Delete app_assessment3.py
Browse files- app_assessment3.py +0 -97
app_assessment3.py
DELETED
@@ -1,97 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
from tempfile import NamedTemporaryFile
|
4 |
-
from PyPDF2 import PdfReader
|
5 |
-
from IPython.display import Audio
|
6 |
-
import numpy as np
|
7 |
-
from bark import SAMPLE_RATE, generate_audio, preload_models
|
8 |
-
from scipy.io.wavfile import write as write_wav
|
9 |
-
import torch
|
10 |
-
|
11 |
-
def summarize_abstract_from_pdf(pdf_file_path):
|
12 |
-
abstract_string = 'abstract'
|
13 |
-
found_abstract = False
|
14 |
-
intro_string ='introduction'
|
15 |
-
extracted_text_string =""
|
16 |
-
|
17 |
-
|
18 |
-
# Read the PDF and extract text from the first page
|
19 |
-
with open(pdf_file_path, 'rb') as pdf_file:
|
20 |
-
reader = PdfReader(pdf_file)
|
21 |
-
text = ""
|
22 |
-
text += reader.pages[0].extract_text()
|
23 |
-
|
24 |
-
|
25 |
-
file = text.splitlines()
|
26 |
-
for lines in file:
|
27 |
-
lower_lines = lines.lower()
|
28 |
-
if lower_lines.strip()== abstract_string:
|
29 |
-
found_abstract = True
|
30 |
-
elif "1" in lower_lines.strip() and intro_string in lower_lines.strip():
|
31 |
-
found_abstract = False
|
32 |
-
|
33 |
-
if found_abstract == True:
|
34 |
-
extracted_text_string += lines
|
35 |
-
|
36 |
-
|
37 |
-
extracted_text_string = extracted_text_string.replace("Abstract", "")
|
38 |
-
summarizer = pipeline("summarization", "pszemraj/led-base-book-summary",device=0 if torch.cuda.is_available() else -1,)
|
39 |
-
# Generate a summarized abstract using the specified model
|
40 |
-
summarized_abstract = summarizer(extracted_text_string,
|
41 |
-
min_length=16,
|
42 |
-
max_length=150,
|
43 |
-
no_repeat_ngram_size=3,
|
44 |
-
encoder_no_repeat_ngram_size=3,
|
45 |
-
repetition_penalty=3.5,
|
46 |
-
num_beams=4,
|
47 |
-
early_stopping=True,
|
48 |
-
)
|
49 |
-
#I run this twice to get summazired text
|
50 |
-
summarized_abstract2 = summarizer(summarized_abstract[0]['summary_text'],
|
51 |
-
min_length=16,
|
52 |
-
max_length=25,
|
53 |
-
no_repeat_ngram_size=3,
|
54 |
-
encoder_no_repeat_ngram_size=3,
|
55 |
-
repetition_penalty=3.5,
|
56 |
-
num_beams=4,
|
57 |
-
early_stopping=True,
|
58 |
-
)
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
# Return the summarized abstract as a string
|
63 |
-
return summarized_abstract2[0]['summary_text']
|
64 |
-
|
65 |
-
def generate_audio_func(pdf_file):
|
66 |
-
|
67 |
-
pdf_file_path = pdf_file.name
|
68 |
-
# Generate audio from text
|
69 |
-
#call the summarize abstract function
|
70 |
-
text_prompt = summarize_abstract_from_pdf(pdf_file_path)
|
71 |
-
audio_array = generate_audio(text_prompt)
|
72 |
-
|
73 |
-
# Create a temporary WAV file to save the audio
|
74 |
-
with NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav_file:
|
75 |
-
wav_file_path = temp_wav_file.name
|
76 |
-
write_wav(wav_file_path, 22050, (audio_array * 32767).astype(np.int16))
|
77 |
-
return wav_file_path
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
# Define app name, app description, and examples
|
82 |
-
app_name = "PDF to Audio Converter"
|
83 |
-
app_description = "Convert text from a PDF file to audio. Upload a PDF file. We accept only PDF files with abstracts."
|
84 |
-
|
85 |
-
# Create the Gradio app
|
86 |
-
input_component = gr.File(file_types=["pdf"])
|
87 |
-
output_component = gr.Audio()
|
88 |
-
|
89 |
-
demo = gr.Interface(
|
90 |
-
fn=generate_audio_func,
|
91 |
-
inputs=input_component,
|
92 |
-
outputs=output_component,
|
93 |
-
title=app_name,
|
94 |
-
description=app_description
|
95 |
-
)
|
96 |
-
|
97 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|