|
""" |
|
Created on Sat Nov 21 10:49:39 2021 |
|
|
|
@author: cxue2 |
|
""" |
|
|
|
import torch.nn as nn |
|
|
|
|
|
__all__ = ['r3d_18', 'mc3_18', 'r2plus1d_18'] |
|
|
|
|
|
class Conv3DSimple(nn.Conv3d): |
|
def __init__(self, |
|
in_planes, |
|
out_planes, |
|
midplanes=None, |
|
stride=1, |
|
padding=1): |
|
|
|
super(Conv3DSimple, self).__init__( |
|
in_channels=in_planes, |
|
out_channels=out_planes, |
|
kernel_size=(3, 3, 3), |
|
stride=stride, |
|
padding=padding, |
|
bias=False) |
|
|
|
@staticmethod |
|
def get_downsample_stride(stride): |
|
return stride, stride, stride |
|
|
|
|
|
class Conv2Plus1D(nn.Sequential): |
|
|
|
def __init__(self, |
|
in_planes, |
|
out_planes, |
|
midplanes, |
|
stride=1, |
|
padding=1): |
|
super(Conv2Plus1D, self).__init__( |
|
nn.Conv3d(in_planes, midplanes, kernel_size=(1, 3, 3), |
|
stride=(1, stride, stride), padding=(0, padding, padding), |
|
bias=False), |
|
nn.BatchNorm3d(midplanes), |
|
nn.ReLU(inplace=True), |
|
nn.Conv3d(midplanes, out_planes, kernel_size=(3, 1, 1), |
|
stride=(stride, 1, 1), padding=(padding, 0, 0), |
|
bias=False)) |
|
|
|
@staticmethod |
|
def get_downsample_stride(stride): |
|
return stride, stride, stride |
|
|
|
|
|
class Conv3DNoTemporal(nn.Conv3d): |
|
|
|
def __init__(self, |
|
in_planes, |
|
out_planes, |
|
midplanes=None, |
|
stride=1, |
|
padding=1): |
|
|
|
super(Conv3DNoTemporal, self).__init__( |
|
in_channels=in_planes, |
|
out_channels=out_planes, |
|
kernel_size=(1, 3, 3), |
|
stride=(1, stride, stride), |
|
padding=(0, padding, padding), |
|
bias=False) |
|
|
|
@staticmethod |
|
def get_downsample_stride(stride): |
|
return 1, stride, stride |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
|
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, conv_builder, stride=1, downsample=None): |
|
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes) |
|
|
|
super(BasicBlock, self).__init__() |
|
self.conv1 = nn.Sequential( |
|
conv_builder(inplanes, planes, midplanes, stride), |
|
nn.BatchNorm3d(planes), |
|
nn.ReLU(inplace=True) |
|
) |
|
self.conv2 = nn.Sequential( |
|
conv_builder(planes, planes, midplanes), |
|
nn.BatchNorm3d(planes) |
|
) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.conv2(out) |
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, conv_builder, stride=1, downsample=None): |
|
|
|
super(Bottleneck, self).__init__() |
|
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes) |
|
|
|
|
|
self.conv1 = nn.Sequential( |
|
nn.Conv3d(inplanes, planes, kernel_size=1, bias=False), |
|
nn.BatchNorm3d(planes), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.conv2 = nn.Sequential( |
|
conv_builder(planes, planes, midplanes, stride), |
|
nn.BatchNorm3d(planes), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
|
|
self.conv3 = nn.Sequential( |
|
nn.Conv3d(planes, planes * self.expansion, kernel_size=1, bias=False), |
|
nn.BatchNorm3d(planes * self.expansion) |
|
) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.conv2(out) |
|
out = self.conv3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class BasicStem(nn.Sequential): |
|
"""The default conv-batchnorm-relu stem |
|
""" |
|
def __init__(self): |
|
super(BasicStem, self).__init__( |
|
nn.Conv3d(1, 64, kernel_size=(7, 7, 7), stride=(2, 2, 2), |
|
padding=(3, 3, 3), bias=False), |
|
nn.BatchNorm3d(64), |
|
nn.ReLU(inplace=True)) |
|
|
|
|
|
class R2Plus1dStem(nn.Sequential): |
|
"""R(2+1)D stem is different than the default one as it uses separated 3D convolution |
|
""" |
|
def __init__(self): |
|
super(R2Plus1dStem, self).__init__( |
|
nn.Conv3d(3, 45, kernel_size=(1, 7, 7), |
|
stride=(1, 2, 2), padding=(0, 3, 3), |
|
bias=False), |
|
nn.BatchNorm3d(45), |
|
nn.ReLU(inplace=True), |
|
nn.Conv3d(45, 64, kernel_size=(3, 1, 1), |
|
stride=(1, 1, 1), padding=(1, 0, 0), |
|
bias=False), |
|
nn.BatchNorm3d(64), |
|
nn.ReLU(inplace=True)) |
|
|
|
|
|
class VideoResNet(nn.Module): |
|
|
|
def __init__(self, block, conv_makers, layers, |
|
stem, num_classes=16, |
|
zero_init_residual=False): |
|
"""Generic resnet video generator. |
|
Args: |
|
block (nn.Module): resnet building block |
|
conv_makers (list(functions)): generator function for each layer |
|
layers (List[int]): number of blocks per layer |
|
stem (nn.Module, optional): Resnet stem, if None, defaults to conv-bn-relu. Defaults to None. |
|
num_classes (int, optional): Dimension of the final FC layer. Defaults to 400. |
|
zero_init_residual (bool, optional): Zero init bottleneck residual BN. Defaults to False. |
|
""" |
|
super(VideoResNet, self).__init__() |
|
self.inplanes = 64 |
|
|
|
self.stem = stem() |
|
|
|
self.layer1 = self._make_layer(block, conv_makers[0], 64, layers[0], stride=1) |
|
self.layer2 = self._make_layer(block, conv_makers[1], 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, conv_makers[2], 192, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, conv_makers[3], 256, layers[3], stride=2) |
|
|
|
self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1)) |
|
self.fc = nn.Linear(256 * block.expansion, num_classes) |
|
|
|
|
|
self._initialize_weights() |
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
|
|
def forward(self, x): |
|
x = self.stem(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
|
|
x = x.flatten(1) |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
def _make_layer(self, block, conv_builder, planes, blocks, stride=1): |
|
downsample = None |
|
|
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
ds_stride = conv_builder.get_downsample_stride(stride) |
|
downsample = nn.Sequential( |
|
nn.Conv3d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=ds_stride, bias=False), |
|
nn.BatchNorm3d(planes * block.expansion) |
|
) |
|
layers = [] |
|
layers.append(block(self.inplanes, planes, conv_builder, stride, downsample)) |
|
|
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, conv_builder)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _initialize_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv3d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', |
|
nonlinearity='relu') |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm3d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
def _video_resnet(arch, pretrained=False, progress=True, **kwargs): |
|
model = VideoResNet(**kwargs) |
|
|
|
return model |
|
|
|
|
|
def r3d_18(pretrained=False, progress=True, **kwargs): |
|
"""Construct 18 layer Resnet3D model as in |
|
https://arxiv.org/abs/1711.11248 |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on Kinetics-400 |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
Returns: |
|
nn.Module: R3D-18 network |
|
""" |
|
|
|
return _video_resnet('r3d_18', |
|
pretrained, progress, |
|
block=BasicBlock, |
|
conv_makers=[Conv3DSimple] * 4, |
|
layers=[2, 2, 2, 2], |
|
stem=BasicStem, **kwargs) |
|
|
|
|
|
def mc3_18(pretrained=False, progress=True, **kwargs): |
|
"""Constructor for 18 layer Mixed Convolution network as in |
|
https://arxiv.org/abs/1711.11248 |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on Kinetics-400 |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
Returns: |
|
nn.Module: MC3 Network definition |
|
""" |
|
return _video_resnet('mc3_18', |
|
pretrained, progress, |
|
block=BasicBlock, |
|
conv_makers=[Conv3DSimple] + [Conv3DNoTemporal] * 3, |
|
layers=[2, 2, 2, 2], |
|
stem=BasicStem, **kwargs) |
|
|
|
|
|
def r2plus1d_18(pretrained=False, progress=True, **kwargs): |
|
"""Constructor for the 18 layer deep R(2+1)D network as in |
|
https://arxiv.org/abs/1711.11248 |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on Kinetics-400 |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
Returns: |
|
nn.Module: R(2+1)D-18 network |
|
""" |
|
return _video_resnet('r2plus1d_18', |
|
pretrained, progress, |
|
block=BasicBlock, |
|
conv_makers=[Conv2Plus1D] * 4, |
|
layers=[2, 2, 2, 2], |
|
stem=R2Plus1dStem, **kwargs) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
import torch |
|
|
|
net = r3d_18().to(0) |
|
x = torch.zeros(3, 1, 182, 218, 182).to(0) |
|
|
|
print(net(x).shape) |
|
print(net) |