File size: 22,783 Bytes
6fc43ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
__all__ = ['Transformer']

import torch
from torch.utils.data import DataLoader
import numpy as np
import tqdm
from sklearn.base import BaseEstimator
from sklearn.utils.validation import check_is_fitted
from sklearn.model_selection import train_test_split
from scipy.special import expit
from copy import deepcopy
from contextlib import suppress
from typing import Any, Self, Type
from functools import wraps
Tensor = Type[torch.Tensor]
Module = Type[torch.nn.Module]

from .. import nn
from ..utils import TransformerTrainingDataset
from ..utils import TransformerBalancedTrainingDataset
from ..utils import Transformer2ndOrderBalancedTrainingDataset
from ..utils import TransformerValidationDataset
from ..utils import TransformerTestingDataset
from ..utils.misc import ProgressBar
from ..utils.misc import get_metrics_multitask, print_metrics_multitask
from ..utils.misc import convert_args_kwargs_to_kwargs


def _manage_ctx_fit(func):
    ''' ... '''
    @wraps(func)
    def wrapper(*args, **kwargs):
        # format arguments
        kwargs = convert_args_kwargs_to_kwargs(func, args, kwargs)

        if kwargs['self']._device_ids is None:
            return func(**kwargs)
        else:
            # change primary device
            default_device = kwargs['self'].device
            kwargs['self'].device = kwargs['self']._device_ids[0]
            rtn = func(**kwargs)
            kwargs['self'].to(default_device)
            return rtn
    return wrapper


class Transformer(BaseEstimator):
    ''' ... '''
    def __init__(self,
        src_modalities: dict[str, dict[str, Any]],
        tgt_modalities: dict[str, dict[str, Any]],
        d_model: int = 32,
        nhead: int = 1,
        num_layers: int = 1,
        num_epochs: int = 32,
        batch_size: int = 8,
        batch_size_multiplier: int = 1,
        lr: float = 1e-2,
        weight_decay: float = 0.0,
        beta: float = 0.9999,
        gamma: float = 2.0,
        scale: float = 1.0,
        lambd: float = 0.0,
        criterion: str | None = None,
        device: str = 'cpu',
        verbose: int = 0,
        _device_ids: list | None = None,
        _dataloader_num_workers: int = 0,
        _amp_enabled: bool = False,
    ) -> None:  
        ''' ... '''
        # for multiprocessing
        self._rank = 0
        self._lock = None

        # positional parameters
        self.src_modalities = src_modalities
        self.tgt_modalities = tgt_modalities

        # training parameters
        self.d_model = d_model
        self.nhead = nhead
        self.num_layers = num_layers
        self.num_epochs = num_epochs
        self.batch_size = batch_size
        self.batch_size_multiplier = batch_size_multiplier
        self.lr = lr
        self.weight_decay = weight_decay
        self.beta = beta
        self.gamma = gamma
        self.scale = scale
        self.lambd = lambd
        self.criterion = criterion
        self.device = device
        self.verbose = verbose
        self._device_ids = _device_ids
        self._dataloader_num_workers = _dataloader_num_workers
        self._amp_enabled = _amp_enabled

    @_manage_ctx_fit
    def fit(self, 
        x, y, 
        is_embedding: dict[str, bool] | None = None,
    ) -> Self:
        ''' ... '''
        # for PyTorch computational efficiency
        torch.set_num_threads(1)

        # initialize neural network
        self.net_ = self._init_net()

        # initialize dataloaders
        ldr_trn, ldr_vld = self._init_dataloader(x, y, is_embedding)

        # initialize optimizer and scheduler
        optimizer = self._init_optimizer()
        scheduler = self._init_scheduler(optimizer)

        # gradient scaler for AMP
        if self._amp_enabled: scaler = torch.cuda.amp.GradScaler()
        
        # initialize loss function (binary cross entropy)
        loss_func = self._init_loss_func({
            k: (
                sum([_[k] == 0 for _ in ldr_trn.dataset.tgt]),
                sum([_[k] == 1 for _ in ldr_trn.dataset.tgt]),
            ) for k in self.tgt_modalities
        })

        # to record the best validation performance criterion
        if self.criterion is not None: best_crit = None

        # progress bar for epoch loops
        if self.verbose == 1:
            with self._lock if self._lock is not None else suppress():
                pbr_epoch = tqdm.tqdm(
                    desc = 'Rank {:02d}'.format(self._rank),
                    total = self.num_epochs,
                    position = self._rank,
                    ascii = True,
                    leave = False,
                    bar_format='{l_bar}{r_bar}'
                )

        # training loop
        for epoch in range(self.num_epochs):
            # progress bar for batch loops
            if self.verbose > 1: 
                pbr_batch = ProgressBar(len(ldr_trn.dataset), 'Epoch {:03d} (TRN)'.format(epoch))

            # set model to train mode
            torch.set_grad_enabled(True)
            self.net_.train()

            scores_trn: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
            y_true_trn: dict[str, list[int]]   = {k: [] for k in self.tgt_modalities}
            losses_trn: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
            for n_iter, (x_batch, y_batch, mask_x, mask_y) in enumerate(ldr_trn):
                # mount data to the proper device
                x_batch = {k: x_batch[k].to(self.device) for k in self.src_modalities}
                y_batch = {k: y_batch[k].to(torch.float).to(self.device) for k in self.tgt_modalities}
                mask_x = {k: mask_x[k].to(self.device) for k in self.src_modalities}
                mask_y = {k: mask_y[k].to(self.device) for k in self.tgt_modalities}

                # forward
                with torch.autocast(
                    device_type = 'cpu' if self.device == 'cpu' else 'cuda',
                    dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
                    enabled = self._amp_enabled,
                ):
                    outputs = self.net_(x_batch, mask_x, is_embedding)

                    # calculate multitask loss
                    loss = 0
                    for i, tgt_k in enumerate(self.tgt_modalities):
                        loss_k = loss_func[tgt_k](outputs[tgt_k], y_batch[tgt_k])
                        loss_k = torch.masked_select(loss_k, torch.logical_not(mask_y[tgt_k].squeeze()))
                        loss += loss_k.mean()
                        losses_trn[tgt_k] += loss_k.detach().cpu().numpy().tolist()

                        # if self.lambd != 0:
                
                # backward
                if self._amp_enabled:
                    scaler.scale(loss).backward()
                else:
                    loss.backward()
                
                # update parameters
                if n_iter != 0 and n_iter % self.batch_size_multiplier == 0:
                    if self._amp_enabled:
                        scaler.step(optimizer)
                        scaler.update()
                        optimizer.zero_grad()
                    else: 
                        optimizer.step()
                        optimizer.zero_grad()

                # save outputs to evaluate performance later
                for tgt_k in self.tgt_modalities:
                    tmp = torch.masked_select(outputs[tgt_k], torch.logical_not(mask_y[tgt_k].squeeze()))
                    scores_trn[tgt_k] += tmp.detach().cpu().numpy().tolist()
                    tmp = torch.masked_select(y_batch[tgt_k], torch.logical_not(mask_y[tgt_k].squeeze()))
                    y_true_trn[tgt_k] += tmp.cpu().numpy().tolist()

                # update progress bar
                if self.verbose > 1:
                    batch_size = len(next(iter(x_batch.values())))
                    pbr_batch.update(batch_size, {})
                    pbr_batch.refresh()

            # for better tqdm progress bar display
            if self.verbose > 1:
                pbr_batch.close()

            # set scheduler
            scheduler.step()

            # calculate and print training performance metrics
            y_pred_trn: dict[str, list[int]]   = {k: [] for k in self.tgt_modalities}
            y_prob_trn: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
            for tgt_k in self.tgt_modalities:
                for i in range(len(scores_trn[tgt_k])):
                    y_pred_trn[tgt_k].append(1 if scores_trn[tgt_k][i] > 0 else 0)
                    y_prob_trn[tgt_k].append(expit(scores_trn[tgt_k][i]))
            met_trn = get_metrics_multitask(y_true_trn, y_pred_trn, y_prob_trn)

            # add loss to metrics
            for tgt_k in self.tgt_modalities:
                met_trn[tgt_k]['Loss'] = np.mean(losses_trn[tgt_k])

            if self.verbose > 2:
                print_metrics_multitask(met_trn)

            # progress bar for validation
            if self.verbose > 1:
                pbr_batch = ProgressBar(len(ldr_vld.dataset), 'Epoch {:03d} (VLD)'.format(epoch))

            # set model to validation mode
            torch.set_grad_enabled(False)
            self.net_.eval()

            scores_vld: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
            y_true_vld: dict[str, list[int]]   = {k: [] for k in self.tgt_modalities}
            losses_vld: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
            for x_batch, y_batch, mask_x, mask_y in ldr_vld:
                # mount data to the proper device
                x_batch = {k: x_batch[k].to(self.device) for k in self.src_modalities}
                y_batch = {k: y_batch[k].to(torch.float).to(self.device) for k in self.tgt_modalities}
                mask_x = {k: mask_x[k].to(self.device) for k in self.src_modalities}
                mask_y = {k: mask_y[k].to(self.device) for k in self.tgt_modalities}

                # forward
                with torch.autocast(
                    device_type = 'cpu' if self.device == 'cpu' else 'cuda',
                    dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
                    enabled = self._amp_enabled
                ):
                    outputs = self.net_(x_batch, mask_x, is_embedding)

                    # calculate multitask loss
                    for i, tgt_k in enumerate(self.tgt_modalities):
                        loss_k = loss_func[tgt_k](outputs[tgt_k], y_batch[tgt_k])
                        loss_k = torch.masked_select(loss_k, torch.logical_not(mask_y[tgt_k].squeeze()))
                        losses_vld[tgt_k] += loss_k.detach().cpu().numpy().tolist()

                # save outputs to evaluate performance later
                for tgt_k in self.tgt_modalities:
                    tmp = torch.masked_select(outputs[tgt_k], torch.logical_not(mask_y[tgt_k].squeeze()))
                    scores_vld[tgt_k] += tmp.detach().cpu().numpy().tolist()
                    tmp = torch.masked_select(y_batch[tgt_k], torch.logical_not(mask_y[tgt_k].squeeze()))
                    y_true_vld[tgt_k] += tmp.cpu().numpy().tolist()

                # update progress bar
                if self.verbose > 1:
                    batch_size = len(next(iter(x_batch.values())))
                    pbr_batch.update(batch_size, {})
                    pbr_batch.refresh()

            # for better tqdm progress bar display
            if self.verbose > 1:
                pbr_batch.close()

            # calculate and print validation performance metrics
            y_pred_vld: dict[str, list[int]]   = {k: [] for k in self.tgt_modalities}
            y_prob_vld: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
            for tgt_k in self.tgt_modalities:
                for i in range(len(scores_vld[tgt_k])):
                    y_pred_vld[tgt_k].append(1 if scores_vld[tgt_k][i] > 0 else 0)
                    y_prob_vld[tgt_k].append(expit(scores_vld[tgt_k][i]))
            met_vld = get_metrics_multitask(y_true_vld, y_pred_vld, y_prob_vld)

            # add loss to metrics
            for tgt_k in self.tgt_modalities:
                met_vld[tgt_k]['Loss'] = np.mean(losses_vld[tgt_k])

            if self.verbose > 2:
                print_metrics_multitask(met_vld)

            # save the model if it has the best validation performance criterion by far
            if self.criterion is None: continue
            
            # is current criterion better than previous best?
            curr_crit = np.mean([met_vld[k][self.criterion] for k in self.tgt_modalities])
            if best_crit is None or np.isnan(best_crit):
                is_better = True
            elif self.criterion == 'Loss' and best_crit >= curr_crit:
                is_better = True
            elif self.criterion != 'Loss' and best_crit <= curr_crit:
                is_better = True
            else:
                is_better = False

            # update best criterion
            if is_better:
                best_crit = curr_crit
                best_state_dict = deepcopy(self.net_.state_dict())

            if self.verbose > 2:
                print('Best {}: {}'.format(self.criterion, best_crit))

            if self.verbose == 1:
                with self._lock if self._lock is not None else suppress():
                    pbr_epoch.update(1)
                    pbr_epoch.refresh()

        if self.verbose == 1:
            with self._lock if self._lock is not None else suppress():
                pbr_epoch.close()

        # restore the model of the best validation performance across all epoches
        if ldr_vld is not None and self.criterion is not None:
            self.net_.load_state_dict(best_state_dict)

        return self

    def predict_logits(self,
        x: list[dict[str, Any]],
        is_embedding: dict[str, bool] | None = None,
        _batch_size: int | None = None,
    ) -> list[dict[str, float]]:
        '''
        The input x can be a single sample or a list of samples.
        '''
        # input validation
        check_is_fitted(self)
        
        # for PyTorch computational efficiency
        torch.set_num_threads(1)

        # set model to eval mode
        torch.set_grad_enabled(False)
        self.net_.eval()

        # intialize dataset and dataloader object
        dat = TransformerTestingDataset(x, self.src_modalities, is_embedding)
        ldr = DataLoader(
            dataset = dat,
            batch_size = _batch_size if _batch_size is not None else len(x),
            shuffle = False,
            drop_last = False,
            num_workers = 0,
            collate_fn = TransformerTestingDataset.collate_fn,
        )

        # run model and collect results
        logits: list[dict[str, float]] = []
        for x_batch, mask_x in ldr:
            # mount data to the proper device
            x_batch = {k: x_batch[k].to(self.device) for k in self.src_modalities}
            mask_x = {k: mask_x[k].to(self.device) for k in self.src_modalities}

            # forward
            output: dict[str, Tensor] = self.net_(x_batch, mask_x, is_embedding)
            
            # convert output from dict-of-list to list of dict, then append
            tmp = {k: output[k].tolist() for k in self.tgt_modalities}
            tmp = [{k: tmp[k][i] for k in self.tgt_modalities} for i in range(len(next(iter(tmp.values()))))]
            logits += tmp

        return logits
        
    def predict_proba(self,
        x: list[dict[str, Any]],
        is_embedding: dict[str, bool] | None = None,
        temperature: float = 1.0,
        _batch_size: int | None = None,
    ) -> list[dict[str, float]]:
        ''' ... '''
        logits = self.predict_logits(x, is_embedding, _batch_size)
        return [{k: expit(smp[k] / temperature) for k in self.tgt_modalities} for smp in logits]

    def predict(self,
        x: list[dict[str, Any]],
        is_embedding: dict[str, bool] | None = None,
        _batch_size: int | None = None,
    ) -> list[dict[str, int]]:
        ''' ... '''
        logits = self.predict_logits(x, is_embedding, _batch_size)
        return [{k: int(smp[k] > 0.0) for k in self.tgt_modalities} for smp in logits]

    def save(self, filepath: str) -> None:
        ''' ... '''
        check_is_fitted(self)
        state_dict = self.net_.state_dict()

        # attach model hyper parameters
        state_dict['src_modalities'] = self.src_modalities
        state_dict['tgt_modalities'] = self.tgt_modalities
        state_dict['d_model'] = self.d_model
        state_dict['nhead'] = self.nhead
        state_dict['num_layers'] = self.num_layers
        torch.save(state_dict, filepath)

    def load(self, filepath: str) -> None:
        ''' ... '''
        # load state_dict
        state_dict = torch.load(filepath, map_location='cpu')

        # load essential parameters
        self.src_modalities: dict[str, dict[str, Any]] = state_dict.pop('src_modalities')
        self.tgt_modalities: dict[str, dict[str, Any]] = state_dict.pop('tgt_modalities')
        self.d_model = state_dict.pop('d_model')
        self.nhead = state_dict.pop('nhead')
        self.num_layers = state_dict.pop('num_layers')

        # initialize model
        self.net_ = nn.Transformer(
            self.src_modalities,
            self.tgt_modalities,
            self.d_model,
            self.nhead,
            self.num_layers,
        )

        # load model parameters
        self.net_.load_state_dict(state_dict)
        self.to(self.device)

    def to(self, device: str) -> Self:
        ''' Mount model to the given device. '''
        self.device = device
        if hasattr(self, 'net_'): self.net_ = self.net_.to(device)
        return self
    
    @classmethod
    def from_ckpt(cls, filepath: str) -> Self:
        ''' ... '''
        obj = cls(None, None)
        obj.load(filepath)
        return obj
    
    def _init_net(self):
        """ ... """
        net = nn.Transformer(
            self.src_modalities,
            self.tgt_modalities,
            self.d_model,
            self.nhead,
            self.num_layers,
        ).to(self.device)

        # train on multiple GPUs using torch.nn.DataParallel
        if self._device_ids is not None:
            net = torch.nn.DataParallel(net, device_ids=self._device_ids)

        # intialize model parameters using xavier_uniform
        for p in net.parameters():
            if p.dim() > 1:
                torch.nn.init.xavier_uniform_(p)
        
        return net
    
    def _init_dataloader(self, x, y, is_embedding):
        """ ... """
        # split dataset
        x_trn, x_vld, y_trn, y_vld = train_test_split(
            x, y, test_size = 0.2, random_state = 0,
        )

        # initialize dataset and dataloader
        # dat_trn = TransformerTrainingDataset(
        # dat_trn = TransformerBalancedTrainingDataset(
        dat_trn = Transformer2ndOrderBalancedTrainingDataset(
            x_trn, y_trn,
            self.src_modalities,
            self.tgt_modalities,
            dropout_rate = .5,
            # dropout_strategy = 'compensated',
            dropout_strategy = 'permutation',
        )

        dat_vld = TransformerValidationDataset(
            x_vld, y_vld,
            self.src_modalities,
            self.tgt_modalities,
            is_embedding,
        )

        ldr_trn = DataLoader(
            dataset = dat_trn,
            batch_size = self.batch_size,
            shuffle = True,
            drop_last = False,
            num_workers = self._dataloader_num_workers,
            collate_fn = TransformerTrainingDataset.collate_fn,
            # pin_memory = True
        )

        ldr_vld = DataLoader(
            dataset = dat_vld,
            batch_size = self.batch_size,
            shuffle = False,
            drop_last = False,
            num_workers = self._dataloader_num_workers,
            collate_fn = TransformerValidationDataset.collate_fn,
            # pin_memory = True
        )

        return ldr_trn, ldr_vld
    
    def _init_optimizer(self):
        """ ... """
        return torch.optim.AdamW(
            self.net_.parameters(),
            lr = self.lr,
            betas = (0.9, 0.98),
            weight_decay = self.weight_decay
        )
    
    def _init_scheduler(self, optimizer):
        """ ... """
        return torch.optim.lr_scheduler.OneCycleLR(
            optimizer = optimizer, 
            max_lr = self.lr,
            total_steps = self.num_epochs,
            verbose = (self.verbose > 2)
        )
    
    def _init_loss_func(self, 
        num_per_cls: dict[str, tuple[int, int]],
    ) -> dict[str, Module]:
        """ ... """
        return {k: nn.SigmoidFocalLoss(
            beta = self.beta,
            gamma = self.gamma,
            scale = self.scale,
            num_per_cls = num_per_cls[k],
            reduction = 'none',
        ) for k in self.tgt_modalities}
    
    def _extract_embedding(self,
        x: list[dict[str, Any]],
        is_embedding: dict[str, bool] | None = None,
        _batch_size: int | None = None,
    ) -> list[dict[str, Any]]:
        """ ... """
        # input validation
        check_is_fitted(self)
        
        # for PyTorch computational efficiency
        torch.set_num_threads(1)

        # set model to eval mode
        torch.set_grad_enabled(False)
        self.net_.eval()

        # intialize dataset and dataloader object
        dat = TransformerTestingDataset(x, self.src_modalities, is_embedding)
        ldr = DataLoader(
            dataset = dat,
            batch_size = _batch_size if _batch_size is not None else len(x),
            shuffle = False,
            drop_last = False,
            num_workers = 0,
            collate_fn = TransformerTestingDataset.collate_fn,
        )

        # run model and extract embeddings
        embeddings: list[dict[str, Any]] = []
        for x_batch, _ in ldr:
            # mount data to the proper device
            x_batch = {k: x_batch[k].to(self.device) for k in self.src_modalities}

            # forward
            out: dict[str, Tensor] = self.net_.forward_emb(x_batch, is_embedding)
            
            # convert output from dict-of-list to list of dict, then append
            tmp = {k: out[k].detach().cpu().numpy() for k in self.src_modalities}
            tmp = [{k: tmp[k][i] for k in self.src_modalities} for i in range(len(next(iter(tmp.values()))))]
            embeddings += tmp

        # remove imputed embeddings
        for i in range(len(x)):
            avail = [k for k, v in x[i].items() if v is not None]
            embeddings[i] = {k: embeddings[i][k] for k in avail}

        return embeddings