.progress && node.id === +self.runningNodeId) { + ctx.fillStyle = "green"; + ctx.fillRect(0, 0, size[0] * (self.progress.value / self.progress.max), 6); + ctx.fillStyle = bgcolor; + } + + // Highlight inputs that failed validation + if (nodeErrors) { + ctx.lineWidth = 2; + ctx.strokeStyle = "red"; + for (const error of nodeErrors.errors) { + if (error.extra_info && error.extra_info.input_name) { + const inputIndex = node.findInputSlot(error.extra_info.input_name) + if (inputIndex !== -1) { + let pos = node.getConnectionPos(true, inputIndex); + ctx.beginPath(); + ctx.arc(pos[0] - node.pos[0], pos[1] - node.pos[1], 12, 0, 2 * Math.PI, false) + ctx.stroke(); + } + } + } + } + + return res; + }; + + const origDrawNode = LGraphCanvas.prototype.drawNode; + LGraphCanvas.prototype.drawNode = function (node, ctx) { + var editor_alpha = this.editor_alpha; + var old_color = node.bgcolor; + + if (node.mode === 2) { // never + this.editor_alpha = 0.4; + } + + if (node.mode === 4) { // never + node.bgcolor = "#FF00FF"; + this.editor_alpha = 0.2; + } + + const res = origDrawNode.apply(this, arguments); + + this.editor_alpha = editor_alpha; + node.bgcolor = old_color; + + return res; + }; + } + + /** + * Handles updates from the API socket + */ + #addApiUpdateHandlers() { + api.addEventListener("status", ({ detail }) => { + this.ui.setStatus(detail); + }); + + api.addEventListener("reconnecting", () => { + this.ui.dialog.show("Reconnecting..."); + }); + + api.addEventListener("reconnected", () => { + this.ui.dialog.close(); + }); + + api.addEventListener("progress", ({ detail }) => { + this.progress = detail; + this.graph.setDirtyCanvas(true, false); + }); + + api.addEventListener("executing", ({ detail }) => { + this.progress = null; + this.runningNodeId = detail; + this.graph.setDirtyCanvas(true, false); + delete this.nodePreviewImages[this.runningNodeId] + }); + + api.addEventListener("executed", ({ detail }) => { + const output = this.nodeOutputs[detail.node]; + if (detail.merge && output) { + for (const k in detail.output ?? {}) { + const v = output[k]; + if (v instanceof Array) { + output[k] = v.concat(detail.output[k]); + } else { + output[k] = detail.output[k]; + } + } + } else { + this.nodeOutputs[detail.node] = detail.output; + } + const node = this.graph.getNodeById(detail.node); + if (node) { + if (node.onExecuted) + node.onExecuted(detail.output); + } + }); + + api.addEventListener("execution_start", ({ detail }) => { + this.runningNodeId = null; + this.lastExecutionError = null + this.graph._nodes.forEach((node) => { + if (node.onExecutionStart) + node.onExecutionStart() + }) + }); + + api.addEventListener("execution_error", ({ detail }) => { + this.lastExecutionError = detail; + const formattedError = this.#formatExecutionError(detail); + this.ui.dialog.show(formattedError); + this.canvas.draw(true, true); + }); + + api.addEventListener("b_preview", ({ detail }) => { + const id = this.runningNodeId + if (id == null) + return; + + const blob = detail + const blobUrl = URL.createObjectURL(blob) + this.nodePreviewImages[id] = [blobUrl] + }); + + api.init(); + } + + #addKeyboardHandler() { + window.addEventListener("keydown", (e) => { + this.shiftDown = e.shiftKey; + }); + window.addEventListener("keyup", (e) => { + this.shiftDown = e.shiftKey; + }); + } + + #addConfigureHandler() { + const app = this; + const configure = LGraph.prototype.configure; + // Flag that the graph is configuring to prevent nodes from running checks while its still loading + LGraph.prototype.configure = function () { + app.configuringGraph = true; + try { + return configure.apply(this, arguments); + } finally { + app.configuringGraph = false; + } + }; + } + + #addAfterConfigureHandler() { + const app = this; + const onConfigure = app.graph.onConfigure; + app.graph.onConfigure = function () { + // Fire callbacks before the onConfigure, this is used by widget inputs to setup the config + for (const node of app.graph._nodes) { + node.onGraphConfigured?.(); + } + + const r = onConfigure?.apply(this, arguments); + + // Fire after onConfigure, used by primitves to generate widget using input nodes config + for (const node of app.graph._nodes) { + node.onAfterGraphConfigured?.(); + } + + return r; + }; + } + + /** + * Loads all extensions from the API into the window in parallel + */ + async #loadExtensions() { + const extensions = await api.getExtensions(); + this.logging.addEntry("Comfy.App", "debug", { Extensions: extensions }); + + const extensionPromises = extensions.map(async ext => { + try { + await import(api.apiURL(ext)); + } catch (error) { + console.error("Error loading extension", ext, error); + } + }); + + await Promise.all(extensionPromises); + } + + async #migrateSettings() { + this.isNewUserSession = true; + // Store all current settings + const settings = Object.keys(this.ui.settings).reduce((p, n) => { + const v = localStorage[`Comfy.Settings.${n}`]; + if (v) { + try { + p[n] = JSON.parse(v); + } catch (error) {} + } + return p; + }, {}); + + await api.storeSettings(settings); + } + + async #setUser() { + const userConfig = await api.getUserConfig(); + this.storageLocation = userConfig.storage; + if (typeof userConfig.migrated == "boolean") { + // Single user mode migrated true/false for if the default user is created + if (!userConfig.migrated && this.storageLocation === "server") { + // Default user not created yet + await this.#migrateSettings(); + } + return; + } + + this.multiUserServer = true; + let user = localStorage["Comfy.userId"]; + const users = userConfig.users ?? {}; + if (!user || !users[user]) { + // This will rarely be hit so move the loading to on demand + const { UserSelectionScreen } = await import("./ui/userSelection.js"); + + this.ui.menuContainer.style.display = "none"; + const { userId, username, created } = await new UserSelectionScreen().show(users, user); + this.ui.menuContainer.style.display = ""; + + user = userId; + localStorage["Comfy.userName"] = username; + localStorage["Comfy.userId"] = user; + + if (created) { + api.user = user; + await this.#migrateSettings(); + } + } + + api.user = user; + + this.ui.settings.addSetting({ + id: "Comfy.SwitchUser", + name: "Switch User", + type: (name) => { + let currentUser = localStorage["Comfy.userName"]; + if (currentUser) { + currentUser = ` (${currentUser})`; + } + return $el("tr", [ + $el("td", [ + $el("label", { + textContent: name, + }), + ]), + $el("td", [ + $el("button", { + textContent: name + (currentUser ?? ""), + onclick: () => { + delete localStorage["Comfy.userId"]; + delete localStorage["Comfy.userName"]; + window.location.reload(); + }, + }), + ]), + ]); + }, + }); + } + + /** + * Set up the app on the page + */ + async setup() { + await this.#setUser(); + await this.ui.settings.load(); + await this.#loadExtensions(); + + // Create and mount the LiteGraph in the DOM + const mainCanvas = document.createElement("canvas") + mainCanvas.style.touchAction = "none" + const canvasEl = (this.canvasEl = Object.assign(mainCanvas, { id: "graph-canvas" })); + canvasEl.tabIndex = "1"; + document.body.prepend(canvasEl); + + addDomClippingSetting(); + this.#addProcessMouseHandler(); + this.#addProcessKeyHandler(); + this.#addConfigureHandler(); + this.#addApiUpdateHandlers(); + + this.graph = new LGraph(); + + this.#addAfterConfigureHandler(); + + const canvas = (this.canvas = new LGraphCanvas(canvasEl, this.graph)); + this.ctx = canvasEl.getContext("2d"); + + LiteGraph.release_link_on_empty_shows_menu = true; + LiteGraph.alt_drag_do_clone_nodes = true; + + this.graph.start(); + + function resizeCanvas() { + // Limit minimal scale to 1, see https://github.com/comfyanonymous/ComfyUI/pull/845 + const scale = Math.max(window.devicePixelRatio, 1); + const { width, height } = canvasEl.getBoundingClientRect(); + canvasEl.width = Math.round(width * scale); + canvasEl.height = Math.round(height * scale); + canvasEl.getContext("2d").scale(scale, scale); + canvas.draw(true, true); + } + + // Ensure the canvas fills the window + resizeCanvas(); + window.addEventListener("resize", resizeCanvas); + + await this.#invokeExtensionsAsync("init"); + await this.registerNodes(); + initWidgets(this); + + // Load previous workflow + let restored = false; + try { + const loadWorkflow = async (json) => { + if (json) { + const workflow = JSON.parse(json); + await this.loadGraphData(workflow); + return true; + } + }; + const clientId = api.initialClientId ?? api.clientId; + restored = + (clientId && (await loadWorkflow(sessionStorage.getItem(`workflow:${clientId}`)))) || + (await loadWorkflow(localStorage.getItem("workflow"))); + } catch (err) { + console.error("Error loading previous workflow", err); + } + + // We failed to restore a workflow so load the default + if (!restored) { + await this.loadGraphData(); + } + + // Save current workflow automatically + setInterval(() => { + const workflow = JSON.stringify(this.graph.serialize()); + localStorage.setItem("workflow", workflow); + if (api.clientId) { + sessionStorage.setItem(`workflow:${api.clientId}`, workflow); + } + }, 1000); + + this.#addDrawNodeHandler(); + this.#addDrawGroupsHandler(); + this.#addDropHandler(); + this.#addCopyHandler(); + this.#addPasteHandler(); + this.#addKeyboardHandler(); + + await this.#invokeExtensionsAsync("setup"); + } + + /** + * Registers nodes with the graph + */ + async registerNodes() { + const app = this; + // Load node definitions from the backend + const defs = await api.getNodeDefs(); + await this.registerNodesFromDefs(defs); + await this.#invokeExtensionsAsync("registerCustomNodes"); + } + + getWidgetType(inputData, inputName) { + const type = inputData[0]; + + if (Array.isArray(type)) { + return "COMBO"; + } else if (`${type}:${inputName}` in this.widgets) { + return `${type}:${inputName}`; + } else if (type in this.widgets) { + return type; + } else { + return null; + } + } + + async registerNodeDef(nodeId, nodeData) { + const self = this; + const node = Object.assign( + function ComfyNode() { + var inputs = nodeData["input"]["required"]; + if (nodeData["input"]["optional"] != undefined) { + inputs = Object.assign({}, nodeData["input"]["required"], nodeData["input"]["optional"]); + } + const config = { minWidth: 1, minHeight: 1 }; + for (const inputName in inputs) { + const inputData = inputs[inputName]; + const type = inputData[0]; + + let widgetCreated = true; + const widgetType = self.getWidgetType(inputData, inputName); + if(widgetType) { + if(widgetType === "COMBO") { + Object.assign(config, self.widgets.COMBO(this, inputName, inputData, app) || {}); + } else { + Object.assign(config, self.widgets[widgetType](this, inputName, inputData, app) || {}); + } + } else { + // Node connection inputs + this.addInput(inputName, type); + widgetCreated = false; + } + + if(widgetCreated && inputData[1]?.forceInput && config?.widget) { + if (!config.widget.options) config.widget.options = {}; + config.widget.options.forceInput = inputData[1].forceInput; + } + if(widgetCreated && inputData[1]?.defaultInput && config?.widget) { + if (!config.widget.options) config.widget.options = {}; + config.widget.options.defaultInput = inputData[1].defaultInput; + } + } + + for (const o in nodeData["output"]) { + let output = nodeData["output"][o]; + if(output instanceof Array) output = "COMBO"; + const outputName = nodeData["output_name"][o] || output; + const outputShape = nodeData["output_is_list"][o] ? LiteGraph.GRID_SHAPE : LiteGraph.CIRCLE_SHAPE ; + this.addOutput(outputName, output, { shape: outputShape }); + } + + const s = this.computeSize(); + s[0] = Math.max(config.minWidth, s[0] * 1.5); + s[1] = Math.max(config.minHeight, s[1]); + this.size = s; + this.serialize_widgets = true; + + app.#invokeExtensionsAsync("nodeCreated", this); + }, + { + title: nodeData.display_name || nodeData.name, + comfyClass: nodeData.name, + nodeData + } + ); + node.prototype.comfyClass = nodeData.name; + + this.#addNodeContextMenuHandler(node); + this.#addDrawBackgroundHandler(node, app); + this.#addNodeKeyHandler(node); + + await this.#invokeExtensionsAsync("beforeRegisterNodeDef", node, nodeData); + LiteGraph.registerNodeType(nodeId, node); + node.category = nodeData.category; + } + + async registerNodesFromDefs(defs) { + await this.#invokeExtensionsAsync("addCustomNodeDefs", defs); + + // Generate list of known widgets + this.widgets = Object.assign( + {}, + ComfyWidgets, + ...(await this.#invokeExtensionsAsync("getCustomWidgets")).filter(Boolean) + ); + + // Register a node for each definition + for (const nodeId in defs) { + this.registerNodeDef(nodeId, defs[nodeId]); + } + } + + loadTemplateData(templateData) { + if (!templateData?.templates) { + return; + } + + const old = localStorage.getItem("litegrapheditor_clipboard"); + + var maxY, nodeBottom, node; + + for (const template of templateData.templates) { + if (!template?.data) { + continue; + } + + localStorage.setItem("litegrapheditor_clipboard", template.data); + app.canvas.pasteFromClipboard(); + + // Move mouse position down to paste the next template below + + maxY = false; + + for (const i in app.canvas.selected_nodes) { + node = app.canvas.selected_nodes[i]; + + nodeBottom = node.pos[1] + node.size[1]; + + if (maxY === false || nodeBottom > maxY) { + maxY = nodeBottom; + } + } + + app.canvas.graph_mouse[1] = maxY + 50; + } + + localStorage.setItem("litegrapheditor_clipboard", old); + } + + showMissingNodesError(missingNodeTypes, hasAddedNodes = true) { + let seenTypes = new Set(); + + this.ui.dialog.show( + $el("div.comfy-missing-nodes", [ + $el("span", { textContent: "When loading the graph, the following node types were not found: " }), + $el( + "ul", + Array.from(new Set(missingNodeTypes)).map((t) => { + let children = []; + if (typeof t === "object") { + if(seenTypes.has(t.type)) return null; + seenTypes.add(t.type); + children.push($el("span", { textContent: t.type })); + if (t.hint) { + children.push($el("span", { textContent: t.hint })); + } + if (t.action) { + children.push($el("button", { onclick: t.action.callback, textContent: t.action.text })); + } + } else { + if(seenTypes.has(t)) return null; + seenTypes.add(t); + children.push($el("span", { textContent: t })); + } + return $el("li", children); + }).filter(Boolean) + ), + ...(hasAddedNodes + ? [$el("span", { textContent: "Nodes that have failed to load will show as red on the graph." })] + : []), + ]) + ); + this.logging.addEntry("Comfy.App", "warn", { + MissingNodes: missingNodeTypes, + }); + } + + /** + * Populates the graph with the specified workflow data + * @param {*} graphData A serialized graph object + * @param { boolean } clean If the graph state, e.g. images, should be cleared + */ + async loadGraphData(graphData, clean = true) { + if (clean !== false) { + this.clean(); + } + + let reset_invalid_values = false; + if (!graphData) { + graphData = defaultGraph; + reset_invalid_values = true; + } + + if (typeof structuredClone === "undefined") + { + graphData = JSON.parse(JSON.stringify(graphData)); + }else + { + graphData = structuredClone(graphData); + } + + const missingNodeTypes = []; + await this.#invokeExtensionsAsync("beforeConfigureGraph", graphData, missingNodeTypes); + for (let n of graphData.nodes) { + // Patch T2IAdapterLoader to ControlNetLoader since they are the same node now + if (n.type == "T2IAdapterLoader") n.type = "ControlNetLoader"; + if (n.type == "ConditioningAverage ") n.type = "ConditioningAverage"; //typo fix + if (n.type == "SDV_img2vid_Conditioning") n.type = "SVD_img2vid_Conditioning"; //typo fix + + // Find missing node types + if (!(n.type in LiteGraph.registered_node_types)) { + missingNodeTypes.push(n.type); + n.type = sanitizeNodeName(n.type); + } + } + + try { + this.graph.configure(graphData); + } catch (error) { + let errorHint = []; + // Try extracting filename to see if it was caused by an extension script + const filename = error.fileName || (error.stack || "").match(/(\/extensions\/.*\.js)/)?.[1]; + const pos = (filename || "").indexOf("/extensions/"); + if (pos > -1) { + errorHint.push( + $el("span", { textContent: "This may be due to the following script:" }), + $el("br"), + $el("span", { + style: { + fontWeight: "bold", + }, + textContent: filename.substring(pos), + }) + ); + } + + // Show dialog to let the user know something went wrong loading the data + this.ui.dialog.show( + $el("div", [ + $el("p", { textContent: "Loading aborted due to error reloading workflow data" }), + $el("pre", { + style: { padding: "5px", backgroundColor: "rgba(255,0,0,0.2)" }, + textContent: error.toString(), + }), + $el("pre", { + style: { + padding: "5px", + color: "#ccc", + fontSize: "10px", + maxHeight: "50vh", + overflow: "auto", + backgroundColor: "rgba(0,0,0,0.2)", + }, + textContent: error.stack || "No stacktrace available", + }), + ...errorHint, + ]).outerHTML + ); + + return; + } + + for (const node of this.graph._nodes) { + const size = node.computeSize(); + size[0] = Math.max(node.size[0], size[0]); + size[1] = Math.max(node.size[1], size[1]); + node.size = size; + + if (node.widgets) { + // If you break something in the backend and want to patch workflows in the frontend + // This is the place to do this + for (let widget of node.widgets) { + if (node.type == "KSampler" || node.type == "KSamplerAdvanced") { + if (widget.name == "sampler_name") { + if (widget.value.startsWith("sample_")) { + widget.value = widget.value.slice(7); + } + } + } + if (node.type == "KSampler" || node.type == "KSamplerAdvanced" || node.type == "PrimitiveNode") { + if (widget.name == "control_after_generate") { + if (widget.value === true) { + widget.value = "randomize"; + } else if (widget.value === false) { + widget.value = "fixed"; + } + } + } + if (reset_invalid_values) { + if (widget.type == "combo") { + if (!widget.options.values.includes(widget.value) && widget.options.values.length > 0) { + widget.value = widget.options.values[0]; + } + } + } + } + } + + this.#invokeExtensions("loadedGraphNode", node); + } + + if (missingNodeTypes.length) { + this.showMissingNodesError(missingNodeTypes); + } + await this.#invokeExtensionsAsync("afterConfigureGraph", missingNodeTypes); + } + + /** + * Converts the current graph workflow for sending to the API + * @returns The workflow and node links + */ + async graphToPrompt() { + for (const outerNode of this.graph.computeExecutionOrder(false)) { + if (outerNode.widgets) { + for (const widget of outerNode.widgets) { + // Allow widgets to run callbacks before a prompt has been queued + // e.g. random seed before every gen + widget.beforeQueued?.(); + } + } + + const innerNodes = outerNode.getInnerNodes ? outerNode.getInnerNodes() : [outerNode]; + for (const node of innerNodes) { + if (node.isVirtualNode) { + // Don't serialize frontend only nodes but let them make changes + if (node.applyToGraph) { + node.applyToGraph(); + } + } + } + } + + const workflow = this.graph.serialize(); + const output = {}; + // Process nodes in order of execution + for (const outerNode of this.graph.computeExecutionOrder(false)) { + const skipNode = outerNode.mode === 2 || outerNode.mode === 4; + const innerNodes = (!skipNode && outerNode.getInnerNodes) ? outerNode.getInnerNodes() : [outerNode]; + for (const node of innerNodes) { + if (node.isVirtualNode) { + continue; + } + + if (node.mode === 2 || node.mode === 4) { + // Don't serialize muted nodes + continue; + } + + const inputs = {}; + const widgets = node.widgets; + + // Store all widget values + if (widgets) { + for (const i in widgets) { + const widget = widgets[i]; + if (!widget.options || widget.options.serialize !== false) { + inputs[widget.name] = widget.serializeValue ? await widget.serializeValue(node, i) : widget.value; + } + } + } + + // Store all node links + for (let i in node.inputs) { + let parent = node.getInputNode(i); + if (parent) { + let link = node.getInputLink(i); + while (parent.mode === 4 || parent.isVirtualNode) { + let found = false; + if (parent.isVirtualNode) { + link = parent.getInputLink(link.origin_slot); + if (link) { + parent = parent.getInputNode(link.target_slot); + if (parent) { + found = true; + } + } + } else if (link && parent.mode === 4) { + let all_inputs = [link.origin_slot]; + if (parent.inputs) { + all_inputs = all_inputs.concat(Object.keys(parent.inputs)) + for (let parent_input in all_inputs) { + parent_input = all_inputs[parent_input]; + if (parent.inputs[parent_input]?.type === node.inputs[i].type) { + link = parent.getInputLink(parent_input); + if (link) { + parent = parent.getInputNode(parent_input); + } + found = true; + break; + } + } + } + } + + if (!found) { + break; + } + } + + if (link) { + if (parent?.updateLink) { + link = parent.updateLink(link); + } + if (link) { + inputs[node.inputs[i].name] = [String(link.origin_id), parseInt(link.origin_slot)]; + } + } + } + } + + let node_data = { + inputs, + class_type: node.comfyClass, + }; + + if (this.ui.settings.getSettingValue("Comfy.DevMode")) { + // Ignored by the backend. + node_data["_meta"] = { + title: node.title, + } + } + + output[String(node.id)] = node_data; + } + } + + // Remove inputs connected to removed nodes + + for (const o in output) { + for (const i in output[o].inputs) { + if (Array.isArray(output[o].inputs[i]) + && output[o].inputs[i].length === 2 + && !output[output[o].inputs[i][0]]) { + delete output[o].inputs[i]; + } + } + } + + return { workflow, output }; + } + + #formatPromptError(error) { + if (error == null) { + return "(unknown error)" + } + else if (typeof error === "string") { + return error; + } + else if (error.stack && error.message) { + return error.toString() + } + else if (error.response) { + let message = error.response.error.message; + if (error.response.error.details) + message += ": " + error.response.error.details; + for (const [nodeID, nodeError] of Object.entries(error.response.node_errors)) { + message += "\n" + nodeError.class_type + ":" + for (const errorReason of nodeError.errors) { + message += "\n - " + errorReason.message + ": " + errorReason.details + } + } + return message + } + return "(unknown error)" + } + + #formatExecutionError(error) { + if (error == null) { + return "(unknown error)" + } + + const traceback = error.traceback.join("") + const nodeId = error.node_id + const nodeType = error.node_type + + return `Error occurred when executing ${nodeType}:\n\n${error.exception_message}\n\n${traceback}` + } + + async queuePrompt(number, batchCount = 1) { + this.#queueItems.push({ number, batchCount }); + + // Only have one action process the items so each one gets a unique seed correctly + if (this.#processingQueue) { + return; + } + + this.#processingQueue = true; + this.lastNodeErrors = null; + + try { + while (this.#queueItems.length) { + ({ number, batchCount } = this.#queueItems.pop()); + + for (let i = 0; i < batchCount; i++) { + const p = await this.graphToPrompt(); + + try { + const res = await api.queuePrompt(number, p); + this.lastNodeErrors = res.node_errors; + if (this.lastNodeErrors.length > 0) { + this.canvas.draw(true, true); + } + } catch (error) { + const formattedError = this.#formatPromptError(error) + this.ui.dialog.show(formattedError); + if (error.response) { + this.lastNodeErrors = error.response.node_errors; + this.canvas.draw(true, true); + } + break; + } + + for (const n of p.workflow.nodes) { + const node = graph.getNodeById(n.id); + if (node.widgets) { + for (const widget of node.widgets) { + // Allow widgets to run callbacks after a prompt has been queued + // e.g. random seed after every gen + if (widget.afterQueued) { + widget.afterQueued(); + } + } + } + } + + this.canvas.draw(true, true); + await this.ui.queue.update(); + } + } + } finally { + this.#processingQueue = false; + } + api.dispatchEvent(new CustomEvent("promptQueued", { detail: { number, batchCount } })); + } + + /** + * Loads workflow data from the specified file + * @param {File} file + */ + async handleFile(file) { + if (file.type === "image/png") { + const pngInfo = await getPngMetadata(file); + if (pngInfo) { + if (pngInfo.workflow) { + await this.loadGraphData(JSON.parse(pngInfo.workflow)); + } else if (pngInfo.prompt) { + this.loadApiJson(JSON.parse(pngInfo.prompt)); + } else if (pngInfo.parameters) { + importA1111(this.graph, pngInfo.parameters); + } + } + } else if (file.type === "image/webp") { + const pngInfo = await getWebpMetadata(file); + if (pngInfo) { + if (pngInfo.workflow) { + this.loadGraphData(JSON.parse(pngInfo.workflow)); + } else if (pngInfo.Workflow) { + this.loadGraphData(JSON.parse(pngInfo.Workflow)); // Support loading workflows from that webp custom node. + } else if (pngInfo.prompt) { + this.loadApiJson(JSON.parse(pngInfo.prompt)); + } else if (pngInfo.Prompt) { + this.loadApiJson(JSON.parse(pngInfo.Prompt)); // Support loading prompts from that webp custom node. + } + } + } else if (file.type === "application/json" || file.name?.endsWith(".json")) { + const reader = new FileReader(); + reader.onload = async () => { + const jsonContent = JSON.parse(reader.result); + if (jsonContent?.templates) { + this.loadTemplateData(jsonContent); + } else if(this.isApiJson(jsonContent)) { + this.loadApiJson(jsonContent); + } else { + await this.loadGraphData(jsonContent); + } + }; + reader.readAsText(file); + } else if (file.name?.endsWith(".latent") || file.name?.endsWith(".safetensors")) { + const info = await getLatentMetadata(file); + if (info.workflow) { + await this.loadGraphData(JSON.parse(info.workflow)); + } else if (info.prompt) { + this.loadApiJson(JSON.parse(info.prompt)); + } + } + } + + isApiJson(data) { + return Object.values(data).every((v) => v.class_type); + } + + loadApiJson(apiData) { + const missingNodeTypes = Object.values(apiData).filter((n) => !LiteGraph.registered_node_types[n.class_type]); + if (missingNodeTypes.length) { + this.showMissingNodesError(missingNodeTypes.map(t => t.class_type), false); + return; + } + + const ids = Object.keys(apiData); + app.graph.clear(); + for (const id of ids) { + const data = apiData[id]; + const node = LiteGraph.createNode(data.class_type); + node.id = isNaN(+id) ? id : +id; + graph.add(node); + } + + for (const id of ids) { + const data = apiData[id]; + const node = app.graph.getNodeById(id); + for (const input in data.inputs ?? {}) { + const value = data.inputs[input]; + if (value instanceof Array) { + const [fromId, fromSlot] = value; + const fromNode = app.graph.getNodeById(fromId); + let toSlot = node.inputs?.findIndex((inp) => inp.name === input); + if (toSlot == null || toSlot === -1) { + try { + // Target has no matching input, most likely a converted widget + const widget = node.widgets?.find((w) => w.name === input); + if (widget && node.convertWidgetToInput?.(widget)) { + toSlot = node.inputs?.length - 1; + } + } catch (error) {} + } + if (toSlot != null || toSlot !== -1) { + fromNode.connect(fromSlot, node, toSlot); + } + } else { + const widget = node.widgets?.find((w) => w.name === input); + if (widget) { + widget.value = value; + widget.callback?.(value); + } + } + } + } + + app.graph.arrange(); + } + + /** + * Registers a Comfy web extension with the app + * @param {ComfyExtension} extension + */ + registerExtension(extension) { + if (!extension.name) { + throw new Error("Extensions must have a 'name' property."); + } + if (this.extensions.find((ext) => ext.name === extension.name)) { + throw new Error(`Extension named '${extension.name}' already registered.`); + } + this.extensions.push(extension); + } + + /** + * Refresh combo list on whole nodes + */ + async refreshComboInNodes() { + const defs = await api.getNodeDefs(); + + for (const nodeId in defs) { + this.registerNodeDef(nodeId, defs[nodeId]); + } + + for(let nodeNum in this.graph._nodes) { + const node = this.graph._nodes[nodeNum]; + const def = defs[node.type]; + + // Allow primitive nodes to handle refresh + node.refreshComboInNode?.(defs); + + if(!def) + continue; + + for(const widgetNum in node.widgets) { + const widget = node.widgets[widgetNum] + if(widget.type == "combo" && def["input"]["required"][widget.name] !== undefined) { + widget.options.values = def["input"]["required"][widget.name][0]; + + if(widget.name != 'image' && !widget.options.values.includes(widget.value)) { + widget.value = widget.options.values[0]; + widget.callback(widget.value); + } + } + } + } + + await this.#invokeExtensionsAsync("refreshComboInNodes", defs); + } + + /** + * Clean current state + */ + clean() { + this.nodeOutputs = {}; + this.nodePreviewImages = {} + this.lastNodeErrors = null; + this.lastExecutionError = null; + this.runningNodeId = null; + } +} + +export const app = new ComfyApp(); diff --git a/web/scripts/defaultGraph.js b/web/scripts/defaultGraph.js new file mode 100644 index 0000000000000000000000000000000000000000..f8e046cdfdec6879052acbd88d7f4a4f1ff7e294 --- /dev/null +++ b/web/scripts/defaultGraph.js @@ -0,0 +1,1476 @@ +export const defaultGraph = { + last_node_id: 273, + last_link_id: 423, + nodes: [{ + id: 55, + type: "Reroute", + pos: [2350, 1250], + size: [75, 26], + flags: {}, + order: 32, + mode: 0, + inputs: [{ + name: "", + type: "*", + link: 88, + pos: [37.5, 0] + }], + outputs: [{ + name: "", + type: "IMAGE", + links: [89], + slot_index: 0 + }], + properties: { + showOutputText: false, + horizontal: true + }, + color: "#322", + bgcolor: "#533" + }, { + id: 56, + type: "Reroute", + pos: [2410, 1300], + size: [75, 26], + flags: {}, + order: 33, + mode: 0, + inputs: [{ + name: "", + type: "*", + link: 89 + }], + outputs: [{ + name: "", + type: "IMAGE", + links: [93], + slot_index: 0 + }], + properties: { + showOutputText: false, + horizontal: false + }, + color: "#322", + bgcolor: "#533" + }, { + id: 59, + type: "Reroute", + pos: [1000, 1400], + size: [75, 26], + flags: {}, + order: 22, + mode: 0, + inputs: [{ + name: "", + type: "*", + link: 292, + pos: [37.5, 0] + }], + outputs: [{ + name: "", + type: "BASIC_PIPE", + links: [99], + slot_index: 0 + }], + properties: { + showOutputText: false, + horizontal: true + } + }, { + id: 57, + type: "Reroute", + pos: [2830, 1300], + size: [75, 26], + flags: {}, + order: 34, + mode: 0, + inputs: [{ + name: "", + type: "*", + link: 93 + }], + outputs: [{ + name: "", + type: "IMAGE", + links: [94, 95, 205], + slot_index: 0 + }], + properties: { + showOutputText: false, + horizontal: false + }, + color: "#322", + bgcolor: "#533" + }, { + id: 101, + type: "SEGSPreview", + pos: [3054, 1926], + size: { + "0": 315, + "1": 102 + }, + flags: {}, + order: 37, + mode: 0, + inputs: [{ + name: "segs", + type: "SEGS", + link: 208 + }, { + name: "fallback_image_opt", + type: "IMAGE", + link: null + }], + outputs: [{ + name: "IMAGE", + type: "IMAGE", + links: null, + shape: 6 + }], + properties: { + "Node name for S&R": "SEGSPreview" + }, + widgets_values: [true, 0.2] + }, { + id: 156, + type: "ImpactSimpleDetectorSEGS_for_AD", + pos: [2610, 1590], + size: { + "0": 319.20001220703125, + "1": 334 + }, + flags: {}, + order: 35, + mode: 0, + inputs: [{ + name: "bbox_detector", + type: "BBOX_DETECTOR", + link: 204 + }, { + name: "image_frames", + type: "IMAGE", + link: 205 + }, { + name: "sam_model_opt", + type: "SAM_MODEL", + link: 206 + }, { + name: "segm_detector_opt", + type: "SEGM_DETECTOR", + link: null + }], + outputs: [{ + name: "SEGS", + type: "SEGS", + links: [207, 208], + shape: 3 + }], + properties: { + "Node name for S&R": "ImpactSimpleDetectorSEGS_for_AD" + }, + widgets_values: [0.5, 0, 3, 10, 0.5, 0, 0, 0.7, "Pivot SEGS", "Combined mask"] + }, { + id: 78, + type: "SAMLoader", + pos: [2107, 1783], + size: { + "0": 315, + "1": 82 + }, + flags: {}, + order: 0, + mode: 0, + outputs: [{ + name: "SAM_MODEL", + type: "SAM_MODEL", + links: [206], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "SAMLoader" + }, + widgets_values: ["sam_vit_b_01ec64.pth", "AUTO"], + color: "#322", + bgcolor: "#533" + }, { + id: 49, + type: "SEGSPaste", + pos: [3470, 1300], + size: { + "0": 300, + "1": 122 + }, + flags: {}, + order: 38, + mode: 0, + inputs: [{ + name: "image", + type: "IMAGE", + link: 94 + }, { + name: "segs", + type: "SEGS", + link: 72 + }, { + name: "ref_image_opt", + type: "IMAGE", + link: null + }], + outputs: [{ + name: "IMAGE", + type: "IMAGE", + links: [132, 262], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "SEGSPaste" + }, + widgets_values: [5, 255], + color: "#322", + bgcolor: "#533" + }, { + id: 174, + type: "Reroute", + pos: [3842.979183810741, -253.53335906085954], + size: [75, 26], + flags: {}, + order: 21, + mode: 0, + inputs: [{ + name: "", + type: "*", + link: 291 + }], + outputs: [{ + name: "", + type: "BASIC_PIPE", + links: [227], + slot_index: 0 + }], + properties: { + showOutputText: false, + horizontal: false + } + }, { + id: 54, + type: "Reroute", + pos: [2488, 620], + size: [75, 26], + flags: {}, + order: 31, + mode: 0, + inputs: [{ + name: "", + type: "*", + link: 87, + pos: [37.5, 0] + }], + outputs: [{ + name: "", + type: "IMAGE", + links: [88], + slot_index: 0 + }], + properties: { + showOutputText: false, + horizontal: true + } + }, { + id: 151, + type: "FreeU_V2", + pos: [576, 311], + size: { + "0": 315, + "1": 130 + }, + flags: { + collapsed: true + }, + order: 17, + mode: 0, + inputs: [{ + name: "model", + type: "MODEL", + link: 418 + }], + outputs: [{ + name: "MODEL", + type: "MODEL", + links: [201], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "FreeU_V2" + }, + widgets_values: [1.1, 1.2, 0.9, 0.4] + }, { + id: 41, + type: "SEGSDetailerForAnimateDiff", + pos: [3053, 1315], + size: { + "0": 340, + "1": 570 + }, + flags: {}, + order: 36, + mode: 0, + inputs: [{ + name: "image_frames", + type: "IMAGE", + link: 95, + slot_index: 0 + }, { + name: "segs", + type: "SEGS", + link: 207 + }, { + name: "basic_pipe", + type: "BASIC_PIPE", + link: 138, + slot_index: 2 + }, { + name: "refiner_basic_pipe_opt", + type: "BASIC_PIPE", + link: null + }], + outputs: [{ + name: "segs", + type: "SEGS", + links: [72], + shape: 3, + slot_index: 0 + }, { + name: "cnet_images", + type: "IMAGE", + links: null, + shape: 6 + }], + properties: { + "Node name for S&R": "SEGSDetailerForAnimateDiff" + }, + widgets_values: [512, false, 512, 574783657760831, "fixed", 20, 8, "euler", "normal", 0.8, 0.2], + color: "#322", + bgcolor: "#533" + }, { + id: 10, + type: "VAEDecode", + pos: [2260, 184], + size: { + "0": 210, + "1": 46 + }, + flags: {}, + order: 28, + mode: 0, + inputs: [{ + name: "samples", + type: "LATENT", + link: 377 + }, { + name: "vae", + type: "VAE", + link: 85 + }], + outputs: [{ + name: "IMAGE", + type: "IMAGE", + links: [47, 86], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "VAEDecode" + } + }, { + id: 53, + type: "Reroute", + pos: [2469, 476], + size: [75, 26], + flags: {}, + order: 30, + mode: 0, + inputs: [{ + name: "", + type: "*", + link: 86 + }], + outputs: [{ + name: "", + type: "IMAGE", + links: [87], + slot_index: 0 + }], + properties: { + showOutputText: false, + horizontal: false + } + }, { + id: 52, + type: "FromBasicPipe", + pos: [1226, 391], + size: { + "0": 241.79998779296875, + "1": 106 + }, + flags: { + collapsed: true + }, + order: 20, + mode: 0, + inputs: [{ + name: "basic_pipe", + type: "BASIC_PIPE", + link: 290, + slot_index: 0 + }], + outputs: [{ + name: "model", + type: "MODEL", + links: [374, 385], + shape: 3, + slot_index: 0 + }, { + name: "clip", + type: "CLIP", + links: null, + shape: 3 + }, { + name: "vae", + type: "VAE", + links: [85], + shape: 3, + slot_index: 2 + }, { + name: "positive", + type: "CONDITIONING", + links: [375], + shape: 3, + slot_index: 3 + }, { + name: "negative", + type: "CONDITIONING", + links: [376], + shape: 3, + slot_index: 4 + }], + properties: { + "Node name for S&R": "FromBasicPipe" + } + }, { + id: 248, + type: "KSamplerAdvanced", + pos: [1923, 224], + size: { + "0": 315, + "1": 334 + }, + flags: {}, + order: 27, + mode: 0, + inputs: [{ + name: "model", + type: "MODEL", + link: 374 + }, { + name: "positive", + type: "CONDITIONING", + link: 375 + }, { + name: "negative", + type: "CONDITIONING", + link: 376 + }, { + name: "latent_image", + type: "LATENT", + link: 384 + }], + outputs: [{ + name: "LATENT", + type: "LATENT", + links: [377], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "KSamplerAdvanced" + }, + widgets_values: ["disable", 774476516625499, "randomize", 20, 8, "dpmpp_2m", "karras", 0, 20, "disable"] + }, { + id: 175, + type: "FromBasicPipe", + pos: [4135, -346], + size: { + "0": 241.79998779296875, + "1": 106 + }, + flags: {}, + order: 24, + mode: 0, + inputs: [{ + name: "basic_pipe", + type: "BASIC_PIPE", + link: 227 + }], + outputs: [{ + name: "model", + type: "MODEL", + links: [228], + shape: 3, + slot_index: 0 + }, { + name: "clip", + type: "CLIP", + links: null, + shape: 3, + slot_index: 1 + }, { + name: "vae", + type: "VAE", + links: [231], + shape: 3, + slot_index: 2 + }, { + name: "positive", + type: "CONDITIONING", + links: [229], + shape: 3, + slot_index: 3 + }, { + name: "negative", + type: "CONDITIONING", + links: [230], + shape: 3, + slot_index: 4 + }], + properties: { + "Node name for S&R": "FromBasicPipe" + } + }, { + id: 157, + type: "UpscaleModelLoader", + pos: [4461, -261], + size: { + "0": 315, + "1": 58 + }, + flags: { + collapsed: true + }, + order: 1, + mode: 0, + outputs: [{ + name: "UPSCALE_MODEL", + type: "UPSCALE_MODEL", + links: [413], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "UpscaleModelLoader" + }, + widgets_values: ["4xUltrasharpV10.pt"] + }, { + id: 188, + type: "Reroute", + pos: [4454, -192], + size: [82, 26], + flags: {}, + order: 40, + mode: 0, + inputs: [{ + name: "", + type: "*", + link: 262 + }], + outputs: [{ + name: "IMAGE", + type: "IMAGE", + links: [263], + slot_index: 0 + }], + properties: { + showOutputText: true, + horizontal: false + } + }, { + id: 172, + type: "UltimateSDUpscale", + pos: [4725, -738], + size: { + "0": 315, + "1": 614 + }, + flags: {}, + order: 41, + mode: 0, + inputs: [{ + name: "image", + type: "IMAGE", + link: 263 + }, { + name: "model", + type: "MODEL", + link: 228 + }, { + name: "positive", + type: "CONDITIONING", + link: 229 + }, { + name: "negative", + type: "CONDITIONING", + link: 230 + }, { + name: "vae", + type: "VAE", + link: 231 + }, { + name: "upscale_model", + type: "UPSCALE_MODEL", + link: 413 + }], + outputs: [{ + name: "IMAGE", + type: "IMAGE", + links: [243], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "UltimateSDUpscale" + }, + widgets_values: [2, 362524318073972, "randomize", 20, 8, "euler", "normal", 0.2, "Linear", 512, 512, 8, 32, "None", 1, 64, 8, 16, true, false] + }, { + id: 183, + type: "ImageCASharpening+", + pos: [5109, -297], + size: { + "0": 315, + "1": 58 + }, + flags: { + collapsed: true + }, + order: 42, + mode: 0, + inputs: [{ + name: "image", + type: "IMAGE", + link: 243 + }], + outputs: [{ + name: "IMAGE", + type: "IMAGE", + links: [244], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "ImageCASharpening+" + }, + widgets_values: [0.2] + }, { + id: 51, + type: "VHS_VideoCombine", + pos: [3540, 13], + size: [930, 1214], + flags: {}, + order: 39, + mode: 0, + inputs: [{ + name: "images", + type: "IMAGE", + link: 132 + }, { + name: "audio", + type: "VHS_AUDIO", + link: null + }, { + name: "batch_manager", + type: "VHS_BatchManager", + link: null + }], + outputs: [{ + name: "Filenames", + type: "VHS_FILENAMES", + links: null, + shape: 3 + }], + title: "Video Combine - Face Detailed", + properties: { + "Node name for S&R": "VHS_VideoCombine" + }, + widgets_values: { + frame_rate: 8, + loop_count: 0, + filename_prefix: "face_detailer", + format: "video/h264-mp4", + pix_fmt: "yuv420p", + crf: 20, + save_metadata: true, + pingpong: false, + save_output: false, + videopreview: { + hidden: false, + paused: false, + params: { + filename: "face_detailer_00021.mp4", + subfolder: "", + type: "temp", + format: "video/h264-mp4" + } + } + }, + color: "#322", + bgcolor: "#533" + }, { + id: 35, + type: "VHS_VideoCombine", + pos: [2526, 24], + size: [930, 1214], + flags: {}, + order: 29, + mode: 0, + inputs: [{ + name: "images", + type: "IMAGE", + link: 47 + }, { + name: "audio", + type: "VHS_AUDIO", + link: null + }, { + name: "batch_manager", + type: "VHS_BatchManager", + link: null + }], + outputs: [{ + name: "Filenames", + type: "VHS_FILENAMES", + links: null, + shape: 3 + }], + properties: { + "Node name for S&R": "VHS_VideoCombine" + }, + widgets_values: { + frame_rate: 8, + loop_count: 0, + filename_prefix: "orig", + format: "video/h264-mp4", + pix_fmt: "yuv420p", + crf: 20, + save_metadata: true, + pingpong: false, + save_output: false, + videopreview: { + hidden: false, + paused: true, + params: { + filename: "orig_00029.mp4", + subfolder: "", + type: "temp", + format: "video/h264-mp4" + } + } + }, + color: "#223", + bgcolor: "#335" + }, { + id: 176, + type: "VHS_VideoCombine", + pos: [4633, 29], + size: [930, 1214], + flags: {}, + order: 43, + mode: 0, + inputs: [{ + name: "images", + type: "IMAGE", + link: 244, + slot_index: 0 + }, { + name: "audio", + type: "VHS_AUDIO", + link: null + }, { + name: "batch_manager", + type: "VHS_BatchManager", + link: null + }], + outputs: [{ + name: "Filenames", + type: "VHS_FILENAMES", + links: null, + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "VHS_VideoCombine" + }, + widgets_values: { + frame_rate: 8, + loop_count: 0, + filename_prefix: "SR", + format: "video/h265-mp4", + pix_fmt: "yuv420p10le", + crf: 22, + save_metadata: true, + pingpong: false, + save_output: true, + videopreview: { + hidden: false, + paused: false, + params: { + filename: "SR_00053.mp4", + subfolder: "", + type: "output", + format: "video/h265-mp4" + } + } + } + }, { + id: 204, + type: "ImpactInt", + pos: [-315, 1225], + size: { + "0": 315, + "1": 58 + }, + flags: {}, + order: 2, + mode: 0, + outputs: [{ + name: "INT", + type: "INT", + links: [270, 308, 422], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "ImpactInt" + }, + widgets_values: [16] + }, { + id: 2, + type: "VAELoader", + pos: [383, 471], + size: { + "0": 385.8948669433594, + "1": 58 + }, + flags: { + collapsed: true + }, + order: 3, + mode: 0, + outputs: [{ + name: "VAE", + type: "VAE", + links: [96], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "VAELoader" + }, + widgets_values: ["vae-ft-mse-840000-ema-pruned.safetensors"] + }, { + id: 6, + type: "CLIPTextEncode", + pos: [319, 553], + size: { + "0": 370, + "1": 110 + }, + flags: { + collapsed: true + }, + order: 14, + mode: 0, + inputs: [{ + name: "clip", + type: "CLIP", + link: 405 + }], + outputs: [{ + name: "CONDITIONING", + type: "CONDITIONING", + links: [275], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "CLIPTextEncode" + }, + widgets_values: ["(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, UnrealisticDream"], + color: "#322", + bgcolor: "#533" + }, { + id: 42, + type: "ToBasicPipe", + pos: [658, 388], + size: { + "0": 241.79998779296875, + "1": 106 + }, + flags: { + collapsed: false + }, + order: 18, + mode: 0, + inputs: [{ + name: "model", + type: "MODEL", + link: 201, + slot_index: 0 + }, { + name: "clip", + type: "CLIP", + link: 404, + slot_index: 1 + }, { + name: "vae", + type: "VAE", + link: 96, + slot_index: 2 + }, { + name: "positive", + type: "CONDITIONING", + link: 373, + slot_index: 3 + }, { + name: "negative", + type: "CONDITIONING", + link: 275, + slot_index: 4 + }], + outputs: [{ + name: "basic_pipe", + type: "BASIC_PIPE", + links: [408], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "ToBasicPipe" + } + }, { + id: 217, + type: "Reroute", + pos: [971, 390], + size: [124, 26], + flags: {}, + order: 19, + mode: 0, + inputs: [{ + name: "", + type: "*", + link: 408 + }], + outputs: [{ + name: "BASIC_PIPE", + type: "BASIC_PIPE", + links: [290, 291, 292], + slot_index: 0 + }], + properties: { + showOutputText: true, + horizontal: false + } + }, { + id: 223, + type: "EmptyLatentImage", + pos: [729, 767], + size: { + "0": 315, + "1": 130 + }, + flags: {}, + order: 12, + mode: 0, + inputs: [{ + name: "batch_size", + type: "INT", + link: 308, + widget: { + name: "batch_size" + } + }], + outputs: [{ + name: "LATENT", + type: "LATENT", + links: [421], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "EmptyLatentImage" + }, + widgets_values: [512, 512, 1] + }, { + id: 253, + type: "BNK_InjectNoise", + pos: [1629, 684], + size: { + "0": 315, + "1": 98 + }, + flags: { + collapsed: false + }, + order: 26, + mode: 0, + inputs: [{ + name: "latents", + type: "LATENT", + link: 421 + }, { + name: "noise", + type: "LATENT", + link: 420 + }, { + name: "mask", + type: "MASK", + link: null + }, { + name: "strength", + type: "FLOAT", + link: 383, + widget: { + name: "strength" + } + }], + outputs: [{ + name: "LATENT", + type: "LATENT", + links: [384], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "BNK_InjectNoise" + }, + widgets_values: [1] + }, { + id: 32, + type: "CheckpointLoaderSimple", + pos: [-1276, 34], + size: { + "0": 315, + "1": 98 + }, + flags: {}, + order: 4, + mode: 0, + outputs: [{ + name: "MODEL", + type: "MODEL", + links: [415], + shape: 3, + slot_index: 0 + }, { + name: "CLIP", + type: "CLIP", + links: [404, 405, 406], + shape: 3, + slot_index: 1 + }, { + name: "VAE", + type: "VAE", + links: [], + shape: 3 + }], + properties: { + "Node name for S&R": "CheckpointLoaderSimple" + }, + widgets_values: ["realisticVision_v51.safetensors"] + }, { + id: 102, + type: "ADE_AnimateDiffUniformContextOptions", + pos: [-335, -8], + size: { + "0": 315, + "1": 270 + }, + flags: { + collapsed: true + }, + order: 5, + mode: 0, + inputs: [{ + name: "prev_context", + type: "CONTEXT_OPTIONS", + link: null + }, { + name: "view_opts", + type: "VIEW_OPTS", + link: null + }], + outputs: [{ + name: "CONTEXT_OPTIONS", + type: "CONTEXT_OPTIONS", + links: [416], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "ADE_AnimateDiffUniformContextOptions" + }, + widgets_values: [16, 1, 2, "uniform", false, "flat", false, 0, 1] + }, { + id: 254, + type: "BNK_GetSigma", + pos: [1362, 913], + size: { + "0": 315, + "1": 154 + }, + flags: {}, + order: 23, + mode: 0, + inputs: [{ + name: "model", + type: "MODEL", + link: 385 + }], + outputs: [{ + name: "FLOAT", + type: "FLOAT", + links: [383], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "BNK_GetSigma" + }, + widgets_values: ["dpmpp_2m", "karras", 20, 0, 20] + }, { + id: 75, + type: "UltralyticsDetectorProvider", + pos: [2088, 1625], + size: { + "0": 315, + "1": 78 + }, + flags: {}, + order: 6, + mode: 0, + outputs: [{ + name: "BBOX_DETECTOR", + type: "BBOX_DETECTOR", + links: [204], + shape: 3, + slot_index: 0 + }, { + name: "SEGM_DETECTOR", + type: "SEGM_DETECTOR", + links: [], + shape: 3, + slot_index: 1 + }], + properties: { + "Node name for S&R": "UltralyticsDetectorProvider" + }, + widgets_values: ["bbox/face_yolov8m.pt"], + color: "#322", + bgcolor: "#533" + }, { + id: 264, + type: "Note", + pos: [620, 1218], + size: { + "0": 534.8900146484375, + "1": 72.82633972167969 + }, + flags: {}, + order: 7, + mode: 0, + properties: { + text: "" + }, + widgets_values: ["Magic Album - 3D Gaussian Noise\n\nInitialize the frames by 3D Gaussian noise with covariance specified by cov_factor."], + color: "#432", + bgcolor: "#653" + }, { + id: 265, + type: "Note", + pos: [2426, 1444], + size: { + "0": 583.965576171875, + "1": 78.52656555175781 + }, + flags: {}, + order: 8, + mode: 0, + properties: { + text: "" + }, + widgets_values: ["Magic Album - Face Detailer\n\nApply Identity-specific VCD on the cropped frames of face to improve likeness. This modules is important whenever the face is small in the generated video."], + color: "#432", + bgcolor: "#653" + }, { + id: 266, + type: "Note", + pos: [4238, -694], + size: { + "0": 359.29656982421875, + "1": 62.93407440185547 + }, + flags: {}, + order: 9, + mode: 0, + properties: { + text: "" + }, + widgets_values: ["Magic Album - SR module\nApply Identity-specific VCD with super resolution model."], + color: "#432", + bgcolor: "#653" + }, { + id: 263, + type: "Note", + pos: [-423, 1338], + size: { + "0": 504.50054931640625, + "1": 130.17208862304688 + }, + flags: {}, + order: 10, + mode: 0, + properties: { + text: "" + }, + widgets_values: ["Magic Album - Prompt Travel\nUse Batch Prompt Schedule to assign different prompts for different range of frames.\n\nFor example, with the SCG Emotions Pack from (https://civitai.com/models/8860), the user can change the expression of the character by typing:\n\n\"0\":\"embedding:emotion-grin\",\n\"8\":\"embedding:emotion-smile\"\n\n"], + color: "#432", + bgcolor: "#653" + }, { + id: 60, + type: "Reroute", + pos: [1120, 1450], + size: [75, 26], + flags: {}, + order: 25, + mode: 0, + inputs: [{ + name: "", + type: "*", + link: 99 + }], + outputs: [{ + name: "", + type: "BASIC_PIPE", + links: [138], + slot_index: 0 + }], + properties: { + showOutputText: false, + horizontal: false + } + }, { + id: 262, + type: "MagicAlbum3DGaussianNoise", + pos: [736, 988], + size: { + "0": 336, + "1": 178 + }, + flags: {}, + order: 13, + mode: 0, + inputs: [{ + name: "batch_size", + type: "INT", + link: 422, + widget: { + name: "batch_size" + } + }], + outputs: [{ + name: "LATENT", + type: "LATENT", + links: [420], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "MagicAlbum3DGaussianNoise" + }, + widgets_values: [512, 512, 1, 674280267919247, "randomize", 0.15] + }, { + id: 261, + type: "ADE_AnimateDiffLoaderWithContext", + pos: [311, 85], + size: { + "0": 315, + "1": 230 + }, + flags: { + collapsed: true + }, + order: 16, + mode: 0, + inputs: [{ + name: "model", + type: "MODEL", + link: 415 + }, { + name: "context_options", + type: "CONTEXT_OPTIONS", + link: 416 + }, { + name: "motion_lora", + type: "MOTION_LORA", + link: 417 + }, { + name: "ad_settings", + type: "AD_SETTINGS", + link: null + }, { + name: "sample_settings", + type: "SAMPLE_SETTINGS", + link: null + }, { + name: "ad_keyframes", + type: "AD_KEYFRAMES", + link: null + }], + outputs: [{ + name: "MODEL", + type: "MODEL", + links: [418], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "ADE_AnimateDiffLoaderWithContext" + }, + widgets_values: ["mm_sd_v15_v2.ckpt", "autoselect", 1, true] + }, { + id: 202, + type: "BatchPromptSchedule", + pos: [148, 1176], + size: [379.556396484375, 501.3092041015625], + flags: {}, + order: 15, + mode: 0, + inputs: [{ + name: "clip", + type: "CLIP", + link: 406 + }, { + name: "max_frames", + type: "INT", + link: 270, + widget: { + name: "max_frames" + } + }], + outputs: [{ + name: "POS", + type: "CONDITIONING", + links: [373], + shape: 3, + slot_index: 0 + }, { + name: "NEG", + type: "CONDITIONING", + links: [], + shape: 3, + slot_index: 1 + }], + properties: { + "Node name for S&R": "BatchPromptSchedule" + }, + widgets_values: ["\"0\":\"\",\n\"8\":\"\"", 120, false, "a photo of embedding:altman-gstep-200 man in superman costume in the outer space, stars in the background", "", 0, 0, 0, 0, 0] + }, { + id: 196, + type: "ADE_AnimateDiffLoRALoader", + pos: [-375, -182], + size: { + "0": 355.20001220703125, + "1": 82 + }, + flags: {}, + order: 11, + mode: 0, + inputs: [{ + name: "prev_motion_lora", + type: "MOTION_LORA", + link: null + }], + outputs: [{ + name: "MOTION_LORA", + type: "MOTION_LORA", + links: [417], + shape: 3, + slot_index: 0 + }], + properties: { + "Node name for S&R": "ADE_AnimateDiffLoRALoader" + }, + widgets_values: ["v2_lora_ZoomIn.ckpt", 0.6] + }], + links: [ + [47, 10, 0, 35, 0, "IMAGE"], + [72, 41, 0, 49, 1, "SEGS"], + [85, 52, 2, 10, 1, "VAE"], + [86, 10, 0, 53, 0, "*"], + [87, 53, 0, 54, 0, "*"], + [88, 54, 0, 55, 0, "*"], + [89, 55, 0, 56, 0, "*"], + [93, 56, 0, 57, 0, "*"], + [94, 57, 0, 49, 0, "IMAGE"], + [95, 57, 0, 41, 0, "IMAGE"], + [96, 2, 0, 42, 2, "VAE"], + [99, 59, 0, 60, 0, "*"], + [132, 49, 0, 51, 0, "IMAGE"], + [138, 60, 0, 41, 2, "BASIC_PIPE"], + [201, 151, 0, 42, 0, "MODEL"], + [204, 75, 0, 156, 0, "BBOX_DETECTOR"], + [205, 57, 0, 156, 1, "IMAGE"], + [206, 78, 0, 156, 2, "SAM_MODEL"], + [207, 156, 0, 41, 1, "SEGS"], + [208, 156, 0, 101, 0, "SEGS"], + [227, 174, 0, 175, 0, "BASIC_PIPE"], + [228, 175, 0, 172, 1, "MODEL"], + [229, 175, 3, 172, 2, "CONDITIONING"], + [230, 175, 4, 172, 3, "CONDITIONING"], + [231, 175, 2, 172, 4, "VAE"], + [243, 172, 0, 183, 0, "IMAGE"], + [244, 183, 0, 176, 0, "IMAGE"], + [262, 49, 0, 188, 0, "*"], + [263, 188, 0, 172, 0, "IMAGE"], + [270, 204, 0, 202, 1, "INT"], + [275, 6, 0, 42, 4, "CONDITIONING"], + [290, 217, 0, 52, 0, "BASIC_PIPE"], + [291, 217, 0, 174, 0, "*"], + [292, 217, 0, 59, 0, "*"], + [308, 204, 0, 223, 0, "INT"], + [373, 202, 0, 42, 3, "CONDITIONING"], + [374, 52, 0, 248, 0, "MODEL"], + [375, 52, 3, 248, 1, "CONDITIONING"], + [376, 52, 4, 248, 2, "CONDITIONING"], + [377, 248, 0, 10, 0, "LATENT"], + [383, 254, 0, 253, 3, "FLOAT"], + [384, 253, 0, 248, 3, "LATENT"], + [385, 52, 0, 254, 0, "MODEL"], + [404, 32, 1, 42, 1, "CLIP"], + [405, 32, 1, 6, 0, "CLIP"], + [406, 32, 1, 202, 0, "CLIP"], + [408, 42, 0, 217, 0, "*"], + [413, 157, 0, 172, 5, "UPSCALE_MODEL"], + [415, 32, 0, 261, 0, "MODEL"], + [416, 102, 0, 261, 1, "CONTEXT_OPTIONS"], + [417, 196, 0, 261, 2, "MOTION_LORA"], + [418, 261, 0, 151, 0, "MODEL"], + [420, 262, 0, 253, 1, "LATENT"], + [421, 223, 0, 253, 0, "LATENT"], + [422, 204, 0, 262, 0, "INT"] + ], + groups: [], + config: {}, + extra: {}, + version: 0.4 +}; \ No newline at end of file diff --git a/web/scripts/domWidget.js b/web/scripts/domWidget.js new file mode 100644 index 0000000000000000000000000000000000000000..d5eeebdbd392b49fdd5c7c344289d0d822b2854e --- /dev/null +++ b/web/scripts/domWidget.js @@ -0,0 +1,326 @@ +import { app, ANIM_PREVIEW_WIDGET } from "./app.js"; + +const SIZE = Symbol(); + +function intersect(a, b) { + const x = Math.max(a.x, b.x); + const num1 = Math.min(a.x + a.width, b.x + b.width); + const y = Math.max(a.y, b.y); + const num2 = Math.min(a.y + a.height, b.y + b.height); + if (num1 >= x && num2 >= y) return [x, y, num1 - x, num2 - y]; + else return null; +} + +function getClipPath(node, element, elRect) { + const selectedNode = Object.values(app.canvas.selected_nodes)[0]; + if (selectedNode && selectedNode !== node) { + const MARGIN = 7; + const scale = app.canvas.ds.scale; + + const bounding = selectedNode.getBounding(); + const intersection = intersect( + { x: elRect.x / scale, y: elRect.y / scale, width: elRect.width / scale, height: elRect.height / scale }, + { + x: selectedNode.pos[0] + app.canvas.ds.offset[0] - MARGIN, + y: selectedNode.pos[1] + app.canvas.ds.offset[1] - LiteGraph.NODE_TITLE_HEIGHT - MARGIN, + width: bounding[2] + MARGIN + MARGIN, + height: bounding[3] + MARGIN + MARGIN, + } + ); + + if (!intersection) { + return ""; + } + + const widgetRect = element.getBoundingClientRect(); + const clipX = intersection[0] - widgetRect.x / scale + "px"; + const clipY = intersection[1] - widgetRect.y / scale + "px"; + const clipWidth = intersection[2] + "px"; + const clipHeight = intersection[3] + "px"; + const path = `polygon(0% 0%, 0% 100%, ${clipX} 100%, ${clipX} ${clipY}, calc(${clipX} + ${clipWidth}) ${clipY}, calc(${clipX} + ${clipWidth}) calc(${clipY} + ${clipHeight}), ${clipX} calc(${clipY} + ${clipHeight}), ${clipX} 100%, 100% 100%, 100% 0%)`; + return path; + } + return ""; +} + +function computeSize(size) { + if (this.widgets?.[0]?.last_y == null) return; + + let y = this.widgets[0].last_y; + let freeSpace = size[1] - y; + + let widgetHeight = 0; + let dom = []; + for (const w of this.widgets) { + if (w.type === "converted-widget") { + // Ignore + delete w.computedHeight; + } else if (w.computeSize) { + widgetHeight += w.computeSize()[1] + 4; + } else if (w.element) { + // Extract DOM widget size info + const styles = getComputedStyle(w.element); + let minHeight = w.options.getMinHeight?.() ?? parseInt(styles.getPropertyValue("--comfy-widget-min-height")); + let maxHeight = w.options.getMaxHeight?.() ?? parseInt(styles.getPropertyValue("--comfy-widget-max-height")); + + let prefHeight = w.options.getHeight?.() ?? styles.getPropertyValue("--comfy-widget-height"); + if (prefHeight.endsWith?.("%")) { + prefHeight = size[1] * (parseFloat(prefHeight.substring(0, prefHeight.length - 1)) / 100); + } else { + prefHeight = parseInt(prefHeight); + if (isNaN(minHeight)) { + minHeight = prefHeight; + } + } + if (isNaN(minHeight)) { + minHeight = 50; + } + if (!isNaN(maxHeight)) { + if (!isNaN(prefHeight)) { + prefHeight = Math.min(prefHeight, maxHeight); + } else { + prefHeight = maxHeight; + } + } + dom.push({ + minHeight, + prefHeight, + w, + }); + } else { + widgetHeight += LiteGraph.NODE_WIDGET_HEIGHT + 4; + } + } + + freeSpace -= widgetHeight; + + // Calculate sizes with all widgets at their min height + const prefGrow = []; // Nodes that want to grow to their prefd size + const canGrow = []; // Nodes that can grow to auto size + let growBy = 0; + for (const d of dom) { + freeSpace -= d.minHeight; + if (isNaN(d.prefHeight)) { + canGrow.push(d); + d.w.computedHeight = d.minHeight; + } else { + const diff = d.prefHeight - d.minHeight; + if (diff > 0) { + prefGrow.push(d); + growBy += diff; + d.diff = diff; + } else { + d.w.computedHeight = d.minHeight; + } + } + } + + if (this.imgs && !this.widgets.find((w) => w.name === ANIM_PREVIEW_WIDGET)) { + // Allocate space for image + freeSpace -= 220; + } + + this.freeWidgetSpace = freeSpace; + + if (freeSpace < 0) { + // Not enough space for all widgets so we need to grow + size[1] -= freeSpace; + this.graph.setDirtyCanvas(true); + } else { + // Share the space between each + const growDiff = freeSpace - growBy; + if (growDiff > 0) { + // All pref sizes can be fulfilled + freeSpace = growDiff; + for (const d of prefGrow) { + d.w.computedHeight = d.prefHeight; + } + } else { + // We need to grow evenly + const shared = -growDiff / prefGrow.length; + for (const d of prefGrow) { + d.w.computedHeight = d.prefHeight - shared; + } + freeSpace = 0; + } + + if (freeSpace > 0 && canGrow.length) { + // Grow any that are auto height + const shared = freeSpace / canGrow.length; + for (const d of canGrow) { + d.w.computedHeight += shared; + } + } + } + + // Position each of the widgets + for (const w of this.widgets) { + w.y = y; + if (w.computedHeight) { + y += w.computedHeight; + } else if (w.computeSize) { + y += w.computeSize()[1] + 4; + } else { + y += LiteGraph.NODE_WIDGET_HEIGHT + 4; + } + } +} + +// Override the compute visible nodes function to allow us to hide/show DOM elements when the node goes offscreen +const elementWidgets = new Set(); +const computeVisibleNodes = LGraphCanvas.prototype.computeVisibleNodes; +LGraphCanvas.prototype.computeVisibleNodes = function () { + const visibleNodes = computeVisibleNodes.apply(this, arguments); + for (const node of app.graph._nodes) { + if (elementWidgets.has(node)) { + const hidden = visibleNodes.indexOf(node) === -1; + for (const w of node.widgets) { + if (w.element) { + w.element.hidden = hidden; + w.element.style.display = hidden ? "none" : undefined; + if (hidden) { + w.options.onHide?.(w); + } + } + } + } + } + + return visibleNodes; +}; + +let enableDomClipping = true; + +export function addDomClippingSetting() { + app.ui.settings.addSetting({ + id: "Comfy.DOMClippingEnabled", + name: "Enable DOM element clipping (enabling may reduce performance)", + type: "boolean", + defaultValue: enableDomClipping, + onChange(value) { + enableDomClipping = !!value; + }, + }); +} + +LGraphNode.prototype.addDOMWidget = function (name, type, element, options) { + options = { hideOnZoom: true, selectOn: ["focus", "click"], ...options }; + + if (!element.parentElement) { + document.body.append(element); + } + + let mouseDownHandler; + if (element.blur) { + mouseDownHandler = (event) => { + if (!element.contains(event.target)) { + element.blur(); + } + }; + document.addEventListener("mousedown", mouseDownHandler); + } + + const widget = { + type, + name, + get value() { + return options.getValue?.() ?? undefined; + }, + set value(v) { + options.setValue?.(v); + widget.callback?.(widget.value); + }, + draw: function (ctx, node, widgetWidth, y, widgetHeight) { + if (widget.computedHeight == null) { + computeSize.call(node, node.size); + } + + const hidden = + node.flags?.collapsed || + (!!options.hideOnZoom && app.canvas.ds.scale < 0.5) || + widget.computedHeight <= 0 || + widget.type === "converted-widget"|| + widget.type === "hidden"; + element.hidden = hidden; + element.style.display = hidden ? "none" : null; + if (hidden) { + widget.options.onHide?.(widget); + return; + } + + const margin = 10; + const elRect = ctx.canvas.getBoundingClientRect(); + const transform = new DOMMatrix() + .scaleSelf(elRect.width / ctx.canvas.width, elRect.height / ctx.canvas.height) + .multiplySelf(ctx.getTransform()) + .translateSelf(margin, margin + y); + + const scale = new DOMMatrix().scaleSelf(transform.a, transform.d); + + Object.assign(element.style, { + transformOrigin: "0 0", + transform: scale, + left: `${transform.a + transform.e}px`, + top: `${transform.d + transform.f}px`, + width: `${widgetWidth - margin * 2}px`, + height: `${(widget.computedHeight ?? 50) - margin * 2}px`, + position: "absolute", + zIndex: app.graph._nodes.indexOf(node), + }); + + if (enableDomClipping) { + element.style.clipPath = getClipPath(node, element, elRect); + element.style.willChange = "clip-path"; + } + + this.options.onDraw?.(widget); + }, + element, + options, + onRemove() { + if (mouseDownHandler) { + document.removeEventListener("mousedown", mouseDownHandler); + } + element.remove(); + }, + }; + + for (const evt of options.selectOn) { + element.addEventListener(evt, () => { + app.canvas.selectNode(this); + app.canvas.bringToFront(this); + }); + } + + this.addCustomWidget(widget); + elementWidgets.add(this); + + const collapse = this.collapse; + this.collapse = function() { + collapse.apply(this, arguments); + if(this.flags?.collapsed) { + element.hidden = true; + element.style.display = "none"; + } + } + + const onRemoved = this.onRemoved; + this.onRemoved = function () { + element.remove(); + elementWidgets.delete(this); + onRemoved?.apply(this, arguments); + }; + + if (!this[SIZE]) { + this[SIZE] = true; + const onResize = this.onResize; + this.onResize = function (size) { + options.beforeResize?.call(widget, this); + computeSize.call(this, size); + onResize?.apply(this, arguments); + options.afterResize?.call(widget, this); + }; + } + + return widget; +}; diff --git a/web/scripts/logging.js b/web/scripts/logging.js new file mode 100644 index 0000000000000000000000000000000000000000..875dd970bc87de1b79a75886da6d1722172cbb7d --- /dev/null +++ b/web/scripts/logging.js @@ -0,0 +1,370 @@ +import { $el, ComfyDialog } from "./ui.js"; +import { api } from "./api.js"; + +$el("style", { + textContent: ` + .comfy-logging-logs { + display: grid; + color: var(--fg-color); + white-space: pre-wrap; + } + .comfy-logging-log { + display: contents; + } + .comfy-logging-title { + background: var(--tr-even-bg-color); + font-weight: bold; + margin-bottom: 5px; + text-align: center; + } + .comfy-logging-log div { + background: var(--row-bg); + padding: 5px; + } + `, + parent: document.body, +}); + +// Stringify function supporting max depth and removal of circular references +// https://stackoverflow.com/a/57193345 +function stringify(val, depth, replacer, space, onGetObjID) { + depth = isNaN(+depth) ? 1 : depth; + var recursMap = new WeakMap(); + function _build(val, depth, o, a, r) { + // (JSON.stringify() has it's own rules, which we respect here by using it for property iteration) + return !val || typeof val != "object" + ? val + : ((r = recursMap.has(val)), + recursMap.set(val, true), + (a = Array.isArray(val)), + r + ? (o = (onGetObjID && onGetObjID(val)) || null) + : JSON.stringify(val, function (k, v) { + if (a || depth > 0) { + if (replacer) v = replacer(k, v); + if (!k) return (a = Array.isArray(v)), (val = v); + !o && (o = a ? [] : {}); + o[k] = _build(v, a ? depth : depth - 1); + } + }), + o === void 0 ? (a ? [] : {}) : o); + } + return JSON.stringify(_build(val, depth), null, space); +} + +const jsonReplacer = (k, v, ui) => { + if (v instanceof Array && v.length === 1) { + v = v[0]; + } + if (v instanceof Date) { + v = v.toISOString(); + if (ui) { + v = v.split("T")[1]; + } + } + if (v instanceof Error) { + let err = ""; + if (v.name) err += v.name + "\n"; + if (v.message) err += v.message + "\n"; + if (v.stack) err += v.stack + "\n"; + if (!err) { + err = v.toString(); + } + v = err; + } + return v; +}; + +const fileInput = $el("input", { + type: "file", + accept: ".json", + style: { display: "none" }, + parent: document.body, +}); + +class ComfyLoggingDialog extends ComfyDialog { + constructor(logging) { + super(); + this.logging = logging; + } + + clear() { + this.logging.clear(); + this.show(); + } + + export() { + const blob = new Blob([stringify([...this.logging.entries], 20, jsonReplacer, "\t")], { + type: "application/json", + }); + const url = URL.createObjectURL(blob); + const a = $el("a", { + href: url, + download: `comfyui-logs-${Date.now()}.json`, + style: { display: "none" }, + parent: document.body, + }); + a.click(); + setTimeout(function () { + a.remove(); + window.URL.revokeObjectURL(url); + }, 0); + } + + import() { + fileInput.onchange = () => { + const reader = new FileReader(); + reader.onload = () => { + fileInput.remove(); + try { + const obj = JSON.parse(reader.result); + if (obj instanceof Array) { + this.show(obj); + } else { + throw new Error("Invalid file selected."); + } + } catch (error) { + alert("Unable to load logs: " + error.message); + } + }; + reader.readAsText(fileInput.files[0]); + }; + fileInput.click(); + } + + createButtons() { + return [ + $el("button", { + type: "button", + textContent: "Clear", + onclick: () => this.clear(), + }), + $el("button", { + type: "button", + textContent: "Export logs...", + onclick: () => this.export(), + }), + $el("button", { + type: "button", + textContent: "View exported logs...", + onclick: () => this.import(), + }), + ...super.createButtons(), + ]; + } + + getTypeColor(type) { + switch (type) { + case "error": + return "red"; + case "warn": + return "orange"; + case "debug": + return "dodgerblue"; + } + } + + show(entries) { + if (!entries) entries = this.logging.entries; + this.element.style.width = "100%"; + const cols = { + source: "Source", + type: "Type", + timestamp: "Timestamp", + message: "Message", + }; + const keys = Object.keys(cols); + const headers = Object.values(cols).map((title) => + $el("div.comfy-logging-title", { + textContent: title, + }) + ); + const rows = entries.map((entry, i) => { + return $el( + "div.comfy-logging-log", + { + $: (el) => el.style.setProperty("--row-bg", `var(--tr-${i % 2 ? "even" : "odd"}-bg-color)`), + }, + keys.map((key) => { + let v = entry[key]; + let color; + if (key === "type") { + color = this.getTypeColor(v); + } else { + v = jsonReplacer(key, v, true); + + if (typeof v === "object") { + v = stringify(v, 5, jsonReplacer, " "); + } + } + + return $el("div", { + style: { + color, + }, + textContent: v, + }); + }) + ); + }); + + const grid = $el( + "div.comfy-logging-logs", + { + style: { + gridTemplateColumns: `repeat(${headers.length}, 1fr)`, + }, + }, + [...headers, ...rows] + ); + const els = [grid]; + if (!this.logging.enabled) { + els.unshift( + $el("h3", { + style: { textAlign: "center" }, + textContent: "Logging is disabled", + }) + ); + } + super.show($el("div", els)); + } +} + +export class ComfyLogging { + /** + * @type Array<{ source: string, type: string, timestamp: Date, message: any }> + */ + entries = []; + + #enabled; + #console = {}; + + get enabled() { + return this.#enabled; + } + + set enabled(value) { + if (value === this.#enabled) return; + if (value) { + this.patchConsole(); + } else { + this.unpatchConsole(); + } + this.#enabled = value; + } + + constructor(app) { + this.app = app; + + this.dialog = new ComfyLoggingDialog(this); + this.addSetting(); + this.catchUnhandled(); + this.addInitData(); + } + + addSetting() { + const settingId = "Comfy.Logging.Enabled"; + const htmlSettingId = settingId.replaceAll(".", "-"); + const setting = this.app.ui.settings.addSetting({ + id: settingId, + name: settingId, + defaultValue: true, + onChange: (value) => { + this.enabled = value; + }, + type: (name, setter, value) => { + return $el("tr", [ + $el("td", [ + $el("label", { + textContent: "Logging", + for: htmlSettingId, + }), + ]), + $el("td", [ + $el("input", { + id: htmlSettingId, + type: "checkbox", + checked: value, + onchange: (event) => { + setter(event.target.checked); + }, + }), + $el("button", { + textContent: "View Logs", + onclick: () => { + this.app.ui.settings.element.close(); + this.dialog.show(); + }, + style: { + fontSize: "14px", + display: "block", + marginTop: "5px", + }, + }), + ]), + ]); + }, + }); + this.enabled = setting.value; + } + + patchConsole() { + // Capture common console outputs + const self = this; + for (const type of ["log", "warn", "error", "debug"]) { + const orig = console[type]; + this.#console[type] = orig; + console[type] = function () { + orig.apply(console, arguments); + self.addEntry("console", type, ...arguments); + }; + } + } + + unpatchConsole() { + // Restore original console functions + for (const type of Object.keys(this.#console)) { + console[type] = this.#console[type]; + } + this.#console = {}; + } + + catchUnhandled() { + // Capture uncaught errors + window.addEventListener("error", (e) => { + this.addEntry("window", "error", e.error ?? "Unknown error"); + return false; + }); + + window.addEventListener("unhandledrejection", (e) => { + this.addEntry("unhandledrejection", "error", e.reason ?? "Unknown error"); + }); + } + + clear() { + this.entries = []; + } + + addEntry(source, type, ...args) { + if (this.enabled) { + this.entries.push({ + source, + type, + timestamp: new Date(), + message: args, + }); + } + } + + log(source, ...args) { + this.addEntry(source, "log", ...args); + } + + async addInitData() { + if (!this.enabled) return; + const source = "ComfyUI.Logging"; + this.addEntry(source, "debug", { UserAgent: navigator.userAgent }); + const systemStats = await api.getSystemStats(); + this.addEntry(source, "debug", systemStats); + } +} diff --git a/web/scripts/pnginfo.js b/web/scripts/pnginfo.js new file mode 100644 index 0000000000000000000000000000000000000000..83a4ebc86c48f9ae649e35c59e284dfee390ecf9 --- /dev/null +++ b/web/scripts/pnginfo.js @@ -0,0 +1,425 @@ +import { api } from "./api.js"; + +export function getPngMetadata(file) { + return new Promise((r) => { + const reader = new FileReader(); + reader.onload = (event) => { + // Get the PNG data as a Uint8Array + const pngData = new Uint8Array(event.target.result); + const dataView = new DataView(pngData.buffer); + + // Check that the PNG signature is present + if (dataView.getUint32(0) !== 0x89504e47) { + console.error("Not a valid PNG file"); + r(); + return; + } + + // Start searching for chunks after the PNG signature + let offset = 8; + let txt_chunks = {}; + // Loop through the chunks in the PNG file + while (offset < pngData.length) { + // Get the length of the chunk + const length = dataView.getUint32(offset); + // Get the chunk type + const type = String.fromCharCode(...pngData.slice(offset + 4, offset + 8)); + if (type === "tEXt" || type == "comf") { + // Get the keyword + let keyword_end = offset + 8; + while (pngData[keyword_end] !== 0) { + keyword_end++; + } + const keyword = String.fromCharCode(...pngData.slice(offset + 8, keyword_end)); + // Get the text + const contentArraySegment = pngData.slice(keyword_end + 1, offset + 8 + length); + const contentJson = Array.from(contentArraySegment).map(s=>String.fromCharCode(s)).join('') + txt_chunks[keyword] = contentJson; + } + + offset += 12 + length; + } + + r(txt_chunks); + }; + + reader.readAsArrayBuffer(file); + }); +} + +function parseExifData(exifData) { + // Check for the correct TIFF header (0x4949 for little-endian or 0x4D4D for big-endian) + const isLittleEndian = new Uint16Array(exifData.slice(0, 2))[0] === 0x4949; + + // Function to read 16-bit and 32-bit integers from binary data + function readInt(offset, isLittleEndian, length) { + let arr = exifData.slice(offset, offset + length) + if (length === 2) { + return new DataView(arr.buffer, arr.byteOffset, arr.byteLength).getUint16(0, isLittleEndian); + } else if (length === 4) { + return new DataView(arr.buffer, arr.byteOffset, arr.byteLength).getUint32(0, isLittleEndian); + } + } + + // Read the offset to the first IFD (Image File Directory) + const ifdOffset = readInt(4, isLittleEndian, 4); + + function parseIFD(offset) { + const numEntries = readInt(offset, isLittleEndian, 2); + const result = {}; + + for (let i = 0; i < numEntries; i++) { + const entryOffset = offset + 2 + i * 12; + const tag = readInt(entryOffset, isLittleEndian, 2); + const type = readInt(entryOffset + 2, isLittleEndian, 2); + const numValues = readInt(entryOffset + 4, isLittleEndian, 4); + const valueOffset = readInt(entryOffset + 8, isLittleEndian, 4); + + // Read the value(s) based on the data type + let value; + if (type === 2) { + // ASCII string + value = String.fromCharCode(...exifData.slice(valueOffset, valueOffset + numValues - 1)); + } + + result[tag] = value; + } + + return result; + } + + // Parse the first IFD + const ifdData = parseIFD(ifdOffset); + return ifdData; +} + +function splitValues(input) { + var output = {}; + for (var key in input) { + var value = input[key]; + var splitValues = value.split(':', 2); + output[splitValues[0]] = splitValues[1]; + } + return output; +} + +export function getWebpMetadata(file) { + return new Promise((r) => { + const reader = new FileReader(); + reader.onload = (event) => { + const webp = new Uint8Array(event.target.result); + const dataView = new DataView(webp.buffer); + + // Check that the WEBP signature is present + if (dataView.getUint32(0) !== 0x52494646 || dataView.getUint32(8) !== 0x57454250) { + console.error("Not a valid WEBP file"); + r(); + return; + } + + // Start searching for chunks after the WEBP signature + let offset = 12; + let txt_chunks = {}; + // Loop through the chunks in the WEBP file + while (offset < webp.length) { + const chunk_length = dataView.getUint32(offset + 4, true); + const chunk_type = String.fromCharCode(...webp.slice(offset, offset + 4)); + if (chunk_type === "EXIF") { + if (String.fromCharCode(...webp.slice(offset + 8, offset + 8 + 6)) == "Exif\0\0") { + offset += 6; + } + let data = parseExifData(webp.slice(offset + 8, offset + 8 + chunk_length)); + for (var key in data) { + var value = data[key]; + let index = value.indexOf(':'); + txt_chunks[value.slice(0, index)] = value.slice(index + 1); + } + } + + offset += 8 + chunk_length; + } + + r(txt_chunks); + }; + + reader.readAsArrayBuffer(file); + }); +} + +export function getLatentMetadata(file) { + return new Promise((r) => { + const reader = new FileReader(); + reader.onload = (event) => { + const safetensorsData = new Uint8Array(event.target.result); + const dataView = new DataView(safetensorsData.buffer); + let header_size = dataView.getUint32(0, true); + let offset = 8; + let header = JSON.parse(new TextDecoder().decode(safetensorsData.slice(offset, offset + header_size))); + r(header.__metadata__); + }; + + var slice = file.slice(0, 1024 * 1024 * 4); + reader.readAsArrayBuffer(slice); + }); +} + +export async function importA1111(graph, parameters) { + const p = parameters.lastIndexOf("\nSteps:"); + if (p > -1) { + const embeddings = await api.getEmbeddings(); + const opts = parameters + .substr(p) + .split("\n")[1] + .split(",") + .reduce((p, n) => { + const s = n.split(":"); + p[s[0].trim().toLowerCase()] = s[1].trim(); + return p; + }, {}); + const p2 = parameters.lastIndexOf("\nNegative prompt:", p); + if (p2 > -1) { + let positive = parameters.substr(0, p2).trim(); + let negative = parameters.substring(p2 + 18, p).trim(); + + const ckptNode = LiteGraph.createNode("CheckpointLoaderSimple"); + const clipSkipNode = LiteGraph.createNode("CLIPSetLastLayer"); + const positiveNode = LiteGraph.createNode("CLIPTextEncode"); + const negativeNode = LiteGraph.createNode("CLIPTextEncode"); + const samplerNode = LiteGraph.createNode("KSampler"); + const imageNode = LiteGraph.createNode("EmptyLatentImage"); + const vaeNode = LiteGraph.createNode("VAEDecode"); + const vaeLoaderNode = LiteGraph.createNode("VAELoader"); + const saveNode = LiteGraph.createNode("SaveImage"); + let hrSamplerNode = null; + + const ceil64 = (v) => Math.ceil(v / 64) * 64; + + function getWidget(node, name) { + return node.widgets.find((w) => w.name === name); + } + + function setWidgetValue(node, name, value, isOptionPrefix) { + const w = getWidget(node, name); + if (isOptionPrefix) { + const o = w.options.values.find((w) => w.startsWith(value)); + if (o) { + w.value = o; + } else { + console.warn(`Unknown value '${value}' for widget '${name}'`, node); + w.value = value; + } + } else { + w.value = value; + } + } + + function createLoraNodes(clipNode, text, prevClip, prevModel) { + const loras = []; + text = text.replace(/]+)>/g, function (m, c) { + const s = c.split(":"); + const weight = parseFloat(s[1]); + if (isNaN(weight)) { + console.warn("Invalid LORA", m); + } else { + loras.push({ name: s[0], weight }); + } + return ""; + }); + + for (const l of loras) { + const loraNode = LiteGraph.createNode("LoraLoader"); + graph.add(loraNode); + setWidgetValue(loraNode, "lora_name", l.name, true); + setWidgetValue(loraNode, "strength_model", l.weight); + setWidgetValue(loraNode, "strength_clip", l.weight); + prevModel.node.connect(prevModel.index, loraNode, 0); + prevClip.node.connect(prevClip.index, loraNode, 1); + prevModel = { node: loraNode, index: 0 }; + prevClip = { node: loraNode, index: 1 }; + } + + prevClip.node.connect(1, clipNode, 0); + prevModel.node.connect(0, samplerNode, 0); + if (hrSamplerNode) { + prevModel.node.connect(0, hrSamplerNode, 0); + } + + return { text, prevModel, prevClip }; + } + + function replaceEmbeddings(text) { + if(!embeddings.length) return text; + return text.replaceAll( + new RegExp( + "\\b(" + embeddings.map((e) => e.replace(/[.*+?^${}()|[\]\\]/g, "\\$&")).join("\\b|\\b") + ")\\b", + "ig" + ), + "embedding:$1" + ); + } + + function popOpt(name) { + const v = opts[name]; + delete opts[name]; + return v; + } + + graph.clear(); + graph.add(ckptNode); + graph.add(clipSkipNode); + graph.add(positiveNode); + graph.add(negativeNode); + graph.add(samplerNode); + graph.add(imageNode); + graph.add(vaeNode); + graph.add(vaeLoaderNode); + graph.add(saveNode); + + ckptNode.connect(1, clipSkipNode, 0); + clipSkipNode.connect(0, positiveNode, 0); + clipSkipNode.connect(0, negativeNode, 0); + ckptNode.connect(0, samplerNode, 0); + positiveNode.connect(0, samplerNode, 1); + negativeNode.connect(0, samplerNode, 2); + imageNode.connect(0, samplerNode, 3); + vaeNode.connect(0, saveNode, 0); + samplerNode.connect(0, vaeNode, 0); + vaeLoaderNode.connect(0, vaeNode, 1); + + const handlers = { + model(v) { + setWidgetValue(ckptNode, "ckpt_name", v, true); + }, + "cfg scale"(v) { + setWidgetValue(samplerNode, "cfg", +v); + }, + "clip skip"(v) { + setWidgetValue(clipSkipNode, "stop_at_clip_layer", -v); + }, + sampler(v) { + let name = v.toLowerCase().replace("++", "pp").replaceAll(" ", "_"); + if (name.includes("karras")) { + name = name.replace("karras", "").replace(/_+$/, ""); + setWidgetValue(samplerNode, "scheduler", "karras"); + } else { + setWidgetValue(samplerNode, "scheduler", "normal"); + } + const w = getWidget(samplerNode, "sampler_name"); + const o = w.options.values.find((w) => w === name || w === "sample_" + name); + if (o) { + setWidgetValue(samplerNode, "sampler_name", o); + } + }, + size(v) { + const wxh = v.split("x"); + const w = ceil64(+wxh[0]); + const h = ceil64(+wxh[1]); + const hrUp = popOpt("hires upscale"); + const hrSz = popOpt("hires resize"); + let hrMethod = popOpt("hires upscaler"); + + setWidgetValue(imageNode, "width", w); + setWidgetValue(imageNode, "height", h); + + if (hrUp || hrSz) { + let uw, uh; + if (hrUp) { + uw = w * hrUp; + uh = h * hrUp; + } else { + const s = hrSz.split("x"); + uw = +s[0]; + uh = +s[1]; + } + + let upscaleNode; + let latentNode; + + if (hrMethod.startsWith("Latent")) { + latentNode = upscaleNode = LiteGraph.createNode("LatentUpscale"); + graph.add(upscaleNode); + samplerNode.connect(0, upscaleNode, 0); + + switch (hrMethod) { + case "Latent (nearest-exact)": + hrMethod = "nearest-exact"; + break; + } + setWidgetValue(upscaleNode, "upscale_method", hrMethod, true); + } else { + const decode = LiteGraph.createNode("VAEDecodeTiled"); + graph.add(decode); + samplerNode.connect(0, decode, 0); + vaeLoaderNode.connect(0, decode, 1); + + const upscaleLoaderNode = LiteGraph.createNode("UpscaleModelLoader"); + graph.add(upscaleLoaderNode); + setWidgetValue(upscaleLoaderNode, "model_name", hrMethod, true); + + const modelUpscaleNode = LiteGraph.createNode("ImageUpscaleWithModel"); + graph.add(modelUpscaleNode); + decode.connect(0, modelUpscaleNode, 1); + upscaleLoaderNode.connect(0, modelUpscaleNode, 0); + + upscaleNode = LiteGraph.createNode("ImageScale"); + graph.add(upscaleNode); + modelUpscaleNode.connect(0, upscaleNode, 0); + + const vaeEncodeNode = (latentNode = LiteGraph.createNode("VAEEncodeTiled")); + graph.add(vaeEncodeNode); + upscaleNode.connect(0, vaeEncodeNode, 0); + vaeLoaderNode.connect(0, vaeEncodeNode, 1); + } + + setWidgetValue(upscaleNode, "width", ceil64(uw)); + setWidgetValue(upscaleNode, "height", ceil64(uh)); + + hrSamplerNode = LiteGraph.createNode("KSampler"); + graph.add(hrSamplerNode); + ckptNode.connect(0, hrSamplerNode, 0); + positiveNode.connect(0, hrSamplerNode, 1); + negativeNode.connect(0, hrSamplerNode, 2); + latentNode.connect(0, hrSamplerNode, 3); + hrSamplerNode.connect(0, vaeNode, 0); + } + }, + steps(v) { + setWidgetValue(samplerNode, "steps", +v); + }, + seed(v) { + setWidgetValue(samplerNode, "seed", +v); + }, + }; + + for (const opt in opts) { + if (opt in handlers) { + handlers[opt](popOpt(opt)); + } + } + + if (hrSamplerNode) { + setWidgetValue(hrSamplerNode, "steps", getWidget(samplerNode, "steps").value); + setWidgetValue(hrSamplerNode, "cfg", getWidget(samplerNode, "cfg").value); + setWidgetValue(hrSamplerNode, "scheduler", getWidget(samplerNode, "scheduler").value); + setWidgetValue(hrSamplerNode, "sampler_name", getWidget(samplerNode, "sampler_name").value); + setWidgetValue(hrSamplerNode, "denoise", +(popOpt("denoising strength") || "1")); + } + + let n = createLoraNodes(positiveNode, positive, { node: clipSkipNode, index: 0 }, { node: ckptNode, index: 0 }); + positive = n.text; + n = createLoraNodes(negativeNode, negative, n.prevClip, n.prevModel); + negative = n.text; + + setWidgetValue(positiveNode, "text", replaceEmbeddings(positive)); + setWidgetValue(negativeNode, "text", replaceEmbeddings(negative)); + + graph.arrange(); + + for (const opt of ["model hash", "ensd"]) { + delete opts[opt]; + } + + console.warn("Unhandled parameters:", opts); + } + } +} diff --git a/web/scripts/ui.js b/web/scripts/ui.js new file mode 100644 index 0000000000000000000000000000000000000000..5ca6214ebca390b81ef50c4d78296404f28bb84d --- /dev/null +++ b/web/scripts/ui.js @@ -0,0 +1,639 @@ +import { api } from "./api.js"; +import { ComfyDialog as _ComfyDialog } from "./ui/dialog.js"; +import { toggleSwitch } from "./ui/toggleSwitch.js"; +import { ComfySettingsDialog } from "./ui/settings.js"; + +export const ComfyDialog = _ComfyDialog; + +/** + * + * @param { string } tag HTML Element Tag and optional classes e.g. div.class1.class2 + * @param { string | Element | Element[] | { + * parent?: Element, + * $?: (el: Element) => void, + * dataset?: DOMStringMap, + * style?: CSSStyleDeclaration, + * for?: string + * } | undefined } propsOrChildren + * @param { Element[] | undefined } [children] + * @returns + */ +export function $el(tag, propsOrChildren, children) { + const split = tag.split("."); + const element = document.createElement(split.shift()); + if (split.length > 0) { + element.classList.add(...split); + } + + if (propsOrChildren) { + if (typeof propsOrChildren === "string") { + propsOrChildren = { textContent: propsOrChildren }; + } else if (propsOrChildren instanceof Element) { + propsOrChildren = [propsOrChildren]; + } + if (Array.isArray(propsOrChildren)) { + element.append(...propsOrChildren); + } else { + const {parent, $: cb, dataset, style} = propsOrChildren; + delete propsOrChildren.parent; + delete propsOrChildren.$; + delete propsOrChildren.dataset; + delete propsOrChildren.style; + + if (Object.hasOwn(propsOrChildren, "for")) { + element.setAttribute("for", propsOrChildren.for) + } + + if (style) { + Object.assign(element.style, style); + } + + if (dataset) { + Object.assign(element.dataset, dataset); + } + + Object.assign(element, propsOrChildren); + if (children) { + element.append(...(children instanceof Array ? children : [children])); + } + + if (parent) { + parent.append(element); + } + + if (cb) { + cb(element); + } + } + } + return element; +} + +function dragElement(dragEl, settings) { + var posDiffX = 0, + posDiffY = 0, + posStartX = 0, + posStartY = 0, + newPosX = 0, + newPosY = 0; + if (dragEl.getElementsByClassName("drag-handle")[0]) { + // if present, the handle is where you move the DIV from: + dragEl.getElementsByClassName("drag-handle")[0].onmousedown = dragMouseDown; + } else { + // otherwise, move the DIV from anywhere inside the DIV: + dragEl.onmousedown = dragMouseDown; + } + + // When the element resizes (e.g. view queue) ensure it is still in the windows bounds + const resizeObserver = new ResizeObserver(() => { + ensureInBounds(); + }).observe(dragEl); + + function ensureInBounds() { + if (dragEl.classList.contains("comfy-menu-manual-pos")) { + newPosX = Math.min(document.body.clientWidth - dragEl.clientWidth, Math.max(0, dragEl.offsetLeft)); + newPosY = Math.min(document.body.clientHeight - dragEl.clientHeight, Math.max(0, dragEl.offsetTop)); + + positionElement(); + } + } + + function positionElement() { + const halfWidth = document.body.clientWidth / 2; + const anchorRight = newPosX + dragEl.clientWidth / 2 > halfWidth; + + // set the element's new position: + if (anchorRight) { + dragEl.style.left = "unset"; + dragEl.style.right = document.body.clientWidth - newPosX - dragEl.clientWidth + "px"; + } else { + dragEl.style.left = newPosX + "px"; + dragEl.style.right = "unset"; + } + + dragEl.style.top = newPosY + "px"; + dragEl.style.bottom = "unset"; + + if (savePos) { + localStorage.setItem( + "Comfy.MenuPosition", + JSON.stringify({ + x: dragEl.offsetLeft, + y: dragEl.offsetTop, + }) + ); + } + } + + function restorePos() { + let pos = localStorage.getItem("Comfy.MenuPosition"); + if (pos) { + pos = JSON.parse(pos); + newPosX = pos.x; + newPosY = pos.y; + positionElement(); + ensureInBounds(); + } + } + + let savePos = undefined; + settings.addSetting({ + id: "Comfy.MenuPosition", + name: "Save menu position", + type: "boolean", + defaultValue: savePos, + onChange(value) { + if (savePos === undefined && value) { + restorePos(); + } + savePos = value; + }, + }); + + function dragMouseDown(e) { + e = e || window.event; + e.preventDefault(); + // get the mouse cursor position at startup: + posStartX = e.clientX; + posStartY = e.clientY; + document.onmouseup = closeDragElement; + // call a function whenever the cursor moves: + document.onmousemove = elementDrag; + } + + function elementDrag(e) { + e = e || window.event; + e.preventDefault(); + + dragEl.classList.add("comfy-menu-manual-pos"); + + // calculate the new cursor position: + posDiffX = e.clientX - posStartX; + posDiffY = e.clientY - posStartY; + posStartX = e.clientX; + posStartY = e.clientY; + + newPosX = Math.min(document.body.clientWidth - dragEl.clientWidth, Math.max(0, dragEl.offsetLeft + posDiffX)); + newPosY = Math.min(document.body.clientHeight - dragEl.clientHeight, Math.max(0, dragEl.offsetTop + posDiffY)); + + positionElement(); + } + + window.addEventListener("resize", () => { + ensureInBounds(); + }); + + function closeDragElement() { + // stop moving when mouse button is released: + document.onmouseup = null; + document.onmousemove = null; + } +} + +class ComfyList { + #type; + #text; + #reverse; + + constructor(text, type, reverse) { + this.#text = text; + this.#type = type || text.toLowerCase(); + this.#reverse = reverse || false; + this.element = $el("div.comfy-list"); + this.element.style.display = "none"; + } + + get visible() { + return this.element.style.display !== "none"; + } + + async load() { + const items = await api.getItems(this.#type); + this.element.replaceChildren( + ...Object.keys(items).flatMap((section) => [ + $el("h4", { + textContent: section, + }), + $el("div.comfy-list-items", [ + ...(this.#reverse ? items[section].reverse() : items[section]).map((item) => { + // Allow items to specify a custom remove action (e.g. for interrupt current prompt) + const removeAction = item.remove || { + name: "Delete", + cb: () => api.deleteItem(this.#type, item.prompt[1]), + }; + return $el("div", {textContent: item.prompt[0] + ": "}, [ + $el("button", { + textContent: "Load", + onclick: async () => { + await app.loadGraphData(item.prompt[3].extra_pnginfo.workflow); + if (item.outputs) { + app.nodeOutputs = item.outputs; + } + }, + }), + $el("button", { + textContent: removeAction.name, + onclick: async () => { + await removeAction.cb(); + await this.update(); + }, + }), + ]); + }), + ]), + ]), + $el("div.comfy-list-actions", [ + $el("button", { + textContent: "Clear " + this.#text, + onclick: async () => { + await api.clearItems(this.#type); + await this.load(); + }, + }), + $el("button", {textContent: "Refresh", onclick: () => this.load()}), + ]) + ); + } + + async update() { + if (this.visible) { + await this.load(); + } + } + + async show() { + this.element.style.display = "block"; + this.button.textContent = "Close"; + + await this.load(); + } + + hide() { + this.element.style.display = "none"; + this.button.textContent = "View " + this.#text; + } + + toggle() { + if (this.visible) { + this.hide(); + return false; + } else { + this.show(); + return true; + } + } +} + +export class ComfyUI { + constructor(app) { + this.app = app; + this.dialog = new ComfyDialog(); + this.settings = new ComfySettingsDialog(app); + + this.batchCount = 1; + this.lastQueueSize = 0; + this.queue = new ComfyList("Queue"); + this.history = new ComfyList("History", "history", true); + + api.addEventListener("status", () => { + this.queue.update(); + this.history.update(); + }); + + const confirmClear = this.settings.addSetting({ + id: "Comfy.ConfirmClear", + name: "Require confirmation when clearing workflow", + type: "boolean", + defaultValue: true, + }); + + const promptFilename = this.settings.addSetting({ + id: "Comfy.PromptFilename", + name: "Prompt for filename when saving workflow", + type: "boolean", + defaultValue: true, + }); + + /** + * file format for preview + * + * format;quality + * + * ex) + * webp;50 -> webp, quality 50 + * jpeg;80 -> rgb, jpeg, quality 80 + * + * @type {string} + */ + const previewImage = this.settings.addSetting({ + id: "Comfy.PreviewFormat", + name: "When displaying a preview in the image widget, convert it to a lightweight image, e.g. webp, jpeg, webp;50, etc.", + type: "text", + defaultValue: "", + }); + + this.settings.addSetting({ + id: "Comfy.DisableSliders", + name: "Disable sliders.", + type: "boolean", + defaultValue: false, + }); + + this.settings.addSetting({ + id: "Comfy.DisableFloatRounding", + name: "Disable rounding floats (requires page reload).", + type: "boolean", + defaultValue: false, + }); + + this.settings.addSetting({ + id: "Comfy.FloatRoundingPrecision", + name: "Decimal places [0 = auto] (requires page reload).", + type: "slider", + attrs: { + min: 0, + max: 6, + step: 1, + }, + defaultValue: 0, + }); + + const fileInput = $el("input", { + id: "comfy-file-input", + type: "file", + accept: ".json,image/png,.latent,.safetensors,image/webp", + style: {display: "none"}, + parent: document.body, + onchange: () => { + app.handleFile(fileInput.files[0]); + }, + }); + + const autoQueueModeEl = toggleSwitch( + "autoQueueMode", + [ + { text: "instant", tooltip: "A new prompt will be queued as soon as the queue reaches 0" }, + { text: "change", tooltip: "A new prompt will be queued when the queue is at 0 and the graph is/has changed" }, + ], + { + onChange: (value) => { + this.autoQueueMode = value.item.value; + }, + } + ); + autoQueueModeEl.style.display = "none"; + + api.addEventListener("graphChanged", () => { + if (this.autoQueueMode === "change" && this.autoQueueEnabled === true) { + if (this.lastQueueSize === 0) { + this.graphHasChanged = false; + app.queuePrompt(0, this.batchCount); + } else { + this.graphHasChanged = true; + } + } + }); + + this.menuHamburger = $el( + "div.comfy-menu-hamburger", + { + parent: document.body, + onclick: () => { + this.menuContainer.style.display = "block"; + this.menuHamburger.style.display = "none"; + }, + }, + [$el("div"), $el("div"), $el("div")] + ); + + this.menuContainer = $el("div.comfy-menu", { parent: document.body }, [ + $el("div.drag-handle.comfy-menu-header", { + style: { + overflow: "hidden", + position: "relative", + width: "100%", + cursor: "default" + } + }, [ + $el("span.drag-handle"), + $el("span.comfy-menu-queue-size", { $: (q) => (this.queueSize = q) }), + $el("div.comfy-menu-actions", [ + $el("button.comfy-settings-btn", { + textContent: "⚙️", + onclick: () => this.settings.show(), + }), + $el("button.comfy-close-menu-btn", { + textContent: "\u00d7", + onclick: () => { + this.menuContainer.style.display = "none"; + this.menuHamburger.style.display = "flex"; + }, + }), + ]), + ]), + $el("button.comfy-queue-btn", { + id: "queue-button", + textContent: "Queue Prompt", + onclick: () => app.queuePrompt(0, this.batchCount), + }), + $el("div", {}, [ + $el("label", {innerHTML: "Extra options"}, [ + $el("input", { + type: "checkbox", + onchange: (i) => { + document.getElementById("extraOptions").style.display = i.srcElement.checked ? "block" : "none"; + this.batchCount = i.srcElement.checked ? document.getElementById("batchCountInputRange").value : 1; + document.getElementById("autoQueueCheckbox").checked = false; + this.autoQueueEnabled = false; + }, + }), + ]), + ]), + $el("div", {id: "extraOptions", style: {width: "100%", display: "none"}}, [ + $el("div",[ + + $el("label", {innerHTML: "Batch count"}), + $el("input", { + id: "batchCountInputNumber", + type: "number", + value: this.batchCount, + min: "1", + style: {width: "35%", "margin-left": "0.4em"}, + oninput: (i) => { + this.batchCount = i.target.value; + document.getElementById("batchCountInputRange").value = this.batchCount; + }, + }), + $el("input", { + id: "batchCountInputRange", + type: "range", + min: "1", + max: "100", + value: this.batchCount, + oninput: (i) => { + this.batchCount = i.srcElement.value; + document.getElementById("batchCountInputNumber").value = i.srcElement.value; + }, + }), + ]), + $el("div",[ + $el("label",{ + for:"autoQueueCheckbox", + innerHTML: "Auto Queue" + }), + $el("input", { + id: "autoQueueCheckbox", + type: "checkbox", + checked: false, + title: "Automatically queue prompt when the queue size hits 0", + onchange: (e) => { + this.autoQueueEnabled = e.target.checked; + autoQueueModeEl.style.display = this.autoQueueEnabled ? "" : "none"; + } + }), + autoQueueModeEl + ]) + ]), + $el("div.comfy-menu-btns", [ + $el("button", { + id: "queue-front-button", + textContent: "Queue Front", + onclick: () => app.queuePrompt(-1, this.batchCount) + }), + $el("button", { + $: (b) => (this.queue.button = b), + id: "comfy-view-queue-button", + textContent: "View Queue", + onclick: () => { + this.history.hide(); + this.queue.toggle(); + }, + }), + $el("button", { + $: (b) => (this.history.button = b), + id: "comfy-view-history-button", + textContent: "View History", + onclick: () => { + this.queue.hide(); + this.history.toggle(); + }, + }), + ]), + this.queue.element, + this.history.element, + $el("button", { + id: "comfy-save-button", + textContent: "Save", + onclick: () => { + let filename = "workflow.json"; + if (promptFilename.value) { + filename = prompt("Save workflow as:", filename); + if (!filename) return; + if (!filename.toLowerCase().endsWith(".json")) { + filename += ".json"; + } + } + app.graphToPrompt().then(p=>{ + const json = JSON.stringify(p.workflow, null, 2); // convert the data to a JSON string + const blob = new Blob([json], {type: "application/json"}); + const url = URL.createObjectURL(blob); + const a = $el("a", { + href: url, + download: filename, + style: {display: "none"}, + parent: document.body, + }); + a.click(); + setTimeout(function () { + a.remove(); + window.URL.revokeObjectURL(url); + }, 0); + }); + }, + }), + $el("button", { + id: "comfy-dev-save-api-button", + textContent: "Save (API Format)", + style: {width: "100%", display: "none"}, + onclick: () => { + let filename = "workflow_api.json"; + if (promptFilename.value) { + filename = prompt("Save workflow (API) as:", filename); + if (!filename) return; + if (!filename.toLowerCase().endsWith(".json")) { + filename += ".json"; + } + } + app.graphToPrompt().then(p=>{ + const json = JSON.stringify(p.output, null, 2); // convert the data to a JSON string + const blob = new Blob([json], {type: "application/json"}); + const url = URL.createObjectURL(blob); + const a = $el("a", { + href: url, + download: filename, + style: {display: "none"}, + parent: document.body, + }); + a.click(); + setTimeout(function () { + a.remove(); + window.URL.revokeObjectURL(url); + }, 0); + }); + }, + }), + $el("button", {id: "comfy-load-button", textContent: "Load", onclick: () => fileInput.click()}), + $el("button", { + id: "comfy-refresh-button", + textContent: "Refresh", + onclick: () => app.refreshComboInNodes() + }), + $el("button", {id: "comfy-clipspace-button", textContent: "Clipspace", onclick: () => app.openClipspace()}), + $el("button", { + id: "comfy-clear-button", textContent: "Clear", onclick: () => { + if (!confirmClear.value || confirm("Clear workflow?")) { + app.clean(); + app.graph.clear(); + } + } + }), + $el("button", { + id: "comfy-load-default-button", textContent: "Load Default", onclick: async () => { + if (!confirmClear.value || confirm("Load default workflow?")) { + await app.loadGraphData() + } + } + }), + ]); + + const devMode = this.settings.addSetting({ + id: "Comfy.DevMode", + name: "Enable Dev mode Options", + type: "boolean", + defaultValue: false, + onChange: function(value) { document.getElementById("comfy-dev-save-api-button").style.display = value ? "block" : "none"}, + }); + + dragElement(this.menuContainer, this.settings); + + this.setStatus({exec_info: {queue_remaining: "X"}}); + } + + setStatus(status) { + this.queueSize.textContent = "Queue size: " + (status ? status.exec_info.queue_remaining : "ERR"); + if (status) { + if ( + this.lastQueueSize != 0 && + status.exec_info.queue_remaining == 0 && + this.autoQueueEnabled && + (this.autoQueueMode === "instant" || this.graphHasChanged) && + !app.lastExecutionError + ) { + app.queuePrompt(0, this.batchCount); + status.exec_info.queue_remaining += this.batchCount; + this.graphHasChanged = false; + } + this.lastQueueSize = status.exec_info.queue_remaining; + } + } +} diff --git a/web/scripts/ui/dialog.js b/web/scripts/ui/dialog.js new file mode 100644 index 0000000000000000000000000000000000000000..aee93b3c84f0e28b43502944ecda71a595e324cd --- /dev/null +++ b/web/scripts/ui/dialog.js @@ -0,0 +1,32 @@ +import { $el } from "../ui.js"; + +export class ComfyDialog { + constructor() { + this.element = $el("div.comfy-modal", { parent: document.body }, [ + $el("div.comfy-modal-content", [$el("p", { $: (p) => (this.textElement = p) }), ...this.createButtons()]), + ]); + } + + createButtons() { + return [ + $el("button", { + type: "button", + textContent: "Close", + onclick: () => this.close(), + }), + ]; + } + + close() { + this.element.style.display = "none"; + } + + show(html) { + if (typeof html === "string") { + this.textElement.innerHTML = html; + } else { + this.textElement.replaceChildren(html); + } + this.element.style.display = "flex"; + } +} diff --git a/web/scripts/ui/draggableList.js b/web/scripts/ui/draggableList.js new file mode 100644 index 0000000000000000000000000000000000000000..d535948869f65d1a280364d3abf1c25e66f65e07 --- /dev/null +++ b/web/scripts/ui/draggableList.js @@ -0,0 +1,287 @@ +// @ts-check +/* + Original implementation: + https://github.com/TahaSh/drag-to-reorder + MIT License + + Copyright (c) 2023 Taha Shashtari + + Permission is hereby granted, free of charge, to any person obtaining a copy + of this software and associated documentation files (the "Software"), to deal + in the Software without restriction, including without limitation the rights + to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + copies of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be included in all + copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + SOFTWARE. +*/ + +import { $el } from "../ui.js"; + +$el("style", { + parent: document.head, + textContent: ` + .draggable-item { + position: relative; + will-change: transform; + user-select: none; + } + .draggable-item.is-idle { + transition: 0.25s ease transform; + } + .draggable-item.is-draggable { + z-index: 10; + } + ` +}); + +export class DraggableList extends EventTarget { + listContainer; + draggableItem; + pointerStartX; + pointerStartY; + scrollYMax; + itemsGap = 0; + items = []; + itemSelector; + handleClass = "drag-handle"; + off = []; + offDrag = []; + + constructor(element, itemSelector) { + super(); + this.listContainer = element; + this.itemSelector = itemSelector; + + if (!this.listContainer) return; + + this.off.push(this.on(this.listContainer, "mousedown", this.dragStart)); + this.off.push(this.on(this.listContainer, "touchstart", this.dragStart)); + this.off.push(this.on(document, "mouseup", this.dragEnd)); + this.off.push(this.on(document, "touchend", this.dragEnd)); + } + + getAllItems() { + if (!this.items?.length) { + this.items = Array.from(this.listContainer.querySelectorAll(this.itemSelector)); + this.items.forEach((element) => { + element.classList.add("is-idle"); + }); + } + return this.items; + } + + getIdleItems() { + return this.getAllItems().filter((item) => item.classList.contains("is-idle")); + } + + isItemAbove(item) { + return item.hasAttribute("data-is-above"); + } + + isItemToggled(item) { + return item.hasAttribute("data-is-toggled"); + } + + on(source, event, listener, options) { + listener = listener.bind(this); + source.addEventListener(event, listener, options); + return () => source.removeEventListener(event, listener); + } + + dragStart(e) { + if (e.target.classList.contains(this.handleClass)) { + this.draggableItem = e.target.closest(this.itemSelector); + } + + if (!this.draggableItem) return; + + this.pointerStartX = e.clientX || e.touches[0].clientX; + this.pointerStartY = e.clientY || e.touches[0].clientY; + this.scrollYMax = this.listContainer.scrollHeight - this.listContainer.clientHeight; + + this.setItemsGap(); + this.initDraggableItem(); + this.initItemsState(); + + this.offDrag.push(this.on(document, "mousemove", this.drag)); + this.offDrag.push(this.on(document, "touchmove", this.drag, { passive: false })); + + this.dispatchEvent( + new CustomEvent("dragstart", { + detail: { element: this.draggableItem, position: this.getAllItems().indexOf(this.draggableItem) }, + }) + ); + } + + setItemsGap() { + if (this.getIdleItems().length <= 1) { + this.itemsGap = 0; + return; + } + + const item1 = this.getIdleItems()[0]; + const item2 = this.getIdleItems()[1]; + + const item1Rect = item1.getBoundingClientRect(); + const item2Rect = item2.getBoundingClientRect(); + + this.itemsGap = Math.abs(item1Rect.bottom - item2Rect.top); + } + + initItemsState() { + this.getIdleItems().forEach((item, i) => { + if (this.getAllItems().indexOf(this.draggableItem) > i) { + item.dataset.isAbove = ""; + } + }); + } + + initDraggableItem() { + this.draggableItem.classList.remove("is-idle"); + this.draggableItem.classList.add("is-draggable"); + } + + drag(e) { + if (!this.draggableItem) return; + + e.preventDefault(); + + const clientX = e.clientX || e.touches[0].clientX; + const clientY = e.clientY || e.touches[0].clientY; + + const listRect = this.listContainer.getBoundingClientRect(); + + if (clientY > listRect.bottom) { + if (this.listContainer.scrollTop < this.scrollYMax) { + this.listContainer.scrollBy(0, 10); + this.pointerStartY -= 10; + } + } else if (clientY < listRect.top && this.listContainer.scrollTop > 0) { + this.pointerStartY += 10; + this.listContainer.scrollBy(0, -10); + } + + const pointerOffsetX = clientX - this.pointerStartX; + const pointerOffsetY = clientY - this.pointerStartY; + + this.updateIdleItemsStateAndPosition(); + this.draggableItem.style.transform = `translate(${pointerOffsetX}px, ${pointerOffsetY}px)`; + } + + updateIdleItemsStateAndPosition() { + const draggableItemRect = this.draggableItem.getBoundingClientRect(); + const draggableItemY = draggableItemRect.top + draggableItemRect.height / 2; + + // Update state + this.getIdleItems().forEach((item) => { + const itemRect = item.getBoundingClientRect(); + const itemY = itemRect.top + itemRect.height / 2; + if (this.isItemAbove(item)) { + if (draggableItemY <= itemY) { + item.dataset.isToggled = ""; + } else { + delete item.dataset.isToggled; + } + } else { + if (draggableItemY >= itemY) { + item.dataset.isToggled = ""; + } else { + delete item.dataset.isToggled; + } + } + }); + + // Update position + this.getIdleItems().forEach((item) => { + if (this.isItemToggled(item)) { + const direction = this.isItemAbove(item) ? 1 : -1; + item.style.transform = `translateY(${direction * (draggableItemRect.height + this.itemsGap)}px)`; + } else { + item.style.transform = ""; + } + }); + } + + dragEnd() { + if (!this.draggableItem) return; + + this.applyNewItemsOrder(); + this.cleanup(); + } + + applyNewItemsOrder() { + const reorderedItems = []; + + let oldPosition = -1; + this.getAllItems().forEach((item, index) => { + if (item === this.draggableItem) { + oldPosition = index; + return; + } + if (!this.isItemToggled(item)) { + reorderedItems[index] = item; + return; + } + const newIndex = this.isItemAbove(item) ? index + 1 : index - 1; + reorderedItems[newIndex] = item; + }); + + for (let index = 0; index < this.getAllItems().length; index++) { + const item = reorderedItems[index]; + if (typeof item === "undefined") { + reorderedItems[index] = this.draggableItem; + } + } + + reorderedItems.forEach((item) => { + this.listContainer.appendChild(item); + }); + + this.items = reorderedItems; + + this.dispatchEvent( + new CustomEvent("dragend", { + detail: { element: this.draggableItem, oldPosition, newPosition: reorderedItems.indexOf(this.draggableItem) }, + }) + ); + } + + cleanup() { + this.itemsGap = 0; + this.items = []; + this.unsetDraggableItem(); + this.unsetItemState(); + + this.offDrag.forEach((f) => f()); + this.offDrag = []; + } + + unsetDraggableItem() { + this.draggableItem.style = null; + this.draggableItem.classList.remove("is-draggable"); + this.draggableItem.classList.add("is-idle"); + this.draggableItem = null; + } + + unsetItemState() { + this.getIdleItems().forEach((item, i) => { + delete item.dataset.isAbove; + delete item.dataset.isToggled; + item.style.transform = ""; + }); + } + + dispose() { + this.off.forEach((f) => f()); + } +} diff --git a/web/scripts/ui/imagePreview.js b/web/scripts/ui/imagePreview.js new file mode 100644 index 0000000000000000000000000000000000000000..2a7f66b8f3ba40b11659d3905492ebd14ec61c8f --- /dev/null +++ b/web/scripts/ui/imagePreview.js @@ -0,0 +1,97 @@ +import { $el } from "../ui.js"; + +export function calculateImageGrid(imgs, dw, dh) { + let best = 0; + let w = imgs[0].naturalWidth; + let h = imgs[0].naturalHeight; + const numImages = imgs.length; + + let cellWidth, cellHeight, cols, rows, shiftX; + // compact style + for (let c = 1; c <= numImages; c++) { + const r = Math.ceil(numImages / c); + const cW = dw / c; + const cH = dh / r; + const scaleX = cW / w; + const scaleY = cH / h; + + const scale = Math.min(scaleX, scaleY, 1); + const imageW = w * scale; + const imageH = h * scale; + const area = imageW * imageH * numImages; + + if (area > best) { + best = area; + cellWidth = imageW; + cellHeight = imageH; + cols = c; + rows = r; + shiftX = c * ((cW - imageW) / 2); + } + } + + return { cellWidth, cellHeight, cols, rows, shiftX }; +} + +export function createImageHost(node) { + const el = $el("div.comfy-img-preview"); + let currentImgs; + let first = true; + + function updateSize() { + let w = null; + let h = null; + + if (currentImgs) { + let elH = el.clientHeight; + if (first) { + first = false; + // On first run, if we are small then grow a bit + if (elH < 190) { + elH = 190; + } + el.style.setProperty("--comfy-widget-min-height", elH); + } else { + el.style.setProperty("--comfy-widget-min-height", null); + } + + const nw = node.size[0]; + ({ cellWidth: w, cellHeight: h } = calculateImageGrid(currentImgs, nw - 20, elH)); + w += "px"; + h += "px"; + + el.style.setProperty("--comfy-img-preview-width", w); + el.style.setProperty("--comfy-img-preview-height", h); + } + } + return { + el, + updateImages(imgs) { + if (imgs !== currentImgs) { + if (currentImgs == null) { + requestAnimationFrame(() => { + updateSize(); + }); + } + el.replaceChildren(...imgs); + currentImgs = imgs; + node.onResize(node.size); + node.graph.setDirtyCanvas(true, true); + } + }, + getHeight() { + updateSize(); + }, + onDraw() { + // Element from point uses a hittest find elements so we need to toggle pointer events + el.style.pointerEvents = "all"; + const over = document.elementFromPoint(app.canvas.mouse[0], app.canvas.mouse[1]); + el.style.pointerEvents = "none"; + + if(!over) return; + // Set the overIndex so Open Image etc work + const idx = currentImgs.indexOf(over); + node.overIndex = idx; + }, + }; +} diff --git a/web/scripts/ui/settings.js b/web/scripts/ui/settings.js new file mode 100644 index 0000000000000000000000000000000000000000..9e9d13af00bf23e450b9f5c9e4ca30e175dc654c --- /dev/null +++ b/web/scripts/ui/settings.js @@ -0,0 +1,317 @@ +import { $el } from "../ui.js"; +import { api } from "../api.js"; +import { ComfyDialog } from "./dialog.js"; + +export class ComfySettingsDialog extends ComfyDialog { + constructor(app) { + super(); + this.app = app; + this.settingsValues = {}; + this.settingsLookup = {}; + this.element = $el( + "dialog", + { + id: "comfy-settings-dialog", + parent: document.body, + }, + [ + $el("table.comfy-modal-content.comfy-table", [ + $el( + "caption", + { textContent: "Settings" }, + $el("button.comfy-btn", { + type: "button", + textContent: "\u00d7", + onclick: () => { + this.element.close(); + }, + }) + ), + $el("tbody", { $: (tbody) => (this.textElement = tbody) }), + $el("button", { + type: "button", + textContent: "Close", + style: { + cursor: "pointer", + }, + onclick: () => { + this.element.close(); + }, + }), + ]), + ] + ); + } + + get settings() { + return Object.values(this.settingsLookup); + } + + async load() { + if (this.app.storageLocation === "browser") { + this.settingsValues = localStorage; + } else { + this.settingsValues = await api.getSettings(); + } + + // Trigger onChange for any settings added before load + for (const id in this.settingsLookup) { + this.settingsLookup[id].onChange?.(this.settingsValues[this.getId(id)]); + } + } + + getId(id) { + if (this.app.storageLocation === "browser") { + id = "Comfy.Settings." + id; + } + return id; + } + + getSettingValue(id, defaultValue) { + let value = this.settingsValues[this.getId(id)]; + if(value != null) { + if(this.app.storageLocation === "browser") { + try { + value = JSON.parse(value); + } catch (error) { + } + } + } + return value ?? defaultValue; + } + + async setSettingValueAsync(id, value) { + const json = JSON.stringify(value); + localStorage["Comfy.Settings." + id] = json; // backwards compatibility for extensions keep setting in storage + + let oldValue = this.getSettingValue(id, undefined); + this.settingsValues[this.getId(id)] = value; + + if (id in this.settingsLookup) { + this.settingsLookup[id].onChange?.(value, oldValue); + } + + await api.storeSetting(id, value); + } + + setSettingValue(id, value) { + this.setSettingValueAsync(id, value).catch((err) => { + alert(`Error saving setting '${id}'`); + console.error(err); + }); + } + + addSetting({ id, name, type, defaultValue, onChange, attrs = {}, tooltip = "", options = undefined }) { + if (!id) { + throw new Error("Settings must have an ID"); + } + + if (id in this.settingsLookup) { + throw new Error(`Setting ${id} of type ${type} must have a unique ID.`); + } + + let skipOnChange = false; + let value = this.getSettingValue(id); + if (value == null) { + if (this.app.isNewUserSession) { + // Check if we have a localStorage value but not a setting value and we are a new user + const localValue = localStorage["Comfy.Settings." + id]; + if (localValue) { + value = JSON.parse(localValue); + this.setSettingValue(id, value); // Store on the server + } + } + if (value == null) { + value = defaultValue; + } + } + + // Trigger initial setting of value + if (!skipOnChange) { + onChange?.(value, undefined); + } + + this.settingsLookup[id] = { + id, + onChange, + name, + render: () => { + const setter = (v) => { + if (onChange) { + onChange(v, value); + } + + this.setSettingValue(id, v); + value = v; + }; + value = this.getSettingValue(id, defaultValue); + + let element; + const htmlID = id.replaceAll(".", "-"); + + const labelCell = $el("td", [ + $el("label", { + for: htmlID, + classList: [tooltip !== "" ? "comfy-tooltip-indicator" : ""], + textContent: name, + }), + ]); + + if (typeof type === "function") { + element = type(name, setter, value, attrs); + } else { + switch (type) { + case "boolean": + element = $el("tr", [ + labelCell, + $el("td", [ + $el("input", { + id: htmlID, + type: "checkbox", + checked: value, + onchange: (event) => { + const isChecked = event.target.checked; + if (onChange !== undefined) { + onChange(isChecked); + } + this.setSettingValue(id, isChecked); + }, + }), + ]), + ]); + break; + case "number": + element = $el("tr", [ + labelCell, + $el("td", [ + $el("input", { + type, + value, + id: htmlID, + oninput: (e) => { + setter(e.target.value); + }, + ...attrs, + }), + ]), + ]); + break; + case "slider": + element = $el("tr", [ + labelCell, + $el("td", [ + $el( + "div", + { + style: { + display: "grid", + gridAutoFlow: "column", + }, + }, + [ + $el("input", { + ...attrs, + value, + type: "range", + oninput: (e) => { + setter(e.target.value); + e.target.nextElementSibling.value = e.target.value; + }, + }), + $el("input", { + ...attrs, + value, + id: htmlID, + type: "number", + style: { maxWidth: "4rem" }, + oninput: (e) => { + setter(e.target.value); + e.target.previousElementSibling.value = e.target.value; + }, + }), + ] + ), + ]), + ]); + break; + case "combo": + element = $el("tr", [ + labelCell, + $el("td", [ + $el( + "select", + { + oninput: (e) => { + setter(e.target.value); + }, + }, + (typeof options === "function" ? options(value) : options || []).map((opt) => { + if (typeof opt === "string") { + opt = { text: opt }; + } + const v = opt.value ?? opt.text; + return $el("option", { + value: v, + textContent: opt.text, + selected: value + "" === v + "", + }); + }) + ), + ]), + ]); + break; + case "text": + default: + if (type !== "text") { + console.warn(`Unsupported setting type '${type}, defaulting to text`); + } + + element = $el("tr", [ + labelCell, + $el("td", [ + $el("input", { + value, + id: htmlID, + oninput: (e) => { + setter(e.target.value); + }, + ...attrs, + }), + ]), + ]); + break; + } + } + if (tooltip) { + element.title = tooltip; + } + + return element; + }, + }; + + const self = this; + return { + get value() { + return self.getSettingValue(id, defaultValue); + }, + set value(v) { + self.setSettingValue(id, v); + }, + }; + } + + show() { + this.textElement.replaceChildren( + $el( + "tr", + { + style: { display: "none" }, + }, + [$el("th"), $el("th", { style: { width: "33%" } })] + ), + ...this.settings.sort((a, b) => a.name.localeCompare(b.name)).map((s) => s.render()) + ); + this.element.showModal(); + } +} diff --git a/web/scripts/ui/spinner.css b/web/scripts/ui/spinner.css new file mode 100644 index 0000000000000000000000000000000000000000..56da6072ee3134a539350e11c7d34974da548c77 --- /dev/null +++ b/web/scripts/ui/spinner.css @@ -0,0 +1,34 @@ +.lds-ring { + display: inline-block; + position: relative; + width: 1em; + height: 1em; +} +.lds-ring div { + box-sizing: border-box; + display: block; + position: absolute; + width: 100%; + height: 100%; + border: 0.15em solid #fff; + border-radius: 50%; + animation: lds-ring 1.2s cubic-bezier(0.5, 0, 0.5, 1) infinite; + border-color: #fff transparent transparent transparent; +} +.lds-ring div:nth-child(1) { + animation-delay: -0.45s; +} +.lds-ring div:nth-child(2) { + animation-delay: -0.3s; +} +.lds-ring div:nth-child(3) { + animation-delay: -0.15s; +} +@keyframes lds-ring { + 0% { + transform: rotate(0deg); + } + 100% { + transform: rotate(360deg); + } +} diff --git a/web/scripts/ui/spinner.js b/web/scripts/ui/spinner.js new file mode 100644 index 0000000000000000000000000000000000000000..d049786f6a53555b73f7e45c7d8408905b0df984 --- /dev/null +++ b/web/scripts/ui/spinner.js @@ -0,0 +1,9 @@ +import { addStylesheet } from "../utils.js"; + +addStylesheet(import.meta.url); + +export function createSpinner() { + const div = document.createElement("div"); + div.innerHTML = `
`; + return div.firstElementChild; +} diff --git a/web/scripts/ui/toggleSwitch.js b/web/scripts/ui/toggleSwitch.js new file mode 100644 index 0000000000000000000000000000000000000000..59597ef90e5d6cf26e7392a52ede663cff3dc03c --- /dev/null +++ b/web/scripts/ui/toggleSwitch.js @@ -0,0 +1,60 @@ +import { $el } from "../ui.js"; + +/** + * @typedef { { text: string, value?: string, tooltip?: string } } ToggleSwitchItem + */ +/** + * Creates a toggle switch element + * @param { string } name + * @param { Array void } [opts.onChange] + */ +export function toggleSwitch(name, items, { onChange } = {}) { + let selectedIndex; + let elements; + + function updateSelected(index) { + if (selectedIndex != null) { + elements[selectedIndex].classList.remove("comfy-toggle-selected"); + } + onChange?.({ item: items[index], prev: selectedIndex == null ? undefined : items[selectedIndex] }); + selectedIndex = index; + elements[selectedIndex].classList.add("comfy-toggle-selected"); + } + + elements = items.map((item, i) => { + if (typeof item === "string") item = { text: item }; + if (!item.value) item.value = item.text; + + const toggle = $el( + "label", + { + textContent: item.text, + title: item.tooltip ?? "", + }, + $el("input", { + name, + type: "radio", + value: item.value ?? item.text, + checked: item.selected, + onchange: () => { + updateSelected(i); + }, + }) + ); + if (item.selected) { + updateSelected(i); + } + return toggle; + }); + + const container = $el("div.comfy-toggle-switch", elements); + + if (selectedIndex == null) { + elements[0].children[0].checked = true; + updateSelected(0); + } + + return container; +} diff --git a/web/scripts/ui/userSelection.css b/web/scripts/ui/userSelection.css new file mode 100644 index 0000000000000000000000000000000000000000..35c9d66148df6f18580b915af8f29a5fe0ca0744 --- /dev/null +++ b/web/scripts/ui/userSelection.css @@ -0,0 +1,135 @@ +.comfy-user-selection { + width: 100vw; + height: 100vh; + position: absolute; + top: 0; + left: 0; + z-index: 999; + display: flex; + align-items: center; + justify-content: center; + font-family: sans-serif; + background: linear-gradient(var(--tr-even-bg-color), var(--tr-odd-bg-color)); +} + +.comfy-user-selection-inner { + background: var(--comfy-menu-bg); + margin-top: -30vh; + padding: 20px 40px; + border-radius: 10px; + min-width: 365px; + position: relative; + box-shadow: 0 0 20px rgba(0, 0, 0, 0.3); +} + +.comfy-user-selection-inner form { + width: 100%; + display: flex; + flex-direction: column; + align-items: center; +} + +.comfy-user-selection-inner h1 { + margin: 10px 0 30px 0; + font-weight: normal; +} + +.comfy-user-selection-inner label { + display: flex; + flex-direction: column; + width: 100%; +} + +.comfy-user-selection input, +.comfy-user-selection select { + background-color: var(--comfy-input-bg); + color: var(--input-text); + border: 0; + border-radius: 5px; + padding: 5px; + margin-top: 10px; +} + +.comfy-user-selection input::placeholder { + color: var(--descrip-text); + opacity: 1; +} + +.comfy-user-existing { + width: 100%; +} + +.no-users .comfy-user-existing { + display: none; +} + +.comfy-user-selection-inner .or-separator { + margin: 10px 0; + padding: 10px; + display: block; + text-align: center; + width: 100%; + color: var(--descrip-text); +} + +.comfy-user-selection-inner .or-separator { + overflow: hidden; + text-align: center; + margin-left: -10px; +} + +.comfy-user-selection-inner .or-separator::before, +.comfy-user-selection-inner .or-separator::after { + content: ""; + background-color: var(--border-color); + position: relative; + height: 1px; + vertical-align: middle; + display: inline-block; + width: calc(50% - 20px); + top: -1px; +} + +.comfy-user-selection-inner .or-separator::before { + right: 10px; + margin-left: -50%; +} + +.comfy-user-selection-inner .or-separator::after { + left: 10px; + margin-right: -50%; +} + +.comfy-user-selection-inner section { + width: 100%; + padding: 10px; + margin: -10px; + transition: background-color 0.2s; +} + +.comfy-user-selection-inner section.selected { + background: var(--border-color); + border-radius: 5px; +} + +.comfy-user-selection-inner footer { + display: flex; + flex-direction: column; + align-items: center; + margin-top: 20px; +} + +.comfy-user-selection-inner .comfy-user-error { + color: var(--error-text); + margin-bottom: 10px; +} + +.comfy-user-button-next { + font-size: 16px; + padding: 6px 10px; + width: 100px; + display: flex; + gap: 5px; + align-items: center; + justify-content: center; +} \ No newline at end of file diff --git a/web/scripts/ui/userSelection.js b/web/scripts/ui/userSelection.js new file mode 100644 index 0000000000000000000000000000000000000000..f9f1ca8071abb98bf459d5369b9e1eab0b029098 --- /dev/null +++ b/web/scripts/ui/userSelection.js @@ -0,0 +1,114 @@ +import { api } from "../api.js"; +import { $el } from "../ui.js"; +import { addStylesheet } from "../utils.js"; +import { createSpinner } from "./spinner.js"; + +export class UserSelectionScreen { + async show(users, user) { + // This will rarely be hit so move the loading to on demand + await addStylesheet(import.meta.url); + const userSelection = document.getElementById("comfy-user-selection"); + userSelection.style.display = ""; + return new Promise((resolve) => { + const input = userSelection.getElementsByTagName("input")[0]; + const select = userSelection.getElementsByTagName("select")[0]; + const inputSection = input.closest("section"); + const selectSection = select.closest("section"); + const form = userSelection.getElementsByTagName("form")[0]; + const error = userSelection.getElementsByClassName("comfy-user-error")[0]; + const button = userSelection.getElementsByClassName("comfy-user-button-next")[0]; + + let inputActive = null; + input.addEventListener("focus", () => { + inputSection.classList.add("selected"); + selectSection.classList.remove("selected"); + inputActive = true; + }); + select.addEventListener("focus", () => { + inputSection.classList.remove("selected"); + selectSection.classList.add("selected"); + inputActive = false; + select.style.color = ""; + }); + select.addEventListener("blur", () => { + if (!select.value) { + select.style.color = "var(--descrip-text)"; + } + }); + + form.addEventListener("submit", async (e) => { + e.preventDefault(); + if (inputActive == null) { + error.textContent = "Please enter a username or select an existing user."; + } else if (inputActive) { + const username = input.value.trim(); + if (!username) { + error.textContent = "Please enter a username."; + return; + } + + // Create new user + input.disabled = select.disabled = input.readonly = select.readonly = true; + const spinner = createSpinner(); + button.prepend(spinner); + try { + const resp = await api.createUser(username); + if (resp.status >= 300) { + let message = "Error creating user: " + resp.status + " " + resp.statusText; + try { + const res = await resp.json(); + if(res.error) { + message = res.error; + } + } catch (error) { + } + throw new Error(message); + } + + resolve({ username, userId: await resp.json(), created: true }); + } catch (err) { + spinner.remove(); + error.textContent = err.message ?? err.statusText ?? err ?? "An unknown error occurred."; + input.disabled = select.disabled = input.readonly = select.readonly = false; + return; + } + } else if (!select.value) { + error.textContent = "Please select an existing user."; + return; + } else { + resolve({ username: users[select.value], userId: select.value, created: false }); + } + }); + + if (user) { + const name = localStorage["Comfy.userName"]; + if (name) { + input.value = name; + } + } + if (input.value) { + // Focus the input, do this separately as sometimes browsers like to fill in the value + input.focus(); + } + + const userIds = Object.keys(users ?? {}); + if (userIds.length) { + for (const u of userIds) { + $el("option", { textContent: users[u], value: u, parent: select }); + } + select.style.color = "var(--descrip-text)"; + + if (select.value) { + // Focus the select, do this separately as sometimes browsers like to fill in the value + select.focus(); + } + } else { + userSelection.classList.add("no-users"); + input.focus(); + } + }).then((r) => { + userSelection.remove(); + return r; + }); + } +} diff --git a/web/scripts/utils.js b/web/scripts/utils.js new file mode 100644 index 0000000000000000000000000000000000000000..01b98846218c4536b137ee9f96c04b84dfc70dc0 --- /dev/null +++ b/web/scripts/utils.js @@ -0,0 +1,88 @@ +import { $el } from "./ui.js"; + +// Simple date formatter +const parts = { + d: (d) => d.getDate(), + M: (d) => d.getMonth() + 1, + h: (d) => d.getHours(), + m: (d) => d.getMinutes(), + s: (d) => d.getSeconds(), +}; +const format = + Object.keys(parts) + .map((k) => k + k + "?") + .join("|") + "|yyy?y?"; + +function formatDate(text, date) { + return text.replace(new RegExp(format, "g"), function (text) { + if (text === "yy") return (date.getFullYear() + "").substring(2); + if (text === "yyyy") return date.getFullYear(); + if (text[0] in parts) { + const p = parts[text[0]](date); + return (p + "").padStart(text.length, "0"); + } + return text; + }); +} + +export function applyTextReplacements(app, value) { + return value.replace(/%([^%]+)%/g, function (match, text) { + const split = text.split("."); + if (split.length !== 2) { + // Special handling for dates + if (split[0].startsWith("date:")) { + return formatDate(split[0].substring(5), new Date()); + } + + if (text !== "width" && text !== "height") { + // Dont warn on standard replacements + console.warn("Invalid replacement pattern", text); + } + return match; + } + + // Find node with matching S&R property name + let nodes = app.graph._nodes.filter((n) => n.properties?.["Node name for S&R"] === split[0]); + // If we cant, see if there is a node with that title + if (!nodes.length) { + nodes = app.graph._nodes.filter((n) => n.title === split[0]); + } + if (!nodes.length) { + console.warn("Unable to find node", split[0]); + return match; + } + + if (nodes.length > 1) { + console.warn("Multiple nodes matched", split[0], "using first match"); + } + + const node = nodes[0]; + + const widget = node.widgets?.find((w) => w.name === split[1]); + if (!widget) { + console.warn("Unable to find widget", split[1], "on node", split[0], node); + return match; + } + + return ((widget.value ?? "") + "").replaceAll(/\/|\\/g, "_"); + }); +} + +export async function addStylesheet(urlOrFile, relativeTo) { + return new Promise((res, rej) => { + let url; + if (urlOrFile.endsWith(".js")) { + url = urlOrFile.substr(0, urlOrFile.length - 2) + "css"; + } else { + url = new URL(urlOrFile, relativeTo ?? `${window.location.protocol}//${window.location.host}`).toString(); + } + $el("link", { + parent: document.head, + rel: "stylesheet", + type: "text/css", + href: url, + onload: res, + onerror: rej, + }); + }); +} diff --git a/web/scripts/widgets.js b/web/scripts/widgets.js new file mode 100644 index 0000000000000000000000000000000000000000..678b1b8ec7a61b45b8d3bb06ef51d67be8efc0c7 --- /dev/null +++ b/web/scripts/widgets.js @@ -0,0 +1,525 @@ +import { api } from "./api.js" +import "./domWidget.js"; + +let controlValueRunBefore = false; +export function updateControlWidgetLabel(widget) { + let replacement = "after"; + let find = "before"; + if (controlValueRunBefore) { + [find, replacement] = [replacement, find] + } + widget.label = (widget.label ?? widget.name).replace(find, replacement); +} + +const IS_CONTROL_WIDGET = Symbol(); +const HAS_EXECUTED = Symbol(); + +function getNumberDefaults(inputData, defaultStep, precision, enable_rounding) { + let defaultVal = inputData[1]["default"]; + let { min, max, step, round} = inputData[1]; + + if (defaultVal == undefined) defaultVal = 0; + if (min == undefined) min = 0; + if (max == undefined) max = 2048; + if (step == undefined) step = defaultStep; + // precision is the number of decimal places to show. + // by default, display the the smallest number of decimal places such that changes of size step are visible. + if (precision == undefined) { + precision = Math.max(-Math.floor(Math.log10(step)),0); + } + + if (enable_rounding && (round == undefined || round === true)) { + // by default, round the value to those decimal places shown. + round = Math.round(1000000*Math.pow(0.1,precision))/1000000; + } + + return { val: defaultVal, config: { min, max, step: 10.0 * step, round, precision } }; +} + +export function addValueControlWidget(node, targetWidget, defaultValue = "randomize", values, widgetName, inputData) { + let name = inputData[1]?.control_after_generate; + if(typeof name !== "string") { + name = widgetName; + } + const widgets = addValueControlWidgets(node, targetWidget, defaultValue, { + addFilterList: false, + controlAfterGenerateName: name + }, inputData); + return widgets[0]; +} + +export function addValueControlWidgets(node, targetWidget, defaultValue = "randomize", options, inputData) { + if (!defaultValue) defaultValue = "randomize"; + if (!options) options = {}; + + const getName = (defaultName, optionName) => { + let name = defaultName; + if (options[optionName]) { + name = options[optionName]; + } else if (typeof inputData?.[1]?.[defaultName] === "string") { + name = inputData?.[1]?.[defaultName]; + } else if (inputData?.[1]?.control_prefix) { + name = inputData?.[1]?.control_prefix + " " + name + } + return name; + } + + const widgets = []; + const valueControl = node.addWidget( + "combo", + getName("control_after_generate", "controlAfterGenerateName"), + defaultValue, + function () {}, + { + values: ["fixed", "increment", "decrement", "randomize"], + serialize: false, // Don't include this in prompt. + } + ); + valueControl[IS_CONTROL_WIDGET] = true; + updateControlWidgetLabel(valueControl); + widgets.push(valueControl); + + const isCombo = targetWidget.type === "combo"; + let comboFilter; + if (isCombo) { + valueControl.options.values.push("increment-wrap"); + } + if (isCombo && options.addFilterList !== false) { + comboFilter = node.addWidget( + "string", + getName("control_filter_list", "controlFilterListName"), + "", + function () {}, + { + serialize: false, // Don't include this in prompt. + } + ); + updateControlWidgetLabel(comboFilter); + + widgets.push(comboFilter); + } + + const applyWidgetControl = () => { + var v = valueControl.value; + + if (isCombo && v !== "fixed") { + let values = targetWidget.options.values; + const filter = comboFilter?.value; + if (filter) { + let check; + if (filter.startsWith("/") && filter.endsWith("/")) { + try { + const regex = new RegExp(filter.substring(1, filter.length - 1)); + check = (item) => regex.test(item); + } catch (error) { + console.error("Error constructing RegExp filter for node " + node.id, filter, error); + } + } + if (!check) { + const lower = filter.toLocaleLowerCase(); + check = (item) => item.toLocaleLowerCase().includes(lower); + } + values = values.filter(item => check(item)); + if (!values.length && targetWidget.options.values.length) { + console.warn("Filter for node " + node.id + " has filtered out all items", filter); + } + } + let current_index = values.indexOf(targetWidget.value); + let current_length = values.length; + + switch (v) { + case "increment": + current_index += 1; + break; + case "increment-wrap": + current_index += 1; + if ( current_index >= current_length ) { + current_index = 0; + } + break; + case "decrement": + current_index -= 1; + break; + case "randomize": + current_index = Math.floor(Math.random() * current_length); + default: + break; + } + current_index = Math.max(0, current_index); + current_index = Math.min(current_length - 1, current_index); + if (current_index >= 0) { + let value = values[current_index]; + targetWidget.value = value; + targetWidget.callback(value); + } + } else { + //number + let min = targetWidget.options.min; + let max = targetWidget.options.max; + // limit to something that javascript can handle + max = Math.min(1125899906842624, max); + min = Math.max(-1125899906842624, min); + let range = (max - min) / (targetWidget.options.step / 10); + + //adjust values based on valueControl Behaviour + switch (v) { + case "fixed": + break; + case "increment": + targetWidget.value += targetWidget.options.step / 10; + break; + case "decrement": + targetWidget.value -= targetWidget.options.step / 10; + break; + case "randomize": + targetWidget.value = Math.floor(Math.random() * range) * (targetWidget.options.step / 10) + min; + default: + break; + } + /*check if values are over or under their respective + * ranges and set them to min or max.*/ + if (targetWidget.value < min) targetWidget.value = min; + + if (targetWidget.value > max) + targetWidget.value = max; + targetWidget.callback(targetWidget.value); + } + }; + + valueControl.beforeQueued = () => { + if (controlValueRunBefore) { + // Don't run on first execution + if (valueControl[HAS_EXECUTED]) { + applyWidgetControl(); + } + } + valueControl[HAS_EXECUTED] = true; + }; + + valueControl.afterQueued = () => { + if (!controlValueRunBefore) { + applyWidgetControl(); + } + }; + + return widgets; +}; + +function seedWidget(node, inputName, inputData, app, widgetName) { + const seed = createIntWidget(node, inputName, inputData, app, true); + const seedControl = addValueControlWidget(node, seed.widget, "randomize", undefined, widgetName, inputData); + + seed.widget.linkedWidgets = [seedControl]; + return seed; +} + +function createIntWidget(node, inputName, inputData, app, isSeedInput) { + const control = inputData[1]?.control_after_generate; + if (!isSeedInput && control) { + return seedWidget(node, inputName, inputData, app, typeof control === "string" ? control : undefined); + } + + let widgetType = isSlider(inputData[1]["display"], app); + const { val, config } = getNumberDefaults(inputData, 1, 0, true); + Object.assign(config, { precision: 0 }); + return { + widget: node.addWidget( + widgetType, + inputName, + val, + function (v) { + const s = this.options.step / 10; + this.value = Math.round(v / s) * s; + }, + config + ), + }; +} + +function addMultilineWidget(node, name, opts, app) { + const inputEl = document.createElement("textarea"); + inputEl.className = "comfy-multiline-input"; + inputEl.value = opts.defaultVal; + inputEl.placeholder = opts.placeholder || name; + + const widget = node.addDOMWidget(name, "customtext", inputEl, { + getValue() { + return inputEl.value; + }, + setValue(v) { + inputEl.value = v; + }, + }); + widget.inputEl = inputEl; + + inputEl.addEventListener("input", () => { + widget.callback?.(widget.value); + }); + + return { minWidth: 400, minHeight: 200, widget }; +} + +function isSlider(display, app) { + if (app.ui.settings.getSettingValue("Comfy.DisableSliders")) { + return "number" + } + + return (display==="slider") ? "slider" : "number" +} + +export function initWidgets(app) { + app.ui.settings.addSetting({ + id: "Comfy.WidgetControlMode", + name: "Widget Value Control Mode", + type: "combo", + defaultValue: "after", + options: ["before", "after"], + tooltip: "Controls when widget values are updated (randomize/increment/decrement), either before the prompt is queued or after.", + onChange(value) { + controlValueRunBefore = value === "before"; + for (const n of app.graph._nodes) { + if (!n.widgets) continue; + for (const w of n.widgets) { + if (w[IS_CONTROL_WIDGET]) { + updateControlWidgetLabel(w); + if (w.linkedWidgets) { + for (const l of w.linkedWidgets) { + updateControlWidgetLabel(l); + } + } + } + } + } + app.graph.setDirtyCanvas(true); + }, + }); +} + +export const ComfyWidgets = { + "INT:seed": seedWidget, + "INT:noise_seed": seedWidget, + FLOAT(node, inputName, inputData, app) { + let widgetType = isSlider(inputData[1]["display"], app); + let precision = app.ui.settings.getSettingValue("Comfy.FloatRoundingPrecision"); + let disable_rounding = app.ui.settings.getSettingValue("Comfy.DisableFloatRounding") + if (precision == 0) precision = undefined; + const { val, config } = getNumberDefaults(inputData, 0.5, precision, !disable_rounding); + return { widget: node.addWidget(widgetType, inputName, val, + function (v) { + if (config.round) { + this.value = Math.round(v/config.round)*config.round; + } else { + this.value = v; + } + }, config) }; + }, + INT(node, inputName, inputData, app) { + return createIntWidget(node, inputName, inputData, app); + }, + BOOLEAN(node, inputName, inputData) { + let defaultVal = false; + let options = {}; + if (inputData[1]) { + if (inputData[1].default) + defaultVal = inputData[1].default; + if (inputData[1].label_on) + options["on"] = inputData[1].label_on; + if (inputData[1].label_off) + options["off"] = inputData[1].label_off; + } + return { + widget: node.addWidget( + "toggle", + inputName, + defaultVal, + () => {}, + options, + ) + }; + }, + STRING(node, inputName, inputData, app) { + const defaultVal = inputData[1].default || ""; + const multiline = !!inputData[1].multiline; + + let res; + if (multiline) { + res = addMultilineWidget(node, inputName, { defaultVal, ...inputData[1] }, app); + } else { + res = { widget: node.addWidget("text", inputName, defaultVal, () => {}, {}) }; + } + + if(inputData[1].dynamicPrompts != undefined) + res.widget.dynamicPrompts = inputData[1].dynamicPrompts; + + return res; + }, + COMBO(node, inputName, inputData) { + const type = inputData[0]; + let defaultValue = type[0]; + if (inputData[1] && inputData[1].default) { + defaultValue = inputData[1].default; + } + const res = { widget: node.addWidget("combo", inputName, defaultValue, () => {}, { values: type }) }; + if (inputData[1]?.control_after_generate) { + res.widget.linkedWidgets = addValueControlWidgets(node, res.widget, undefined, undefined, inputData); + } + return res; + }, + IMAGEUPLOAD(node, inputName, inputData, app) { + const imageWidget = node.widgets.find((w) => w.name === (inputData[1]?.widget ?? "image")); + let uploadWidget; + + function showImage(name) { + const img = new Image(); + img.onload = () => { + node.imgs = [img]; + app.graph.setDirtyCanvas(true); + }; + let folder_separator = name.lastIndexOf("/"); + let subfolder = ""; + if (folder_separator > -1) { + subfolder = name.substring(0, folder_separator); + name = name.substring(folder_separator + 1); + } + img.src = api.apiURL(`/view?filename=${encodeURIComponent(name)}&type=input&subfolder=${subfolder}${app.getPreviewFormatParam()}${app.getRandParam()}`); + node.setSizeForImage?.(); + } + + var default_value = imageWidget.value; + Object.defineProperty(imageWidget, "value", { + set : function(value) { + this._real_value = value; + }, + + get : function() { + let value = ""; + if (this._real_value) { + value = this._real_value; + } else { + return default_value; + } + + if (value.filename) { + let real_value = value; + value = ""; + if (real_value.subfolder) { + value = real_value.subfolder + "/"; + } + + value += real_value.filename; + + if(real_value.type && real_value.type !== "input") + value += ` [${real_value.type}]`; + } + return value; + } + }); + + // Add our own callback to the combo widget to render an image when it changes + const cb = node.callback; + imageWidget.callback = function () { + showImage(imageWidget.value); + if (cb) { + return cb.apply(this, arguments); + } + }; + + // On load if we have a value then render the image + // The value isnt set immediately so we need to wait a moment + // No change callbacks seem to be fired on initial setting of the value + requestAnimationFrame(() => { + if (imageWidget.value) { + showImage(imageWidget.value); + } + }); + + async function uploadFile(file, updateNode, pasted = false) { + try { + // Wrap file in formdata so it includes filename + const body = new FormData(); + body.append("image", file); + if (pasted) body.append("subfolder", "pasted"); + const resp = await api.fetchApi("/upload/image", { + method: "POST", + body, + }); + + if (resp.status === 200) { + const data = await resp.json(); + // Add the file to the dropdown list and update the widget value + let path = data.name; + if (data.subfolder) path = data.subfolder + "/" + path; + + if (!imageWidget.options.values.includes(path)) { + imageWidget.options.values.push(path); + } + + if (updateNode) { + showImage(path); + imageWidget.value = path; + } + } else { + alert(resp.status + " - " + resp.statusText); + } + } catch (error) { + alert(error); + } + } + + const fileInput = document.createElement("input"); + Object.assign(fileInput, { + type: "file", + accept: "image/jpeg,image/png,image/webp", + style: "display: none", + onchange: async () => { + if (fileInput.files.length) { + await uploadFile(fileInput.files[0], true); + } + }, + }); + document.body.append(fileInput); + + // Create the button widget for selecting the files + uploadWidget = node.addWidget("button", inputName, "image", () => { + fileInput.click(); + }); + uploadWidget.label = "choose file to upload"; + uploadWidget.serialize = false; + + // Add handler to check if an image is being dragged over our node + node.onDragOver = function (e) { + if (e.dataTransfer && e.dataTransfer.items) { + const image = [...e.dataTransfer.items].find((f) => f.kind === "file"); + return !!image; + } + + return false; + }; + + // On drop upload files + node.onDragDrop = function (e) { + console.log("onDragDrop called"); + let handled = false; + for (const file of e.dataTransfer.files) { + if (file.type.startsWith("image/")) { + uploadFile(file, !handled); // Dont await these, any order is fine, only update on first one + handled = true; + } + } + + return handled; + }; + + node.pasteFile = function(file) { + if (file.type.startsWith("image/")) { + const is_pasted = (file.name === "image.png") && + (file.lastModified - Date.now() < 2000); + uploadFile(file, true, is_pasted); + return true; + } + return false; + } + + return { widget: uploadWidget }; + }, +}; diff --git a/web/style.css b/web/style.css new file mode 100644 index 0000000000000000000000000000000000000000..863840b28660e8c02774c5d25ebd8e8c94e3d904 --- /dev/null +++ b/web/style.css @@ -0,0 +1,554 @@ +:root { + --fg-color: #000; + --bg-color: #fff; + --comfy-menu-bg: #353535; + --comfy-input-bg: #222; + --input-text: #ddd; + --descrip-text: #999; + --drag-text: #ccc; + --error-text: #ff4444; + --border-color: #4e4e4e; + --tr-even-bg-color: #222; + --tr-odd-bg-color: #353535; +} + +@media (prefers-color-scheme: dark) { + :root { + --fg-color: #fff; + --bg-color: #202020; + } +} + +body { + width: 100vw; + height: 100vh; + margin: 0; + overflow: hidden; + background-color: var(--bg-color); + color: var(--fg-color); +} + +#graph-canvas { + width: 100%; + height: 100%; +} + +.comfy-multiline-input { + background-color: var(--comfy-input-bg); + color: var(--input-text); + overflow: hidden; + overflow-y: auto; + padding: 2px; + resize: none; + border: none; + box-sizing: border-box; + font-size: 10px; +} + +.comfy-modal { + display: none; /* Hidden by default */ + position: fixed; /* Stay in place */ + z-index: 100; /* Sit on top */ + padding: 30px 30px 10px 30px; + background-color: var(--comfy-menu-bg); /* Modal background */ + color: var(--error-text); + box-shadow: 0 0 20px #888888; + border-radius: 10px; + top: 50%; + left: 50%; + max-width: 80vw; + max-height: 80vh; + transform: translate(-50%, -50%); + overflow: hidden; + justify-content: center; + font-family: monospace; + font-size: 15px; +} + +.comfy-modal-content { + display: flex; + flex-direction: column; +} + +.comfy-modal p { + overflow: auto; + white-space: pre-line; /* This will respect line breaks */ + margin-bottom: 20px; /* Add some margin between the text and the close button*/ +} + +.comfy-modal select, +.comfy-modal input[type=button], +.comfy-modal input[type=checkbox] { + margin: 3px 3px 3px 4px; +} + +.comfy-menu-hamburger { + position: fixed; + top: 10px; + z-index: 9999; + right: 10px; + width: 30px; + display: none; + gap: 8px; + flex-direction: column; + cursor: pointer; +} +.comfy-menu-hamburger div { + height: 3px; + width: 100%; + border-radius: 20px; + background-color: white; +} + +.comfy-menu { + font-size: 15px; + position: absolute; + top: 50%; + right: 0; + text-align: center; + z-index: 999; + width: 170px; + display: flex; + flex-direction: column; + align-items: center; + color: var(--descrip-text); + background-color: var(--comfy-menu-bg); + font-family: sans-serif; + padding: 10px; + border-radius: 0 8px 8px 8px; + box-shadow: 3px 3px 8px rgba(0, 0, 0, 0.4); +} + +.comfy-menu-header { + display: flex; +} + +.comfy-menu-actions { + display: flex; + gap: 3px; + align-items: center; + height: 20px; + position: relative; + top: -1px; + font-size: 22px; +} + +.comfy-menu .comfy-menu-actions button { + background-color: rgba(0, 0, 0, 0); + padding: 0; + border: none; + cursor: pointer; + font-size: inherit; +} + +.comfy-menu .comfy-menu-actions .comfy-settings-btn { + font-size: 0.6em; +} + +button.comfy-close-menu-btn { + font-size: 1em; + line-height: 12px; + color: #ccc; + position: relative; + top: -1px; +} + +.comfy-menu-queue-size { + flex: auto; +} + +.comfy-menu button, +.comfy-modal button { + font-size: 20px; +} + +.comfy-menu-btns { + margin-bottom: 10px; + width: 100%; +} + +.comfy-menu-btns button { + font-size: 10px; + width: 50%; + color: var(--descrip-text) !important; +} + +.comfy-menu > button { + width: 100%; +} + +.comfy-btn, +.comfy-menu > button, +.comfy-menu-btns button, +.comfy-menu .comfy-list button, +.comfy-modal button { + color: var(--input-text); + background-color: var(--comfy-input-bg); + border-radius: 8px; + border-color: var(--border-color); + border-style: solid; + margin-top: 2px; +} + +.comfy-btn:hover:not(:disabled), +.comfy-menu > button:hover, +.comfy-menu-btns button:hover, +.comfy-menu .comfy-list button:hover, +.comfy-modal button:hover, +.comfy-menu-actions button:hover { + filter: brightness(1.2); + cursor: pointer; +} + +span.drag-handle { + width: 10px; + height: 20px; + display: inline-block; + overflow: hidden; + line-height: 5px; + padding: 3px 4px; + cursor: move; + vertical-align: middle; + margin-top: -.4em; + margin-left: -.2em; + font-size: 12px; + font-family: sans-serif; + letter-spacing: 2px; + color: var(--drag-text); + text-shadow: 1px 0 1px black; +} + +span.drag-handle::after { + content: '.. .. ..'; +} + +.comfy-queue-btn { + width: 100%; +} + +.comfy-list { + color: var(--descrip-text); + background-color: var(--comfy-menu-bg); + margin-bottom: 10px; + border-color: var(--border-color); + border-style: solid; +} + +.comfy-list-items { + overflow-y: scroll; + max-height: 100px; + min-height: 25px; + background-color: var(--comfy-input-bg); + padding: 5px; +} + +.comfy-list h4 { + min-width: 160px; + margin: 0; + padding: 3px; + font-weight: normal; +} + +.comfy-list-items button { + font-size: 10px; +} + +.comfy-list-actions { + margin: 5px; + display: flex; + gap: 5px; + justify-content: center; +} + +.comfy-list-actions button { + font-size: 12px; +} + +button.comfy-queue-btn { + margin: 6px 0 !important; +} + +.comfy-modal.comfy-settings, +.comfy-modal.comfy-manage-templates { + text-align: center; + font-family: sans-serif; + color: var(--descrip-text); + z-index: 99; +} + +.comfy-modal.comfy-settings input[type="range"] { + vertical-align: middle; +} + +.comfy-modal.comfy-settings input[type="range"] + input[type="number"] { + width: 3.5em; +} + +.comfy-modal input, +.comfy-modal select { + color: var(--input-text); + background-color: var(--comfy-input-bg); + border-radius: 8px; + border-color: var(--border-color); + border-style: solid; + font-size: inherit; +} + +.comfy-tooltip-indicator { + text-decoration: underline; + text-decoration-style: dashed; +} + +@media only screen and (max-height: 850px) { + .comfy-menu { + top: 0 !important; + bottom: 0 !important; + left: auto !important; + right: 0 !important; + border-radius: 0; + } + + .comfy-menu span.drag-handle { + display: none; + } + + .comfy-menu-queue-size { + flex: unset; + } + + .comfy-menu-header { + justify-content: space-between; + } + .comfy-menu-actions { + gap: 10px; + font-size: 28px; + } +} + +/* Input popup */ + +.graphdialog { + min-height: 1em; + background-color: var(--comfy-menu-bg); +} + +.graphdialog .name { + font-size: 14px; + font-family: sans-serif; + color: var(--descrip-text); +} + +.graphdialog button { + margin-top: unset; + vertical-align: unset; + height: 1.6em; + padding-right: 8px; +} + +.graphdialog input, .graphdialog textarea, .graphdialog select { + background-color: var(--comfy-input-bg); + border: 2px solid; + border-color: var(--border-color); + color: var(--input-text); + border-radius: 12px 0 0 12px; +} + +/* Dialogs */ + +dialog { + box-shadow: 0 0 20px #888888; +} + +dialog::backdrop { + background: rgba(0, 0, 0, 0.5); +} + +#comfy-settings-dialog { + padding: 0; + width: 41rem; +} + +#comfy-settings-dialog tr > td:first-child { + text-align: right; +} + +#comfy-settings-dialog tbody button, #comfy-settings-dialog table > button { + background-color: var(--bg-color); + border: 1px var(--border-color) solid; + border-radius: 0; + color: var(--input-text); + font-size: 1rem; + padding: 0.5rem; +} + +#comfy-settings-dialog button:hover { + background-color: var(--tr-odd-bg-color); +} + +/* General CSS for tables */ + +.comfy-table { + border-collapse: collapse; + color: var(--input-text); + font-family: Arial, sans-serif; + width: 100%; +} + +.comfy-table caption { + position: sticky; + top: 0; + background-color: var(--bg-color); + color: var(--input-text); + font-size: 1rem; + font-weight: bold; + padding: 8px; + text-align: center; + border-bottom: 1px solid var(--border-color); +} + +.comfy-table caption .comfy-btn { + position: absolute; + top: -2px; + right: 0; + bottom: 0; + cursor: pointer; + border: none; + height: 100%; + border-radius: 0; + aspect-ratio: 1/1; + user-select: none; + font-size: 20px; +} + +.comfy-table caption .comfy-btn:focus { + outline: none; +} + +.comfy-table tr:nth-child(even) { + background-color: var(--tr-even-bg-color); +} + +.comfy-table tr:nth-child(odd) { + background-color: var(--tr-odd-bg-color); +} + +.comfy-table td, +.comfy-table th { + border: 1px solid var(--border-color); + padding: 8px; +} + +/* Context menu */ + +.litegraph .dialog { + z-index: 1; + font-family: Arial, sans-serif; +} + +.litegraph .litemenu-entry.has_submenu { + position: relative; + padding-right: 20px; +} + +.litemenu-entry.has_submenu::after { + content: ">"; + position: absolute; + top: 0; + right: 2px; +} + +.litegraph.litecontextmenu, +.litegraph.litecontextmenu.dark { + z-index: 9999 !important; + background-color: var(--comfy-menu-bg) !important; + filter: brightness(95%); +} + +.litegraph.litecontextmenu .litemenu-entry:hover:not(.disabled):not(.separator) { + background-color: var(--comfy-menu-bg) !important; + filter: brightness(155%); + color: var(--input-text); +} + +.litegraph.litecontextmenu .litemenu-entry.submenu, +.litegraph.litecontextmenu.dark .litemenu-entry.submenu { + background-color: var(--comfy-menu-bg) !important; + color: var(--input-text); +} + +.litegraph.litecontextmenu input { + background-color: var(--comfy-input-bg) !important; + color: var(--input-text) !important; +} + +.comfy-context-menu-filter { + box-sizing: border-box; + border: 1px solid #999; + margin: 0 0 5px 5px; + width: calc(100% - 10px); +} + +.comfy-img-preview { + pointer-events: none; + overflow: hidden; + display: flex; + flex-wrap: wrap; + align-content: flex-start; + justify-content: center; +} + +.comfy-img-preview img { + object-fit: contain; + width: var(--comfy-img-preview-width); + height: var(--comfy-img-preview-height); +} + +.comfy-missing-nodes li button { + font-size: 12px; + margin-left: 5px; +} + +/* Search box */ + +.litegraph.litesearchbox { + z-index: 9999 !important; + background-color: var(--comfy-menu-bg) !important; + overflow: hidden; + display: block; +} + +.litegraph.litesearchbox input, +.litegraph.litesearchbox select { + background-color: var(--comfy-input-bg) !important; + color: var(--input-text); +} + +.litegraph.lite-search-item { + color: var(--input-text); + background-color: var(--comfy-input-bg); + filter: brightness(80%); + padding-left: 0.2em; +} + +.litegraph.lite-search-item.generic_type { + color: var(--input-text); + filter: brightness(50%); +} + +@media only screen and (max-width: 450px) { + #comfy-settings-dialog .comfy-table tbody { + display: grid; + } + #comfy-settings-dialog .comfy-table tr { + display: grid; + } + #comfy-settings-dialog tr > td:first-child { + text-align: center; + border-bottom: none; + padding-bottom: 0; + } + #comfy-settings-dialog tr > td:not(:first-child) { + text-align: center; + border-top: none; + } +} \ No newline at end of file diff --git a/web/types/comfy.d.ts b/web/types/comfy.d.ts new file mode 100644 index 0000000000000000000000000000000000000000..f7129b55584e86986cee280e1eaf24542f036b7c --- /dev/null +++ b/web/types/comfy.d.ts @@ -0,0 +1,76 @@ +import { LGraphNode, IWidget } from "./litegraph"; +import { ComfyApp } from "../../scripts/app"; + +export interface ComfyExtension { + /** + * The name of the extension + */ + name: string; + /** + * Allows any initialisation, e.g. loading resources. Called after the canvas is created but before nodes are added + * @param app The ComfyUI app instance + */ + init(app: ComfyApp): Promise; + /** + * Allows any additonal setup, called after the application is fully set up and running + * @param app The ComfyUI app instance + */ + setup(app: ComfyApp): Promise; + /** + * Called before nodes are registered with the graph + * @param defs The collection of node definitions, add custom ones or edit existing ones + * @param app The ComfyUI app instance + */ + addCustomNodeDefs(defs: Record, app: ComfyApp): Promise; + /** + * Allows the extension to add custom widgets + * @param app The ComfyUI app instance + * @returns An array of {[widget name]: widget data} + */ + getCustomWidgets( + app: ComfyApp + ): Promise< + Record { widget?: IWidget; minWidth?: number; minHeight?: number }> + >; + /** + * Allows the extension to add additional handling to the node before it is registered with LGraph + * @param nodeType The node class (not an instance) + * @param nodeData The original node object info config object + * @param app The ComfyUI app instance + */ + beforeRegisterNodeDef(nodeType: typeof LGraphNode, nodeData: ComfyObjectInfo, app: ComfyApp): Promise; + /** + * Allows the extension to register additional nodes with LGraph after standard nodes are added + * @param app The ComfyUI app instance + */ + registerCustomNodes(app: ComfyApp): Promise; + /** + * Allows the extension to modify a node that has been reloaded onto the graph. + * If you break something in the backend and want to patch workflows in the frontend + * This is the place to do this + * @param node The node that has been loaded + * @param app The ComfyUI app instance + */ + loadedGraphNode(node: LGraphNode, app: ComfyApp); + /** + * Allows the extension to run code after the constructor of the node + * @param node The node that has been created + * @param app The ComfyUI app instance + */ + nodeCreated(node: LGraphNode, app: ComfyApp); +} + +export type ComfyObjectInfo = { + name: string; + display_name?: string; + description?: string; + category: string; + input?: { + required?: Record; + optional?: Record; + }; + output?: string[]; + output_name: string[]; +}; + +export type ComfyObjectInfoConfig = [string | any[]] | [string | any[], any]; diff --git a/web/types/litegraph.d.ts b/web/types/litegraph.d.ts new file mode 100644 index 0000000000000000000000000000000000000000..6629e779ff073d5bfd1e91b0f9cc9a8defe5e812 --- /dev/null +++ b/web/types/litegraph.d.ts @@ -0,0 +1,1506 @@ +// Type definitions for litegraph.js 0.7.0 +// Project: litegraph.js +// Definitions by: NateScarlet + +export type Vector2 = [number, number]; +export type Vector4 = [number, number, number, number]; +export type widgetTypes = + | "number" + | "slider" + | "combo" + | "text" + | "toggle" + | "button"; +export type SlotShape = + | typeof LiteGraph.BOX_SHAPE + | typeof LiteGraph.CIRCLE_SHAPE + | typeof LiteGraph.ARROW_SHAPE + | typeof LiteGraph.SQUARE_SHAPE + | number; // For custom shapes + +/** https://github.com/jagenjo/litegraph.js/tree/master/guides#node-slots */ +export interface INodeSlot { + name: string; + type: string | -1; + label?: string; + dir?: + | typeof LiteGraph.UP + | typeof LiteGraph.RIGHT + | typeof LiteGraph.DOWN + | typeof LiteGraph.LEFT; + color_on?: string; + color_off?: string; + shape?: SlotShape; + locked?: boolean; + nameLocked?: boolean; +} + +export interface INodeInputSlot extends INodeSlot { + link: LLink["id"] | null; +} +export interface INodeOutputSlot extends INodeSlot { + links: LLink["id"][] | null; +} + +export type WidgetCallback = ( + this: T, + value: T["value"], + graphCanvas: LGraphCanvas, + node: LGraphNode, + pos: Vector2, + event?: MouseEvent +) => void; + +export interface IWidget { + name: string | null; + value: TValue; + options?: TOptions; + type?: widgetTypes; + y?: number; + property?: string; + last_y?: number; + clicked?: boolean; + marker?: boolean; + callback?: WidgetCallback; + /** Called by `LGraphCanvas.drawNodeWidgets` */ + draw?( + ctx: CanvasRenderingContext2D, + node: LGraphNode, + width: number, + posY: number, + height: number + ): void; + /** + * Called by `LGraphCanvas.processNodeWidgets` + * https://github.com/jagenjo/litegraph.js/issues/76 + */ + mouse?( + event: MouseEvent, + pos: Vector2, + node: LGraphNode + ): boolean; + /** Called by `LGraphNode.computeSize` */ + computeSize?(width: number): [number, number]; +} +export interface IButtonWidget extends IWidget { + type: "button"; +} +export interface IToggleWidget + extends IWidget { + type: "toggle"; +} +export interface ISliderWidget + extends IWidget { + type: "slider"; +} +export interface INumberWidget extends IWidget { + type: "number"; +} +export interface IComboWidget + extends IWidget< + string[], + { + values: + | string[] + | ((widget: IComboWidget, node: LGraphNode) => string[]); + } + > { + type: "combo"; +} + +export interface ITextWidget extends IWidget { + type: "text"; +} + +export interface IContextMenuItem { + content: string; + callback?: ContextMenuEventListener; + /** Used as innerHTML for extra child element */ + title?: string; + disabled?: boolean; + has_submenu?: boolean; + submenu?: { + options: ContextMenuItem[]; + } & IContextMenuOptions; + className?: string; +} +export interface IContextMenuOptions { + callback?: ContextMenuEventListener; + ignore_item_callbacks?: Boolean; + event?: MouseEvent | CustomEvent; + parentMenu?: ContextMenu; + autoopen?: boolean; + title?: string; + extra?: any; +} + +export type ContextMenuItem = IContextMenuItem | null; +export type ContextMenuEventListener = ( + value: ContextMenuItem, + options: IContextMenuOptions, + event: MouseEvent, + parentMenu: ContextMenu | undefined, + node: LGraphNode +) => boolean | void; + +export const LiteGraph: { + VERSION: number; + + CANVAS_GRID_SIZE: number; + + NODE_TITLE_HEIGHT: number; + NODE_TITLE_TEXT_Y: number; + NODE_SLOT_HEIGHT: number; + NODE_WIDGET_HEIGHT: number; + NODE_WIDTH: number; + NODE_MIN_WIDTH: number; + NODE_COLLAPSED_RADIUS: number; + NODE_COLLAPSED_WIDTH: number; + NODE_TITLE_COLOR: string; + NODE_TEXT_SIZE: number; + NODE_TEXT_COLOR: string; + NODE_SUBTEXT_SIZE: number; + NODE_DEFAULT_COLOR: string; + NODE_DEFAULT_BGCOLOR: string; + NODE_DEFAULT_BOXCOLOR: string; + NODE_DEFAULT_SHAPE: string; + DEFAULT_SHADOW_COLOR: string; + DEFAULT_GROUP_FONT: number; + + LINK_COLOR: string; + EVENT_LINK_COLOR: string; + CONNECTING_LINK_COLOR: string; + + MAX_NUMBER_OF_NODES: number; //avoid infinite loops + DEFAULT_POSITION: Vector2; //default node position + VALID_SHAPES: ["default", "box", "round", "card"]; //,"circle" + + //shapes are used for nodes but also for slots + BOX_SHAPE: 1; + ROUND_SHAPE: 2; + CIRCLE_SHAPE: 3; + CARD_SHAPE: 4; + ARROW_SHAPE: 5; + SQUARE_SHAPE: 6; + + //enums + INPUT: 1; + OUTPUT: 2; + + EVENT: -1; //for outputs + ACTION: -1; //for inputs + + ALWAYS: 0; + ON_EVENT: 1; + NEVER: 2; + ON_TRIGGER: 3; + + UP: 1; + DOWN: 2; + LEFT: 3; + RIGHT: 4; + CENTER: 5; + + STRAIGHT_LINK: 0; + LINEAR_LINK: 1; + SPLINE_LINK: 2; + + NORMAL_TITLE: 0; + NO_TITLE: 1; + TRANSPARENT_TITLE: 2; + AUTOHIDE_TITLE: 3; + + node_images_path: string; + + debug: boolean; + catch_exceptions: boolean; + throw_errors: boolean; + /** if set to true some nodes like Formula would be allowed to evaluate code that comes from unsafe sources (like node configuration), which could lead to exploits */ + allow_scripts: boolean; + /** node types by string */ + registered_node_types: Record; + /** used for dropping files in the canvas */ + node_types_by_file_extension: Record; + /** node types by class name */ + Nodes: Record; + + /** used to add extra features to the search box */ + searchbox_extras: Record< + string, + { + data: { outputs: string[][]; title: string }; + desc: string; + type: string; + } + >; + + createNode(type: string): T; + /** Register a node class so it can be listed when the user wants to create a new one */ + registerNodeType(type: string, base: { new (): LGraphNode }): void; + /** removes a node type from the system */ + unregisterNodeType(type: string): void; + /** Removes all previously registered node's types. */ + clearRegisteredTypes(): void; + /** + * Create a new node type by passing a function, it wraps it with a proper class and generates inputs according to the parameters of the function. + * Useful to wrap simple methods that do not require properties, and that only process some input to generate an output. + * @param name node name with namespace (p.e.: 'math/sum') + * @param func + * @param param_types an array containing the type of every parameter, otherwise parameters will accept any type + * @param return_type string with the return type, otherwise it will be generic + * @param properties properties to be configurable + */ + wrapFunctionAsNode( + name: string, + func: (...args: any[]) => any, + param_types?: string[], + return_type?: string, + properties?: object + ): void; + + /** + * Adds this method to all node types, existing and to be created + * (You can add it to LGraphNode.prototype but then existing node types wont have it) + */ + addNodeMethod(name: string, func: (...args: any[]) => any): void; + + /** + * Create a node of a given type with a name. The node is not attached to any graph yet. + * @param type full name of the node class. p.e. "math/sin" + * @param name a name to distinguish from other nodes + * @param options to set options + */ + createNode( + type: string, + title: string, + options: object + ): T; + + /** + * Returns a registered node type with a given name + * @param type full name of the node class. p.e. "math/sin" + */ + getNodeType(type: string): LGraphNodeConstructor; + + /** + * Returns a list of node types matching one category + * @method getNodeTypesInCategory + * @param {String} category category name + * @param {String} filter only nodes with ctor.filter equal can be shown + * @return {Array} array with all the node classes + */ + getNodeTypesInCategory( + category: string, + filter: string + ): LGraphNodeConstructor[]; + + /** + * Returns a list with all the node type categories + * @method getNodeTypesCategories + * @param {String} filter only nodes with ctor.filter equal can be shown + * @return {Array} array with all the names of the categories + */ + getNodeTypesCategories(filter: string): string[]; + + /** debug purposes: reloads all the js scripts that matches a wildcard */ + reloadNodes(folder_wildcard: string): void; + + getTime(): number; + LLink: typeof LLink; + LGraph: typeof LGraph; + DragAndScale: typeof DragAndScale; + compareObjects(a: object, b: object): boolean; + distance(a: Vector2, b: Vector2): number; + colorToString(c: string): string; + isInsideRectangle( + x: number, + y: number, + left: number, + top: number, + width: number, + height: number + ): boolean; + growBounding(bounding: Vector4, x: number, y: number): Vector4; + isInsideBounding(p: Vector2, bb: Vector4): boolean; + hex2num(hex: string): [number, number, number]; + num2hex(triplet: [number, number, number]): string; + ContextMenu: typeof ContextMenu; + extendClass(target: A, origin: B): A & B; + getParameterNames(func: string): string[]; +}; + +export type serializedLGraph< + TNode = ReturnType, + // https://github.com/jagenjo/litegraph.js/issues/74 + TLink = [number, number, number, number, number, string], + TGroup = ReturnType +> = { + last_node_id: LGraph["last_node_id"]; + last_link_id: LGraph["last_link_id"]; + nodes: TNode[]; + links: TLink[]; + groups: TGroup[]; + config: LGraph["config"]; + version: typeof LiteGraph.VERSION; +}; + +export declare class LGraph { + static supported_types: string[]; + static STATUS_STOPPED: 1; + static STATUS_RUNNING: 2; + + constructor(o?: object); + + filter: string; + catch_errors: boolean; + /** custom data */ + config: object; + elapsed_time: number; + fixedtime: number; + fixedtime_lapse: number; + globaltime: number; + inputs: any; + iteration: number; + last_link_id: number; + last_node_id: number; + last_update_time: number; + links: Record; + list_of_graphcanvas: LGraphCanvas[]; + outputs: any; + runningtime: number; + starttime: number; + status: typeof LGraph.STATUS_RUNNING | typeof LGraph.STATUS_STOPPED; + + private _nodes: LGraphNode[]; + private _groups: LGraphGroup[]; + private _nodes_by_id: Record; + /** nodes that are executable sorted in execution order */ + private _nodes_executable: + | (LGraphNode & { onExecute: NonNullable }[]) + | null; + /** nodes that contain onExecute */ + private _nodes_in_order: LGraphNode[]; + private _version: number; + + getSupportedTypes(): string[]; + /** Removes all nodes from this graph */ + clear(): void; + /** Attach Canvas to this graph */ + attachCanvas(graphCanvas: LGraphCanvas): void; + /** Detach Canvas to this graph */ + detachCanvas(graphCanvas: LGraphCanvas): void; + /** + * Starts running this graph every interval milliseconds. + * @param interval amount of milliseconds between executions, if 0 then it renders to the monitor refresh rate + */ + start(interval?: number): void; + /** Stops the execution loop of the graph */ + stop(): void; + /** + * Run N steps (cycles) of the graph + * @param num number of steps to run, default is 1 + */ + runStep(num?: number, do_not_catch_errors?: boolean): void; + /** + * Updates the graph execution order according to relevance of the nodes (nodes with only outputs have more relevance than + * nodes with only inputs. + */ + updateExecutionOrder(): void; + /** This is more internal, it computes the executable nodes in order and returns it */ + computeExecutionOrder(only_onExecute: boolean, set_level: any): T; + /** + * Returns all the nodes that could affect this one (ancestors) by crawling all the inputs recursively. + * It doesn't include the node itself + * @return an array with all the LGraphNodes that affect this node, in order of execution + */ + getAncestors(node: LGraphNode): LGraphNode[]; + /** + * Positions every node in a more readable manner + */ + arrange(margin?: number,layout?: string): void; + /** + * Returns the amount of time the graph has been running in milliseconds + * @return number of milliseconds the graph has been running + */ + getTime(): number; + + /** + * Returns the amount of time accumulated using the fixedtime_lapse var. This is used in context where the time increments should be constant + * @return number of milliseconds the graph has been running + */ + getFixedTime(): number; + + /** + * Returns the amount of time it took to compute the latest iteration. Take into account that this number could be not correct + * if the nodes are using graphical actions + * @return number of milliseconds it took the last cycle + */ + getElapsedTime(): number; + /** + * Sends an event to all the nodes, useful to trigger stuff + * @param eventName the name of the event (function to be called) + * @param params parameters in array format + */ + sendEventToAllNodes(eventName: string, params: any[], mode?: any): void; + + sendActionToCanvas(action: any, params: any[]): void; + /** + * Adds a new node instance to this graph + * @param node the instance of the node + */ + add(node: LGraphNode, skip_compute_order?: boolean): void; + /** + * Called when a new node is added + * @param node the instance of the node + */ + onNodeAdded(node: LGraphNode): void; + /** Removes a node from the graph */ + remove(node: LGraphNode): void; + /** Returns a node by its id. */ + getNodeById(id: number): LGraphNode | undefined; + /** + * Returns a list of nodes that matches a class + * @param classObject the class itself (not an string) + * @return a list with all the nodes of this type + */ + findNodesByClass( + classObject: LGraphNodeConstructor + ): T[]; + /** + * Returns a list of nodes that matches a type + * @param type the name of the node type + * @return a list with all the nodes of this type + */ + findNodesByType(type: string): T[]; + /** + * Returns the first node that matches a name in its title + * @param title the name of the node to search + * @return the node or null + */ + findNodeByTitle(title: string): T | null; + /** + * Returns a list of nodes that matches a name + * @param title the name of the node to search + * @return a list with all the nodes with this name + */ + findNodesByTitle(title: string): T[]; + /** + * Returns the top-most node in this position of the canvas + * @param x the x coordinate in canvas space + * @param y the y coordinate in canvas space + * @param nodes_list a list with all the nodes to search from, by default is all the nodes in the graph + * @return the node at this position or null + */ + getNodeOnPos( + x: number, + y: number, + node_list?: LGraphNode[], + margin?: number + ): T | null; + /** + * Returns the top-most group in that position + * @param x the x coordinate in canvas space + * @param y the y coordinate in canvas space + * @return the group or null + */ + getGroupOnPos(x: number, y: number): LGraphGroup | null; + + onAction(action: any, param: any): void; + trigger(action: any, param: any): void; + /** Tell this graph it has a global graph input of this type */ + addInput(name: string, type: string, value?: any): void; + /** Assign a data to the global graph input */ + setInputData(name: string, data: any): void; + /** Returns the current value of a global graph input */ + getInputData(name: string): T; + /** Changes the name of a global graph input */ + renameInput(old_name: string, name: string): false | undefined; + /** Changes the type of a global graph input */ + changeInputType(name: string, type: string): false | undefined; + /** Removes a global graph input */ + removeInput(name: string): boolean; + /** Creates a global graph output */ + addOutput(name: string, type: string, value: any): void; + /** Assign a data to the global output */ + setOutputData(name: string, value: string): void; + /** Returns the current value of a global graph output */ + getOutputData(name: string): T; + + /** Renames a global graph output */ + renameOutput(old_name: string, name: string): false | undefined; + /** Changes the type of a global graph output */ + changeOutputType(name: string, type: string): false | undefined; + /** Removes a global graph output */ + removeOutput(name: string): boolean; + triggerInput(name: string, value: any): void; + setCallback(name: string, func: (...args: any[]) => any): void; + beforeChange(info?: LGraphNode): void; + afterChange(info?: LGraphNode): void; + connectionChange(node: LGraphNode): void; + /** returns if the graph is in live mode */ + isLive(): boolean; + /** clears the triggered slot animation in all links (stop visual animation) */ + clearTriggeredSlots(): void; + /* Called when something visually changed (not the graph!) */ + change(): void; + setDirtyCanvas(fg: boolean, bg: boolean): void; + /** Destroys a link */ + removeLink(link_id: number): void; + /** Creates a Object containing all the info about this graph, it can be serialized */ + serialize(): T; + /** + * Configure a graph from a JSON string + * @param data configure a graph from a JSON string + * @returns if there was any error parsing + */ + configure(data: object, keep_old?: boolean): boolean | undefined; + load(url: string): void; +} + +export type SerializedLLink = [number, string, number, number, number, number]; +export declare class LLink { + id: number; + type: string; + origin_id: number; + origin_slot: number; + target_id: number; + target_slot: number; + constructor( + id: number, + type: string, + origin_id: number, + origin_slot: number, + target_id: number, + target_slot: number + ); + configure(o: LLink | SerializedLLink): void; + serialize(): SerializedLLink; +} + +export type SerializedLGraphNode = { + id: T["id"]; + type: T["type"]; + pos: T["pos"]; + size: T["size"]; + flags: T["flags"]; + mode: T["mode"]; + inputs: T["inputs"]; + outputs: T["outputs"]; + title: T["title"]; + properties: T["properties"]; + widgets_values?: IWidget["value"][]; +}; + +/** https://github.com/jagenjo/litegraph.js/blob/master/guides/README.md#lgraphnode */ +export declare class LGraphNode { + static title_color: string; + static title: string; + static type: null | string; + static widgets_up: boolean; + constructor(title?: string); + + title: string; + type: null | string; + size: Vector2; + graph: null | LGraph; + graph_version: number; + pos: Vector2; + is_selected: boolean; + mouseOver: boolean; + + id: number; + + //inputs available: array of inputs + inputs: INodeInputSlot[]; + outputs: INodeOutputSlot[]; + connections: any[]; + + //local data + properties: Record; + properties_info: any[]; + + flags: Partial<{ + collapsed: boolean + }>; + + color: string; + bgcolor: string; + boxcolor: string; + shape: + | typeof LiteGraph.BOX_SHAPE + | typeof LiteGraph.ROUND_SHAPE + | typeof LiteGraph.CIRCLE_SHAPE + | typeof LiteGraph.CARD_SHAPE + | typeof LiteGraph.ARROW_SHAPE; + + serialize_widgets: boolean; + skip_list: boolean; + + /** Used in `LGraphCanvas.onMenuNodeMode` */ + mode?: + | typeof LiteGraph.ON_EVENT + | typeof LiteGraph.ON_TRIGGER + | typeof LiteGraph.NEVER + | typeof LiteGraph.ALWAYS; + + /** If set to true widgets do not start after the slots */ + widgets_up: boolean; + /** widgets start at y distance from the top of the node */ + widgets_start_y: number; + /** if you render outside the node, it will be clipped */ + clip_area: boolean; + /** if set to false it wont be resizable with the mouse */ + resizable: boolean; + /** slots are distributed horizontally */ + horizontal: boolean; + /** if true, the node will show the bgcolor as 'red' */ + has_errors?: boolean; + + /** configure a node from an object containing the serialized info */ + configure(info: SerializedLGraphNode): void; + /** serialize the content */ + serialize(): SerializedLGraphNode; + /** Creates a clone of this node */ + clone(): this; + /** serialize and stringify */ + toString(): string; + /** get the title string */ + getTitle(): string; + /** sets the value of a property */ + setProperty(name: string, value: any): void; + /** sets the output data */ + setOutputData(slot: number, data: any): void; + /** sets the output data */ + setOutputDataType(slot: number, type: string): void; + /** + * Retrieves the input data (data traveling through the connection) from one slot + * @param slot + * @param force_update if set to true it will force the connected node of this slot to output data into this link + * @return data or if it is not connected returns undefined + */ + getInputData(slot: number, force_update?: boolean): T; + /** + * Retrieves the input data type (in case this supports multiple input types) + * @param slot + * @return datatype in string format + */ + getInputDataType(slot: number): string; + /** + * Retrieves the input data from one slot using its name instead of slot number + * @param slot_name + * @param force_update if set to true it will force the connected node of this slot to output data into this link + * @return data or if it is not connected returns null + */ + getInputDataByName(slot_name: string, force_update?: boolean): T; + /** tells you if there is a connection in one input slot */ + isInputConnected(slot: number): boolean; + /** tells you info about an input connection (which node, type, etc) */ + getInputInfo( + slot: number + ): { link: number; name: string; type: string | 0 } | null; + /** returns the node connected in the input slot */ + getInputNode(slot: number): LGraphNode | null; + /** returns the value of an input with this name, otherwise checks if there is a property with that name */ + getInputOrProperty(name: string): T; + /** tells you the last output data that went in that slot */ + getOutputData(slot: number): T | null; + /** tells you info about an output connection (which node, type, etc) */ + getOutputInfo( + slot: number + ): { name: string; type: string; links: number[] } | null; + /** tells you if there is a connection in one output slot */ + isOutputConnected(slot: number): boolean; + /** tells you if there is any connection in the output slots */ + isAnyOutputConnected(): boolean; + /** retrieves all the nodes connected to this output slot */ + getOutputNodes(slot: number): LGraphNode[]; + /** Triggers an event in this node, this will trigger any output with the same name */ + trigger(action: string, param: any): void; + /** + * Triggers an slot event in this node + * @param slot the index of the output slot + * @param param + * @param link_id in case you want to trigger and specific output link in a slot + */ + triggerSlot(slot: number, param: any, link_id?: number): void; + /** + * clears the trigger slot animation + * @param slot the index of the output slot + * @param link_id in case you want to trigger and specific output link in a slot + */ + clearTriggeredSlot(slot: number, link_id?: number): void; + /** + * add a new property to this node + * @param name + * @param default_value + * @param type string defining the output type ("vec3","number",...) + * @param extra_info this can be used to have special properties of the property (like values, etc) + */ + addProperty( + name: string, + default_value: any, + type: string, + extra_info?: object + ): T; + /** + * add a new output slot to use in this node + * @param name + * @param type string defining the output type ("vec3","number",...) + * @param extra_info this can be used to have special properties of an output (label, special color, position, etc) + */ + addOutput( + name: string, + type: string | -1, + extra_info?: Partial + ): INodeOutputSlot; + /** + * add a new output slot to use in this node + * @param array of triplets like [[name,type,extra_info],[...]] + */ + addOutputs( + array: [string, string | -1, Partial | undefined][] + ): void; + /** remove an existing output slot */ + removeOutput(slot: number): void; + /** + * add a new input slot to use in this node + * @param name + * @param type string defining the input type ("vec3","number",...), it its a generic one use 0 + * @param extra_info this can be used to have special properties of an input (label, color, position, etc) + */ + addInput( + name: string, + type: string | -1, + extra_info?: Partial + ): INodeInputSlot; + /** + * add several new input slots in this node + * @param array of triplets like [[name,type,extra_info],[...]] + */ + addInputs( + array: [string, string | -1, Partial | undefined][] + ): void; + /** remove an existing input slot */ + removeInput(slot: number): void; + /** + * add an special connection to this node (used for special kinds of graphs) + * @param name + * @param type string defining the input type ("vec3","number",...) + * @param pos position of the connection inside the node + * @param direction if is input or output + */ + addConnection( + name: string, + type: string, + pos: Vector2, + direction: string + ): { + name: string; + type: string; + pos: Vector2; + direction: string; + links: null; + }; + setValue(v: any): void; + /** computes the size of a node according to its inputs and output slots */ + computeSize(): [number, number]; + /** + * https://github.com/jagenjo/litegraph.js/blob/master/guides/README.md#node-widgets + * @return created widget + */ + addWidget( + type: T["type"], + name: string, + value: T["value"], + callback?: WidgetCallback | string, + options?: T["options"] + ): T; + + addCustomWidget(customWidget: T): T; + + /** + * returns the bounding of the object, used for rendering purposes + * @return [x, y, width, height] + */ + getBounding(): Vector4; + /** checks if a point is inside the shape of a node */ + isPointInside( + x: number, + y: number, + margin?: number, + skipTitle?: boolean + ): boolean; + /** checks if a point is inside a node slot, and returns info about which slot */ + getSlotInPosition( + x: number, + y: number + ): { + input?: INodeInputSlot; + output?: INodeOutputSlot; + slot: number; + link_pos: Vector2; + }; + /** + * returns the input slot with a given name (used for dynamic slots), -1 if not found + * @param name the name of the slot + * @return the slot (-1 if not found) + */ + findInputSlot(name: string): number; + /** + * returns the output slot with a given name (used for dynamic slots), -1 if not found + * @param name the name of the slot + * @return the slot (-1 if not found) + */ + findOutputSlot(name: string): number; + /** + * connect this node output to the input of another node + * @param slot (could be the number of the slot or the string with the name of the slot) + * @param targetNode the target node + * @param targetSlot the input slot of the target node (could be the number of the slot or the string with the name of the slot, or -1 to connect a trigger) + * @return {Object} the link_info is created, otherwise null + */ + connect( + slot: number | string, + targetNode: LGraphNode, + targetSlot: number | string + ): T | null; + /** + * disconnect one output to an specific node + * @param slot (could be the number of the slot or the string with the name of the slot) + * @param target_node the target node to which this slot is connected [Optional, if not target_node is specified all nodes will be disconnected] + * @return if it was disconnected successfully + */ + disconnectOutput(slot: number | string, targetNode?: LGraphNode): boolean; + /** + * disconnect one input + * @param slot (could be the number of the slot or the string with the name of the slot) + * @return if it was disconnected successfully + */ + disconnectInput(slot: number | string): boolean; + /** + * returns the center of a connection point in canvas coords + * @param is_input true if if a input slot, false if it is an output + * @param slot (could be the number of the slot or the string with the name of the slot) + * @param out a place to store the output, to free garbage + * @return the position + **/ + getConnectionPos( + is_input: boolean, + slot: number | string, + out?: Vector2 + ): Vector2; + /** Force align to grid */ + alignToGrid(): void; + /** Console output */ + trace(msg: string): void; + /** Forces to redraw or the main canvas (LGraphNode) or the bg canvas (links) */ + setDirtyCanvas(fg: boolean, bg: boolean): void; + loadImage(url: string): void; + /** Allows to get onMouseMove and onMouseUp events even if the mouse is out of focus */ + captureInput(v: any): void; + /** Collapse the node to make it smaller on the canvas */ + collapse(force: boolean): void; + /** Forces the node to do not move or realign on Z */ + pin(v?: boolean): void; + localToScreen(x: number, y: number, graphCanvas: LGraphCanvas): Vector2; + + // https://github.com/jagenjo/litegraph.js/blob/master/guides/README.md#custom-node-appearance + onDrawBackground?( + ctx: CanvasRenderingContext2D, + canvas: HTMLCanvasElement + ): void; + onDrawForeground?( + ctx: CanvasRenderingContext2D, + canvas: HTMLCanvasElement + ): void; + + // https://github.com/jagenjo/litegraph.js/blob/master/guides/README.md#custom-node-behaviour + onMouseDown?( + event: MouseEvent, + pos: Vector2, + graphCanvas: LGraphCanvas + ): void; + onMouseMove?( + event: MouseEvent, + pos: Vector2, + graphCanvas: LGraphCanvas + ): void; + onMouseUp?( + event: MouseEvent, + pos: Vector2, + graphCanvas: LGraphCanvas + ): void; + onMouseEnter?( + event: MouseEvent, + pos: Vector2, + graphCanvas: LGraphCanvas + ): void; + onMouseLeave?( + event: MouseEvent, + pos: Vector2, + graphCanvas: LGraphCanvas + ): void; + onKey?(event: KeyboardEvent, pos: Vector2, graphCanvas: LGraphCanvas): void; + + /** Called by `LGraphCanvas.selectNodes` */ + onSelected?(): void; + /** Called by `LGraphCanvas.deselectNode` */ + onDeselected?(): void; + /** Called by `LGraph.runStep` `LGraphNode.getInputData` */ + onExecute?(): void; + /** Called by `LGraph.serialize` */ + onSerialize?(o: SerializedLGraphNode): void; + /** Called by `LGraph.configure` */ + onConfigure?(o: SerializedLGraphNode): void; + /** + * when added to graph (warning: this is called BEFORE the node is configured when loading) + * Called by `LGraph.add` + */ + onAdded?(graph: LGraph): void; + /** + * when removed from graph + * Called by `LGraph.remove` `LGraph.clear` + */ + onRemoved?(): void; + /** + * if returns false the incoming connection will be canceled + * Called by `LGraph.connect` + * @param inputIndex target input slot number + * @param outputType type of output slot + * @param outputSlot output slot object + * @param outputNode node containing the output + * @param outputIndex index of output slot + */ + onConnectInput?( + inputIndex: number, + outputType: INodeOutputSlot["type"], + outputSlot: INodeOutputSlot, + outputNode: LGraphNode, + outputIndex: number + ): boolean; + /** + * if returns false the incoming connection will be canceled + * Called by `LGraph.connect` + * @param outputIndex target output slot number + * @param inputType type of input slot + * @param inputSlot input slot object + * @param inputNode node containing the input + * @param inputIndex index of input slot + */ + onConnectOutput?( + outputIndex: number, + inputType: INodeInputSlot["type"], + inputSlot: INodeInputSlot, + inputNode: LGraphNode, + inputIndex: number + ): boolean; + + /** + * Called just before connection (or disconnect - if input is linked). + * A convenient place to switch to another input, or create new one. + * This allow for ability to automatically add slots if needed + * @param inputIndex + * @return selected input slot index, can differ from parameter value + */ + onBeforeConnectInput?( + inputIndex: number + ): number; + + /** a connection changed (new one or removed) (LiteGraph.INPUT or LiteGraph.OUTPUT, slot, true if connected, link_info, input_info or output_info ) */ + onConnectionsChange( + type: number, + slotIndex: number, + isConnected: boolean, + link: LLink, + ioSlot: (INodeOutputSlot | INodeInputSlot) + ): void; + + /** + * if returns false, will abort the `LGraphNode.setProperty` + * Called when a property is changed + * @param property + * @param value + * @param prevValue + */ + onPropertyChanged?(property: string, value: any, prevValue: any): void | boolean; + + /** Called by `LGraphCanvas.processContextMenu` */ + getMenuOptions?(graphCanvas: LGraphCanvas): ContextMenuItem[]; + getSlotMenuOptions?(slot: INodeSlot): ContextMenuItem[]; +} + +export type LGraphNodeConstructor = { + new (): T; +}; + +export type SerializedLGraphGroup = { + title: LGraphGroup["title"]; + bounding: LGraphGroup["_bounding"]; + color: LGraphGroup["color"]; + font: LGraphGroup["font"]; +}; +export declare class LGraphGroup { + title: string; + private _bounding: Vector4; + color: string; + font: string; + + configure(o: SerializedLGraphGroup): void; + serialize(): SerializedLGraphGroup; + move(deltaX: number, deltaY: number, ignoreNodes?: boolean): void; + recomputeInsideNodes(): void; + isPointInside: LGraphNode["isPointInside"]; + setDirtyCanvas: LGraphNode["setDirtyCanvas"]; +} + +export declare class DragAndScale { + constructor(element?: HTMLElement, skipEvents?: boolean); + offset: [number, number]; + scale: number; + max_scale: number; + min_scale: number; + onredraw: Function | null; + enabled: boolean; + last_mouse: Vector2; + element: HTMLElement | null; + visible_area: Vector4; + bindEvents(element: HTMLElement): void; + computeVisibleArea(): void; + onMouse(e: MouseEvent): void; + toCanvasContext(ctx: CanvasRenderingContext2D): void; + convertOffsetToCanvas(pos: Vector2): Vector2; + convertCanvasToOffset(pos: Vector2): Vector2; + mouseDrag(x: number, y: number): void; + changeScale(value: number, zooming_center?: Vector2): void; + changeDeltaScale(value: number, zooming_center?: Vector2): void; + reset(): void; +} + +/** + * This class is in charge of rendering one graph inside a canvas. And provides all the interaction required. + * Valid callbacks are: onNodeSelected, onNodeDeselected, onShowNodePanel, onNodeDblClicked + * + * @param canvas the canvas where you want to render (it accepts a selector in string format or the canvas element itself) + * @param graph + * @param options { skip_rendering, autoresize } + */ +export declare class LGraphCanvas { + static node_colors: Record< + string, + { + color: string; + bgcolor: string; + groupcolor: string; + } + >; + static link_type_colors: Record; + static gradients: object; + static search_limit: number; + + static getFileExtension(url: string): string; + static decodeHTML(str: string): string; + + static onMenuCollapseAll(): void; + static onMenuNodeEdit(): void; + static onShowPropertyEditor( + item: any, + options: any, + e: any, + menu: any, + node: any + ): void; + /** Create menu for `Add Group` */ + static onGroupAdd: ContextMenuEventListener; + /** Create menu for `Add Node` */ + static onMenuAdd: ContextMenuEventListener; + static showMenuNodeOptionalInputs: ContextMenuEventListener; + static showMenuNodeOptionalOutputs: ContextMenuEventListener; + static onShowMenuNodeProperties: ContextMenuEventListener; + static onResizeNode: ContextMenuEventListener; + static onMenuNodeCollapse: ContextMenuEventListener; + static onMenuNodePin: ContextMenuEventListener; + static onMenuNodeMode: ContextMenuEventListener; + static onMenuNodeColors: ContextMenuEventListener; + static onMenuNodeShapes: ContextMenuEventListener; + static onMenuNodeRemove: ContextMenuEventListener; + static onMenuNodeClone: ContextMenuEventListener; + + constructor( + canvas: HTMLCanvasElement | string, + graph?: LGraph, + options?: { + skip_render?: boolean; + autoresize?: boolean; + } + ); + + static active_canvas: HTMLCanvasElement; + + allow_dragcanvas: boolean; + allow_dragnodes: boolean; + /** allow to control widgets, buttons, collapse, etc */ + allow_interaction: boolean; + /** allows to change a connection with having to redo it again */ + allow_reconnect_links: boolean; + /** allow selecting multi nodes without pressing extra keys */ + multi_select: boolean; + /** No effect */ + allow_searchbox: boolean; + always_render_background: boolean; + autoresize?: boolean; + background_image: string; + bgcanvas: HTMLCanvasElement; + bgctx: CanvasRenderingContext2D; + canvas: HTMLCanvasElement; + canvas_mouse: Vector2; + clear_background: boolean; + connecting_node: LGraphNode | null; + connections_width: number; + ctx: CanvasRenderingContext2D; + current_node: LGraphNode | null; + default_connection_color: { + input_off: string; + input_on: string; + output_off: string; + output_on: string; + }; + default_link_color: string; + dirty_area: Vector4 | null; + dirty_bgcanvas?: boolean; + dirty_canvas?: boolean; + drag_mode: boolean; + dragging_canvas: boolean; + dragging_rectangle: Vector4 | null; + ds: DragAndScale; + /** used for transition */ + editor_alpha: number; + filter: any; + fps: number; + frame: number; + graph: LGraph; + highlighted_links: Record; + highquality_render: boolean; + inner_text_font: string; + is_rendering: boolean; + last_draw_time: number; + last_mouse: Vector2; + /** + * Possible duplicated with `last_mouse` + * https://github.com/jagenjo/litegraph.js/issues/70 + */ + last_mouse_position: Vector2; + /** Timestamp of last mouse click, defaults to 0 */ + last_mouseclick: number; + links_render_mode: + | typeof LiteGraph.STRAIGHT_LINK + | typeof LiteGraph.LINEAR_LINK + | typeof LiteGraph.SPLINE_LINK; + live_mode: boolean; + node_capturing_input: LGraphNode | null; + node_dragged: LGraphNode | null; + node_in_panel: LGraphNode | null; + node_over: LGraphNode | null; + node_title_color: string; + node_widget: [LGraphNode, IWidget] | null; + /** Called by `LGraphCanvas.drawBackCanvas` */ + onDrawBackground: + | ((ctx: CanvasRenderingContext2D, visibleArea: Vector4) => void) + | null; + /** Called by `LGraphCanvas.drawFrontCanvas` */ + onDrawForeground: + | ((ctx: CanvasRenderingContext2D, visibleArea: Vector4) => void) + | null; + onDrawOverlay: ((ctx: CanvasRenderingContext2D) => void) | null; + /** Called by `LGraphCanvas.processMouseDown` */ + onMouse: ((event: MouseEvent) => boolean) | null; + /** Called by `LGraphCanvas.drawFrontCanvas` and `LGraphCanvas.drawLinkTooltip` */ + onDrawLinkTooltip: ((ctx: CanvasRenderingContext2D, link: LLink, _this: this) => void) | null; + /** Called by `LGraphCanvas.selectNodes` */ + onNodeMoved: ((node: LGraphNode) => void) | null; + /** Called by `LGraphCanvas.processNodeSelected` */ + onNodeSelected: ((node: LGraphNode) => void) | null; + /** Called by `LGraphCanvas.deselectNode` */ + onNodeDeselected: ((node: LGraphNode) => void) | null; + /** Called by `LGraphCanvas.processNodeDblClicked` */ + onShowNodePanel: ((node: LGraphNode) => void) | null; + /** Called by `LGraphCanvas.processNodeDblClicked` */ + onNodeDblClicked: ((node: LGraphNode) => void) | null; + /** Called by `LGraphCanvas.selectNodes` */ + onSelectionChange: ((nodes: Record) => void) | null; + /** Called by `LGraphCanvas.showSearchBox` */ + onSearchBox: + | (( + helper: Element, + value: string, + graphCanvas: LGraphCanvas + ) => string[]) + | null; + onSearchBoxSelection: + | ((name: string, event: MouseEvent, graphCanvas: LGraphCanvas) => void) + | null; + pause_rendering: boolean; + render_canvas_border: boolean; + render_collapsed_slots: boolean; + render_connection_arrows: boolean; + render_connections_border: boolean; + render_connections_shadows: boolean; + render_curved_connections: boolean; + render_execution_order: boolean; + render_only_selected: boolean; + render_shadows: boolean; + render_title_colored: boolean; + round_radius: number; + selected_group: null | LGraphGroup; + selected_group_resizing: boolean; + selected_nodes: Record; + show_info: boolean; + title_text_font: string; + /** set to true to render title bar with gradients */ + use_gradients: boolean; + visible_area: DragAndScale["visible_area"]; + visible_links: LLink[]; + visible_nodes: LGraphNode[]; + zoom_modify_alpha: boolean; + + /** clears all the data inside */ + clear(): void; + /** assigns a graph, you can reassign graphs to the same canvas */ + setGraph(graph: LGraph, skipClear?: boolean): void; + /** opens a graph contained inside a node in the current graph */ + openSubgraph(graph: LGraph): void; + /** closes a subgraph contained inside a node */ + closeSubgraph(): void; + /** assigns a canvas */ + setCanvas(canvas: HTMLCanvasElement, skipEvents?: boolean): void; + /** binds mouse, keyboard, touch and drag events to the canvas */ + bindEvents(): void; + /** unbinds mouse events from the canvas */ + unbindEvents(): void; + + /** + * this function allows to render the canvas using WebGL instead of Canvas2D + * this is useful if you plant to render 3D objects inside your nodes, it uses litegl.js for webgl and canvas2DtoWebGL to emulate the Canvas2D calls in webGL + **/ + enableWebGL(): void; + + /** + * marks as dirty the canvas, this way it will be rendered again + * @param fg if the foreground canvas is dirty (the one containing the nodes) + * @param bg if the background canvas is dirty (the one containing the wires) + */ + setDirty(fg: boolean, bg: boolean): void; + + /** + * Used to attach the canvas in a popup + * @return the window where the canvas is attached (the DOM root node) + */ + getCanvasWindow(): Window; + /** starts rendering the content of the canvas when needed */ + startRendering(): void; + /** stops rendering the content of the canvas (to save resources) */ + stopRendering(): void; + + processMouseDown(e: MouseEvent): boolean | undefined; + processMouseMove(e: MouseEvent): boolean | undefined; + processMouseUp(e: MouseEvent): boolean | undefined; + processMouseWheel(e: MouseEvent): boolean | undefined; + + /** returns true if a position (in graph space) is on top of a node little corner box */ + isOverNodeBox(node: LGraphNode, canvasX: number, canvasY: number): boolean; + /** returns true if a position (in graph space) is on top of a node input slot */ + isOverNodeInput( + node: LGraphNode, + canvasX: number, + canvasY: number, + slotPos: Vector2 + ): boolean; + + /** process a key event */ + processKey(e: KeyboardEvent): boolean | undefined; + + copyToClipboard(): void; + pasteFromClipboard(): void; + processDrop(e: DragEvent): void; + checkDropItem(e: DragEvent): void; + processNodeDblClicked(n: LGraphNode): void; + processNodeSelected(n: LGraphNode, e: MouseEvent): void; + processNodeDeselected(node: LGraphNode): void; + + /** selects a given node (or adds it to the current selection) */ + selectNode(node: LGraphNode, add?: boolean): void; + /** selects several nodes (or adds them to the current selection) */ + selectNodes(nodes?: LGraphNode[], add?: boolean): void; + /** removes a node from the current selection */ + deselectNode(node: LGraphNode): void; + /** removes all nodes from the current selection */ + deselectAllNodes(): void; + /** deletes all nodes in the current selection from the graph */ + deleteSelectedNodes(): void; + + /** centers the camera on a given node */ + centerOnNode(node: LGraphNode): void; + /** changes the zoom level of the graph (default is 1), you can pass also a place used to pivot the zoom */ + setZoom(value: number, center: Vector2): void; + /** brings a node to front (above all other nodes) */ + bringToFront(node: LGraphNode): void; + /** sends a node to the back (below all other nodes) */ + sendToBack(node: LGraphNode): void; + /** checks which nodes are visible (inside the camera area) */ + computeVisibleNodes(nodes: LGraphNode[]): LGraphNode[]; + /** renders the whole canvas content, by rendering in two separated canvas, one containing the background grid and the connections, and one containing the nodes) */ + draw(forceFG?: boolean, forceBG?: boolean): void; + /** draws the front canvas (the one containing all the nodes) */ + drawFrontCanvas(): void; + /** draws some useful stats in the corner of the canvas */ + renderInfo(ctx: CanvasRenderingContext2D, x: number, y: number): void; + /** draws the back canvas (the one containing the background and the connections) */ + drawBackCanvas(): void; + /** draws the given node inside the canvas */ + drawNode(node: LGraphNode, ctx: CanvasRenderingContext2D): void; + /** draws graphic for node's slot */ + drawSlotGraphic(ctx: CanvasRenderingContext2D, pos: number[], shape: SlotShape, horizontal: boolean): void; + /** draws the shape of the given node in the canvas */ + drawNodeShape( + node: LGraphNode, + ctx: CanvasRenderingContext2D, + size: [number, number], + fgColor: string, + bgColor: string, + selected: boolean, + mouseOver: boolean + ): void; + /** draws every connection visible in the canvas */ + drawConnections(ctx: CanvasRenderingContext2D): void; + /** + * draws a link between two points + * @param a start pos + * @param b end pos + * @param link the link object with all the link info + * @param skipBorder ignore the shadow of the link + * @param flow show flow animation (for events) + * @param color the color for the link + * @param startDir the direction enum + * @param endDir the direction enum + * @param numSublines number of sublines (useful to represent vec3 or rgb) + **/ + renderLink( + a: Vector2, + b: Vector2, + link: object, + skipBorder: boolean, + flow: boolean, + color?: string, + startDir?: number, + endDir?: number, + numSublines?: number + ): void; + + computeConnectionPoint( + a: Vector2, + b: Vector2, + t: number, + startDir?: number, + endDir?: number + ): void; + + drawExecutionOrder(ctx: CanvasRenderingContext2D): void; + /** draws the widgets stored inside a node */ + drawNodeWidgets( + node: LGraphNode, + posY: number, + ctx: CanvasRenderingContext2D, + activeWidget: object + ): void; + /** process an event on widgets */ + processNodeWidgets( + node: LGraphNode, + pos: Vector2, + event: Event, + activeWidget: object + ): void; + /** draws every group area in the background */ + drawGroups(canvas: any, ctx: CanvasRenderingContext2D): void; + adjustNodesSize(): void; + /** resizes the canvas to a given size, if no size is passed, then it tries to fill the parentNode */ + resize(width?: number, height?: number): void; + /** + * switches to live mode (node shapes are not rendered, only the content) + * this feature was designed when graphs where meant to create user interfaces + **/ + switchLiveMode(transition?: boolean): void; + onNodeSelectionChange(): void; + touchHandler(event: TouchEvent): void; + + showLinkMenu(link: LLink, e: any): false; + prompt( + title: string, + value: any, + callback: Function, + event: any + ): HTMLDivElement; + showSearchBox(event?: MouseEvent): void; + showEditPropertyValue(node: LGraphNode, property: any, options: any): void; + createDialog( + html: string, + options?: { position?: Vector2; event?: MouseEvent } + ): void; + + convertOffsetToCanvas: DragAndScale["convertOffsetToCanvas"]; + convertCanvasToOffset: DragAndScale["convertCanvasToOffset"]; + /** converts event coordinates from canvas2D to graph coordinates */ + convertEventToCanvasOffset(e: MouseEvent): Vector2; + /** adds some useful properties to a mouse event, like the position in graph coordinates */ + adjustMouseEvent(e: MouseEvent): void; + + getCanvasMenuOptions(): ContextMenuItem[]; + getNodeMenuOptions(node: LGraphNode): ContextMenuItem[]; + getGroupMenuOptions(): ContextMenuItem[]; + /** Called by `getCanvasMenuOptions`, replace default options */ + getMenuOptions?(): ContextMenuItem[]; + /** Called by `getCanvasMenuOptions`, append to default options */ + getExtraMenuOptions?(): ContextMenuItem[]; + /** Called when mouse right click */ + processContextMenu(node: LGraphNode, event: Event): void; +} + +declare class ContextMenu { + static trigger( + element: HTMLElement, + event_name: string, + params: any, + origin: any + ): void; + static isCursorOverElement(event: MouseEvent, element: HTMLElement): void; + static closeAllContextMenus(window: Window): void; + constructor(values: ContextMenuItem[], options?: IContextMenuOptions, window?: Window); + options: IContextMenuOptions; + parentMenu?: ContextMenu; + lock: boolean; + current_submenu?: ContextMenu; + addItem( + name: string, + value: ContextMenuItem, + options?: IContextMenuOptions + ): void; + close(e?: MouseEvent, ignore_parent_menu?: boolean): void; + getTopMenu(): void; + getFirstEvent(): void; +} + +declare global { + interface CanvasRenderingContext2D { + /** like rect but rounded corners */ + roundRect( + x: number, + y: number, + width: number, + height: number, + radius: number, + radiusLow: number + ): void; + } + + interface Math { + clamp(v: number, min: number, max: number): number; + } +} diff --git a/web/user.css b/web/user.css new file mode 100644 index 0000000000000000000000000000000000000000..8b1af38689e5853fb065714d6a6d322c52f17e72 --- /dev/null +++ b/web/user.css @@ -0,0 +1 @@ +/* Put custom styles here */ \ No newline at end of file