import os import threading import traceback from aiohttp import web import impact import server import folder_paths import torchvision import impact.core as core import impact.impact_pack as impact_pack from impact.utils import to_tensor from segment_anything import SamPredictor, sam_model_registry import numpy as np import nodes from PIL import Image import io import impact.wildcards as wildcards import comfy from io import BytesIO import random @server.PromptServer.instance.routes.post("/upload/temp") async def upload_image(request): upload_dir = folder_paths.get_temp_directory() if not os.path.exists(upload_dir): os.makedirs(upload_dir) post = await request.post() image = post.get("image") if image and image.file: filename = image.filename if not filename: return web.Response(status=400) split = os.path.splitext(filename) i = 1 while os.path.exists(os.path.join(upload_dir, filename)): filename = f"{split[0]} ({i}){split[1]}" i += 1 filepath = os.path.join(upload_dir, filename) with open(filepath, "wb") as f: f.write(image.file.read()) return web.json_response({"name": filename}) else: return web.Response(status=400) sam_predictor = None default_sam_model_name = os.path.join(impact_pack.model_path, "sams", "sam_vit_b_01ec64.pth") sam_lock = threading.Condition() last_prepare_data = None def async_prepare_sam(image_dir, model_name, filename): with sam_lock: global sam_predictor if 'vit_h' in model_name: model_kind = 'vit_h' elif 'vit_l' in model_name: model_kind = 'vit_l' else: model_kind = 'vit_b' sam_model = sam_model_registry[model_kind](checkpoint=model_name) sam_predictor = SamPredictor(sam_model) image_path = os.path.join(image_dir, filename) image = nodes.LoadImage().load_image(image_path)[0] image = np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) if impact.config.get_config()['sam_editor_cpu']: device = 'cpu' else: device = comfy.model_management.get_torch_device() sam_predictor.model.to(device=device) sam_predictor.set_image(image, "RGB") sam_predictor.model.cpu() @server.PromptServer.instance.routes.post("/sam/prepare") async def sam_prepare(request): global sam_predictor global last_prepare_data data = await request.json() with sam_lock: if last_prepare_data is not None and last_prepare_data == data: # already loaded: skip -- prevent redundant loading return web.Response(status=200) last_prepare_data = data model_name = 'sam_vit_b_01ec64.pth' if data['sam_model_name'] == 'auto': model_name = impact.config.get_config()['sam_editor_model'] model_name = os.path.join(impact_pack.model_path, "sams", model_name) print(f"[INFO] ComfyUI-Impact-Pack: Loading SAM model '{impact_pack.model_path}'") filename, image_dir = folder_paths.annotated_filepath(data["filename"]) if image_dir is None: typ = data['type'] if data['type'] != '' else 'output' image_dir = folder_paths.get_directory_by_type(typ) if data['subfolder'] is not None and data['subfolder'] != '': image_dir += f"/{data['subfolder']}" if image_dir is None: return web.Response(status=400) thread = threading.Thread(target=async_prepare_sam, args=(image_dir, model_name, filename,)) thread.start() print(f"[INFO] ComfyUI-Impact-Pack: SAM model loaded. ") @server.PromptServer.instance.routes.post("/sam/release") async def release_sam(request): global sam_predictor with sam_lock: del sam_predictor sam_predictor = None print(f"[INFO] ComfyUI-Impact-Pack: unloading SAM model") @server.PromptServer.instance.routes.post("/sam/detect") async def sam_detect(request): global sam_predictor with sam_lock: if sam_predictor is not None: if impact.config.get_config()['sam_editor_cpu']: device = 'cpu' else: device = comfy.model_management.get_torch_device() sam_predictor.model.to(device=device) try: data = await request.json() positive_points = data['positive_points'] negative_points = data['negative_points'] threshold = data['threshold'] points = [] plabs = [] for p in positive_points: points.append(p) plabs.append(1) for p in negative_points: points.append(p) plabs.append(0) detected_masks = core.sam_predict(sam_predictor, points, plabs, None, threshold) mask = core.combine_masks2(detected_masks) if mask is None: return web.Response(status=400) image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) i = 255. * image.cpu().numpy() img = Image.fromarray(np.clip(i[0], 0, 255).astype(np.uint8)) img_buffer = io.BytesIO() img.save(img_buffer, format='png') headers = {'Content-Type': 'image/png'} finally: sam_predictor.model.to(device="cpu") return web.Response(body=img_buffer.getvalue(), headers=headers) else: return web.Response(status=400) @server.PromptServer.instance.routes.get("/impact/wildcards/list") async def wildcards_list(request): data = {'data': impact.wildcards.get_wildcard_list()} return web.json_response(data) @server.PromptServer.instance.routes.post("/impact/wildcards") async def populate_wildcards(request): data = await request.json() populated = wildcards.process(data['text'], data.get('seed', None)) return web.json_response({"text": populated}) segs_picker_map = {} @server.PromptServer.instance.routes.get("/impact/segs/picker/count") async def segs_picker_count(request): node_id = request.rel_url.query.get('id', '') if node_id in segs_picker_map: res = len(segs_picker_map[node_id]) return web.Response(status=200, text=str(res)) return web.Response(status=400) @server.PromptServer.instance.routes.get("/impact/segs/picker/view") async def segs_picker(request): node_id = request.rel_url.query.get('id', '') idx = int(request.rel_url.query.get('idx', '')) if node_id in segs_picker_map and idx < len(segs_picker_map[node_id]): img = to_tensor(segs_picker_map[node_id][idx]).permute(0, 3, 1, 2).squeeze(0) pil = torchvision.transforms.ToPILImage('RGB')(img) image_bytes = BytesIO() pil.save(image_bytes, format="PNG") image_bytes.seek(0) return web.Response(status=200, body=image_bytes, content_type='image/png', headers={"Content-Disposition": f"filename={node_id}{idx}.png"}) return web.Response(status=400) @server.PromptServer.instance.routes.get("/view/validate") async def view_validate(request): if "filename" in request.rel_url.query: filename = request.rel_url.query["filename"] subfolder = request.rel_url.query["subfolder"] filename, base_dir = folder_paths.annotated_filepath(filename) if filename == '' or filename[0] == '/' or '..' in filename: return web.Response(status=400) if base_dir is None: base_dir = folder_paths.get_input_directory() file = os.path.join(base_dir, subfolder, filename) if os.path.isfile(file): return web.Response(status=200) return web.Response(status=400) @server.PromptServer.instance.routes.get("/impact/validate/pb_id_image") async def view_validate(request): if "id" in request.rel_url.query: pb_id = request.rel_url.query["id"] if pb_id not in core.preview_bridge_image_id_map: return web.Response(status=400) file = core.preview_bridge_image_id_map[pb_id] if os.path.isfile(file): return web.Response(status=200) return web.Response(status=400) @server.PromptServer.instance.routes.get("/impact/set/pb_id_image") async def set_previewbridge_image(request): try: if "filename" in request.rel_url.query: node_id = request.rel_url.query["node_id"] filename = request.rel_url.query["filename"] path_type = request.rel_url.query["type"] subfolder = request.rel_url.query["subfolder"] filename, output_dir = folder_paths.annotated_filepath(filename) if filename == '' or filename[0] == '/' or '..' in filename: return web.Response(status=400) if output_dir is None: if path_type == 'input': output_dir = folder_paths.get_input_directory() elif path_type == 'output': output_dir = folder_paths.get_output_directory() else: output_dir = folder_paths.get_temp_directory() file = os.path.join(output_dir, subfolder, filename) item = { 'filename': filename, 'type': path_type, 'subfolder': subfolder, } pb_id = core.set_previewbridge_image(node_id, file, item) return web.Response(status=200, text=pb_id) except Exception: traceback.print_exc() return web.Response(status=400) @server.PromptServer.instance.routes.get("/impact/get/pb_id_image") async def get_previewbridge_image(request): if "id" in request.rel_url.query: pb_id = request.rel_url.query["id"] if pb_id in core.preview_bridge_image_id_map: _, path_item = core.preview_bridge_image_id_map[pb_id] return web.json_response(path_item) return web.Response(status=400) @server.PromptServer.instance.routes.get("/impact/view/pb_id_image") async def view_previewbridge_image(request): if "id" in request.rel_url.query: pb_id = request.rel_url.query["id"] if pb_id in core.preview_bridge_image_id_map: file = core.preview_bridge_image_id_map[pb_id] with Image.open(file) as img: filename = os.path.basename(file) return web.FileResponse(file, headers={"Content-Disposition": f"filename=\"{filename}\""}) return web.Response(status=400) def onprompt_for_switch(json_data): inversed_switch_info = {} onprompt_switch_info = {} onprompt_cond_branch_info = {} for k, v in json_data['prompt'].items(): if 'class_type' not in v: continue cls = v['class_type'] if cls == 'ImpactInversedSwitch': select_input = v['inputs']['select'] if isinstance(select_input, list) and len(select_input) == 2: input_node = json_data['prompt'][select_input[0]] if input_node['class_type'] == 'ImpactInt' and 'inputs' in input_node and 'value' in input_node['inputs']: inversed_switch_info[k] = input_node['inputs']['value'] else: inversed_switch_info[k] = select_input elif cls in ['ImpactSwitch', 'LatentSwitch', 'SEGSSwitch', 'ImpactMakeImageList']: if 'sel_mode' in v['inputs'] and v['inputs']['sel_mode'] and 'select' in v['inputs']: select_input = v['inputs']['select'] if isinstance(select_input, list) and len(select_input) == 2: input_node = json_data['prompt'][select_input[0]] if input_node['class_type'] == 'ImpactInt' and 'inputs' in input_node and 'value' in input_node['inputs']: onprompt_switch_info[k] = input_node['inputs']['value'] if input_node['class_type'] == 'ImpactSwitch' and 'inputs' in input_node and 'select' in input_node['inputs']: if isinstance(input_node['inputs']['select'], int): onprompt_switch_info[k] = input_node['inputs']['select'] else: print(f"\n##### ##### #####\n[WARN] {cls}: For the 'select' operation, only 'select_index' of the 'ImpactSwitch', which is not an input, or 'ImpactInt' and 'Primitive' are allowed as inputs.\n##### ##### #####\n") else: onprompt_switch_info[k] = select_input elif cls == 'ImpactConditionalBranchSelMode': if 'sel_mode' in v['inputs'] and v['inputs']['sel_mode'] and 'cond' in v['inputs']: cond_input = v['inputs']['cond'] if isinstance(cond_input, list) and len(cond_input) == 2: input_node = json_data['prompt'][cond_input[0]] if (input_node['class_type'] == 'ImpactValueReceiver' and 'inputs' in input_node and 'value' in input_node['inputs'] and 'typ' in input_node['inputs']): if 'BOOLEAN' == input_node['inputs']['typ']: try: onprompt_cond_branch_info[k] = input_node['inputs']['value'].lower() == "true" except: pass else: onprompt_cond_branch_info[k] = cond_input for k, v in json_data['prompt'].items(): disable_targets = set() for kk, vv in v['inputs'].items(): if isinstance(vv, list) and len(vv) == 2: if vv[0] in inversed_switch_info: if vv[1] + 1 != inversed_switch_info[vv[0]]: disable_targets.add(kk) if k in onprompt_switch_info: selected_slot_name = f"input{onprompt_switch_info[k]}" for kk, vv in v['inputs'].items(): if kk != selected_slot_name and kk.startswith('input'): disable_targets.add(kk) if k in onprompt_cond_branch_info: selected_slot_name = "tt_value" if onprompt_cond_branch_info[k] else "ff_value" for kk, vv in v['inputs'].items(): if kk in ['tt_value', 'ff_value'] and kk != selected_slot_name: disable_targets.add(kk) for kk in disable_targets: del v['inputs'][kk] def onprompt_for_pickers(json_data): detected_pickers = set() for k, v in json_data['prompt'].items(): if 'class_type' not in v: continue cls = v['class_type'] if cls == 'ImpactSEGSPicker': detected_pickers.add(k) # garbage collection keys_to_remove = [key for key in segs_picker_map if key not in detected_pickers] for key in keys_to_remove: del segs_picker_map[key] def gc_preview_bridge_cache(json_data): prompt_keys = json_data['prompt'].keys() for key in list(core.preview_bridge_cache.keys()): if key not in prompt_keys: print(f"key deleted: {key}") del core.preview_bridge_cache[key] def workflow_imagereceiver_update(json_data): prompt = json_data['prompt'] for v in prompt.values(): if 'class_type' in v and v['class_type'] == 'ImageReceiver': if v['inputs']['save_to_workflow']: v['inputs']['image'] = "#DATA" def regional_sampler_seed_update(json_data): prompt = json_data['prompt'] for k, v in prompt.items(): if 'class_type' in v and v['class_type'] == 'RegionalSampler': seed_2nd_mode = v['inputs']['seed_2nd_mode'] new_seed = None if seed_2nd_mode == 'increment': new_seed = v['inputs']['seed_2nd']+1 if new_seed > 1125899906842624: new_seed = 0 elif seed_2nd_mode == 'decrement': new_seed = v['inputs']['seed_2nd']-1 if new_seed < 0: new_seed = 1125899906842624 elif seed_2nd_mode == 'randomize': new_seed = random.randint(0, 1125899906842624) if new_seed is not None: server.PromptServer.instance.send_sync("impact-node-feedback", {"node_id": k, "widget_name": "seed_2nd", "type": "INT", "value": new_seed}) def onprompt_populate_wildcards(json_data): prompt = json_data['prompt'] updated_widget_values = {} for k, v in prompt.items(): if 'class_type' in v and (v['class_type'] == 'ImpactWildcardEncode' or v['class_type'] == 'ImpactWildcardProcessor'): inputs = v['inputs'] if inputs['mode'] and isinstance(inputs['populated_text'], str): if isinstance(inputs['seed'], list): try: input_node = prompt[inputs['seed'][0]] if input_node['class_type'] == 'ImpactInt': input_seed = int(input_node['inputs']['value']) if not isinstance(input_seed, int): continue if input_node['class_type'] == 'Seed (rgthree)': input_seed = int(input_node['inputs']['seed']) if not isinstance(input_seed, int): continue else: print(f"[Impact Pack] Only `ImpactInt`, `Seed (rgthree)` and `Primitive` Node are allowed as the seed for '{v['class_type']}'. It will be ignored. ") continue except: continue else: input_seed = int(inputs['seed']) inputs['populated_text'] = wildcards.process(inputs['wildcard_text'], input_seed) inputs['mode'] = False server.PromptServer.instance.send_sync("impact-node-feedback", {"node_id": k, "widget_name": "populated_text", "type": "STRING", "value": inputs['populated_text']}) updated_widget_values[k] = inputs['populated_text'] if 'extra_data' in json_data and 'extra_pnginfo' in json_data['extra_data']: for node in json_data['extra_data']['extra_pnginfo']['workflow']['nodes']: key = str(node['id']) if key in updated_widget_values: node['widgets_values'][1] = updated_widget_values[key] node['widgets_values'][2] = False def onprompt_for_remote(json_data): prompt = json_data['prompt'] for v in prompt.values(): if 'class_type' in v: cls = v['class_type'] if cls == 'ImpactRemoteBoolean' or cls == 'ImpactRemoteInt': inputs = v['inputs'] node_id = str(inputs['node_id']) if node_id not in prompt: continue target_inputs = prompt[node_id]['inputs'] widget_name = inputs['widget_name'] if widget_name in target_inputs: widget_type = None if cls == 'ImpactRemoteBoolean' and isinstance(target_inputs[widget_name], bool): widget_type = 'BOOLEAN' elif cls == 'ImpactRemoteInt' and (isinstance(target_inputs[widget_name], int) or isinstance(target_inputs[widget_name], float)): widget_type = 'INT' if widget_type is None: break target_inputs[widget_name] = inputs['value'] server.PromptServer.instance.send_sync("impact-node-feedback", {"node_id": node_id, "widget_name": widget_name, "type": widget_type, "value": inputs['value']}) def onprompt(json_data): try: onprompt_for_remote(json_data) # NOTE: top priority onprompt_for_switch(json_data) onprompt_for_pickers(json_data) onprompt_populate_wildcards(json_data) gc_preview_bridge_cache(json_data) workflow_imagereceiver_update(json_data) regional_sampler_seed_update(json_data) except Exception as e: print(f"[WARN] ComfyUI-Impact-Pack: Error on prompt - several features will not work.\n{e}") return json_data server.PromptServer.instance.add_on_prompt_handler(onprompt)