# ComfyUI Node for Ultimate SD Upscale by Coyote-A: https://github.com/Coyote-A/ultimate-upscale-for-automatic1111 import torch import comfy from usdu_patch import usdu from utils import tensor_to_pil, pil_to_tensor from modules.processing import StableDiffusionProcessing import modules.shared as shared from modules.upscaler import UpscalerData MAX_RESOLUTION = 8192 # The modes available for Ultimate SD Upscale MODES = { "Linear": usdu.USDUMode.LINEAR, "Chess": usdu.USDUMode.CHESS, "None": usdu.USDUMode.NONE, } # The seam fix modes SEAM_FIX_MODES = { "None": usdu.USDUSFMode.NONE, "Band Pass": usdu.USDUSFMode.BAND_PASS, "Half Tile": usdu.USDUSFMode.HALF_TILE, "Half Tile + Intersections": usdu.USDUSFMode.HALF_TILE_PLUS_INTERSECTIONS, } def USDU_base_inputs(): return [ ("image", ("IMAGE",)), # Sampling Params ("model", ("MODEL",)), ("positive", ("CONDITIONING",)), ("negative", ("CONDITIONING",)), ("vae", ("VAE",)), ("upscale_by", ("FLOAT", {"default": 2, "min": 0.05, "max": 4, "step": 0.05})), ("seed", ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff})), ("steps", ("INT", {"default": 20, "min": 1, "max": 10000, "step": 1})), ("cfg", ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0})), ("sampler_name", (comfy.samplers.KSampler.SAMPLERS,)), ("scheduler", (comfy.samplers.KSampler.SCHEDULERS,)), ("denoise", ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01})), # Upscale Params ("upscale_model", ("UPSCALE_MODEL",)), ("mode_type", (list(MODES.keys()),)), ("tile_width", ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8})), ("tile_height", ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8})), ("mask_blur", ("INT", {"default": 8, "min": 0, "max": 64, "step": 1})), ("tile_padding", ("INT", {"default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8})), # Seam fix params ("seam_fix_mode", (list(SEAM_FIX_MODES.keys()),)), ("seam_fix_denoise", ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})), ("seam_fix_width", ("INT", {"default": 64, "min": 0, "max": MAX_RESOLUTION, "step": 8})), ("seam_fix_mask_blur", ("INT", {"default": 8, "min": 0, "max": 64, "step": 1})), ("seam_fix_padding", ("INT", {"default": 16, "min": 0, "max": MAX_RESOLUTION, "step": 8})), # Misc ("force_uniform_tiles", ("BOOLEAN", {"default": True})), ("tiled_decode", ("BOOLEAN", {"default": False})), ] def prepare_inputs(required: list, optional: list = None): inputs = {} if required: inputs["required"] = {} for name, type in required: inputs["required"][name] = type if optional: inputs["optional"] = {} for name, type in optional: inputs["optional"][name] = type return inputs def remove_input(inputs: list, input_name: str): for i, (n, _) in enumerate(inputs): if n == input_name: del inputs[i] break def rename_input(inputs: list, old_name: str, new_name: str): for i, (n, t) in enumerate(inputs): if n == old_name: inputs[i] = (new_name, t) break class UltimateSDUpscale: @classmethod def INPUT_TYPES(s): return prepare_inputs(USDU_base_inputs()) RETURN_TYPES = ("IMAGE",) FUNCTION = "upscale" CATEGORY = "image/upscaling" def upscale(self, image, model, positive, negative, vae, upscale_by, seed, steps, cfg, sampler_name, scheduler, denoise, upscale_model, mode_type, tile_width, tile_height, mask_blur, tile_padding, seam_fix_mode, seam_fix_denoise, seam_fix_mask_blur, seam_fix_width, seam_fix_padding, force_uniform_tiles, tiled_decode): # # Set up A1111 patches # # Upscaler # An object that the script works with shared.sd_upscalers[0] = UpscalerData() # Where the actual upscaler is stored, will be used when the script upscales using the Upscaler in UpscalerData shared.actual_upscaler = upscale_model # Set the batch of images shared.batch = [tensor_to_pil(image, i) for i in range(len(image))] # Processing sdprocessing = StableDiffusionProcessing( tensor_to_pil(image), model, positive, negative, vae, seed, steps, cfg, sampler_name, scheduler, denoise, upscale_by, force_uniform_tiles, tiled_decode ) # # Running the script # script = usdu.Script() processed = script.run(p=sdprocessing, _=None, tile_width=tile_width, tile_height=tile_height, mask_blur=mask_blur, padding=tile_padding, seams_fix_width=seam_fix_width, seams_fix_denoise=seam_fix_denoise, seams_fix_padding=seam_fix_padding, upscaler_index=0, save_upscaled_image=False, redraw_mode=MODES[mode_type], save_seams_fix_image=False, seams_fix_mask_blur=seam_fix_mask_blur, seams_fix_type=SEAM_FIX_MODES[seam_fix_mode], target_size_type=2, custom_width=None, custom_height=None, custom_scale=upscale_by) # Return the resulting images images = [pil_to_tensor(img) for img in shared.batch] tensor = torch.cat(images, dim=0) return (tensor,) class UltimateSDUpscaleNoUpscale: @classmethod def INPUT_TYPES(s): required = USDU_base_inputs() remove_input(required, "upscale_model") remove_input(required, "upscale_by") rename_input(required, "image", "upscaled_image") return prepare_inputs(required) RETURN_TYPES = ("IMAGE",) FUNCTION = "upscale" CATEGORY = "image/upscaling" def upscale(self, upscaled_image, model, positive, negative, vae, seed, steps, cfg, sampler_name, scheduler, denoise, mode_type, tile_width, tile_height, mask_blur, tile_padding, seam_fix_mode, seam_fix_denoise, seam_fix_mask_blur, seam_fix_width, seam_fix_padding, force_uniform_tiles, tiled_decode): shared.sd_upscalers[0] = UpscalerData() shared.actual_upscaler = None shared.batch = [tensor_to_pil(upscaled_image, i) for i in range(len(upscaled_image))] sdprocessing = StableDiffusionProcessing( tensor_to_pil(upscaled_image), model, positive, negative, vae, seed, steps, cfg, sampler_name, scheduler, denoise, 1, force_uniform_tiles, tiled_decode ) script = usdu.Script() processed = script.run(p=sdprocessing, _=None, tile_width=tile_width, tile_height=tile_height, mask_blur=mask_blur, padding=tile_padding, seams_fix_width=seam_fix_width, seams_fix_denoise=seam_fix_denoise, seams_fix_padding=seam_fix_padding, upscaler_index=0, save_upscaled_image=False, redraw_mode=MODES[mode_type], save_seams_fix_image=False, seams_fix_mask_blur=seam_fix_mask_blur, seams_fix_type=SEAM_FIX_MODES[seam_fix_mode], target_size_type=2, custom_width=None, custom_height=None, custom_scale=1) images = [pil_to_tensor(img) for img in shared.batch] tensor = torch.cat(images, dim=0) return (tensor,) # A dictionary that contains all nodes you want to export with their names # NOTE: names should be globally unique NODE_CLASS_MAPPINGS = { "UltimateSDUpscale": UltimateSDUpscale, "UltimateSDUpscaleNoUpscale": UltimateSDUpscaleNoUpscale } # A dictionary that contains the friendly/humanly readable titles for the nodes NODE_DISPLAY_NAME_MAPPINGS = { "UltimateSDUpscale": "Ultimate SD Upscale", "UltimateSDUpscaleNoUpscale": "Ultimate SD Upscale (No Upscale)" }