Spaces:
Sleeping
Sleeping
File size: 10,945 Bytes
5e22f01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import numpy as np
import pandas as pd
import numpy as np
def check_all_conditions(Vcap, Vdt, Vjj, Vnn, Vot, Wdt, Wjj, Wnn, Wot, W, T):
"""
Checks RNN Perceptron Conditions
"""
conditions = []
# Vcap conditions
conditions.append(Vcap + Wdt > T)
conditions.append(Vcap + Wjj > T)
conditions.append(Vcap + Wnn > T)
conditions.append(Vcap + Wot > T)
# Vdt conditions1
conditions.append(Vdt + Wdt > T)
conditions.append(Vdt + Wjj < T)
conditions.append(Vdt + Wnn < T)
conditions.append(Vdt + Wot > T)
# Vdt conditions2
conditions.append(W + Vdt + Wdt > T)
conditions.append(W + Vdt + Wjj < T)
conditions.append(W + Vdt + Wnn < T)
conditions.append(W + Vdt + Wot > T)
# Vjj conditions 1
conditions.append(Vjj + Wdt > T)
conditions.append(Vjj + Wjj < T)
conditions.append(Vjj + Wnn < T)
conditions.append(Vjj + Wot > T)
# Vjj conditions 2
conditions.append(W + Vjj + Wdt > T)
conditions.append(W + Vjj + Wjj < T)
conditions.append(W + Vjj + Wnn < T)
conditions.append(W + Vjj + Wot > T)
#Vnn conditions1
conditions.append(Vnn + Wdt > T)
conditions.append(Vnn + Wjj < T)
conditions.append(Vnn + Wnn < T)
conditions.append(Vnn + Wot > T)
#Vnn conditions2
conditions.append(W + Vnn + Wdt > T)
conditions.append(W + Vnn + Wjj < T)
conditions.append(W + Vnn + Wnn < T)
conditions.append(W + Vnn + Wot > T)
conditions.append(W + Vot + Wdt > T)
conditions.append(W + Vot + Wjj > T)
conditions.append(W + Vot + Wnn > T)
conditions.append(W + Vot + Wot > T)
if np.sum(conditions) == len(conditions):
print("ALL INEQUALITIES SATISFIED FOR THE GIVEN PARAMETERS")
return conditions
def check_conditions(Vcap, Vdt, Vjj, Vnn, Vot, Wdt, Wjj, Wnn, Wot, W, T, verbose=False):
"""
Checks RNN Perceptron Conditions
"""
conditions = []
# CAP[^] conditions
if Vcap + Wdt > T and verbose:
string = f"Vcap [{Vcap}] + Wdt [{Wdt}] > T [{T}]\t\tSATISFIED"
print(string)
conditions.append(Vcap + Wdt > T)
if Vcap + Wjj > T and verbose:
string = f"Vcap [{Vcap}] + Wjj [{Wjj}] > T [{T}]\t\tSATISFIED"
print(string)
conditions.append(Vcap + Wjj > T)
if Vcap + Wnn > T and verbose:
string = f"Vcap [{Vcap}] + Wjj [{Wnn}] > T [{T}]\t\tSATISFIED"
print(string)
conditions.append(Vcap + Wnn > T)
if Vcap + Wot > T and verbose:
string = f"Vcap [{Vcap}] + Wjj [{Wot}] > T [{T}]\t\tSATISFIED"
print(string)
print()
conditions.append(Vcap + Wot > T)
# DT Conditions
if W + Vdt + Wjj < T and verbose:
string = f"W [{W}] + Vdt [{Vdt}] + Wjj [{Wjj}] < T [{T}]\tSATISFIED"
print(string)
conditions.append(W + Vdt + Wjj < T)
if W + Vdt + Wnn < T and verbose:
string = f"W [{W}] + Vdt [{Vdt}] + Wnn [{Wnn}] < T [{T}]\tSATISFIED"
print(string)
print()
conditions.append(W + Vdt + Wnn < T)
# JJ Consitions
if Vjj + Wjj < T and verbose:
string = f"Vjj [{Vjj}] + Wjj [{Wjj}] < T [{T}]\t\tSATISFIED"
print(string)
conditions.append(Vjj + Wjj < T)
if Vjj + Wnn < T and verbose:
string = f"Vjj [{Vjj}] + Wnn [{Wnn}] < T [{T}]\t\tSATISFIED"
print(string)
conditions.append(Vjj + Wnn < T)
if W + Vjj + Wjj < T and verbose:
string = f"W [{W}] + Vjj [{Vjj}] + Wjj [{Wjj}] < T [{T}]\tSATISFIED"
print(string)
conditions.append(W + Vjj + Wjj < T)
if W + Vjj + Wnn < T and verbose:
string = f"W [{W}] + Vjj [{Vjj}] + Wnn [{Wnn}] < T [{T}]\tSATISFIED"
print(string)
print()
conditions.append(W + Vjj + Wnn < T)
# NN Consitions
if Vnn + Wot > T and verbose:
string = f"Vnn [{Vnn}] + Wot [{Wot}] > T [{T}]\tSATISFIED"
print(string)
conditions.append(Vnn + Wot > T)
if W + Vnn + Wot > T and verbose:
string = f"W [{W}] + Vnn [{Vnn}] + Wot [{Wot}] > T [{T}]\tSATISFIED"
print(string)
print()
conditions.append(W + Vnn + Wot > T)
# OT Conditions
if W + Vot + Wdt > T and verbose:
string = f"W [{W}] + Vot [{Vot}] + Wdt [{Wdt}] > T [{T}]\tSATISFIED"
print(string)
conditions.append(W + Vot + Wdt > T)
if W + Vot + Wjj > T and verbose:
string = f"W [{W}] + Vot [{Vot}] + Wjj [{Wjj}] > T [{T}]\tSATISFIED"
print(string)
conditions.append(W + Vot + Wjj > T)
if W + Vot + Wnn > T and verbose:
string = f"W [{W}] + Vot [{Vot}] + Wnn [{Wnn}] > T [{T}]\tSATISFIED"
print(string)
conditions.append(W + Vot + Wnn > T)
if W + Vot + Wot > T and verbose:
string = f"W [{W}] + Vot [{Vot}] + Wot [{Wot}] > T [{T}]\tSATISFIED"
print(string)
conditions.append(W + Vot + Wot > T)
check = np.sum(conditions) == len(conditions)
if check:
print("\nALL INEQUALITIES SATISFIED FOR THE GIVEN PARAMETERS")
else:
print("\nALL INEQUALITIES ARE NOT SATISFIED")
print(conditions)
return check
def pair2sample(left_index, right_index):
"""
Takes in left index and right index to give the concatenated
1-hot vector of both along with bias term -1
x = [---upper_input_1-hot--- -1 ---lower_input_1-hot---]
The id:0 is used for ^ token
NN:1 DT:2 JJ:3 OT:4 for their ids
"""
# Create an array of zeros
array_left = np.zeros(5)
array_right = np.zeros(5)
# Set the value at the specified index to 1.0, and bias to -1.0
array_left[left_index] = 1.0
array_right[0] = -1.0
array_right[right_index] = 1.0
sample = np.concatenate((array_left, array_right))
return sample
def tags2sentence(tags):
"""
This function takes in tag and returns it in a perceptron input format
the output is [x(1), x(2), ......., x(T)]
where x(i) is a 10-d vector
Parameters:
tags list[int]: The POS tags of the sentence
Returns:
sentence list[list] : This is a sequence input to the model
"""
new_tags = [0] + tags # For the ^ start token
sentence = []
for idx in range(len(new_tags)-1):
left_index = new_tags[idx]
right_index = new_tags[idx+1]
sentence.append(pair2sample(left_index, right_index))
return np.array(sentence)
def calculate_grads(x, y, model):
"""
Calculates Gradient Loss for a sequence <x(1), x(2), ...... , x(T)>
"""
Y = y.copy()
Y = np.insert(Y, 0, 0.0) # Insert y(0) at the begining
X = x.copy()
# Insert a row of zeros at the top, call it x(0)
new_row = np.zeros((1, X.shape[1])) # Array row of all zeros
X = np.insert(X, 0, new_row, axis=0)
C, H = model.process_seq(sequence=x)
dh_dp = np.zeros_like(X)
dc_dp = np.zeros_like(X)
# Iterative calculation dh/dp and dc/dp
for idx in range(1, len(X)):
dc_dp[idx] = X[idx] + model.w*dc_dp[idx-1]
dh_dp[idx] = model.sigmoid_dash(C[idx])*dc_dp[idx]
# Calculation of dJdp
dJdp = (H[1:]-Y[1:])/(H[1:]*(1-H[1:]))
dJdp = dJdp.reshape(dJdp.shape[0],1)
dJdp = dJdp*dh_dp[1:]
dJdp = dJdp.mean(axis=0)
dh_dw = np.zeros_like(H)
dc_dw = np.zeros_like(H)
# Iterative calculation dh/dw
for idx in range(1, len(dh_dw)):
dc_dw[idx] = H[idx-1] + model.w*dh_dw[idx-1]
dh_dw[idx] = model.sigmoid_dash(C[idx])
# Calculation of dJdw
dJdw = (H[1:]-Y[1:])/(H[1:]*(1-H[1:]))
dJdw = dJdw*dh_dw[1:]
dJdw = dJdw.mean()
return dJdp, dJdw
def batch_calculate_grads(model, batch):
derivatives_p = []
derivatives_w = []
for _, row in batch.iterrows():
sent_tags = row.chunk_tags
y = np.array(sent_tags)
sent_pos_tags = row.pos_tags
x = tags2sentence(sent_pos_tags)
der_p, der_w = calculate_grads(model=model, x=x, y=y)
derivatives_p.append(der_p)
derivatives_w.append(der_w)
derivatives_p = np.array(derivatives_p).mean(axis=0)
derivatives_w = np.array(derivatives_w).mean()
return derivatives_p, derivatives_w
def train_and_val(df_folds, val_index):
"""
Returns train fold and val fold
Parameters:
df_folds :list[Dataframe]: List of dataframes
val_index(int): {0, 1, 2, 3, .... ,N-1}
Returns:
train_df : train dataframe
val_df : validation dataframe
"""
train_df, val_df = None, None
for idx, df in enumerate(df_folds):
if idx == val_index:
val_df = df.copy()
else:
train_df = pd.concat([train_df, df.copy()], axis=0)
train_df.reset_index(drop=True, inplace=True)
val_df.reset_index(drop=True, inplace=True)
return train_df, val_df
def prepare_folds(data, nof):
"""
Creates folds from data
Parameters:
data :pandas Dataframe
nof (int): no of folds
Returns:
df_folds: list[Dataframes]
"""
# Shuffle the DataFrame rows
data_shuffled = data.sample(frac=1, random_state=42).copy()
# Calculate the number of rows per fold
fold_size = len(data) // nof
remainder_rows = len(data) % nof
# Initialize an empty list to store the folds
df_folds = []
# Split the shuffled DataFrame into folds
start_index = 0
for fold_index in range(5):
# Calculate the end index for the fold
end_index = start_index + fold_size + (1 if fold_index < remainder_rows else 0)
# Append the fold to the list of folds
df_folds.append(data_shuffled.iloc[start_index:end_index].reset_index(drop=True))
# Update the start index for the next fold
start_index = end_index
return df_folds
def process_CVresults(CVresults_dict, summarize=True):
"""
ABOUT
Processes CV results
CVresults[key] = [best_val_loss, best_val_acc, best_val_sequence_acc, best_val_epoch, best_params(array)]
"""
folds = len(CVresults_dict)
val_loss, val_acc, seq_acc = 0, 0, 0
P, W= 0.0, 0.0
val_acc_list =[]
val_seq_acc_list =[]
for key, val in CVresults_dict.items():
val_loss += val[0]
val_acc += val[1]
val_acc_list.append(val[1])
seq_acc += val[2]
val_seq_acc_list.append(val[2])
P = P + val[4][0]
W = W + val[4][1]
val_loss = val_loss/folds
val_acc = np.round(val_acc/folds, 4)
seq_acc = np.round(seq_acc/folds, 4)
P = P/folds
W = W/folds
if summarize:
print(f"BEST VALIDATION ACCURACY : {np.round(np.max(val_acc_list), 4)}")
print(f"BEST VALIDATION SEQUENCE ACCURACY : {np.round(np.max(val_seq_acc_list), 4)}")
print()
print(f"AVERAGE VALIDATION ACCURACY : {val_acc}")
print(f"AVERAGE VALIDATION SEQUENCE ACCURACY : {seq_acc}")
return P, W |