Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import gradio as gr | |
# Step 1: Read the CSV file | |
df = pd.read_csv('./all_combine_main.csv') # Ensure the CSV file is uploaded to Hugging Face | |
# Step 2: Extract the text column for embeddings and keep the entire DataFrame rows | |
text_column = 'detail_โครงการ' # Replace 'your_column' with your text column name | |
texts = df[text_column].astype(str).tolist() | |
# Keep the entire DataFrame rows as a list of dictionaries | |
rows = df.to_dict('records') | |
# Step 3: Load the pre-trained model | |
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') | |
# Step 4: Generate embeddings for all texts | |
embeddings = model.encode(texts, show_progress_bar=True) | |
# Optional: Save embeddings to disk to avoid recomputing in future runs | |
# np.save('embeddings.npy', embeddings) | |
# If you have saved embeddings before, you can load them directly | |
# embeddings = np.load('embeddings.npy') | |
# Step 5: Define the semantic search function | |
def semantic_search(query, embeddings, texts, rows, top_n=5): | |
# Generate embedding for the query | |
query_embedding = model.encode([query]) | |
# Compute cosine similarities | |
similarities = cosine_similarity(query_embedding, embeddings)[0] | |
# Get the indices of the top_n most similar texts | |
top_indices = np.argsort(similarities)[::-1][:top_n] | |
# Return the top_n most similar rows and their similarity scores | |
results = [(rows[idx], similarities[idx]) for idx in top_indices] | |
return results | |
# Step 6: Create the Gradio interface | |
def search_interface(query): | |
# Perform the search | |
results = semantic_search(query, embeddings, texts, rows) | |
# Specify the columns to display | |
columns_to_display = ['ชื่อกระทรวง', 'งบประมาณปี68', 'ชื่อสำนักงาน', 'งบประมาณปี68_สำนักงาน', 'ชื่อโครงการ', 'งบประมาณ_โครงการ'] | |
# Prepare the output | |
output = "" | |
for row, score in results: | |
output += f"**Score:** {score:.4f}\n\n" | |
# Check if either 'ชื่อโครงการ' or 'งบประมาณ_โครงการ' is NaN | |
# Display only specified columns | |
for key, value in row.items(): | |
if key in columns_to_display and not pd.isna(value): # Only show specified columns and skip NaNs | |
output += f"**{key}:** {value}\n\n" | |
if pd.isna(row.get('ชื่อโครงการ')) or pd.isna(row.get('งบประมาณ_โครงการ')): | |
# Display 'detail_โครงการ' if any of the above columns are NaN | |
output += f"**detail_โครงการ:** {row.get('detail_โครงการ')}\n\n" | |
output += "---\n\n" | |
return output | |
iface = gr.Interface( | |
fn=search_interface, | |
inputs=gr.Textbox(lines=2, placeholder='Enter your search query here...'), | |
outputs="markdown", | |
title="Semantic Search Application", | |
description="Enter a search query to find the most relevant entries from the dataset.", | |
) | |
if __name__ == "__main__": | |
iface.launch(share=True) | |