File size: 9,970 Bytes
6fc43ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
import numpy as np
from .. import nn
# from ..nn import ImagingModelWrapper
from .net_resnet3d import r3d_18
from typing import Any, Type
import math
Tensor = Type[torch.Tensor]
from icecream import ic
ic.disable()

class Transformer(torch.nn.Module):
    ''' ... '''
    def __init__(self,
        src_modalities: dict[str, dict[str, Any]],
        tgt_modalities: dict[str, dict[str, Any]],
        d_model: int,
        nhead: int,
        num_encoder_layers: int = 1,
        num_decoder_layers: int = 1,
        device: str = 'cpu',
        cuda_devices: list = [3],
        img_net: str | None = None,
        layers: int = 3,
        img_size: int | None = 128,
        patch_size: int | None = 16,
        imgnet_ckpt: str | None = None,
        train_imgnet: bool = False,
        fusion_stage: str = 'middle',
    ) -> None:
        ''' ... '''
        super().__init__()

        self.d_model = d_model
        self.nhead = nhead
        self.num_encoder_layers = num_encoder_layers
        self.num_decoder_layers = num_decoder_layers
        self.img_net = img_net
        self.img_size = img_size
        self.patch_size = patch_size
        self.imgnet_ckpt = imgnet_ckpt
        self.train_imgnet = train_imgnet
        self.layers = layers
        self.src_modalities = src_modalities
        self.tgt_modalities = tgt_modalities
        self.device = device
        self.fusion_stage = fusion_stage

        # embedding modules for source
    
        self.modules_emb_src = torch.nn.ModuleDict()
        print('Downsample layers: ', self.layers)
        self.img_model = nn.ImagingModelWrapper(arch=self.img_net, img_size=self.img_size, patch_size=self.patch_size, ckpt_path=self.imgnet_ckpt, train_backbone=self.train_imgnet, layers=self.layers, out_dim=self.d_model, device=self.device, fusion_stage=self.fusion_stage)
            
        for k, info in src_modalities.items():
            # ic(k)
            # for key, val in info.items():
                # ic(key, val)
            if info['type'] == 'categorical':
                self.modules_emb_src[k] = torch.nn.Embedding(info['num_categories'], d_model)
            elif info['type'] == 'numerical':
                self.modules_emb_src[k] = torch.nn.Sequential(
                    torch.nn.BatchNorm1d(info['shape'][0]),
                    torch.nn.Linear(info['shape'][0], d_model)
                )
            elif info['type'] == 'imaging':
                # print(info['shape'], info['img_shape'])
                if self.img_net:
                    self.modules_emb_src[k] = self.img_model
                    
            else:
                # unrecognized
                raise ValueError('{} is an unrecognized data modality'.format(k))
            
        # positional encoding
        self.pe = PositionalEncoding(d_model)

        # auxiliary embedding vectors for targets
        self.emb_aux = torch.nn.Parameter(
            torch.zeros(len(tgt_modalities), 1, d_model),
            requires_grad = True,
        )
        
        # transformer
        enc = torch.nn.TransformerEncoderLayer(
            self.d_model, self.nhead,
            dim_feedforward = self.d_model,
            activation = 'gelu',
            dropout = 0.3,
        )
        self.transformer = torch.nn.TransformerEncoder(enc, self.num_encoder_layers)


        # classifiers (binary only)
        self.modules_cls = torch.nn.ModuleDict()
        for k, info in tgt_modalities.items():
            if info['type'] == 'categorical' and info['num_categories'] == 2:
                self.modules_cls[k] = torch.nn.Linear(d_model, 1)
            else:
                # unrecognized
                raise ValueError
            
        # for n,p in self.named_parameters():
        #     print(n, p.requires_grad)

    def forward(self,
        x: dict[str, Tensor],
        mask: dict[str, Tensor],
        # x_img: dict[str, Tensor] | Any = None,
        skip_embedding: dict[str, bool] | None = None,
        return_out_emb: bool = False,
    ) -> dict[str, Tensor]:
        """ ... """

        out_emb = self.forward_emb(x, mask, skip_embedding)
        if self.fusion_stage == "late":
            out_emb = {k: v for k,v in out_emb.items() if "img_MRI" not in k}
            img_out_emb = {k: v for k,v in out_emb.items() if "img_MRI" in k}
            # for k,v in out_emb.items():
                # print(k, v.size())
            mask_nonimg = {k: v for k,v in mask.items() if "img_MRI" not in k}
            out_trf = self.forward_trf(out_emb, mask_nonimg) # (8,128) + (8,50,128)
            # print("out_trf: ", out_trf.size())
            out_trf = torch.concatenate()
        else:
            out_trf = self.forward_trf(out_emb, mask)

        out_cls = self.forward_cls(out_trf)
            
        if return_out_emb:
            return out_emb, out_cls
        return out_cls

    def forward_emb(self,
                    x: dict[str, Tensor],
                    mask: dict[str, Tensor],
                    skip_embedding: dict[str, bool] | None = None,
                    # x_img: dict[str, Tensor] | Any = None,
                ) -> dict[str, Tensor]:
        """ ... """
        # print("-------forward_emb--------")
        out_emb = dict()
        for k in self.modules_emb_src.keys():
            if skip_embedding is None or k not in skip_embedding or not skip_embedding[k]:
                if "img_MRI" in k:
                    # print("img_MRI in ", k)
                    if torch.all(mask[k]):
                        if "swinunetr" in self.img_net.lower() and self.fusion_stage == 'late':
                            out_emb[k] = torch.zeros((1,768,4,4,4))
                        else:
                            if 'cuda' in self.device:
                                device = x[k].device
                                # print(device)
                            else:
                                device = self.device
                            out_emb[k] = torch.zeros((mask[k].shape[0], self.d_model)).to(device, non_blocking=True)
                        # print("mask is True, out_emb[k]: ", out_emb[k].size())
                    else:
                        # print("calling modules_emb_src...")
                        out_emb[k] = self.modules_emb_src[k](x[k])
                        # print("mask is False, out_emb[k]: ", out_emb[k].size())
                    
                else:
                    out_emb[k] = self.modules_emb_src[k](x[k])
                    
                # out_emb[k] = self.modules_emb_src[k](x[k])
            else:
                out_emb[k] = x[k]
        return out_emb

    def forward_trf(self,
        out_emb: dict[str, Tensor],
        mask: dict[str, Tensor],
    ) -> dict[str, Tensor]:
        """ ... """
        # print('-----------forward_trf----------')
        N = len(next(iter(out_emb.values())))  # batch size
        S = len(self.modules_emb_src)  # number of sources
        T = len(self.modules_cls)  # number of targets
        if self.fusion_stage == 'late':
            src_iter = [k for k in self.modules_emb_src.keys() if "img_MRI" not in k]
            S = len(src_iter)  # number of sources

        else:
            src_iter = self.modules_emb_src.keys()
        tgt_iter = self.modules_cls.keys()
        
        emb_src = torch.stack([o for o in out_emb.values()], dim=0)
        # print('emb_src: ', emb_src.size())

        self.pe.index = -1
        emb_src = self.pe(emb_src)
        # print('emb_src + pe: ', emb_src.size())
        
        # target embedding
        # print('emb_aux: ', self.emb_aux.size())
        emb_tgt = self.emb_aux.repeat(1, N, 1)
        # print('emb_tgt: ', emb_tgt.size())
        
        # concatenate source embeddings and target embeddings
        emb_all = torch.concatenate((emb_tgt, emb_src), dim=0)

        # combine masks
        mask_src = [mask[k] for k in src_iter]
        mask_src = torch.stack(mask_src, dim=1)
        
        # target masks
        mask_tgt = torch.zeros((N, T), dtype=torch.bool, device=self.emb_aux.device)
        
        # concatenate source masks and target masks
        mask_all = torch.concatenate((mask_tgt, mask_src), dim=1)
        
        # repeat mask_all to fit transformer
        mask_all = mask_all.unsqueeze(1).expand(-1, S + T, -1).repeat(self.nhead, 1, 1)

        # run transformer
        out_trf = self.transformer(
            src = emb_all,
            mask = mask_all,
        )[0]
        # print('out_trf: ', out_trf.size())
        # out_trf = {k: out_trf[i] for i, k in enumerate(tgt_iter)}
        return out_trf

    def forward_cls(self,
        out_trf: dict[str, Tensor],
    ) -> dict[str, Tensor]:
        """ ... """
        tgt_iter = self.modules_cls.keys()
        out_cls = {k: self.modules_cls[k](out_trf).squeeze(1) for k in tgt_iter}
        return out_cls
    
class PositionalEncoding(torch.nn.Module):

    def __init__(self, 
        d_model: int, 
        max_len: int = 512
    ):
        """ ... """
        super().__init__()
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
        pe = torch.zeros(max_len, 1, d_model)
        pe[:, 0, 0::2] = torch.sin(position * div_term)
        pe[:, 0, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe)
        self.index = -1

    def forward(self, x: Tensor, pe_type: str = 'non_img') -> Tensor:
        """
        Arguments:
            x: Tensor, shape ``[seq_len, batch_size, embedding_dim]``
        """
        # print('pe: ', self.pe.size())
        # print('x: ', x.size())
        if pe_type == 'img':
            self.index += 1
            return x + self.pe[self.index]
        else:
            self.index += 1
            return x + self.pe[self.index:x.size(0)+self.index]


if __name__ == '__main__':
    ''' for testing purpose only '''
    pass