import re import random import os import nodes import folder_paths import yaml import numpy as np import threading from impact import utils wildcard_lock = threading.Lock() wildcard_dict = {} def get_wildcard_list(): with wildcard_lock: return [f"__{x}__" for x in wildcard_dict.keys()] def get_wildcard_dict(): global wildcard_dict with wildcard_lock: return wildcard_dict def wildcard_normalize(x): return x.replace("\\", "/").lower() def read_wildcard(k, v): if isinstance(v, list): k = wildcard_normalize(k) wildcard_dict[k] = v elif isinstance(v, dict): for k2, v2 in v.items(): new_key = f"{k}/{k2}" new_key = wildcard_normalize(new_key) read_wildcard(new_key, v2) def read_wildcard_dict(wildcard_path): global wildcard_dict for root, directories, files in os.walk(wildcard_path, followlinks=True): for file in files: if file.endswith('.txt'): file_path = os.path.join(root, file) rel_path = os.path.relpath(file_path, wildcard_path) key = os.path.splitext(rel_path)[0].replace('\\', '/').lower() try: with open(file_path, 'r', encoding="ISO-8859-1") as f: lines = f.read().splitlines() wildcard_dict[key] = lines except UnicodeDecodeError: with open(file_path, 'r', encoding="UTF-8", errors="ignore") as f: lines = f.read().splitlines() wildcard_dict[key] = lines elif file.endswith('.yaml'): file_path = os.path.join(root, file) with open(file_path, 'r') as f: yaml_data = yaml.load(f, Loader=yaml.FullLoader) for k, v in yaml_data.items(): read_wildcard(k, v) return wildcard_dict def process(text, seed=None): if seed is not None: random.seed(seed) random_gen = np.random.default_rng(seed) def replace_options(string): replacements_found = False def replace_option(match): nonlocal replacements_found options = match.group(1).split('|') multi_select_pattern = options[0].split('$$') select_range = None select_sep = ' ' range_pattern = r'(\d+)(-(\d+))?' range_pattern2 = r'-(\d+)' if len(multi_select_pattern) > 1: r = re.match(range_pattern, options[0]) if r is None: r = re.match(range_pattern2, options[0]) a = '1' b = r.group(1).strip() else: a = r.group(1).strip() b = r.group(3) if b is not None: b = b.strip() if r is not None: if b is not None and is_numeric_string(a) and is_numeric_string(b): # PATTERN: num1-num2 select_range = int(a), int(b) elif is_numeric_string(a): # PATTERN: num x = int(a) select_range = (x, x) if select_range is not None and len(multi_select_pattern) == 2: # PATTERN: count$$ options[0] = multi_select_pattern[1] elif select_range is not None and len(multi_select_pattern) == 3: # PATTERN: count$$ sep $$ select_sep = multi_select_pattern[1] options[0] = multi_select_pattern[2] adjusted_probabilities = [] total_prob = 0 for option in options: parts = option.split('::', 1) if len(parts) == 2 and is_numeric_string(parts[0].strip()): config_value = float(parts[0].strip()) else: config_value = 1 # Default value if no configuration is provided adjusted_probabilities.append(config_value) total_prob += config_value normalized_probabilities = [prob / total_prob for prob in adjusted_probabilities] if select_range is None: select_count = 1 else: select_count = random_gen.integers(low=select_range[0], high=select_range[1]+1, size=1) if select_count > len(options): random_gen.shuffle(options) selected_items = options else: selected_items = random_gen.choice(options, p=normalized_probabilities, size=select_count, replace=False) selected_items2 = [re.sub(r'^\s*[0-9.]+::', '', x, 1) for x in selected_items] replacement = select_sep.join(selected_items2) if '::' in replacement: pass replacements_found = True return replacement pattern = r'{([^{}]*?)}' replaced_string = re.sub(pattern, replace_option, string) return replaced_string, replacements_found def replace_wildcard(string): local_wildcard_dict = get_wildcard_dict() pattern = r"__([\w.\-+/*\\]+)__" matches = re.findall(pattern, string) replacements_found = False for match in matches: keyword = match.lower() keyword = wildcard_normalize(keyword) if keyword in local_wildcard_dict: replacement = random_gen.choice(local_wildcard_dict[keyword]) replacements_found = True string = string.replace(f"__{match}__", replacement, 1) elif '*' in keyword: subpattern = keyword.replace('*', '.*').replace('+','\+') total_patterns = [] found = False for k, v in local_wildcard_dict.items(): if re.match(subpattern, k) is not None: total_patterns += v found = True if found: replacement = random_gen.choice(total_patterns) replacements_found = True string = string.replace(f"__{match}__", replacement, 1) elif '/' not in keyword: string_fallback = string.replace(f"__{match}__", f"__*/{match}__", 1) string, replacements_found = replace_wildcard(string_fallback) return string, replacements_found replace_depth = 100 stop_unwrap = False while not stop_unwrap and replace_depth > 1: replace_depth -= 1 # prevent infinite loop # pass1: replace options pass1, is_replaced1 = replace_options(text) while is_replaced1: pass1, is_replaced1 = replace_options(pass1) # pass2: replace wildcards text, is_replaced2 = replace_wildcard(pass1) stop_unwrap = not is_replaced1 and not is_replaced2 return text def is_numeric_string(input_str): return re.match(r'^-?\d+(\.\d+)?$', input_str) is not None def safe_float(x): if is_numeric_string(x): return float(x) else: return 1.0 def extract_lora_values(string): pattern = r']+)>' matches = re.findall(pattern, string) def touch_lbw(text): return re.sub(r'LBW=[A-Za-z][A-Za-z0-9_-]*:', r'LBW=', text) items = [touch_lbw(match.strip(':')) for match in matches] added = set() result = [] for item in items: item = item.split(':') lora = None a = None b = None lbw = None lbw_a = None lbw_b = None if len(item) > 0: lora = item[0] for sub_item in item[1:]: if is_numeric_string(sub_item): if a is None: a = float(sub_item) elif b is None: b = float(sub_item) elif sub_item.startswith("LBW="): for lbw_item in sub_item[4:].split(';'): if lbw_item.startswith("A="): lbw_a = safe_float(lbw_item[2:].strip()) elif lbw_item.startswith("B="): lbw_b = safe_float(lbw_item[2:].strip()) elif lbw_item.strip() != '': lbw = lbw_item if a is None: a = 1.0 if b is None: b = a if lora is not None and lora not in added: result.append((lora, a, b, lbw, lbw_a, lbw_b)) added.add(lora) return result def remove_lora_tags(string): pattern = r']+>' result = re.sub(pattern, '', string) return result def resolve_lora_name(lora_name_cache, name): if os.path.exists(name): return name else: if len(lora_name_cache) == 0: lora_name_cache.extend(folder_paths.get_filename_list("loras")) for x in lora_name_cache: if x.endswith(name): return x def process_with_loras(wildcard_opt, model, clip, clip_encoder=None): lora_name_cache = [] pass1 = process(wildcard_opt) loras = extract_lora_values(pass1) pass2 = remove_lora_tags(pass1) for lora_name, model_weight, clip_weight, lbw, lbw_a, lbw_b in loras: lora_name_ext = lora_name.split('.') if ('.'+lora_name_ext[-1]) not in folder_paths.supported_pt_extensions: lora_name = lora_name+".safetensors" orig_lora_name = lora_name lora_name = resolve_lora_name(lora_name_cache, lora_name) if lora_name is not None: path = folder_paths.get_full_path("loras", lora_name) else: path = None if path is not None: print(f"LOAD LORA: {lora_name}: {model_weight}, {clip_weight}, LBW={lbw}, A={lbw_a}, B={lbw_b}") def default_lora(): return nodes.LoraLoader().load_lora(model, clip, lora_name, model_weight, clip_weight) if lbw is not None: if 'LoraLoaderBlockWeight //Inspire' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node( 'https://github.com/ltdrdata/ComfyUI-Inspire-Pack', "To use 'LBW=' syntax in wildcards, 'Inspire Pack' extension is required.") print(f"'LBW(Lora Block Weight)' is given, but the 'Inspire Pack' is not installed. The LBW= attribute is being ignored.") model, clip = default_lora() else: cls = nodes.NODE_CLASS_MAPPINGS['LoraLoaderBlockWeight //Inspire'] model, clip, _ = cls().doit(model, clip, lora_name, model_weight, clip_weight, False, 0, lbw_a, lbw_b, "", lbw) else: model, clip = default_lora() else: print(f"LORA NOT FOUND: {orig_lora_name}") pass3 = [x.strip() for x in pass2.split("BREAK")] pass3 = [x for x in pass3 if x != ''] if len(pass3) == 0: pass3 = [''] pass3_str = [f'[{x}]' for x in pass3] print(f"CLIP: {str.join(' + ', pass3_str)}") result = None for prompt in pass3: if clip_encoder is None: cur = nodes.CLIPTextEncode().encode(clip, prompt)[0] else: cur = clip_encoder.encode(clip, prompt)[0] if result is not None: result = nodes.ConditioningConcat().concat(result, cur)[0] else: result = cur return model, clip, result def starts_with_regex(pattern, text): regex = re.compile(pattern) return bool(regex.match(text)) def split_to_dict(text): pattern = r'\[([A-Za-z0-9_. ]+)\]([^\[]+)(?=\[|$)' matches = re.findall(pattern, text) result_dict = {key: value.strip() for key, value in matches} return result_dict class WildcardChooser: def __init__(self, items, randomize_when_exhaust): self.i = 0 self.items = items self.randomize_when_exhaust = randomize_when_exhaust def get(self, seg): if self.i >= len(self.items): self.i = 0 if self.randomize_when_exhaust: random.shuffle(self.items) item = self.items[self.i] self.i += 1 return item class WildcardChooserDict: def __init__(self, items): self.items = items def get(self, seg): text = "" if 'ALL' in self.items: text = self.items['ALL'] if seg.label in self.items: text += self.items[seg.label] return text def split_string_with_sep(input_string): sep_pattern = r'\[SEP(?:\:\w+)?\]' substrings = re.split(sep_pattern, input_string) result_list = [None] matches = re.findall(sep_pattern, input_string) for i, substring in enumerate(substrings): result_list.append(substring) if i < len(matches): if matches[i] == '[SEP]': result_list.append(None) elif matches[i] == '[SEP:R]': result_list.append(random.randint(0, 1125899906842624)) else: try: seed = int(matches[i][5:-1]) except: seed = None result_list.append(seed) iterable = iter(result_list) return list(zip(iterable, iterable)) def process_wildcard_for_segs(wildcard): if wildcard.startswith('[LAB]'): raw_items = split_to_dict(wildcard) items = {} for k, v in raw_items.items(): v = v.strip() if v != '': items[k] = v return 'LAB', WildcardChooserDict(items) elif starts_with_regex(r"\[(ASC|DSC|RND)\]", wildcard): mode = wildcard[1:4] items = split_string_with_sep(wildcard[5:]) if mode == 'RND': random.shuffle(items) return mode, WildcardChooser(items, True) else: return mode, WildcardChooser(items, False) else: return None, WildcardChooser([(None, wildcard)], False)