Update app.py
Browse files
app.py
CHANGED
@@ -8,79 +8,182 @@ from bark import SAMPLE_RATE, generate_audio, preload_models
|
|
8 |
from scipy.io.wavfile import write as write_wav
|
9 |
import torch
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
for lines in file:
|
26 |
lower_lines = lines.lower()
|
27 |
-
if lower_lines.strip()==
|
28 |
found_abstract = True
|
29 |
elif "1" in lower_lines.strip() and intro_string in lower_lines.strip():
|
30 |
found_abstract = False
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
def generate_audio_func(pdf_file):
|
65 |
-
|
66 |
-
pdf_file_path = pdf_file.name
|
67 |
-
# Generate audio from text
|
68 |
-
#call the summarize abstract function
|
69 |
-
text_prompt = summarize_abstract_from_pdf(pdf_file_path)
|
70 |
-
audio_array = generate_audio(text_prompt)
|
71 |
-
|
72 |
-
# Create a temporary WAV file to save the audio
|
73 |
-
with NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav_file:
|
74 |
-
wav_file_path = temp_wav_file.name
|
75 |
-
write_wav(wav_file_path, 22050, (audio_array * 32767).astype(np.int16))
|
76 |
-
return wav_file_path
|
77 |
|
78 |
-
#
|
79 |
input_component = gr.File(file_types=["pdf"])
|
80 |
output_component = gr.Audio()
|
81 |
|
82 |
demo = gr.Interface(
|
83 |
-
fn=
|
84 |
inputs=input_component,
|
85 |
outputs=output_component,
|
86 |
title="Reading your abstract summary outloud",
|
|
|
8 |
from scipy.io.wavfile import write as write_wav
|
9 |
import torch
|
10 |
|
11 |
+
def read_pdf(pdf_path):
|
12 |
+
# create a PDF file object
|
13 |
+
pdfFileObj = open('/content/Article_11', 'rb')
|
14 |
+
# create a PDF reader object
|
15 |
+
pdfReaded = PyPDF2.PdfReader(pdfFileObj)
|
16 |
|
17 |
+
# Create the dictionary to extract text from each image
|
18 |
+
text_per_page = {}
|
19 |
+
# We extract the pages from the PDF
|
20 |
+
for pagenum, page in enumerate(extract_pages(pdf_path)):
|
21 |
+
print("Elaborating Page_" +str(pagenum))
|
22 |
+
# Initialize the variables needed for the text extraction from the page
|
23 |
+
pageObj = pdfReaded.pages[pagenum]
|
24 |
+
page_text = []
|
25 |
+
line_format = []
|
26 |
+
text_from_images = []
|
27 |
+
text_from_tables = []
|
28 |
+
page_content = []
|
29 |
+
# Initialize the number of the examined tables
|
30 |
+
table_num = 0
|
31 |
+
first_element= True
|
32 |
+
table_extraction_flag= False
|
33 |
+
# Open the pdf file
|
34 |
+
pdf = pdfplumber.open(pdf_path)
|
35 |
+
# Find the examined page
|
36 |
+
page_tables = pdf.pages[pagenum]
|
37 |
+
# Find the number of tables on the page
|
38 |
+
tables = page_tables.find_tables()
|
39 |
|
40 |
|
41 |
+
# Find all the elements
|
42 |
+
page_elements = [(element.y1, element) for element in page._objs]
|
43 |
+
# Sort all the elements as they appear in the page
|
44 |
+
page_elements.sort(key=lambda a: a[0], reverse=True)
|
45 |
+
|
46 |
+
# Find the elements that composed a page
|
47 |
+
for i,component in enumerate(page_elements):
|
48 |
+
# Extract the position of the top side of the element in the PDF
|
49 |
+
pos= component[0]
|
50 |
+
# Extract the element of the page layout
|
51 |
+
element = component[1]
|
52 |
+
|
53 |
+
# Check if the element is a text element
|
54 |
+
if isinstance(element, LTTextContainer):
|
55 |
+
# Check if the text appeared in a table
|
56 |
+
if table_extraction_flag == False:
|
57 |
+
# Use the function to extract the text and format for each text element
|
58 |
+
(line_text, format_per_line) = text_extraction(element)
|
59 |
+
# Append the text of each line to the page text
|
60 |
+
page_text.append(line_text)
|
61 |
+
# Append the format for each line containing text
|
62 |
+
line_format.append(format_per_line)
|
63 |
+
page_content.append(line_text)
|
64 |
+
else:
|
65 |
+
# Omit the text that appeared in a table
|
66 |
+
pass
|
67 |
+
|
68 |
+
# Check the elements for images
|
69 |
+
if isinstance(element, LTFigure):
|
70 |
+
# Crop the image from the PDF
|
71 |
+
crop_image(element, pageObj)
|
72 |
+
# Convert the cropped pdf to an image
|
73 |
+
convert_to_images('cropped_image.pdf')
|
74 |
+
# Extract the text from the image
|
75 |
+
image_text = image_to_text('PDF_image.png')
|
76 |
+
text_from_images.append(image_text)
|
77 |
+
page_content.append(image_text)
|
78 |
+
# Add a placeholder in the text and format lists
|
79 |
+
page_text.append('image')
|
80 |
+
line_format.append('image')
|
81 |
+
|
82 |
+
# Check the elements for tables
|
83 |
+
if isinstance(element, LTRect):
|
84 |
+
# If the first rectangular element
|
85 |
+
if first_element == True and (table_num+1) <= len(tables):
|
86 |
+
# Find the bounding box of the table
|
87 |
+
lower_side = page.bbox[3] - tables[table_num].bbox[3]
|
88 |
+
upper_side = element.y1
|
89 |
+
# Extract the information from the table
|
90 |
+
table = extract_table(pdf_path, pagenum, table_num)
|
91 |
+
# Convert the table information in structured string format
|
92 |
+
table_string = table_converter(table)
|
93 |
+
# Append the table string into a list
|
94 |
+
text_from_tables.append(table_string)
|
95 |
+
page_content.append(table_string)
|
96 |
+
# Set the flag as True to avoid the content again
|
97 |
+
table_extraction_flag = True
|
98 |
+
# Make it another element
|
99 |
+
first_element = False
|
100 |
+
# Add a placeholder in the text and format lists
|
101 |
+
page_text.append('table')
|
102 |
+
line_format.append('table')
|
103 |
+
|
104 |
+
# Check if we already extracted the tables from the page
|
105 |
+
if element.y0 >= lower_side and element.y1 <= upper_side:
|
106 |
+
pass
|
107 |
+
elif not isinstance(page_elements[i+1][1], LTRect):
|
108 |
+
table_extraction_flag = False
|
109 |
+
first_element = True
|
110 |
+
table_num+=1
|
111 |
+
|
112 |
+
|
113 |
+
# Create the key of the dictionary
|
114 |
+
dctkey = 'Page_'+str(pagenum)
|
115 |
+
# Add the list of list as the value of the page key
|
116 |
+
text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
|
117 |
+
|
118 |
+
# Closing the pdf file object
|
119 |
+
pdfFileObj.close()
|
120 |
+
|
121 |
+
return text_per_page
|
122 |
+
|
123 |
+
pdf_path = pdf_file.name
|
124 |
+
|
125 |
+
text_per_page = read_pdf(pdf_path)
|
126 |
+
|
127 |
+
page_0 = text_per_page['Page_0']
|
128 |
+
|
129 |
+
page_0_clean = [item for sublist in page_0 for item in sublist if isinstance(item, str)]
|
130 |
+
for i in range(len(page_0_clean)):
|
131 |
+
page_0_clean[i] = page_0_clean[i].replace('\n', ' ').strip()
|
132 |
+
|
133 |
+
#intead of cleaning the exact position as I did in my previous code, since I don't know it, then I try to identify the section of the abstract
|
134 |
+
|
135 |
+
abstract = 'abstract'
|
136 |
+
found_abstract = False
|
137 |
+
intro_string ='introduction'
|
138 |
+
extracted_abstract =""
|
139 |
+
extracted_abstract = extracted_text_string.replace("Abstract", "")
|
140 |
+
|
141 |
+
file = text.splitlines()
|
142 |
for lines in file:
|
143 |
lower_lines = lines.lower()
|
144 |
+
if lower_lines.strip()== abstract:
|
145 |
found_abstract = True
|
146 |
elif "1" in lower_lines.strip() and intro_string in lower_lines.strip():
|
147 |
found_abstract = False
|
148 |
|
149 |
+
#summarizing the abstract
|
150 |
+
|
151 |
+
from transformers import pipeline
|
152 |
+
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
153 |
+
text1 = extracted_abstract
|
154 |
+
print(summarizer(text1, max_length=20, min_length=10, do_sample=False))
|
155 |
+
|
156 |
+
#in here, I try to save it differently, since on my previous code I had copied and pasted the summary and in here I don't know
|
157 |
+
|
158 |
+
sentence = summarized_text[0]['summary_text']
|
159 |
+
|
160 |
+
# generating the audio of the output by using my previous code
|
161 |
+
|
162 |
+
|
163 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
|
164 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
165 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
166 |
+
|
167 |
+
|
168 |
+
text = sentence
|
169 |
+
inputs = processor(text=sentence, return_tensors="pt")
|
170 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
171 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
172 |
+
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
173 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
174 |
+
with torch.no_grad():
|
175 |
+
speech = vocoder(spectrogram)
|
176 |
+
|
177 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
178 |
+
Audio(speech, rate=16000)
|
179 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
# Creating the Gradio app
|
182 |
input_component = gr.File(file_types=["pdf"])
|
183 |
output_component = gr.Audio()
|
184 |
|
185 |
demo = gr.Interface(
|
186 |
+
fn=read_pdf,
|
187 |
inputs=input_component,
|
188 |
outputs=output_component,
|
189 |
title="Reading your abstract summary outloud",
|