import numexpr import torch import numpy as np import pandas as pd import re import json from .ScheduleFuncs import check_is_number def sanitize_value(value): # Remove single quotes, double quotes, and parentheses value = value.replace("'", "").replace('"', "").replace('(', "").replace(')', "") return value def get_inbetweens(key_frames, max_frames, integer=False, interp_method='Linear', is_single_string=False): key_frame_series = pd.Series([np.nan for a in range(max_frames)]) max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use. value_is_number = False for i in range(0, max_frames): if i in key_frames: value = key_frames[i] value_is_number = check_is_number(sanitize_value(value)) if value_is_number: # if it's only a number, leave the rest for the default interpolation key_frame_series[i] = sanitize_value(value) if not value_is_number: t = i # workaround for values formatted like 0:("I am test") //used for sampler schedules key_frame_series[i] = numexpr.evaluate(value) if not is_single_string else sanitize_value(value) elif is_single_string: # take previous string value and replicate it key_frame_series[i] = key_frame_series[i - 1] key_frame_series = key_frame_series.astype(float) if not is_single_string else key_frame_series # as string if interp_method == 'Cubic' and len(key_frames.items()) <= 3: interp_method = 'Quadratic' if interp_method == 'Quadratic' and len(key_frames.items()) <= 2: interp_method = 'Linear' key_frame_series[0] = key_frame_series[key_frame_series.first_valid_index()] key_frame_series[max_frames - 1] = key_frame_series[key_frame_series.last_valid_index()] key_frame_series = key_frame_series.interpolate(method=interp_method.lower(), limit_direction='both') if integer: return key_frame_series.astype(int) return key_frame_series def parse_key_frames(string, max_frames): # because math functions (i.e. sin(t)) can utilize brackets # it extracts the value in form of some stuff # which has previously been enclosed with brackets and # with a comma or end of line existing after the closing one frames = dict() for match_object in string.split(","): frameParam = match_object.split(":") max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use. frame = int(sanitize_value(frameParam[0])) if check_is_number( sanitize_value(frameParam[0].strip())) else int(numexpr.evaluate( frameParam[0].strip().replace("'", "", 1).replace('"', "", 1)[::-1].replace("'", "", 1).replace('"', "", 1)[::-1])) frames[frame] = frameParam[1].strip() if frames == {} and len(string) != 0: raise RuntimeError('Key Frame string not correctly formatted') return frames def batch_get_inbetweens(key_frames, max_frames, integer=False, interp_method='Linear', is_single_string=False): key_frame_series = pd.Series([np.nan for a in range(max_frames)]) max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use. value_is_number = False for i in range(0, max_frames): if i in key_frames: value = str(key_frames[i]) # Convert to string to ensure it's treated as an expression value_is_number = check_is_number(sanitize_value(value)) if value_is_number: key_frame_series[i] = sanitize_value(value) if not value_is_number: t = i # workaround for values formatted like 0:("I am test") //used for sampler schedules key_frame_series[i] = numexpr.evaluate(value) if not is_single_string else sanitize_value(value) elif is_single_string: # take previous string value and replicate it key_frame_series[i] = key_frame_series[i - 1] key_frame_series = key_frame_series.astype(float) if not is_single_string else key_frame_series # as string if interp_method == 'Cubic' and len(key_frames.items()) <= 3: interp_method = 'Quadratic' if interp_method == 'Quadratic' and len(key_frames.items()) <= 2: interp_method = 'Linear' key_frame_series[0] = key_frame_series[key_frame_series.first_valid_index()] key_frame_series[max_frames - 1] = key_frame_series[key_frame_series.last_valid_index()] key_frame_series = key_frame_series.interpolate(method=interp_method.lower(), limit_direction='both') if integer: return key_frame_series.astype(int) return key_frame_series def batch_parse_key_frames(string, max_frames): # because math functions (i.e. sin(t)) can utilize brackets # it extracts the value in form of some stuff # which has previously been enclosed with brackets and # with a comma or end of line existing after the closing one string = re.sub(r',\s*$', '', string) frames = dict() for match_object in string.split(","): frameParam = match_object.split(":") max_f = max_frames - 1 # needed for numexpr even though it doesn't look like it's in use. frame = int(sanitize_value(frameParam[0])) if check_is_number( sanitize_value(frameParam[0].strip())) else int(numexpr.evaluate( frameParam[0].strip().replace("'", "", 1).replace('"', "", 1)[::-1].replace("'", "", 1).replace('"', "",1)[::-1])) frames[frame] = frameParam[1].strip() if frames == {} and len(string) != 0: raise RuntimeError('Key Frame string not correctly formatted') return frames