|
import gradio as gr |
|
from transformers import pipeline |
|
from tempfile import NamedTemporaryFile |
|
from PyPDF2 import PdfReader |
|
from IPython.display import Audio |
|
import numpy as np |
|
from bark import SAMPLE_RATE, generate_audio, preload_models |
|
from scipy.io.wavfile import write as write_wav |
|
import torch |
|
|
|
def summarize_abstract_from_pdf(pdf_file_path): |
|
abstract_string = 'abstract' |
|
found_abstract = False |
|
intro_string ='introduction' |
|
extracted_text_string ="" |
|
|
|
|
|
with open(pdf_file_path, 'rb') as pdf_file: |
|
reader = PdfReader(pdf_file) |
|
text = "" |
|
text += reader.pages[0].extract_text() |
|
|
|
|
|
file = text.splitlines() |
|
for lines in file: |
|
lower_lines = lines.lower() |
|
if lower_lines.strip()== abstract_string: |
|
found_abstract = True |
|
elif "1" in lower_lines.strip() and intro_string in lower_lines.strip(): |
|
found_abstract = False |
|
|
|
if found_abstract == True: |
|
extracted_text_string += lines |
|
|
|
|
|
extracted_text_string = extracted_text_string.replace("Abstract", "") |
|
summarizer = pipeline("summarization", "pszemraj/led-base-book-summary",device=0 if torch.cuda.is_available() else -1,) |
|
|
|
summarized_abstract = summarizer(extracted_text_string, |
|
min_length=16, |
|
max_length=150, |
|
no_repeat_ngram_size=3, |
|
encoder_no_repeat_ngram_size=3, |
|
repetition_penalty=3.5, |
|
num_beams=4, |
|
early_stopping=True, |
|
) |
|
|
|
summarized_abstract2 = summarizer(summarized_abstract[0]['summary_text'], |
|
min_length=16, |
|
max_length=25, |
|
no_repeat_ngram_size=3, |
|
encoder_no_repeat_ngram_size=3, |
|
repetition_penalty=3.5, |
|
num_beams=4, |
|
early_stopping=True, |
|
) |
|
|
|
|
|
|
|
|
|
return summarized_abstract2[0]['summary_text'] |
|
|
|
def generate_audio_func(pdf_file): |
|
|
|
pdf_file_path = pdf_file.name |
|
|
|
|
|
text_prompt = summarize_abstract_from_pdf(pdf_file_path) |
|
audio_array = generate_audio(text_prompt) |
|
|
|
|
|
with NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav_file: |
|
wav_file_path = temp_wav_file.name |
|
write_wav(wav_file_path, 22050, (audio_array * 32767).astype(np.int16)) |
|
return wav_file_path |
|
|
|
|
|
|
|
|
|
app_name = "PDF to Audio Converter" |
|
app_description = "Convert text from a PDF file to audio. Upload a PDF file. We accept only PDF files with abstracts." |
|
|
|
|
|
input_component = gr.File(file_types=["pdf"]) |
|
output_component = gr.Audio() |
|
|
|
demo = gr.Interface( |
|
fn=generate_audio_func, |
|
inputs=input_component, |
|
outputs=output_component, |
|
title=app_name, |
|
description=app_description |
|
) |
|
|
|
demo.launch() |