File size: 21,861 Bytes
5a03ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import streamlit as st
import wikipedia
from haystack.document_stores import InMemoryDocumentStore
from haystack.utils import clean_wiki_text, convert_files_to_docs
from haystack.nodes import TfidfRetriever, FARMReader
from haystack.pipelines import ExtractiveQAPipeline
from main import print_qa, QuestionGenerator

def main():
    # Set the Streamlit app title
    st.title("Question Generation using Haystack and Streamlit")

    # Select the input type
    inputs = ["Input Paragraph", "Wikipedia Examples"]
    input_type = st.selectbox("Select an input type:", inputs)

    # Initialize wiki_text as an empty string
    wiki_text = ""

    # Handle different input types
    if input_type == "Input Paragraph":
        # Allow user to input text paragraph
        wiki_text = st.text_area("Input paragraph:", height=200)

    elif input_type == "Wikipedia Examples":
        # Define topics for selection
        topics = ["Deep Learning", "Machine Learning"]
        selected_topic = st.selectbox("Select a topic:", topics)

        # Retrieve Wikipedia content based on the selected topic
        if selected_topic:
            wiki = wikipedia.page(selected_topic)
            wiki_text = wiki.content

        # Display the retrieved Wikipedia content (optional)
        st.text_area("Retrieved Wikipedia content:", wiki_text, height=200)

    # Preprocess the input text
    wiki_text = clean_wiki_text(wiki_text)

    # Allow user to specify the number of questions to generate
    num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)

    # Allow user to specify the model to use
    model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2", "deepset/flan-t5-xl-squad2"]
    model_name = st.selectbox("Select model:", model_options)

    # Button to generate questions
    if st.button("Generate Questions"):
        document_store = InMemoryDocumentStore()

        # Convert the preprocessed text into a document
        document = {"content": wiki_text}
        document_store.write_documents([document])

        # Initialize a TfidfRetriever
        retriever = TfidfRetriever(document_store=document_store)

        # Initialize a FARMReader with the selected model
        reader = FARMReader(model_name_or_path=model_name, use_gpu=False)

        # Initialize the question generation pipeline
        pipe = ExtractiveQAPipeline(reader, retriever)

        # Initialize the QuestionGenerator
        qg = QuestionGenerator()

        # Generate multiple-choice questions
        qa_list = qg.generate(
            wiki_text,
            num_questions=num_questions,
            answer_style='multiple_choice'
        )

        # Display the generated questions and answers
        st.header("Generated Questions and Answers:")
        for idx, qa in enumerate(qa_list):
            # Display the question
            st.write(f"Question {idx + 1}: {qa['question']}")

            # Display the answer options
            if 'answer' in qa:
                for i, option in enumerate(qa['answer']):
                    correct_marker = "(correct)" if option["correct"] else ""
                    st.write(f"Option {i + 1}: {option['answer']} {correct_marker}")

            # Add a separator after each question-answer pair
            st.write("-" * 40)







# Run the Streamlit app
if __name__ == "__main__":
    main()



# import streamlit as st
# import wikipedia
# from haystack.document_stores import InMemoryDocumentStore
# from haystack.utils import clean_wiki_text, convert_files_to_docs
# from haystack.nodes import TfidfRetriever, FARMReader
# from haystack.pipelines import ExtractiveQAPipeline
# from main import print_qa, QuestionGenerator
# import torch

# def main():
#     # Set the Streamlit app title
#     st.title("Question Generation using Haystack and Streamlit")

#     # Select the input type
#     inputs = ["Input Paragraph", "Wikipedia Examples"]
#     input_type = st.selectbox("Select an input type:", inputs, key="input_type")

#     # Initialize wiki_text as an empty string (to avoid UnboundLocalError)
#     wiki_text = """ Deep learning is the subset of machine learning methods based on artificial neural networks (ANNs) with representation learning. The adjective "deep" refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.Deep-learning architectures such as deep neural networks, deep belief networks, recurrent neural networks, convolutional neural networks and transformers have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, climate science, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance.Artificial neural networks were inspired by information processing and distributed communication nodes in biological systems. ANNs have various differences from biological brains. Specifically, artificial neural networks tend to be static and symbolic, while the biological brain of most living organisms is dynamic (plastic) and analog. ANNs are generally seen as low quality models for brain function."""

#     # Handle different input types
#     if input_type == "Input Paragraph":
#         # Allow user to input text paragraph
#         wiki_text = st.text_area("Input paragraph:", height=200, key="input_paragraph")

#     elif input_type == "Wikipedia Examples":
#         # Define options for selecting the topic
#         topics = ["Deep Learning", "Machine Learning"]
#         selected_topic = st.selectbox("Select a topic:", topics, key="wiki_topic")

#         # Retrieve Wikipedia content based on the selected topic
#         if selected_topic:
#             wiki = wikipedia.page(selected_topic)
#             wiki_text = wiki.content

#         # Display the retrieved Wikipedia content (optional)
#         st.text_area("Retrieved Wikipedia content:", wiki_text, height=200, key="wiki_text")

#     # Allow user to specify the number of questions to generate
#     num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5, key="num_questions")

#     # Allow user to specify the model to use
#     model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2", "deepset/flan-t5-xl-squad2"]
#     model_name = st.selectbox("Select model:", model_options, key="model_name")

#     # Button to generate questions
#     if st.button("Generate Questions", key="generate_button"):
#         # Initialize the document store
#         with open('wiki_txt.txt', 'w', encoding='utf-8') as f:
#             f.write(wiki_text)
#         document_store = InMemoryDocumentStore()
#         doc_dir = "/content"
#         docs = convert_files_to_docs(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True)
#         document_store.write_documents(docs)
#         retriever = TfidfRetriever(document_store=document_store)

#         # # Convert the input text paragraph or Wikipedia content into a document
#         # document = {"content": wiki_text}
#         # document_store.write_documents([document])

#         # Initialize a TfidfRetriever
#         # retriever = TfidfRetriever(document_store=document_store)

#         # Initialize a FARMReader with the selected model
#         reader = FARMReader(model_name_or_path=model_name, use_gpu=False)

#         # Initialize the question generation pipeline
#         pipe = ExtractiveQAPipeline(reader, retriever)
#         device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

#         # Initialize the QuestionGenerator
#         qg = QuestionGenerator()

#         # Generate multiple-choice questions
#         qa_list = qg.generate(wiki_text, num_questions=num_questions, answer_style='multiple_choice')

#         # Display the generated questions and answers
#         st.header("Generated Questions and Answers:")
#         for idx, qa in enumerate(qa_list):
#             # Display the question
#             st.write(f"Question {idx + 1}: {qa['question']}")

#             # Display the answer options
#             if 'answer' in qa:
#                 for i, option in enumerate(qa['answer']):
#                     correct_marker = "(correct)" if option["correct"] else ""
#                     st.write(f"Option {i + 1}: {option['answer']} {correct_marker}")

#             # Add a separator after each question-answer pair
#             st.write("-" * 40)

# # Run the Streamlit app
# if __name__ == "__main__":
#     main()



























# # import streamlit as st
# # import wikipedia
# # from haystack.document_stores import InMemoryDocumentStore
# # from haystack.utils import clean_wiki_text, convert_files_to_docs
# # from haystack.nodes import TfidfRetriever, FARMReader
# # from haystack.pipelines import ExtractiveQAPipeline
# # from main import print_qa, QuestionGenerator

# # def main():
# #     # Set the Streamlit app title
# #     st.title("Question Generation using Haystack and Streamlit")
# #     # select the input type 
# #     inputs = ["Input Paragraph", "Wikipedia Examples"]
# #     input=st.selectbox("Select a Input Type :", inputs)
# #     if(input=="Input Paragraph"):
# #         # Allow user to input text paragraph
# #         wiki_text = st.text_area("Input paragraph:", height=200)

# #         # # Allow user to specify the number of questions to generate
# #         # num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)

# #         # # Allow user to specify the model to use
# #         # model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2","deepset/flan-t5-xl-squad2"]
# #         # model_name = st.selectbox("Select model:", model_options)

# #         # # Button to generate questions
# #         # if st.button("Generate Questions"):
# #         #     qno=0
          
# #         #     # Initialize the document store
# #         #     document_store = InMemoryDocumentStore()
        
# #         #     # Convert the input text paragraph into a document
# #         #     document = {"content": wiki_text}
# #         #     document_store.write_documents([document])
        
# #         #     # Initialize a TfidfRetriever
# #         #     retriever = TfidfRetriever(document_store=document_store)
        
# #         #     # Initialize a FARMReader with the selected model
# #         #     reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
        
# #         #     # Initialize the question generation pipeline
# #         #     pipe = ExtractiveQAPipeline(reader, retriever)
        
# #         #     # Initialize the QuestionGenerator
# #         #     qg = QuestionGenerator()
        
# #         #     # Generate multiple-choice questions
# #         #     qa_list = qg.generate(
# #         #     wiki_text, 
# #         #     num_questions=num_questions, 
# #         #     answer_style='multiple_choice')
# #         #     print("QA List Structure:")
# #         #     # Display the generated questions and answers
# #         #     st.header("Generated Questions and Answers:")
# #         #     for qa in qa_list:
# #         #         opno=0
                
# #         #         # Display the question
# #         #         st.write(f"Question: {qno+1}{qa['question']}")

# #         #     # Display the answer options
# #         #         if 'answer' in qa:
# #         #             for idx, option in enumerate(qa['answer']):
# #         #             # Indicate if the option is correct
# #         #                 correct_marker = "(correct)" if option["correct"] else ""
# #         #                 st.write(f"Option {idx + 1}: {option['answer']} {correct_marker}")
        
# #         #     # Add a separator after each question-answer pair
# #         #         st.write("-" * 40)
    
# #     if(input == "Wikipedia Examples"):   
# #         # Define options for selecting the topic
# #         topics = ["Deep Learning", "MachineLearning"]
# #         selected_topic = st.selectbox("Select a topic:", topics)

# #         # Retrieve Wikipedia content based on the selected topic
# #         if selected_topic:
# #             wiki = wikipedia.page(selected_topic)
# #             wiki_text = wiki.content

# #         # Display the retrieved Wikipedia content in a text area (optional)
# #         st.text_area("Retrieved Wikipedia content:", wiki_text, height=200)

# #         # # Allow user to specify the number of questions to generate
# #         # num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)

# #         # # Allow user to specify the model to use
# #         # model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2","deepset/flan-t5-xl-squad2"]
# #         # model_name = st.selectbox("Select model:", model_options)

# #         # # Button to generate questions
# #         # if st.button("Generate Questions"):
# #         #     # Initialize the document store
# #         #     document_store = InMemoryDocumentStore()
        
# #         #     # Convert the retrieved Wikipedia content into a document
# #         #     document = {"content": wiki_text}
# #         #     document_store.write_documents([document])
        
# #         #     # Initialize a TfidfRetriever
# #         #     retriever = TfidfRetriever(document_store=document_store)
        
# #         #     # Initialize a FARMReader with the selected model
# #         #     reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
        
# #         #     # Initialize the ExtractiveQAPipeline
# #         #     pipeline = ExtractiveQAPipeline(reader, retriever)
        
# #         #     # Initialize the QuestionGenerator
# #         #     qg = QuestionGenerator()
        
# #         #     # Generate multiple-choice questions
# #         #     qa_list = qg.generate(
# #         #         wiki_text, 
# #         #         num_questions=num_questions, 
# #         #         answer_style='multiple_choice'
# #         #     )
        
# #         #     # Display the generated questions and answers
# #         #     st.header("Generated Questions and Answers:")
# #         #     for idx, qa in enumerate(qa_list):
# #         #         # Display the question
# #         #         st.write(f"Question {idx + 1}: {qa['question']}")

# #         #         # Display the answer options
# #         #         if 'answer' in qa:
# #         #             for i, option in enumerate(qa['answer']):
# #         #                 correct_marker = "(correct)" if option["correct"] else ""
# #         #                 st.write(f"Option {i + 1}: {option['answer']} {correct_marker}")
            
# #         #         # Add a separator after each question-answer pair
# #         #         st.write("-" * 40)
    
# #     # Allow user to specify the number of questions to generate
# #     num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)
# #     # Allow user to specify the model to use
# #     model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2","deepset/flan-t5-xl-squad2"]
# #     model_name = st.selectbox("Select model:", model_options)

# #     # Button to generate questions
# #     if st.button("Generate Questions"):
# #         qno=0
          
# #         # Initialize the document store
# #         document_store = InMemoryDocumentStore()
        
# #         # Convert the input text paragraph into a document
# #         document = {"content": wiki_text}
# #         document_store.write_documents([document])
        
# #         # Initialize a TfidfRetriever
# #         retriever = TfidfRetriever(document_store=document_store)
        
# #         # Initialize a FARMReader with the selected model
# #         reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
        
# #         # Initialize the question generation pipeline
# #         pipe = ExtractiveQAPipeline(reader, retriever)
        
# #         # Initialize the QuestionGenerator
# #         qg = QuestionGenerator()
        
# #         # Generate multiple-choice questions
# #         qa_list = qg.generate(
# #             wiki_text, 
# #             num_questions=num_questions, 
# #             answer_style='multiple_choice')
# #         print("QA List Structure:")
# #         # Display the generated questions and answers
# #         st.header("Generated Questions and Answers:")
# #         for qa in qa_list:
# #             opno=0
                
# #             # Display the question
# #             st.write(f"Question: {qno+1}{qa['question']}")

# #         # Display the answer options
# #             if 'answer' in qa:
# #                 for idx, option in enumerate(qa['answer']):
# #                 # Indicate if the option is correct
# #                     correct_marker = "(correct)" if option["correct"] else ""
# #                     st.write(f"Option {idx + 1}: {option['answer']} {correct_marker}")
        
# #         # Add a separator after each question-answer pair
# #             st.write("-" * 40)

# # # Run the Streamlit app
# # if __name__ == "__main__":
# #     main()




# # # import streamlit as st
# # # import re
# # # import pke
# # # import contractions
# # # import wikipedia
# # # import logging
# # # from haystack.document_stores import InMemoryDocumentStore
# # # from haystack.utils import clean_wiki_text, convert_files_to_docs, fetch_archive_from_http
# # # from transformers.pipelines import question_answering
# # # from haystack.nodes import TfidfRetriever
# # # from haystack.pipelines import ExtractiveQAPipeline
# # # from haystack.nodes import FARMReader
# # # import torch

# # # from main import print_qa
# # # from main import QuestionGenerator

# # # def main():
# # #     # Initialize Streamlit app
# # #     st.title("Question Generation using Haystack and Streamlit")

# # #     # Allow user to input text paragraph
# # #     wiki_text = st.text_area("Input paragraph:", height=200)

# # #     # Allow user to specify the number of questions to generate
# # #     num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)

# # #     # Allow user to specify the model to use
# # #     model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2"]
# # #     model_name = st.selectbox("Select model:", model_options)

# # #     # Button to generate questions
# # #     if st.button("Generate Questions"):
# # #         # Initialize the document store
# # #         document_store = InMemoryDocumentStore()
        
# # #         # Convert the input text paragraph into a document
# # #         document = {"content": wiki_text}
# # #         document_store.write_documents([document])
        
# # #         # Initialize a TfidfRetriever
# # #         retriever = TfidfRetriever(document_store=document_store)
        
# # #         # Initialize a FARMReader with the selected model
# # #         reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
        
# # #         # Initialize the question generation pipeline
# # #         pipe = ExtractiveQAPipeline(reader, retriever)
        
# # #         # Initialize the QuestionGenerator
# # #         qg = QuestionGenerator()
        
# # #         # Generate multiple-choice questions
# # #         qa_list = qg.generate(
# # #         wiki_text, 
# # #         num_questions=num_questions, 
# # #         answer_style='multiple_choice')
# # #         print("QA List Structure:")
# # #         # Display the generated questions and answers
# # #         st.header("Generated Questions and Answers:")
# # #         for qa in qa_list:
# # #             # Display the question
# # #             st.write(f"Question: {qa['question']}")

# # #             # Display the answer options
# # #             if 'answer' in qa:
# # #                 for idx, option in enumerate(qa['answer']):
# # #                     # Indicate if the option is correct
# # #                     correct_marker = "(correct)" if option["correct"] else ""
# # #                     st.write(f"Option {idx + 1}: {option['answer']} {correct_marker}")
        
# # #             # Add a separator after each question-answer pair
# # #             st.write("-" * 40)
# # #         # for qa in qa_list:
# # #         #     print(qa)
        
# # #         # # Proceed with displaying the generated questions
# # #         # st.header("Generated Questions:")
# # #         # for qa in qa_list:
# # #         #     st.write(f"Question: {qa['question']}")
# # #         #     # Adjust the code to match the structure of the output
# # #         #     if 'answers' in qa:
# # #         #         for idx, answer in enumerate(qa['answers']):
# # #         #             prefix = f"Option {idx + 1}:"
# # #         #             if answer["correct"]:
# # #         #                 prefix += " (correct)"
# # #         #             st.write(f"{prefix} {answer['text']}")
# # #         #     else:
# # #         #         st.write("No answers available for this question.")
# # #         #     st.write("")  # Add an empty line between each question for better readability

# # # # Run the Streamlit app
# # # if __name__ == "__main__":
# # #     main()