vividsd commited on
Commit
6d02d94
·
1 Parent(s): 04c4f7e

Create app_assessment3

Browse files
Files changed (1) hide show
  1. app_assessment3 +257 -0
app_assessment3 ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #installations
2
+ !pip install gradio
3
+ !pip install transformers
4
+ !pip install torch
5
+
6
+ !pip install PyPDF2
7
+ !pip install pdfminer.six
8
+ !pip install pdfplumber
9
+ !pip install pdf2image
10
+ !pip install Pillow
11
+ !pip install pytesseract
12
+
13
+ !apt-get install poppler-utils
14
+ !apt install tesseract-ocr
15
+ !apt install libtesseract-dev
16
+
17
+
18
+ #imports
19
+ from transformers import pipeline
20
+ import gradio as gr
21
+ import torch
22
+ import PyPDF2
23
+ import pdfplumber
24
+
25
+
26
+
27
+
28
+ #Reading the PDFs and extracting the abstract from my previous code:
29
+
30
+ from pdfminer.high_level import extract_pages, extract_text
31
+ from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
32
+
33
+ from PIL import Image
34
+ from pdf2image import convert_from_path
35
+
36
+ def text_extraction(element):
37
+ # Extracting the text from the in-line text element
38
+ line_text = element.get_text()
39
+
40
+ # Find the formats of the text
41
+ # Initialize the list with all the formats that appeared in the line of text
42
+ line_formats = []
43
+ for text_line in element:
44
+ if isinstance(text_line, LTTextContainer):
45
+ # Iterating through each character in the line of text
46
+ for character in text_line:
47
+ if isinstance(character, LTChar):
48
+ # Append the font name of the character
49
+ line_formats.append(character.fontname)
50
+ # Append the font size of the character
51
+ line_formats.append(character.size)
52
+ # Find the unique font sizes and names in the line
53
+ format_per_line = list(set(line_formats))
54
+
55
+ # Return a tuple with the text in each line along with its format
56
+ return (line_text, format_per_line)
57
+
58
+ # Create a function to crop the image elements from PDFs
59
+ def crop_image(element, pageObj):
60
+ # Get the coordinates to crop the image from the PDF
61
+ [image_left, image_top, image_right, image_bottom] = [element.x0,element.y0,element.x1,element.y1]
62
+ # Crop the page using coordinates (left, bottom, right, top)
63
+ pageObj.mediabox.lower_left = (image_left, image_bottom)
64
+ pageObj.mediabox.upper_right = (image_right, image_top)
65
+ # Save the cropped page to a new PDF
66
+ cropped_pdf_writer = PyPDF2.PdfWriter()
67
+ cropped_pdf_writer.add_page(pageObj)
68
+ # Save the cropped PDF to a new file
69
+ with open('cropped_image.pdf', 'wb') as cropped_pdf_file:
70
+ cropped_pdf_writer.write(cropped_pdf_file)
71
+
72
+ # Create a function to convert the PDF to images
73
+ def convert_to_images(input_file,):
74
+ images = convert_from_path(input_file)
75
+ image = images[0]
76
+ output_file = "PDF_image.png"
77
+ image.save(output_file, "PNG")
78
+
79
+ # Create a function to read text from images
80
+ def image_to_text(image_path):
81
+ # Read the image
82
+ img = Image.open(image_path)
83
+ # Extract the text from the image
84
+ text = pytesseract.image_to_string(img)
85
+ return text
86
+
87
+ # Extracting tables from the page
88
+
89
+ def extract_table(pdf_path, page_num, table_num):
90
+ # Open the pdf file
91
+ pdf = pdfplumber.open(pdf_path)
92
+ # Find the examined page
93
+ table_page = pdf.pages[page_num]
94
+ # Extract the appropriate table
95
+ table = table_page.extract_tables()[table_num]
96
+ return table
97
+
98
+ # Convert table into the appropriate format
99
+ def table_converter(table):
100
+ table_string = ''
101
+ # Iterate through each row of the table
102
+ for row_num in range(len(table)):
103
+ row = table[row_num]
104
+ # Remove the line breaker from the wrapped texts
105
+ cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row]
106
+ # Convert the table into a string
107
+ table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n')
108
+ # Removing the last line break
109
+ table_string = table_string[:-1]
110
+ return table_string
111
+
112
+ def read_pdf(pdf_path):
113
+ # create a PDF file object
114
+ pdfFileObj = open('/content/Article_11', 'rb')
115
+ # create a PDF reader object
116
+ pdfReaded = PyPDF2.PdfReader(pdfFileObj)
117
+
118
+ # Create the dictionary to extract text from each image
119
+ text_per_page = {}
120
+ # We extract the pages from the PDF
121
+ for pagenum, page in enumerate(extract_pages(pdf_path)):
122
+ print("Elaborating Page_" +str(pagenum))
123
+ # Initialize the variables needed for the text extraction from the page
124
+ pageObj = pdfReaded.pages[pagenum]
125
+ page_text = []
126
+ line_format = []
127
+ text_from_images = []
128
+ text_from_tables = []
129
+ page_content = []
130
+ # Initialize the number of the examined tables
131
+ table_num = 0
132
+ first_element= True
133
+ table_extraction_flag= False
134
+ # Open the pdf file
135
+ pdf = pdfplumber.open(pdf_path)
136
+ # Find the examined page
137
+ page_tables = pdf.pages[pagenum]
138
+ # Find the number of tables on the page
139
+ tables = page_tables.find_tables()
140
+
141
+
142
+ # Find all the elements
143
+ page_elements = [(element.y1, element) for element in page._objs]
144
+ # Sort all the elements as they appear in the page
145
+ page_elements.sort(key=lambda a: a[0], reverse=True)
146
+
147
+ # Find the elements that composed a page
148
+ for i,component in enumerate(page_elements):
149
+ # Extract the position of the top side of the element in the PDF
150
+ pos= component[0]
151
+ # Extract the element of the page layout
152
+ element = component[1]
153
+
154
+ # Check if the element is a text element
155
+ if isinstance(element, LTTextContainer):
156
+ # Check if the text appeared in a table
157
+ if table_extraction_flag == False:
158
+ # Use the function to extract the text and format for each text element
159
+ (line_text, format_per_line) = text_extraction(element)
160
+ # Append the text of each line to the page text
161
+ page_text.append(line_text)
162
+ # Append the format for each line containing text
163
+ line_format.append(format_per_line)
164
+ page_content.append(line_text)
165
+ else:
166
+ # Omit the text that appeared in a table
167
+ pass
168
+
169
+ # Check the elements for images
170
+ if isinstance(element, LTFigure):
171
+ # Crop the image from the PDF
172
+ crop_image(element, pageObj)
173
+ # Convert the cropped pdf to an image
174
+ convert_to_images('cropped_image.pdf')
175
+ # Extract the text from the image
176
+ image_text = image_to_text('PDF_image.png')
177
+ text_from_images.append(image_text)
178
+ page_content.append(image_text)
179
+ # Add a placeholder in the text and format lists
180
+ page_text.append('image')
181
+ line_format.append('image')
182
+
183
+ # Check the elements for tables
184
+ if isinstance(element, LTRect):
185
+ # If the first rectangular element
186
+ if first_element == True and (table_num+1) <= len(tables):
187
+ # Find the bounding box of the table
188
+ lower_side = page.bbox[3] - tables[table_num].bbox[3]
189
+ upper_side = element.y1
190
+ # Extract the information from the table
191
+ table = extract_table(pdf_path, pagenum, table_num)
192
+ # Convert the table information in structured string format
193
+ table_string = table_converter(table)
194
+ # Append the table string into a list
195
+ text_from_tables.append(table_string)
196
+ page_content.append(table_string)
197
+ # Set the flag as True to avoid the content again
198
+ table_extraction_flag = True
199
+ # Make it another element
200
+ first_element = False
201
+ # Add a placeholder in the text and format lists
202
+ page_text.append('table')
203
+ line_format.append('table')
204
+
205
+ # Check if we already extracted the tables from the page
206
+ if element.y0 >= lower_side and element.y1 <= upper_side:
207
+ pass
208
+ elif not isinstance(page_elements[i+1][1], LTRect):
209
+ table_extraction_flag = False
210
+ first_element = True
211
+ table_num+=1
212
+
213
+
214
+ # Create the key of the dictionary
215
+ dctkey = 'Page_'+str(pagenum)
216
+ # Add the list of list as the value of the page key
217
+ text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
218
+
219
+ # Closing the pdf file object
220
+ pdfFileObj.close()
221
+
222
+ return text_per_page
223
+
224
+ pdf_path = '/content/Article_11' #paper.pdf
225
+
226
+ text_per_page = read_pdf(pdf_path)
227
+
228
+ text_per_page.keys()
229
+ page_0 = text_per_page['Page_0']
230
+ page_0
231
+
232
+ page_0_clean = [item for sublist in page_0 for item in sublist if isinstance(item, str)]
233
+ for i in range(len(page_0_clean)):
234
+ page_0_clean[i] = page_0_clean[i].replace('\n', ' ').strip()
235
+
236
+
237
+ page_0_clean
238
+
239
+
240
+ def process_pdf(pdf):
241
+
242
+
243
+ def speech(audio):
244
+ sr, y = audio
245
+ y = y.astype(np.float32)
246
+ y /= np.max(np.abs(y))
247
+
248
+ return transcriber({"sampling_rate": sr, "raw": y})["text"]
249
+
250
+
251
+ demo = gr.Interface(
252
+ transcribe,
253
+ gr.Audio(sources=["microphone"]),
254
+ "text",
255
+ )
256
+
257
+ demo.launch()