Spaces:
Running
Running
from typing import Any, List, Callable | |
import cv2 | |
import threading | |
import gfpgan | |
import roop.globals | |
import roop.processors.frame.core | |
from roop.core import update_status | |
from roop.face_analyser import get_one_face | |
from roop.typing import Frame, Face | |
from roop.utilities import conditional_download, resolve_relative_path, is_image, is_video | |
import torch | |
FACE_ENHANCER = None | |
THREAD_SEMAPHORE = threading.Semaphore() | |
THREAD_LOCK = threading.Lock() | |
NAME = 'ROOP.FACE-ENHANCER' | |
frame_name = 'face_enhancer' | |
if torch.cuda.is_available(): | |
device='cuda' | |
else: | |
device='cpu' | |
def get_face_enhancer() -> Any: | |
global FACE_ENHANCER | |
with THREAD_LOCK: | |
if FACE_ENHANCER is None: | |
model_path = resolve_relative_path('../models/GFPGANv1.4.pth') | |
# todo: set models path https://github.com/TencentARC/GFPGAN/issues/399 | |
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1,device=device) # type: ignore[attr-defined] | |
return FACE_ENHANCER | |
def pre_check() -> bool: | |
download_directory_path = resolve_relative_path('../models') | |
# conditional_download(download_directory_path, ['https://huggingface.co/henryruhs/roop/resolve/main/GFPGANv1.4.pth']) | |
conditional_download(download_directory_path, ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth']) | |
return True | |
def pre_start() -> bool: | |
if not is_image(roop.globals.target_path) and not is_video(roop.globals.target_path): | |
update_status('Select an image or video for target path.', NAME) | |
return False | |
return True | |
def post_process() -> None: | |
global FACE_ENHANCER | |
FACE_ENHANCER = None | |
def enhance_face(temp_frame: Frame) -> Frame: | |
with THREAD_SEMAPHORE: | |
_, _, temp_frame = get_face_enhancer().enhance( | |
temp_frame, | |
paste_back=True | |
) | |
return temp_frame | |
def process_frame(source_face: Face, temp_frame: Frame) -> Frame: | |
target_face = get_one_face(temp_frame) | |
if target_face: | |
temp_frame = enhance_face(temp_frame) | |
return temp_frame | |
def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None: | |
for temp_frame_path in temp_frame_paths: | |
temp_frame = cv2.imread(temp_frame_path) | |
result = process_frame(None, temp_frame) | |
cv2.imwrite(temp_frame_path, result) | |
if update: | |
update() | |
def process_image(source_path: str, target_path: str, output_path: str) -> None: | |
target_frame = cv2.imread(target_path) | |
result = process_frame(None, target_frame) | |
cv2.imwrite(output_path, result) | |
def process_video(source_path: str, temp_frame_paths: List[str]) -> None: | |
roop.processors.frame.core.process_video(None, temp_frame_paths, process_frames) | |