File size: 3,953 Bytes
66d9db5 afc2936 66d9db5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import streamlit as st
from transformers import WhisperProcessor, WhisperForConditionalGeneration, RagTokenizer, RagRetriever, RagSequenceForGeneration
import torch
import soundfile as sf
import librosa
from moviepy.editor import VideoFileClip
import os
import tempfile
# Load Whisper base model and processor
whisper_model_name = "openai/whisper-base"
whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
# Load RAG sequence model and tokenizer
rag_model_name = "facebook/rag-sequence-nq"
rag_tokenizer = RagTokenizer.from_pretrained(rag_model_name)
rag_retriever = RagRetriever.from_pretrained(rag_model_name, index_name="exact", use_dummy_dataset=True, trust_remote_code=True)
rag_model = RagSequenceForGeneration.from_pretrained(rag_model_name, retriever=rag_retriever)
def transcribe_audio(audio_path, language="ru"):
speech, rate = librosa.load(audio_path, sr=16000)
inputs = whisper_processor(speech, return_tensors="pt", sampling_rate=16000)
input_features = whisper_processor.feature_extractor(speech, return_tensors="pt", sampling_rate=16000).input_features
predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=whisper_processor.get_decoder_prompt_ids(language=language, task="translate"))
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
def translate_and_summarize(text):
inputs = rag_tokenizer(text, return_tensors="pt")
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
outputs = rag_model.generate(input_ids=input_ids, attention_mask=attention_mask)
return rag_tokenizer.batch_decode(outputs, skip_special_tokens=True)
def extract_audio_from_video(video_path, output_audio_path):
video_clip = VideoFileClip(video_path)
audio_clip = video_clip.audio
if audio_clip is not None:
audio_clip.write_audiofile(output_audio_path)
return output_audio_path
else:
return None
st.title("Audio and Video Transcription & Summarization")
# Audio Upload Section
st.header("Upload an Audio File")
audio_file = st.file_uploader("Choose an audio file...", type=["wav", "mp3", "m4a"])
if audio_file is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(audio_file.getbuffer())
audio_path = tmp_file.name
st.audio(audio_file)
st.write("Transcribing audio...")
try:
transcription = transcribe_audio(audio_path)
st.write("Transcription:", transcription)
st.write("Translating and summarizing...")
summary = translate_and_summarize(transcription)
st.write("Translated Summary:", summary)
except Exception as e:
st.error(f"An error occurred: {e}")
# Video Upload Section
st.header("Upload a Video File")
video_file = st.file_uploader("Choose a video file...", type=["mp4", "mkv", "avi", "mov"])
if video_file is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file:
tmp_file.write(video_file.getbuffer())
video_path = tmp_file.name
st.video(video_file)
st.write("Extracting audio from video...")
audio_path = extract_audio_from_video(video_path, tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name)
if audio_path is not None:
st.write("Transcribing audio...")
try:
transcription = transcribe_audio(audio_path)
st.write("Transcription:", transcription)
st.write("Translating and summarizing...")
summary = translate_and_summarize(transcription)
st.write("Translated Summary:", summary)
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.write("No audio track found in the video file.")
|