from impact.utils import any_typ, ByPassTypeTuple, make_3d_mask import comfy_extras.nodes_mask from nodes import MAX_RESOLUTION import torch import comfy import sys import nodes class GeneralSwitch: @classmethod def INPUT_TYPES(s): return {"required": { "select": ("INT", {"default": 1, "min": 1, "max": 999999, "step": 1}), "sel_mode": ("BOOLEAN", {"default": True, "label_on": "select_on_prompt", "label_off": "select_on_execution", "forceInput": False}), }, "optional": { "input1": (any_typ,), }, "hidden": {"unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO"} } RETURN_TYPES = (any_typ, "STRING", "INT") RETURN_NAMES = ("selected_value", "selected_label", "selected_index") FUNCTION = "doit" CATEGORY = "ImpactPack/Util" def doit(self, *args, **kwargs): selected_index = int(kwargs['select']) input_name = f"input{selected_index}" selected_label = input_name node_id = kwargs['unique_id'] nodelist = kwargs['extra_pnginfo']['workflow']['nodes'] for node in nodelist: if str(node['id']) == node_id: inputs = node['inputs'] for slot in inputs: if slot['name'] == input_name and 'label' in slot: selected_label = slot['label'] break if input_name in kwargs: return (kwargs[input_name], selected_label, selected_index) else: print(f"ImpactSwitch: invalid select index (ignored)") return (None, "", selected_index) class LatentSwitch: @classmethod def INPUT_TYPES(s): return {"required": { "select": ("INT", {"default": 1, "min": 1, "max": 99999, "step": 1}), "latent1": ("LATENT",), }, } RETURN_TYPES = ("LATENT", ) OUTPUT_NODE = True FUNCTION = "doit" CATEGORY = "ImpactPack/Util" def doit(self, *args, **kwargs): input_name = f"latent{int(kwargs['select'])}" if input_name in kwargs: return (kwargs[input_name],) else: print(f"LatentSwitch: invalid select index ('latent1' is selected)") return (kwargs['latent1'],) class ImageMaskSwitch: @classmethod def INPUT_TYPES(s): return {"required": { "select": ("INT", {"default": 1, "min": 1, "max": 4, "step": 1}), "images1": ("IMAGE",), }, "optional": { "mask1_opt": ("MASK",), "images2_opt": ("IMAGE",), "mask2_opt": ("MASK",), "images3_opt": ("IMAGE",), "mask3_opt": ("MASK",), "images4_opt": ("IMAGE",), "mask4_opt": ("MASK",), }, } RETURN_TYPES = ("IMAGE", "MASK",) OUTPUT_NODE = True FUNCTION = "doit" CATEGORY = "ImpactPack/Util" def doit(self, select, images1, mask1_opt=None, images2_opt=None, mask2_opt=None, images3_opt=None, mask3_opt=None, images4_opt=None, mask4_opt=None): if select == 1: return images1, mask1_opt, elif select == 2: return images2_opt, mask2_opt, elif select == 3: return images3_opt, mask3_opt, else: return images4_opt, mask4_opt, class GeneralInversedSwitch: @classmethod def INPUT_TYPES(s): return {"required": { "select": ("INT", {"default": 1, "min": 1, "max": 999999, "step": 1}), "input": (any_typ,), }, "hidden": {"unique_id": "UNIQUE_ID"}, } RETURN_TYPES = ByPassTypeTuple((any_typ, )) FUNCTION = "doit" CATEGORY = "ImpactPack/Util" def doit(self, select, input, unique_id): res = [] for i in range(0, select): if select == i+1: res.append(input) else: res.append(None) return res class RemoveNoiseMask: @classmethod def INPUT_TYPES(s): return {"required": {"samples": ("LATENT",)}} RETURN_TYPES = ("LATENT",) FUNCTION = "doit" CATEGORY = "ImpactPack/Util" def doit(self, samples): res = {key: value for key, value in samples.items() if key != 'noise_mask'} return (res, ) class ImagePasteMasked: @classmethod def INPUT_TYPES(s): return { "required": { "destination": ("IMAGE",), "source": ("IMAGE",), "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "resize_source": ("BOOLEAN", {"default": False}), }, "optional": { "mask": ("MASK",), } } RETURN_TYPES = ("IMAGE",) FUNCTION = "composite" CATEGORY = "image" def composite(self, destination, source, x, y, resize_source, mask = None): destination = destination.clone().movedim(-1, 1) output = comfy_extras.nodes_mask.composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1) return (output,) from impact.utils import any_typ class ImpactLogger: @classmethod def INPUT_TYPES(s): return {"required": { "data": (any_typ, ""), }, "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, } CATEGORY = "ImpactPack/Debug" OUTPUT_NODE = True RETURN_TYPES = () FUNCTION = "doit" def doit(self, data, prompt, extra_pnginfo): shape = "" if hasattr(data, "shape"): shape = f"{data.shape} / " print(f"[IMPACT LOGGER]: {shape}{data}") print(f" PROMPT: {prompt}") # for x in prompt: # if 'inputs' in x and 'populated_text' in x['inputs']: # print(f"PROMP: {x['10']['inputs']['populated_text']}") # # for x in extra_pnginfo['workflow']['nodes']: # if x['type'] == 'ImpactWildcardProcessor': # print(f" WV : {x['widgets_values'][1]}\n") return {} class ImpactDummyInput: @classmethod def INPUT_TYPES(s): return {"required": {}} CATEGORY = "ImpactPack/Debug" RETURN_TYPES = (any_typ,) FUNCTION = "doit" def doit(self): return ("DUMMY",) class MasksToMaskList: @classmethod def INPUT_TYPES(s): return {"required": { "masks": ("MASK", ), } } RETURN_TYPES = ("MASK", ) OUTPUT_IS_LIST = (True, ) FUNCTION = "doit" CATEGORY = "ImpactPack/Operation" def doit(self, masks): if masks is None: empty_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") return ([empty_mask], ) res = [] for mask in masks: res.append(mask) print(f"mask len: {len(res)}") res = [make_3d_mask(x) for x in res] return (res, ) class MaskListToMaskBatch: @classmethod def INPUT_TYPES(s): return {"required": { "mask": ("MASK", ), } } INPUT_IS_LIST = True RETURN_TYPES = ("MASK", ) FUNCTION = "doit" CATEGORY = "ImpactPack/Operation" def doit(self, mask): if len(mask) == 1: mask = make_3d_mask(mask[0]) return (mask,) elif len(mask) > 1: mask1 = make_3d_mask(mask[0]) for mask2 in mask[1:]: mask2 = make_3d_mask(mask2) if mask1.shape[1:] != mask2.shape[1:]: mask2 = comfy.utils.common_upscale(mask2.movedim(-1, 1), mask1.shape[2], mask1.shape[1], "lanczos", "center").movedim(1, -1) mask1 = torch.cat((mask1, mask2), dim=0) return (mask1,) else: empty_mask = torch.zeros((1, 64, 64), dtype=torch.float32, device="cpu").unsqueeze(0) return (empty_mask,) class ImageListToImageBatch: @classmethod def INPUT_TYPES(s): return {"required": { "images": ("IMAGE", ), } } INPUT_IS_LIST = True RETURN_TYPES = ("IMAGE", ) FUNCTION = "doit" CATEGORY = "ImpactPack/Operation" def doit(self, images): if len(images) <= 1: return (images,) else: image1 = images[0] for image2 in images[1:]: if image1.shape[1:] != image2.shape[1:]: image2 = comfy.utils.common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "lanczos", "center").movedim(1, -1) image1 = torch.cat((image1, image2), dim=0) return (image1,) class ImageBatchToImageList: @classmethod def INPUT_TYPES(s): return {"required": {"image": ("IMAGE",), }} RETURN_TYPES = ("IMAGE",) OUTPUT_IS_LIST = (True,) FUNCTION = "doit" CATEGORY = "ImpactPack/Util" def doit(self, image): images = [image[i:i + 1, ...] for i in range(image.shape[0])] return (images, ) class MakeImageList: @classmethod def INPUT_TYPES(s): return {"required": {"image1": ("IMAGE",), }} RETURN_TYPES = ("IMAGE",) OUTPUT_IS_LIST = (True,) FUNCTION = "doit" CATEGORY = "ImpactPack/Util" def doit(self, **kwargs): images = [] for k, v in kwargs.items(): images.append(v) return (images, ) class MakeImageBatch: @classmethod def INPUT_TYPES(s): return {"required": {"image1": ("IMAGE",), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "doit" CATEGORY = "ImpactPack/Util" def doit(self, **kwargs): image1 = kwargs['image1'] del kwargs['image1'] images = [value for value in kwargs.values()] if len(images) == 0: return (image1,) else: for image2 in images: if image1.shape[1:] != image2.shape[1:]: image2 = comfy.utils.common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "lanczos", "center").movedim(1, -1) image1 = torch.cat((image1, image2), dim=0) return (image1,) class ReencodeLatent: @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT", ), "tile_mode": (["None", "Both", "Decode(input) only", "Encode(output) only"],), "input_vae": ("VAE", ), "output_vae": ("VAE", ), "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}), }, } CATEGORY = "ImpactPack/Util" RETURN_TYPES = ("LATENT", ) FUNCTION = "doit" def doit(self, samples, tile_mode, input_vae, output_vae, tile_size=512): if tile_mode in ["Both", "Decode(input) only"]: pixels = nodes.VAEDecodeTiled().decode(input_vae, samples, tile_size)[0] else: pixels = nodes.VAEDecode().decode(input_vae, samples)[0] if tile_mode in ["Both", "Encode(output) only"]: return nodes.VAEEncodeTiled().encode(output_vae, pixels, tile_size) else: return nodes.VAEEncode().encode(output_vae, pixels) class ReencodeLatentPipe: @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT", ), "tile_mode": (["None", "Both", "Decode(input) only", "Encode(output) only"],), "input_basic_pipe": ("BASIC_PIPE", ), "output_basic_pipe": ("BASIC_PIPE", ), }, } CATEGORY = "ImpactPack/Util" RETURN_TYPES = ("LATENT", ) FUNCTION = "doit" def doit(self, samples, tile_mode, input_basic_pipe, output_basic_pipe): _, _, input_vae, _, _ = input_basic_pipe _, _, output_vae, _, _ = output_basic_pipe return ReencodeLatent().doit(samples, tile_mode, input_vae, output_vae) class StringSelector: @classmethod def INPUT_TYPES(s): return {"required": { "strings": ("STRING", {"multiline": True}), "multiline": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), "select": ("INT", {"min": 0, "max": sys.maxsize, "step": 1, "default": 0}), }} RETURN_TYPES = ("STRING",) FUNCTION = "doit" CATEGORY = "ImpactPack/Util" def doit(self, strings, multiline, select): lines = strings.split('\n') if multiline: result = [] current_string = "" for line in lines: if line.startswith("#"): if current_string: result.append(current_string.strip()) current_string = "" current_string += line + "\n" if current_string: result.append(current_string.strip()) if len(result) == 0: selected = strings else: selected = result[select % len(result)] if selected.startswith('#'): selected = selected[1:] else: if len(lines) == 0: selected = strings else: selected = lines[select % len(lines)] return (selected, )