vivek9 commited on
Commit
b3ad09c
·
verified ·
1 Parent(s): bb141ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -1
app.py CHANGED
@@ -143,7 +143,7 @@ def demo_(sentence):
143
  preds3=predict_for_example(sentence=sentence, tags=tags, model=model3)
144
  preds2=predict_for_example(sentence=sentence, tags=tags, model=model2)
145
  preds4=predict_for_example(sentence=sentence, tags=tags, model=model4)
146
- return "predicted labels:\t"str(preds2)+"\n"+"predicted Noun chunks \t"str(get_noun_chunks(sentence=sentence, tags=tags,preds=preds2)),"predicted labels:\t"str(preds4)+"\n"+"predicted Noun chunks \t"str(get_noun_chunks(sentence=sentence, tags=tags,preds=preds4)),"predicted labels:\t"str(preds1)+"\n"+"predicted Noun chunks \t"str(get_noun_chunks(sentence=sentence, tags=tags,preds=preds1)),"predicted labels:\t"str(preds3)+"\n"+"predicted Noun chunks \t"str(get_noun_chunks(sentence=sentence, tags=tags,preds=preds3)),tags
147
 
148
  title="POS-Tagged Corpus Analysis: Training a Recurrent Perceptron for Noun Chunk Identification"
149
  demo = gr.Interface(fn=demo_, inputs=gr.Textbox(label="sentence for which you want noun chunks",lines=1, interactive=True, show_copy_button=True), outputs=[gr.Textbox(label="prediction on conditioned data with step activation function",lines=2, interactive=True, show_copy_button=True),gr.Textbox(label="prediction on conditioned data with step activation function",lines=2, interactive=True, show_copy_button=True),gr.Textbox(label="prediction on all data with step activation function",lines=2, interactive=True, show_copy_button=True),gr.Textbox(label="prediction on whole data with sigmoid activation function",lines=2, interactive=True, show_copy_button=True),gr.Textbox(label="pos tag label given by nltk library",lines=1, interactive=True, show_copy_button=True)],title=title)
 
143
  preds3=predict_for_example(sentence=sentence, tags=tags, model=model3)
144
  preds2=predict_for_example(sentence=sentence, tags=tags, model=model2)
145
  preds4=predict_for_example(sentence=sentence, tags=tags, model=model4)
146
+ return "predicted labels:\t"+str(preds2)+"\n"+"predicted Noun chunks \t"+str(get_noun_chunks(sentence=sentence, tags=tags,preds=preds2)),"predicted labels:\t"+str(preds4)+"\n"+"predicted Noun chunks \t"+str(get_noun_chunks(sentence=sentence, tags=tags,preds=preds4)),"predicted labels:\t"+str(preds1)+"\n"+"predicted Noun chunks \t"+str(get_noun_chunks(sentence=sentence, tags=tags,preds=preds1)),"predicted labels:\t"+str(preds3)+"\n"+"predicted Noun chunks \t"+str(get_noun_chunks(sentence=sentence, tags=tags,preds=preds3)),tags
147
 
148
  title="POS-Tagged Corpus Analysis: Training a Recurrent Perceptron for Noun Chunk Identification"
149
  demo = gr.Interface(fn=demo_, inputs=gr.Textbox(label="sentence for which you want noun chunks",lines=1, interactive=True, show_copy_button=True), outputs=[gr.Textbox(label="prediction on conditioned data with step activation function",lines=2, interactive=True, show_copy_button=True),gr.Textbox(label="prediction on conditioned data with step activation function",lines=2, interactive=True, show_copy_button=True),gr.Textbox(label="prediction on all data with step activation function",lines=2, interactive=True, show_copy_button=True),gr.Textbox(label="prediction on whole data with sigmoid activation function",lines=2, interactive=True, show_copy_button=True),gr.Textbox(label="pos tag label given by nltk library",lines=1, interactive=True, show_copy_button=True)],title=title)