viv's picture
Create app.py
87e0cfe verified
raw
history blame
1.08 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load the trained model and tokenizer
model_path = 'viv/AIKIA'
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Preprocessing function for Greek text
def preprocessing_greek(text):
# Your preprocessing steps
text = text.lower() # Example step
return text
# Prediction function
def predict(sentence):
model.eval()
preprocessed_sentence = preprocessing_greek(sentence)
inputs = tokenizer(preprocessed_sentence, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=1)
predicted_label = torch.argmax(probabilities, dim=1).item()
labels_map = {0: 'NOT', 1: 'OFFENSIVE'}
return labels_map[predicted_label], probabilities.tolist()
# Gradio Interface
iface = gr.Interface(fn=predict, inputs="text", outputs=["text", "json"])
iface.launch()