Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,190 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import whisper
|
3 |
-
import os
|
4 |
-
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
5 |
-
from docx import Document # For Word output
|
6 |
-
from fpdf import FPDF # For PDF output
|
7 |
-
from pptx import Presentation # For PowerPoint output
|
8 |
-
import subprocess # To use ffmpeg for embedding subtitles
|
9 |
-
import shlex # For better command-line argument handling
|
10 |
-
|
11 |
-
# Load the Whisper model
|
12 |
-
model = whisper.load_model("tiny") # Smaller model for faster transcription
|
13 |
-
|
14 |
-
# Load M2M100 translation model for different languages
|
15 |
-
def load_translation_model(target_language):
|
16 |
-
lang_codes = {
|
17 |
-
"fa": "fa", # Persian (Farsi)
|
18 |
-
"es": "es", # Spanish
|
19 |
-
"fr": "fr", # French
|
20 |
-
}
|
21 |
-
target_lang_code = lang_codes.get(target_language)
|
22 |
-
if not target_lang_code:
|
23 |
-
raise ValueError(f"Translation model for {target_language} not supported")
|
24 |
-
|
25 |
-
# Load M2M100 model and tokenizer
|
26 |
-
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
27 |
-
translation_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
28 |
-
|
29 |
-
tokenizer.src_lang = "en"
|
30 |
-
tokenizer.tgt_lang = target_lang_code
|
31 |
-
|
32 |
-
return tokenizer, translation_model
|
33 |
-
|
34 |
-
def translate_text(text, tokenizer, model):
|
35 |
-
try:
|
36 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
37 |
-
translated = model.generate(**inputs, forced_bos_token_id=tokenizer.get_lang_id(tokenizer.tgt_lang))
|
38 |
-
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
39 |
-
except Exception as e:
|
40 |
-
raise RuntimeError(f"Error during translation: {e}")
|
41 |
-
|
42 |
-
# Helper function to format timestamps in SRT format (hh:mm:ss,ms)
|
43 |
-
def format_timestamp(seconds):
|
44 |
-
milliseconds = int((seconds % 1) * 1000)
|
45 |
-
seconds = int(seconds)
|
46 |
-
hours = seconds // 3600
|
47 |
-
minutes = (seconds % 3600) // 60
|
48 |
-
seconds = seconds % 60
|
49 |
-
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
|
50 |
-
|
51 |
-
# Corrected write_srt function
|
52 |
-
def write_srt(transcription, output_file, tokenizer=None, translation_model=None):
|
53 |
-
with open(output_file, "w") as f:
|
54 |
-
for i, segment in enumerate(transcription['segments']):
|
55 |
-
start = segment['start']
|
56 |
-
end = segment['end']
|
57 |
-
text = segment['text']
|
58 |
-
|
59 |
-
if translation_model:
|
60 |
-
text = translate_text(text, tokenizer, translation_model)
|
61 |
-
|
62 |
-
start_time = format_timestamp(start)
|
63 |
-
end_time = format_timestamp(end)
|
64 |
-
|
65 |
-
f.write(f"{i + 1}\n")
|
66 |
-
f.write(f"{start_time} --> {end_time}\n")
|
67 |
-
f.write(f"{text.strip()}\n\n")
|
68 |
-
|
69 |
-
def embed_hardsub_in_video(video_file, srt_file, output_video):
|
70 |
-
"""Uses ffmpeg to burn subtitles into the video (hardsub)."""
|
71 |
-
command = f'ffmpeg -i "{video_file}" -vf "subtitles=\'{srt_file}\'" -c:v libx264 -crf 23 -preset medium "{output_video}"'
|
72 |
-
|
73 |
-
try:
|
74 |
-
print(f"Running command: {command}") # Debug statement
|
75 |
-
process = subprocess.run(shlex.split(command), capture_output=True, text=True, timeout=300)
|
76 |
-
print(f"ffmpeg output: {process.stdout}") # Debug statement
|
77 |
-
if process.returncode != 0:
|
78 |
-
raise RuntimeError(f"ffmpeg error: {process.stderr}") # Print the error
|
79 |
-
except subprocess.TimeoutExpired:
|
80 |
-
raise RuntimeError("ffmpeg process timed out.")
|
81 |
-
except Exception as e:
|
82 |
-
raise RuntimeError(f"Error running ffmpeg: {e}")
|
83 |
-
|
84 |
-
def write_word(transcription, output_file, tokenizer=None, translation_model=None):
|
85 |
-
"""Creates a Word document from the transcription without timestamps."""
|
86 |
-
doc = Document()
|
87 |
-
for i, segment in enumerate(transcription['segments']):
|
88 |
-
text = segment['text']
|
89 |
-
|
90 |
-
if translation_model:
|
91 |
-
text = translate_text(text, tokenizer, translation_model)
|
92 |
-
|
93 |
-
doc.add_paragraph(f"{i + 1}. {text.strip()}")
|
94 |
-
doc.save(output_file)
|
95 |
-
|
96 |
-
from fpdf import FPDF # This imports fpdf2, not the older FPDF
|
97 |
-
|
98 |
-
def write_pdf(transcription, output_file, tokenizer=None, translation_model=None):
|
99 |
-
"""Creates a PDF document from the transcription without timestamps."""
|
100 |
-
pdf = FPDF()
|
101 |
-
pdf.set_auto_page_break(auto=True, margin=15)
|
102 |
-
pdf.add_page()
|
103 |
-
|
104 |
-
# Use a Unicode font like DejaVuSans that supports a wide range of characters
|
105 |
-
pdf.add_font('DejaVu', '', '/path/to/DejaVuSans.ttf', uni=True)
|
106 |
-
pdf.set_font("DejaVu", size=12)
|
107 |
-
|
108 |
-
for i, segment in enumerate(transcription['segments']):
|
109 |
-
text = segment['text']
|
110 |
-
|
111 |
-
if translation_model:
|
112 |
-
text = translate_text(text, tokenizer, translation_model)
|
113 |
-
|
114 |
-
pdf.multi_cell(0, 10, f"{i + 1}. {text.strip()}")
|
115 |
-
|
116 |
-
pdf.output(output_file)
|
117 |
-
|
118 |
-
def write_ppt(transcription, output_file, tokenizer=None, translation_model=None):
|
119 |
-
"""Creates a PowerPoint presentation from the transcription without timestamps."""
|
120 |
-
ppt = Presentation()
|
121 |
-
|
122 |
-
for i, segment in enumerate(transcription['segments']):
|
123 |
-
text = segment['text']
|
124 |
-
|
125 |
-
if translation_model:
|
126 |
-
text = translate_text(text, tokenizer, translation_model)
|
127 |
-
|
128 |
-
slide = ppt.slides.add_slide(ppt.slide_layouts[5]) # Blank slide
|
129 |
-
title = slide.shapes.title
|
130 |
-
title.text = f"{i + 1}. {text.strip()}"
|
131 |
-
|
132 |
-
ppt.save(output_file)
|
133 |
-
|
134 |
-
def transcribe_video(video_file, language, target_language, output_format):
|
135 |
-
# Transcribe the video with Whisper
|
136 |
-
result = model.transcribe(video_file.name, language=language)
|
137 |
-
video_name = os.path.splitext(video_file.name)[0]
|
138 |
-
|
139 |
-
# Load the translation model for the selected subtitle language
|
140 |
-
if target_language != "en":
|
141 |
-
try:
|
142 |
-
tokenizer, translation_model = load_translation_model(target_language)
|
143 |
-
except Exception as e:
|
144 |
-
raise RuntimeError(f"Error loading translation model: {e}")
|
145 |
-
else:
|
146 |
-
tokenizer, translation_model = None, None
|
147 |
-
|
148 |
-
# Save the SRT file
|
149 |
-
srt_file = f"{video_name}.srt"
|
150 |
-
write_srt(result, srt_file, tokenizer, translation_model)
|
151 |
-
|
152 |
-
# Output based on user's selection
|
153 |
-
if output_format == "SRT":
|
154 |
-
return srt_file
|
155 |
-
elif output_format == "Video with Hardsub":
|
156 |
-
output_video = f"{video_name}_with_subtitles.mp4"
|
157 |
-
try:
|
158 |
-
embed_hardsub_in_video(video_file.name, srt_file, output_video)
|
159 |
-
return output_video
|
160 |
-
except Exception as e:
|
161 |
-
raise RuntimeError(f"Error embedding subtitles in video: {e}")
|
162 |
-
elif output_format == "Word":
|
163 |
-
word_file = f"{video_name}.docx"
|
164 |
-
write_word(result, word_file, tokenizer, translation_model)
|
165 |
-
return word_file
|
166 |
-
elif output_format == "PDF":
|
167 |
-
pdf_file = f"{video_name}.pdf"
|
168 |
-
write_pdf(result, pdf_file, tokenizer, translation_model)
|
169 |
-
return pdf_file
|
170 |
-
elif output_format == "PowerPoint":
|
171 |
-
ppt_file = f"{video_name}.pptx"
|
172 |
-
write_ppt(result, ppt_file, tokenizer, translation_model)
|
173 |
-
return ppt_file
|
174 |
-
|
175 |
-
# Gradio interface
|
176 |
-
iface = gr.Interface(
|
177 |
-
fn=transcribe_video,
|
178 |
-
inputs=[
|
179 |
-
gr.File(label="Upload Video"),
|
180 |
-
gr.Dropdown(label="Select Video Language", choices=["en", "es", "fr", "de", "it", "pt"], value="en"),
|
181 |
-
gr.Dropdown(label="Select Subtitle Language", choices=["en", "fa", "es", "fr"], value="fa"),
|
182 |
-
gr.Radio(label="Output Format", choices=["SRT", "Video with Hardsub", "Word", "PDF", "PowerPoint"], value="Video with Hardsub")
|
183 |
-
],
|
184 |
-
outputs=gr.File(label="Download Subtitles, Video, or Document"),
|
185 |
-
title="Video Subtitle Generator with Hardsub and Document Formats",
|
186 |
-
description="Upload a video file to generate subtitles in SRT format, download the video with hardsubbed subtitles, or generate Word, PDF, or PowerPoint documents using Whisper and M2M100 for translation."
|
187 |
-
)
|
188 |
-
|
189 |
-
if __name__ == "__main__":
|
190 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|