vlaurent17's picture
Upload 3 files
1379d19 verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
import numpy as np
import librosa
import joblib
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/audio"
def create_spec(dataset, target_sampling_rate=3000):
spectograms = []
audio_length = int(36000/(12000/target_sampling_rate))
for d in dataset:
audio_sample = librosa.resample(
d["audio"]["array"],
orig_sr= d["audio"]["sampling_rate"],
target_sr=target_sampling_rate
)
if len(audio_sample) == 0:
continue
if len(audio_sample) < audio_length:
padding_needed = audio_length - len(audio_sample)
repeats = (padding_needed // len(audio_sample)) + 1
audio_sample = np.concatenate([audio_sample] + [audio_sample[:padding_needed]] * repeats)[:audio_length]
elif len(audio_sample) > audio_length:
audio_sample = audio_sample[:audio_length]
rms = np.sqrt(np.mean(np.square(audio_sample)))
scalar = 10 ** (-20 / 20) / (rms + 1e-8)
mel = librosa.feature.melspectrogram(
y=audio_sample*scalar,
sr=12000,
n_fft=2048,
hop_length=1024,
n_mels=12,
power=2.0,
)
mel_db = librosa.power_to_db(mel, ref=np.max)
mel_db_normalized = (mel_db - mel_db.mean()) / (mel_db.std() + 1e-8)
spectograms.append(mel_db_normalized.T.flatten())
return np.stack(spectograms)
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-1)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
test_spec = create_spec(test_dataset)
H = np.load("H.npy")
W_test = np.dot(test_spec, H)
model = joblib.load('model.joblib')
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
predictions = model.predict(W_test)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results