|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
import numpy as np |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as cp |
|
from collections import OrderedDict |
|
|
|
|
|
def _bn_function_factory(norm, relu, conv): |
|
def bn_function(*inputs): |
|
concated_features = torch.cat(inputs, 1) |
|
bottleneck_output = conv(relu(norm(concated_features))) |
|
return bottleneck_output |
|
|
|
return bn_function |
|
|
|
|
|
class _DenseLayer(nn.Module): |
|
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, efficient=False): |
|
super(_DenseLayer, self).__init__() |
|
self.add_module('norm1', nn.BatchNorm3d(num_input_features)), |
|
self.add_module('relu1', nn.ReLU(inplace=True)), |
|
self.add_module('conv1', nn.Conv3d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), |
|
self.add_module('norm2', nn.BatchNorm3d(bn_size * growth_rate)), |
|
self.add_module('relu2', nn.ReLU(inplace=True)), |
|
self.add_module('conv2', nn.Conv3d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), |
|
self.drop_rate = drop_rate |
|
self.efficient = efficient |
|
|
|
def forward(self, *prev_features): |
|
bn_function = _bn_function_factory(self.norm1, self.relu1, self.conv1) |
|
if self.efficient and any(prev_feature.requires_grad for prev_feature in prev_features): |
|
bottleneck_output = cp.checkpoint(bn_function, *prev_features) |
|
else: |
|
bottleneck_output = bn_function(*prev_features) |
|
new_features = self.conv2(self.relu2(self.norm2(bottleneck_output))) |
|
if self.drop_rate > 0: |
|
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) |
|
return new_features |
|
|
|
|
|
class _Transition(nn.Sequential): |
|
def __init__(self, num_input_features, num_output_features): |
|
super(_Transition, self).__init__() |
|
self.add_module('norm', nn.BatchNorm3d(num_input_features)) |
|
self.add_module('relu', nn.ReLU(inplace=True)) |
|
self.add_module('conv', nn.Conv3d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) |
|
self.add_module('pool', nn.AvgPool3d(kernel_size=2, stride=2)) |
|
|
|
|
|
class _DenseBlock(nn.Module): |
|
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, efficient=False): |
|
super(_DenseBlock, self).__init__() |
|
for i in range(num_layers): |
|
layer = _DenseLayer( |
|
num_input_features + i * growth_rate, |
|
growth_rate=growth_rate, |
|
bn_size=bn_size, |
|
drop_rate=drop_rate, |
|
efficient=efficient, |
|
) |
|
self.add_module('denselayer%d' % (i + 1), layer) |
|
|
|
def forward(self, init_features): |
|
features = [init_features] |
|
for name, layer in self.named_children(): |
|
new_features = layer(*features) |
|
features.append(new_features) |
|
return torch.cat(features, 1) |
|
|
|
|
|
class DenseNet(nn.Module): |
|
r"""Densenet-BC model class, based on |
|
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` |
|
Args: |
|
growth_rate (int) - how many filters to add each layer (`k` in paper) |
|
block_config (list of 3 or 4 ints) - how many layers in each pooling block |
|
num_init_features (int) - the number of filters to learn in the first convolution layer |
|
bn_size (int) - multiplicative factor for number of bottle neck layers |
|
(i.e. bn_size * k features in the bottleneck layer) |
|
drop_rate (float) - dropout rate after each dense layer |
|
tgt_modalities (list) - list of target modalities |
|
efficient (bool) - set to True to use checkpointing. Much more memory efficient, but slower. |
|
""" |
|
|
|
|
|
|
|
def __init__(self, tgt_modalities, growth_rate=12, block_config=(3, 3, 3), compression=0.5, |
|
num_init_features=16, bn_size=4, drop_rate=0, efficient=False, load_from_ckpt=False): |
|
|
|
super(DenseNet, self).__init__() |
|
|
|
|
|
self.features = nn.Sequential(OrderedDict([('conv0', nn.Conv3d(1, num_init_features, kernel_size=7, stride=2, padding=0, bias=False)),])) |
|
self.features.add_module('norm0', nn.BatchNorm3d(num_init_features)) |
|
self.features.add_module('relu0', nn.ReLU(inplace=True)) |
|
self.features.add_module('pool0', nn.MaxPool3d(kernel_size=3, stride=2, padding=0, ceil_mode=False)) |
|
self.tgt_modalities = tgt_modalities |
|
|
|
|
|
num_features = num_init_features |
|
for i, num_layers in enumerate(block_config): |
|
block = _DenseBlock( |
|
num_layers=num_layers, |
|
num_input_features=num_features, |
|
bn_size=bn_size, |
|
growth_rate=growth_rate, |
|
drop_rate=drop_rate, |
|
efficient=efficient, |
|
) |
|
self.features.add_module('denseblock%d' % (i + 1), block) |
|
num_features = num_features + num_layers * growth_rate |
|
if i != len(block_config): |
|
trans = _Transition(num_input_features=num_features, |
|
num_output_features=int(num_features * compression)) |
|
self.features.add_module('transition%d' % (i + 1), trans) |
|
num_features = int(num_features * compression) |
|
|
|
|
|
self.features.add_module('norm_final', nn.BatchNorm3d(num_features)) |
|
|
|
|
|
self.tgt = torch.nn.ModuleDict() |
|
for k in tgt_modalities: |
|
|
|
self.tgt[k] = torch.nn.Sequential( |
|
torch.nn.Linear(self.test_size(), 256), |
|
torch.nn.ReLU(), |
|
torch.nn.Linear(256, 1) |
|
) |
|
|
|
print(f'load_from_ckpt: {load_from_ckpt}') |
|
|
|
if not load_from_ckpt: |
|
for name, param in self.named_parameters(): |
|
if 'conv' in name and 'weight' in name: |
|
n = param.size(0) * param.size(2) * param.size(3) * param.size(4) |
|
param.data.normal_().mul_(math.sqrt(2. / n)) |
|
elif 'norm' in name and 'weight' in name: |
|
param.data.fill_(1) |
|
elif 'norm' in name and 'bias' in name: |
|
param.data.fill_(0) |
|
elif ('classifier' in name or 'tgt' in name) and 'bias' in name: |
|
param.data.fill_(0) |
|
|
|
|
|
|
|
def forward(self, x, shap=True): |
|
|
|
features = self.features(x) |
|
|
|
out = F.relu(features, inplace=True) |
|
|
|
out = torch.flatten(out, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tgt_iter = self.tgt.keys() |
|
out_tgt = {k: self.tgt[k](out).squeeze(1) for k in tgt_iter} |
|
if shap: |
|
out_tgt = torch.stack(list(out_tgt.values())) |
|
return out_tgt.T |
|
else: |
|
return out_tgt |
|
|
|
def test_size(self): |
|
case = torch.ones((1, 1, 182, 218, 182)) |
|
output = self.features(case).view(-1).size(0) |
|
return output |
|
|
|
|
|
if __name__ == "__main__": |
|
model = DenseNet( |
|
tgt_modalities=['NC', 'MCI', 'DE'], |
|
growth_rate=12, |
|
block_config=(2, 3, 2), |
|
compression=0.5, |
|
num_init_features=16, |
|
drop_rate=0.2) |
|
print(model) |
|
torch.manual_seed(42) |
|
x = torch.rand((1, 1, 182, 218, 182)) |
|
|
|
features = nn.Sequential(*list(model.features.children()))(x) |
|
print(features.shape) |
|
print(sum(p.numel() for p in model.parameters())) |
|
|
|
|
|
|
|
out = model(x, shap=False) |
|
print(out) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|