Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
import os | |
import numpy as np | |
import librosa | |
import joblib | |
from .utils.evaluation import AudioEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
from dotenv import load_dotenv | |
load_dotenv() | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/audio" | |
def create_spec(dataset, target_sampling_rate=3000): | |
spectograms = [] | |
audio_length = int(36000/(12000/target_sampling_rate)) | |
for d in dataset: | |
audio_sample = librosa.resample( | |
d["audio"]["array"], | |
orig_sr= d["audio"]["sampling_rate"], | |
target_sr=target_sampling_rate | |
) | |
if len(audio_sample) == 0: | |
continue | |
if len(audio_sample) < audio_length: | |
padding_needed = audio_length - len(audio_sample) | |
repeats = (padding_needed // len(audio_sample)) + 1 | |
audio_sample = np.concatenate([audio_sample] + [audio_sample[:padding_needed]] * repeats)[:audio_length] | |
elif len(audio_sample) > audio_length: | |
audio_sample = audio_sample[:audio_length] | |
rms = np.sqrt(np.mean(np.square(audio_sample))) | |
scalar = 10 ** (-20 / 20) / (rms + 1e-8) | |
mel = librosa.feature.melspectrogram( | |
y=audio_sample*scalar, | |
sr=12000, | |
n_fft=2048, | |
hop_length=1024, | |
n_mels=12, | |
power=2.0, | |
) | |
mel_db = librosa.power_to_db(mel, ref=np.max) | |
mel_db_normalized = (mel_db - mel_db.mean()) / (mel_db.std() + 1e-8) | |
spectograms.append(mel_db_normalized.T.flatten()) | |
return np.stack(spectograms) | |
async def evaluate_audio(request: AudioEvaluationRequest): | |
""" | |
Evaluate audio classification for rainforest sound detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-1) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"chainsaw": 0, | |
"environment": 1 | |
} | |
# Load and prepare the dataset | |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate | |
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) | |
# Split dataset | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
test_spec = create_spec(test_dataset) | |
H = np.load("H.npy") | |
W_test = np.dot(test_spec, H) | |
model = joblib.load('model.joblib') | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
# Make random predictions (placeholder for actual model inference) | |
true_labels = test_dataset["label"] | |
predictions = model.predict(W_test) | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |