File size: 9,972 Bytes
6fc43ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import numpy as np
import sys, tqdm
import torch
import torch.nn.functional as F
from numpy import interp
from collections.abc import Sequence
from collections import defaultdict
from sklearn.metrics import confusion_matrix, roc_curve, roc_auc_score, auc
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import balanced_accuracy_score, precision_score
import warnings
import inspect
_depth = lambda L: isinstance(L, (Sequence, np.ndarray)) and max(map(_depth, L)) + 1
def get_metrics(y_true, y_pred, scores, mask):
''' ... '''
with warnings.catch_warnings():
warnings.simplefilter("ignore")
masked_y_true = y_true[np.where(mask == 1)]
masked_y_pred = y_pred[np.where(mask == 1)]
masked_scores = scores[np.where(mask == 1)]
# metrics that are based on predictions
try:
cnf = confusion_matrix(masked_y_true, masked_y_pred)
TN, FP, FN, TP = cnf.ravel()
TNR = TN / (TN + FP)
FPR = FP / (FP + TN)
FNR = FN / (FN + TP)
TPR = TP / (TP + FN)
N = TN + TP + FN + FP
S = (TP + FN) / N
P = (TP + FP) / N
acc = (TN + TP) / N
sen = TP / (TP + FN)
spc = TN / (TN + FP)
prc = TP / (TP + FP)
f1s = 2 * (prc * sen) / (prc + sen)
mcc = (TP / N - S * P) / np.sqrt(P * S * (1 - S) * (1 - P))
# metrics that are based on scores,
try:
auc_roc = roc_auc_score(masked_y_true, masked_scores)
except:
auc_roc = 0
try:
auc_pr = average_precision_score(masked_y_true, masked_scores)
except:
auc_pr = 0
bal_acc = balanced_accuracy_score(masked_y_true, masked_y_pred)
except:
cnf, acc, bal_acc, prc, sen, spc, f1s, mcc, auc_roc, auc_pr = -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
# construct the dictionary of all metrics
met = {}
met['Confusion Matrix'] = cnf
met['Accuracy'] = acc
met['Balanced Accuracy'] = bal_acc
met['Precision'] = prc
met['Sensitivity/Recall'] = sen
met['Specificity'] = spc
met['F1 score'] = f1s
met['MCC'] = mcc
met['AUC (ROC)'] = auc_roc
met['AUC (PR)'] = auc_pr
return met
def get_metrics_multitask(y_true, y_pred, scores, mask):
''' ... '''
if type(y_true) is dict:
met: dict[str, dict[str, float]] = dict()
for k in y_true.keys():
met[k] = get_metrics(y_true[k], y_pred[k], scores[k], mask[k])
else:
met = []
for i in range(len(y_true[0])):
met.append(get_metrics(y_true[:, i], y_pred[:, i], scores[:, i], mask[:, i]))
return met
def print_metrics(met):
''' ... '''
for k, v in met.items():
if k not in ['Confusion Matrix']:
print('{}:\t{:.4f}'.format(k, v).expandtabs(20))
def print_metrics_multitask(met):
''' ... '''
if type(met) is dict:
lbl_ks = list(met.keys())
met_ks = met[lbl_ks[0]].keys()
for met_k in met_ks:
if met_k not in ['Confusion Matrix']:
msg = '{}:\t' + '{:.4f} ' * len(met)
val = [met[lbl_k][met_k] for lbl_k in lbl_ks]
msg = msg.format(met_k, *val)
msg = msg.replace('nan', '------')
print(msg.expandtabs(20))
else:
for k in met[0]:
if k not in ['Confusion Matrix']:
msg = '{}:\t' + '{:.4f} ' * len(met)
val = [met[i][k] for i in range(len(met))]
msg = msg.format(k, *val)
msg = msg.replace('nan', '------')
print(msg.expandtabs(20))
def pr_interp(rc_, rc, pr):
pr_ = np.zeros_like(rc_)
locs = np.searchsorted(rc, rc_)
for idx, loc in enumerate(locs):
l = loc - 1
r = loc
r1 = rc[l] if l > -1 else 0
r2 = rc[r] if r < len(rc) else 1
p1 = pr[l] if l > -1 else 1
p2 = pr[r] if r < len(rc) else 0
t1 = (1 - p2) * r2 / p2 / (r2 - r1) if p2 * (r2 - r1) > 1e-16 else (1 - p2) * r2 / 1e-16
t2 = (1 - p1) * r1 / p1 / (r2 - r1) if p1 * (r2 - r1) > 1e-16 else (1 - p1) * r1 / 1e-16
t3 = (1 - p1) * r1 / p1 if p1 > 1e-16 else (1 - p1) * r1 / 1e-16
a = 1 + t1 - t2
b = t3 - t1 * r1 + t2 * r1
pr_[idx] = rc_[idx] / (a * rc_[idx] + b)
return pr_
def get_roc_info(y_true_all, scores_all):
fpr_pt = np.linspace(0, 1, 1001)
tprs, aucs = [], []
for i in range(len(y_true_all)):
y_true = y_true_all[i]
scores = scores_all[i]
fpr, tpr, _ = roc_curve(y_true=y_true, y_score=scores, drop_intermediate=True)
tprs.append(interp(fpr_pt, fpr, tpr))
tprs[-1][0] = 0.0
aucs.append(auc(fpr, tpr))
tprs_mean = np.mean(tprs, axis=0)
tprs_std = np.std(tprs, axis=0)
tprs_upper = np.minimum(tprs_mean + tprs_std, 1)
tprs_lower = np.maximum(tprs_mean - tprs_std, 0)
auc_mean = auc(fpr_pt, tprs_mean)
auc_std = np.std(aucs)
auc_std = 1 - auc_mean if auc_mean + auc_std > 1 else auc_std
rslt = {
'xs': fpr_pt,
'ys_mean': tprs_mean,
'ys_upper': tprs_upper,
'ys_lower': tprs_lower,
'auc_mean': auc_mean,
'auc_std': auc_std
}
return rslt
def get_pr_info(y_true_all, scores_all):
rc_pt = np.linspace(0, 1, 1001)
rc_pt[0] = 1e-16
prs = []
aps = []
for i in range(len(y_true_all)):
y_true = y_true_all[i]
scores = scores_all[i]
pr, rc, _ = precision_recall_curve(y_true=y_true, probas_pred=scores)
aps.append(average_precision_score(y_true=y_true, y_score=scores))
pr, rc = pr[::-1], rc[::-1]
prs.append(pr_interp(rc_pt, rc, pr))
prs_mean = np.mean(prs, axis=0)
prs_std = np.std(prs, axis=0)
prs_upper = np.minimum(prs_mean + prs_std, 1)
prs_lower = np.maximum(prs_mean - prs_std, 0)
aps_mean = np.mean(aps)
aps_std = np.std(aps)
aps_std = 1 - aps_mean if aps_mean + aps_std > 1 else aps_std
rslt = {
'xs': rc_pt,
'ys_mean': prs_mean,
'ys_upper': prs_upper,
'ys_lower': prs_lower,
'auc_mean': aps_mean,
'auc_std': aps_std
}
return rslt
def get_and_print_metrics(mdl, dat):
''' ... '''
y_pred = mdl.predict(dat.x)
y_prob = mdl.predict_proba(dat.x)
met_all = get_metrics(dat.y, y_pred, y_prob)
for k, v in met_all.items():
if k not in ['Confusion Matrix']:
print('{}:\t{:.4f}'.format(k, v).expandtabs(20))
def get_and_print_metrics_multitask(mdl, dat):
''' ... '''
y_pred = mdl.predict(dat.x)
y_prob = mdl.predict_proba(dat.x)
met = get_metrics_multitask(dat.y, y_pred, y_prob)
print_metrics_multitask(met)
def split_dataset(dat, ratio=.8, seed=0):
len_trn = int(np.round(len(dat) * .8))
len_vld = len(dat) - len_trn
dat_trn, dat_vld = torch.utils.data.random_split(
dat, (len_trn, len_vld),
generator=torch.Generator().manual_seed(0)
)
return dat_trn, dat_vld
def l1_regularizer(model, lambda_l1=0.01):
''' LASSO '''
lossl1 = 0
for model_param_name, model_param_value in model.named_parameters():
if model_param_name.endswith('weight'):
lossl1 += lambda_l1 * model_param_value.abs().sum()
return lossl1
class ProgressBar(tqdm.tqdm):
def __init__(self, total, desc, file=sys.stdout):
super().__init__(total=total, desc=desc, ascii=True, bar_format='{l_bar}{r_bar}', file=file)
def update(self, batch_size, to_disp):
postfix = {}
for k, v in to_disp.items():
if k == 'cnf':
postfix[k] = v.__repr__().replace('\n', '')
else:
postfix[k] = '{:.6f}'.format(v.cpu().numpy())
self.set_postfix(postfix)
super().update(batch_size)
def _get_gt_mask(logits, target):
target = target.reshape(-1)
mask = torch.zeros_like(logits).scatter_(1, target.unsqueeze(1), 1).bool()
return mask
def _get_other_mask(logits, target):
target = target.reshape(-1)
mask = torch.ones_like(logits).scatter_(1, target.unsqueeze(1), 0).bool()
return mask
def cat_mask(t, mask1, mask2):
t1 = (t * mask1).sum(dim=1, keepdims=True)
t2 = (t * mask2).sum(1, keepdims=True)
rt = torch.cat([t1, t2], dim=1)
return rt
def dkd_loss(logits_student, logits_teacher, target, alpha, beta, temperature):
gt_mask = _get_gt_mask(logits_student, target)
other_mask = _get_other_mask(logits_student, target)
pred_student = F.softmax(logits_student / temperature, dim=1)
pred_teacher = F.softmax(logits_teacher / temperature, dim=1)
pred_student = cat_mask(pred_student, gt_mask, other_mask)
pred_teacher = cat_mask(pred_teacher, gt_mask, other_mask)
log_pred_student = torch.log(pred_student)
tckd_loss = (
F.kl_div(log_pred_student, pred_teacher, size_average=False)
* (temperature**2)
/ target.shape[0]
)
pred_teacher_part2 = F.softmax(
logits_teacher / temperature - 1000.0 * gt_mask, dim=1
)
log_pred_student_part2 = F.log_softmax(
logits_student / temperature - 1000.0 * gt_mask, dim=1
)
nckd_loss = (
F.kl_div(log_pred_student_part2, pred_teacher_part2, size_average=False)
* (temperature**2)
/ target.shape[0]
)
return alpha * tckd_loss + beta * nckd_loss
def convert_args_kwargs_to_kwargs(func, args, kwargs):
""" ... """
signature = inspect.signature(func)
bound_args = signature.bind(*args, **kwargs)
bound_args.apply_defaults()
return bound_args.arguments |