Spaces:
Sleeping
Sleeping
Krishnan Palanisami
commited on
Delete streamlit.py
Browse files- streamlit.py +0 -100
streamlit.py
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import wikipedia
|
3 |
-
from haystack.document_stores import InMemoryDocumentStore
|
4 |
-
from haystack.utils import clean_wiki_text, convert_files_to_docs
|
5 |
-
from haystack.nodes import TfidfRetriever, FARMReader
|
6 |
-
from haystack.pipelines import ExtractiveQAPipeline
|
7 |
-
from main import print_qa, QuestionGenerator
|
8 |
-
|
9 |
-
def main():
|
10 |
-
# Set the Streamlit app title
|
11 |
-
st.title("Question Generation using Haystack and Streamlit")
|
12 |
-
|
13 |
-
# Select the input type
|
14 |
-
inputs = ["Input Paragraph", "Wikipedia Examples"]
|
15 |
-
input_type = st.selectbox("Select an input type:", inputs)
|
16 |
-
|
17 |
-
# Initialize wiki_text as an empty string
|
18 |
-
wiki_text = ""
|
19 |
-
|
20 |
-
# Handle different input types
|
21 |
-
if input_type == "Input Paragraph":
|
22 |
-
# Allow user to input text paragraph
|
23 |
-
wiki_text = st.text_area("Input paragraph:", height=200)
|
24 |
-
|
25 |
-
elif input_type == "Wikipedia Examples":
|
26 |
-
# Define topics for selection
|
27 |
-
topics = ["Deep Learning", "Machine Learning"]
|
28 |
-
selected_topic = st.selectbox("Select a topic:", topics)
|
29 |
-
|
30 |
-
# Retrieve Wikipedia content based on the selected topic
|
31 |
-
if selected_topic:
|
32 |
-
wiki = wikipedia.page(selected_topic)
|
33 |
-
wiki_text = wiki.content
|
34 |
-
|
35 |
-
# Display the retrieved Wikipedia content (optional)
|
36 |
-
st.text_area("Retrieved Wikipedia content:", wiki_text, height=200)
|
37 |
-
|
38 |
-
# Preprocess the input text
|
39 |
-
wiki_text = clean_wiki_text(wiki_text)
|
40 |
-
|
41 |
-
# Allow user to specify the number of questions to generate
|
42 |
-
num_questions = st.slider("Number of questions to generate:", min_value=1, max_value=20, value=5)
|
43 |
-
|
44 |
-
# Allow user to specify the model to use
|
45 |
-
model_options = ["deepset/roberta-base-squad2", "deepset/roberta-base-squad2-distilled", "bert-large-uncased-whole-word-masking-squad2", "deepset/flan-t5-xl-squad2"]
|
46 |
-
model_name = st.selectbox("Select model:", model_options)
|
47 |
-
|
48 |
-
# Button to generate questions
|
49 |
-
if st.button("Generate Questions"):
|
50 |
-
document_store = InMemoryDocumentStore()
|
51 |
-
|
52 |
-
# Convert the preprocessed text into a document
|
53 |
-
document = {"content": wiki_text}
|
54 |
-
document_store.write_documents([document])
|
55 |
-
|
56 |
-
# Initialize a TfidfRetriever
|
57 |
-
retriever = TfidfRetriever(document_store=document_store)
|
58 |
-
|
59 |
-
# Initialize a FARMReader with the selected model
|
60 |
-
reader = FARMReader(model_name_or_path=model_name, use_gpu=False)
|
61 |
-
|
62 |
-
# Initialize the question generation pipeline
|
63 |
-
pipe = ExtractiveQAPipeline(reader, retriever)
|
64 |
-
|
65 |
-
# Initialize the QuestionGenerator
|
66 |
-
qg = QuestionGenerator()
|
67 |
-
|
68 |
-
# Generate multiple-choice questions
|
69 |
-
qa_list = qg.generate(
|
70 |
-
wiki_text,
|
71 |
-
num_questions=num_questions,
|
72 |
-
answer_style='multiple_choice'
|
73 |
-
)
|
74 |
-
|
75 |
-
# Display the generated questions and answers
|
76 |
-
st.header("Generated Questions and Answers:")
|
77 |
-
for idx, qa in enumerate(qa_list):
|
78 |
-
# Display the question
|
79 |
-
st.write(f"Question {idx + 1}: {qa['question']}")
|
80 |
-
|
81 |
-
# Display the answer options
|
82 |
-
if 'answer' in qa:
|
83 |
-
for i, option in enumerate(qa['answer']):
|
84 |
-
correct_marker = "(correct)" if option["correct"] else ""
|
85 |
-
st.write(f"Option {i + 1}: {option['answer']} {correct_marker}")
|
86 |
-
|
87 |
-
# Add a separator after each question-answer pair
|
88 |
-
st.write("-" * 40)
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
# Run the Streamlit app
|
97 |
-
if __name__ == "__main__":
|
98 |
-
main()
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|