Rename app (2).py to app.py
Browse files- app (2).py → app.py +0 -44
app (2).py → app.py
RENAMED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import Chroma
|
@@ -10,11 +9,9 @@ from langchain_community.llms import HuggingFacePipeline
|
|
10 |
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain_community.llms import HuggingFaceEndpoint
|
13 |
-
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
from unidecode import unidecode
|
17 |
-
|
18 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
19 |
import transformers
|
20 |
import torch
|
@@ -28,10 +25,6 @@ model = AutoModelForMaskedLM.from_pretrained("google/muril-base-cased")
|
|
28 |
|
29 |
# default_persist_directory = './chroma_HF/'
|
30 |
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
31 |
-
"google/gemma-7b-it","google/gemma-2b-it", \
|
32 |
-
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
|
33 |
-
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
|
34 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
|
35 |
"google/flan-t5-xxl"
|
36 |
]
|
37 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
@@ -94,42 +87,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
94 |
top_k = top_k,
|
95 |
load_in_8bit = True,
|
96 |
)
|
97 |
-
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
|
98 |
-
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
99 |
-
llm = HuggingFaceEndpoint(
|
100 |
-
repo_id=llm_model,
|
101 |
-
temperature = temperature,
|
102 |
-
max_new_tokens = max_tokens,
|
103 |
-
top_k = top_k,
|
104 |
-
)
|
105 |
-
elif llm_model == "microsoft/phi-2":
|
106 |
-
# raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
107 |
-
llm = HuggingFaceEndpoint(
|
108 |
-
repo_id=llm_model,
|
109 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
110 |
-
temperature = temperature,
|
111 |
-
max_new_tokens = max_tokens,
|
112 |
-
top_k = top_k,
|
113 |
-
trust_remote_code = True,
|
114 |
-
torch_dtype = "auto",
|
115 |
-
)
|
116 |
-
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
117 |
-
llm = HuggingFaceEndpoint(
|
118 |
-
repo_id=llm_model,
|
119 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
120 |
-
temperature = temperature,
|
121 |
-
max_new_tokens = 250,
|
122 |
-
top_k = top_k,
|
123 |
-
)
|
124 |
-
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
125 |
-
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
126 |
-
llm = HuggingFaceEndpoint(
|
127 |
-
repo_id=llm_model,
|
128 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
129 |
-
temperature = temperature,
|
130 |
-
max_new_tokens = max_tokens,
|
131 |
-
top_k = top_k,
|
132 |
-
)
|
133 |
else:
|
134 |
llm = HuggingFaceEndpoint(
|
135 |
repo_id=llm_model,
|
@@ -222,7 +179,6 @@ def format_chat_history(message, chat_history):
|
|
222 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
223 |
return formatted_chat_history
|
224 |
|
225 |
-
|
226 |
def conversation(qa_chain, message, history):
|
227 |
formatted_chat_history = format_chat_history(message, history)
|
228 |
#print("formatted_chat_history",formatted_chat_history)
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.vectorstores import Chroma
|
|
|
9 |
from langchain.chains import ConversationChain
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
12 |
from pathlib import Path
|
13 |
import chromadb
|
14 |
from unidecode import unidecode
|
|
|
15 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
16 |
import transformers
|
17 |
import torch
|
|
|
25 |
|
26 |
# default_persist_directory = './chroma_HF/'
|
27 |
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
|
|
|
|
|
|
|
|
28 |
"google/flan-t5-xxl"
|
29 |
]
|
30 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
|
|
87 |
top_k = top_k,
|
88 |
load_in_8bit = True,
|
89 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
llm = HuggingFaceEndpoint(
|
92 |
repo_id=llm_model,
|
|
|
179 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
180 |
return formatted_chat_history
|
181 |
|
|
|
182 |
def conversation(qa_chain, message, history):
|
183 |
formatted_chat_history = format_chat_history(message, history)
|
184 |
#print("formatted_chat_history",formatted_chat_history)
|