File size: 6,453 Bytes
6fc43ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
from monai.networks.layers import Conv
from monai.utils import ensure_tuple_rep

from typing import Sequence, Union
import torch
import torch.nn as nn

from ..nn.blocks import TransformerBlock
from icecream import ic
ic.disable()

__all__ = ["ViTAutoEnc"]


class ViTAutoEnc(nn.Module):
    """
    Vision Transformer (ViT), based on: "Dosovitskiy et al.,
    An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>"

    Modified to also give same dimension outputs as the input size of the image
    """

    def __init__(
        self,
        in_channels: int,
        img_size: Union[Sequence[int], int],
        patch_size: Union[Sequence[int], int],
        out_channels: int = 1,
        deconv_chns: int = 16,
        hidden_size: int = 768,
        mlp_dim: int = 3072,
        num_layers: int = 12,
        num_heads: int = 12,
        pos_embed: str = "conv",
        dropout_rate: float = 0.0,
        spatial_dims: int = 3,
    ) -> None:
        """
        Args:
            in_channels: dimension of input channels or the number of channels for input
            img_size: dimension of input image.
            patch_size: dimension of patch size.
            hidden_size: dimension of hidden layer.
            out_channels: number of output channels.
            deconv_chns: number of channels for the deconvolution layers.
            mlp_dim: dimension of feedforward layer.
            num_layers: number of transformer blocks.
            num_heads: number of attention heads.
            pos_embed: position embedding layer type.
            dropout_rate: faction of the input units to drop.
            spatial_dims: number of spatial dimensions.

        Examples::

            # for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
            # It will provide an output of same size as that of the input
            >>> net = ViTAutoEnc(in_channels=1, patch_size=(16,16,16), img_size=(96,96,96), pos_embed='conv')

            # for 3-channel with image size of (128,128,128), output will be same size as of input
            >>> net = ViTAutoEnc(in_channels=3, patch_size=(16,16,16), img_size=(128,128,128), pos_embed='conv')

        """

        super().__init__()

        self.patch_size = ensure_tuple_rep(patch_size, spatial_dims)
        self.spatial_dims = spatial_dims
        self.hidden_size = hidden_size
        
        self.patch_embedding = PatchEmbeddingBlock(
            in_channels=in_channels,
            img_size=img_size,
            patch_size=patch_size,
            hidden_size=hidden_size,
            num_heads=num_heads,
            pos_embed=pos_embed,
            dropout_rate=dropout_rate,
            spatial_dims=self.spatial_dims,
        )
        self.blocks = nn.ModuleList(
            [TransformerBlock(hidden_size, mlp_dim, num_heads, dropout_rate) for i in range(num_layers)]
        )
        self.norm = nn.LayerNorm(hidden_size)

        new_patch_size = [4] * self.spatial_dims
        conv_trans = Conv[Conv.CONVTRANS, self.spatial_dims]
        # self.conv3d_transpose* is to be compatible with existing 3d model weights.
        self.conv3d_transpose = conv_trans(hidden_size, deconv_chns, kernel_size=new_patch_size, stride=new_patch_size)
        self.conv3d_transpose_1 = conv_trans(
            in_channels=deconv_chns, out_channels=out_channels, kernel_size=new_patch_size, stride=new_patch_size
        )

    def forward(self, x, return_emb=False, return_hiddens=False):
        """
        Args:
            x: input tensor must have isotropic spatial dimensions,
                such as ``[batch_size, channels, sp_size, sp_size[, sp_size]]``.
        """
        spatial_size = x.shape[2:]
        x = self.patch_embedding(x)
        hidden_states_out = []
        for blk in self.blocks:
            x = blk(x)
            hidden_states_out.append(x)
        x = self.norm(x)
        x = x.transpose(1, 2)
        if return_emb:
            return x
        d = [s // p for s, p in zip(spatial_size, self.patch_size)]
        x = torch.reshape(x, [x.shape[0], x.shape[1], *d])
        x = self.conv3d_transpose(x)
        x = self.conv3d_transpose_1(x)
        if return_hiddens:
            return x, hidden_states_out
        return x
    
    def get_last_selfattention(self, x):
        """
        Args:
            x: input tensor must have isotropic spatial dimensions,
                such as ``[batch_size, channels, sp_size, sp_size[, sp_size]]``.
        """
        x = self.patch_embedding(x)
        ic(x.size())
        for i, blk in enumerate(self.blocks):
            if i < len(self.blocks) - 1:
                x = blk(x)
                x.size()
            else:
                return blk(x, return_attention=True)
            
    def load(self, ckpt_path, map_location='cpu', checkpoint_key='state_dict'):
        """
        Args:
            ckpt_path: path to the pretrained weights
            map_location: device to load the checkpoint on
        """
        state_dict = torch.load(ckpt_path, map_location=map_location)
        ic(state_dict['epoch'], state_dict['train_loss'])
        if checkpoint_key in state_dict:
            print(f"Take key {checkpoint_key} in provided checkpoint dict")
            state_dict = state_dict[checkpoint_key]
        # remove `module.` prefix
        state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
        # remove `backbone.` prefix induced by multicrop wrapper
        state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
        msg = self.load_state_dict(state_dict, strict=False)
        print('Pretrained weights found at {} and loaded with msg: {}'.format(ckpt_path, msg))