File size: 17,157 Bytes
6fc43ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import torch
import numpy as np
import tqdm
from sklearn.base import BaseEstimator
from sklearn.utils.validation import check_is_fitted
from sklearn.model_selection import train_test_split
from scipy.special import expit
from copy import deepcopy
from contextlib import suppress
from typing import Any, Self
from icecream import ic

from .. import nn
from ..utils import TransformerTrainingDataset
from ..utils import TransformerValidationDataset
from ..utils import MissingMasker
from ..utils import ConstantImputer
from ..utils import Formatter
from ..utils.misc import ProgressBar
from ..utils.misc import get_metrics_multitask, print_metrics_multitask


class TrainResNet(BaseEstimator):
    ''' ... '''
    def __init__(self,
        src_modalities: dict[str, dict[str, Any]],
        tgt_modalities: dict[str, dict[str, Any]],
        label_fractions: dict[str, float],
        num_epochs: int = 32,
        batch_size: int = 8,
        lr: float = 1e-2,
        weight_decay: float = 0.0,
        gamma: float = 0.0,
        criterion: str | None = None,
        device: str = 'cpu',
        cuda_devices: list = [1,2],
        mri_feature: str = 'img_MRI_T1',
        ckpt_path: str = '/home/skowshik/ADRD_repo/adrd_tool/adrd/dev/ckpt/ckpt.pt',
        load_from_ckpt: bool = True,
        save_intermediate_ckpts: bool = False,
        data_parallel: bool = False,
        verbose: int = 0,
    ):  
        ''' ... '''
        # for multiprocessing
        self._rank = 0
        self._lock = None

        # positional parameters
        self.src_modalities = src_modalities
        self.tgt_modalities = tgt_modalities

        # training parameters
        self.label_fractions = label_fractions
        self.num_epochs = num_epochs
        self.batch_size = batch_size
        self.lr = lr
        self.weight_decay = weight_decay
        self.gamma = gamma
        self.criterion = criterion
        self.device = device
        self.cuda_devices = cuda_devices
        self.mri_feature = mri_feature
        self.ckpt_path = ckpt_path
        self.load_from_ckpt = load_from_ckpt
        self.save_intermediate_ckpts = save_intermediate_ckpts
        self.data_parallel = data_parallel
        self.verbose = verbose

    def fit(self, x, y):
        ''' ... '''
        # for PyTorch computational efficiency
        torch.set_num_threads(1)

        # set the device for use
        if self.device == 'cuda':
            self.device = "{}:{}".format(self.device, str(self.cuda_devices[0]))

        # initialize model
        if self.load_from_ckpt:
            try:
                print("Loading model from checkpoint...")
                self.load(self.ckpt_path, map_location=self.device)
            except:
                print("Cannot load from checkpoint. Initializing new model...")
                self.load_from_ckpt = False

        # initialize model
        if not self.load_from_ckpt:
            self.net_ = nn.ResNetModel(
                self.tgt_modalities,
                mri_feature = self.mri_feature
            )
            # intialize model parameters using xavier_uniform
            for p in self.net_.parameters():
                if p.dim() > 1:
                    torch.nn.init.xavier_uniform_(p)

        self.net_.to(self.device)

        # Initialize the number of GPUs
        if self.data_parallel and torch.cuda.device_count() > 1:
            print("Available", torch.cuda.device_count(), "GPUs!")
            self.net_ = torch.nn.DataParallel(self.net_, device_ids=self.cuda_devices)


        # split dataset
        x_trn, x_vld, y_trn, y_vld = train_test_split(
            x, y, test_size = 0.2, random_state = 0,
        )

        # initialize dataset and dataloader
        dat_trn = TransformerTrainingDataset(
            x_trn, y_trn,
            self.src_modalities,
            self.tgt_modalities,
            dropout_rate = .5,
            dropout_strategy = 'compensated',
            mri_feature = self.mri_feature,
        )

        dat_vld = TransformerValidationDataset(
            x_vld, y_vld,
            self.src_modalities,
            self.tgt_modalities,
            mri_feature = self.mri_feature,
        )

        # ic(dat_trn[0])

        ldr_trn = torch.utils.data.DataLoader(
            dat_trn,
            batch_size = self.batch_size,
            shuffle = True,
            drop_last = False,
            num_workers = 0,
            collate_fn = TransformerTrainingDataset.collate_fn,
            # pin_memory = True
        )

        ldr_vld = torch.utils.data.DataLoader(
            dat_vld,
            batch_size = self.batch_size,
            shuffle = False,
            drop_last = False,
            num_workers = 0,
            collate_fn = TransformerTrainingDataset.collate_fn,
            # pin_memory = True
        )

        # initialize optimizer
        optimizer = torch.optim.AdamW(
            self.net_.parameters(),
            lr = self.lr,
            betas = (0.9, 0.98),
            weight_decay = self.weight_decay
        )
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=64, verbose=(self.verbose > 2))
        
        # initialize loss function (binary cross entropy)
        loss_fn = {}

        for k in self.tgt_modalities:
            alpha = pow((1 - self.label_fractions[k]), self.gamma)
            # if alpha < 0.5:
            #     alpha = -1
            loss_fn[k] = nn.SigmoidFocalLoss(
                alpha = alpha,
                gamma = self.gamma,
                reduction = 'none'
            )

        # to record the best validation performance criterion
        if self.criterion is not None:
            best_crit = None

        # progress bar for epoch loops
        if self.verbose == 1:
            with self._lock if self._lock is not None else suppress():
                pbr_epoch = tqdm.tqdm(
                    desc = 'Rank {:02d}'.format(self._rank),
                    total = self.num_epochs,
                    position = self._rank,
                    ascii = True,
                    leave = False,
                    bar_format='{l_bar}{r_bar}'
                )

        # Define a hook function to print and store the gradient of a layer
        def print_and_store_grad(grad, grad_list):
            grad_list.append(grad)
            # print(grad)

        # grad_list = []
        # self.net_.module.img_net_.featurizer.down_tr64.ops[0].conv1.weight.register_hook(lambda grad: print_and_store_grad(grad, grad_list))
        # self.net_.module.modules_emb_src['gender'].weight.register_hook(lambda grad: print_and_store_grad(grad, grad_list))


        # training loop
        for epoch in range(self.num_epochs):
            # progress bar for batch loops
            if self.verbose > 1: 
                pbr_batch = ProgressBar(len(dat_trn), 'Epoch {:03d} (TRN)'.format(epoch))

            # set model to train mode
            torch.set_grad_enabled(True)
            self.net_.train()

            scores_trn, y_true_trn = [], []
            losses_trn = [[] for _ in self.tgt_modalities]
            for x_batch, y_batch, mask in ldr_trn:

                # mount data to the proper device
                x_batch = {k: x_batch[k].to(self.device) for k in x_batch}
                y_batch = {k: y_batch[k].to(torch.float).to(self.device) for k in y_batch}

                # forward
                outputs = self.net_(x_batch)

                # calculate multitask loss
                loss = 0
                for i, k in enumerate(self.tgt_modalities):
                    loss_task = loss_fn[k](outputs[k], y_batch[k])
                    loss += loss_task.mean()
                    losses_trn[i] += loss_task.detach().cpu().numpy().tolist()

                # backward
                optimizer.zero_grad(set_to_none=True)
                loss.backward()
                optimizer.step()

                ''' TODO: change array to dictionary later '''
                outputs = torch.stack(list(outputs.values()), dim=1)
                y_batch = torch.stack(list(y_batch.values()), dim=1)

                # save outputs to evaluate performance later
                scores_trn.append(outputs.detach().to(torch.float).cpu())
                y_true_trn.append(y_batch.cpu())

                # update progress bar
                if self.verbose > 1:
                    batch_size = len(next(iter(x_batch.values())))
                    pbr_batch.update(batch_size, {})
                    pbr_batch.refresh()
                
                # clear cuda cache
                if "cuda" in self.device:
                    torch.cuda.empty_cache()

            # for better tqdm progress bar display
            if self.verbose > 1:
                pbr_batch.close()

            # set scheduler
            scheduler.step()

            # calculate and print training performance metrics
            scores_trn = torch.cat(scores_trn)
            y_true_trn = torch.cat(y_true_trn)
            y_pred_trn = (scores_trn > 0).to(torch.int)
            y_prob_trn = torch.sigmoid(scores_trn)
            met_trn = get_metrics_multitask(
                y_true_trn.numpy(),
                y_pred_trn.numpy(),
                y_prob_trn.numpy()
            )

            # add loss to metrics
            for i in range(len(self.tgt_modalities)):
                met_trn[i]['Loss'] = np.mean(losses_trn[i])

            if self.verbose > 2:
                print_metrics_multitask(met_trn)

            # progress bar for validation
            if self.verbose > 1:
                pbr_batch = ProgressBar(len(dat_vld), 'Epoch {:03d} (VLD)'.format(epoch))

            # set model to validation mode
            torch.set_grad_enabled(False)
            self.net_.eval()

            scores_vld, y_true_vld = [], []
            losses_vld = [[] for _ in self.tgt_modalities]
            for x_batch, y_batch, mask in ldr_vld:
                # mount data to the proper device
                x_batch = {k: x_batch[k].to(self.device) for k in x_batch}
                y_batch = {k: y_batch[k].to(torch.float).to(self.device) for k in y_batch}

                # forward
                outputs = self.net_(x_batch)

                # calculate multitask loss
                for i, k in enumerate(self.tgt_modalities):
                    loss_task = loss_fn[k](outputs[k], y_batch[k])
                    losses_vld[i] += loss_task.detach().cpu().numpy().tolist()

                ''' TODO: change array to dictionary later '''
                outputs = torch.stack(list(outputs.values()), dim=1)
                y_batch = torch.stack(list(y_batch.values()), dim=1)

                # save outputs to evaluate performance later
                scores_vld.append(outputs.detach().to(torch.float).cpu())
                y_true_vld.append(y_batch.cpu())

                # update progress bar
                if self.verbose > 1:
                    batch_size = len(next(iter(x_batch.values())))
                    pbr_batch.update(batch_size, {})
                    pbr_batch.refresh()

                # clear cuda cache
                if "cuda" in self.device:
                    torch.cuda.empty_cache()

            # for better tqdm progress bar display
            if self.verbose > 1:
                pbr_batch.close()

            # calculate and print validation performance metrics
            scores_vld = torch.cat(scores_vld)
            y_true_vld = torch.cat(y_true_vld)
            y_pred_vld = (scores_vld > 0).to(torch.int)
            y_prob_vld = torch.sigmoid(scores_vld)
            met_vld = get_metrics_multitask(
                y_true_vld.numpy(),
                y_pred_vld.numpy(),
                y_prob_vld.numpy()
            )

            # add loss to metrics
            for i in range(len(self.tgt_modalities)):
                met_vld[i]['Loss'] = np.mean(losses_vld[i])

            if self.verbose > 2:
                print_metrics_multitask(met_vld)

            # save the model if it has the best validation performance criterion by far
            if self.criterion is None: continue
            
            # is current criterion better than previous best?
            curr_crit = np.mean([met_vld[i][self.criterion] for i in range(len(self.tgt_modalities))])
            if best_crit is None or np.isnan(best_crit):
                is_better = True
            elif self.criterion == 'Loss' and best_crit >= curr_crit:
                is_better = True
            elif self.criterion != 'Loss' and best_crit <= curr_crit:
                is_better = True
            else:
                is_better = False

            # update best criterion
            if is_better:
                best_crit = curr_crit
                best_state_dict = deepcopy(self.net_.state_dict())
                if self.save_intermediate_ckpts:
                    print("Saving the model...")
                    self.save(self.ckpt_path)

            if self.verbose > 2:
                print('Best {}: {}'.format(self.criterion, best_crit))

            if self.verbose == 1:
                with self._lock if self._lock is not None else suppress():
                    pbr_epoch.update(1)
                    pbr_epoch.refresh()

        if self.verbose == 1:
            with self._lock if self._lock is not None else suppress():
                pbr_epoch.close()

        # restore the model of the best validation performance across all epoches
        if ldr_vld is not None and self.criterion is not None:
            self.net_.load_state_dict(best_state_dict)

        return self

    def predict_logits(self,
        x: list[dict[str, Any]],
    ) -> list[dict[str, float]]:
        '''
        The input x can be a single sample or a list of samples.
        '''
        # input validation
        check_is_fitted(self)
        
        # for PyTorch computational efficiency
        torch.set_num_threads(1)

        # set model to eval mode
        torch.set_grad_enabled(False)
        self.net_.eval()

        # number of samples to evaluate
        n_samples = len(x)

        # format x
        fmt = Formatter(self.src_modalities)
        x = [fmt(smp) for smp in x]

        # generate missing mask (BEFORE IMPUTATION)
        msk = MissingMasker(self.src_modalities)
        mask = [msk(smp) for smp in x]

        # reformat x and then impute by 0s
        imp = ConstantImputer(self.src_modalities)
        x = [imp(smp) for smp in x]

        # convert list-of-dict to dict-of-list
        x = {k: [smp[k] for smp in x] for k in self.src_modalities}
        mask = {k: [smp[k] for smp in mask] for k in self.src_modalities}
        
        # to tensor
        x = {k: torch.as_tensor(np.array(v)).to(self.device) for k, v in x.items()}
        mask = {k: torch.as_tensor(np.array(v)).to(self.device) for k, v in mask.items()}

        # calculate logits
        logits = self.net_(x)

        # convert dict-of-list to list-of-dict
        logits = {k: logits[k].tolist() for k in self.tgt_modalities}
        logits = [{k: logits[k][i] for k in self.tgt_modalities} for i in range(n_samples)]

        return logits
        
    def predict_proba(self,
        x: list[dict[str, Any]],
        temperature: float = 1.0
    ) -> list[dict[str, float]]:
        ''' ... '''
        # calculate logits
        logits = self.predict_logits(x)
        
        # convert logits to probabilities and 
        proba = [{k: expit(smp[k] / temperature) for k in self.tgt_modalities} for smp in logits]
        return proba

    def predict(self,
        x: list[dict[str, Any]],
    ) -> list[dict[str, int]]:
        ''' ... '''
        proba = self.predict_proba(x)
        return [{k: int(smp[k] > 0.5) for k in self.tgt_modalities} for smp in proba]

    def save(self, filepath: str) -> None:
        ''' ... '''
        check_is_fitted(self)
        if self.data_parallel:
            state_dict = self.net_.module.state_dict()
        else:
            state_dict = self.net_.state_dict()

        # attach model hyper parameters
        state_dict['src_modalities'] = self.src_modalities
        state_dict['tgt_modalities'] = self.tgt_modalities
        state_dict['mri_feature'] = self.mri_feature

        torch.save(state_dict, filepath)

    def load(self, filepath: str, map_location: str='cpu') -> None:
        ''' ... '''
        # load state_dict
        state_dict = torch.load(filepath, map_location=map_location)

        # load data modalities
        self.src_modalities = state_dict.pop('src_modalities')
        self.tgt_modalities = state_dict.pop('tgt_modalities')

        # initialize model
        self.net_ = nn.ResNetModel(
                self.tgt_modalities,
                mri_feature = state_dict.pop('mri_feature')
            )

        # load model parameters
        self.net_.load_state_dict(state_dict)
        self.net_.to(self.device) 

    @classmethod
    def from_ckpt(cls, filepath: str, device='cpu') -> Self:
        ''' ... '''
        obj = cls(None, None, None,device=device)
        obj.load(filepath)
        return obj