File size: 8,739 Bytes
6fc43ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
import torch
import torch.nn as nn
import torchvision
from torchvision import models
from torch.nn import init
import torch.nn.functional as F
from icecream import ic


class ContBatchNorm3d(nn.modules.batchnorm._BatchNorm):
    def _check_input_dim(self, input):

        if input.dim() != 5:
            raise ValueError('expected 5D input (got {}D input)'.format(input.dim()))
        #super(ContBatchNorm3d, self)._check_input_dim(input)

    def forward(self, input):
        self._check_input_dim(input)
        return F.batch_norm(
            input, self.running_mean, self.running_var, self.weight, self.bias,
            True, self.momentum, self.eps)


class LUConv(nn.Module):
    def __init__(self, in_chan, out_chan, act):
        super(LUConv, self).__init__()
        self.conv1 = nn.Conv3d(in_chan, out_chan, kernel_size=3, padding=1)
        self.bn1 = ContBatchNorm3d(out_chan)

        if act == 'relu':
            self.activation = nn.ReLU(out_chan)
        elif act == 'prelu':
            self.activation = nn.PReLU(out_chan)
        elif act == 'elu':
            self.activation = nn.ELU(inplace=True)
        else:
            raise

    def forward(self, x):
        out = self.activation(self.bn1(self.conv1(x)))
        return out


def _make_nConv(in_channel, depth, act, double_chnnel=False):
    if double_chnnel:
        layer1 = LUConv(in_channel, 32 * (2 ** (depth+1)),act)
        layer2 = LUConv(32 * (2 ** (depth+1)), 32 * (2 ** (depth+1)),act)
    else:
        layer1 = LUConv(in_channel, 32*(2**depth),act)
        layer2 = LUConv(32*(2**depth), 32*(2**depth)*2,act)

    return nn.Sequential(layer1,layer2)


class DownTransition(nn.Module):
    def __init__(self, in_channel,depth, act):
        super(DownTransition, self).__init__()
        self.ops = _make_nConv(in_channel, depth,act)
        self.maxpool = nn.MaxPool3d(2)
        self.current_depth = depth

    def forward(self, x):
        if self.current_depth == 3:
            out = self.ops(x)
            out_before_pool = out
        else:
            out_before_pool = self.ops(x)
            out = self.maxpool(out_before_pool)
        return out, out_before_pool

class UpTransition(nn.Module):
    def __init__(self, inChans, outChans, depth,act):
        super(UpTransition, self).__init__()
        self.depth = depth
        self.up_conv = nn.ConvTranspose3d(inChans, outChans, kernel_size=2, stride=2)
        self.ops = _make_nConv(inChans+ outChans//2,depth, act, double_chnnel=True)

    def forward(self, x, skip_x):
        out_up_conv = self.up_conv(x)
        concat = torch.cat((out_up_conv,skip_x),1)
        out = self.ops(concat)
        return out

class OutputTransition(nn.Module):
    def __init__(self, inChans, n_labels):

        super(OutputTransition, self).__init__()
        self.final_conv = nn.Conv3d(inChans, n_labels, kernel_size=1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        out = self.sigmoid(self.final_conv(x))
        return out

class ConvLayer(nn.Module):
    def __init__(self, in_channels, out_channels, drop_rate, kernel, pooling, BN=True, relu_type='leaky'):
        super().__init__()
        kernel_size, kernel_stride, kernel_padding = kernel
        pool_kernel, pool_stride, pool_padding = pooling
        self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, kernel_stride, kernel_padding, bias=False)
        self.pooling = nn.MaxPool3d(pool_kernel, pool_stride, pool_padding)
        self.BN = nn.BatchNorm3d(out_channels)
        self.relu = nn.LeakyReLU(inplace=False) if relu_type=='leaky' else nn.ReLU(inplace=False)
        self.dropout = nn.Dropout(drop_rate, inplace=False) 
       
    def forward(self, x):
        x = self.conv(x)
        x = self.pooling(x)
        x = self.BN(x)
        x = self.relu(x)
        x = self.dropout(x)
        return x
    
class AttentionModule(nn.Module):
    def __init__(self, in_channels, out_channels, drop_rate=0.1):
        super(AttentionModule, self).__init__()
        self.conv = nn.Conv3d(in_channels, out_channels, 1, 1, 0, bias=False)
        self.attention = ConvLayer(in_channels, out_channels, drop_rate, (1, 1, 0), (1, 1, 0))

    def forward(self, x, return_attention=True):
        feats = self.conv(x)
        att = F.softmax(self.attention(x))

        out = feats * att

        if return_attention:
            return att, out
        
        return out 

class UNet3D(nn.Module):
    # the number of convolutions in each layer corresponds
    # to what is in the actual prototxt, not the intent
    def __init__(self, n_class=1, act='relu', pretrained=False, input_size=(1,1,182,218,182), attention=False, drop_rate=0.1, blocks=4):
        super(UNet3D, self).__init__()

        self.blocks = blocks
        self.down_tr64 = DownTransition(1,0,act)
        self.down_tr128 = DownTransition(64,1,act)
        self.down_tr256 = DownTransition(128,2,act)
        self.down_tr512 = DownTransition(256,3,act)

        self.up_tr256 = UpTransition(512, 512,2,act)
        self.up_tr128 = UpTransition(256,256, 1,act)
        self.up_tr64 = UpTransition(128,128,0,act)
        self.out_tr = OutputTransition(64, 1)

        self.pretrained = pretrained
        self.attention = attention
        if pretrained:
            print("Using image pretrained model checkpoint")
            weight_dir = '/home/skowshik/ADRD_repo/img_pretrained_ckpt/Genesis_Chest_CT.pt'
            checkpoint = torch.load(weight_dir)
            state_dict = checkpoint['state_dict']
            unParalled_state_dict = {}
            for key in state_dict.keys():
                unParalled_state_dict[key.replace("module.", "")] = state_dict[key]
            self.load_state_dict(unParalled_state_dict)
            del self.up_tr256
            del self.up_tr128
            del self.up_tr64
            del self.out_tr
        
        if self.blocks == 5:
            self.down_tr1024 = DownTransition(512,4,act)
            

        # self.conv1 = nn.Conv3d(512, 256, 1, 1, 0, bias=False)
        # self.conv2 = nn.Conv3d(256, 128, 1, 1, 0, bias=False)
        # self.conv3 = nn.Conv3d(128, 64, 1, 1, 0, bias=False)

        if attention:
            self.attention_module = AttentionModule(1024 if self.blocks==5 else 512, n_class, drop_rate=drop_rate)
        # Output.
        self.avgpool = nn.AvgPool3d((6,7,6), stride=(6,6,6))

        dummy_inp = torch.rand(input_size)
        dummy_feats = self.forward(dummy_inp, stage='get_features')
        dummy_feats = dummy_feats[0]
        self.in_features = list(dummy_feats.shape)
        ic(self.in_features)

        self._init_weights()

    def _init_weights(self):
        if not self.pretrained:
            for m in self.modules():
                if isinstance(m, nn.Conv3d):
                    init.kaiming_normal_(m.weight)
                elif isinstance(m, ContBatchNorm3d):
                    init.constant_(m.weight, 1)
                    init.constant_(m.bias, 0)
                elif isinstance(m, nn.Linear):
                    init.kaiming_normal_(m.weight)
                    init.constant_(m.bias, 0)
        elif self.attention:
            for m in self.attention_module.modules():
                if isinstance(m, nn.Conv3d):
                    init.kaiming_normal_(m.weight)
                elif isinstance(m, nn.BatchNorm3d):
                    init.constant_(m.weight, 1)
                    init.constant_(m.bias, 0)
        else:
            pass
        # Zero initialize the last batchnorm in each residual branch.
        # for m in self.modules():
        #     if isinstance(m, BottleneckBlock):
        #         init.constant_(m.out_conv.bn.weight, 0)
    
    def forward(self, x, stage='normal', attention=False):
        ic('backbone forward')
        self.out64, self.skip_out64 = self.down_tr64(x)
        self.out128,self.skip_out128 = self.down_tr128(self.out64)
        self.out256,self.skip_out256 = self.down_tr256(self.out128)
        self.out512,self.skip_out512 = self.down_tr512(self.out256)
        if self.blocks == 5:
            self.out1024,self.skip_out1024 = self.down_tr1024(self.out512)
            ic(self.out1024.shape)
        # self.out = self.conv1(self.out512)
        # self.out = self.conv2(self.out)
        # self.out = self.conv3(self.out)
        # self.out = self.conv(self.out)
        ic(hasattr(self, 'attention_module'))
        if hasattr(self, 'attention_module'):
            att, feats = self.attention_module(self.out1024 if self.blocks==5 else self.out512)
        else:
            feats = self.out1024 if self.blocks==5 else self.out512
        ic(feats.shape)
        if attention:
            return att, feats
        return feats