File size: 40,658 Bytes
6fc43ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 |
__all__ = ['ADRDModel']
import wandb
import torch
from torch.utils.data import DataLoader
import numpy as np
import tqdm
import multiprocessing
from sklearn.base import BaseEstimator
from sklearn.utils.validation import check_is_fitted
from sklearn.model_selection import train_test_split
from scipy.special import expit
from copy import deepcopy
from contextlib import suppress
from typing import Any, Self, Type
from functools import wraps
from tqdm import tqdm
Tensor = Type[torch.Tensor]
Module = Type[torch.nn.Module]
# for DistributedDataParallel
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from .. import nn
from ..nn import Transformer
from ..utils import TransformerTrainingDataset, TransformerBalancedTrainingDataset, TransformerValidationDataset, TransformerTestingDataset, Transformer2ndOrderBalancedTrainingDataset
from ..utils.misc import ProgressBar
from ..utils.misc import get_metrics_multitask, print_metrics_multitask
from ..utils.misc import convert_args_kwargs_to_kwargs
def _manage_ctx_fit(func):
''' ... '''
@wraps(func)
def wrapper(*args, **kwargs):
# format arguments
kwargs = convert_args_kwargs_to_kwargs(func, args, kwargs)
if kwargs['self']._device_ids is None:
return func(**kwargs)
else:
# change primary device
default_device = kwargs['self'].device
kwargs['self'].device = kwargs['self']._device_ids[0]
rtn = func(**kwargs)
kwargs['self'].to(default_device)
return rtn
return wrapper
class ADRDModel(BaseEstimator):
"""Primary model class for ADRD framework.
The ADRDModel encapsulates the core pipeline of the ADRD framework,
permitting users to train and validate with the provided data. Designed for
user-friendly operation, the ADRDModel is derived from
``sklearn.base.BaseEstimator``, ensuring compliance with the well-established
API design conventions of scikit-learn.
"""
def __init__(self,
src_modalities: dict[str, dict[str, Any]],
tgt_modalities: dict[str, dict[str, Any]],
label_fractions: dict[str, float],
d_model: int = 32,
nhead: int = 1,
num_encoder_layers: int = 1,
num_decoder_layers: int = 1,
num_epochs: int = 32,
batch_size: int = 8,
batch_size_multiplier: int = 1,
lr: float = 1e-2,
weight_decay: float = 0.0,
beta: float = 0.9999,
gamma: float = 2.0,
criterion: str | None = None,
device: str = 'cpu',
cuda_devices: list = [1],
img_net: str | None = None,
imgnet_layers: int | None = 2,
img_size: int | None = 128,
fusion_stage: str = 'middle',
patch_size: int | None = 16,
imgnet_ckpt: str | None = None,
train_imgnet: bool = False,
ckpt_path: str = './adrd_tool/adrd/dev/ckpt/ckpt.pt',
load_from_ckpt: bool = False,
save_intermediate_ckpts: bool = False,
data_parallel: bool = False,
verbose: int = 0,
wandb_ = 0,
balanced_sampling: bool = False,
label_distribution: dict = {},
ranking_loss: bool = False,
_device_ids: list | None = None,
_dataloader_num_workers: int = 4,
_amp_enabled: bool = False,
) -> None:
"""Create a new ADRD model.
:param src_modalities: _description_
:type src_modalities: dict[str, dict[str, Any]]
:param tgt_modalities: _description_
:type tgt_modalities: dict[str, dict[str, Any]]
:param label_fractions: _description_
:type label_fractions: dict[str, float]
:param d_model: _description_, defaults to 32
:type d_model: int, optional
:param nhead: number of transformer heads, defaults to 1
:type nhead: int, optional
:param num_encoder_layers: number of encoder layers, defaults to 1
:type num_encoder_layers: int, optional
:param num_decoder_layers: number of decoder layers, defaults to 1
:type num_decoder_layers: int, optional
:param num_epochs: number of training epochs, defaults to 32
:type num_epochs: int, optional
:param batch_size: batch size, defaults to 8
:type batch_size: int, optional
:param batch_size_multiplier: _description_, defaults to 1
:type batch_size_multiplier: int, optional
:param lr: learning rate, defaults to 1e-2
:type lr: float, optional
:param weight_decay: _description_, defaults to 0.0
:type weight_decay: float, optional
:param beta: _description_, defaults to 0.9999
:type beta: float, optional
:param gamma: The focusing parameter for the focal loss. Higher values of gamma make easy-to-classify examples contribute less to the loss relative to hard-to-classify examples. Must be non-negative., defaults to 2.0
:type gamma: float, optional
:param criterion: The criterion to select the best model, defaults to None
:type criterion: str | None, optional
:param device: 'cuda' or 'cpu', defaults to 'cpu'
:type device: str, optional
:param cuda_devices: A list of gpu numbers to data parallel training. The device must be set to 'cuda' and data_parallel must be set to True, defaults to [1]
:type cuda_devices: list, optional
:param img_net: _description_, defaults to None
:type img_net: str | None, optional
:param imgnet_layers: _description_, defaults to 2
:type imgnet_layers: int | None, optional
:param img_size: _description_, defaults to 128
:type img_size: int | None, optional
:param fusion_stage: _description_, defaults to 'middle'
:type fusion_stage: str, optional
:param patch_size: _description_, defaults to 16
:type patch_size: int | None, optional
:param imgnet_ckpt: _description_, defaults to None
:type imgnet_ckpt: str | None, optional
:param train_imgnet: Set to True to finetune the img_net backbone, defaults to False
:type train_imgnet: bool, optional
:param ckpt_path: The model checkpoint point path, defaults to './adrd_tool/adrd/dev/ckpt/ckpt.pt'
:type ckpt_path: str, optional
:param load_from_ckpt: Set to True to load the model weights from checkpoint ckpt_path, defaults to False
:type load_from_ckpt: bool, optional
:param save_intermediate_ckpts: Set to True to save intermediate model checkpoints, defaults to False
:type save_intermediate_ckpts: bool, optional
:param data_parallel: Set to True to enable data parallel trsining, defaults to False
:type data_parallel: bool, optional
:param verbose: _description_, defaults to 0
:type verbose: int, optional
:param wandb_: Set to 1 to track the loss and accuracy curves on wandb, defaults to 0
:type wandb_: int, optional
:param balanced_sampling: _description_, defaults to False
:type balanced_sampling: bool, optional
:param label_distribution: _description_, defaults to {}
:type label_distribution: dict, optional
:param ranking_loss: _description_, defaults to False
:type ranking_loss: bool, optional
:param _device_ids: _description_, defaults to None
:type _device_ids: list | None, optional
:param _dataloader_num_workers: _description_, defaults to 4
:type _dataloader_num_workers: int, optional
:param _amp_enabled: _description_, defaults to False
:type _amp_enabled: bool, optional
"""
# for multiprocessing
self._rank = 0
self._lock = None
# positional parameters
self.src_modalities = src_modalities
self.tgt_modalities = tgt_modalities
# training parameters
self.label_fractions = label_fractions
self.d_model = d_model
self.nhead = nhead
self.num_encoder_layers = num_encoder_layers
self.num_decoder_layers = num_decoder_layers
self.num_epochs = num_epochs
self.batch_size = batch_size
self.batch_size_multiplier = batch_size_multiplier
self.lr = lr
self.weight_decay = weight_decay
self.beta = beta
self.gamma = gamma
self.criterion = criterion
self.device = device
self.cuda_devices = cuda_devices
self.img_net = img_net
self.patch_size = patch_size
self.img_size = img_size
self.fusion_stage = fusion_stage
self.imgnet_ckpt = imgnet_ckpt
self.imgnet_layers = imgnet_layers
self.train_imgnet = train_imgnet
self.ckpt_path = ckpt_path
self.load_from_ckpt = load_from_ckpt
self.save_intermediate_ckpts = save_intermediate_ckpts
self.data_parallel = data_parallel
self.verbose = verbose
self.label_distribution = label_distribution
self.wandb_ = wandb_
self.balanced_sampling = balanced_sampling
self.ranking_loss = ranking_loss
self._device_ids = _device_ids
self._dataloader_num_workers = _dataloader_num_workers
self._amp_enabled = _amp_enabled
self.scaler = torch.cuda.amp.GradScaler()
# self._init_net()
@_manage_ctx_fit
def fit(self, x_trn, x_vld, y_trn, y_vld, img_train_trans=None, img_vld_trans=None, img_mode=0) -> Self:
# def fit(self, x, y) -> Self:
''' ... '''
# start a new wandb run to track this script
if self.wandb_ == 1:
wandb.init(
# set the wandb project where this run will be logged
project="ADRD_main",
# track hyperparameters and run metadata
config={
"Loss": 'Focalloss',
"ranking_loss": self.ranking_loss,
"img architecture": self.img_net,
"EMB": "ALL_SEQ",
"epochs": self.num_epochs,
"d_model": self.d_model,
# 'positional encoding': 'Diff PE',
'Balanced Sampling': self.balanced_sampling,
'Shared CNN': 'Yes',
}
)
wandb.run.log_code(".")
else:
wandb.init(mode="disabled")
# for PyTorch computational efficiency
torch.set_num_threads(1)
# print(img_train_trans)
# initialize neural network
print(self.criterion)
print(f"Ranking loss: {self.ranking_loss}")
print(f"Batch size: {self.batch_size}")
print(f"Batch size multiplier: {self.batch_size_multiplier}")
if img_mode in [0,1,2]:
for k, info in self.src_modalities.items():
if info['type'] == 'imaging':
if 'densenet' in self.img_net.lower() and 'emb' not in self.img_net.lower():
info['shape'] = (1,) + self.img_size
info['img_shape'] = (1,) + self.img_size
elif 'emb' not in self.img_net.lower():
info['shape'] = (1,) + (self.img_size,) * 3
info['img_shape'] = (1,) + (self.img_size,) * 3
elif 'swinunetr' in self.img_net.lower():
info['shape'] = (1, 768, 4, 4, 4)
info['img_shape'] = (1, 768, 4, 4, 4)
self._init_net()
ldr_trn, ldr_vld = self._init_dataloader(x_trn, x_vld, y_trn, y_vld, img_train_trans=img_train_trans, img_vld_trans=img_vld_trans)
# initialize optimizer and scheduler
if not self.load_from_ckpt:
self.optimizer = self._init_optimizer()
self.scheduler = self._init_scheduler(self.optimizer)
# gradient scaler for AMP
if self._amp_enabled:
self.scaler = torch.cuda.amp.GradScaler()
# initialize the focal losses
self.loss_fn = {}
for k in self.tgt_modalities:
if self.label_fractions[k] >= 0.3:
alpha = -1
else:
alpha = pow((1 - self.label_fractions[k]), 2)
# alpha = -1
self.loss_fn[k] = nn.SigmoidFocalLoss(
alpha = alpha,
gamma = self.gamma,
reduction = 'none'
)
# to record the best validation performance criterion
if self.criterion is not None:
best_crit = None
best_crit_AUPR = None
# progress bar for epoch loops
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch = tqdm.tqdm(
desc = 'Rank {:02d}'.format(self._rank),
total = self.num_epochs,
position = self._rank,
ascii = True,
leave = False,
bar_format='{l_bar}{r_bar}'
)
self.skip_embedding = {}
for k, info in self.src_modalities.items():
# if info['type'] == 'imaging':
# if not self.img_net:
# self.skip_embedding[k] = True
# else:
self.skip_embedding[k] = False
self.grad_list = []
# Define a hook function to print and store the gradient of a layer
def print_and_store_grad(grad):
self.grad_list.append(grad)
# print(grad)
# initialize the ranking loss
self.lambda_coeff = 0.005
self.margin = 0.25
self.margin_loss = torch.nn.MarginRankingLoss(reduction='sum', margin=self.margin)
# training loop
for epoch in range(self.start_epoch, self.num_epochs):
met_trn = self.train_one_epoch(ldr_trn, epoch)
met_vld = self.validate_one_epoch(ldr_vld, epoch)
print(self.ckpt_path.split('/')[-1])
# save the model if it has the best validation performance criterion by far
if self.criterion is None: continue
# is current criterion better than previous best?
curr_crit = np.mean([met_vld[i][self.criterion] for i in range(len(self.tgt_modalities))])
curr_crit_AUPR = np.mean([met_vld[i]["AUC (PR)"] for i in range(len(self.tgt_modalities))])
# AUROC
if best_crit is None or np.isnan(best_crit):
is_better = True
elif self.criterion == 'Loss' and best_crit >= curr_crit:
is_better = True
elif self.criterion != 'Loss' and best_crit <= curr_crit :
is_better = True
else:
is_better = False
# AUPR
if best_crit_AUPR is None or np.isnan(best_crit_AUPR):
is_better_AUPR = True
elif best_crit_AUPR <= curr_crit_AUPR :
is_better_AUPR = True
else:
is_better_AUPR = False
# update best criterion
if is_better_AUPR:
best_crit_AUPR = curr_crit_AUPR
if self.save_intermediate_ckpts:
print(f"Saving the model to {self.ckpt_path[:-3]}_AUPR.pt...")
self.save(self.ckpt_path[:-3]+"_AUPR.pt", epoch)
if is_better:
best_crit = curr_crit
best_state_dict = deepcopy(self.net_.state_dict())
if self.save_intermediate_ckpts:
print(f"Saving the model to {self.ckpt_path}...")
self.save(self.ckpt_path, epoch)
if self.verbose > 2:
print('Best {}: {}'.format(self.criterion, best_crit))
print('Best {}: {}'.format('AUC (PR)', best_crit_AUPR))
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch.update(1)
pbr_epoch.refresh()
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch.close()
return self
def train_one_epoch(self, ldr_trn, epoch):
# progress bar for batch loops
if self.verbose > 1:
pbr_batch = ProgressBar(len(ldr_trn.dataset), 'Epoch {:03d} (TRN)'.format(epoch))
# set model to train mode
torch.set_grad_enabled(True)
self.net_.train()
scores_trn, y_true_trn, y_mask_trn = [], [], []
losses_trn = [[] for _ in self.tgt_modalities]
iters = len(ldr_trn)
for n_iter, (x_batch, y_batch, mask, y_mask) in enumerate(ldr_trn):
# mount data to the proper device
x_batch = {k: x_batch[k].to(self.device) for k in x_batch}
y_batch = {k: y_batch[k].to(torch.float).to(self.device) for k in y_batch}
mask = {k: mask[k].to(self.device) for k in mask}
y_mask = {k: y_mask[k].to(self.device) for k in y_mask}
with torch.autocast(
device_type = 'cpu' if self.device == 'cpu' else 'cuda',
dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
enabled = self._amp_enabled,
):
outputs = self.net_(x_batch, mask, skip_embedding=self.skip_embedding)
# calculate multitask loss
loss = 0
# for initial 10 epochs, only the focal loss is used for stable training
if self.ranking_loss:
if epoch < 10:
loss = 0
else:
for i, k in enumerate(self.tgt_modalities):
for ii, kk in enumerate(self.tgt_modalities):
if ii>i:
pairs = (y_mask[k] == 1) & (y_mask[kk] == 1)
total_elements = (torch.abs(y_batch[k][pairs]-y_batch[kk][pairs])).sum()
if total_elements != 0:
loss += self.lambda_coeff * (self.margin_loss(torch.sigmoid(outputs[k])[pairs],torch.sigmoid(outputs[kk][pairs]),y_batch[k][pairs]-y_batch[kk][pairs]))/total_elements
for i, k in enumerate(self.tgt_modalities):
loss_task = self.loss_fn[k](outputs[k], y_batch[k])
msk_loss_task = loss_task * y_mask[k]
msk_loss_mean = msk_loss_task.sum() / y_mask[k].sum()
# msk_loss_mean = msk_loss_task.sum()
loss += msk_loss_mean
losses_trn[i] += msk_loss_task.detach().cpu().numpy().tolist()
# backward
loss = loss / self.batch_size_multiplier
if self._amp_enabled:
self.scaler.scale(loss).backward()
else:
loss.backward()
if len(self.grad_list) > 0:
print(len(self.grad_list), len(self.grad_list[-1]))
print(f"Gradient at {n_iter}: {self.grad_list[-1][0]}")
# print("img_MRI_T1_1 ", self.net_.modules_emb_src.img_MRI_T1_1.img_model.features[0].weight)
# print("img_MRI_T1_1 ", self.net_.modules_emb_src.img_MRI_T1_1.downsample[0].weight)
# update parameters
if n_iter != 0 and n_iter % self.batch_size_multiplier == 0:
if self._amp_enabled:
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
else:
self.optimizer.step()
self.optimizer.zero_grad()
# set self.scheduler
self.scheduler.step(epoch + n_iter / iters)
''' TODO: change array to dictionary later '''
outputs = torch.stack(list(outputs.values()), dim=1)
y_batch = torch.stack(list(y_batch.values()), dim=1)
y_mask = torch.stack(list(y_mask.values()), dim=1)
# save outputs to evaluate performance later
scores_trn.append(outputs.detach().to(torch.float).cpu())
y_true_trn.append(y_batch.cpu())
y_mask_trn.append(y_mask.cpu())
# update progress bar
if self.verbose > 1:
batch_size = len(next(iter(x_batch.values())))
pbr_batch.update(batch_size, {})
pbr_batch.refresh()
# clear cuda cache
if "cuda" in self.device:
torch.cuda.empty_cache()
# for better tqdm progress bar display
if self.verbose > 1:
pbr_batch.close()
# calculate and print training performance metrics
scores_trn = torch.cat(scores_trn)
y_true_trn = torch.cat(y_true_trn)
y_mask_trn = torch.cat(y_mask_trn)
y_pred_trn = (scores_trn > 0).to(torch.int)
y_prob_trn = torch.sigmoid(scores_trn)
met_trn = get_metrics_multitask(
y_true_trn.numpy(),
y_pred_trn.numpy(),
y_prob_trn.numpy(),
y_mask_trn.numpy()
)
# add loss to metrics
for i in range(len(self.tgt_modalities)):
met_trn[i]['Loss'] = np.mean(losses_trn[i])
# log metrics to wandb
wandb.log({f"Train loss {list(self.tgt_modalities)[i]}": met_trn[i]['Loss'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train Balanced Accuracy {list(self.tgt_modalities)[i]}": met_trn[i]['Balanced Accuracy'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train AUC (ROC) {list(self.tgt_modalities)[i]}": met_trn[i]['AUC (ROC)'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train AUPR {list(self.tgt_modalities)[i]}": met_trn[i]['AUC (PR)'] for i in range(len(self.tgt_modalities))}, step=epoch)
if self.verbose > 2:
print_metrics_multitask(met_trn)
return met_trn
def validate_one_epoch(self, ldr_vld, epoch):
# # progress bar for validation
if self.verbose > 1:
pbr_batch = ProgressBar(len(ldr_vld.dataset), 'Epoch {:03d} (VLD)'.format(epoch))
# set model to validation mode
torch.set_grad_enabled(False)
self.net_.eval()
scores_vld, y_true_vld, y_mask_vld = [], [], []
losses_vld = [[] for _ in self.tgt_modalities]
for x_batch, y_batch, mask, y_mask in ldr_vld:
# if len(next(iter(x_batch.values()))) < self.batch_size:
# break
# mount data to the proper device
x_batch = {k: x_batch[k].to(self.device) for k in x_batch} # if 'img' not in k}
# x_img_batch = {k: x_img_batch[k].to(self.device) for k in x_img_batch}
y_batch = {k: y_batch[k].to(torch.float).to(self.device) for k in y_batch}
mask = {k: mask[k].to(self.device) for k in mask}
y_mask = {k: y_mask[k].to(self.device) for k in y_mask}
# forward
with torch.autocast(
device_type = 'cpu' if self.device == 'cpu' else 'cuda',
dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
enabled = self._amp_enabled
):
outputs = self.net_(x_batch, mask, skip_embedding=self.skip_embedding)
# calculate multitask loss
for i, k in enumerate(self.tgt_modalities):
loss_task = self.loss_fn[k](outputs[k], y_batch[k])
msk_loss_task = loss_task * y_mask[k]
losses_vld[i] += msk_loss_task.detach().cpu().numpy().tolist()
''' TODO: change array to dictionary later '''
outputs = torch.stack(list(outputs.values()), dim=1)
y_batch = torch.stack(list(y_batch.values()), dim=1)
y_mask = torch.stack(list(y_mask.values()), dim=1)
# save outputs to evaluate performance later
scores_vld.append(outputs.detach().to(torch.float).cpu())
y_true_vld.append(y_batch.cpu())
y_mask_vld.append(y_mask.cpu())
# update progress bar
if self.verbose > 1:
batch_size = len(next(iter(x_batch.values())))
pbr_batch.update(batch_size, {})
pbr_batch.refresh()
# clear cuda cache
if "cuda" in self.device:
torch.cuda.empty_cache()
# for better tqdm progress bar display
if self.verbose > 1:
pbr_batch.close()
# calculate and print validation performance metrics
scores_vld = torch.cat(scores_vld)
y_true_vld = torch.cat(y_true_vld)
y_mask_vld = torch.cat(y_mask_vld)
y_pred_vld = (scores_vld > 0).to(torch.int)
y_prob_vld = torch.sigmoid(scores_vld)
met_vld = get_metrics_multitask(
y_true_vld.numpy(),
y_pred_vld.numpy(),
y_prob_vld.numpy(),
y_mask_vld.numpy()
)
# add loss to metrics
for i in range(len(self.tgt_modalities)):
met_vld[i]['Loss'] = np.mean(losses_vld[i])
wandb.log({f"Validation loss {list(self.tgt_modalities)[i]}": met_vld[i]['Loss'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation Balanced Accuracy {list(self.tgt_modalities)[i]}": met_vld[i]['Balanced Accuracy'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation AUC (ROC) {list(self.tgt_modalities)[i]}": met_vld[i]['AUC (ROC)'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation AUPR {list(self.tgt_modalities)[i]}": met_vld[i]['AUC (PR)'] for i in range(len(self.tgt_modalities))}, step=epoch)
if self.verbose > 2:
print_metrics_multitask(met_vld)
return met_vld
def predict_logits(self,
x: list[dict[str, Any]],
_batch_size: int | None = None,
skip_embedding: dict | None = None,
img_transform: Any | None = None,
) -> list[dict[str, float]]:
'''
The input x can be a single sample or a list of samples.
'''
# input validation
check_is_fitted(self)
print(self.device)
# for PyTorch computational efficiency
torch.set_num_threads(1)
# set model to eval mode
torch.set_grad_enabled(False)
self.net_.eval()
# intialize dataset and dataloader object
dat = TransformerTestingDataset(x, self.src_modalities, img_transform=img_transform)
ldr = DataLoader(
dataset = dat,
batch_size = _batch_size if _batch_size is not None else len(x),
shuffle = False,
drop_last = False,
num_workers = 0,
collate_fn = TransformerTestingDataset.collate_fn,
)
# print("dataloader done")
# run model and collect results
logits: list[dict[str, float]] = []
for x_batch, mask in tqdm(ldr):
# mount data to the proper device
# print(x_batch['his_SEX'])
x_batch = {k: x_batch[k].to(self.device) for k in x_batch}
mask = {k: mask[k].to(self.device) for k in mask}
# forward
output: dict[str, Tensor] = self.net_(x_batch, mask, skip_embedding)
# convert output from dict-of-list to list of dict, then append
tmp = {k: output[k].tolist() for k in self.tgt_modalities}
tmp = [{k: tmp[k][i] for k in self.tgt_modalities} for i in range(len(next(iter(tmp.values()))))]
logits += tmp
return logits
def predict_proba(self,
x: list[dict[str, Any]],
skip_embedding: dict | None = None,
temperature: float = 1.0,
_batch_size: int | None = None,
img_transform: Any | None = None,
) -> list[dict[str, float]]:
''' ... '''
logits = self.predict_logits(x=x, _batch_size=_batch_size, img_transform=img_transform, skip_embedding=skip_embedding)
print("got logits")
return logits, [{k: expit(smp[k] / temperature) for k in self.tgt_modalities} for smp in logits]
def predict(self,
x: list[dict[str, Any]],
skip_embedding: dict | None = None,
fpr: dict[str, Any] | None = None,
tpr: dict[str, Any] | None = None,
thresholds: dict[str, Any] | None = None,
_batch_size: int | None = None,
img_transform: Any | None = None,
) -> list[dict[str, int]]:
''' ... '''
if fpr is None or tpr is None or thresholds is None:
logits, proba = self.predict_proba(x, _batch_size=_batch_size, img_transform=img_transform, skip_embedding=skip_embedding)
print("got proba")
return logits, proba, [{k: int(smp[k] > 0.5) for k in self.tgt_modalities} for smp in proba]
else:
logits, proba = self.predict_proba(x, _batch_size=_batch_size, img_transform=img_transform, skip_embedding=skip_embedding)
print("got proba")
youden_index = {}
thr = {}
for i, k in enumerate(self.tgt_modalities):
youden_index[k] = tpr[i] - fpr[i]
thr[k] = thresholds[i][np.argmax(youden_index[k])]
# print(thr[k])
# print(thr)
return logits, proba, [{k: int(smp[k] > thr[k]) for k in self.tgt_modalities} for smp in proba]
def save(self, filepath: str, epoch: int) -> None:
"""Save the model to the given file stream.
:param filepath: _description_
:type filepath: str
:param epoch: _description_
:type epoch: int
"""
check_is_fitted(self)
if self.data_parallel:
state_dict = self.net_.module.state_dict()
else:
state_dict = self.net_.state_dict()
# attach model hyper parameters
state_dict['src_modalities'] = self.src_modalities
state_dict['tgt_modalities'] = self.tgt_modalities
state_dict['d_model'] = self.d_model
state_dict['nhead'] = self.nhead
state_dict['num_encoder_layers'] = self.num_encoder_layers
state_dict['num_decoder_layers'] = self.num_decoder_layers
state_dict['optimizer'] = self.optimizer
state_dict['img_net'] = self.img_net
state_dict['imgnet_layers'] = self.imgnet_layers
state_dict['img_size'] = self.img_size
state_dict['patch_size'] = self.patch_size
state_dict['imgnet_ckpt'] = self.imgnet_ckpt
state_dict['train_imgnet'] = self.train_imgnet
state_dict['epoch'] = epoch
if self.scaler is not None:
state_dict['scaler'] = self.scaler.state_dict()
if self.label_distribution:
state_dict['label_distribution'] = self.label_distribution
torch.save(state_dict, filepath)
def load(self, filepath: str, map_location: str = 'cpu', img_dict=None) -> None:
"""Load a model from the given file stream.
:param filepath: _description_
:type filepath: str
:param map_location: _description_, defaults to 'cpu'
:type map_location: str, optional
:param img_dict: _description_, defaults to None
:type img_dict: _type_, optional
"""
# load state_dict
state_dict = torch.load(filepath, map_location=map_location)
# load data modalities
self.src_modalities: dict[str, dict[str, Any]] = state_dict.pop('src_modalities')
self.tgt_modalities: dict[str, dict[str, Any]] = state_dict.pop('tgt_modalities')
if 'label_distribution' in state_dict:
self.label_distribution: dict[str, dict[int, int]] = state_dict.pop('label_distribution')
if 'optimizer' in state_dict:
self.optimizer = state_dict.pop('optimizer')
# initialize model
self.d_model = state_dict.pop('d_model')
self.nhead = state_dict.pop('nhead')
self.num_encoder_layers = state_dict.pop('num_encoder_layers')
self.num_decoder_layers = state_dict.pop('num_decoder_layers')
if 'epoch' in state_dict.keys():
self.start_epoch = state_dict.pop('epoch')
if img_dict is None:
self.img_net = state_dict.pop('img_net')
self.imgnet_layers = state_dict.pop('imgnet_layers')
self.img_size = state_dict.pop('img_size')
self.patch_size = state_dict.pop('patch_size')
self.imgnet_ckpt = state_dict.pop('imgnet_ckpt')
self.train_imgnet = state_dict.pop('train_imgnet')
else:
self.img_net = img_dict['img_net']
self.imgnet_layers = img_dict['imgnet_layers']
self.img_size = img_dict['img_size']
self.patch_size = img_dict['patch_size']
self.imgnet_ckpt = img_dict['imgnet_ckpt']
self.train_imgnet = img_dict['train_imgnet']
state_dict.pop('img_net')
state_dict.pop('imgnet_layers')
state_dict.pop('img_size')
state_dict.pop('patch_size')
state_dict.pop('imgnet_ckpt')
state_dict.pop('train_imgnet')
for k, info in self.src_modalities.items():
if info['type'] == 'imaging':
if 'emb' not in self.img_net.lower():
info['shape'] = (1,) + (self.img_size,) * 3
info['img_shape'] = (1,) + (self.img_size,) * 3
elif 'swinunetr' in self.img_net.lower():
info['shape'] = (1, 768, 4, 4, 4)
info['img_shape'] = (1, 768, 4, 4, 4)
# print(info['shape'])
self.net_ = Transformer(self.src_modalities, self.tgt_modalities, self.d_model, self.nhead, self.num_encoder_layers, self.num_decoder_layers, self.device, self.cuda_devices, self.img_net, self.imgnet_layers, self.img_size, self.patch_size, self.imgnet_ckpt, self.train_imgnet, self.fusion_stage)
if 'scaler' in state_dict and state_dict['scaler']:
self.scaler.load_state_dict(state_dict.pop('scaler'))
self.net_.load_state_dict(state_dict)
check_is_fitted(self)
self.net_.to(self.device)
def to(self, device: str) -> Self:
"""Mount the model to the given device.
:param device: _description_
:type device: str
:return: _description_
:rtype: Self
"""
self.device = device
if hasattr(self, 'model'): self.net_ = self.net_.to(device)
if hasattr(self, 'img_model'): self.img_model = self.img_model.to(device)
return self
@classmethod
def from_ckpt(cls, filepath: str, device='cpu', img_dict=None) -> Self:
"""Create a new ADRD model and load parameters from the checkpoint.
This is an alternative constructor.
:param filepath: _description_
:type filepath: str
:param device: _description_, defaults to 'cpu'
:type device: str, optional
:param img_dict: _description_, defaults to None
:type img_dict: _type_, optional
:return: _description_
:rtype: Self
"""
obj = cls(None, None, None,device=device)
if device == 'cuda':
obj.device = "{}:{}".format(obj.device, str(obj.cuda_devices[0]))
print(obj.device)
obj.load(filepath, map_location=obj.device, img_dict=img_dict)
return obj
def _init_net(self):
""" ... """
# set the device for use
if self.device == 'cuda':
self.device = "{}:{}".format(self.device, str(self.cuda_devices[0]))
print("Device: " + self.device)
self.start_epoch = 0
if self.load_from_ckpt:
try:
print("Loading model from checkpoint...")
self.load(self.ckpt_path, map_location=self.device)
except:
print("Cannot load from checkpoint. Initializing new model...")
self.load_from_ckpt = False
if not self.load_from_ckpt:
self.net_ = nn.Transformer(
src_modalities = self.src_modalities,
tgt_modalities = self.tgt_modalities,
d_model = self.d_model,
nhead = self.nhead,
num_encoder_layers = self.num_encoder_layers,
num_decoder_layers = self.num_decoder_layers,
device = self.device,
cuda_devices = self.cuda_devices,
img_net = self.img_net,
layers = self.imgnet_layers,
img_size = self.img_size,
patch_size = self.patch_size,
imgnet_ckpt = self.imgnet_ckpt,
train_imgnet = self.train_imgnet,
fusion_stage = self.fusion_stage,
)
# intialize model parameters using xavier_uniform
for name, p in self.net_.named_parameters():
if p.dim() > 1:
torch.nn.init.xavier_uniform_(p)
self.net_.to(self.device)
# Initialize the number of GPUs
if self.data_parallel and torch.cuda.device_count() > 1:
print("Available", torch.cuda.device_count(), "GPUs!")
self.net_ = torch.nn.DataParallel(self.net_, device_ids=self.cuda_devices)
# return net
def _init_dataloader(self, x_trn, x_vld, y_trn, y_vld, img_train_trans=None, img_vld_trans=None):
# initialize dataset and dataloader
if self.balanced_sampling:
dat_trn = Transformer2ndOrderBalancedTrainingDataset(
x_trn, y_trn,
self.src_modalities,
self.tgt_modalities,
dropout_rate = .5,
dropout_strategy = 'permutation',
img_transform=img_train_trans,
)
else:
dat_trn = TransformerTrainingDataset(
x_trn, y_trn,
self.src_modalities,
self.tgt_modalities,
dropout_rate = .5,
dropout_strategy = 'permutation',
img_transform=img_train_trans,
)
dat_vld = TransformerValidationDataset(
x_vld, y_vld,
self.src_modalities,
self.tgt_modalities,
img_transform=img_vld_trans,
)
ldr_trn = DataLoader(
dataset = dat_trn,
batch_size = self.batch_size,
shuffle = True,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = TransformerTrainingDataset.collate_fn,
# pin_memory = True
)
ldr_vld = DataLoader(
dataset = dat_vld,
batch_size = self.batch_size,
shuffle = False,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = TransformerValidationDataset.collate_fn,
# pin_memory = True
)
return ldr_trn, ldr_vld
def _init_optimizer(self):
""" ... """
params = list(self.net_.parameters())
return torch.optim.AdamW(
params,
lr = self.lr,
betas = (0.9, 0.98),
weight_decay = self.weight_decay
)
def _init_scheduler(self, optimizer):
""" ... """
return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer=optimizer,
T_0=64,
T_mult=2,
eta_min = 0,
verbose=(self.verbose > 2)
)
def _init_loss_func(self,
num_per_cls: dict[str, tuple[int, int]],
) -> dict[str, Module]:
""" ... """
return {k: nn.SigmoidFocalLossBeta(
beta = self.beta,
gamma = self.gamma,
num_per_cls = num_per_cls[k],
reduction = 'none',
) for k in self.tgt_modalities}
def _proc_fit(self):
""" ... """
|