li-nguyen commited on
Commit
2465927
Β·
1 Parent(s): 235787d

Bring over recent changes

Browse files
README.md CHANGED
@@ -47,73 +47,75 @@ Credits and sources:
47
 
48
  The dashboard is still in development. Below is an overview of the chart types for which a completed page is available.
49
 
50
- | Chart Type | Status | Category | Credits & sources | API |
51
- | --------------------- | ------ | ------------------------ | ------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
52
- | Arc | ❌ | Part-to-whole | | |
53
- | Area | βœ… | Time | [Filled area plot with px](https://plotly.com/python/filled-area-plots/) | [px.area](https://plotly.com/python-api-reference/generated/plotly.express.area) |
54
- | Bar | βœ… | Magnitude | [Bar chart with px](https://plotly.com/python/bar-charts/) | [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar) |
55
- | Barcode | ❌ | Distribution | | |
56
- | Beeswarm | ❌ | Distribution | | |
57
- | Boxplot | βœ… | Distribution | [Box plot with px](https://plotly.com/python/box-plots/) | [px.box](https://plotly.github.io/plotly.py-docs/generated/plotly.express.box) |
58
- | Bubble | βœ… | Correlation | [Scatter plot with px](https://plotly.com/python/line-and-scatter/) | [px.scatter](https://plotly.com/python-api-reference/generated/plotly.express.scatter) |
59
- | Bubble map | βœ… | Spatial | [Bubble map in px](https://plotly.com/python/bubble-maps/) | [px.scatter_map](https://plotly.github.io/plotly.py-docs/generated/plotly.express.scatter_map) |
60
- | Bubble timeline | ❌ | Time | | |
61
- | Bullet | ❌ | Magnitude | | |
62
- | Bump | ❌ | Ranking | | |
63
- | Butterfly | βœ… | Deviation, Distribution | [Pyramid charts in Plotly](https://plotly.com/python/v3/population-pyramid-charts/) | [go.Bar](https://plotly.com/python-api-reference/generated/plotly.graph_objects.Bar.html) |
64
- | Chord | ❌ | Flow | | |
65
- | Choropleth | βœ… | Spatial | [Choropleth map with px](https://plotly.com/python/choropleth-maps/) | [px.choropleth](https://plotly.github.io/plotly.py-docs/generated/plotly.express.choropleth.html) |
66
- | Column | βœ… | Magnitude, Time | [Bar chart with px](https://plotly.com/python/bar-charts/) | [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar.html) |
67
- | Column and line | βœ… | Correlation, Time | [Multiple chart types in Plotly](https://plotly.com/python/graphing-multiple-chart-types/) | [go.Bar](https://plotly.com/python-api-reference/generated/plotly.graph_objects.Bar.html) and [go.Scatter](https://plotly.com/python-api-reference/generated/plotly.graph_objects.Scatter.html) |
68
- | Connected scatter | βœ… | Correlation, Time | [Line plot with px](https://plotly.com/python/line-charts/) | [px.line](https://plotly.com/python-api-reference/generated/plotly.express.line) |
69
- | Cumulative curve | ❌ | Distribution | | |
70
- | Diverging bar | ❌ | Deviation | | |
71
- | Diverging stacked bar | ❌ | Deviation | | |
72
- | Donut | βœ… | Part-to-whole | [Pie chart with px](https://plotly.com/python/pie-charts/) | [px.pie](https://plotly.com/python-api-reference/generated/plotly.express.pie) |
73
- | Dot map | βœ… | Spatial | [Bubble map in px](https://plotly.com/python/bubble-maps/) | [px.scatter_map](https://plotly.github.io/plotly.py-docs/generated/plotly.express.scatter_map) |
74
- | Dot plot | ❌ | Distribution | | |
75
- | Fan | ❌ | Time | | |
76
- | Flow map | ❌ | Spatial | | |
77
- | Funnel | βœ… | Part-to-whole | [Funnel plot with px](https://plotly.com/python/funnel-charts/) | [px.funnel](https://plotly.com/python/funnel-charts/) |
78
- | Gantt | ❌ | Time | | |
79
- | Gridplot | ❌ | Part-to-whole | | |
80
- | Heatmap | βœ… | Time | [Heatmaps with px](https://plotly.com/python/heatmaps/) | [px.density_heatmap](https://plotly.com/python-api-reference/generated/plotly.express.density_heatmap.html) |
81
- | Correlation matrix | ❌ | Correlation | | |
82
- | Histogram | βœ… | Distribution | [Histograms with px](https://plotly.com/python/histograms/) | [px.histogram](https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram) |
83
- | Line | βœ… | Time | [Line plot with px](https://plotly.com/python/line-charts/) | [px.line](https://plotly.com/python-api-reference/generated/plotly.express.line) |
84
- | Lollipop | ❌ | Ranking, Magnitude | | |
85
- | Marimekko | ❌ | Magnitude, Part-to-whole | | |
86
- | Network | ❌ | Flow | | |
87
- | Ordered bar | βœ… | Ranking | [Bar chart with px](https://plotly.com/python/bar-charts/) | [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar.html) |
88
- | Ordered bubble | ❌ | Ranking | | |
89
- | Ordered column | βœ… | Ranking | [Bar chart with px](https://plotly.com/python/bar-charts/) | [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar.html) |
90
- | Paired bar | βœ… | Magnitude | [Histograms with px](https://plotly.com/python/histograms/) | [px.histogram](https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram) |
91
- | Paired column | βœ… | Magnitude | [Histograms with px](https://plotly.com/python/histograms/) | [px.histogram](https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram) |
92
- | Parallel coordinates | βœ… | Magnitude | [Parallel coordinates plot with px](https://plotly.com/python/parallel-coordinates-plot/) | [px.parallel_coordinates](https://plotly.com/python-api-reference/generated/plotly.express.parallel_coordinates.html) |
93
- | Pictogram | ❌ | Magnitude | | |
94
- | Pie | βœ… | Part-to-whole | [Pie chart with px](https://plotly.com/python/pie-charts/) | [px.pie](https://plotly.com/python-api-reference/generated/plotly.express.pie) |
95
- | Radar | ❌ | Magnitude | | |
96
- | Radial | ❌ | Magnitude | | |
97
- | Sankey | βœ… | Flow | [Sankey diagram in Plotly](https://plotly.com/python/sankey-diagram/) | [go.Sankey](https://plotly.github.io/plotly.py-docs/generated/plotly.graph_objects.Sankey.html) |
98
- | Scatter | βœ… | Correlation | [Scatter plot with px](https://plotly.com/python/line-and-scatter/) | [px.scatter](https://plotly.com/python-api-reference/generated/plotly.express.scatter) |
99
- | Scatter matrix | βœ… | Correlation | [Scatter matrix with px](https://plotly.com/python/splom/) | [px.scatter_matrix](https://plotly.github.io/plotly.py-docs/generated/plotly.express.scatter_matrix.html) |
100
- | Slope | ❌ | Ranking, Time | | |
101
- | Sparkline | ❌ | Time | | |
102
- | Stacked bar | βœ… | Part-to-whole | [Histograms with px](https://plotly.com/python/histograms/) | [px.histogram](https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram) |
103
- | Stacked column | βœ… | Part-to-whole | [Histograms with px](https://plotly.com/python/histograms/) | [px.histogram](https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram) |
104
- | Stepped line | βœ… | Time | [Line plot with px](https://plotly.com/python/line-charts/) | [px.line](https://plotly.com/python-api-reference/generated/plotly.express.line) |
105
- | Surplus deficit line | ❌ | Deviation | | |
106
- | Treemap | βœ… | Part-to-whole | [Treemap with px](https://plotly.com/python/treemaps/) | [px.treemap](https://plotly.com/python-api-reference/generated/plotly.express.treemap.html) |
107
- | Venn | ❌ | Part-to-whole | | |
108
- | Violin | βœ… | Distribution | [Violin plot with px](https://plotly.com/python/violin/) | [px.violin](https://plotly.com/python-api-reference/generated/plotly.express.violin.html) |
109
- | Waterfall | ❌ | Part-to-whole, Flow | | |
 
 
110
 
111
  ## How to contribute
112
 
113
  Contributions are welcome! To contribute a chart, follow the steps below:
114
 
115
  1. Check that a `svg` file named after the chart type is contained in the [assets](https://github.com/mckinsey/vizro/tree/main/vizro-core/examples/visual-vocabulary/assets/images/charts) folder. If not, [raise an issue](https://github.com/mckinsey/vizro/issues) in the repository.
116
- 2. Add the data set to `_pages_utils.py` if it doesn't already exist. Use existing data sets preferably or any other data set that is publicly available e.g. [plotlx.express.data](https://plotly.com/python-api-reference/generated/plotly.express.data.html)
117
  3. Create a new page for the chart type and add it to the relevant category `.py` file such as `correlation.py`,
118
  `deviation.py`, `distribution.py`, etc. Ensure you add the page to the list of `pages` at the end of the `.py` file.
119
  4. Add a `.py` file containing a code example of the chart type in the `pages/examples` folder, for instance, `area.py`. Take a look at existing examples.
@@ -122,6 +124,5 @@ Contributions are welcome! To contribute a chart, follow the steps below:
122
 
123
  ## How to run the example locally
124
 
125
- 1. If you have `hatch` set up, run the example with the command `hatch run example visual-vocabulary`.
126
- Otherwise, with a virtual Python environment activated, run `pip install -r requirements.txt` and then `python app.py`.
127
  2. You should now be able to access the app locally via http://127.0.0.1:8050/.
 
47
 
48
  The dashboard is still in development. Below is an overview of the chart types for which a completed page is available.
49
 
50
+ Sure, here's the table with all columns aligned for better readability:
51
+
52
+ | Chart Type | Status | Category | Credits & sources | API |
53
+ | --------------------- | ------ | ------------------------ | ------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
54
+ | Arc | ❌ | Part-to-whole | | |
55
+ | Area | βœ… | Time | [Filled area plot with px](https://plotly.com/python/filled-area-plots/) | [px.area](https://plotly.com/python-api-reference/generated/plotly.express.area) |
56
+ | Bar | βœ… | Magnitude | [Bar chart with px](https://plotly.com/python/bar-charts/) | [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar) |
57
+ | Barcode | ❌ | Distribution | | |
58
+ | Beeswarm | ❌ | Distribution | | |
59
+ | Boxplot | βœ… | Distribution | [Box plot with px](https://plotly.com/python/box-plots/) | [px.box](https://plotly.github.io/plotly.py-docs/generated/plotly.express.box) |
60
+ | Bubble | βœ… | Correlation | [Scatter plot with px](https://plotly.com/python/line-and-scatter/) | [px.scatter](https://plotly.com/python-api-reference/generated/plotly.express.scatter) |
61
+ | Bubble map | βœ… | Spatial | [Bubble map in px](https://plotly.com/python/bubble-maps/) | [px.scatter_map](https://plotly.github.io/plotly.py-docs/generated/plotly.express.scatter_map) |
62
+ | Bubble timeline | ❌ | Time | | |
63
+ | Bullet | ❌ | Magnitude | | |
64
+ | Bump | ❌ | Ranking | | |
65
+ | Butterfly | βœ… | Deviation, Distribution | [Pyramid charts in Plotly](https://plotly.com/python/v3/population-pyramid-charts/) | [go.Bar](https://plotly.com/python-api-reference/generated/plotly.graph_objects.Bar.html) |
66
+ | Chord | ❌ | Flow | | |
67
+ | Choropleth | βœ… | Spatial | [Choropleth map with px](https://plotly.com/python/choropleth-maps/) | [px.choropleth](https://plotly.github.io/plotly.py-docs/generated/plotly.express.choropleth.html) |
68
+ | Column | βœ… | Magnitude, Time | [Bar chart with px](https://plotly.com/python/bar-charts/) | [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar.html) |
69
+ | Column and line | βœ… | Correlation, Time | [Multiple chart types in Plotly](https://plotly.com/python/graphing-multiple-chart-types/) | [go.Bar](https://plotly.com/python-api-reference/generated/plotly.graph_objects.Bar.html) and [go.Scatter](https://plotly.com/python-api-reference/generated/plotly.graph_objects.Scatter.html) |
70
+ | Connected scatter | βœ… | Correlation, Time | [Line plot with px](https://plotly.com/python/line-charts/) | [px.line](https://plotly.com/python-api-reference/generated/plotly.express.line) |
71
+ | Cumulative curve | ❌ | Distribution | | |
72
+ | Diverging bar | βœ… | Deviation | [Bar chart with px](https://plotly.com/python/bar-charts/) | [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar) |
73
+ | Diverging stacked bar | ❌ | Deviation | | |
74
+ | Donut | βœ… | Part-to-whole | [Pie chart with px](https://plotly.com/python/pie-charts/) | [px.pie](https://plotly.com/python-api-reference/generated/plotly.express.pie) |
75
+ | Dot map | βœ… | Spatial | [Bubble map in px](https://plotly.com/python/bubble-maps/) | [px.scatter_map](https://plotly.github.io/plotly.py-docs/generated/plotly.express.scatter_map) |
76
+ | Dumbbell | βœ… | Distribution | [Dumbbell plots in Plotly](https://community.plotly.com/t/how-to-make-dumbbell-plots-in-plotly-python/47762) | [px.scatter](https://plotly.com/python-api-reference/generated/plotly.express.scatter.html) and [add_shape](https://plotly.com/python/shapes/) |
77
+ | Fan | ❌ | Time | | |
78
+ | Flow map | ❌ | Spatial | | |
79
+ | Funnel | βœ… | Part-to-whole | [Funnel plot with px](https://plotly.com/python/funnel-charts/) | [px.funnel](https://plotly.com/python/funnel-charts/) |
80
+ | Gantt | βœ… | Time | [Gantt chart with px](https://plotly.com/python/gantt/) | [px.timeline](https://plotly.com/python-api-reference/generated/plotly.express.timeline.html) |
81
+ | Gridplot | ❌ | Part-to-whole | | |
82
+ | Heatmap | βœ… | Time | [Heatmaps with px](https://plotly.com/python/heatmaps/) | [px.density_heatmap](https://plotly.com/python-api-reference/generated/plotly.express.density_heatmap.html) |
83
+ | Correlation matrix | ❌ | Correlation | | |
84
+ | Histogram | βœ… | Distribution | [Histograms with px](https://plotly.com/python/histograms/) | [px.histogram](https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram) |
85
+ | Line | βœ… | Time | [Line plot with px](https://plotly.com/python/line-charts/) | [px.line](https://plotly.com/python-api-reference/generated/plotly.express.line) |
86
+ | Lollipop | ❌ | Ranking, Magnitude | | |
87
+ | Marimekko | ❌ | Magnitude, Part-to-whole | | |
88
+ | Network | ❌ | Flow | | |
89
+ | Ordered bar | βœ… | Ranking | [Bar chart with px](https://plotly.com/python/bar-charts/) | [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar.html) |
90
+ | Ordered bubble | ❌ | Ranking | | |
91
+ | Ordered column | βœ… | Ranking | [Bar chart with px](https://plotly.com/python/bar-charts/) | [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar.html) |
92
+ | Paired bar | βœ… | Magnitude | [Histograms with px](https://plotly.com/python/histograms/) | [px.histogram](https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram) |
93
+ | Paired column | βœ… | Magnitude | [Histograms with px](https://plotly.com/python/histograms/) | [px.histogram](https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram) |
94
+ | Parallel coordinates | βœ… | Magnitude | [Parallel coordinates plot with px](https://plotly.com/python/parallel-coordinates-plot/) | [px.parallel_coordinates](https://plotly.com/python-api-reference/generated/plotly.express.parallel_coordinates.html) |
95
+ | Pictogram | ❌ | Magnitude | | |
96
+ | Pie | βœ… | Part-to-whole | [Pie chart with px](https://plotly.com/python/pie-charts/) | [px.pie](https://plotly.com/python-api-reference/generated/plotly.express.pie) |
97
+ | Radar | βœ… | Magnitude | [Radar chart with px](https://plotly.com/python/radar-chart/) | [px.line_polar](https://plotly.com/python-api-reference/generated/plotly.express.line_polar) |
98
+ | Radial | ❌ | Magnitude | | |
99
+ | Sankey | βœ… | Flow | [Sankey diagram in Plotly](https://plotly.com/python/sankey-diagram/) | [go.Sankey](https://plotly.github.io/plotly.py-docs/generated/plotly.graph_objects.Sankey.html) |
100
+ | Scatter | βœ… | Correlation | [Scatter plot with px](https://plotly.com/python/line-and-scatter/) | [px.scatter](https://plotly.com/python-api-reference/generated/plotly.express.scatter) |
101
+ | Scatter matrix | βœ… | Correlation | [Scatter matrix with px](https://plotly.com/python/splom/) | [px.scatter_matrix](https://plotly.github.io/plotly.py-docs/generated/plotly.express.scatter_matrix.html) |
102
+ | Slope | ❌ | Ranking, Time | | |
103
+ | Sparkline | ❌ | Time | | |
104
+ | Stacked bar | βœ… | Part-to-whole | [Histograms with px](https://plotly.com/python/histograms/) | [px.histogram](https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram) |
105
+ | Stacked column | βœ… | Part-to-whole | [Histograms with px](https://plotly.com/python/histograms/) | [px.histogram](https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram) |
106
+ | Stepped line | βœ… | Time | [Line plot with px](https://plotly.com/python/line-charts/) | [px.line](https://plotly.com/python-api-reference/generated/plotly.express.line) |
107
+ | Surplus deficit line | ❌ | Deviation | | |
108
+ | Treemap | βœ… | Part-to-whole | [Treemap with px](https://plotly.com/python/treemaps/) | [px.treemap](https://plotly.com/python-api-reference/generated/plotly.express.treemap.html) |
109
+ | Venn | ❌ | Part-to-whole | | |
110
+ | Violin | βœ… | Distribution | [Violin plot with px](https://plotly.com/python/violin/) | [px.violin](https://plotly.com/python-api-reference/generated/plotly.express.violin.html) |
111
+ | Waterfall | βœ… | Part-to-whole, Flow | [Waterfall charts in Plotly](https://plotly.com/python/waterfall-charts/) | [go.Waterfall](https://plotly.github.io/plotly.py-docs/generated/plotly.graph_objects.Waterfall.html) |
112
 
113
  ## How to contribute
114
 
115
  Contributions are welcome! To contribute a chart, follow the steps below:
116
 
117
  1. Check that a `svg` file named after the chart type is contained in the [assets](https://github.com/mckinsey/vizro/tree/main/vizro-core/examples/visual-vocabulary/assets/images/charts) folder. If not, [raise an issue](https://github.com/mckinsey/vizro/issues) in the repository.
118
+ 2. Add the data set to `_pages_utils.py` if it doesn't already exist. Use existing data sets preferably or any other data set that is publicly available e.g. [plotly.express.data](https://plotly.com/python-api-reference/generated/plotly.express.data.html)
119
  3. Create a new page for the chart type and add it to the relevant category `.py` file such as `correlation.py`,
120
  `deviation.py`, `distribution.py`, etc. Ensure you add the page to the list of `pages` at the end of the `.py` file.
121
  4. Add a `.py` file containing a code example of the chart type in the `pages/examples` folder, for instance, `area.py`. Take a look at existing examples.
 
124
 
125
  ## How to run the example locally
126
 
127
+ 1. Run the example with the command `hatch run example visual-vocabulary`.
 
128
  2. You should now be able to access the app locally via http://127.0.0.1:8050/.
assets/images/charts/{dot-plot.svg β†’ dumbbell.svg} RENAMED
File without changes
chart_groups.py CHANGED
@@ -51,7 +51,6 @@ deviation_chart_group = ChartGroup(
51
  name="Deviation",
52
  pages=pages.deviation.pages,
53
  incomplete_pages=[
54
- IncompletePage(title="Diverging bar"),
55
  IncompletePage("Diverging stacked bar"),
56
  IncompletePage(title="Surplus deficit filled line"),
57
  ],
@@ -102,7 +101,6 @@ distribution_chart_group = ChartGroup(
102
  name="Distribution",
103
  pages=pages.distribution.pages,
104
  incomplete_pages=[
105
- IncompletePage("Dot plot"),
106
  IncompletePage("Barcode"),
107
  IncompletePage("Cumulative curve"),
108
  IncompletePage("Beeswarm"),
@@ -122,7 +120,6 @@ magnitude_chart_group = ChartGroup(
122
  incomplete_pages=[
123
  IncompletePage("Marimekko"),
124
  IncompletePage("Lollipop"),
125
- IncompletePage("Radar"),
126
  IncompletePage("Pictogram"),
127
  IncompletePage("Bullet"),
128
  IncompletePage("Radial"),
@@ -140,7 +137,6 @@ time_chart_group = ChartGroup(
140
  name="Time",
141
  pages=pages.time.pages,
142
  incomplete_pages=[
143
- IncompletePage("Gantt"),
144
  IncompletePage("Slope"),
145
  IncompletePage("Fan"),
146
  IncompletePage("Bubble timeline"),
@@ -163,7 +159,6 @@ part_to_whole_chart_group = ChartGroup(
163
  IncompletePage("Arc"),
164
  IncompletePage("Gridplot"),
165
  IncompletePage("Venn"),
166
- IncompletePage("Waterfall"),
167
  ],
168
  icon="Donut Small",
169
  intro_text=part_to_whole_intro_text,
@@ -177,7 +172,6 @@ flow_chart_group = ChartGroup(
177
  name="Flow",
178
  pages=pages.flow.pages,
179
  incomplete_pages=[
180
- IncompletePage("Waterfall"),
181
  IncompletePage("Chord"),
182
  IncompletePage("Network"),
183
  ],
 
51
  name="Deviation",
52
  pages=pages.deviation.pages,
53
  incomplete_pages=[
 
54
  IncompletePage("Diverging stacked bar"),
55
  IncompletePage(title="Surplus deficit filled line"),
56
  ],
 
101
  name="Distribution",
102
  pages=pages.distribution.pages,
103
  incomplete_pages=[
 
104
  IncompletePage("Barcode"),
105
  IncompletePage("Cumulative curve"),
106
  IncompletePage("Beeswarm"),
 
120
  incomplete_pages=[
121
  IncompletePage("Marimekko"),
122
  IncompletePage("Lollipop"),
 
123
  IncompletePage("Pictogram"),
124
  IncompletePage("Bullet"),
125
  IncompletePage("Radial"),
 
137
  name="Time",
138
  pages=pages.time.pages,
139
  incomplete_pages=[
 
140
  IncompletePage("Slope"),
141
  IncompletePage("Fan"),
142
  IncompletePage("Bubble timeline"),
 
159
  IncompletePage("Arc"),
160
  IncompletePage("Gridplot"),
161
  IncompletePage("Venn"),
 
162
  ],
163
  icon="Donut Small",
164
  intro_text=part_to_whole_intro_text,
 
172
  name="Flow",
173
  pages=pages.flow.pages,
174
  incomplete_pages=[
 
175
  IncompletePage("Chord"),
176
  IncompletePage("Network"),
177
  ],
custom_charts.py CHANGED
@@ -142,3 +142,94 @@ def categorical_column(data_frame: pd.DataFrame, x: str, y: str):
142
  # So ticks are aligned with bars when xaxes values are numbers (e.g. years)
143
  fig.update_xaxes(type="category")
144
  return fig
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  # So ticks are aligned with bars when xaxes values are numbers (e.g. years)
143
  fig.update_xaxes(type="category")
144
  return fig
145
+
146
+
147
+ @capture("graph")
148
+ def waterfall(data_frame: pd.DataFrame, x: str, y: str, measure: List[str]) -> go.Figure:
149
+ """Creates a waterfall chart using Plotly's `go.Waterfall`.
150
+
151
+ A Waterfall chart visually breaks down the cumulative effect of sequential positive and negative values,
152
+ showing how each value contributes to the total.
153
+
154
+ Args:
155
+ data_frame (pd.DataFrame): The data source for the chart.
156
+ x (str): Column name in `data_frame` for x-axis values.
157
+ y (str): Column name in `data_frame` for y-axis values.
158
+ measure (List[str]): List specifying the type of each bar, can be "relative", "total", or "absolute".
159
+
160
+ Returns:
161
+ go.Figure: A Plotly Figure object representing the Waterfall chart.
162
+
163
+ For additional parameters and customization options, see the Plotly documentation:
164
+ https://plotly.com/python/reference/waterfall/
165
+
166
+ """
167
+ fig = go.Figure(
168
+ go.Waterfall(
169
+ x=data_frame[x],
170
+ y=data_frame[y],
171
+ measure=data_frame[measure],
172
+ )
173
+ )
174
+ fig.update_layout(showlegend=False)
175
+ return fig
176
+
177
+
178
+ @capture("graph")
179
+ def radar(data_frame, **kwargs) -> go.Figure:
180
+ """Creates a radar chart using Plotly's `line_polar`.
181
+
182
+ A radar chart is a type of data visualization in which there are three or more
183
+ variables represented on axes that originate from the same central point.
184
+
185
+ Args:
186
+ data_frame (pd.DataFrame): The data source for the chart.
187
+ **kwargs: Keyword arguments that can be passed into Plotly's line_polar (i.e. r, theta, etc.)
188
+
189
+ Returns:
190
+ go.Figure: A Plotly Figure object representing the radar chart.
191
+
192
+ """
193
+ fig = px.line_polar(data_frame, **kwargs)
194
+ fig.update_traces(fill="toself")
195
+ return fig
196
+
197
+
198
+ @capture("graph")
199
+ def dumbbell(data_frame: pd.DataFrame, x: str, y: str, color: str) -> go.Figure:
200
+ """Creates a dumbbell chart using Plotly's `px.scatter` and `add_shape`.
201
+
202
+ A dumbbell plot is a type of dot plot where the points, displaying different groups, are connected with a straight
203
+ line. They are ideal for illustrating differences or gaps between two points.
204
+
205
+ Args:
206
+ data_frame (pd.DataFrame): The data source for the chart.
207
+ x (str): Column name in `data_frame` for x-axis values.
208
+ y (str): Column name in `data_frame` for y-axis values.
209
+ color (str): Column name in `data_frame` used for coloring the markers.
210
+
211
+ Returns:
212
+ go.Figure: A Plotly Figure object representing the dumbbell chart.
213
+
214
+ Inspired by: https://community.plotly.com/t/how-to-make-dumbbell-plots-in-plotly-python/47762
215
+
216
+ """
217
+ # Add two dots to plot
218
+ fig = px.scatter(data_frame, y=y, x=x, color=color)
219
+
220
+ # Add lines between dots
221
+ for y_value, group in data_frame.groupby(y):
222
+ fig.add_shape(
223
+ type="line",
224
+ layer="below",
225
+ y0=y_value,
226
+ y1=y_value,
227
+ x0=group[x].min(),
228
+ x1=group[x].max(),
229
+ line_color="grey",
230
+ line_width=3,
231
+ )
232
+
233
+ # Increase size of dots
234
+ fig.update_traces(marker_size=12)
235
+ return fig
pages/__init__.py CHANGED
@@ -2,4 +2,4 @@
2
  # TODO: think about the best way to do code examples, e.g.
3
  # - do we want full dashboard example or plot-only example?
4
  # - or both? Could be done using a toggle switch or multiple tabs.
5
- # - a link to py.cafe showing the dashboard code?
 
2
  # TODO: think about the best way to do code examples, e.g.
3
  # - do we want full dashboard example or plot-only example?
4
  # - or both? Could be done using a toggle switch or multiple tabs.
5
+ # - a link to PyCafe showing the dashboard code?
pages/_factories.py CHANGED
@@ -6,9 +6,9 @@ each chart type used in different groups.
6
 
7
  import vizro.models as vm
8
  import vizro.plotly.express as px
9
- from custom_charts import butterfly, column_and_line
10
 
11
- from pages._pages_utils import PAGE_GRID, ages, gapminder, make_code_clipboard_from_py_file
12
 
13
 
14
  def butterfly_factory(group: str):
@@ -110,3 +110,43 @@ def column_and_line_factory(group: str):
110
  make_code_clipboard_from_py_file("column_and_line.py"),
111
  ],
112
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  import vizro.models as vm
8
  import vizro.plotly.express as px
9
+ from custom_charts import butterfly, column_and_line, waterfall
10
 
11
+ from pages._pages_utils import PAGE_GRID, ages, gapminder, make_code_clipboard_from_py_file, waterfall_data
12
 
13
 
14
  def butterfly_factory(group: str):
 
110
  make_code_clipboard_from_py_file("column_and_line.py"),
111
  ],
112
  )
113
+
114
+
115
+ def waterfall_factory(group: str):
116
+ """Reusable function to create the page content for the column chart with a unique ID."""
117
+ return vm.Page(
118
+ id=f"{group}-waterfall",
119
+ path=f"{group}/waterfall",
120
+ title="Waterfall",
121
+ layout=vm.Layout(grid=PAGE_GRID),
122
+ components=[
123
+ vm.Card(
124
+ text="""
125
+
126
+ #### What is a waterfall chart?
127
+
128
+ A waterfall chart is a bar chart that shows the cumulative effect of sequential positive or negative
129
+ values. It starts with an initial value, displays individual changes as steps, and ends with the
130
+ final total.
131
+
132
+  
133
+
134
+ #### When should I use it?
135
+
136
+ Use a waterfall chart to visualize how individual factors contribute to a total, such as changes in
137
+ revenue or costs by category. It helps you understand the incremental impact of each factor, making
138
+ data analysis and interpretation easier. Ensure all bars and changes are clearly labeled, use consistent
139
+ colors for positive and negative values, and arrange categories logically to tell a coherent story.
140
+ """
141
+ ),
142
+ vm.Graph(
143
+ figure=waterfall(
144
+ waterfall_data,
145
+ x="x",
146
+ y="y",
147
+ measure="measure",
148
+ )
149
+ ),
150
+ make_code_clipboard_from_py_file("waterfall.py"),
151
+ ],
152
+ )
pages/_pages_utils.py CHANGED
@@ -29,6 +29,7 @@ gapminder = px.data.gapminder()
29
  iris = px.data.iris()
30
  stocks = px.data.stocks()
31
  tips = px.data.tips()
 
32
 
33
  ages = pd.DataFrame(
34
  {
@@ -58,3 +59,49 @@ stepped_line_data = pd.DataFrame(
58
 
59
 
60
  carshare = px.data.carshare()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  iris = px.data.iris()
30
  stocks = px.data.stocks()
31
  tips = px.data.tips()
32
+ wind = px.data.wind()
33
 
34
  ages = pd.DataFrame(
35
  {
 
59
 
60
 
61
  carshare = px.data.carshare()
62
+
63
+ tasks = pd.DataFrame(
64
+ [
65
+ {"Task": "Job A", "Start": "2009-01-01", "Finish": "2009-02-28"},
66
+ {"Task": "Job B", "Start": "2009-03-05", "Finish": "2009-04-15"},
67
+ {"Task": "Job C", "Start": "2009-02-20", "Finish": "2009-05-30"},
68
+ ]
69
+ )
70
+
71
+ waterfall_data = pd.DataFrame(
72
+ {
73
+ "x": ["Sales", "Consulting", "Net revenue", "Purchases", "Other expenses", "Profit before tax"],
74
+ "y": [60, 80, 0, -40, -20, 0],
75
+ "measure": ["relative", "relative", "total", "relative", "relative", "total"],
76
+ }
77
+ )
78
+
79
+
80
+ pastries = pd.DataFrame(
81
+ {
82
+ "pastry": [
83
+ "Scones",
84
+ "Bagels",
85
+ "Muffins",
86
+ "Cakes",
87
+ "Donuts",
88
+ "Cookies",
89
+ "Croissants",
90
+ "Eclairs",
91
+ "Brownies",
92
+ "Tarts",
93
+ "Macarons",
94
+ "Pies",
95
+ ],
96
+ "Profit Ratio": [-0.10, -0.15, -0.05, 0.10, 0.05, 0.20, 0.15, -0.08, 0.08, -0.12, 0.02, -0.07],
97
+ }
98
+ )
99
+
100
+
101
+ salaries = pd.DataFrame(
102
+ {
103
+ "Job": ["Developer", "Analyst", "Manager", "Specialist"] * 2,
104
+ "Salary": [60000, 55000, 70000, 50000, 130000, 110000, 96400, 80000],
105
+ "Range": ["Min"] * 4 + ["Max"] * 4,
106
+ }
107
+ )
pages/deviation.py CHANGED
@@ -1,7 +1,54 @@
1
  """Deviation charts."""
2
 
 
 
 
 
3
  from pages._factories import butterfly_factory
 
4
 
5
  butterfly = butterfly_factory("deviation")
6
 
7
- pages = [butterfly]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """Deviation charts."""
2
 
3
+ import plotly.io as pio
4
+ import vizro.models as vm
5
+ import vizro.plotly.express as px
6
+
7
  from pages._factories import butterfly_factory
8
+ from pages._pages_utils import PAGE_GRID, make_code_clipboard_from_py_file, pastries
9
 
10
  butterfly = butterfly_factory("deviation")
11
 
12
+
13
+ diverging_bar = vm.Page(
14
+ title="Diverging bar",
15
+ path="deviation/diverging-bar",
16
+ layout=vm.Layout(grid=PAGE_GRID),
17
+ components=[
18
+ vm.Card(
19
+ text="""
20
+
21
+ #### What is a diverging bar?
22
+
23
+ A diverging bar chart is a version of a bar chart used to display both positive and negative values across
24
+ a common baseline. Bars extend either to the left or right of the central axis, indicating negative or
25
+ positive values, respectively. This allows for easy comparison of data points that deviate in opposite
26
+ directions.
27
+
28
+  
29
+
30
+ #### When should I use it?
31
+
32
+ Use a diverging bar chart to compare positive and negative values from a central baseline. These charts are
33
+ suitable for visualizing profit and loss, survey results, and performance metrics. Apply color coding
34
+ effectively, using distinct colors for positive and negative values to quickly distinguish categories.
35
+ Alternatively, use a continuous diverging color scale for a more nuanced view, especially with a wide range
36
+ of values. Ensure a consistent scale on both sides of the baseline to avoid misleading interpretations.
37
+ """
38
+ ),
39
+ vm.Graph(
40
+ figure=px.bar(
41
+ pastries.sort_values("Profit Ratio"),
42
+ orientation="h",
43
+ x="Profit Ratio",
44
+ y="pastry",
45
+ color="Profit Ratio",
46
+ color_continuous_scale=pio.templates["vizro_dark"].layout.colorscale.diverging,
47
+ color_continuous_midpoint=0,
48
+ ),
49
+ ),
50
+ make_code_clipboard_from_py_file("diverging_bar.py"),
51
+ ],
52
+ )
53
+
54
+ pages = [butterfly, diverging_bar]
pages/distribution.py CHANGED
@@ -2,9 +2,10 @@
2
 
3
  import vizro.models as vm
4
  import vizro.plotly.express as px
 
5
 
6
  from pages._factories import butterfly_factory
7
- from pages._pages_utils import PAGE_GRID, make_code_clipboard_from_py_file, tips
8
 
9
  violin = vm.Page(
10
  title="Violin",
@@ -106,5 +107,32 @@ histogram = vm.Page(
106
  ],
107
  )
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
- pages = [violin, boxplot, butterfly, histogram]
 
2
 
3
  import vizro.models as vm
4
  import vizro.plotly.express as px
5
+ from custom_charts import dumbbell
6
 
7
  from pages._factories import butterfly_factory
8
+ from pages._pages_utils import PAGE_GRID, make_code_clipboard_from_py_file, salaries, tips
9
 
10
  violin = vm.Page(
11
  title="Violin",
 
107
  ],
108
  )
109
 
110
+ dumbbell = vm.Page(
111
+ title="Dumbbell",
112
+ path="distribution/dumbbell",
113
+ layout=vm.Layout(grid=PAGE_GRID),
114
+ components=[
115
+ vm.Card(
116
+ text="""
117
+ #### What is a dumbbell chart?
118
+ A dumbbell chart emphasizes the gap between two categorical groups. Each data point is depicted by a
119
+ symbol, typically a circle, representing its quantitative value. These symbols are connected by a line,
120
+ visually indicating the gap between the two points. Categories or groups are displayed along one axis,
121
+ while quantitative values are plotted along the other.
122
+
123
+  
124
+
125
+ #### When should I use it?
126
+ Dumbbell charts are ideal for illustrating differences or gaps between two points. They are less cluttered
127
+ than bar charts, making it easier to compare groups. Common uses include comparing groups, such as showing
128
+ differences in performance metrics across various categories. Colors can be used to emphasize the direction
129
+ of changes or to distinguish between categories.
130
+ """
131
+ ),
132
+ vm.Graph(figure=dumbbell(salaries, y="Job", x="Salary", color="Range")),
133
+ make_code_clipboard_from_py_file("dumbbell.py"),
134
+ ],
135
+ )
136
+
137
 
138
+ pages = [violin, boxplot, butterfly, dumbbell, histogram]
pages/examples/diverging_bar.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import plotly.io as pio
3
+ import vizro.models as vm
4
+ import vizro.plotly.express as px
5
+ from vizro import Vizro
6
+
7
+ pastries = pd.DataFrame(
8
+ {
9
+ "pastry": [
10
+ "Scones",
11
+ "Bagels",
12
+ "Muffins",
13
+ "Cakes",
14
+ "Donuts",
15
+ "Cookies",
16
+ "Croissants",
17
+ "Eclairs",
18
+ "Brownies",
19
+ "Tarts",
20
+ "Macarons",
21
+ "Pies",
22
+ ],
23
+ "Profit Ratio": [-0.10, -0.15, -0.05, 0.10, 0.05, 0.20, 0.15, -0.08, 0.08, -0.12, 0.02, -0.07],
24
+ }
25
+ )
26
+
27
+ page = vm.Page(
28
+ title="Diverging bar",
29
+ components=[
30
+ vm.Graph(
31
+ figure=px.bar(
32
+ pastries.sort_values("Profit Ratio"),
33
+ orientation="h",
34
+ x="Profit Ratio",
35
+ y="pastry",
36
+ color="Profit Ratio",
37
+ color_continuous_scale=pio.templates["vizro_dark"].layout.colorscale.diverging,
38
+ color_continuous_midpoint=0,
39
+ ),
40
+ ),
41
+ ],
42
+ )
43
+
44
+ dashboard = vm.Dashboard(pages=[page])
45
+ Vizro().build(dashboard).run()
pages/examples/dumbbell.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import vizro.models as vm
3
+ import vizro.plotly.express as px
4
+ from plotly import graph_objects as go
5
+ from vizro import Vizro
6
+ from vizro.models.types import capture
7
+
8
+ salaries = pd.DataFrame(
9
+ {
10
+ "Job": ["Developer", "Analyst", "Manager", "Specialist"] * 2,
11
+ "Salary": [60000, 55000, 70000, 50000, 130000, 110000, 96400, 80000],
12
+ "Range": ["Min"] * 4 + ["Max"] * 4,
13
+ }
14
+ )
15
+
16
+
17
+ @capture("graph")
18
+ def dumbbell(data_frame: pd.DataFrame, x: str, y: str, color: str) -> go.Figure:
19
+ # Add two dots to plot
20
+ fig = px.scatter(data_frame, y=y, x=x, color=color)
21
+
22
+ # Add lines between dots
23
+ for y_value, group in data_frame.groupby(y):
24
+ fig.add_shape(
25
+ type="line",
26
+ layer="below",
27
+ y0=y_value,
28
+ y1=y_value,
29
+ x0=group[x].min(),
30
+ x1=group[x].max(),
31
+ line_color="grey",
32
+ line_width=3,
33
+ )
34
+
35
+ # Increase size of dots
36
+ fig.update_traces(marker_size=12)
37
+ return fig
38
+
39
+
40
+ page = vm.Page(
41
+ title="Dumbbell",
42
+ components=[vm.Graph(figure=dumbbell(salaries, y="Job", x="Salary", color="Range"))],
43
+ )
44
+
45
+ dashboard = vm.Dashboard(pages=[page])
46
+ Vizro().build(dashboard).run()
pages/examples/gantt.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import vizro.models as vm
3
+ import vizro.plotly.express as px
4
+ from vizro import Vizro
5
+
6
+ tasks = pd.DataFrame(
7
+ [
8
+ {"Task": "Job A", "Start": "2009-01-01", "Finish": "2009-02-28"},
9
+ {"Task": "Job B", "Start": "2009-03-05", "Finish": "2009-04-15"},
10
+ {"Task": "Job C", "Start": "2009-02-20", "Finish": "2009-05-30"},
11
+ ]
12
+ )
13
+
14
+
15
+ page = vm.Page(
16
+ title="Gantt",
17
+ components=[
18
+ vm.Graph(px.timeline(tasks.sort_values("Start", ascending=False), x_start="Start", x_end="Finish", y="Task"))
19
+ ],
20
+ )
21
+
22
+ dashboard = vm.Dashboard(pages=[page])
23
+ Vizro().build(dashboard).run()
pages/examples/radar.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import vizro.models as vm
2
+ import vizro.plotly.express as px
3
+ from vizro import Vizro
4
+ from vizro.models.types import capture
5
+
6
+ wind = px.data.wind()
7
+
8
+
9
+ @capture("graph")
10
+ def radar(data_frame, **kwargs):
11
+ """Creates a radar chart using Plotly's line_polar."""
12
+ fig = px.line_polar(data_frame, **kwargs)
13
+ fig.update_traces(fill="toself")
14
+ return fig
15
+
16
+
17
+ page = vm.Page(
18
+ title="Radar",
19
+ components=[
20
+ vm.Graph(figure=radar(wind.query("strength == '1-2'"), r="frequency", theta="direction", line_close=True))
21
+ ],
22
+ )
23
+
24
+ dashboard = vm.Dashboard(pages=[page])
25
+ Vizro().build(dashboard).run()
pages/examples/waterfall.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ import pandas as pd
4
+ import plotly.graph_objects as go
5
+ import vizro.models as vm
6
+ from vizro import Vizro
7
+ from vizro.models.types import capture
8
+
9
+ waterfall_data = pd.DataFrame(
10
+ {
11
+ "x": ["Sales", "Consulting", "Net revenue", "Purchases", "Other expenses", "Profit before tax"],
12
+ "y": [60, 80, 0, -40, -20, 0],
13
+ "measure": ["relative", "relative", "total", "relative", "relative", "total"],
14
+ }
15
+ )
16
+
17
+
18
+ @capture("graph")
19
+ def waterfall(
20
+ data_frame: pd.DataFrame,
21
+ x: str,
22
+ y: str,
23
+ measure: List[str],
24
+ ):
25
+ fig = go.Figure(
26
+ go.Waterfall(
27
+ x=data_frame[x],
28
+ y=data_frame[y],
29
+ measure=data_frame[measure],
30
+ )
31
+ )
32
+ fig.update_layout(showlegend=False)
33
+ return fig
34
+
35
+
36
+ page = vm.Page(
37
+ title="Waterfall",
38
+ components=[
39
+ vm.Graph(
40
+ figure=waterfall(
41
+ waterfall_data,
42
+ x="x",
43
+ y="y",
44
+ measure="measure",
45
+ )
46
+ )
47
+ ],
48
+ )
49
+
50
+ dashboard = vm.Dashboard(pages=[page])
51
+ Vizro().build(dashboard).run()
pages/flow.py CHANGED
@@ -3,6 +3,7 @@
3
  import vizro.models as vm
4
  from custom_charts import sankey
5
 
 
6
  from pages._pages_utils import PAGE_GRID, make_code_clipboard_from_py_file, sankey_data
7
 
8
  sankey = vm.Page(
@@ -44,4 +45,6 @@ sankey = vm.Page(
44
  ],
45
  )
46
 
47
- pages = [sankey]
 
 
 
3
  import vizro.models as vm
4
  from custom_charts import sankey
5
 
6
+ from pages._factories import waterfall_factory
7
  from pages._pages_utils import PAGE_GRID, make_code_clipboard_from_py_file, sankey_data
8
 
9
  sankey = vm.Page(
 
45
  ],
46
  )
47
 
48
+ waterfall = waterfall_factory("flow")
49
+
50
+ pages = [sankey, waterfall]
pages/magnitude.py CHANGED
@@ -2,8 +2,9 @@
2
 
3
  import vizro.models as vm
4
  import vizro.plotly.express as px
 
5
 
6
- from pages._pages_utils import PAGE_GRID, gapminder, iris, make_code_clipboard_from_py_file, tips
7
 
8
  bar = vm.Page(
9
  title="Bar",
@@ -190,4 +191,27 @@ parallel_coordinates = vm.Page(
190
  ],
191
  )
192
 
193
- pages = [bar, column, paired_bar, paired_column, parallel_coordinates]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  import vizro.models as vm
4
  import vizro.plotly.express as px
5
+ from custom_charts import radar
6
 
7
+ from pages._pages_utils import PAGE_GRID, gapminder, iris, make_code_clipboard_from_py_file, tips, wind
8
 
9
  bar = vm.Page(
10
  title="Bar",
 
191
  ],
192
  )
193
 
194
+ radar = vm.Page(
195
+ path="magnitude/radar",
196
+ title="Radar",
197
+ layout=vm.Layout(grid=PAGE_GRID),
198
+ components=[
199
+ vm.Card(
200
+ text="""
201
+ #### What is a radar chart?
202
+ A radar chart, also known as a spider plot or star plot, is a type of data visualization
203
+ used to display multivariate data. It consists of three or more variables represented
204
+ on axes that originate from the same central point.
205
+
206
+ #### When should I use it?
207
+ Use a radar chart to compare performance or characteristics across multiple variables.
208
+ The chart effectively highlights strengths, weaknesses, patterns, and outliers.
209
+ To maintain clarity, use consistent scales for all axes and clearly mark labels and data points.
210
+ """
211
+ ),
212
+ vm.Graph(figure=radar(wind.query("strength == '1-2'"), r="frequency", theta="direction", line_close=True)),
213
+ make_code_clipboard_from_py_file("radar.py"),
214
+ ],
215
+ )
216
+
217
+ pages = [bar, column, paired_bar, paired_column, parallel_coordinates, radar]
pages/part_to_whole.py CHANGED
@@ -3,6 +3,7 @@
3
  import vizro.models as vm
4
  import vizro.plotly.express as px
5
 
 
6
  from pages._pages_utils import PAGE_GRID, funnel_data, gapminder, make_code_clipboard_from_py_file, tips
7
 
8
  pie = vm.Page(
@@ -203,5 +204,6 @@ funnel = vm.Page(
203
  ],
204
  )
205
 
 
206
 
207
- pages = [donut, pie, treemap, stacked_bar, stacked_column, funnel]
 
3
  import vizro.models as vm
4
  import vizro.plotly.express as px
5
 
6
+ from pages._factories import waterfall_factory
7
  from pages._pages_utils import PAGE_GRID, funnel_data, gapminder, make_code_clipboard_from_py_file, tips
8
 
9
  pie = vm.Page(
 
204
  ],
205
  )
206
 
207
+ waterfall = waterfall_factory("part-to-whole")
208
 
209
+ pages = [donut, pie, treemap, stacked_bar, stacked_column, funnel, waterfall]
pages/time.py CHANGED
@@ -5,7 +5,15 @@ import vizro.plotly.express as px
5
  from custom_charts import categorical_column
6
 
7
  from pages._factories import column_and_line_factory, connected_scatter_factory
8
- from pages._pages_utils import PAGE_GRID, gapminder, make_code_clipboard_from_py_file, stepped_line_data, stocks, tips
 
 
 
 
 
 
 
 
9
 
10
  line = vm.Page(
11
  title="Line",
@@ -160,4 +168,35 @@ heatmap = vm.Page(
160
  make_code_clipboard_from_py_file("heatmap.py"),
161
  ],
162
  )
163
- pages = [line, column, area, connected_scatter, column_and_line, stepped_line, heatmap]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  from custom_charts import categorical_column
6
 
7
  from pages._factories import column_and_line_factory, connected_scatter_factory
8
+ from pages._pages_utils import (
9
+ PAGE_GRID,
10
+ gapminder,
11
+ make_code_clipboard_from_py_file,
12
+ stepped_line_data,
13
+ stocks,
14
+ tasks,
15
+ tips,
16
+ )
17
 
18
  line = vm.Page(
19
  title="Line",
 
168
  make_code_clipboard_from_py_file("heatmap.py"),
169
  ],
170
  )
171
+
172
+ gantt = vm.Page(
173
+ title="Gantt",
174
+ path="time/gantt",
175
+ layout=vm.Layout(grid=PAGE_GRID),
176
+ components=[
177
+ vm.Card(
178
+ text="""
179
+ #### What is a gantt chart?
180
+
181
+ A gantt chart is a type of bar chart that visualizes a project schedule.
182
+ It shows the start and end dates of a project element, such as tasks, activities, or
183
+ events, in a timeline format. Each element is represented by a bar whose length indicates
184
+ its duration.
185
+
186
+  
187
+
188
+ #### When should I use it?
189
+
190
+ Gantt charts are ideal for visualizing project timelines, tracking
191
+ progress, and managing dependencies. They clearly display task start and end dates, making
192
+ it easy to monitor project status and manage interdependencies. However, they can become
193
+ complex if not regularly updated, especially for large projects.
194
+ """
195
+ ),
196
+ vm.Graph(
197
+ figure=px.timeline(tasks.sort_values("Start", ascending=False), x_start="Start", x_end="Finish", y="Task")
198
+ ),
199
+ make_code_clipboard_from_py_file("gantt.py"),
200
+ ],
201
+ )
202
+ pages = [line, column, area, connected_scatter, column_and_line, stepped_line, heatmap, gantt]