File size: 8,779 Bytes
6fc43ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# This implementation is based on the DenseNet-BC implementation in torchvision
# https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
# https://github.com/gpleiss/efficient_densenet_pytorch/blob/master/models/densenet.py


import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from collections import OrderedDict


def _bn_function_factory(norm, relu, conv):
    def bn_function(*inputs):
        concated_features = torch.cat(inputs, 1)
        bottleneck_output = conv(relu(norm(concated_features)))
        return bottleneck_output

    return bn_function


class _DenseLayer(nn.Module):
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, efficient=False):
        super(_DenseLayer, self).__init__()
        self.add_module('norm1', nn.BatchNorm3d(num_input_features)),
        self.add_module('relu1', nn.ReLU(inplace=True)),
        self.add_module('conv1', nn.Conv3d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)),
        self.add_module('norm2', nn.BatchNorm3d(bn_size * growth_rate)),
        self.add_module('relu2', nn.ReLU(inplace=True)),
        self.add_module('conv2', nn.Conv3d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)),
        self.drop_rate = drop_rate
        self.efficient = efficient

    def forward(self, *prev_features):
        bn_function = _bn_function_factory(self.norm1, self.relu1, self.conv1)
        if self.efficient and any(prev_feature.requires_grad for prev_feature in prev_features):
            bottleneck_output = cp.checkpoint(bn_function, *prev_features)
        else:
            bottleneck_output = bn_function(*prev_features)
        new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return new_features


class _Transition(nn.Sequential):
    def __init__(self, num_input_features, num_output_features):
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm3d(num_input_features))
        self.add_module('relu', nn.ReLU(inplace=True))
        self.add_module('conv', nn.Conv3d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))
        self.add_module('pool', nn.AvgPool3d(kernel_size=2, stride=2))


class _DenseBlock(nn.Module):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, efficient=False):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(
                num_input_features + i * growth_rate,
                growth_rate=growth_rate,
                bn_size=bn_size,
                drop_rate=drop_rate,
                efficient=efficient,
            )
            self.add_module('denselayer%d' % (i + 1), layer)

    def forward(self, init_features):
        features = [init_features]
        for name, layer in self.named_children():
            new_features = layer(*features)
            features.append(new_features)
        return torch.cat(features, 1)


class DenseNet(nn.Module):
    r"""Densenet-BC model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 3 or 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
            (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        tgt_modalities (list) - list of target modalities
        efficient (bool) - set to True to use checkpointing. Much more memory efficient, but slower.
    """
    # def __init__(self, tgt_modalities, growth_rate=12, block_config=(3, 3, 3), compression=0.5,
    #              num_init_features=16, bn_size=4, drop_rate=0, efficient=False, load_from_ckpt=False): # config 1
    
    def __init__(self, tgt_modalities, growth_rate=12, block_config=(3, 3, 3), compression=0.5,
                 num_init_features=16, bn_size=4, drop_rate=0, efficient=False, load_from_ckpt=False): # config 2
        
        super(DenseNet, self).__init__()

        # First convolution
        self.features = nn.Sequential(OrderedDict([('conv0', nn.Conv3d(1, num_init_features, kernel_size=7, stride=2, padding=0, bias=False)),]))
        self.features.add_module('norm0', nn.BatchNorm3d(num_init_features))
        self.features.add_module('relu0', nn.ReLU(inplace=True))
        self.features.add_module('pool0', nn.MaxPool3d(kernel_size=3, stride=2, padding=0, ceil_mode=False))
        self.tgt_modalities = tgt_modalities

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(
                num_layers=num_layers,
                num_input_features=num_features,
                bn_size=bn_size,
                growth_rate=growth_rate,
                drop_rate=drop_rate,
                efficient=efficient,
            )
            self.features.add_module('denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config):
                trans = _Transition(num_input_features=num_features,
                                    num_output_features=int(num_features * compression))
                self.features.add_module('transition%d' % (i + 1), trans)
                num_features = int(num_features * compression)

        # Final batch norm
        self.features.add_module('norm_final', nn.BatchNorm3d(num_features))
        
        # Classification heads
        self.tgt = torch.nn.ModuleDict()
        for k in tgt_modalities:
            # self.tgt[k] = torch.nn.Linear(621, 1) # config 2
            self.tgt[k] = torch.nn.Sequential(
                    torch.nn.Linear(self.test_size(), 256),
                    torch.nn.ReLU(),
                    torch.nn.Linear(256, 1)
                )

        print(f'load_from_ckpt: {load_from_ckpt}')
        # Initialization
        if not load_from_ckpt:
            for name, param in self.named_parameters():
                if 'conv' in name and 'weight' in name:
                    n = param.size(0) * param.size(2) * param.size(3) * param.size(4)
                    param.data.normal_().mul_(math.sqrt(2. / n))
                elif 'norm' in name and 'weight' in name:
                    param.data.fill_(1)
                elif 'norm' in name and 'bias' in name:
                    param.data.fill_(0)
                elif ('classifier' in name or 'tgt' in name) and 'bias' in name:
                    param.data.fill_(0)

        # self.size = self.test_size()

    def forward(self, x, shap=True):
        # print(x.shape)
        features = self.features(x)
        # print(features.shape)
        out = F.relu(features, inplace=True)
        # out = F.adaptive_avg_pool3d(out, (1, 1, 1))
        out = torch.flatten(out, 1)
        
        # print(out.shape)
        
        # out_tgt = self.tgt(out).squeeze(1)
        # print(out_tgt)
        # return F.softmax(out_tgt)
        
        tgt_iter = self.tgt.keys()
        out_tgt = {k: self.tgt[k](out).squeeze(1) for k in tgt_iter}
        if shap:
            out_tgt = torch.stack(list(out_tgt.values()))
            return out_tgt.T
        else: 
            return out_tgt

    def test_size(self):
        case = torch.ones((1, 1, 182, 218, 182))
        output = self.features(case).view(-1).size(0)
        return output


if __name__ == "__main__":
    model = DenseNet(
        tgt_modalities=['NC', 'MCI', 'DE'], 
        growth_rate=12, 
        block_config=(2, 3, 2), 
        compression=0.5,
        num_init_features=16, 
        drop_rate=0.2)
    print(model)
    torch.manual_seed(42)
    x = torch.rand((1, 1, 182, 218, 182))
    # layers = list(model.features.named_children())
    features = nn.Sequential(*list(model.features.children()))(x)
    print(features.shape)
    print(sum(p.numel() for p in model.parameters()))
    # out = mdl.net_(x, shap=False)
    # print(out)

    out = model(x, shap=False)
    print(out)
    # layer_found = False
    # features = None
    # desired_layer_name = 'transition3'

    # for name, layer in layers:
    #     if name == desired_layer_name:
    #         x = layer(x)
    #         print(x)
    # model(x)
    # print(features)