nmed2024 / adrd /model /transformer.py
xf3227's picture
ok
6fc43ab
raw
history blame
22.8 kB
__all__ = ['Transformer']
import torch
from torch.utils.data import DataLoader
import numpy as np
import tqdm
from sklearn.base import BaseEstimator
from sklearn.utils.validation import check_is_fitted
from sklearn.model_selection import train_test_split
from scipy.special import expit
from copy import deepcopy
from contextlib import suppress
from typing import Any, Self, Type
from functools import wraps
Tensor = Type[torch.Tensor]
Module = Type[torch.nn.Module]
from .. import nn
from ..utils import TransformerTrainingDataset
from ..utils import TransformerBalancedTrainingDataset
from ..utils import Transformer2ndOrderBalancedTrainingDataset
from ..utils import TransformerValidationDataset
from ..utils import TransformerTestingDataset
from ..utils.misc import ProgressBar
from ..utils.misc import get_metrics_multitask, print_metrics_multitask
from ..utils.misc import convert_args_kwargs_to_kwargs
def _manage_ctx_fit(func):
''' ... '''
@wraps(func)
def wrapper(*args, **kwargs):
# format arguments
kwargs = convert_args_kwargs_to_kwargs(func, args, kwargs)
if kwargs['self']._device_ids is None:
return func(**kwargs)
else:
# change primary device
default_device = kwargs['self'].device
kwargs['self'].device = kwargs['self']._device_ids[0]
rtn = func(**kwargs)
kwargs['self'].to(default_device)
return rtn
return wrapper
class Transformer(BaseEstimator):
''' ... '''
def __init__(self,
src_modalities: dict[str, dict[str, Any]],
tgt_modalities: dict[str, dict[str, Any]],
d_model: int = 32,
nhead: int = 1,
num_layers: int = 1,
num_epochs: int = 32,
batch_size: int = 8,
batch_size_multiplier: int = 1,
lr: float = 1e-2,
weight_decay: float = 0.0,
beta: float = 0.9999,
gamma: float = 2.0,
scale: float = 1.0,
lambd: float = 0.0,
criterion: str | None = None,
device: str = 'cpu',
verbose: int = 0,
_device_ids: list | None = None,
_dataloader_num_workers: int = 0,
_amp_enabled: bool = False,
) -> None:
''' ... '''
# for multiprocessing
self._rank = 0
self._lock = None
# positional parameters
self.src_modalities = src_modalities
self.tgt_modalities = tgt_modalities
# training parameters
self.d_model = d_model
self.nhead = nhead
self.num_layers = num_layers
self.num_epochs = num_epochs
self.batch_size = batch_size
self.batch_size_multiplier = batch_size_multiplier
self.lr = lr
self.weight_decay = weight_decay
self.beta = beta
self.gamma = gamma
self.scale = scale
self.lambd = lambd
self.criterion = criterion
self.device = device
self.verbose = verbose
self._device_ids = _device_ids
self._dataloader_num_workers = _dataloader_num_workers
self._amp_enabled = _amp_enabled
@_manage_ctx_fit
def fit(self,
x, y,
is_embedding: dict[str, bool] | None = None,
) -> Self:
''' ... '''
# for PyTorch computational efficiency
torch.set_num_threads(1)
# initialize neural network
self.net_ = self._init_net()
# initialize dataloaders
ldr_trn, ldr_vld = self._init_dataloader(x, y, is_embedding)
# initialize optimizer and scheduler
optimizer = self._init_optimizer()
scheduler = self._init_scheduler(optimizer)
# gradient scaler for AMP
if self._amp_enabled: scaler = torch.cuda.amp.GradScaler()
# initialize loss function (binary cross entropy)
loss_func = self._init_loss_func({
k: (
sum([_[k] == 0 for _ in ldr_trn.dataset.tgt]),
sum([_[k] == 1 for _ in ldr_trn.dataset.tgt]),
) for k in self.tgt_modalities
})
# to record the best validation performance criterion
if self.criterion is not None: best_crit = None
# progress bar for epoch loops
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch = tqdm.tqdm(
desc = 'Rank {:02d}'.format(self._rank),
total = self.num_epochs,
position = self._rank,
ascii = True,
leave = False,
bar_format='{l_bar}{r_bar}'
)
# training loop
for epoch in range(self.num_epochs):
# progress bar for batch loops
if self.verbose > 1:
pbr_batch = ProgressBar(len(ldr_trn.dataset), 'Epoch {:03d} (TRN)'.format(epoch))
# set model to train mode
torch.set_grad_enabled(True)
self.net_.train()
scores_trn: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
y_true_trn: dict[str, list[int]] = {k: [] for k in self.tgt_modalities}
losses_trn: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
for n_iter, (x_batch, y_batch, mask_x, mask_y) in enumerate(ldr_trn):
# mount data to the proper device
x_batch = {k: x_batch[k].to(self.device) for k in self.src_modalities}
y_batch = {k: y_batch[k].to(torch.float).to(self.device) for k in self.tgt_modalities}
mask_x = {k: mask_x[k].to(self.device) for k in self.src_modalities}
mask_y = {k: mask_y[k].to(self.device) for k in self.tgt_modalities}
# forward
with torch.autocast(
device_type = 'cpu' if self.device == 'cpu' else 'cuda',
dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
enabled = self._amp_enabled,
):
outputs = self.net_(x_batch, mask_x, is_embedding)
# calculate multitask loss
loss = 0
for i, tgt_k in enumerate(self.tgt_modalities):
loss_k = loss_func[tgt_k](outputs[tgt_k], y_batch[tgt_k])
loss_k = torch.masked_select(loss_k, torch.logical_not(mask_y[tgt_k].squeeze()))
loss += loss_k.mean()
losses_trn[tgt_k] += loss_k.detach().cpu().numpy().tolist()
# if self.lambd != 0:
# backward
if self._amp_enabled:
scaler.scale(loss).backward()
else:
loss.backward()
# update parameters
if n_iter != 0 and n_iter % self.batch_size_multiplier == 0:
if self._amp_enabled:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
optimizer.step()
optimizer.zero_grad()
# save outputs to evaluate performance later
for tgt_k in self.tgt_modalities:
tmp = torch.masked_select(outputs[tgt_k], torch.logical_not(mask_y[tgt_k].squeeze()))
scores_trn[tgt_k] += tmp.detach().cpu().numpy().tolist()
tmp = torch.masked_select(y_batch[tgt_k], torch.logical_not(mask_y[tgt_k].squeeze()))
y_true_trn[tgt_k] += tmp.cpu().numpy().tolist()
# update progress bar
if self.verbose > 1:
batch_size = len(next(iter(x_batch.values())))
pbr_batch.update(batch_size, {})
pbr_batch.refresh()
# for better tqdm progress bar display
if self.verbose > 1:
pbr_batch.close()
# set scheduler
scheduler.step()
# calculate and print training performance metrics
y_pred_trn: dict[str, list[int]] = {k: [] for k in self.tgt_modalities}
y_prob_trn: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
for tgt_k in self.tgt_modalities:
for i in range(len(scores_trn[tgt_k])):
y_pred_trn[tgt_k].append(1 if scores_trn[tgt_k][i] > 0 else 0)
y_prob_trn[tgt_k].append(expit(scores_trn[tgt_k][i]))
met_trn = get_metrics_multitask(y_true_trn, y_pred_trn, y_prob_trn)
# add loss to metrics
for tgt_k in self.tgt_modalities:
met_trn[tgt_k]['Loss'] = np.mean(losses_trn[tgt_k])
if self.verbose > 2:
print_metrics_multitask(met_trn)
# progress bar for validation
if self.verbose > 1:
pbr_batch = ProgressBar(len(ldr_vld.dataset), 'Epoch {:03d} (VLD)'.format(epoch))
# set model to validation mode
torch.set_grad_enabled(False)
self.net_.eval()
scores_vld: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
y_true_vld: dict[str, list[int]] = {k: [] for k in self.tgt_modalities}
losses_vld: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
for x_batch, y_batch, mask_x, mask_y in ldr_vld:
# mount data to the proper device
x_batch = {k: x_batch[k].to(self.device) for k in self.src_modalities}
y_batch = {k: y_batch[k].to(torch.float).to(self.device) for k in self.tgt_modalities}
mask_x = {k: mask_x[k].to(self.device) for k in self.src_modalities}
mask_y = {k: mask_y[k].to(self.device) for k in self.tgt_modalities}
# forward
with torch.autocast(
device_type = 'cpu' if self.device == 'cpu' else 'cuda',
dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
enabled = self._amp_enabled
):
outputs = self.net_(x_batch, mask_x, is_embedding)
# calculate multitask loss
for i, tgt_k in enumerate(self.tgt_modalities):
loss_k = loss_func[tgt_k](outputs[tgt_k], y_batch[tgt_k])
loss_k = torch.masked_select(loss_k, torch.logical_not(mask_y[tgt_k].squeeze()))
losses_vld[tgt_k] += loss_k.detach().cpu().numpy().tolist()
# save outputs to evaluate performance later
for tgt_k in self.tgt_modalities:
tmp = torch.masked_select(outputs[tgt_k], torch.logical_not(mask_y[tgt_k].squeeze()))
scores_vld[tgt_k] += tmp.detach().cpu().numpy().tolist()
tmp = torch.masked_select(y_batch[tgt_k], torch.logical_not(mask_y[tgt_k].squeeze()))
y_true_vld[tgt_k] += tmp.cpu().numpy().tolist()
# update progress bar
if self.verbose > 1:
batch_size = len(next(iter(x_batch.values())))
pbr_batch.update(batch_size, {})
pbr_batch.refresh()
# for better tqdm progress bar display
if self.verbose > 1:
pbr_batch.close()
# calculate and print validation performance metrics
y_pred_vld: dict[str, list[int]] = {k: [] for k in self.tgt_modalities}
y_prob_vld: dict[str, list[float]] = {k: [] for k in self.tgt_modalities}
for tgt_k in self.tgt_modalities:
for i in range(len(scores_vld[tgt_k])):
y_pred_vld[tgt_k].append(1 if scores_vld[tgt_k][i] > 0 else 0)
y_prob_vld[tgt_k].append(expit(scores_vld[tgt_k][i]))
met_vld = get_metrics_multitask(y_true_vld, y_pred_vld, y_prob_vld)
# add loss to metrics
for tgt_k in self.tgt_modalities:
met_vld[tgt_k]['Loss'] = np.mean(losses_vld[tgt_k])
if self.verbose > 2:
print_metrics_multitask(met_vld)
# save the model if it has the best validation performance criterion by far
if self.criterion is None: continue
# is current criterion better than previous best?
curr_crit = np.mean([met_vld[k][self.criterion] for k in self.tgt_modalities])
if best_crit is None or np.isnan(best_crit):
is_better = True
elif self.criterion == 'Loss' and best_crit >= curr_crit:
is_better = True
elif self.criterion != 'Loss' and best_crit <= curr_crit:
is_better = True
else:
is_better = False
# update best criterion
if is_better:
best_crit = curr_crit
best_state_dict = deepcopy(self.net_.state_dict())
if self.verbose > 2:
print('Best {}: {}'.format(self.criterion, best_crit))
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch.update(1)
pbr_epoch.refresh()
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch.close()
# restore the model of the best validation performance across all epoches
if ldr_vld is not None and self.criterion is not None:
self.net_.load_state_dict(best_state_dict)
return self
def predict_logits(self,
x: list[dict[str, Any]],
is_embedding: dict[str, bool] | None = None,
_batch_size: int | None = None,
) -> list[dict[str, float]]:
'''
The input x can be a single sample or a list of samples.
'''
# input validation
check_is_fitted(self)
# for PyTorch computational efficiency
torch.set_num_threads(1)
# set model to eval mode
torch.set_grad_enabled(False)
self.net_.eval()
# intialize dataset and dataloader object
dat = TransformerTestingDataset(x, self.src_modalities, is_embedding)
ldr = DataLoader(
dataset = dat,
batch_size = _batch_size if _batch_size is not None else len(x),
shuffle = False,
drop_last = False,
num_workers = 0,
collate_fn = TransformerTestingDataset.collate_fn,
)
# run model and collect results
logits: list[dict[str, float]] = []
for x_batch, mask_x in ldr:
# mount data to the proper device
x_batch = {k: x_batch[k].to(self.device) for k in self.src_modalities}
mask_x = {k: mask_x[k].to(self.device) for k in self.src_modalities}
# forward
output: dict[str, Tensor] = self.net_(x_batch, mask_x, is_embedding)
# convert output from dict-of-list to list of dict, then append
tmp = {k: output[k].tolist() for k in self.tgt_modalities}
tmp = [{k: tmp[k][i] for k in self.tgt_modalities} for i in range(len(next(iter(tmp.values()))))]
logits += tmp
return logits
def predict_proba(self,
x: list[dict[str, Any]],
is_embedding: dict[str, bool] | None = None,
temperature: float = 1.0,
_batch_size: int | None = None,
) -> list[dict[str, float]]:
''' ... '''
logits = self.predict_logits(x, is_embedding, _batch_size)
return [{k: expit(smp[k] / temperature) for k in self.tgt_modalities} for smp in logits]
def predict(self,
x: list[dict[str, Any]],
is_embedding: dict[str, bool] | None = None,
_batch_size: int | None = None,
) -> list[dict[str, int]]:
''' ... '''
logits = self.predict_logits(x, is_embedding, _batch_size)
return [{k: int(smp[k] > 0.0) for k in self.tgt_modalities} for smp in logits]
def save(self, filepath: str) -> None:
''' ... '''
check_is_fitted(self)
state_dict = self.net_.state_dict()
# attach model hyper parameters
state_dict['src_modalities'] = self.src_modalities
state_dict['tgt_modalities'] = self.tgt_modalities
state_dict['d_model'] = self.d_model
state_dict['nhead'] = self.nhead
state_dict['num_layers'] = self.num_layers
torch.save(state_dict, filepath)
def load(self, filepath: str) -> None:
''' ... '''
# load state_dict
state_dict = torch.load(filepath, map_location='cpu')
# load essential parameters
self.src_modalities: dict[str, dict[str, Any]] = state_dict.pop('src_modalities')
self.tgt_modalities: dict[str, dict[str, Any]] = state_dict.pop('tgt_modalities')
self.d_model = state_dict.pop('d_model')
self.nhead = state_dict.pop('nhead')
self.num_layers = state_dict.pop('num_layers')
# initialize model
self.net_ = nn.Transformer(
self.src_modalities,
self.tgt_modalities,
self.d_model,
self.nhead,
self.num_layers,
)
# load model parameters
self.net_.load_state_dict(state_dict)
self.to(self.device)
def to(self, device: str) -> Self:
''' Mount model to the given device. '''
self.device = device
if hasattr(self, 'net_'): self.net_ = self.net_.to(device)
return self
@classmethod
def from_ckpt(cls, filepath: str) -> Self:
''' ... '''
obj = cls(None, None)
obj.load(filepath)
return obj
def _init_net(self):
""" ... """
net = nn.Transformer(
self.src_modalities,
self.tgt_modalities,
self.d_model,
self.nhead,
self.num_layers,
).to(self.device)
# train on multiple GPUs using torch.nn.DataParallel
if self._device_ids is not None:
net = torch.nn.DataParallel(net, device_ids=self._device_ids)
# intialize model parameters using xavier_uniform
for p in net.parameters():
if p.dim() > 1:
torch.nn.init.xavier_uniform_(p)
return net
def _init_dataloader(self, x, y, is_embedding):
""" ... """
# split dataset
x_trn, x_vld, y_trn, y_vld = train_test_split(
x, y, test_size = 0.2, random_state = 0,
)
# initialize dataset and dataloader
# dat_trn = TransformerTrainingDataset(
# dat_trn = TransformerBalancedTrainingDataset(
dat_trn = Transformer2ndOrderBalancedTrainingDataset(
x_trn, y_trn,
self.src_modalities,
self.tgt_modalities,
dropout_rate = .5,
# dropout_strategy = 'compensated',
dropout_strategy = 'permutation',
)
dat_vld = TransformerValidationDataset(
x_vld, y_vld,
self.src_modalities,
self.tgt_modalities,
is_embedding,
)
ldr_trn = DataLoader(
dataset = dat_trn,
batch_size = self.batch_size,
shuffle = True,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = TransformerTrainingDataset.collate_fn,
# pin_memory = True
)
ldr_vld = DataLoader(
dataset = dat_vld,
batch_size = self.batch_size,
shuffle = False,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = TransformerValidationDataset.collate_fn,
# pin_memory = True
)
return ldr_trn, ldr_vld
def _init_optimizer(self):
""" ... """
return torch.optim.AdamW(
self.net_.parameters(),
lr = self.lr,
betas = (0.9, 0.98),
weight_decay = self.weight_decay
)
def _init_scheduler(self, optimizer):
""" ... """
return torch.optim.lr_scheduler.OneCycleLR(
optimizer = optimizer,
max_lr = self.lr,
total_steps = self.num_epochs,
verbose = (self.verbose > 2)
)
def _init_loss_func(self,
num_per_cls: dict[str, tuple[int, int]],
) -> dict[str, Module]:
""" ... """
return {k: nn.SigmoidFocalLoss(
beta = self.beta,
gamma = self.gamma,
scale = self.scale,
num_per_cls = num_per_cls[k],
reduction = 'none',
) for k in self.tgt_modalities}
def _extract_embedding(self,
x: list[dict[str, Any]],
is_embedding: dict[str, bool] | None = None,
_batch_size: int | None = None,
) -> list[dict[str, Any]]:
""" ... """
# input validation
check_is_fitted(self)
# for PyTorch computational efficiency
torch.set_num_threads(1)
# set model to eval mode
torch.set_grad_enabled(False)
self.net_.eval()
# intialize dataset and dataloader object
dat = TransformerTestingDataset(x, self.src_modalities, is_embedding)
ldr = DataLoader(
dataset = dat,
batch_size = _batch_size if _batch_size is not None else len(x),
shuffle = False,
drop_last = False,
num_workers = 0,
collate_fn = TransformerTestingDataset.collate_fn,
)
# run model and extract embeddings
embeddings: list[dict[str, Any]] = []
for x_batch, _ in ldr:
# mount data to the proper device
x_batch = {k: x_batch[k].to(self.device) for k in self.src_modalities}
# forward
out: dict[str, Tensor] = self.net_.forward_emb(x_batch, is_embedding)
# convert output from dict-of-list to list of dict, then append
tmp = {k: out[k].detach().cpu().numpy() for k in self.src_modalities}
tmp = [{k: tmp[k][i] for k in self.src_modalities} for i in range(len(next(iter(tmp.values()))))]
embeddings += tmp
# remove imputed embeddings
for i in range(len(x)):
avail = [k for k, v in x[i].items() if v is not None]
embeddings[i] = {k: embeddings[i][k] for k in avail}
return embeddings