vividsd commited on
Commit
533bc81
·
1 Parent(s): be0ee64

Rename app_assessment3 to app_assessment3.py

Browse files
Files changed (2) hide show
  1. app_assessment3 +0 -257
  2. app_assessment3.py +96 -0
app_assessment3 DELETED
@@ -1,257 +0,0 @@
1
- #installations
2
- !pip install gradio
3
- !pip install transformers
4
- !pip install torch
5
-
6
- !pip install PyPDF2
7
- !pip install pdfminer.six
8
- !pip install pdfplumber
9
- !pip install pdf2image
10
- !pip install Pillow
11
- !pip install pytesseract
12
-
13
- !apt-get install poppler-utils
14
- !apt install tesseract-ocr
15
- !apt install libtesseract-dev
16
-
17
-
18
- #imports
19
- from transformers import pipeline
20
- import gradio as gr
21
- import torch
22
- import PyPDF2
23
- import pdfplumber
24
-
25
-
26
-
27
-
28
- #Reading the PDFs and extracting the abstract from my previous code:
29
-
30
- from pdfminer.high_level import extract_pages, extract_text
31
- from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
32
-
33
- from PIL import Image
34
- from pdf2image import convert_from_path
35
-
36
- def text_extraction(element):
37
- # Extracting the text from the in-line text element
38
- line_text = element.get_text()
39
-
40
- # Find the formats of the text
41
- # Initialize the list with all the formats that appeared in the line of text
42
- line_formats = []
43
- for text_line in element:
44
- if isinstance(text_line, LTTextContainer):
45
- # Iterating through each character in the line of text
46
- for character in text_line:
47
- if isinstance(character, LTChar):
48
- # Append the font name of the character
49
- line_formats.append(character.fontname)
50
- # Append the font size of the character
51
- line_formats.append(character.size)
52
- # Find the unique font sizes and names in the line
53
- format_per_line = list(set(line_formats))
54
-
55
- # Return a tuple with the text in each line along with its format
56
- return (line_text, format_per_line)
57
-
58
- # Create a function to crop the image elements from PDFs
59
- def crop_image(element, pageObj):
60
- # Get the coordinates to crop the image from the PDF
61
- [image_left, image_top, image_right, image_bottom] = [element.x0,element.y0,element.x1,element.y1]
62
- # Crop the page using coordinates (left, bottom, right, top)
63
- pageObj.mediabox.lower_left = (image_left, image_bottom)
64
- pageObj.mediabox.upper_right = (image_right, image_top)
65
- # Save the cropped page to a new PDF
66
- cropped_pdf_writer = PyPDF2.PdfWriter()
67
- cropped_pdf_writer.add_page(pageObj)
68
- # Save the cropped PDF to a new file
69
- with open('cropped_image.pdf', 'wb') as cropped_pdf_file:
70
- cropped_pdf_writer.write(cropped_pdf_file)
71
-
72
- # Create a function to convert the PDF to images
73
- def convert_to_images(input_file,):
74
- images = convert_from_path(input_file)
75
- image = images[0]
76
- output_file = "PDF_image.png"
77
- image.save(output_file, "PNG")
78
-
79
- # Create a function to read text from images
80
- def image_to_text(image_path):
81
- # Read the image
82
- img = Image.open(image_path)
83
- # Extract the text from the image
84
- text = pytesseract.image_to_string(img)
85
- return text
86
-
87
- # Extracting tables from the page
88
-
89
- def extract_table(pdf_path, page_num, table_num):
90
- # Open the pdf file
91
- pdf = pdfplumber.open(pdf_path)
92
- # Find the examined page
93
- table_page = pdf.pages[page_num]
94
- # Extract the appropriate table
95
- table = table_page.extract_tables()[table_num]
96
- return table
97
-
98
- # Convert table into the appropriate format
99
- def table_converter(table):
100
- table_string = ''
101
- # Iterate through each row of the table
102
- for row_num in range(len(table)):
103
- row = table[row_num]
104
- # Remove the line breaker from the wrapped texts
105
- cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row]
106
- # Convert the table into a string
107
- table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n')
108
- # Removing the last line break
109
- table_string = table_string[:-1]
110
- return table_string
111
-
112
- def read_pdf(pdf_path):
113
- # create a PDF file object
114
- pdfFileObj = open('/content/Article_11', 'rb')
115
- # create a PDF reader object
116
- pdfReaded = PyPDF2.PdfReader(pdfFileObj)
117
-
118
- # Create the dictionary to extract text from each image
119
- text_per_page = {}
120
- # We extract the pages from the PDF
121
- for pagenum, page in enumerate(extract_pages(pdf_path)):
122
- print("Elaborating Page_" +str(pagenum))
123
- # Initialize the variables needed for the text extraction from the page
124
- pageObj = pdfReaded.pages[pagenum]
125
- page_text = []
126
- line_format = []
127
- text_from_images = []
128
- text_from_tables = []
129
- page_content = []
130
- # Initialize the number of the examined tables
131
- table_num = 0
132
- first_element= True
133
- table_extraction_flag= False
134
- # Open the pdf file
135
- pdf = pdfplumber.open(pdf_path)
136
- # Find the examined page
137
- page_tables = pdf.pages[pagenum]
138
- # Find the number of tables on the page
139
- tables = page_tables.find_tables()
140
-
141
-
142
- # Find all the elements
143
- page_elements = [(element.y1, element) for element in page._objs]
144
- # Sort all the elements as they appear in the page
145
- page_elements.sort(key=lambda a: a[0], reverse=True)
146
-
147
- # Find the elements that composed a page
148
- for i,component in enumerate(page_elements):
149
- # Extract the position of the top side of the element in the PDF
150
- pos= component[0]
151
- # Extract the element of the page layout
152
- element = component[1]
153
-
154
- # Check if the element is a text element
155
- if isinstance(element, LTTextContainer):
156
- # Check if the text appeared in a table
157
- if table_extraction_flag == False:
158
- # Use the function to extract the text and format for each text element
159
- (line_text, format_per_line) = text_extraction(element)
160
- # Append the text of each line to the page text
161
- page_text.append(line_text)
162
- # Append the format for each line containing text
163
- line_format.append(format_per_line)
164
- page_content.append(line_text)
165
- else:
166
- # Omit the text that appeared in a table
167
- pass
168
-
169
- # Check the elements for images
170
- if isinstance(element, LTFigure):
171
- # Crop the image from the PDF
172
- crop_image(element, pageObj)
173
- # Convert the cropped pdf to an image
174
- convert_to_images('cropped_image.pdf')
175
- # Extract the text from the image
176
- image_text = image_to_text('PDF_image.png')
177
- text_from_images.append(image_text)
178
- page_content.append(image_text)
179
- # Add a placeholder in the text and format lists
180
- page_text.append('image')
181
- line_format.append('image')
182
-
183
- # Check the elements for tables
184
- if isinstance(element, LTRect):
185
- # If the first rectangular element
186
- if first_element == True and (table_num+1) <= len(tables):
187
- # Find the bounding box of the table
188
- lower_side = page.bbox[3] - tables[table_num].bbox[3]
189
- upper_side = element.y1
190
- # Extract the information from the table
191
- table = extract_table(pdf_path, pagenum, table_num)
192
- # Convert the table information in structured string format
193
- table_string = table_converter(table)
194
- # Append the table string into a list
195
- text_from_tables.append(table_string)
196
- page_content.append(table_string)
197
- # Set the flag as True to avoid the content again
198
- table_extraction_flag = True
199
- # Make it another element
200
- first_element = False
201
- # Add a placeholder in the text and format lists
202
- page_text.append('table')
203
- line_format.append('table')
204
-
205
- # Check if we already extracted the tables from the page
206
- if element.y0 >= lower_side and element.y1 <= upper_side:
207
- pass
208
- elif not isinstance(page_elements[i+1][1], LTRect):
209
- table_extraction_flag = False
210
- first_element = True
211
- table_num+=1
212
-
213
-
214
- # Create the key of the dictionary
215
- dctkey = 'Page_'+str(pagenum)
216
- # Add the list of list as the value of the page key
217
- text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
218
-
219
- # Closing the pdf file object
220
- pdfFileObj.close()
221
-
222
- return text_per_page
223
-
224
- pdf_path = '/content/Article_11' #paper.pdf
225
-
226
- text_per_page = read_pdf(pdf_path)
227
-
228
- text_per_page.keys()
229
- page_0 = text_per_page['Page_0']
230
- page_0
231
-
232
- page_0_clean = [item for sublist in page_0 for item in sublist if isinstance(item, str)]
233
- for i in range(len(page_0_clean)):
234
- page_0_clean[i] = page_0_clean[i].replace('\n', ' ').strip()
235
-
236
-
237
- page_0_clean
238
-
239
-
240
- def process_pdf(pdf):
241
-
242
-
243
- def speech(audio):
244
- sr, y = audio
245
- y = y.astype(np.float32)
246
- y /= np.max(np.abs(y))
247
-
248
- return transcriber({"sampling_rate": sr, "raw": y})["text"]
249
-
250
-
251
- demo = gr.Interface(
252
- transcribe,
253
- gr.Audio(sources=["microphone"]),
254
- "text",
255
- )
256
-
257
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app_assessment3.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+ from tempfile import NamedTemporaryFile
4
+ from PyPDF2 import PdfReader
5
+ from IPython.display import Audio
6
+ import numpy as np
7
+ from bark import SAMPLE_RATE, generate_audio, preload_models
8
+ from scipy.io.wavfile import write as write_wav
9
+ import torch
10
+
11
+ def summarize_abstract_from_pdf(pdf_file_path):
12
+ abstract_string = 'abstract'
13
+ found_abstract = False
14
+ intro_string ='introduction'
15
+ extracted_text_string =""
16
+
17
+ # Read the PDF and extract text from the first page
18
+ with open(pdf_file_path, 'rb') as pdf_file:
19
+ reader = PdfReader(pdf_file)
20
+ text = ""
21
+ text += reader.pages[0].extract_text()
22
+
23
+
24
+ file = text.splitlines()
25
+ for lines in file:
26
+ lower_lines = lines.lower()
27
+ if lower_lines.strip()== abstract_string:
28
+ found_abstract = True
29
+ elif "1" in lower_lines.strip() and intro_string in lower_lines.strip():
30
+ found_abstract = False
31
+
32
+ if found_abstract == True:
33
+ extracted_text_string += lines
34
+
35
+
36
+ extracted_text_string = extracted_text_string.replace("Abstract", "")
37
+ summarizer = pipeline("summarization", "pszemraj/led-base-book-summary",device=0 if torch.cuda.is_available() else -1,)
38
+ # Generate a summarized abstract using the specified model
39
+ summarized_abstract = summarizer(extracted_text_string,
40
+ min_length=16,
41
+ max_length=150,
42
+ no_repeat_ngram_size=3,
43
+ encoder_no_repeat_ngram_size=3,
44
+ repetition_penalty=3.5,
45
+ num_beams=4,
46
+ early_stopping=True,
47
+ )
48
+ #I run this twice to get summazired text
49
+ summarized_abstract2 = summarizer(summarized_abstract[0]['summary_text'],
50
+ min_length=16,
51
+ max_length=25,
52
+ no_repeat_ngram_size=3,
53
+ encoder_no_repeat_ngram_size=3,
54
+ repetition_penalty=3.5,
55
+ num_beams=4,
56
+ early_stopping=True,
57
+ )
58
+
59
+
60
+
61
+ # Return the summarized abstract as a string
62
+ return summarized_abstract2[0]['summary_text']
63
+
64
+ def generate_audio_func(pdf_file):
65
+
66
+ pdf_file_path = pdf_file.name
67
+ # Generate audio from text
68
+ #call the summarize abstract function
69
+ text_prompt = summarize_abstract_from_pdf(pdf_file_path)
70
+ audio_array = generate_audio(text_prompt)
71
+
72
+ # Create a temporary WAV file to save the audio
73
+ with NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav_file:
74
+ wav_file_path = temp_wav_file.name
75
+ write_wav(wav_file_path, 22050, (audio_array * 32767).astype(np.int16))
76
+ return wav_file_path
77
+
78
+
79
+
80
+ # Define app name, app description, and examples
81
+ app_name = "PDF to Audio Converter"
82
+ app_description = "Convert text from a PDF file to audio. Upload a PDF file. We accept only PDF files with abstracts."
83
+
84
+ # Create the Gradio app
85
+ input_component = gr.File(file_types=["pdf"])
86
+ output_component = gr.Audio()
87
+
88
+ demo = gr.Interface(
89
+ fn=generate_audio_func,
90
+ inputs=input_component,
91
+ outputs=output_component,
92
+ title=app_name,
93
+ description=app_description
94
+ )
95
+
96
+ demo.launch()