File size: 6,453 Bytes
6fc43ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
from monai.networks.layers import Conv
from monai.utils import ensure_tuple_rep
from typing import Sequence, Union
import torch
import torch.nn as nn
from ..nn.blocks import TransformerBlock
from icecream import ic
ic.disable()
__all__ = ["ViTAutoEnc"]
class ViTAutoEnc(nn.Module):
"""
Vision Transformer (ViT), based on: "Dosovitskiy et al.,
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>"
Modified to also give same dimension outputs as the input size of the image
"""
def __init__(
self,
in_channels: int,
img_size: Union[Sequence[int], int],
patch_size: Union[Sequence[int], int],
out_channels: int = 1,
deconv_chns: int = 16,
hidden_size: int = 768,
mlp_dim: int = 3072,
num_layers: int = 12,
num_heads: int = 12,
pos_embed: str = "conv",
dropout_rate: float = 0.0,
spatial_dims: int = 3,
) -> None:
"""
Args:
in_channels: dimension of input channels or the number of channels for input
img_size: dimension of input image.
patch_size: dimension of patch size.
hidden_size: dimension of hidden layer.
out_channels: number of output channels.
deconv_chns: number of channels for the deconvolution layers.
mlp_dim: dimension of feedforward layer.
num_layers: number of transformer blocks.
num_heads: number of attention heads.
pos_embed: position embedding layer type.
dropout_rate: faction of the input units to drop.
spatial_dims: number of spatial dimensions.
Examples::
# for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
# It will provide an output of same size as that of the input
>>> net = ViTAutoEnc(in_channels=1, patch_size=(16,16,16), img_size=(96,96,96), pos_embed='conv')
# for 3-channel with image size of (128,128,128), output will be same size as of input
>>> net = ViTAutoEnc(in_channels=3, patch_size=(16,16,16), img_size=(128,128,128), pos_embed='conv')
"""
super().__init__()
self.patch_size = ensure_tuple_rep(patch_size, spatial_dims)
self.spatial_dims = spatial_dims
self.hidden_size = hidden_size
self.patch_embedding = PatchEmbeddingBlock(
in_channels=in_channels,
img_size=img_size,
patch_size=patch_size,
hidden_size=hidden_size,
num_heads=num_heads,
pos_embed=pos_embed,
dropout_rate=dropout_rate,
spatial_dims=self.spatial_dims,
)
self.blocks = nn.ModuleList(
[TransformerBlock(hidden_size, mlp_dim, num_heads, dropout_rate) for i in range(num_layers)]
)
self.norm = nn.LayerNorm(hidden_size)
new_patch_size = [4] * self.spatial_dims
conv_trans = Conv[Conv.CONVTRANS, self.spatial_dims]
# self.conv3d_transpose* is to be compatible with existing 3d model weights.
self.conv3d_transpose = conv_trans(hidden_size, deconv_chns, kernel_size=new_patch_size, stride=new_patch_size)
self.conv3d_transpose_1 = conv_trans(
in_channels=deconv_chns, out_channels=out_channels, kernel_size=new_patch_size, stride=new_patch_size
)
def forward(self, x, return_emb=False, return_hiddens=False):
"""
Args:
x: input tensor must have isotropic spatial dimensions,
such as ``[batch_size, channels, sp_size, sp_size[, sp_size]]``.
"""
spatial_size = x.shape[2:]
x = self.patch_embedding(x)
hidden_states_out = []
for blk in self.blocks:
x = blk(x)
hidden_states_out.append(x)
x = self.norm(x)
x = x.transpose(1, 2)
if return_emb:
return x
d = [s // p for s, p in zip(spatial_size, self.patch_size)]
x = torch.reshape(x, [x.shape[0], x.shape[1], *d])
x = self.conv3d_transpose(x)
x = self.conv3d_transpose_1(x)
if return_hiddens:
return x, hidden_states_out
return x
def get_last_selfattention(self, x):
"""
Args:
x: input tensor must have isotropic spatial dimensions,
such as ``[batch_size, channels, sp_size, sp_size[, sp_size]]``.
"""
x = self.patch_embedding(x)
ic(x.size())
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
x.size()
else:
return blk(x, return_attention=True)
def load(self, ckpt_path, map_location='cpu', checkpoint_key='state_dict'):
"""
Args:
ckpt_path: path to the pretrained weights
map_location: device to load the checkpoint on
"""
state_dict = torch.load(ckpt_path, map_location=map_location)
ic(state_dict['epoch'], state_dict['train_loss'])
if checkpoint_key in state_dict:
print(f"Take key {checkpoint_key} in provided checkpoint dict")
state_dict = state_dict[checkpoint_key]
# remove `module.` prefix
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# remove `backbone.` prefix induced by multicrop wrapper
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
msg = self.load_state_dict(state_dict, strict=False)
print('Pretrained weights found at {} and loaded with msg: {}'.format(ckpt_path, msg))
|