Update app.py
Browse files
app.py
CHANGED
@@ -2,206 +2,76 @@
|
|
2 |
|
3 |
# I tried to use my previous code but with some adaptions to any PDF that contains an abstract
|
4 |
|
5 |
-
|
6 |
-
from transformers import pipeline
|
7 |
-
from tempfile import NamedTemporaryFile
|
8 |
import PyPDF2
|
9 |
-
from
|
10 |
-
from
|
11 |
-
import pdfplumber
|
12 |
-
from PIL import Image
|
13 |
-
from pdf2image import convert_from_path
|
14 |
-
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
|
15 |
-
import pytesseract
|
16 |
-
import os
|
17 |
-
import numpy as np
|
18 |
-
import torch
|
19 |
-
import sentencepiece
|
20 |
-
import soundfile as sf
|
21 |
-
from IPython.display import Audio
|
22 |
from datasets import load_dataset
|
|
|
23 |
from transformers import SpeechT5HifiGan
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# Initialize the number of the examined tables
|
44 |
-
table_num = 0
|
45 |
-
first_element= True
|
46 |
-
table_extraction_flag= False
|
47 |
-
# Open the pdf file
|
48 |
-
pdf = pdfplumber.open(pdf_path)
|
49 |
-
# Find the examined page
|
50 |
-
page_tables = pdf.pages[pagenum]
|
51 |
-
# Find the number of tables on the page
|
52 |
-
tables = page_tables.find_tables()
|
53 |
-
|
54 |
-
|
55 |
-
# Find all the elements
|
56 |
-
page_elements = [(element.y1, element) for element in page._objs]
|
57 |
-
# Sort all the elements as they appear in the page
|
58 |
-
page_elements.sort(key=lambda a: a[0], reverse=True)
|
59 |
-
|
60 |
-
# Find the elements that composed a page
|
61 |
-
for i,component in enumerate(page_elements):
|
62 |
-
# Extract the position of the top side of the element in the PDF
|
63 |
-
pos= component[0]
|
64 |
-
# Extract the element of the page layout
|
65 |
-
element = component[1]
|
66 |
-
|
67 |
-
# Check if the element is a text element
|
68 |
-
if isinstance(element, LTTextContainer):
|
69 |
-
# Check if the text appeared in a table
|
70 |
-
if table_extraction_flag == False:
|
71 |
-
# Use the function to extract the text and format for each text element
|
72 |
-
(line_text, format_per_line) = text_extraction(element)
|
73 |
-
# Append the text of each line to the page text
|
74 |
-
page_text.append(line_text)
|
75 |
-
# Append the format for each line containing text
|
76 |
-
line_format.append(format_per_line)
|
77 |
-
page_content.append(line_text)
|
78 |
-
else:
|
79 |
-
# Omit the text that appeared in a table
|
80 |
-
pass
|
81 |
-
|
82 |
-
# Check the elements for images
|
83 |
-
if isinstance(element, LTFigure):
|
84 |
-
# Crop the image from the PDF
|
85 |
-
crop_image(element, pageObj)
|
86 |
-
# Convert the cropped pdf to an image
|
87 |
-
convert_to_images('cropped_image.pdf')
|
88 |
-
# Extract the text from the image
|
89 |
-
image_text = image_to_text('PDF_image.png')
|
90 |
-
text_from_images.append(image_text)
|
91 |
-
page_content.append(image_text)
|
92 |
-
# Add a placeholder in the text and format lists
|
93 |
-
page_text.append('image')
|
94 |
-
line_format.append('image')
|
95 |
-
|
96 |
-
# Check the elements for tables
|
97 |
-
if isinstance(element, LTRect):
|
98 |
-
# If the first rectangular element
|
99 |
-
if first_element == True and (table_num+1) <= len(tables):
|
100 |
-
# Find the bounding box of the table
|
101 |
-
lower_side = page.bbox[3] - tables[table_num].bbox[3]
|
102 |
-
upper_side = element.y1
|
103 |
-
# Extract the information from the table
|
104 |
-
table = extract_table(pdf_path, pagenum, table_num)
|
105 |
-
# Convert the table information in structured string format
|
106 |
-
table_string = table_converter(table)
|
107 |
-
# Append the table string into a list
|
108 |
-
text_from_tables.append(table_string)
|
109 |
-
page_content.append(table_string)
|
110 |
-
# Set the flag as True to avoid the content again
|
111 |
-
table_extraction_flag = True
|
112 |
-
# Make it another element
|
113 |
-
first_element = False
|
114 |
-
# Add a placeholder in the text and format lists
|
115 |
-
page_text.append('table')
|
116 |
-
line_format.append('table')
|
117 |
-
|
118 |
-
# Check if we already extracted the tables from the page
|
119 |
-
if element.y0 >= lower_side and element.y1 <= upper_side:
|
120 |
-
pass
|
121 |
-
elif not isinstance(page_elements[i+1][1], LTRect):
|
122 |
-
table_extraction_flag = False
|
123 |
-
first_element = True
|
124 |
-
table_num+=1
|
125 |
-
|
126 |
-
|
127 |
-
# Create the key of the dictionary
|
128 |
-
dctkey = 'Page_'+str(pagenum)
|
129 |
-
# Add the list of list as the value of the page key
|
130 |
-
text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
|
131 |
-
|
132 |
-
# Closing the pdf file object
|
133 |
-
pdfFileObj.close()
|
134 |
-
|
135 |
-
return text_per_page
|
136 |
-
|
137 |
-
pdf_path = pdf_file.name
|
138 |
-
|
139 |
-
text_per_page = read_pdf(pdf_path)
|
140 |
-
|
141 |
-
page_0 = text_per_page['Page_0']
|
142 |
-
|
143 |
-
page_0_clean = [item for sublist in page_0 for item in sublist if isinstance(item, str)]
|
144 |
-
for i in range(len(page_0_clean)):
|
145 |
-
page_0_clean[i] = page_0_clean[i].replace('\n', ' ').strip()
|
146 |
-
|
147 |
-
#intead of cleaning the exact position as I did in my previous code, since I don't know it, then I try to identify the section of the abstract
|
148 |
|
149 |
-
|
150 |
-
found_abstract = False
|
151 |
-
intro_string ='introduction'
|
152 |
-
extracted_abstract =""
|
153 |
-
extracted_abstract = extracted_text_string.replace("Abstract", "")
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
if lower_lines.strip()== abstract:
|
159 |
-
found_abstract = True
|
160 |
-
elif "1" in lower_lines.strip() and intro_string in lower_lines.strip():
|
161 |
-
found_abstract = False
|
162 |
|
163 |
-
#summarizing the abstract
|
164 |
-
|
165 |
from transformers import pipeline
|
166 |
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
186 |
-
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
187 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
188 |
-
with torch.no_grad():
|
189 |
speech = vocoder(spectrogram)
|
190 |
|
191 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
192 |
Audio(speech, rate=16000)
|
193 |
|
194 |
-
|
195 |
# Creating the Gradio app
|
196 |
input_component = gr.File(file_types=["pdf"])
|
197 |
output_component = gr.Audio()
|
198 |
|
199 |
demo = gr.Interface(
|
200 |
-
fn=
|
201 |
inputs=input_component,
|
202 |
outputs=output_component,
|
203 |
title="Reading your abstract summary outloud",
|
204 |
-
description="Upload a PDF that contains an Abstract. Get your abstract summarized in 1 sentence and read outloud. We only accept with PDfs that contains the section Abstract"
|
205 |
)
|
206 |
|
207 |
demo.launch()
|
|
|
2 |
|
3 |
# I tried to use my previous code but with some adaptions to any PDF that contains an abstract
|
4 |
|
5 |
+
#imports
|
|
|
|
|
6 |
import PyPDF2
|
7 |
+
from transformers import pipeline
|
8 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from datasets import load_dataset
|
10 |
+
import torch
|
11 |
from transformers import SpeechT5HifiGan
|
12 |
+
from gradio import gr
|
13 |
+
import gradio as gr
|
14 |
|
15 |
+
# Now copying my code and adapting it for any PDF
|
16 |
+
def extract_abstract(paper_filename):
|
17 |
+
with open(paper_filename, 'rb') as file:
|
18 |
+
reader = PyPDF2.PdfReader(file)
|
19 |
+
text = reader.pages[0].extract_text()
|
20 |
+
|
21 |
+
# in order to extract the exact part on the first page that is useful to me,
|
22 |
+
# I needed to consider that the papers follow a pattern in which after the Abstract, there is an Introduction
|
23 |
+
# and then cut the text right before the introduction
|
24 |
+
|
25 |
+
abstract_start_index = text.find('Abstract')
|
26 |
+
introduction_start_index = text.find('Introduction')
|
27 |
+
|
28 |
+
if abstract_start_index == -1 or introduction_start_index == -1:
|
29 |
+
return "" # Abstract or introduction section not found
|
30 |
+
|
31 |
+
abstract = text[abstract_start_index + len('Abstract'):introduction_start_index].strip()
|
32 |
+
return abstract
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
return ""
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
paper_filename = '/content/Article_11'
|
37 |
+
abstract_text = extract_abstract(paper_filename)
|
38 |
+
print(abstract_text)
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
40 |
from transformers import pipeline
|
41 |
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
42 |
+
print(summarizer(abstract_text, max_length=25, min_length=10, do_sample=False))
|
43 |
+
|
44 |
+
output = summarizer(abstract_text, max_length=26, min_length=10, do_sample=False)
|
45 |
+
summary = output[0]['summary_text']
|
46 |
+
print(summary)
|
47 |
+
|
48 |
+
# proceeding to the audio function
|
49 |
+
|
50 |
+
def audio(text):
|
51 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
52 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
53 |
+
summary
|
54 |
+
inputs = processor(text=summary, return_tensors="pt")
|
55 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
56 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
57 |
+
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
58 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
59 |
+
with torch.no_grad():
|
|
|
|
|
|
|
|
|
60 |
speech = vocoder(spectrogram)
|
61 |
|
62 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
63 |
Audio(speech, rate=16000)
|
64 |
|
|
|
65 |
# Creating the Gradio app
|
66 |
input_component = gr.File(file_types=["pdf"])
|
67 |
output_component = gr.Audio()
|
68 |
|
69 |
demo = gr.Interface(
|
70 |
+
fn=audio,
|
71 |
inputs=input_component,
|
72 |
outputs=output_component,
|
73 |
title="Reading your abstract summary outloud",
|
74 |
+
description="Upload a PDF that contains an Abstract. Get your abstract summarized in 1 sentence and read outloud. We only accept with PDfs that contains the section Abstract followed by one called Introduction"
|
75 |
)
|
76 |
|
77 |
demo.launch()
|