Spaces:
Sleeping
Sleeping
File size: 21,861 Bytes
5a03ea3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import streamlit as st
import wikipedia
from haystack.document_stores import InMemoryDocumentStore
from haystack.utils import clean_wiki_text, convert_files_to_docs
from haystack.nodes import TfidfRetriever, FARMReader
from haystack.pipelines import ExtractiveQAPipeline
from main import print_qa, QuestionGenerator
def main():
# Set the Streamlit app title
st.title("Question Generation using Haystack and Streamlit")
# Select the input type
inputs = ["Input Paragraph", "Wikipedia Examples"]
input_type = st.selectbox("Select an input type:", inputs)
# Initialize wiki_text as an empty string
wiki_text = ""
# Handle different input types
if input_type == "Input Paragraph":
# Allow user to input text paragraph
wiki_text = st.text_area("Input paragraph:", height=200)
elif input_type == "Wikipedia Examples":
# Define topics for selection
topics = ["Deep Learning", "Machine Learning"]
selected_topic = st.selectbox("Select a topic:", topics)
# Retrieve Wikipedia content based on the selected topic
if selected_topic:
wiki = wikipedia.page(selected_topic)
wiki_text = wiki.content
# Display the retrieved Wikipedia content (optional)
st.text_area("Retrieved Wikipedia content:", wiki_text, height=200)
# Preprocess the input text
wiki_text = clean_wiki_text(wiki_text)
# Allow user to specify the number of questions to generate
num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)
# Allow user to specify the model to use
model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2", "deepset/flan-t5-xl-squad2"]
model_name = st.selectbox("Select model:", model_options)
# Button to generate questions
if st.button("Generate Questions"):
document_store = InMemoryDocumentStore()
# Convert the preprocessed text into a document
document = {"content": wiki_text}
document_store.write_documents([document])
# Initialize a TfidfRetriever
retriever = TfidfRetriever(document_store=document_store)
# Initialize a FARMReader with the selected model
reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
# Initialize the question generation pipeline
pipe = ExtractiveQAPipeline(reader, retriever)
# Initialize the QuestionGenerator
qg = QuestionGenerator()
# Generate multiple-choice questions
qa_list = qg.generate(
wiki_text,
num_questions=num_questions,
answer_style='multiple_choice'
)
# Display the generated questions and answers
st.header("Generated Questions and Answers:")
for idx, qa in enumerate(qa_list):
# Display the question
st.write(f"Question {idx + 1}: {qa['question']}")
# Display the answer options
if 'answer' in qa:
for i, option in enumerate(qa['answer']):
correct_marker = "(correct)" if option["correct"] else ""
st.write(f"Option {i + 1}: {option['answer']} {correct_marker}")
# Add a separator after each question-answer pair
st.write("-" * 40)
# Run the Streamlit app
if __name__ == "__main__":
main()
# import streamlit as st
# import wikipedia
# from haystack.document_stores import InMemoryDocumentStore
# from haystack.utils import clean_wiki_text, convert_files_to_docs
# from haystack.nodes import TfidfRetriever, FARMReader
# from haystack.pipelines import ExtractiveQAPipeline
# from main import print_qa, QuestionGenerator
# import torch
# def main():
# # Set the Streamlit app title
# st.title("Question Generation using Haystack and Streamlit")
# # Select the input type
# inputs = ["Input Paragraph", "Wikipedia Examples"]
# input_type = st.selectbox("Select an input type:", inputs, key="input_type")
# # Initialize wiki_text as an empty string (to avoid UnboundLocalError)
# wiki_text = """ Deep learning is the subset of machine learning methods based on artificial neural networks (ANNs) with representation learning. The adjective "deep" refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.Deep-learning architectures such as deep neural networks, deep belief networks, recurrent neural networks, convolutional neural networks and transformers have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, climate science, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance.Artificial neural networks were inspired by information processing and distributed communication nodes in biological systems. ANNs have various differences from biological brains. Specifically, artificial neural networks tend to be static and symbolic, while the biological brain of most living organisms is dynamic (plastic) and analog. ANNs are generally seen as low quality models for brain function."""
# # Handle different input types
# if input_type == "Input Paragraph":
# # Allow user to input text paragraph
# wiki_text = st.text_area("Input paragraph:", height=200, key="input_paragraph")
# elif input_type == "Wikipedia Examples":
# # Define options for selecting the topic
# topics = ["Deep Learning", "Machine Learning"]
# selected_topic = st.selectbox("Select a topic:", topics, key="wiki_topic")
# # Retrieve Wikipedia content based on the selected topic
# if selected_topic:
# wiki = wikipedia.page(selected_topic)
# wiki_text = wiki.content
# # Display the retrieved Wikipedia content (optional)
# st.text_area("Retrieved Wikipedia content:", wiki_text, height=200, key="wiki_text")
# # Allow user to specify the number of questions to generate
# num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5, key="num_questions")
# # Allow user to specify the model to use
# model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2", "deepset/flan-t5-xl-squad2"]
# model_name = st.selectbox("Select model:", model_options, key="model_name")
# # Button to generate questions
# if st.button("Generate Questions", key="generate_button"):
# # Initialize the document store
# with open('wiki_txt.txt', 'w', encoding='utf-8') as f:
# f.write(wiki_text)
# document_store = InMemoryDocumentStore()
# doc_dir = "/content"
# docs = convert_files_to_docs(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True)
# document_store.write_documents(docs)
# retriever = TfidfRetriever(document_store=document_store)
# # # Convert the input text paragraph or Wikipedia content into a document
# # document = {"content": wiki_text}
# # document_store.write_documents([document])
# # Initialize a TfidfRetriever
# # retriever = TfidfRetriever(document_store=document_store)
# # Initialize a FARMReader with the selected model
# reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
# # Initialize the question generation pipeline
# pipe = ExtractiveQAPipeline(reader, retriever)
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# # Initialize the QuestionGenerator
# qg = QuestionGenerator()
# # Generate multiple-choice questions
# qa_list = qg.generate(wiki_text, num_questions=num_questions, answer_style='multiple_choice')
# # Display the generated questions and answers
# st.header("Generated Questions and Answers:")
# for idx, qa in enumerate(qa_list):
# # Display the question
# st.write(f"Question {idx + 1}: {qa['question']}")
# # Display the answer options
# if 'answer' in qa:
# for i, option in enumerate(qa['answer']):
# correct_marker = "(correct)" if option["correct"] else ""
# st.write(f"Option {i + 1}: {option['answer']} {correct_marker}")
# # Add a separator after each question-answer pair
# st.write("-" * 40)
# # Run the Streamlit app
# if __name__ == "__main__":
# main()
# # import streamlit as st
# # import wikipedia
# # from haystack.document_stores import InMemoryDocumentStore
# # from haystack.utils import clean_wiki_text, convert_files_to_docs
# # from haystack.nodes import TfidfRetriever, FARMReader
# # from haystack.pipelines import ExtractiveQAPipeline
# # from main import print_qa, QuestionGenerator
# # def main():
# # # Set the Streamlit app title
# # st.title("Question Generation using Haystack and Streamlit")
# # # select the input type
# # inputs = ["Input Paragraph", "Wikipedia Examples"]
# # input=st.selectbox("Select a Input Type :", inputs)
# # if(input=="Input Paragraph"):
# # # Allow user to input text paragraph
# # wiki_text = st.text_area("Input paragraph:", height=200)
# # # # Allow user to specify the number of questions to generate
# # # num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)
# # # # Allow user to specify the model to use
# # # model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2","deepset/flan-t5-xl-squad2"]
# # # model_name = st.selectbox("Select model:", model_options)
# # # # Button to generate questions
# # # if st.button("Generate Questions"):
# # # qno=0
# # # # Initialize the document store
# # # document_store = InMemoryDocumentStore()
# # # # Convert the input text paragraph into a document
# # # document = {"content": wiki_text}
# # # document_store.write_documents([document])
# # # # Initialize a TfidfRetriever
# # # retriever = TfidfRetriever(document_store=document_store)
# # # # Initialize a FARMReader with the selected model
# # # reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
# # # # Initialize the question generation pipeline
# # # pipe = ExtractiveQAPipeline(reader, retriever)
# # # # Initialize the QuestionGenerator
# # # qg = QuestionGenerator()
# # # # Generate multiple-choice questions
# # # qa_list = qg.generate(
# # # wiki_text,
# # # num_questions=num_questions,
# # # answer_style='multiple_choice')
# # # print("QA List Structure:")
# # # # Display the generated questions and answers
# # # st.header("Generated Questions and Answers:")
# # # for qa in qa_list:
# # # opno=0
# # # # Display the question
# # # st.write(f"Question: {qno+1}{qa['question']}")
# # # # Display the answer options
# # # if 'answer' in qa:
# # # for idx, option in enumerate(qa['answer']):
# # # # Indicate if the option is correct
# # # correct_marker = "(correct)" if option["correct"] else ""
# # # st.write(f"Option {idx + 1}: {option['answer']} {correct_marker}")
# # # # Add a separator after each question-answer pair
# # # st.write("-" * 40)
# # if(input == "Wikipedia Examples"):
# # # Define options for selecting the topic
# # topics = ["Deep Learning", "MachineLearning"]
# # selected_topic = st.selectbox("Select a topic:", topics)
# # # Retrieve Wikipedia content based on the selected topic
# # if selected_topic:
# # wiki = wikipedia.page(selected_topic)
# # wiki_text = wiki.content
# # # Display the retrieved Wikipedia content in a text area (optional)
# # st.text_area("Retrieved Wikipedia content:", wiki_text, height=200)
# # # # Allow user to specify the number of questions to generate
# # # num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)
# # # # Allow user to specify the model to use
# # # model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2","deepset/flan-t5-xl-squad2"]
# # # model_name = st.selectbox("Select model:", model_options)
# # # # Button to generate questions
# # # if st.button("Generate Questions"):
# # # # Initialize the document store
# # # document_store = InMemoryDocumentStore()
# # # # Convert the retrieved Wikipedia content into a document
# # # document = {"content": wiki_text}
# # # document_store.write_documents([document])
# # # # Initialize a TfidfRetriever
# # # retriever = TfidfRetriever(document_store=document_store)
# # # # Initialize a FARMReader with the selected model
# # # reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
# # # # Initialize the ExtractiveQAPipeline
# # # pipeline = ExtractiveQAPipeline(reader, retriever)
# # # # Initialize the QuestionGenerator
# # # qg = QuestionGenerator()
# # # # Generate multiple-choice questions
# # # qa_list = qg.generate(
# # # wiki_text,
# # # num_questions=num_questions,
# # # answer_style='multiple_choice'
# # # )
# # # # Display the generated questions and answers
# # # st.header("Generated Questions and Answers:")
# # # for idx, qa in enumerate(qa_list):
# # # # Display the question
# # # st.write(f"Question {idx + 1}: {qa['question']}")
# # # # Display the answer options
# # # if 'answer' in qa:
# # # for i, option in enumerate(qa['answer']):
# # # correct_marker = "(correct)" if option["correct"] else ""
# # # st.write(f"Option {i + 1}: {option['answer']} {correct_marker}")
# # # # Add a separator after each question-answer pair
# # # st.write("-" * 40)
# # # Allow user to specify the number of questions to generate
# # num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)
# # # Allow user to specify the model to use
# # model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2","deepset/flan-t5-xl-squad2"]
# # model_name = st.selectbox("Select model:", model_options)
# # # Button to generate questions
# # if st.button("Generate Questions"):
# # qno=0
# # # Initialize the document store
# # document_store = InMemoryDocumentStore()
# # # Convert the input text paragraph into a document
# # document = {"content": wiki_text}
# # document_store.write_documents([document])
# # # Initialize a TfidfRetriever
# # retriever = TfidfRetriever(document_store=document_store)
# # # Initialize a FARMReader with the selected model
# # reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
# # # Initialize the question generation pipeline
# # pipe = ExtractiveQAPipeline(reader, retriever)
# # # Initialize the QuestionGenerator
# # qg = QuestionGenerator()
# # # Generate multiple-choice questions
# # qa_list = qg.generate(
# # wiki_text,
# # num_questions=num_questions,
# # answer_style='multiple_choice')
# # print("QA List Structure:")
# # # Display the generated questions and answers
# # st.header("Generated Questions and Answers:")
# # for qa in qa_list:
# # opno=0
# # # Display the question
# # st.write(f"Question: {qno+1}{qa['question']}")
# # # Display the answer options
# # if 'answer' in qa:
# # for idx, option in enumerate(qa['answer']):
# # # Indicate if the option is correct
# # correct_marker = "(correct)" if option["correct"] else ""
# # st.write(f"Option {idx + 1}: {option['answer']} {correct_marker}")
# # # Add a separator after each question-answer pair
# # st.write("-" * 40)
# # # Run the Streamlit app
# # if __name__ == "__main__":
# # main()
# # # import streamlit as st
# # # import re
# # # import pke
# # # import contractions
# # # import wikipedia
# # # import logging
# # # from haystack.document_stores import InMemoryDocumentStore
# # # from haystack.utils import clean_wiki_text, convert_files_to_docs, fetch_archive_from_http
# # # from transformers.pipelines import question_answering
# # # from haystack.nodes import TfidfRetriever
# # # from haystack.pipelines import ExtractiveQAPipeline
# # # from haystack.nodes import FARMReader
# # # import torch
# # # from main import print_qa
# # # from main import QuestionGenerator
# # # def main():
# # # # Initialize Streamlit app
# # # st.title("Question Generation using Haystack and Streamlit")
# # # # Allow user to input text paragraph
# # # wiki_text = st.text_area("Input paragraph:", height=200)
# # # # Allow user to specify the number of questions to generate
# # # num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)
# # # # Allow user to specify the model to use
# # # model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2"]
# # # model_name = st.selectbox("Select model:", model_options)
# # # # Button to generate questions
# # # if st.button("Generate Questions"):
# # # # Initialize the document store
# # # document_store = InMemoryDocumentStore()
# # # # Convert the input text paragraph into a document
# # # document = {"content": wiki_text}
# # # document_store.write_documents([document])
# # # # Initialize a TfidfRetriever
# # # retriever = TfidfRetriever(document_store=document_store)
# # # # Initialize a FARMReader with the selected model
# # # reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
# # # # Initialize the question generation pipeline
# # # pipe = ExtractiveQAPipeline(reader, retriever)
# # # # Initialize the QuestionGenerator
# # # qg = QuestionGenerator()
# # # # Generate multiple-choice questions
# # # qa_list = qg.generate(
# # # wiki_text,
# # # num_questions=num_questions,
# # # answer_style='multiple_choice')
# # # print("QA List Structure:")
# # # # Display the generated questions and answers
# # # st.header("Generated Questions and Answers:")
# # # for qa in qa_list:
# # # # Display the question
# # # st.write(f"Question: {qa['question']}")
# # # # Display the answer options
# # # if 'answer' in qa:
# # # for idx, option in enumerate(qa['answer']):
# # # # Indicate if the option is correct
# # # correct_marker = "(correct)" if option["correct"] else ""
# # # st.write(f"Option {idx + 1}: {option['answer']} {correct_marker}")
# # # # Add a separator after each question-answer pair
# # # st.write("-" * 40)
# # # # for qa in qa_list:
# # # # print(qa)
# # # # # Proceed with displaying the generated questions
# # # # st.header("Generated Questions:")
# # # # for qa in qa_list:
# # # # st.write(f"Question: {qa['question']}")
# # # # # Adjust the code to match the structure of the output
# # # # if 'answers' in qa:
# # # # for idx, answer in enumerate(qa['answers']):
# # # # prefix = f"Option {idx + 1}:"
# # # # if answer["correct"]:
# # # # prefix += " (correct)"
# # # # st.write(f"{prefix} {answer['text']}")
# # # # else:
# # # # st.write("No answers available for this question.")
# # # # st.write("") # Add an empty line between each question for better readability
# # # # Run the Streamlit app
# # # if __name__ == "__main__":
# # # main()
|