from torch import Tensor import torch import comfy.utils from .utils import BIGMIN, BIGMAX class MergeStrategies: MATCH_A = "match A" MATCH_B = "match B" MATCH_SMALLER = "match smaller" MATCH_LARGER = "match larger" list_all = [MATCH_A, MATCH_B, MATCH_SMALLER, MATCH_LARGER] class ScaleMethods: NEAREST_EXACT = "nearest-exact" BILINEAR = "bilinear" AREA = "area" BICUBIC = "bicubic" BISLERP = "bislerp" list_all = [NEAREST_EXACT, BILINEAR, AREA, BICUBIC, BISLERP] class CropMethods: DISABLED = "disabled" CENTER = "center" list_all = [DISABLED, CENTER] class SplitLatents: @classmethod def INPUT_TYPES(s): return { "required": { "latents": ("LATENT",), "split_index": ("INT", {"default": 0, "step": 1, "min": BIGMIN, "max": BIGMAX}), }, } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/latent" RETURN_TYPES = ("LATENT", "INT", "LATENT", "INT") RETURN_NAMES = ("LATENT_A", "A_count", "LATENT_B", "B_count") FUNCTION = "split_latents" def split_latents(self, latents: dict, split_index: int): latents = latents.copy() group_a = latents["samples"][:split_index] group_b = latents["samples"][split_index:] group_a_latent = {"samples": group_a} group_b_latent = {"samples": group_b} return (group_a_latent, group_a.size(0), group_b_latent, group_b.size(0)) class SplitImages: @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), "split_index": ("INT", {"default": 0, "step": 1, "min": BIGMIN, "max": BIGMAX}), }, } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/image" RETURN_TYPES = ("IMAGE", "INT", "IMAGE", "INT") RETURN_NAMES = ("IMAGE_A", "A_count", "IMAGE_B", "B_count") FUNCTION = "split_images" def split_images(self, images: Tensor, split_index: int): group_a = images[:split_index] group_b = images[split_index:] return (group_a, group_a.size(0), group_b, group_b.size(0)) class SplitMasks: @classmethod def INPUT_TYPES(s): return { "required": { "mask": ("MASK",), "split_index": ("INT", {"default": 0, "step": 1, "min": BIGMIN, "max": BIGMAX}), }, } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/mask" RETURN_TYPES = ("MASK", "INT", "MASK", "INT") RETURN_NAMES = ("MASK_A", "A_count", "MASK_B", "B_count") FUNCTION = "split_masks" def split_masks(self, mask: Tensor, split_index: int): group_a = mask[:split_index] group_b = mask[split_index:] return (group_a, group_a.size(0), group_b, group_b.size(0)) class MergeLatents: @classmethod def INPUT_TYPES(s): return { "required": { "latents_A": ("LATENT",), "latents_B": ("LATENT",), "merge_strategy": (MergeStrategies.list_all,), "scale_method": (ScaleMethods.list_all,), "crop": (CropMethods.list_all,), } } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/latent" RETURN_TYPES = ("LATENT", "INT",) RETURN_NAMES = ("LATENT", "count",) FUNCTION = "merge" def merge(self, latents_A: dict, latents_B: dict, merge_strategy: str, scale_method: str, crop: str): latents = [] latents_A = latents_A.copy()["samples"] latents_B = latents_B.copy()["samples"] # if not same dimensions, do scaling if latents_A.shape[3] != latents_B.shape[3] or latents_A.shape[2] != latents_B.shape[2]: A_size = latents_A.shape[3] * latents_A.shape[2] B_size = latents_B.shape[3] * latents_B.shape[2] # determine which to use use_A_as_template = True if merge_strategy == MergeStrategies.MATCH_A: pass elif merge_strategy == MergeStrategies.MATCH_B: use_A_as_template = False elif merge_strategy in (MergeStrategies.MATCH_SMALLER, MergeStrategies.MATCH_LARGER): if A_size <= B_size: use_A_as_template = True if merge_strategy == MergeStrategies.MATCH_SMALLER else False # apply scaling if use_A_as_template: latents_B = comfy.utils.common_upscale(latents_B, latents_A.shape[3], latents_A.shape[2], scale_method, crop) else: latents_A = comfy.utils.common_upscale(latents_A, latents_B.shape[3], latents_B.shape[2], scale_method, crop) latents.append(latents_A) latents.append(latents_B) merged = {"samples": torch.cat(latents, dim=0)} return (merged, len(merged["samples"]),) class MergeImages: @classmethod def INPUT_TYPES(s): return { "required": { "images_A": ("IMAGE",), "images_B": ("IMAGE",), "merge_strategy": (MergeStrategies.list_all,), "scale_method": (ScaleMethods.list_all,), "crop": (CropMethods.list_all,), } } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/image" RETURN_TYPES = ("IMAGE", "INT",) RETURN_NAMES = ("IMAGE", "count",) FUNCTION = "merge" def merge(self, images_A: Tensor, images_B: Tensor, merge_strategy: str, scale_method: str, crop: str): images = [] # if not same dimensions, do scaling if images_A.shape[3] != images_B.shape[3] or images_A.shape[2] != images_B.shape[2]: images_A = images_A.movedim(-1,1) images_B = images_B.movedim(-1,1) A_size = images_A.shape[3] * images_A.shape[2] B_size = images_B.shape[3] * images_B.shape[2] # determine which to use use_A_as_template = True if merge_strategy == MergeStrategies.MATCH_A: pass elif merge_strategy == MergeStrategies.MATCH_B: use_A_as_template = False elif merge_strategy in (MergeStrategies.MATCH_SMALLER, MergeStrategies.MATCH_LARGER): if A_size <= B_size: use_A_as_template = True if merge_strategy == MergeStrategies.MATCH_SMALLER else False # apply scaling if use_A_as_template: images_B = comfy.utils.common_upscale(images_B, images_A.shape[3], images_A.shape[2], scale_method, crop) else: images_A = comfy.utils.common_upscale(images_A, images_B.shape[3], images_B.shape[2], scale_method, crop) images_A = images_A.movedim(1,-1) images_B = images_B.movedim(1,-1) images.append(images_A) images.append(images_B) all_images = torch.cat(images, dim=0) return (all_images, all_images.size(0),) class MergeMasks: @classmethod def INPUT_TYPES(s): return { "required": { "mask_A": ("MASK",), "mask_B": ("MASK",), "merge_strategy": (MergeStrategies.list_all,), "scale_method": (ScaleMethods.list_all,), "crop": (CropMethods.list_all,), } } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/mask" RETURN_TYPES = ("MASK", "INT",) RETURN_NAMES = ("MASK", "count",) FUNCTION = "merge" def merge(self, mask_A: Tensor, mask_B: Tensor, merge_strategy: str, scale_method: str, crop: str): masks = [] # if not same dimensions, do scaling if mask_A.shape[2] != mask_B.shape[2] or mask_A.shape[1] != mask_B.shape[1]: A_size = mask_A.shape[2] * mask_A.shape[1] B_size = mask_B.shape[2] * mask_B.shape[1] # determine which to use use_A_as_template = True if merge_strategy == MergeStrategies.MATCH_A: pass elif merge_strategy == MergeStrategies.MATCH_B: use_A_as_template = False elif merge_strategy in (MergeStrategies.MATCH_SMALLER, MergeStrategies.MATCH_LARGER): if A_size <= B_size: use_A_as_template = True if merge_strategy == MergeStrategies.MATCH_SMALLER else False # add dimension where image channels would be expected to work with common_upscale mask_A = torch.unsqueeze(mask_A, 1) mask_B = torch.unsqueeze(mask_B, 1) # apply scaling if use_A_as_template: mask_B = comfy.utils.common_upscale(mask_B, mask_A.shape[3], mask_A.shape[2], scale_method, crop) else: mask_A = comfy.utils.common_upscale(mask_A, mask_B.shape[3], mask_B.shape[2], scale_method, crop) # undo dimension increase mask_A = torch.squeeze(mask_A, 1) mask_B = torch.squeeze(mask_B, 1) masks.append(mask_A) masks.append(mask_B) all_masks = torch.cat(masks, dim=0) return (all_masks, all_masks.size(0),) class SelectEveryNthLatent: @classmethod def INPUT_TYPES(s): return { "required": { "latents": ("LATENT",), "select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}), }, } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/latent" RETURN_TYPES = ("LATENT", "INT",) RETURN_NAMES = ("LATENT", "count",) FUNCTION = "select_latents" def select_latents(self, latents: dict, select_every_nth: int): sub_latents = latents.copy()["samples"][0::select_every_nth] return ({"samples": sub_latents}, sub_latents.size(0)) class SelectEveryNthImage: @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), "select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}), }, } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/image" RETURN_TYPES = ("IMAGE", "INT",) RETURN_NAMES = ("IMAGE", "count",) FUNCTION = "select_images" def select_images(self, images: Tensor, select_every_nth: int): sub_images = images[0::select_every_nth] return (sub_images, sub_images.size(0)) class SelectEveryNthMask: @classmethod def INPUT_TYPES(s): return { "required": { "mask": ("MASK",), "select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}), }, } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/mask" RETURN_TYPES = ("MASK", "INT",) RETURN_NAMES = ("MASK", "count",) FUNCTION = "select_masks" def select_masks(self, mask: Tensor, select_every_nth: int): sub_mask = mask[0::select_every_nth] return (sub_mask, sub_mask.size(0)) class GetLatentCount: @classmethod def INPUT_TYPES(s): return { "required": { "latents": ("LATENT",), } } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/latent" RETURN_TYPES = ("INT",) RETURN_NAMES = ("count",) FUNCTION = "count_input" def count_input(self, latents: dict): return (latents["samples"].size(0),) class GetImageCount: @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), } } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/image" RETURN_TYPES = ("INT",) RETURN_NAMES = ("count",) FUNCTION = "count_input" def count_input(self, images: Tensor): return (images.size(0),) class GetMaskCount: @classmethod def INPUT_TYPES(s): return { "required": { "mask": ("MASK",), } } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/mask" RETURN_TYPES = ("INT",) RETURN_NAMES = ("count",) FUNCTION = "count_input" def count_input(self, mask: Tensor): return (mask.size(0),) class DuplicateLatents: @classmethod def INPUT_TYPES(s): return { "required": { "latents": ("LATENT",), "multiply_by": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}) } } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/latent" RETURN_TYPES = ("LATENT", "INT",) RETURN_NAMES = ("LATENT", "count",) FUNCTION = "duplicate_input" def duplicate_input(self, latents: dict[str, Tensor], multiply_by: int): new_latents = latents.copy() full_latents = [] for n in range(0, multiply_by): full_latents.append(new_latents["samples"]) new_latents["samples"] = torch.cat(full_latents, dim=0) return (new_latents, new_latents["samples"].size(0),) class DuplicateImages: @classmethod def INPUT_TYPES(s): return { "required": { "images": ("IMAGE",), "multiply_by": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}) } } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/image" RETURN_TYPES = ("IMAGE", "INT",) RETURN_NAMES = ("IMAGE", "count",) FUNCTION = "duplicate_input" def duplicate_input(self, images: Tensor, multiply_by: int): full_images = [] for n in range(0, multiply_by): full_images.append(images) new_images = torch.cat(full_images, dim=0) return (new_images, new_images.size(0),) class DuplicateMasks: @classmethod def INPUT_TYPES(s): return { "required": { "mask": ("MASK",), "multiply_by": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}) } } CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/mask" RETURN_TYPES = ("MASK", "INT",) RETURN_NAMES = ("MASK", "count",) FUNCTION = "duplicate_input" def duplicate_input(self, mask: Tensor, multiply_by: int): full_masks = [] for n in range(0, multiply_by): full_masks.append(mask) new_mask = torch.cat(full_masks, dim=0) return (new_mask, new_mask.size(0),) # class SelectLatents: # @classmethod # def INPUT_TYPES(s): # return { # "required": { # "images": ("IMAGE",), # "select_indeces": ("STRING", {"default": ""}), # }, # }