Spaces:
Running
Running
Update version
Browse files- Update vizro version
- Update app configuration to sync with repo
- Update CSS variable names
- app.py +170 -36
- assets/{images/app.svg → app.svg} +0 -0
- assets/css/custom.css +18 -2
- assets/{images/logo.svg → logo.svg} +0 -0
- requirements.in +2 -1
- requirements.txt +48 -31
app.py
CHANGED
@@ -1,16 +1,17 @@
|
|
1 |
"""Example app to show all features of Vizro."""
|
2 |
|
3 |
from time import sleep
|
4 |
-
from typing import
|
5 |
|
|
|
6 |
import pandas as pd
|
7 |
import plotly.graph_objects as go
|
8 |
import vizro.models as vm
|
9 |
import vizro.plotly.express as px
|
10 |
-
from dash import dash_table,
|
11 |
-
import dash_bootstrap_components as dbc
|
12 |
from vizro import Vizro
|
13 |
from vizro.actions import export_data, filter_interaction
|
|
|
14 |
from vizro.models.types import capture
|
15 |
from vizro.tables import dash_ag_grid, dash_data_table
|
16 |
|
@@ -26,6 +27,70 @@ waterfall_df = pd.DataFrame(
|
|
26 |
"y": [60, 80, 0, -40, -20, 0],
|
27 |
}
|
28 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# HOME ------------------------------------------------------------------------
|
31 |
home = vm.Page(
|
@@ -38,7 +103,7 @@ home = vm.Page(
|
|
38 |
|
39 |
### Components
|
40 |
|
41 |
-
Main components of Vizro include **charts**, **tables**, **cards**, **containers**,
|
42 |
**buttons** and **tabs**.
|
43 |
""",
|
44 |
href="/graphs",
|
@@ -91,35 +156,42 @@ graphs = vm.Page(
|
|
91 |
title="Graphs",
|
92 |
components=[
|
93 |
vm.Graph(
|
94 |
-
figure=px.
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
100 |
],
|
101 |
-
controls=[vm.Filter(column="species", selector=vm.Dropdown(title="Species"))],
|
102 |
)
|
103 |
|
104 |
ag_grid = vm.Page(
|
105 |
title="AG Grid",
|
106 |
components=[
|
107 |
vm.AgGrid(
|
108 |
-
|
|
|
|
|
|
|
109 |
)
|
110 |
],
|
111 |
-
controls=[vm.Filter(column="continent")],
|
112 |
)
|
113 |
|
114 |
table = vm.Page(
|
115 |
title="Table",
|
116 |
components=[
|
117 |
vm.Table(
|
118 |
-
title="Dash DataTable",
|
119 |
figure=dash_data_table(data_frame=gapminder_2007),
|
|
|
|
|
|
|
120 |
)
|
121 |
],
|
122 |
-
controls=[vm.Filter(column="continent")],
|
123 |
)
|
124 |
|
125 |
cards = vm.Page(
|
@@ -181,6 +253,14 @@ cards = vm.Page(
|
|
181 |
],
|
182 |
)
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
button = vm.Page(
|
185 |
title="Button",
|
186 |
layout=vm.Layout(grid=[[0], [0], [0], [0], [1]]),
|
@@ -465,7 +545,7 @@ def scatter_with_line(data_frame, x, y, hline=None, title=None):
|
|
465 |
|
466 |
|
467 |
@capture("graph")
|
468 |
-
def waterfall(data_frame, measure, x, y, text, title=None):
|
469 |
"""Custom waterfall chart based on go."""
|
470 |
fig = go.Figure()
|
471 |
fig.add_traces(
|
@@ -521,15 +601,15 @@ custom_charts = vm.Page(
|
|
521 |
|
522 |
# CUSTOM TABLE ------------------------------------------------------------------
|
523 |
@capture("table")
|
524 |
-
def my_custom_table(data_frame=None, chosen_columns: Optional[
|
525 |
"""Custom table with added logic to filter on chosen columns."""
|
526 |
columns = [{"name": i, "id": i} for i in chosen_columns]
|
527 |
defaults = {
|
528 |
"style_as_list_view": True,
|
529 |
-
"style_data": {"border_bottom": "1px solid var(--border-
|
530 |
"style_header": {
|
531 |
-
"border_bottom": "1px solid var(--
|
532 |
-
"border_top": "1px solid var(--
|
533 |
"height": "32px",
|
534 |
},
|
535 |
}
|
@@ -654,11 +734,51 @@ custom_actions = vm.Page(
|
|
654 |
controls=[vm.Filter(column="species", selector=vm.Dropdown(title="Species"))],
|
655 |
)
|
656 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
657 |
# DASHBOARD -------------------------------------------------------------------
|
658 |
-
components = [graphs, ag_grid, table, cards, button, containers, tabs]
|
659 |
controls = [filters, parameters, selectors]
|
660 |
actions = [export_data_action, chart_interaction]
|
661 |
-
extensions = [custom_charts, custom_tables, custom_components, custom_actions]
|
662 |
|
663 |
dashboard = vm.Dashboard(
|
664 |
title="Vizro Features",
|
@@ -670,10 +790,25 @@ dashboard = vm.Dashboard(
|
|
670 |
vm.NavLink(
|
671 |
label="Features",
|
672 |
pages={
|
673 |
-
"Components": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
674 |
"Controls": ["Filters", "Parameters", "Selectors"],
|
675 |
"Actions": ["Export data", "Chart interaction"],
|
676 |
-
"Extensions": [
|
|
|
|
|
|
|
|
|
|
|
|
|
677 |
},
|
678 |
icon="Library Add",
|
679 |
),
|
@@ -682,17 +817,16 @@ dashboard = vm.Dashboard(
|
|
682 |
),
|
683 |
)
|
684 |
|
685 |
-
app = Vizro().build(dashboard)
|
686 |
-
app.dash.layout.children.append(
|
687 |
-
dbc.NavLink(
|
688 |
-
["Made with ", html.Img(src=get_asset_url("images/logo.svg"), id="banner", alt="Vizro logo"), "vizro"],
|
689 |
-
href="https://github.com/mckinsey/vizro",
|
690 |
-
target="_blank",
|
691 |
-
external_link=True,
|
692 |
-
className="anchor-container",
|
693 |
-
)
|
694 |
-
)
|
695 |
-
server = app.dash.server
|
696 |
|
697 |
-
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
698 |
app.run()
|
|
|
1 |
"""Example app to show all features of Vizro."""
|
2 |
|
3 |
from time import sleep
|
4 |
+
from typing import Literal, Optional
|
5 |
|
6 |
+
import dash_bootstrap_components as dbc
|
7 |
import pandas as pd
|
8 |
import plotly.graph_objects as go
|
9 |
import vizro.models as vm
|
10 |
import vizro.plotly.express as px
|
11 |
+
from dash import dash_table, dcc, get_asset_url, html
|
|
|
12 |
from vizro import Vizro
|
13 |
from vizro.actions import export_data, filter_interaction
|
14 |
+
from vizro.figures import kpi_card, kpi_card_reference
|
15 |
from vizro.models.types import capture
|
16 |
from vizro.tables import dash_ag_grid, dash_data_table
|
17 |
|
|
|
27 |
"y": [60, 80, 0, -40, -20, 0],
|
28 |
}
|
29 |
)
|
30 |
+
custom_fig_df = pd.DataFrame(
|
31 |
+
{
|
32 |
+
"text": [
|
33 |
+
"Lorem ipsum dolor sit amet, consetetur sadipscing no sea elitr sed diam nonumy.",
|
34 |
+
"Sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat.",
|
35 |
+
"Sed diam voluptua. At vero eos et accusam et justo no duo dolores et ea rebum.",
|
36 |
+
"Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.",
|
37 |
+
"Lorem ipsum dolor sit amet, consetetur sadipscing no sea est elitr dolor sit amet.",
|
38 |
+
"Sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat.",
|
39 |
+
]
|
40 |
+
* 2
|
41 |
+
}
|
42 |
+
)
|
43 |
+
|
44 |
+
df_kpi = pd.DataFrame({"Actual": [100, 200, 700], "Reference": [100, 300, 500], "Category": ["A", "B", "C"]})
|
45 |
+
|
46 |
+
example_cards = [
|
47 |
+
kpi_card(data_frame=df_kpi, value_column="Actual", title="KPI with value"),
|
48 |
+
kpi_card(data_frame=df_kpi, value_column="Actual", title="KPI with aggregation", agg_func="median"),
|
49 |
+
kpi_card(
|
50 |
+
data_frame=df_kpi,
|
51 |
+
value_column="Actual",
|
52 |
+
title="KPI with formatting",
|
53 |
+
value_format="${value:.2f}",
|
54 |
+
),
|
55 |
+
kpi_card(
|
56 |
+
data_frame=df_kpi,
|
57 |
+
value_column="Actual",
|
58 |
+
title="KPI with icon",
|
59 |
+
icon="shopping_cart",
|
60 |
+
),
|
61 |
+
]
|
62 |
+
|
63 |
+
example_reference_cards = [
|
64 |
+
kpi_card_reference(
|
65 |
+
data_frame=df_kpi,
|
66 |
+
value_column="Actual",
|
67 |
+
reference_column="Reference",
|
68 |
+
title="KPI reference (pos)",
|
69 |
+
),
|
70 |
+
kpi_card_reference(
|
71 |
+
data_frame=df_kpi,
|
72 |
+
value_column="Actual",
|
73 |
+
reference_column="Reference",
|
74 |
+
agg_func="median",
|
75 |
+
title="KPI reference (neg)",
|
76 |
+
),
|
77 |
+
kpi_card_reference(
|
78 |
+
data_frame=df_kpi,
|
79 |
+
value_column="Actual",
|
80 |
+
reference_column="Reference",
|
81 |
+
title="KPI reference with formatting",
|
82 |
+
value_format="{value:.2f}$",
|
83 |
+
reference_format="{delta:.2f}$ vs. last year ({reference:.2f}$)",
|
84 |
+
),
|
85 |
+
kpi_card_reference(
|
86 |
+
data_frame=df_kpi,
|
87 |
+
value_column="Actual",
|
88 |
+
reference_column="Reference",
|
89 |
+
title="KPI reference with icon",
|
90 |
+
icon="shopping_cart",
|
91 |
+
),
|
92 |
+
]
|
93 |
+
|
94 |
|
95 |
# HOME ------------------------------------------------------------------------
|
96 |
home = vm.Page(
|
|
|
103 |
|
104 |
### Components
|
105 |
|
106 |
+
Main components of Vizro include **charts**, **tables**, **cards**, **figures**, **containers**,
|
107 |
**buttons** and **tabs**.
|
108 |
""",
|
109 |
href="/graphs",
|
|
|
156 |
title="Graphs",
|
157 |
components=[
|
158 |
vm.Graph(
|
159 |
+
figure=px.scatter(iris, x="sepal_width", y="sepal_length", color="species"),
|
160 |
+
title="Relationships between Sepal Width and Sepal Length",
|
161 |
+
header="""
|
162 |
+
Each point in the scatter plot represents one of the 150 iris flowers, with colors indicating their
|
163 |
+
types. The Setosa type is easily identifiable by its short and wide sepals.
|
164 |
+
|
165 |
+
However, there is still overlap between the Versicolor and Virginica types when considering only sepal
|
166 |
+
width and length.
|
167 |
+
""",
|
168 |
+
footer="""SOURCE: **Plotly iris data set, 2024**""",
|
169 |
+
),
|
170 |
],
|
|
|
171 |
)
|
172 |
|
173 |
ag_grid = vm.Page(
|
174 |
title="AG Grid",
|
175 |
components=[
|
176 |
vm.AgGrid(
|
177 |
+
figure=dash_ag_grid(data_frame=gapminder_2007, dashGridOptions={"pagination": True}),
|
178 |
+
title="Gapminder Data Insights",
|
179 |
+
header="""#### An Interactive Exploration of Global Health, Wealth, and Population""",
|
180 |
+
footer="""SOURCE: **Plotly gapminder data set, 2024**""",
|
181 |
)
|
182 |
],
|
|
|
183 |
)
|
184 |
|
185 |
table = vm.Page(
|
186 |
title="Table",
|
187 |
components=[
|
188 |
vm.Table(
|
|
|
189 |
figure=dash_data_table(data_frame=gapminder_2007),
|
190 |
+
title="Gapminder Data Insights",
|
191 |
+
header="""#### An Interactive Exploration of Global Health, Wealth, and Population""",
|
192 |
+
footer="""SOURCE: **Plotly gapminder data set, 2024**""",
|
193 |
)
|
194 |
],
|
|
|
195 |
)
|
196 |
|
197 |
cards = vm.Page(
|
|
|
253 |
],
|
254 |
)
|
255 |
|
256 |
+
figure = vm.Page(
|
257 |
+
title="Figure",
|
258 |
+
layout=vm.Layout(grid=[[0, 1, 2, 3], [4, 5, 6, 7], [-1, -1, -1, -1], [-1, -1, -1, -1]]),
|
259 |
+
components=[vm.Figure(figure=figure) for figure in example_cards + example_reference_cards],
|
260 |
+
controls=[vm.Filter(column="Category")],
|
261 |
+
)
|
262 |
+
|
263 |
+
|
264 |
button = vm.Page(
|
265 |
title="Button",
|
266 |
layout=vm.Layout(grid=[[0], [0], [0], [0], [1]]),
|
|
|
545 |
|
546 |
|
547 |
@capture("graph")
|
548 |
+
def waterfall(data_frame, measure, x, y, text, title=None):
|
549 |
"""Custom waterfall chart based on go."""
|
550 |
fig = go.Figure()
|
551 |
fig.add_traces(
|
|
|
601 |
|
602 |
# CUSTOM TABLE ------------------------------------------------------------------
|
603 |
@capture("table")
|
604 |
+
def my_custom_table(data_frame=None, chosen_columns: Optional[list[str]] = None):
|
605 |
"""Custom table with added logic to filter on chosen columns."""
|
606 |
columns = [{"name": i, "id": i} for i in chosen_columns]
|
607 |
defaults = {
|
608 |
"style_as_list_view": True,
|
609 |
+
"style_data": {"border_bottom": "1px solid var(--border-subtleAlpha01)", "height": "40px"},
|
610 |
"style_header": {
|
611 |
+
"border_bottom": "1px solid var(--stateOverlays-selectedHover)",
|
612 |
+
"border_top": "1px solid var(--right-side-bg)",
|
613 |
"height": "32px",
|
614 |
},
|
615 |
}
|
|
|
734 |
controls=[vm.Filter(column="species", selector=vm.Dropdown(title="Species"))],
|
735 |
)
|
736 |
|
737 |
+
|
738 |
+
# CUSTOM FIGURE ----------------------------------------------------------------
|
739 |
+
@capture("figure") # (1)!
|
740 |
+
def multiple_cards(data_frame: pd.DataFrame, n_rows: Optional[int] = 1) -> html.Div:
|
741 |
+
"""Creates a list with a variable number of `vm.Card` components from the provided data_frame.
|
742 |
+
|
743 |
+
Args:
|
744 |
+
data_frame: Data frame containing the data.
|
745 |
+
n_rows: Number of rows to use from the data_frame. Defaults to 1.
|
746 |
+
|
747 |
+
Returns:
|
748 |
+
html.Div with a list of dbc.Card objects generated from the data.
|
749 |
+
|
750 |
+
"""
|
751 |
+
texts = data_frame.head(n_rows)["text"]
|
752 |
+
return html.Div(
|
753 |
+
[dbc.Card(dcc.Markdown(f"### Card #{i}\n{text}")) for i, text in enumerate(texts, 1)],
|
754 |
+
className="multiple-cards-container",
|
755 |
+
)
|
756 |
+
|
757 |
+
|
758 |
+
custom_figures = vm.Page(
|
759 |
+
title="Custom Figures",
|
760 |
+
components=[vm.Figure(id="my-figure", figure=multiple_cards(data_frame=custom_fig_df))],
|
761 |
+
controls=[
|
762 |
+
vm.Parameter(
|
763 |
+
targets=["my-figure.n_rows"],
|
764 |
+
selector=vm.Slider(min=2, max=12, step=2, value=8, title="Number of cards to display"),
|
765 |
+
),
|
766 |
+
],
|
767 |
+
)
|
768 |
+
|
769 |
+
kpi_indicators = vm.Page(
|
770 |
+
title="KPI Indicators",
|
771 |
+
layout=vm.Layout(grid=[[0, 1, 2, 3], [4, 5, 6, 7], [-1, -1, -1, -1], [-1, -1, -1, -1]]),
|
772 |
+
components=[vm.Figure(figure=figure) for figure in example_cards + example_reference_cards],
|
773 |
+
controls=[vm.Filter(column="Category")],
|
774 |
+
)
|
775 |
+
|
776 |
+
|
777 |
# DASHBOARD -------------------------------------------------------------------
|
778 |
+
components = [graphs, ag_grid, table, cards, figure, button, containers, tabs]
|
779 |
controls = [filters, parameters, selectors]
|
780 |
actions = [export_data_action, chart_interaction]
|
781 |
+
extensions = [custom_charts, custom_tables, custom_components, custom_actions, custom_figures]
|
782 |
|
783 |
dashboard = vm.Dashboard(
|
784 |
title="Vizro Features",
|
|
|
790 |
vm.NavLink(
|
791 |
label="Features",
|
792 |
pages={
|
793 |
+
"Components": [
|
794 |
+
"Graphs",
|
795 |
+
"AG Grid",
|
796 |
+
"Table",
|
797 |
+
"Cards",
|
798 |
+
"Figure",
|
799 |
+
"Button",
|
800 |
+
"Containers",
|
801 |
+
"Tabs",
|
802 |
+
],
|
803 |
"Controls": ["Filters", "Parameters", "Selectors"],
|
804 |
"Actions": ["Export data", "Chart interaction"],
|
805 |
+
"Extensions": [
|
806 |
+
"Custom Charts",
|
807 |
+
"Custom Tables",
|
808 |
+
"Custom Components",
|
809 |
+
"Custom Actions",
|
810 |
+
"Custom Figures",
|
811 |
+
],
|
812 |
},
|
813 |
icon="Library Add",
|
814 |
),
|
|
|
817 |
),
|
818 |
)
|
819 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
820 |
|
821 |
+
if __name__ == "__main__":
|
822 |
+
app = Vizro().build(dashboard)
|
823 |
+
app.dash.layout.children.append(
|
824 |
+
dbc.NavLink(
|
825 |
+
["Made with ", html.Img(src=get_asset_url("logo.svg"), id="banner", alt="Vizro logo"), "vizro"],
|
826 |
+
href="https://github.com/mckinsey/vizro",
|
827 |
+
target="_blank",
|
828 |
+
className="anchor-container",
|
829 |
+
)
|
830 |
+
)
|
831 |
+
server = app.dash.server
|
832 |
app.run()
|
assets/{images/app.svg → app.svg}
RENAMED
File without changes
|
assets/css/custom.css
CHANGED
@@ -2,12 +2,28 @@
|
|
2 |
padding-left: 8px;
|
3 |
}
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
.anchor-container {
|
6 |
align-items: center;
|
7 |
background: var(--text-primary);
|
8 |
border-top-left-radius: 8px;
|
9 |
bottom: 0;
|
10 |
-
color: var(--text-
|
11 |
display: flex;
|
12 |
font-size: 0.8rem;
|
13 |
font-weight: 500;
|
@@ -20,7 +36,7 @@
|
|
20 |
.anchor-container:focus,
|
21 |
.anchor-container:hover {
|
22 |
background: var(--text-secondary);
|
23 |
-
color: var(--text-
|
24 |
}
|
25 |
|
26 |
img#banner {
|
|
|
2 |
padding-left: 8px;
|
3 |
}
|
4 |
|
5 |
+
#my-figure .multiple-cards-container {
|
6 |
+
display: flex;
|
7 |
+
flex-wrap: wrap;
|
8 |
+
gap: 12px;
|
9 |
+
}
|
10 |
+
|
11 |
+
#my-figure.figure-container {
|
12 |
+
height: unset;
|
13 |
+
width: unset;
|
14 |
+
}
|
15 |
+
|
16 |
+
#my-figure.figure-container .card {
|
17 |
+
height: 210px;
|
18 |
+
width: 240px;
|
19 |
+
}
|
20 |
+
|
21 |
.anchor-container {
|
22 |
align-items: center;
|
23 |
background: var(--text-primary);
|
24 |
border-top-left-radius: 8px;
|
25 |
bottom: 0;
|
26 |
+
color: var(--text-primary-inverted);
|
27 |
display: flex;
|
28 |
font-size: 0.8rem;
|
29 |
font-weight: 500;
|
|
|
36 |
.anchor-container:focus,
|
37 |
.anchor-container:hover {
|
38 |
background: var(--text-secondary);
|
39 |
+
color: var(--text-primary-inverted);
|
40 |
}
|
41 |
|
42 |
img#banner {
|
assets/{images/logo.svg → logo.svg}
RENAMED
File without changes
|
requirements.in
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
gunicorn
|
2 |
openpyxl
|
3 |
-
vizro
|
|
|
1 |
+
# This file is only used if you don't have hatch installed.
|
2 |
gunicorn
|
3 |
openpyxl
|
4 |
+
vizro==0.1.28
|
requirements.txt
CHANGED
@@ -2,17 +2,23 @@
|
|
2 |
# uv pip compile requirements.in -o requirements.txt
|
3 |
annotated-types==0.7.0
|
4 |
# via pydantic
|
|
|
|
|
|
|
|
|
5 |
blinker==1.8.2
|
6 |
# via flask
|
7 |
cachelib==0.9.0
|
8 |
# via flask-caching
|
9 |
-
certifi==2024.
|
10 |
# via requests
|
11 |
-
charset-normalizer==3.
|
12 |
# via requests
|
13 |
click==8.1.7
|
14 |
-
# via
|
15 |
-
|
|
|
|
|
16 |
# via
|
17 |
# dash-ag-grid
|
18 |
# dash-bootstrap-components
|
@@ -29,7 +35,7 @@ dash-mantine-components==0.12.1
|
|
29 |
# via vizro
|
30 |
dash-table==5.0.0
|
31 |
# via dash
|
32 |
-
et-xmlfile==
|
33 |
# via openpyxl
|
34 |
flask==3.0.3
|
35 |
# via
|
@@ -39,75 +45,86 @@ flask-caching==2.3.0
|
|
39 |
# via vizro
|
40 |
gunicorn==23.0.0
|
41 |
# via -r requirements.in
|
42 |
-
idna==3.
|
43 |
# via requests
|
44 |
-
importlib-metadata==8.
|
45 |
-
# via
|
|
|
|
|
46 |
itsdangerous==2.2.0
|
47 |
# via flask
|
48 |
jinja2==3.1.4
|
49 |
# via flask
|
50 |
-
markupsafe==
|
51 |
# via
|
52 |
# jinja2
|
53 |
# werkzeug
|
|
|
|
|
54 |
nest-asyncio==1.6.0
|
55 |
# via dash
|
56 |
-
numpy==2.
|
57 |
-
# via
|
58 |
-
# pandas
|
59 |
-
# vizro
|
60 |
openpyxl==3.1.5
|
61 |
# via -r requirements.in
|
62 |
packaging==24.1
|
63 |
# via
|
|
|
64 |
# gunicorn
|
65 |
# plotly
|
66 |
-
pandas==2.2.
|
67 |
# via vizro
|
68 |
-
|
69 |
-
# via
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# via vizro
|
72 |
-
pydantic-core==2.
|
73 |
# via pydantic
|
|
|
|
|
74 |
python-dateutil==2.9.0.post0
|
75 |
# via pandas
|
76 |
-
pytz==2024.
|
77 |
# via pandas
|
78 |
requests==2.32.3
|
79 |
# via dash
|
80 |
retrying==1.3.4
|
81 |
# via dash
|
82 |
-
|
83 |
-
# via
|
84 |
-
setuptools==73.0.1
|
85 |
-
# via
|
86 |
-
# dash
|
87 |
-
# vizro
|
88 |
six==1.16.0
|
89 |
# via
|
90 |
# python-dateutil
|
91 |
# retrying
|
92 |
tenacity==9.0.0
|
93 |
# via plotly
|
|
|
|
|
|
|
|
|
94 |
typing-extensions==4.12.2
|
95 |
# via
|
|
|
96 |
# dash
|
97 |
# pydantic
|
98 |
# pydantic-core
|
99 |
-
tzdata==2024.
|
100 |
# via pandas
|
101 |
-
urllib3==2.2.
|
102 |
# via requests
|
103 |
-
vizro==0.1.
|
104 |
# via -r requirements.in
|
105 |
-
werkzeug==3.0.
|
106 |
# via
|
107 |
# dash
|
108 |
# flask
|
109 |
-
# vizro
|
110 |
wrapt==1.16.0
|
111 |
# via vizro
|
112 |
-
zipp==3.20.
|
113 |
# via importlib-metadata
|
|
|
2 |
# uv pip compile requirements.in -o requirements.txt
|
3 |
annotated-types==0.7.0
|
4 |
# via pydantic
|
5 |
+
autoflake==2.3.1
|
6 |
+
# via vizro
|
7 |
+
black==24.4.2
|
8 |
+
# via vizro
|
9 |
blinker==1.8.2
|
10 |
# via flask
|
11 |
cachelib==0.9.0
|
12 |
# via flask-caching
|
13 |
+
certifi==2024.8.30
|
14 |
# via requests
|
15 |
+
charset-normalizer==3.4.0
|
16 |
# via requests
|
17 |
click==8.1.7
|
18 |
+
# via
|
19 |
+
# black
|
20 |
+
# flask
|
21 |
+
dash==2.18.1
|
22 |
# via
|
23 |
# dash-ag-grid
|
24 |
# dash-bootstrap-components
|
|
|
35 |
# via vizro
|
36 |
dash-table==5.0.0
|
37 |
# via dash
|
38 |
+
et-xmlfile==2.0.0
|
39 |
# via openpyxl
|
40 |
flask==3.0.3
|
41 |
# via
|
|
|
45 |
# via vizro
|
46 |
gunicorn==23.0.0
|
47 |
# via -r requirements.in
|
48 |
+
idna==3.10
|
49 |
# via requests
|
50 |
+
importlib-metadata==8.5.0
|
51 |
+
# via
|
52 |
+
# dash
|
53 |
+
# flask
|
54 |
itsdangerous==2.2.0
|
55 |
# via flask
|
56 |
jinja2==3.1.4
|
57 |
# via flask
|
58 |
+
markupsafe==3.0.2
|
59 |
# via
|
60 |
# jinja2
|
61 |
# werkzeug
|
62 |
+
mypy-extensions==1.0.0
|
63 |
+
# via black
|
64 |
nest-asyncio==1.6.0
|
65 |
# via dash
|
66 |
+
numpy==2.0.2
|
67 |
+
# via pandas
|
|
|
|
|
68 |
openpyxl==3.1.5
|
69 |
# via -r requirements.in
|
70 |
packaging==24.1
|
71 |
# via
|
72 |
+
# black
|
73 |
# gunicorn
|
74 |
# plotly
|
75 |
+
pandas==2.2.3
|
76 |
# via vizro
|
77 |
+
pathspec==0.12.1
|
78 |
+
# via black
|
79 |
+
platformdirs==4.2.2
|
80 |
+
# via black
|
81 |
+
plotly==5.24.1
|
82 |
+
# via
|
83 |
+
# dash
|
84 |
+
# vizro
|
85 |
+
pydantic==2.9.2
|
86 |
# via vizro
|
87 |
+
pydantic-core==2.23.4
|
88 |
# via pydantic
|
89 |
+
pyflakes==3.2.0
|
90 |
+
# via autoflake
|
91 |
python-dateutil==2.9.0.post0
|
92 |
# via pandas
|
93 |
+
pytz==2024.2
|
94 |
# via pandas
|
95 |
requests==2.32.3
|
96 |
# via dash
|
97 |
retrying==1.3.4
|
98 |
# via dash
|
99 |
+
setuptools==75.3.0
|
100 |
+
# via dash
|
|
|
|
|
|
|
|
|
101 |
six==1.16.0
|
102 |
# via
|
103 |
# python-dateutil
|
104 |
# retrying
|
105 |
tenacity==9.0.0
|
106 |
# via plotly
|
107 |
+
tomli==2.1.0
|
108 |
+
# via
|
109 |
+
# autoflake
|
110 |
+
# black
|
111 |
typing-extensions==4.12.2
|
112 |
# via
|
113 |
+
# black
|
114 |
# dash
|
115 |
# pydantic
|
116 |
# pydantic-core
|
117 |
+
tzdata==2024.2
|
118 |
# via pandas
|
119 |
+
urllib3==2.2.3
|
120 |
# via requests
|
121 |
+
vizro==0.1.28
|
122 |
# via -r requirements.in
|
123 |
+
werkzeug==3.0.6
|
124 |
# via
|
125 |
# dash
|
126 |
# flask
|
|
|
127 |
wrapt==1.16.0
|
128 |
# via vizro
|
129 |
+
zipp==3.20.2
|
130 |
# via importlib-metadata
|