Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
from scipy import stats | |
import csv | |
def process_csv(input_file, output_file="output.csv",user_id_column="user_id",timestamp_column="timestamp",action_column="actions"): | |
with open(input_file, 'r', newline='') as csvfile, open(output_file, 'w', newline='') as new_csvfile: | |
reader = csv.reader(csvfile) | |
writer = csv.writer(new_csvfile) | |
# Get the column indices for user_id, timestamp, and action | |
user_id_index, timestamp_index, action_index = None, None, None | |
for i, row in enumerate(reader): | |
if i == 0: # Header row | |
user_id_index = row.index(user_id_column) | |
timestamp_index = row.index(timestamp_column) | |
action_index = row.index(action_column) | |
break | |
# Read the rest of the data and store it in a dictionary | |
user_actions = {} | |
for row in reader: | |
user_id = row[user_id_index] | |
timestamp = row[timestamp_index] | |
action = row[action_index] | |
if user_id not in user_actions: | |
user_actions[user_id] = [] | |
# Sort actions by timestamp in ascending order | |
user_actions[user_id].append((timestamp, action)) | |
# Write the data to the output CSV file with the new column | |
writer.writerow([user_id_column, 'actions']) # Write header with new column | |
for user_id, actions in user_actions.items(): | |
sorted_actions = actions # Sort by timestamp | |
concatenated_actions = ';'.join([action for timestamp, action in sorted_actions]) | |
writer.writerow([user_id, concatenated_actions]) | |
def generate_sequence_list(sentence, min_gap,max_gap, sliding_window_min=1,sliding_window_max=1): | |
# Split the sentence into words | |
words = sentence.split(";") | |
# Generate n-grams | |
ngrams = [] | |
for sliding_window in range(sliding_window_min,sliding_window_max+1): | |
for gram_length in range(min_gap,max_gap + 1): # Loop from 1 to n | |
for i in range(0, len(words) - gram_length + 1, sliding_window): | |
ngram = '--->'.join(words[i:i+gram_length]) | |
ngrams.append(ngram) | |
return ngrams | |
def create_dict_from_df(df, identifier_column, sequence,min_gap,max_gap,sliding_window_min=1,sliding_window_max=1): | |
result_dict = {} | |
unique_values_set = set() # Initialize set to store unique values | |
for index, row in df.iterrows(): | |
key = row[identifier_column] | |
values = generate_sequence_list(row[sequence],min_gap,max_gap,sliding_window_min,sliding_window_max) | |
result_dict[key] = values | |
unique_values_set.update(values) # Update the set with unique values | |
return result_dict, unique_values_set | |
def create_dataframe_from_dict_and_set(result_dict, unique_values_set): | |
# Initialize an empty dictionary to store counts | |
counts_dict = {} | |
# Iterate over the set | |
for value in unique_values_set: | |
counts_dict[value] = {} | |
# Iterate over the keys in the result_dict | |
for key, values in result_dict.items(): | |
counts_dict[value][key] = values.count(value) | |
# Create a DataFrame from the counts dictionary | |
df = pd.DataFrame(counts_dict).fillna(0) | |
# Transpose the DataFrame so that keys become columns and values become rows | |
df = df.transpose() | |
return df | |
def process_dataframe(df): | |
# Calculate num_student | |
num_student = len(df.columns) | |
# Calculate I-Frequency and S-Frequency | |
I_Frequency = df.sum(axis=1) | |
S_Frequency = (df > 0).sum(axis=1) | |
# Create a dictionary for new data | |
new_data = { | |
'I-Frequency': I_Frequency, | |
'S-Frequency': S_Frequency | |
} | |
# Create a DataFrame from the new data | |
new_df = pd.DataFrame(new_data) | |
# Calculate I-Support by dividing I-Frequency with num_student | |
new_df['I-Support (mean)'] = new_df['I-Frequency'] / num_student | |
new_df['S-Support'] = new_df['S-Frequency'] / num_student | |
# Calculate standard deviation of each row | |
new_df['I-Support (sd)'] = df.std(axis=1,skipna=True) | |
return new_df | |
def calculate_p_value(test_type, vector_a, vector_b=None, **kwargs): | |
""" | |
Calculate the p-value for different types of t-tests. | |
Parameters: | |
test_type (str): Type of test to perform. | |
vector_a (array-like): Data for sample A. | |
vector_b (array-like, optional): Data for sample B (only required for some tests). | |
**kwargs: Additional keyword arguments required for specific tests. | |
Returns: | |
p_value (float): The p-value obtained from the test. | |
""" | |
if test_type == 'poisson_means_test': | |
# Poisson means test | |
result = stats.poisson_means_test(vector_a, vector_b, **kwargs) | |
elif test_type == 'ttest_ind': | |
# T-test for the means of two independent samples | |
result = stats.ttest_ind(vector_a, vector_b, **kwargs) | |
elif test_type == 'mannwhitneyu': | |
# Mann-Whitney U rank test on two independent samples | |
result = stats.mannwhitneyu(vector_a, vector_b, **kwargs) | |
elif test_type == 'bws_test': | |
# Baumgartner-Weiss-Schindler test on two independent samples | |
result = stats.bws_test(vector_a, vector_b, **kwargs) | |
elif test_type == 'ranksums': | |
# Wilcoxon rank-sum statistic for two samples | |
result = stats.ranksums(vector_a, vector_b, **kwargs) | |
elif test_type == 'brunnermunzel': | |
# Brunner-Munzel test on samples | |
result = stats.brunnermunzel(vector_a, vector_b, **kwargs) | |
elif test_type == 'mood': | |
# Mood's test for equal scale parameters | |
result = stats.mood(vector_a, vector_b, **kwargs) | |
elif test_type == 'ansari': | |
# Ansari-Bradley test for equal scale parameters | |
result = stats.ansari(vector_a, vector_b, **kwargs) | |
elif test_type == 'cramervonmises_2samp': | |
# Two-sample Cram�r-von Mises test for goodness of fit | |
result = stats.cramervonmises_2samp(vector_a, vector_b, **kwargs) | |
elif test_type == 'epps_singleton_2samp': | |
# Epps-Singleton (ES) test statistic | |
result = stats.epps_singleton_2samp(vector_a, vector_b, **kwargs) | |
elif test_type == 'ks_2samp': | |
# Two-sample Kolmogorov-Smirnov test for goodness of fit | |
result = stats.ks_2samp(vector_a, vector_b, **kwargs) | |
elif test_type == 'kstest': | |
# One-sample or two-sample Kolmogorov-Smirnov test for goodness of fit | |
result = stats.kstest(vector_a, vector_b, **kwargs) | |
else: | |
raise ValueError("Invalid test type.") | |
# Get the p-value | |
p_value = result.pvalue | |
return p_value | |
def SPM_(path_to_csv,dataset_format, identifier_column, sequence_column,sortby="S-Support",min_gap=1,max_gap=1,sliding_window_min=1,sliding_window_max=1,S_support_thresh=0,I_support_thresh=0,timestamp_column="timestamp"): | |
if dataset_format==1: | |
process_csv(path_to_csv, output_file="output.csv",user_id_column=identifier_column,timestamp_column=timestamp_column,action_column=sequence_column) | |
path_to_csv="output.csv" | |
# Read CSV file | |
data = pd.read_csv(path_to_csv) | |
# Create dictionary from DataFrame | |
data_seq, corpus = create_dict_from_df(data, identifier_column, sequence_column, min_gap,max_gap,sliding_window_min,sliding_window_max) | |
# Create occurrence matrix | |
occurence_matrix = create_dataframe_from_dict_and_set(data_seq, corpus) | |
# Process occurrence matrix | |
spm_result = process_dataframe(occurence_matrix) | |
spm_result = spm_result.sort_values(by=sortby, ascending=False) | |
return spm_result[(spm_result['S-Support'] > S_support_thresh) & (spm_result['I-Support (mean)'] > I_support_thresh)], occurence_matrix | |
def SPM(config): | |
path_to_csv = config.get('path_to_csv') | |
dataset_format = config.get('dataset_format') | |
identifier_column = config.get('identifier_column') | |
sequence_column = config.get('sequence_column') | |
sortby = config.get('sortby', "S-Support") | |
min_gap = config.get('min_gap', 1) | |
max_gap = config.get('max_gap', 1) | |
sliding_window_min = config.get('sliding_window_min', 1) | |
sliding_window_max = config.get('sliding_window_max', 1) | |
S_support_thresh = config.get('S_support_thresh', 0) | |
I_support_thresh = config.get('I_support_thresh', 0) | |
timestamp_column = config.get('timestamp_column', "timestamp") | |
return SPM_(path_to_csv,dataset_format, identifier_column, sequence_column,sortby,min_gap,max_gap,sliding_window_min,sliding_window_max,S_support_thresh,I_support_thresh,timestamp_column) | |
def DSM(config): | |
path_to_csv_left = config['path_to_csv_left'] | |
dataset_format = config['dataset_format'] | |
path_to_csv_right = config['path_to_csv_right'] | |
identifier_column = config['identifier_column'] | |
sequence_column = config['sequence_column'] | |
sortby = config['sortby'] | |
min_gap = config['min_gap'] | |
max_gap = config['max_gap'] | |
sliding_window_min = config['sliding_window_min'] | |
sliding_window_max = config['sliding_window_max'] | |
S_support_thresh = config['S_support_thresh'] | |
I_support_thresh = config['I_support_thresh'] | |
threshold_pvalue = config['threshold_pvalue'] | |
test_type = config['test_type'] | |
timestamp_column = config.get('timestamp_column', 'timestamp') | |
if dataset_format == 1: | |
process_csv(path_to_csv_left, output_file="output_left.csv", user_id_column=identifier_column, | |
timestamp_column=timestamp_column, action_column=sequence_column) | |
path_to_csv_left = "output_left.csv" | |
process_csv(path_to_csv_right, output_file="output_right.csv", user_id_column=identifier_column, | |
timestamp_column=timestamp_column, action_column=sequence_column) | |
path_to_csv_left = "output_right.csv" | |
ptrn_left = [] | |
ptrn_right = [] | |
ptrn_both_left = [] | |
ptrn_both_right = [] | |
spm_result_left, occurence_matrix_left = SPM_(path_to_csv_left, 0, identifier_column, sequence_column, sortby, | |
min_gap, max_gap, sliding_window_min, sliding_window_max, | |
S_support_thresh, I_support_thresh) | |
spm_result_right, occurence_matrix_right = SPM_(path_to_csv_right, 0, identifier_column, sequence_column, sortby, | |
min_gap, max_gap, sliding_window_min, sliding_window_max, | |
S_support_thresh, I_support_thresh) | |
result_data = [] | |
all_ptrn = set(spm_result_left.index) | |
all_ptrn.update(spm_result_right.index) | |
left_ptrn_data = set(spm_result_left.index) | |
right_ptrn_data = set(spm_result_right.index) | |
for ptrn in all_ptrn: | |
isupport_left = occurence_matrix_left.loc[ptrn, :].values if ptrn in spm_result_left.index else np.zeros( | |
occurence_matrix_left.shape[1]) | |
isupport_right = occurence_matrix_right.loc[ptrn, :].values if ptrn in spm_result_right.index else np.zeros( | |
occurence_matrix_right.shape[1]) | |
p_value = calculate_p_value(test_type, isupport_left, isupport_right) | |
if p_value < threshold_pvalue: | |
if (ptrn in left_ptrn_data) and (ptrn in right_ptrn_data): | |
if isupport_left.mean() > isupport_right.mean(): | |
ptrn_both_left.append(ptrn) | |
result_data.append((ptrn, p_value, isupport_left.mean(), isupport_right.mean(), "both_left")) | |
else: | |
ptrn_both_right.append(ptrn) | |
result_data.append((ptrn, p_value, isupport_left.mean(), isupport_right.mean(), "both_right")) | |
else: | |
if ptrn in left_ptrn_data: | |
ptrn_left.append(ptrn) | |
result_data.append((ptrn, p_value, isupport_left.mean(), np.nan, "left")) | |
else: | |
ptrn_right.append(ptrn) | |
result_data.append((ptrn, p_value, np.nan, isupport_right.mean(), "right")) | |
result_df = pd.DataFrame(result_data, | |
columns=['ptrn', 'ttest_value', 'isupportleft_mean', 'isupportright_mean', "Group"]) | |
return ptrn_left, ptrn_right, ptrn_both_left, ptrn_both_right, result_df | |