Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
"model_type": "bert", # Change this based on your model type
|
11 |
-
"hidden_size": 768,
|
12 |
-
"num_attention_heads": 12,
|
13 |
-
"num_hidden_layers": 12,
|
14 |
-
"vocab_size": 30000,
|
15 |
-
"max_position_embeddings": 512,
|
16 |
-
"type_vocab_size": 2,
|
17 |
-
"hidden_act": "gelu",
|
18 |
-
"layer_norm_eps": 1e-12,
|
19 |
-
"initializer_range": 0.02
|
20 |
-
})
|
21 |
|
22 |
-
# Load
|
23 |
-
tokenizer =
|
24 |
-
|
|
|
|
|
25 |
|
26 |
# Prediction function
|
27 |
def predict(text):
|
|
|
28 |
inputs = tokenizer(text, return_tensors="pt")
|
29 |
-
|
30 |
-
#
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Gradio Interface
|
34 |
interface = gr.Interface(
|
35 |
fn=predict,
|
36 |
inputs="text",
|
37 |
-
outputs="
|
38 |
-
title="
|
39 |
-
description="
|
40 |
)
|
41 |
|
42 |
# Launch interface
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer
|
4 |
|
5 |
+
# Define model paths
|
6 |
+
models_path = "./models"
|
7 |
+
tokenizer_path = f"{models_path}/el_new_tokenizer.pt"
|
8 |
+
lemmatizer_path = f"{models_path}/el_new_nocharlm_lemmatizer.pt"
|
9 |
+
tagger_path = f"{models_path}/el_new_transformer_tagger.pt"
|
10 |
+
parser_path = f"{models_path}/el_new_transformer_parser.pt" # Updated parser model path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Load models
|
13 |
+
tokenizer = torch.load(tokenizer_path) # Load tokenizer
|
14 |
+
lemmatizer_model = torch.load(lemmatizer_path) # Load lemmatizer
|
15 |
+
tagger_model = torch.load(tagger_path) # Load POS tagger
|
16 |
+
parser_model = torch.load(parser_path) # Load dependency parser
|
17 |
|
18 |
# Prediction function
|
19 |
def predict(text):
|
20 |
+
# Tokenize input
|
21 |
inputs = tokenizer(text, return_tensors="pt")
|
22 |
+
|
23 |
+
# Perform lemmatization
|
24 |
+
lemma_outputs = lemmatizer_model(**inputs)
|
25 |
+
lemmas = lemma_outputs.logits.argmax(-1).tolist() # Process lemmatizer output
|
26 |
+
|
27 |
+
# Perform POS tagging
|
28 |
+
pos_outputs = tagger_model(**inputs)
|
29 |
+
pos_tags = pos_outputs.logits.argmax(-1).tolist() # Process tagger output
|
30 |
+
|
31 |
+
# Perform dependency parsing
|
32 |
+
dep_outputs = parser_model(**inputs)
|
33 |
+
dep_parse = dep_outputs.logits.argmax(-1).tolist() # Process parser output
|
34 |
+
|
35 |
+
# Return results
|
36 |
+
return {
|
37 |
+
"lemmas": lemmas,
|
38 |
+
"pos_tags": pos_tags,
|
39 |
+
"dep_parse": dep_parse,
|
40 |
+
}
|
41 |
|
42 |
# Gradio Interface
|
43 |
interface = gr.Interface(
|
44 |
fn=predict,
|
45 |
inputs="text",
|
46 |
+
outputs="json",
|
47 |
+
title="Greek NLP Pipeline",
|
48 |
+
description="Perform lemmatization, POS tagging, and dependency parsing for Greek text using custom models.",
|
49 |
)
|
50 |
|
51 |
# Launch interface
|