push
Browse files- data/gen_nacc_meta.py +24 -0
- data/input_meta_info.csv +0 -0
data/gen_nacc_meta.py
CHANGED
@@ -18,9 +18,33 @@ for k in dict_description:
|
|
18 |
except:
|
19 |
print(k)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# %%
|
22 |
df_meta = pd.DataFrame()
|
23 |
df_meta['Name'] = dict_description.keys()
|
24 |
df_meta['Description'] = dict_description.values()
|
|
|
25 |
df_meta.to_csv('./input_meta_info.csv', index=False)
|
26 |
# %%
|
|
|
18 |
except:
|
19 |
print(k)
|
20 |
|
21 |
+
#%%
|
22 |
+
df_tmp = pd.read_csv("./nacc_allowable_code.csv")
|
23 |
+
df_tmp['variable_id'].fillna(method='ffill', inplace=True)
|
24 |
+
|
25 |
+
dict_code = {}
|
26 |
+
excluded_codes = set([])
|
27 |
+
for k in dict_description.keys():
|
28 |
+
if k == 'his_LIVSIT':
|
29 |
+
nacc_name = 'NACCLIVS'
|
30 |
+
else:
|
31 |
+
nacc_name = k.split('_')[-1]
|
32 |
+
sub_df = df_tmp[df_tmp['variable_id'] == nacc_name]
|
33 |
+
dict_code[k] = {}
|
34 |
+
for i, row in sub_df.iterrows():
|
35 |
+
val = row['code_1']
|
36 |
+
if val in excluded_codes:
|
37 |
+
continue
|
38 |
+
description = row['descriptor']
|
39 |
+
dict_code[k][val] = description
|
40 |
+
|
41 |
+
# df_code = pd.DataFrame.from_dict(dict_code, orient='index')
|
42 |
+
|
43 |
+
|
44 |
# %%
|
45 |
df_meta = pd.DataFrame()
|
46 |
df_meta['Name'] = dict_description.keys()
|
47 |
df_meta['Description'] = dict_description.values()
|
48 |
+
df_meta['Values'] = dict_code.values()
|
49 |
df_meta.to_csv('./input_meta_info.csv', index=False)
|
50 |
# %%
|
data/input_meta_info.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|